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A major contribution to system outage in a terrestrial digital radio
channel is deep fading of the frequency transfer characteristic, which
in addition to causing a precipitous drop in received signal-to-noise
ratio (s/n) also causes signal dispersion that can result in severe
intersymbol interference. Because the temporal variation of the chan-
nel is slow compared to the signaling rate, the information theoretic
channel capacity and the “Efficiency Index” in bits/cycle—a figure-
of-merit we use for the communication techniques considered—can
be viewed as random processes. Starting from an established math-
ematical model characterizing fading channels (derived from exten-
sive measurements), we estimate the probability distribution of chan-
nel capacity and the distributions of efficiency indices for different
communications techniques. The repertoire of communication meth-
ods considered involves quadrature amplitude modulation with
adaptive linear and decision feedback equalization, and maximum
likelihood sequence estimation. For specific outage objectives the
maximum number of bits per cycle achievable by each technigue is
estimated. The sensitivity of the distributions to bit-error-rate objec-
tive and unfaded s/n is assessed. For certain desired operating points
the efficacy of adaptive equalization is demonstrated. There are some
operating points where adaptive equalization alone is not adequate
and therefore space diversity should be considered. An estimate of
the effect of frequency diversity is also included.
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I. INTRODUCTION AND SUMMARY

Fading of terrestrial digital radio channels owing to multipath re-
ception is a prime cause of system outage. For a specific hop a
mathematical model of these fades has been developed by W. D.
Rummler'? from extensive measurements of the channel frequency
power transfer characteristic over time. The radio channel has a time-
varying frequency characteristic, with additive Gaussian noise; how-
ever, the temporal variations are sufficiently slow in comparison to the
data symbol rate that the characteristics can be represented as a
random ensemble of static frequency power transfer functions. The
presence of additive noise implies that each member of the ensemble
is limited to a maximum rate of transmission of data, depending on
the communication method. For each specific communication tech-
nique, the stochastic nature of the channel makes it meaningful to
consider the probability distribution of data rates that can be sup-
ported at a certain bit-error-rate objective.

The purpose of this paper is to explore the relative performance of
various communication techniques employing quadrature amplitude
modulation (QAM), distinguished by the type of equalization method
used. These techniques include variants of linear equalization, decision
feedback equalization, and maximum likelihood sequence estimation
(MLSE). For these methods a unified set of Chernoff bounds on the
probability of error is obtained. Given a communication method, a
channel impulse response, an error-rate objective, a received unfaded
channel s/n, a channel bandwidth, and a signaling rate we use the
Chernoff bounds to estimate the maximum number of bits per cycle of
bandwidth (not necessarily integer-valued) for which the constraints
are met. By computing the maximum number of bits per cycle sup-
ported by each member of a large representative population of chan-
nels, we obtain the cumulative probability distribution function. One
can use the cumulative distribution curve to determine the probability
of outage at a prescribed bit rate.

The information theory bound on the number of bits per cycle
attainable is also derived. In a sequence of plots we compare the
different schemes with each other and with the information theory
limit.

If F(r) is the probability distribution function of data rates associ-
ated with a communication method and we set an outage objective, £,
then the value r; for which F(ry) = £ represents the maximum data
rate at which it is possible to transmit and meet the outage objective.
We present and discuss these distributions in the context of desired
long-haul and short-haul outage objectives and rates associated with
the digital hierarchy constraints. The efficacy of adaptive equalization
is established. The advantage of decision feedback and MLSE over

430 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1983



optimum linear equalization is not very substantial. There are some
desired operating points for which space diversity should be consid-
ered.

For a fair comparison of different communication techniques, the
transmitter filter shape must be optimized for a fixed transmitter
power. We found the performance to be insensitive to whether or not
the transmitter filter is optimized and we provide a theoretical guide-
line to indicate when this optimization becomes significant.

Our results indicate that optimized equalizer structures yield data
rates only a few bits/cycle below channel capacity. It therefore appears
that higher dimensional constellations® spanning two to four symbol
intervals could go a long way toward obtaining that which can be
expected practically. Although we did not analyze higher dimensional
signal design or optimize the constellation in QAM, it is reasonable to
expect that these techniques can offer at most an equivalent few dB
increase in 8/n. Another method of achieving coding gain “of the order
of 3-4 dB” is described in Ref. 4. Moreover, the real limitations on the
selection of signal points in a practical system will most likely arise
from the nonlinear operation of radio frequency (RF) power amplifiers
rather than from s/n limitations.

We argue the merits of adaptive transversal equalization and provide
numerical support for our claims. This is not to say that fixed or even
adjustable bump and/or slope equalizers in the frequency domain
could not provide adequate performance in some cases. However,
fluctuating (and sometimes nonminimum) phase distortion associated
with fading and other linear filters admits robust and stable compen-
sation via adaptive transversal filters. These structures with adjustable
taps can automatically equalize any phase characteristic without noise
enhancement and therefore are natural candidates in these applica-
tions, especially at a high number of levels where even small amounts
of phase distortion can degrade system performance.

Our analysis was carried out with ideal models and an infinite
number of taps. The actual number of taps needed in any application
would be determined from experiments and/or more detailed analysis.

Il. THE EQUALIZED QAM SYSTEM—IDEALIZED MODEL

The use of equalizers to mitigate the effects of intersymbol interfer-
ence and noise in voiceband data transmission is by now standard
practice. We are thus naturally led to consider the application of these
techniques in digital data transmission over the radio channel where
slowly varying, frequency-selective fading is the predominant impair-
ment. Here we review and derive the applicable mathematical theory
that will be used in the sequel to evaluate the system performance
indices.
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To focus on basics and avoid extensive numerical analysis, we
consider idealized equalizer models represented as transversal filters
with an infinite number of taps. Tap adjustment algorithms are well
established and our formulas are derived under the assumption that
the taps have converged to their optimum values.

Our analyses are based on the digital communications model de-
picted in Fig. 1. To appreciate the applicability and generality of this
baseband model to digital radio communications, we observe that, for
any bandpass linear channel, the output waveform, when the input is
any linearly modulated data wave, can be represented as

s(t) = Re{z Gnh(t — nT + to)exp[i(2m fot + 0)]},

where Re{-} stands for the “real part.” The data symbols {d.} trans-
mitted at T-second intervals, are statistically independent and, in two-
dimensional modulation systems such as QAM, they assume complex
values. The overall equivalent baseband impulse response, A(t),is also
complex-valued. The real part represents the in-phase response, while
the imaginary part is the quadrature component. The frequency, fo, is
the carrier frequency, @ is the carrier phase, and, £ is the timing phase.
Ideal demodulation with a known carrier frequency fo and carrier
phase @ implies a translation of the received bandpass signal to base-
band. The real part of the resulting complex signal represents the in-
phase modulation, while the imaginary part is the quadrature modu-
lation. This then is the rationale, in addition to economics of notation,
for using the complex baseband model depicted in Fig. 1.

We restrict our treatment to ideal Nyquist systems with no excess
bandwidth. This permits less cumbersome calculations without loss of
physical insights. We also derive our formulas by assuming flat trans-
mitting filters and prove later that in-band optimum shaping yields
imperceptible additional benefits. Also neglected is adjacent channel
interference, as ideal bandlimiting eliminates this problem.
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Fig. 1—Complex baseband model for QAM data transmission.
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We now return to Fig. 1 and discuss the various functions and
notations indicated. Without loss of generality we assume that the
complex data symbols, {a@. = a, + ib,}Z., take on values on a set of
positive and negative odd integers with equal probability. Accordingly,
L*-1

3

EG,=0 and E|d,|?=2

where E(-) denotes mathematical expectation and L (even) is the
maximum number of data levels assumed by a. and b,. Thus, in QAM
L? data points are available for conveying information and the source
therefore generates

_ log;L?
T

R bits/sec. (1)

For a given channel bandwidth, #, the efficiency index is defined as
2 log.L
wT

As we shall see, the relationship among P.- probability of error, s/n,
¥, T and H (w)-channel frequency characteristics is rather complicated.
The determination of the relationship for different communication
techniques is our chief task in the sequel.

From a mathematical point of view, the fading radio channel is
characterized by a slowly varying linear distorting filter whose base-
band equivalent complex impulse response is the Fourier transform of
the transfer function H (w), shifted to zero frequency:

I=R/W=

bits/cycle. (2)

2mW d
A(t) = hu(t) + iho(t) = H(w)e™ 2—:

—2mW

At the receiver the added complex noise process, () = w(t) +
ivz(t), is assumed to be white Gaussian with v,(¢) independent of v(t)
and each possessing a double-sided spectral density, No/2. So,

E|i(¢)|* = Evi(t) + Evi(t)

where §(7) is the Dirac delta function. The average transmitted signal
power, P, for a flat transmitting filter can easily be calculated.
However, for our purposes a more relevant quantity is the received,
unfaded signal power
L?-1K?

3 T

where K is a constant that includes the effects of amplifiers, antennas,

P=KPy=2

DIGITAL COMMUNICATIONS 433



and the unfaded channel loss. Also, the added average noise power in
the Nyquist band, = 1/2T, is
==

Thus the unfaded received s/n, a most important system parameter,
is

P,

L*-1K*1
s/n=p=2 3 NT
The receiver structures under consideration consist of a perfect
demodulator followed by a front-end filter possessing the complex
impulse response W (t), a sampler, a decision device, and a canceler.
The design of an optimum receiver entails the selection of W(t) and
the canceler for a particular channel characteristic. Since the channel
characteristics are usually unknown to the receiver, these components
must be determined adaptively.
To understand the function of the canceler, consider the signal
sample at the output of filter W(¢),

En= Y Falnr+ Zp,—0=n=om, (4)

k=—o

(3)

where 7 = F(kT + to) is the overall complex-sampled system impulse
response and Z, is the Gaussian noise output sample. Ideally the
canceler strives to synthesize the value

Fn=Y Frlns (5)
keS

and to subtract it from (4) where the set of integers S is defined as
(k€ 8S:k=—N, ... —1,1 ... N;}. The canceler’s ability to synthesize
these values presumes that some past (¢ = 1, .-, N3) and/or future
(k = -1, ---, —N;) transmitted data symbols are perfectly detected
and, moreover, that the set of complex numbers, 7, are adaptively
estimated.

The front-end filter, W(¢), is usually determined adaptively by
minimizing the mean-squared error (MSE) between the sample, &, —
¥, and the expected data symbol @,:

MSE[N], Nz, W(t)] = Elfn - _)-’n - &nlzr (6)
and the optimum filter, W (¢), is chosen to achieve
(MSE), = I%tl} MSE[Ny, N-, W(t)] = MSE[N,, N;, Wo(t)]. (7

Since (6) is a quadratic functional of W(¢), a unique minimum can
always be found. It is standard to represent the linear filter W(¢) by a
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transversal structure and in practice the search for the minimum is
accomplished by varying the taps of this filter until a minimum of the
time average of the squared error is found. Clearly, to realize such a
minimization procedure, estimates of the transmitted data symbols
must be used.

lll. SYSTEM PERFORMANCE—GENERAL

To get at the efficiency index of a system, the error rate as a function
of data rate for any choice of the canceler set, {S}, and front-end filter,
W (t), must be explicitly expressed. Unfortunately, exact relationships
are not mathematically tractable for the simplest of systems and so we
must employ upperbounds. Fortunately, for the systems under consid-
eration, it is possible to obtain exponentially tight inequalities.

With this approach in mind, note that after perfect cancellation, the
decision variable, from (4) and (5) becomes

3n=fn_in

= Foln + Y, Fa@n-i + Zn, (8)
kg

where now the set JisSUO0, {k€J: k=—N; --- 0 ... N;}. Decisions
in QAM are made on the real part of s, and, separately, on the
imaginary part of s,. Simple calculations give

Re(sn) = poan — vobn + ), (Ua@n—r — Urba-i) + 2z,
=2

and
Im(sn) = P-Obn + voa, + g (ﬂkbn—k + Ukan—k) + 2n2, (9)
ke J
where
Fp = e + l’:U&,
and
2aW”
Zy=zm + iz = I o(t) Wi(t)dt.
—27W

For an L-level system, slicing levels are placed at 0 + 2uy --- *
po(L — 2) and compared with the received samples Re(s,) and Im(s,).
An error occurs whenever the noise plus intersymbol interference (in-
phase and quadrature) exceed in magnitude the distance from the
transmitted level to the nearest decision threshold, p,. However, the
outside two levels can be in error in one direction only.

Now denote the event of an error committed in the “real” rail by E,
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and in the “imaginary” rail by E;. Then the probability of system
error, P., is the probability of either (or both) E, or E; occurring,

P.= P(E,UE;) < P(E,) + P(E)), (10)

= p.o]

where

1

and

P(E)

1
-(-2)=|
Because of symmetry, P(E,) = P(E;) = P(E), and so we only need to
upperbound P (E).
We adopt a bounding procedure introduced by B. Saltzberg® to

analyze the error rate in an unequalized baseband system. We have
extended Saltzberg’s approach to our systems and it can be shown that

P(E; A, B, %)

Zm— Y (ur@n-r — Ukbn—r) + vobn
k¢J

= p-o]. (11)

2n2 — Y, (rGn—r + UrGn-4) — Voo
=3

2
|:yo— (L-1) (E |pe| + |vr] +8vo)]
keEA
(12)

=< 2 exp

2 L*-1 2 2 2
210z + 3 Ep.k+v;.+(1—8)vo
keB

The set of integers A and B form a partition on the set of integers not
included in . That is,

AUB=Q=({k:k& )
and
ANB=¢.
The variable § = 1 or 0, and
o2, =%f | W(t)|*dt.

The sharpest upperbound is obtained by minimizing (12) with respect
to the sets A, B, and §. Algorithms for carrying out this minimization
can be devised readily.
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IV. SYSTEM PERFORMANCE
4.1 Discussion

Equation (12) is a rather general upperbound on the error rate for
any passband linear data transmission system and it will now be
specialized to include the effects of the different choices of equaliz-
ers.Before proceeding with the detailed numerical analysis, we need to
make a connection between the mean-squared error (MSE), which is
minimized by equalizers, and the system probability of error, which,
ideally, should be the quantity minimized.

A straightforward but tedious approach for getting at the error rate
might be to first determine the filter, W(¢), which minimizes the MSE
for any particular equalization scheme, calculate the overall resulting
impulse response, and then use eq. (12) to upperbound the error rate.
This approach can be circumvented by exploiting the explicit relation-
ship between the minimum MSE and the value of the overall impulse
response at ¢ = £, when the optimum filter, Wo(¢), is used.

The optimum structure of the minimum mean-squared error receiver
can be shown to consist® of a matched filter in cascade with a trans-
versal filter combined with a linear intersymbol interference canceler.
The implication of this structure is that the resulting overall system
transfer function is a real function of frequency. Or, the complex-
sampled impulse response, {ur + iUz}, must be a real number at
k = 0, which results in v = 0. This follows from the Fourier Transform
representation of 7(¢), from which we see that at ¢ = 0 the integrand
is real and nonnegative. Indeed the overall phase characteristic has
been removed by the matched filter (without enhancing the noise*).
Using the fact that vy = 0 and careful numerical analysis of the
available channel characteristics, our calculations showed that for all
practical purposes the bound (12) becomes

2

P(E, S) < 2 exp —K . (13)
2[0&1 +0*L) ¥ (ui+ vi)]
k¢S
2 —
where we set o(L) = L 3 1.

As will become apparent, the argument of the exponential function
in (13) can be directly related to the minimum mean-squared error.

* A fractionally spaced (T/2) transversal filter can automatically synthesize any
matclge;_l filter and thus eliminate phase distortion and also compensate for timing phase
(see Ref. 7.)
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Towards this end we recall a well-known® result that states that the
best achievable MSE has the simple representation,

(MSE)o = 20*(L)(1 — po), (14)

where po is the sample at ¢ = £ at the output of the optimum filter.
Also, when the optimum filter, Wo(t), is used, a straightforward cal-
culation of the resulting MSE gives

(MSE)o = 20*(L)(1 — po)’
+20%L) ¥ (ui + vi) + 202, (15)
kﬁgs

Relationships (14) and (15) make it possible to write (13) as

1 MSE), "
PE;S)=2 exp{— (MSE); [1 - (202(L))0] }

~2exp — for No— 0, (16)

1
(MSE,)
relating error rate and minimum MSE. This is an extremely useful
inequality since (MSE,) as a function of channel characteristics is
often explicitly known for different equalizer structures.

It is also interesting to note (this has been pointed out before®) that
the filter, W(t), that minimizes MSE also minimizes the upperbound
on P.. This is true because the same quadratic functionals in W(¢) are
involved in the optimization of both expressions.

We are now in a position to specialize our formulas to the various
equalizer structures under investigation.

The six examples that follow do not require the knowledge of
channel phase characteristics to compute performance. Implicit in
each of these schemes is the complete removal of phase distortion,
which can be accomplished without noise enhancement. Only a mag-
nitude characterization of the channel transfer response was available
at the time the work reported here was done. While departure from
flatness of the magnitude fundamentally affects performance, theoret-
ically, departure of phase from linear has no effect on attainable
performance. Therefore, the lack of phase characterization of the
channels was not an obstacle to our study. However, a complex
characterization of the channel would be useful in determining the
minimum number of required taps in the designs of the equalizers.

4.2 Pure phase equalization

In this particular equalizer, Ny = N; = 0 (where N, and N; are the
lengths of the precursive and postcursive cancelers, respectively). We
choose W(t) so that
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Wiw) = e~ <7
(w) e ’ | w | T
T

=0,lw|>T

where W (w) is the Fourier transform of W(¢) and ¢(w) is the channel
phase characteristic. For this choice of filter, only the magnitude of
the channel transfer function enters into the computation of the bound,
as shown in eq. (13).

Using the well-known Poisson sum formula along with some algebra,
it is possible to write (13) more explicitly, i.e.,

p (H)*
P,s2exp{— 20%(L) 1 +p ((H - (H))2)},

(17)

where we used the shorthand notation

T (™"
(')=%J [-1dw

—u/T
and H is used in place of |H(w)|.

4.3 Linear equalization

Here again N, = N, (no canceler) and W (¢) is chosen to minimize
(6). The expression for the optimum MSE in this case has been shown
to be®

(MSE)o = 20¢*(L) < (18)

1
1+ pH* >
This formula is directly used in (16) to calculate the upperbound on
error rate:

1 1 -
P,<2exp|:—202(L) (<1 +pI{2>) ]

4.4 Inverse equalization

In this case N; = N: = 0 (no cancellation) we choose W(t) to be the
inverse of the channel frequency characteristics,

W(w) = H (o), || 5,13,

ki

=0
ol > 7

Here the channel is clearly perfectly equalized so that intersymbol
interference is completely eliminated; the penalty is increased output
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noise power. For this simple scheme, it is possible to express the error
rate exactly but for reasons of uniformity we use the upperbound

1
P.SZexp— EO'_QO(.L_)—'I— . (19)
<?>

4.5 Decision feedback

_For this equalization system N; = 0 and N; = « and again we choose
W (¢) to minimize (6). In this type of equalizer, the causal or postcursor
intersymbol interference is entirely eliminated and an expression for
the optimum MSE is known,'*!! as shown below.

(MSE)o = o*(L)exp{—(In[1 + pH"])}. (20)
This is used in (16) to express an upperbound on error rate.

4.6 The ideal equalizer

In this utopian scheme the precursor and postcursor cancelers
become infinite, N; = N» = o, so that all the intersymbol interference
is eliminated. In this ideal situation we obtain the very best possible
result, namely, the matched filter bound, which is a lower bound on
P,. This scheme assumes that it is possible to detect each pulse
@F(t — nT) optimally by a matched filter without incurring interfer-
ence from all other pulses. The filter, W (t), in this case is chosen to be
matched to the channel characteristic, i.e., .

W(w) = H*(w), |0| =

|

w
= 0: > T
ol > 7
where * denotes the complex conjugate.
For this idealization the upperbound on error rate is simply,

P 2
26UL) (H )}- (21)

P, <2exp {—
No other detection scheme can do better. In the next section we use
these formulas to calculate the various efficiency indices.

Before concluding this section, we remark that there is one more
easy case and one extremely difficult case that might be considered as
candidates for making comparisons. Suppose that no filtering, other
than out-of-band elimination of noise, were performed at the receiver.
What performance can one expect? While we cannot answer this
question exactly because channel phase characteristics are unavailable
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at this writing, we would expect performance to be worse than remov-
ing the phase characteristic entirely—a situation we will examine.

The second approach, which is a very difficult one to analyze,
involves the use of a finite-state Viterbi decoder. Nevertheless, we will
report a bound on the performance of this processor. Specifically, the
performance of an infinite canceler (the matched filter) is superior to
the maximum likelihood (Viterbi) decoder. As shown later, for the
channels considered, the matched filter bound is close in performance
to decision feedback. Consequently, we shall see that the performance
of maximum likelihood sequence estimation is tightly bracketed be-
cause it is superior to decision feedback.

4.7 Information theory bound on communications efficiency index

In this section we discuss a formula for the maximum number of
bits per cycle that can be attained for a given H(w). If H(w) were
constant in frequency the formula for the efficiency index in bits per
cycle would be simply

I=1log:(1 + p|H[Y.

It is reasonable to expect that if H(w) is frequency-dependent, the
maximum efficiency index would be

I= éf logs(1 + p| H(w) |} duw, (22)

where the integral is over a frequency band of size & = 27 %, Indeed
this is the case. To outline a derivation, we note first that A. Kolmo-
gorov has generalized Shannon’s notion of capacity to provide a very
fundamental definition that gives a useful starting point for developing
capacity formulas in nonstandard situations such as the one at hand."
M. S. Pinsker' was able to derive from the Kolmogorov approach a
formula for the amount of information in a stationary Gaussian process
about another stationary Gaussian process related to it. Specifically,
if Si(w) and S,(w) are the power spectral densities of the processes
and S, (w) is the cross-spectral density, the formula for the amount of

information is
_ B ISxy(w)I”)
f "‘(1 5.5 @)

If we require the transmitter output to be Gaussian, then since the
additive noise is Gaussian, Pinsker’s formula can be applied to the case
where x is the transmitted process and y is the received process to
obtain (22). Requiring the transmitter output to be Gaussian is really
not a limitation since, when the additive noise is Gaussian, one can
prove that capacity is attainable with a Gaussian transmitter output
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using the methods discussed in Refs. 14 through 16. Thus, (22) gives

the efficiency index formula.
References 16 and 17 also provide approaches to establishing (22).

4.8 Information theory limit on index when transmitter is optimized

So far we have treated p, eq. (3), as a constant. In this section we set
the stage for exploring the advisability of optimizing the output power
spectral density to maximize the efficiency index. Since we are now
allowing in-band shaping of the transmitter filter frequency character-
istic, we will consider p as a function of w and write p to denote the
previously considered case where p is constant over the band.

Although the analysis in this section is focused on the information
theory limit on the efficiency index, the decision feedback index
involves the identical functional form and so our analysis will be
applicable to decision feedback as well.

We will compare the previously discussed index

I(flat) = % J' log:(1 + p| H(w) |)dw
with
I(opt) = é J’ loga(1 + po(w) | H(w) |*)dw,

where po(w) is the function maximizing I under a constraint on [ p(w)
dw, the received signal-to-noise ratio in the absence of fading. This
constraint is equivalent to a constraint on the transmitter output
power, since in the absence of fading the channel has a flat loss
characteristic.

This optimization problem is known'” and yields easily to the cal-
culus of variations. The solution is called “water pouring.” The name
stems from the graphical interpretation that if p{ is the constraint on
[ p(w) dw, the optimum p(w), which we denote by po(w), is obtained by
forming a vessel with base | H(w)|™ and vertical sides at the band
edges. One pours “water,” that is, area, of amount p{2 into the vessel
and po(w) is given by the depth of the water at w. It is clear that this
construction obeys the constraint. Generally, if p is sufficiently small,
the poured water will riot touch both of the vertical sides of the vessel.
In such situations, it would be advantageous to limit the transmitted
power to a frequency band less than Nyquist. In our case, however,
the unfaded signal-to-noise ratio is so great that, for the simulated
channels, the water level always meets both vertical sides. In other
words, the transmitted power always occupies the full Nyquist band.
Thus, po(w) = A — | H(w)| ™% where A is chosen so that [ po(w)dw =
<, that is, AQ — [ | H(w)| dw = pQ or
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polw) =p + é j |H(v)|[™dv — |H(w) | ™

Therefore,
log2(1 + p| H(w) |®)dw
1) J’ g2(1 + p| H(w) |
I(opt) 2 ‘
opt) f m[% f |H(v)|-2dv+ﬁ|H(w)|2]dw

We expand the logarithm for p large to find an asymptotic represen-
tation. We get, after a cumbersome derivation,

-1

j log:| H|*dw
I(flat) 1

=1- —\ 1+ =
I(opt) 2p%logzp 2 logzp

1 1
—dw ——dw \2
IIHI‘ IIHI2 NPYAR 23)
Q Q p'logep /)’

The last multiplier in the perturbation expression represents the
variance associated with a random sampling of a specific | H (w) |2
This multiplier is zero if | H (w)| 2 is a constant. We note, for later use,
that for p = 10°’, (i.e., a 63-dB s/n in the absence of fading) we have

; < 1074
2p°log:p '
4.9 Communication efficiency index

The relationships in egs. (17) through (21) are unifying expressions
for the error rate for the five equalization cases. From Section 1.0 we
have I = 2log.L and o*(L) = [(L* — 1)/3]. These two equations in
conjunction with the P. formulas enable us to determine I as a function
of the P. objective, p, the channel, and the equalization scheme.
Specifically,

_ G(H, p)
I= logz{m'F 1],

where G(H, p) is a function that depends on the communication
method. With the channel response considered to be a random func-
tion, I is a random variable, and we can determine its probability
distribution function for each communication scheme. The quantities
p and P, are parameters of the distribution.
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V. MODEL FOR THE FADING CHANNEL

Now we describe the mathematical model for frequency-selective
fading owing to multipath reception. This mathematical model for the
random functions | H(w)|? is due to W. D. Rummler"? and is based on
measurements of a 26.4-mile hop between Palmetto and Atlanta,
Georgia. The measurements of frequency-selective fades were made
on a 25.3-MHz channel situated in the 6-GHz band during the heavy
fading month of June (1977).

Rummler’s model uses a two-ray representation of the signal, which
was quite adequate for fitting the experimental records. (The model is
not necessarily intended to depict the underlying physical mechanism
for a fade. The true mechanism could involve a much more complex
ray combination.) Also, it is not possible to deduce the phase charac-
teristic associated with any particular amplitude characteristic. It has
been experimentally determined that this kind of a channel cannot
always be viewed as minimum phase.'®

In the model, the | H(w) |* functions are 68-degree sections of scaled,
displaced cosine waves. Specifically, conditional on a fade occurring

|H(w)|? = a®|1 + b* — 2b cos(wr + 0) [,

where:
(i) b= 1/10%/* > 0 with B an exponential random variable with
mean 3.8.

(ii) The parameter, a, is a log normal random variable with de-
pendence on the parameter, b. Specifically, @ = 1/10/*, where A is
normal with a mean of 24.6(B* + 500)/(B* + 800)dB and a standard
deviation of 5 dB.

(iii) The phase, 6, is independent of a and b and has a constant
density on each section | 8| > 7/2 and |8| < /2 with P{|0| < n/2} =
5.P{|60]| > =/2}.

(iv) The scale factor 7 is a constant = 6.31 nanoseconds.

In the model, the channel is in the faded state for 8060 seconds in a
normal heavy fading month. Thus the channel can be viewed as being
in one of two states where:

P {unfaded state} = 0.99689
P {faded state (Rummler model operative)} = 0.00311.

In what follows we employ this model to estimate the outage
distributions for various communication methods. The model should
be regarded as a working assumption valuable in gaining initial insight
into the potential of the communication techniques we consider.
However, we emphasize that more measurements may be required to
refine Rummler’s model to accommodate different geographical situ-
ations and wider bandwidths than 25 MHz, and to sharpen the accu-

444 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1983



racy of the representation of the more severe fades that are of major
concern in what follows.

VI. OUTAGE OBJECTIVES AND SOME PROSPECTIVE INDEX VALUES

From the proposed performance objectives for the digital transmis-
sion network,'® we have that the round trip system availability objec-
tive is 99.98 percent. So the probability of outage is 0.0002 round trip
or 0.0001 one way. The 0.0001 breaks down as 0.00005 for fading,
0.000025 for equipment failure, and 0.000025 for maintenance and plant
errors. Thus, for a 4000-mile system composed of 156 hops, each with
a nominal length of 25.6 miles, we get a per hop outage probability of
3.2 X 1077 for fading. This corresponds to about 10 seconds of outage
per year. If we assume the year is composed of three heavy fading
months and nine months with no fading, we obtain that the probability
of outage in a heavy fading month is 1.28 x 1075, For a 250-mile short-
haul system, the outage objective is 16 times less stringent on a hop,
namely, 2.05 X 107°.,

For the purpose of discussion we shall later consider the possibility
of accommodating two DS-3 digital signals in a 20-, 30-, and 40-MHz
channel. Each DS-3 signal corresponds to 672 64 kb/s voice circuits,
so that two DS-3 signals correspond to about 90 Mb/s. Thus, for 20-,
30-, and 40-MHz channels we require 4.5, 3, and 2.25 bits per cycle,
respectively. We will use 107 as the probability of bit-error threshold
for registering outage. The sensitivity to this threshold will also be
analyzed.

VIl. COMPUTER PROGRAM

A comprehensive FORTRAN program was written to compute and
display outage distributions. The program is composed of three main
segments.

The first segment simulates the power transfer characteristic for the
channel in the faded state. It uses a PORT routine to generate random
numbers uniformly distributed on [0, 1] and functions of these are
evaluated to produce the random variables with the three densities
underlying Rummler’s model. The variables A and B are appropriately
correlated. The random channel characteristics are then computed
and a file containing them is produced. The file contains 25,000
characteristics.

The second segment calculates the efficiency index for each channel
and then computes the probability distribution function of the indexes.
Various options and parameters can be chosen in exercising this stage.
These include:

(i) Method of communication (i.e., type of linear equalization,
decision feedback equalization, MLSE, and the information theoretic
optimum processing)
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(i) Transmitter spectrum, i.e., optimization of the transmitter
spectral density for a given average power constraint or flat power
spectral density

(iii) Probability of bit-error objective

(iv) Unfaded signal-to-noise ratio at the receiver input

(v) Channel bandwith.

Option (ii) is only available for the decision feedback and the
information theoretic optimum communication schemes. Extending
the option to the other schemes seemed inadvisable because of the
closeness of the results, as will be seen later.

The number 25,000 was found through computational experience to
stabilize the density tail in the range of interest and yet not be wasteful
of computer resources. Since the number 25,000 is very close to the
number of experimental records of fade characteristics, we could have
worked from original experimental data. We elected to work with the
Rummler model since it is weighted to track the worse fades, which
are our interest here, and since the model is widely accepted.

The final segment of the computer program provides labeled plots
of the outage distribution functions. It uses the graphic package
DISSPLA.

VIil. PRINCIPAL RESULTS
8.1 Preparatory remarks

For the purpose of presenting our principal results we will need the
following notation for the outage distribution functions:

Fpy: phase distortion removed

Friv: optimum linear equalization

Fpr: postcursive intersymbol interference (ISI) removed

Fyp: all ISI removed (matched filter bound)

Fir: information theory limit (Shannon).

The efficiency index distributions were computed for 30-MHz chan-
nels. Strictly speaking, the notion of an index in bits per cycle is
imprecise in that F(I) (the probability distribution of bits per cycle)
would change if calculated at 20 MHz or at 40 MHz. However, by
calculation we established that, for the purposes of the discussion that
follows, treating F(I) as invariant over the 20- to 40-MHz range of
bandwidths is an adequate approximation.

In the actual development of systems of the kind we have idealized,
much more detailed performance analysis is required than that re-
ported here. One important aspect we have not considered is the effect
of excess bandwidth associated with practical filter designs with rolloff
factors other than zero. To get a preliminary idea of the effect of rolloff
of an amount a on the communication efficiency indexes, we would
simply scale the distributions abscissas by an amount 1/(1 + a).
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Equivalently, we would inflate the desired number of bits per cycle by
1 + a before going to the curves. Thus, in considering the accommo-
dation of two DS-3 signals, with « = 1/3, we would inflate the 4.5-,
3-, and 2.25-bit per cycle values corresponding to 20-, 30-, and 40-MHz
channels by 1.333 to obtain 6, 4, and 3 bits per cycle. We would then
consult the derived curves at these values to obtain the outage prob-
abilities. For the purpose of discussion in the section that follows, we
use these three inflated bits per cycle values along with the long-haul
and short-haul objectives of 1.3 X 107° and 2.1 X 107°, respectively,
given in Section VI. Subsequently, an alternative means of accounting
for a will be given.

8.2 The graphs

The most striking features of the outage distribution functions F(I;
P., p) are exhibited in Fig. 2. The beneficial effects of adaptive
equalization are apparent. The three equalization schemes yield
roughly similar results; however, as one looks more closely at the
extreme outage tail, Frv, Fpr, and Fur begin to depart from each
other. Fyris displaced over two bits per cycle to the right of Fyr, while
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Fig. 2—Comparison of index distribution tails at 63-dB s/n, p.e. < 10~ (p.e. does not
apply to the Shannon limit curve).
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Fpy is very substantially to the left of Friv. For the 40-MHz band (3
bits/cycle), both outage objectives are met with linear equalization.
For the 30-MHz band (4 bits/cycle) and the long-haul objective, linear
and decision feedback equalization are not adequate and some coding
or use of maximum likelihood sequence estimation are possible solu-
tions. However, it may be practical to overcome the shortfall by some
other means, such as improving the amplifier noise figure. For the 20-
MHz channel (6 bits/cycle) the long-haul objective is not met. Also,
this efficiency is so close to the information theory limit that any
attempt to achieve it by coding may be ill-advised because of com-
plexity. On the other hand, with some moderate coding the short-haul
objective for 20-MHz channels should be attainable. For the other two
bands, short-haul objectives are roundly met.

The plot for the equalizer that inverts the channel is not shown, as
it is not perceptibly different from that for the optimum linear equal-
izer. This is expected since the optimum linear filter is essentially
inverting the channel at the high signal-to-noise ratios we are consid-
ering.

Figures 3, 4, and 5 show the sensitivity of F(I, P., p) to P.. The
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Fig. 4—Index distribution tail sensitivity to probability of error for decision feedback
at 63-dB s/n.

sensitivity is especially small at the low error rates needed for data (as
opposed to voice) transmission. An asymptotic analysis shows that, for
large p, the curves translate to the left in accordance with a log.N shift,
where 107" is the P. objective. This insensitivity is an illustration of
the well-known result? that once a pulse code modulation (PCM)
operating point is achieved it takes a very small improvement to make
the error rate an order of magnitude smaller. In fact, if at some
operating data rate the probability of error turns out to be 10™° — 1075,
one should be able to design an error-correcting code of small redun-
dancy and moderate complexity that could improve the error rate by
several orders of magnitude.

Figures 6 through 9 illustrate the sensitivity to signal-to-noise ratio.
The translation in all cases is roughly 1/3-bit/cycle/dB. Note the
curves for the Shannon limit have an ordinate range of 4 to 10 bits per
cycle, while the others range from 2 to 8 bits per cycle. No sensitivity
for Fpy is given since, unlike all the other distributions, there is
negligible improvement as p increases. This is because, as p increases,
the effect of intersymbol interference (ISI) remains and nothing is
being done to mitigate it. In the other four cases, ISI tends to be
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eliminated as p increases (the channels can be perfectly equalized
without an inordinate amount of noise enhancement).

In Section 8.1 we mentioned the (1 + a)™' scaling as a method of
accounting for rolloff. This assumed % = 1/T so that (1 + a)# is the
actual bandwidth. Suppose instead that the real bandwidth is fixed at
% but the data rate is slowed by an amount (1 + «), leaving the
average transmitter power and N, constant. Then the true s/n is
increased by 10 logw(l. + «). From this alternative perspective the
suggested (1 + a)™" scaling would be supplemented by a shift to the
right of the probability distribution function tail by approximately (10/
3)logio(1 + a) bits per cycle. Whether in estimating the effect of rolloff
one takes the perspective that the symbol rate or the bandwidth is
fixed is a matter of convenience.

Next, we consider optimization of the transmitter power spectral
density. There is a practical question as to whether such an optimiza-
tion could be achieved since the fade characteristic, which is first
determined at the receiver, would need to be relayed back to the
transmitter in time to be useful. However, the question is academic
gince we demonstrated that, even if an optimized transmitter could be
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Fig. 6—Index distribution tail sensitivity to s/n for linear equalization, p.e. < 107,

adapted in real time, the performance benefit would be negligible.

To understand why it is not worthwhile to optimize the transmitted
power spectral density, we first consider the information theory limit
that was anlayzed in Section 4.7. Qur detailed numerical work has
shown that a plot of the tail of the index distribution for the informa-
tion theory limit under the assumption of an optimized transmitter
would be imperceptibly different from the Fpr tail plotted in Fig. 2.
This closeness of the two distributions follows from the fact that, for
the severest fades in our data base of 25,000 channels, |H|® is of the
order of 10~° and the terms involving | H|™ (~107") in the perturbation
expression, eq. (23), are not enough to overcome the 10™'* multiplier.

Since the decision feedback index has the same form as (22), we can
also conclude that the distribution tail corresponding to decision
feedback would not be significantly altered if the optimum transmitter
were used.

The decision feedback index and information theory limit on the
index give imperceptible benefits when the power spectral density is
optimized; therefore, it seems extremely unlikely that there is any

DIGITAL COMMUNICATIONS 451



PROBABILITY THAT INDEX IS LESS THAN ABSCISSA

10" ]
2

8

BITS PER CYCLE
Fig. 7—Index distribution tail sensitivity to s/n for decision feedback, p.e. < 107,

worthwhile benefit associated with optimizing the transmitter in the
other cases.

IX. INITIAL ESTIMATE OF THE EFFECT OF FREQUENCY DIVERSITY

In implementations, digital radio systems are often protected with
frequency diversity. In such systems impairments such as fading and
equipment outages prompt the switching of communication traffic to
a protection channel situated at a different frequency. The notation
mxn means that m protection channels back up n working channels.
So long as a protection channel is not occupied by an impaired channel,
or is not itself impaired, it is available for temporary use in any of the
n working systems. Some illustrations are 2 X 10 and 1 X 11 at 4 GHz,
while at 6 GHz 2 X 6 and 1 X 7 are examples.

For FM systems the factor expressing the improvement in outage
associated with frequency diversity is given by the expression 100/DG-
foH? in eq. (24) [corresponding to (34) and (35) in Ref. 21]. The
parameter fo represents the carrier frequency in gigahertz and D
denotes the path distance measured in miles. The parameter G depends
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P(‘]lg. 8—Index distribution tail sensitivity to s/n for the case of all ISI removed, p.e.
<107%,

on the details of the frequency protection. G incorporates combinato-
rial effects corresponding to using m channels to back up n as well as
empirical expressions involving the individual frequencies of channels
involved. The term H is commonly expressed in decibels as —20 log H
and is called fade margin. The fade margin is the smallest loss relative
to the unfaded received signal at which the system fails. The notation
H for the voltage level agrees with the previous use of H in this paper
so long as the channel has a flat characteristic.

As pointed out in Ref. 22 the notation of a flat fade margin is
considered meaningless in digital radio systems since the frequency-
selective aspect of the fade characteristic appears necessary to describe
performance of a channel. As of this writing we are not aware of any
method in the extant literature for extending our results to include the
effect of frequency diversity. However, for the special case of optimum
linear equalization there is a way to introduce an equivalent flat fade
margin so as to enable the use of (24) in making a (preliminary)
estimate of the diversity effect. The estimation method was discovered
in the course of generalizing the computer program to compute index
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Fig. 9—Distribution tail sensitivity to s/n for the Shannon limit.

distributions for arbitrary bandwidths. The generalization was needed
to investigate—and, as it turned out, to substantiate—the bandwidth
insensitivity of the distribution in the 20- to 40-MHz range. The
generalized program was also exercised for bandwidths an order of
magnitude smaller and it was observed that the Frmv distribution
changed imperceptibly.* So the Fyy tail in the range of interest here
can be correctly obtained by using the univariate samples | H(0) @
Treating (18) as an equality and solving for | H(0)|” and then substi-
tuting in (24) gives an estimate of the improvement owing to frequency
diversity.

For an illustration refer to Fig. 2 for which s/n = 63 dB and Pe <
10~%. We see that with linear equalization, at the long-haul outage
objective of 1.3 X 107%, 3.2 bits per cycle can be supported and the
corresponding number for the short-haul objective is 5.3 bits per cycle.
Using (24) and the G values from Ref. 21 we show in Table I the

* This is not true of the individual values of I and no claim is made for invariance of
Fpr, Fur, or Fir.
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Table |—Estimates of improved bits/cycle indices
using frequency diversity
Channel at 4 GHz Channel at 6 GHz

Short Haul (1x11) 7.1 (I1x7) 6.5
(2 x 10) 7.8 (2 x 6) 7.1
Long Haul (1x11) 5.3 (1x7) 4.6
(2 x10) 5.8 (2 X 6) 5.3

following estimates of improved indices when frequency diversity is
employed.
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Xl. POSTSCRIPT

Application of multilevel QAM in the radio channels might be
inhibited by the amplitude (AM-AM) and (AM-PM) nonlinearities
present in RF power amplifiers. A method for solving this problem
without sacrificing amplifier power efficiency will be described in a
forthcoming paper.*
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