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Often, syntax-directed editors rely solely on menu selection for program
construction. We describe here the generation of hybrid editors that give a
programmer the option of either (1) using menu selection and tree navigation
as in a syntax-directed editor, or (2) entering text for parsing and navigating
through the text as in a conventional editor at any stage during the expansion
of a program. A prototype system, HEG (Hybrid Editor Generator), has been
built to automatically generate such a hybrid editor from a high-level specifi-
cation of a grammar for an application language. Each such generated hybrid
editor is called an AGE (Automatically Generated Editor). We describe the
HEG meta-language and briefly summarize the editing process in AGEs. We
also describe possible extensions to the meta-language to describe program
semantics, and the generation of the procedures to check those semantics
during program construction.

I. INTRODUCTION

In the past, there has been a dichotomy between the way a devel-
opment tool such as a text editor would manipulate the text of a
computer program and the way another development tool such as a
parser would manipulate the same text. The advent of syntax-directed
editing has removed this difference by introducing the use of editors
that store and manipulate programs entirely as (partially) instantiated
syntax trees.'® The question, though, of whether a program should be
manipulated only in terms of its syntax tree, or also in terms of its
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textual representation, is yet to be resolved.*’ Some editing systems
purport to allow the programmer both points of view, but provide only
one, predetermined, choice for the manipulation of each construct in
the language.” We introduce here the concept of a hybrid editor, which
integrates the tree-navigation and menu-selection capabilities of a
syntax-directed editor with the text-navigation and the string-entry
capabilities of a conventional editor. Either of these views of a program
can be taken at any stage during the expansion of the program in a
hybrid editor.

One of the features of the hybrid editors discussed herein is the fact
that a complete editing system is automatically generated from a high-
level description of a language. The concrete and abstract syntaxes of
the language are both described by one context-free grammar; and
both the syntax-directed editor, and the incremental parser for use
with the editor, are generated from this grammar.

In this paper, we outline the overall design of a hybrid editor
generator and describe briefly the interface presented to a programmer
by the hybrid editor. We define the meta-language in which the
application language is specified for the generator, and describe the
operations performed on the language specification in the process of
generating the editor. Based on this design, a prototype hybrid editor
generator, called HEG, has been built and is being tested. We describe
possible extensions to the meta-language to describe program seman-
tics, and the generation of the procedures to check those semantics
during program construction.

1Il. BACKGROUND

Although syntax-directed editing can be very helpful to a program-
mer who is unfamiliar with the language he is using, one who knows
the syntax of the language may easily become frustrated with the
plethora of menu choices that must be made to “write” a program
substructure as simple as an assignment statement. For this reason,
allowing the programmer the option of giving the editor a string to
parse and insert into the partially expanded program is a desirable
feature to have in such a menu-driven editor. We define a hybrid
editor to be a syntax-directed editor with the ability to parse and to
integrate into the program tree a string given at any time during the
expansion of a program.

There have been attempts to generate syntax-directed editors au-
tomatically for several programming languages from specifications of
the syntactic (given by a context-free grammar)® and the semantic
(given using attributes for the symbols in the grammar) aspects of a
language.'® There is also a system in use that requires only the addition
of a context-free grammar for any new language for which it is to
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operate.! (In this latter system, detailed knowledge of the structure of
the grammar seems to be required in order to use the editor with any
grace.) Usually, however, such editors are built individually for each
programming language. This is because (1) high-level programming
languages have many context-sensitive semantic constraints that can-
not be expressed by a context-free grammar, (2) programmers using
high-level languages usually need more local context-sensitive aid than
syntactic help, and (3) the external interface that such an editor is
expected to provide depends heavily upon the language it supports.

Little attention, however, has been paid to syntax-directed editors
for special-purpose languages such as the input specification languages
for Yet Another Compiler-Compiler (YACC)" and database interface
languages such as HISEL.” Yet it is for these seldom used, but
numerous, languages that a hybrid editor would be most useful. Users
of such application programs often write their input in a file using a
regular text editor and manually check conformity with the syntactic
constraints imposed by the particular application program. Some of
these application programs have parsers in their front ends to check
the syntactic correctness of their input. (Sometimes these parsers are
automatically generated from utilities such as YACC.') Others just
assume that their input is syntactically correct and abort when it is
not. If, in place of the parser, a hybrid editor is available within the
application program, the user can be guided by the program’s editor
during input construction.

A tool to automatically generate such editors for application lan-
guages can be quite useful for several reasons: (1) A special-purpose
application language, unlike a programming language, is likely to
change more rapidly with an evolving application program. (2) Many
application programs are not frequently used and hence their idiosyn-
cratic syntactic constraints are likely to be forgotten. (3) The amount
of syntactic help from a hybrid editor can be determined by the
programmer. (4) The derivation tree built by the hybrid editor may be
used by the application program to process its input in a more
structured manner than is often possible when only a textual view of
the input is available to the program. It is for these types of languages
that HEG-generated hybrid editors, called AGEs (Automatically Gen-
erated Editors), are most valuable.

1ll. THE EDITING PROCESS

In a HEG-generated hybrid editor for a given language, a program
is internally represented by a derivation tree of the program in that
language, along with a symbol table containing the programmer-
defined character strings. (See Appendix A for an example of a short
session with an AGE.) When the programmer wishes to expand a
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particular nonterminal in the tree by syntax-directed menu selection,
and if there are two or more production rules for that nonterminal,
then the AGE creates a one-item-at-a-time wraparound menu, on the
bottom line of the screen, displaying the menu strings associated with
those production rules. After a production rule is chosen for expansion,
the internal node for the nonterminal is grown in such a way that the
frontier of the subtree rooted at that internal node corresponds to the
right-hand side of the production rule selected. If, however, the pro-
grammer wishes to forego menu selection, he/she may expand a
nonterminal by entering a string that is derivable from the nonter-
minal. The editor will parse the string, build a subtree representing
the string, and graft the subtree into the program tree at the node
corresponding to the nonterminal. The string given by the programmer
may be any combination of terminal strings and nonterminal names.

Even though the internal representation of a program is a tree, both
tree and text interfaces are provided to the programmer for navigation
through the program. At any moment, a tree cursor navigating around
the internal nodes of the tree is available. The programmer sees the
cursor spanning the entire frontier of the subtree rooted at the tree-
cursor node. He can move the tree cursor along the internal nodes of
the tree (using the commands up ["], down [V], left-sibling under the
same parent [<], right-sibling under the same parent [>], next internal
node of the same type under the same parent [N], etc). Or, he can
navigate textually (using the commands n for next word, b for back
word, CR for next line, - for previous line) through the program. The
commands ‘e’ and ‘U’ provide syntax-driven expansion and unexpan-
sion facilities. Commands ‘p’ and ‘r’ allow parser-driven nonterminal
expansion and file-reading facilities.

When the programmer quits editing, both the text and the tree
versions of the program are saved. The tree is saved by storing the
leftmost derivation sequence of the production rules in the derivation
tree and the symbol table. This sequence is used to reconstruct the
tree for a later editing session on that program. The test is saved for
possible use by other tools.

IV. ARCHITECTURE OF HEG

HEG produces a generalized table-driven syntax-directed editor,
linked with a parser, for a given application language. The application
language is specified by an AGE grammar in the meta-language
described in the next section. A parser generator front end, named
‘GENPAR’, generates a YACC file and a LEX file'® from this speci-
fication of a language. The parser generated from these two files is
capable of parsing strings, which may contain nonterminal names,
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starting from any nonterminal of the grammar. The grammar tables
used by the editor, the parser, and the generic editing routines are
then linked together to generate an AGE for the given language.

Figure 1 shows the interactions between the different components
of an AGE.

V. THE META-LANGUAGE

The “meta-language” for HEG is the grammar specification lan-
guage in which the production rules of any context-free grammar are
specified, along with the pretty-printing information required by the
display utilities of the editor (e.g., indentation and color codes, if
available) and the strings for the menu lists. As an example of the use
of the language,

query : (QUERY)
| “select” list “where” conds

is a normal production rule. Here, (QUERY) is a “user-friendly” name
for the nonterminal symbol ‘query’. The sequence of strings following
the character ‘|’ specifies a production for the nonterminal ‘query’.
Strings within double quotes in the production specification are ter-
minal characters and others are nonterminals. The terminal character
strings may also contain the following special characters denoting
pretty-printing information: ‘\n’ for a new-line, “~’ for a blank char-
acter, ‘\t’ for tabbing one position to the right and increasing the tab
count by one for the starting positions of the subsequent lines, and
T’ for decreasing the tab count by one for the current and the
subsequent lines.

APPLICATION GRAMMAR g

SCRIPT PARSER
GENERATOR GENERATOR
GRAMMAR INCREMENTAL
TABLES PARSER
PROGRAMMER COMMAND PARSER DISPLAY
INTERACTION | INTERPRETER | UTILITIES | UTILITIES | PROGRAM.g
—_— —

TREE UTILITIES

PROGRAM.TREE

Fig. 1—Interactions between the components of an AGE.
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Another example is

list : ITEM_LIST
| +item “,”
This is an iterative production rule. It specifies that the nonterminal,
‘list’, can be expanded into one or more occurrences of the nonterminal,
‘item’, separated by the terminal character string ‘. A “_in place of
the ‘+’ above, would denote zero or more occurrences of the nonter-
minal.

There may be more than one production rule for a nonterminal; if
5o, all of the rules for the nonterminal must be specified in one rule
set, each preceded by a ‘|”. For example, the following two sets of rules
show several possible expansions for the corresponding nonterminals:

clause : CLAUSE
| field_name “~” op “~” constant
| constant “~” op “~” field_name
| field_name “~” op “~” field_name

op - OPERATOR

“__»

| w)—_n
I »

“<=
I “>”
I “<”

For each production rule, the grammar specification must include
an associated “expansion character”. This expansion character must
be unique within the set of rules for that nonterminal. If there are two
or more rules for the expansion of a nonterminal and if an instance of
that nonterminal in the program is to be expanded, the programmer
must indicate his choice by typing the expansion character associated
with the desired rule. However, if the programmer wishes to examine
all the choices for that nonterminal, the AGE creates a one-item-at-
a-time wraparound menu on the bottom line of the screen, from which
the programmer may choose a production. Therefore, the implementor
(the person defining the grammar) must provide a “menu-item-string”,
which is displayed in the menu for each production rule. These menu
items should be suggestive of the associated production rule for better
communication with the programmer. When a particular rule is chosen
for the expansion, the right-hand side of that rule replaces the left-
hand side nonterminal node in the program’s syntax tree.

3210 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983



To illustrate the provision of menu information in a grammar for
HEG as above and to clarify the grammar specifications further, a
complete set of rules for a database query language HISEL'? is given
below. Sentences (queries) in this language have the form:

select x1.fld1,x2.fld2, ... where (CLAUSES) or (CLAUSES) ...

where ‘x’ is a cursor name, ‘fld’ is a field name, and (CLAUSES) is a
conjunctive sequence of field conditions. The single characters follow-
ing the menu items in the rules are the expansion characters. For the
rule sets having just one production rule, meaningless menu-item
strings (e.g., ‘xxx’) and expansion characters (e.g., ‘x’) are used for
uniformity in the meta-syntax. Observe that there is no white space
in the menu-item strings.

query : (QUERY)
| xxx x “select” list “\nwhere~” conds

list : (ITEM_LIST)

| xxx x + item “,

item : ITEM
| xxx x cursor “.” field_name

conds : (CONDITIONS)
| xxx x *disjunct “\n~~~or~

»

disjanct  : (CLAUSES)

| xxx x +clause “~,

clause : CLAUSE
| field_op_const 1 field_name “~” op “~” constant
| const_op_field 2 constant “~” op “~” field_name
| field_op_field 3 field_name “~” op “~” field_name

op : OPERATOR
| equal = “="
| not_equal !
| greater_equal 1 “>="
| less_equal 2 “<="
| greater > “>”
| less < “<”

u‘=”

The left-hand side nonterminal of the first rule in the grammar
specification (i.e., ‘query’, above) is the starting nonterminal. If no
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production rule is available for a nonterminal (e.g., ‘field_name’), and
that nonterminal appears during the derivation of a program, then it
is assumed to expand into a character string to be provided by the
programmer at the time of expansion. Such nonterminals are said to
derive “identifiers”. A regular expression specification for any such
nonterminal can be used to restrict the format of the identifier strings
that a programmer may supply at the time of expansion. HEG provides
a default specification for all nonterminals deriving identifiers and
having no regular expression specification.

As another example, the following is a grammar in the meta-
language (meta-grammar) for the meta-language described in this
section. In fact, one can invoke an AGE for this meta-language to
enter a grammar specification for any user-defined language.

gram : (AN_AGE_GRAMMAR)
| xxx x cfrules “\n% %\n” rerules

cfrules : (CONTEXT_FREE_RULES)
| xxx x +ruleset “\n”
ruleset ! (A_RULE_SET)
| xxx x nonterm-name “\t:~” user_name “\n” rules
“Nn\n\T”
rules : (RHS_OF_A_RULE_SET)
| xxx x +rule “\n”
rule : (A_RULE)
| normal-rule n “|~” menu_string “~” exp_char “~”
tklist

| nonempty-rec-rule + “|~xxx~x~+” nonterm_name

“~\“” geparator “\"”

| empty-rec-rule * “|~xxx~x~*” nonterm_name
separator “\””

“—-\l‘”

tklist : (A_SEQ_OF TOKENS)
| xxx x +token “~”

token : TOKEN
| nonterminal-token n nonterm_name
| terminal-token t “\“” terminal_str “\””

rerules : (REGULAR_EXP_RULES)
| xxx x *rerule “\n”

?
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rerule : (REG_EXP_RULE)

| xxx X nonterm-name “~~\~##!” reg_expr
%% ’ )
exp_char ~##[a-zA-Z0-9+* <>&]

VI. THE PARSER GENERATOR FOR HEG

The tools YACC and LEX are used to produce a parser and a
scanner for an AGE system. The parser generator front end, GEN-
PAR, takes, as input, the AGE grammar specification for the desired
language and produces YACC and LEX specification files. (Note that
the use of YACC implies that the input grammar must be LALR(1)
in order to generate a parser for an AGE system.)

The generated parser can be invoked to parse an input string
representing the expansion of any nonterminal node in the program
derivation tree. The string to be parsed can be any combination of
terminal strings and nonterminal names that is derivable from the
nonterminal at the “current” position of the editing cursor.

6.1 The parsing of an input string

When the programmer provides a string to be parsed, rather than
making a menu selection, the AGE system opens a temporary file,
writes the prefix $$NONTERMINAL_NAME$$ to the file (where
NONTERMINAL_NAME represents the nonterminal from which the
programmer’s input string is to be derived), and appends the input
string. The parser is called to process the entire string contained in
the file. The prefix is considered to be an integral part of the input
string. If the portion of the string entered by the programmer cannot
be derived from the nonterminal indicated by the prefix, the input will
be considered syntactically incorrect. If a syntax error is found, the
temporary file is saved in case the programmer should wish to edit the
string and resubmit it to the parser.

The parser will parse its input in a “backtracking bottom-up”
fashion, constructing a syntax tree to represent the derivation of the
input string. After the tree is constructed, a preorder traversal of the
tree is performed, producing a list of production numbers representing
the leftmost derivation of the input string. This list is then passed
back to the controlling program in AGE.

In an AGE, the YACC-generated parser is run subordinate to a
“parser monitor” to provide a certain amount of parser backtracking,
made necessary by the conflict resolution scheme of the LEX-gener-
ated scanner. For such a scanner, the lexical tokens desired are
specified by regular expressions. When two or more of the given regular
expressions match equal-length segments of the input (starting at the
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“current input position” of the scanner), and these are the longest
matches possible, the scanner will select the regular expression that
had been listed first (textually) in the input specification file as the
“correct” match, and return the corresponding token number. If the
parser is expecting one of the other possible matches at the current
input position, the parser will find a “syntax error” where no error
may, in fact, exist.

The parsers produced by the YACC program are standard shift/
reduce (“bottom-up”) parsers. The required backtracking is accom-
plished through the interaction of code at two levels of the parsing
scheme. At the lowest level, the handling of multiple matches in the
scanner is slightly modified by forcing the scanner to “reject” an
“identifier” match, after linking the token number associated with the
match into a “token map.” In this manner, all possible matches for an
“identifier” are linked into the token map for the parse. At the highest
level, the parser monitor runs the shift/reduce parser, handing the
parser token numbers from either the scanner or the token map,
depending upon the current state of the parse. Then, if the YACC-
generated portion of the parser discovers a syntax error in the input,
the monitor can rotate the last set of entries in the token map to
(temporarily) “forget” the “preferred” token number for the last
“choice position” in the input stream, allowing the use of another
possible token number for that position.* In this manner, no syntact-
ically correct input will be declared to contain a syntax error, and an
incorrect input will only be rejected after trying the allowable combi-
nations of token numbers for the “identifier” positions.

6.2 What the parser generator does

Several transformations must be applied to the AGE grammar to
produce a grammar specification that is acceptable to YACC, and that
will specify a parser offering the features and enforcing the constraints
desired. All the transformations are performed and the YACC gram-
mar specification is produced in a single pass over the input grammar.

6.2.1 Starting the derivations from arbitrary nonterminals

For every nonterminal in the AGE grammar, two additional produc-
tions are generated. One such set of productions makes it possible to

*Due to the relative simplicity of most application languages (in terms of permissible
“identifier” combinations and possible token map complexity), the erroneous “identifier”
token number will usually be in the last set of entries in the token map. So, in most
cases, only the last one or two “identifiers” need to be retried (if the input really is
syntactically correct). In all cases, the LALR(1) property of the grammar should aid in
the isolation of groups of points in the “identifier” cross-product space that could not
possibly be characteristic of a correct parse. The points in these groups, then, need not
be considered individually during parsing.
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start a derivation from any nonterminal in the original grammar, even
though YACC will allow the specification of only one start symbol for
a grammar. Each such added production is of the form:

ppstart : AGE_TERM_20 clause

where “ppstart” is a newly defined start symbol for the grammar,
“clause” is a nonterminal in the original grammar, and
“AGE_TERM_20" is the token returned by the scanner when it reads
the prefix (e.g., “$$clause$$”) encoding the nonterminal from which
the remainder of the input is to be derived. This type of production
also allows the enforcement of the rule that the input string must be
derivable from the nonterminal at the “current” node in the program
tree.

6.2.2 Use of nonterminal names

The second set of productions generated for each nonterminal allows
the acceptance of a “user-name” for a nonterminal, in place of a string
that could be derived from that nonterminal, wherever the nonterminal
may appear in an input sentence. Each of these productions is of the
form:

clause : AGE_TERM_22

where “AGE_TERM_22" is the token returned by the scanner when it
reads the user-name for the nonterminal on the left-hand side of the
production (e.g., “clause”).

6.2.3 Iteration in the grammars

The iterative specifications in the AGE grammar must be trans-
formed into explicit left recursions, with the separators appropriately
treated. Since the most general form of iteration in AGE grammars is
that of a list item repeated zero or more times, with a nonwhite-space
separator, that case is considered here. The AGE grammar specifica-
tion for such a list might be:

clauses : *clause “,”

where “clause” is the nonterminal to be repeated in the list structure
and “,” is the terminal separator to appear between list elements.

The YACC specification corresponding to the above production
would be:

clauses : Xclause 2 0X

where Xclause_2_0X is a new nonterminal encoding the nonterminal
to be repeated as the list elements (e.g. “clause”), the number of the
terminal string to be used as the list element separator (e.g., “2”), and
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the minimum number of times the nonterminal must appear in the
list (e.g., “0”). Such encoding permits the use of the list item nonter-
minal, “clause,” as the repeated element in other lists with different
separators and/or different minimal numbers of occurrences.

To derive the required number of occurrences of “clause,” sets of
productions of the following form must be added to the YACC gram-
mar:

Xclause_2 0X :e
| Xclause_2_1X

where “e” represents the empty string. The second new nonterminal,
Xclause_2_1X, denotes one or more occurrences of “clause” separated
by occurrences of terminal number 2. For this second new nonterminal,
sets of productions of the following form are added to the YACC
grammar:

Xclause 2 _1X : clause
| Xclause_2_1X AGE_TERM_2 clause

where “AGE_TERM_2” denotes the required separator (“terminal
number 2”) between elements of the list.

Note that other iterative specifications are specializations of the
above case. If the list must be nonempty, only the second new nonter-
minal, with its associated productions, is generated. If the list element
separator is not significant (i.e., if it is any form of white space), then
no terminal is encoded in the new nonterminal(s) or included in any
of the new productions.

6.2.4 Treatment of identifiers

In an AGE input grammar, there are no explicit productions for the
derivation of character strings representing identifiers. Any nonter-
minal that does not appear on the left-hand side of any production, in
an AGE grammar specification, may produce an identifier. Since there
are no such implied rules in a YACC grammar specification, GENPAR
must add explicit productions to the grammar to allow the reduction
of terminal identifier strings to appropriate nonterminals. These pro-
ductions are of the form:

curst : AGE_IDENTIFIER_5

where an identifier number (e.g., “5”) is specified only if the default
lexical specification is overridden for the nonterminal on the left-hand
side of the production (see below).

To handle the lexical specification for each terminal identifier, the
grammar designer has two choices. The designer may use GENPAR’s
default specification, which allows identifiers to be any combination
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of letters, digits, and the characters “-”, “_”, and “.”, which begins
with a letter, and is not a reserved terminal string in the language. He
may, instead, associate an arbitrary LEX specification with any non-
terminal that may derive an identifier. The given specification would
then be used to override the default identifier specification for that
particular nonterminal.

6.2.5 Treatment of white space

In the generation process, all types of white space in the AGE
grammar specifications of terminal strings are treated identically, and
are considered insignificant to the specification of the generated
grammar. For example, if a “PROGRAM?” is specified as a “list of
statements separated by new-lines”, the YACC-generated parser will
accept any “list of statements separated by any white space (e.g.,
blanks, tabs, or new-lines)” as a “PROGRAM”.

6.3 Generation of YACC actions

If the input string to the parser is valid, AGE requires the output of
the parser to be a list of rule numbers, symbol table indices, and list
item occurrence counts representing the leftmost derivation of the
input string. Since the YACC-generated parser is a shift/reduce parser,
the order in which that parser uses the grammar productions will not
represent a leftmost derivation of the input. To produce the proper
input for the AGE monitor, the parser builds a tree to represent the
derivation of its input string as it parses the input string, and, as part
of the last production applied (reduction to the start symbol), performs
the preorder traversal of the tree, generating the required list of
numbers.

The building of this tree is the main activity of the “actions”
generated for each production in the YACC specification. To generate
code to appropriately link nonterminal sub-trees, the positions of all
the nonterminals in a given production rule must be saved as the
production is processed by the generator. This is accomplished by
counting the tokens on the right-hand side of the given production
rule and stacking the position numbers that correspond to nontermin-
als. Actions are then generated that call precoded subroutines that
link the tree nodes together. These subroutines, and their associated
data and type declarations, are constant across all grammars, and are
included in the appropriate sections of each generated YACC grammar.

6.4 The size of the processed grammar

The growth of the grammar in the generation process is actually
not as large as may be imagined. If n = the total number of nonter-
minals and r = the number of iterative nonterminals in the original
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AGE grammar, at most 3n + 3r < 6n productions, 2n — 1 nonterminals,
and betweeen 2n + 1 and 3n — r terminals are added to the grammar
before YACC generates the parser.

VII. ATTRIBUTES AND SEMANTIC PROCESSING

One possible extension to this work would involve the addition of
attributes to the grammars described above. These attributes could
allow a certain amount of semantic checking of user programs, in
addition to allowing interpretation and/or code generation (for simple
application languages) during program construction. The basic prin-
ciples behind attribute grammars are described elsewhere;'* we shall
only discuss the required extensions to our meta-language and the
generation of evaluation functions for the attributes.

7.1 Extensions to the meta-language

The meta-language described in Section V can be enhanced to
include attributes and their evaluation routines in each production.
An example of the use of the enhanced meta-language is shown below.

clause : CLAUSE
inherited: int temp_loc;;
synthesized: int next_temp;
| field_op_const 1 field_name “~” op “~” constant
{
$0.next_temp = $0.temp_loc;
J

| const_op_field 2 constant “~” op “~” field_name

{
$0.next_temp = $0.temp_loc;

| field_op_field 3 field_name “~” op “~” field_name

{

$0.next_temp = $0.temp_loc + 2;

}
In general, the attributes and their evaluation rules are specified in a
pseudo-C language notation. We provide data typing facilities for the
attribute variables.* The inherited attributes of a nonterminal and
their data types are listed after the key word “inherited”, which appears
after the user-name of that nonterminal. The synthesized attributes

*As with the attributed grammars for programming languages, our experience in
using attributed grammars for application languages suggests that facilities that include
standard libraries of functions, user-defined types, and global attributes are needed.
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of that nonterminal are then listed in a similar fashion. The attribute
evaluation rules are listed after each production specification, within
braces. “$0.attribute_name” in these rules refers to the correspond-
ingly named attribute of the nonterminal in the left-hand side of the
production. “$i.attribute_name” refers to the correspondingly named
attribute of the ith nonterminal in the right-hand side of the produc-
tion.

For each inherited attribute of each nonterminal appearing in the
right-hand side of a production rule, there must be an evaluation rule
(a function call or an arithmetic expression) assigning a value to that
attribute associated with that production rule. Similarly, for each
synthesized attribute of the left-hand side nonterminal of a production
rule, there must be a rule (a function call or an arithmetic expression)
assigning a value to that attribute. These rules may take as arguments
the inherited attributes of the left-side nonterminal and/or synthesized
attributes of the nonterminals in the right-hand side. These rules must
not, however, violate the properties defining L-attributedness' of the
grammar in order for the proposed evaluation scheme to work.

For iterative production rules, the semantic specifications appear
as:

disjunct : (CLAUSES)
inherited:;
synthesized:;
|xxx x +clause “~,~”
{
int current_temp;
init: |
current_temp = 0;
}
repeat: |
$1.temp_loc = current_temp;
current_temp = $1.next_temp;
!
}
The routine following the key word “init:” is executed when this
production rule is initially chosen. Then, for each instance of the
nonterminal “clause” under the parent “disjunct”, the specification
following the key word “repeat:” is used. The “$1” in the latter
specification refers to the instance of the nonterminal “clause” whose
attributes are being evaluated. These evaluation specifications must
follow the same guidelines as those of the regular productions. Non-
terminals deriving “identifiers” (i.e., those having no production rules)
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are assumed to have only one synthesized attribute, “value”, whose
value is the string entered by the programmer at the time of expansion.

7.2 Generation of the attribute evaluators

In any specification of an application language as above, each
implementor-defined attribute evaluation function is associated with
a specific production. For each distinct attribute in the grammar, the
calls to these functions are collected into one generated evaluation
function, which determines the appropriate implementor-defined func-
tion to call, based on the rule that produced the associated nonter-
minal. To make the required environment information accessible
during the attribute evaluation, a pointer to the tree node at which
the generated function is to be evaluated is passed as a parameter to
the generated function. The evaluation functions for inherited attri-
butes must be passed a pointer to the parent node of the nonterminal
node with which the attribute is associated (i.e., inherited attributes
are evaluated when the associated nonterminal appears on the right-
hand side of a production). Synthesized attribute evaluation functions
must be passed a pointer to the nonterminal node with which the
attribute is associated (i.e., synthesized attributes are evaluated when
the associated nonterminal is expanded).

Each generated evaluation function for an inherited attribute con-
tains a section of code for each production in which the associated
nonterminal can appear on the right-hand side. Similarly, each gen-
erated evaluation function for a synthesized attribute contains a
section of code for each production in which the associated nonter-
minal appears on the left-hand side. Within each of these sections of
code is the code for the appropriate implementor-defined function,
along with the function calls required to evaluate the actual parameters
of the implementor’s function. The attributes are evaluated only as
required, and the evaluation nesting is managed automatically by the
C (target programming language) procedure calling mechanism.

VIII. REMARKS

The editor generator HEG, as described here (excluding the seman-
tic analysis), currently exists and has been used for a variety of
application languages. The novel aspects of this system include: (1) the
ability to give a programmer the option to use menu selection or to
enter strings containing terminal characters and nonterminal names
at any stage during the expansion of a program in the user-language,
and (2) the ability to generate a hybrid editor from a high-level
specification of a user grammar. This system was an experiment to
investigate only these aspects of editing. Various other related issues
such as building a robust syntax-sensitive editor for higher-level
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languages (e.g., C language), experimenting with different ways of
exhibiting the menus, and human-factors issues are being addressed
separately.®
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APPENDIX A

An Editing Session With ‘Hisel.age’

$hisel.age

program? test

Initializing the tree/text for test..
Terminal Screen

1) (QUERY)

Program Tree

internal
cursor @ (nonterminal)
node
leaf
@ (terminal)
node
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:r <- user command - invisible
file name? temp

Assume that there is a file named ‘temp’ in the working directory
and that it has the string “select (ITEM_ LIST) where
(CLAUSES)”. AGE will read it, recognize the two nonterminal names,
parse the string, create the subtree, and graft it to the root as shown
below.

2) select (ITEM_ LIST)
where (CLAUSES)

(Leaves are not shown)
a
This will add one more instance of CLAUSES. The screen after this
command will be:
3) select (ITEM_ LIST)

where (CLAUSES)
or (CLAUSES)

e
e
AGE will install a CLAUSE in place of (CLAUSES) after the first e

command. Since there is a choice for the expansion corresponding to
the next e command, the following menu items will appear one after
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another if the user asks for a menu:

expansion character (type ? for menu): ? <- user types this
field_op-const 1 y(es), n(ext), q(uit)? n <- user types this
const-op-field 2 y(es), n(ext), q(uit)? y

The screen after this will be:

4) select (ITEM_LIST)
where (CLAUSES)
or constant OPERATOR field_name

(=) (Do
W

This command will write the above text into test.hisel file and the
tree representation in test.Imd file.

q
AGE will then print:
BYE! test hasn’t been fully expanded; call me back later.

APPENDIX B
AGE Command Summary

Text-navigation commands:

cr - a carriage return : go to the next line
- - the character minus: go back one line
space-bar or n : go to the next word

b : go back one word

Tree-navigation commands:

: go to the parent of the current nonterminal
: go to the first son of the current nonterminal
: go to the right neighboring nonterminal under the same parent
: go to the left neighboring nonterminal under the same parent
: go the next unexpanded nonterminal
: go backwards for the next unexpanded nonterminal

®ZA VL
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Nonterminal expansion commands:

p : parse text for the current nonterminal

r : read text from a file and parse it for the current nonterminal
e : expand the current nonterminal by menu selection

a : append an instance of a ‘listy’ (i.e., iterative) nonterminal

i : insert an instance of a ‘listy’ nonterminal

d : delete the current instance of the ‘listy’ nonterminal

Other commands:

U : unexpand nonterminal
w : write program
q : quit editing with AGE
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