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In an effort to free telephone traffic theory from some of its depend-
ence on independence assumptions, and to reap some benefit from its
traditional state equations, a systematic search is made to find
relationships between load, loss, size, structure, and other network
parameters that are simple, universal, and informative. Three prin-
cipal topics are covered:

(i) A load-loss-size formula, linking some half-dozen network
parameters by a rational function, and used repeatedly to give
(ii) Lower bounds on the number X of crosspoints in networks

(iii) Asymptotic results about blocking, growth, and complexity of
selected network structures in passing from finite to “infinite” sources
at constant load.

The major results in (ii) imply that for all practical networks on N
terminals, the crosspoint count X must grow like N log N, i.e.,
incurring loss by restricting access or concenirating cannot avoid the
N log N growth rate known to be exacted by nonblocking networks.
The chief result under (iii) is that as a constant load is spread over
N terminals, then the number X of crosspoints needed to keep loss
less than € > 0 need grow only linearly with N, at a rate dependent
on ¢, while the usage (erlangs carried per terminal) goes to zero.

. INTRODUCTION

The relationships between traffic carried and traffic lost, between
load and loss, have always been at the center of interest in telephone
traffic theory. Since the time of Erlang,' over fifty years ago, the
principal problems of traffic theory have been analytical: to predict
mathematically, from the structure and mode of use of a switching or
connecting network, and from the assumed stochastic behavior of the
customers, how much traffic the network will carry on the average,
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and how much it will Jose as a result of blocking, overload, suboptimal
routing, or incomplete searches for paths. As telephone networks have
become larger, two more design parameters of interest have emerged
and now command attention: the size of the network as measured by
the number of crosspoints, and its complexity as measured, for exam-
ple, by the number of stages of switching it has.

The probabilistic principle that it is very unlikely for more than a
moderate number of customers to want to talk simultaneously has
been the theoretical basis of traffic theory since its start. We can view
it as an unrefined analog of the principle in information theory that
separates a relatively small class of events that exhaust most of the
probability from a remaining large class of very unlikely events. This
principle has led quite naturally to the use of concentrators, and of
networks in which blocking, mismatch, and overflow all can and do
occur as it were by design. It is a function of traffic theory to articulate
this principle in mathematical models for operating telephone net-
works, and to use such models to examine its implications for the
growth and complexity of networks, as well as their loads and losses.

Even for the simplest stochastic models, progress with these tasks
and problems has been very slow because of the combinatorial com-
plexity of the network, the very large number of network states, and
the lack of approximate methods. Thus, it is particularly important to
find relationships between load, loss, size, and other network param-
eters that are simple, universal, and useful, even for very large net-
works. They should be simple in, for example, not requiring solution of
very high-order systems of equations, universal in being relatively
independent of network structure, and useful in providing inequalities,
estimates of performance, and information about the growth of cost
and complexity with network size.

In this paper we try systematically to sketch out some of these
relationships and associated ideas. The results are of necessity spotty,
and no claim is made of completeness or originality, only of rigor.
Three principal topics are taken up here: (i) a load-loss formula, linking
some half-dozen network and performance parameters by a rational
function; (i) lower bounds on the number of crosspoints in a network;
(iii) asymptotic results about blocking, growth, and complexity of
selected network structures in the limit of passage from finite sources
to Poisson arrivals, with total offered traffic held constant.

Il. SUMMARY

The organization of the sequel is as follows: By way of some
background, we start with discussions of blocking, loss, concentration,
etc., and of their relation to the basic principles of telephone traffic
theory and engineering. After various preliminary sections on model-
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ling, we call attention to a (known) generalized Erlang formula that
connects some of the important parameters of an operating network.
We note its technical consequences, and use them repeatedly in the
rest of the paper.

Next we take up the problem of the growth of the number of
crosspoints with the number N of terminals. The question we try to
answer is this: When can the N log N order of growth necessary for
nonblocking networks be reduced by allowing a fixed, small probability
of blocking, using, for example, concentrators, or other forms of incom-
plete access? The answer is that it cannot, unless we consider a
familiar, special kind of low traffic limit in which line usage vanishes.
It is shown, quite generally, that networks arranged in stages must
grow like NV log N if certain (very reasonable and mild) traffic, access,
and symmetry conditions are met. This result, similar to known results
for nonblocking networks, implies that neither judicious concentration
nor a nonzero loss can lower the order of growth from the N log N
exacted by the nonblocking case.

The final sections describe various large networks with a simple
structure vis-a-vis blocking; their loss probability can be calculated
exactly in spite of the astronomical number of states. These networks
are based on such structures as trunk groups, frames, and remote
concentrators, all familiar to the traffic engineers. We are interested in
studying these exact solutions as we let the network grow while keeping
the total traffic constant; this kind of growth amounts to adding more
and more customers, each of whom contributes less and less traffic,
and results in a passage from finite to infinite sources (a Poisson
process of arrivals) at constant offered load. The blocking formulas
can be studied in this limit, and they lead to close connections with
the classical Erlang function, E(c, a). As an application, we can give
methods of synthesizing very large networks with prescribed blocking
probabilities. In particular, as a constant offered load is spread over
more and more customers, the number of crosspoints sufficient to
achieve less than e in blocking need grow only linearly with the number
of customers.

There is a bibliography of background reading and related work
following the references.

lil. STATEMENT OF RESULTS

3.1 Generalized Erlang formula
Using some standard “dynamic” assumptions® to describe random
traffic, we show that half-a-dozen parameters, all characteristic of

network size and performance, are related by a simple, rational func-
tion. These parameters are:
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N = number of terminals on a side of a two-sided network
= number of inlets = number of outlets
m = (mean) carried load = equilibrium average number of calls in
progress
A = calling rate per pair of idle customers
bl = probability of blocking, from the “wire-chief’s” point of view
o® = variance of number of calls in progress,

and the formula states that,” very simply,
1 m

TAWN-—-mi+ o (1)

1-bl

For some purposes the parameters

p = m/N = line usage = erlangs carried per inlet (outlet)
a = AN? = total offered load (when everyone is idle)

are more significant or convenient, and using them the formula is
recast as

m
1-p)+N*

Indeed, there are many ways of twisting and inverting the basic
formula, each one illuminating some special aspect; several such will
appear later. It can be shown that if N — oo while a = AN? remains
constant, then p and N2 go to zero, and we have Erlang’s original
result, the “tautology”

a(l - b)) =

a(l—bl)=m
or
. load lost
blocking = load offered ’

The formula (1), really a generalization of Erlang’s loss formula, is
useful for the following applications:
(i) Order of magnitude estimates
(ii) Asymptotic analyses for large networks, with or without a
passage from finite to infinite sources
(iii) Bounds on the number of switches in a network
(iv) Growth and complexity bounds for networks with given load
and loss constraints
(v) Synthesis of networks having prescribed parameters.
All these applications are illustrated in the text that follows.

3.2 Concentration
The principle that high occupancy states are very unlikely has
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suggested the use of concentration, and it is pertinent to assess the
effect and value of concentration in large networks. Some results of
this kind are in the next three subsections, and they warrant these
conclusions:

() Practical networks must grow like constant N log N, whether
there is concentration or not. Concentration affects primarily the value
of the constant, and of course the blocking and the carried load.

(Z7) The extent of possible concentration is limited by the loss and
the carried load. As might be expected, higher line usage and lower
blocking imply less concentration.

3.3 Growth without concentration

In the prototypical networks without concentration (e.g., those made
of stages of square switches), the number of crosspoints for N cus-
tomers must grow like N log N no matter what load is carried. Several
arguments are given for similar lower bounds, some purely combina-
torial, others involving traffic concepts and parameters. In particular,
if blocking is to be kept less than ¢, and total traffic @ = AN? is kept
constant while N increases, the requisite networks must grow like N
log N if they are made of stages of square switches: especially, for s
stages

X = number of crosspoints = N log N + sN + log(1 — €) — a.

3.4 Growth with full access, allowing concentration

Some simple and mild combinatorial properties, possessed by all
practical networks, mandate an N log N order of growth in the number
X of crosspoints, even when concentration is permitted. A network
provides “full access” if every inlet can reach every outlet by some
path. A network is said to be “arranged in stages” (or “made” of
stages) if its terminals are partitioned into sets Ty, T, - - - , Ts+1, such
that T consists of the inlets, T, to T, are sets of internal nodes or
junctors, and T+, are the outlets, with crosspoints placed only between
Tiand Ty, i =1, ---, s. (See Fig. 1). Here s is the number of stages,
and every call traverses each T’ exactly once, in the specified order or
its reverse. Finally, a network arranged in stages is called “symmetric”
if it looks the same from each terminal in any given T}; we content
ourselves with this informal definition here; a precise one can be given
in terms of group theory.?

We prove this fundamental telephonic fact: A symmetric network
that provides full access and is arranged in stages must have at least

enlog N e=271828...

crosspoints, where N is the number of inlets (outlets, too), and n is the
“neck size,” defined as the size of the smallest T':
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Fig. 1—Network arranged in stages.
n= min |T}, |A| = cardinality of A.
1=si<s+1

The ratio n/N is a global measure of concentration or expansion. If, in
particular, all the T are equinumerous, as happens if the network is
made of stages of square switches, then the neck size is N, and there
must be at least eN log N crosspoints, regardless of the traffic char-
acteristics.

3.5 Growth without full access, allowing concentration

The condition of full access is so reasonable that few engineers
would consider a network that lacks it. Nevertheless, probabilistic
arguments yield N log N lower bounds for the crosspoint count X even
when this condition is dropped. The point is that if the network is to
carry a reasonable load, the “neck size” n cannot be too small; espe-
cially, it follows from the Erlang formula (1) that n must exceed
(1 — ¥1 — p) N for line usage p = m/N. Similar lower bounds involving
also the required loss can be derived. These lower bounds put a limit
on how much one can concentrate (measuring global concentration by
neck size), and they lead to N log N lower bounds for X even when
there is not full access. For example, any network arranged in stages
has

1
Xzie(l— \/l—p)NlogN+0(N)
if each customer’s line carries p erlangs. Thus any sequence of networks
that grow in the strong sense that p is bounded away from zero must
grow like N log N, if they are arranged in stages.
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Fig. 2—Central bus network.

3.6 Asymptlotic resulits

Three network structures lead, in the model to be used, to statistical
equilibrium equations that have the “product form” solution, and so
all their interesting parameters can be calculated exactly from a
partition function, and their behavior in the limit N — o, a = AN? =
constant, studied. They are (see Figs 2 through 4.)

(i) The central bus concept—two large N-to-c nonblocking concen-
trators back to back, with ¢ central buses

,~N/k % ke NONBLOCKING CONCENTRATOR

¢ DEDICATED TRUNKS

7
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p— /
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\._

e
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Fig. 3—Frame network.
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Fig. ——Remote concentrator network.

(ii) The frame concept—large concentrators connected pairwise by
dedicated groups of ¢ trunks

(iii) The remote concentrator concept—large concentrators, each
connected to a central distribution core by its own group of ¢ trunks.
In the “weak” limit as N — o, @ = AN? = constant, the first two
structures are (not surprisingly) closely connected to Erlang’s formula
for loss: their probabilities of loss are bounded above by, and approach,
the value E(c, a). The third is more subtle and elusive, since loss can
occur in either one of two relevant trunk groups, but also more
interesting. We can find E(., :)-type bounds on the loss, but the
question is whether asymptotically

loss<1— (1—b)%+o(1),

where b is the chance that all ¢ trunks on one (any) concentrator are
busy, in the limit, remains open. This quadratic upper bound is what
the loss would be in the limit if the two relevant trunk groups were
independent, each with “blocking” b. Very few of the many “blocking
polynomial” approximate formulas used in practice have been vindi-
cated by so much as an inequality proved in a dynamical model.

It follows from our analyses that for each € > 0, and each of the
three kinds of network structure considered, there exist arbitrarily
large networks of that kind, with loss less than €, and total offered
traffic @ = AN? = constant, whose crosspoint count X grows at most
linearly with N. We view this as a limit result in the “weak” direction,
since a constant amount of traffic @ = AIN? is being divided up among
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N lines, N — o, The carried loads converge, and so the usage p = m/
N, the erlangs carried per line, goes to zero. This linear growth is not
inconsistent with the NV log N orders mentioned earlier; the latter
follow from combinatorial properties, or are the result of a different
“limiting direction” in which p is bounded below away from zero. The
above weak limit result is inappropriate for cases in which, as the
network grows, each new customer is to supply a fixed number po of
added erlangs carried; this latter situation enjoins N log N growth. All
the results about linear growth are given rigorous proofs, for the
Markov process models adopted, by a passage from finite to infinite
sources. In particular, no independence or other ad hoc assumptions
are made to simplify the blocking estimate.

IV. COMPROMISES AND TRADE-OFFS

No matter what technology is used to build it, whether Strowger
switches, crossbars, solid-state crosspoints, or time-division, the design
of a telephone connecting network is inevitably a compromise between
the competing criteria of cost and performance. Restricting attention
to the traffic and operational aspects, it is nearly a truism that an
overengineered network rich in switches will given unblemished service
at an unacceptable cost, while one meagerly endowed with switches
can only provide poor service at bargain cost. The trick the switching
engineer must perform is to come up with designs that avoid these
naive extremes.

The engineer’s task is also affected by more subtle considerations,
such as the following: the same pool of switching gear can be organized
in an efficient way that is combinatorially optimal for connecting many
pairs of customers in different patterns, i.e., realizing many assignments
readily. Unfortunately, these efficient ways involve many stages and
so are usually very complex and difficult to control, because putting
up a call or removing one requires a lot of information and many
decisions. Or the same gear can be hooked up in an inefficient, simple
network of a few stages, which is easy to operate, but since it lacks
combinatorial power it will have noticeably higher loss. Examples can
be found in systems in which equipment is dedicated to handle certain
geographically defined kinds of traffic (see Fig. 3).

Obviously, then, there are many trade-offs available to the designer
between complexity, cost, control, and the various performance param-
eters, such as load and loss. Part of what traffic theory must provide,
as a proper theoretical underpinning to network design, is an account
of the options that are available (or unavailable) in the way of equip-
ment, load, control and structural complexity, growth, and incurred
loss. Such an account would describe the achievable regions in param-
eter space, some of the outer limits of possible designs, and the
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achievable rates of growth of various indices of performance and
complexity.

In the past such information for the large networks, which are of
chief interest, has been sparse and difficult to obtain by means other
than simulation and admittedly fuzzy theory. Thus, it is pertinent to
have an account that retains its accuracy and force as the size of the
network increases without bound. To give a specific example of this
kind of information, we can put the following questions: For x, p, and
¢ specified positive numbers, are there arbitrarily large networks that
have blocking probability at most ¢, line usage at least p, and a number
of crosspoints per terminal at most x? (To define blocking, let us
assume for definiteness that call arrivals are random from finite sources
by pairs, and holding times exponential—a “usual” model, that no one
can quarrel with.) If there are such networks, how complex are they?
That is, how fast does their complexity grow as measured by number
of stages, amount of data needed to select a route, etc.?

V. THE VALUE OF BLOCKING

It is widely believed among telephone switching engineers that a
positive probability of blocking is worth a great deal of switching and
control equipment. Probably for this good reason alone, the famous
nonblocking networks first invented by Charles Clos* have never been
utilized on any but a small scale. Put another way, the canard says
that to eliminate the last little bit of blocking will take an inordinate
increase in equipment. But precisely what does the word “inordinate”
mean here? Can we replace it by a mathematicalfunction E(b), which
increases as the blocking b decreases, and whose interpretation is
somehow that to achieve blocking b you need at least E(b) in equip-
ment? And how is E(b) related to the structure of the network, to its
size measured by number N of terminals on a side?

The remark that started the preceding paragraph is really only the
tip of the iceberg: it is not exaggerating to claim that the mathematical
basis of traffic engineering is the observation that very likely only a
moderate number of telephone customers will want to talk to each
other at the same time. The engineer provides enough lines, junctors,
switches, trunks, etc., to take care of this overwhelmingly probable
case, plus maybe a little extra for hedging his bets. The traffic theorist
provides probabilistic models that make precise the meanings of
“average,” “likely,” and “probable” in this setting. Of course the loads
and losses the engineer seeks or achieves are subject to correction from
customers’ complaints, public commissions, and supervisors. But no
matter what the numbers may be, the principle of not having to
provide for the very unlikely events is universally accepted by all of
those concerned. This principle amounts to public acceptance of pos-
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itive blocking probability for public telephony; it stops designs from
passing the inevitable knees in the cost curves, beyond which costs
grow very fast for each increment in desired performance.

Naturally, then, we are interested in quantitative and mathematical
expressions of the above principle. One can sensibly ask how much
switching equipment can actually be saved by allowing a blocking
probability of € > 0. Where in the system can you (and should you)
save it? In particular, how is allowing a blocking of € related to the rate
of growth of the switching gear incurring that blocking as the number
N of terminals gets large? It is known® that if € = 0 the needed gear in
crosspoints is bounded above and below by

const. N log N.

These results are purely combinatorial, and involve neither probability
models nor traffic parameters. But is N log N still the right order of
growth when € > 0, and the problem is posed in the context of our
“usual” model, with a traffic parameter entering, such as the calling
rate A per idle inlet-outlet pair? The answer depends on just how A
varies relative to N as N — 0, If it is constant or decreases so slowly
that the usage p is bounded away from zero, then N log N growth is
necessary; if AN? remains constant, then for any e > 0, X need grow
only linearly with N.

VI. THE KINDS AND ORIGINS OF LOSS

When we think about the probability of blocking in a network, it is
useful to ask where and how it originates. At high levels of offered
load, most of the loss incurred might be due primarily to frequent
outright overloads of critical “bottlenecks,” even without the occur-
rence of any combinatorial niceties such as mismatch. At lower levels
of offered load, the fraction of loss owing to overloads is very small
because the high occupancy states have very small probability, and
most of the loss is due to mismatch in states of moderate occupancy
and high total probability. It is not always possible to draw this
distinction exactly in practice, nor is it necessary. It is important for
theoretical purposes, though, because it suggests exactly analyzable
large network structures (and models for them), in which the blocking
is either all overload, or overload with certain simple kinds of mis-
match. Such models can be used to study the trade-offs among the
traffic and growth parameters; several are described in the latter half
of this work.

VIl. THE VIRTUE OF CONCENTRATION

Let it be agreed that for many terminals N and small calling rate A
per idle terminal-pair, the chance that many customers will want to
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talk simultaneously is very small; if the principle of not providing for
the very unlikely event is to be taken seriously, how should switching
equipment be arranged? A standard and traditional method is to
concentrate traffic.

The most efficient networks known today concentrate traffic from
very many lightly loaded terminals into a heavily loaded central
distribution core, in which link occupancy may run as high as 0.8 to
0.9, and then expand it back out in an inverse manner. The number of
terminals entering the core is typically much smaller than the number
of inlets, a feature that leads to a natural bottleneck or what we later
call a “neck size.” The blocking incurred can be thought of as being of
two kinds, or arising from two sources: concentrator blocking, the
inability of free inlets or outlets to get a line to the distribution core,
and internal blocking in the core itself. Each of these sources of loss
may in turn be due mostly to overload or to mismatch.

Thus, to reap the economic and operational values consequent on
allowing blocking, the possible or maximum numbers of calls in prog-
ress at various places in the network are intentionally limited so as to
save switching gear, the argument being as before that while having
more calls in progress at these places is possible, it is so (or sufficiently)
unlikely that there is no point in providing for it. We ask, how
effectively can such limits curb the growth without impairing service?

Now the known nonblocking networks achieve their perfect opera-
tion by systematic expansion, the provision of more paths than can
actually be used at one time; this is the antithesis of the concentrator-
cum-distribution core idea usually used in practice. These nonblocking
networks exhibit N log N growth, as they must. Since concentration is
the opposite of expansion, it should lead to a saving in crosspoints.
How big a saving is it? Especially, when can concentration reduce the
order of growth to something slower than N log N?

VIIl. ASYMPTOTICS FOR LARGE NETWORKS

In seeking to answer some of the preceding questions, we shall
examine the behavior of network parameters as the number N of
terminals on a side becomes arbitrarily large. To fix ideas we begin
with some thought-experiments that will lead to more specific ques-
tions.

Accepting for a moment the conventional wisdom that all efficient
large networks use concentrating switches, we imagine a sequence of
such networks with more and more terminals, and ask: What can
happen to the efficiency of these networks as they grow? Is it possible
to keep the loss below a specified amount without having the crosspoint
count or the number of stages grow very fast? Are there large networks
which, though they may not be in the running as red-hot field designs
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for a particular technology, nevertheless are of interest because their
load, loss, and cost can be easily and accurately calculated or esti-
mated? If there are such networks, what combinatorial features ac-
count for the ease of calculation? Where are “most” of the crosspoints,
in the concentration stages, or in the distribution core?

IX. LIMIT DIRECTIONS

Needless to say, some care must be taken in carrying out the
analyses needed to answer these questions. For most purposes, it is
enough to make more exact the way in which the traffic and perform-
ance parameters are to vary as N grows; usually some group or function
of them is constrained to stay in a given set. Such constraints define
“directions” in which limits or other asymptotics are being sought, and
they provide useful ways of looking at the performance of very large
networks. Two such directions, leading to very different growth rates,
will be of interest here.

9.1 The “weak"’ limit

For example, we can let the offered load per idle pair A get small and
N get big, so that @ = AN? is a fixed constant. This amounts to letting
the process of attempted calls become Poisson with rate a; the corre-
sponding limit process is sometimes called a “passage from finite to
infinite sources,” and in traffic theory is often associated with familiar
notions such as the Poisson approximation to the binomial distribution.
We shall show by examples that some interesting limits of this kind
exist and can be evaluated, leading to functions and concepts well-
known in traffic theory, such as the Erlang loss E(c, a). Such calcula-
tions lead to information about the growth rate of cost and complexity
for large networks that have specified load and loss.

9.2 The strong constraint

A very different condition, to be used later, is that the usage p = m/
N of our sequence of growing networks be bounded away from zero. It
says roughly that each new customer, as N grows, adds a fixed amount
of carried load to the network, at least. This condition, incompatible
with the “weak” limit, leads to N log N growth in crosspoints, and is
not, as far as we know, associated with any limits in distribution, the
way the weak limit is. That is why we call it a condition and not a
limit. It is physically natural for networks to grow in this manner, and
so this is an important condition to consider.

X. NETWORK STATES
We shall use a model for the structural and combinatorial aspects of
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a connecting network. This model arises by considering the network
structure to be given by a graph G whose vertices are the terminals of
the network, and whose edges represent crosspoints between terminals
by pairs, with some of the terminals designated as inlets or outlets.
Calls in the network are described by paths on G from an inlet to an
outlet. Thus, a connecting network » is a quadruple » = (G, I, &, S),
where G is a graph depicting networking structure, I is the set of
vertices of G which are inlets, £ is the set of outlets, and S is the set of
permitted or physically meaningful states. It is possible that I = £
(one-sided network), that I N & = ¢ (two-sided network), or that some
intermediate condition obtain, depending on the “community of inter-
est” aspects of the network v. Variables w, x; y, and z at the end of the
alphabet denote states, while « and v denote a typical inlet and a
typical outlet, respectively.

A possible state x can be thought of as a set of disjoint chains on G,
each joining I to . Not every such set of chains need represent a state
in S: wastefully circuitous chains may be excluded from S. The set S
is partially ordered by inclusion <, where x < y means that state x can
be obtained from state y by removing zero or more calls. It is reasonable
that if y is a state and x results from y by removal of some chains, then
x should be a state too, i.e., S should be closed under “hangups.” It can
be seen from this requirement that the set S of permitted states has
the structure of a semilattice, that is, a partially ordered system whose
order relation is definable in terms of a binary operation N that is
idempotent, commutative, and associative, by the formula x = y iff
x = x N y. Here for x N y we can simply use literal set intersections:
x N y is exactly the state consisting of those calls and their respective
routes that are common to x and y.

An assignment is a specification of what inlets are to be connected
to what outlets. The set A of assignments can be represented as the
set of all fixed-point-free correspondences from subsets of I to 2. The
assignments form a semilattice in the same way that the states do, and
A is related to S as follows: call two states x, y in S equivalent as to
assignment, written x ~ y, iff all and only those inlets u € I are
connected in x to outlets v € £, which are connected to the same v in
y, though possibly by different routes. The realizable assignments can
then be identified with the equivalence classes of states under ~, and
there is a natural map v:S — A, the projection that carries each state
x into the assignment y(x) it realizes, i.e., the equivalence class it
belongs to under ~.

With x and y states such that x = y, it is convenient to use x — y to
mean the state resulting from x by removing from x all the calls in y.
Similarly, with @ and b assignments such that a = b, we use a — b to
mean the assignment resulting from a by dropping all the connections
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intended in b. Note that here x — y, @ — b have their usual set-theoretic
meaning.

It can now be seen that the map y is a semilattice homomorphism
of S into A, with the properties:

xzy=>yx)=v(y)
xzy=>yx-y =7y -y
y(x N y) = y(x) N y(y)
v(x) = ¢ = > x = 0 = zero state, with no calls up.

Not every assignment need be realizable by some state of S. Indeed,
it is common for practical networks to realize only a vanishing fraction
of the possible assignments, and the networks that do realize every
assignment, the so-called rearrangeable networks, have been the
objects of substantial theoretical study. Thus, the image set y(S) of
realizable assignments is typically much smaller than the set A in
which it is embedded. A unit assignment is, naturally, one that assigns
exactly one outlet to some inlet, and it corresponds to having just one
call in progress. It is convenient to identify calls ¢ and unit assignments,
and to write y(x) U c for the larger assignment consisting of y(x) and
the call c together, with the understanding, of course, that ¢ is “new in
x” in the sense that neither of its terminals is busy in x.

We denote by A, the set of states that are immediately above x in
the partial ordering = of S, and by B: the set of those that are
immediately below. Thus,

a. = {states reachable from x by adding a call}
B. = {states reachable from x by hangup}.

For ¢ new in x, let Ac: = A: N ¥ '[y(x) U c]; A.: is the subset of states
of A, that could result from x by putting up the call ¢, because y 'y(y)
is precisely the equivalence class of y under ~. If A, is empty then we
say c is blocked in x: there is no y € A, that realizes the larger
assignment y(x) U c. It can be seen that with F, the set of new calls of
x that are not blocked, the family {A., ¢ € F;} forms the partition of
A; induced by equivalence ~.

XIl. ROUTING OF CALLS

We shall use a routing matrix R = (r,) as a convenient formal
description of how routes are chosen for calls. The class of routing
matrices, R, can be described thus: for each x € S let II. be the
partition of A, induced by the relation ~ of “having the same calls
up”, or satisfying the same assignment of inlets to outlets; it can be
seen that I, consists of exactly the sets A.. for ¢ free and not blocked
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in x; for Y € Il,, r., for y € Y is to be a probability distribution over
Y, that is 75 = 0 and ¥,ey 7y = 1; I's, is to be 0 in all other cases.

The interpretation of the routing matrix as a method of choice is to
be this: any Y € II, represents all the ways in which a particular call
¢ (free and not blocked in x) could be completed when the network is
in state x; for y € Y, ry, is the chance (or fraction of times) that if call
¢ arises in state x it will be completed by being routed in the network
so as to take the system to state y. The distribution {ry, y € Y}
indicates how the calling rate owing to ¢ is to be spread over the
possible ways of putting up this call. Evidently, such a description of
routing could be made time-dependent, and extended to cover refusal
of unblocked calls as an option; we do not consider these possibilities
here. The problem of choosing an optimal routing matrix R has been
worked on at some length.

XIl. STOCHASTIC MODEL

We now recall® a stochastic model for the traffic offered to a network.
A Markov stochastic process x; taking values on S can be based on
these simple probabilistic and operational assumptions:

(i) Holding times of calls are mutually independent variates, each
with the negative exponential distribution of unit mean.

(#i) If u is an inlet idle in state x € S, and v # u is any outlet, there
is a conditional probability Ak + o(h), A > 0, as A — 0, that u attempts
acalltovin (¢, ¢+ h) if x. = x.

(iii) A routing matrix R = (r,) is used to choose routes, as follows:
If ¢ = {(u, v)} is a call free and not blocked in x, then the fraction of
times that the system passes from x to y € A, if ¢ arises when x; = x
is just ry,.

(iv) Blocked calls and calls to busy terminals are declined, with no

change of state. .
It is convenient to collect these assumptions into a transition rate

matrix @ = (g»), the generator of x,; this matrix is given by
1 ifyeB:
_ ) ArpifyE A
9=\ - |x| — As(x) if y = x, with s(x) = |F4|
0 otherwise,
and the associated statistical equilibrium (or state) equations take the
simple form

[|x| + As(x)]p== X pPy+ A ¥ Pyrxx €S,
YEAx YEBx

where {p., x € S} is the asymptotic distribution of x.. Here |x| denotes
the number of calls in progress in x, and s(x) is the number of
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unblocked idle inlet-outlet pairs in x, the possible “successes” in x;
note that s(x) = |Fy|.

Xlll. PARAMETERS OF INTEREST FOR DESIGN AND ENGINEERING

We shall frequently use about a dozen basic parameters, character-
istic of the operating network, and important for these reasons: They
describe load, cost, and performance, or they can be measured readily,
or they arise naturally in the associated traffic theory and are conven-
ient for calculations and asymptotic analyses. For two-sided networks
v, these parameters are the following:

A = calling rate per idle inlet-outlet pair

N = number of terminals (inlets, or outlets) on each side
bl = probability of blocking
m = carried load = expected number of calls in progress
p = usage = m/N = erlangs carried per terminal

o = standard deviation of number of calls in progress

X = total number of crosspoints

s = number of stages (if » is arranged in stages)

a = AN? = total offered load when everyone is idle

w = max |x| = maximum possible number of calls in progress
xS

n = “neck size,” defined for » arranged in stages separating junc-
tor groups T4, T, + - - Ts41, as the cardinality of the smallest
T

Remark: The parameter a = AN is a convenient abbreviation for total
offered load, especially for certain weak “large network” asymptotics
for which AN? is held constant as A — 0 and N — co.

Remark: The ratios w/N and n/N are rough global measures of
concentration, global because there could be, for example, remote local
concentrators with a concentration ratio different from each of these.
Clearly, w = n, when both w and n are defined.

Notation: We write X(»), p(v), etc, whenever it is necessary to express
the dependence of a parameter on the network ».

XIV. THE PARAMETER SURFACE

In the early' applications of traffic theory to trunking problems, a
central role was played by Erlang’s loss formula, which depended on
two parameters, the load a, and the number ¢ of trunks. For connecting
network studies, though, to take into account at least the size of the
network and the “finite source” effect, if not other network features,
a modification of Erlang’s formula is more suitable. (The finite source
effect is a recognition that busy terminals generate no traffic.) Such a
formula has been derived in earlier work.? We shall exhibit many
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useful results that follow from it, or from it together with reasonable
but special hypotheses, such as the property of a network that it is
made of square switches, or is arranged in stages, or provides full
access.

For a two-sided network with IV terminals on a side, the load, loss,
load deviation, and rate parameter, A, are related by the following
formula:

Generalization of Erlang’s formula to networks:

1 m
1=l =y N+ (1)
m

a(l —bl) =

(1 —p)* + (o/N)™

Proof: 1 — bl is the fraction of attempted calls that are not blocked.

By the law of large numbers, this fraction is the rate of successful

attempts divided by the total rate of attempts, both in equilibrium.

For a state x let s(x) be the number of inlet-outlet pairs (u, v) that are

not blocked in x; “s(x)” stands for “successes in x.” The success rate

is then A ¥ p:s(x) and the total attempt rate A ¥ p.(N— |[).
xES xS

However, in equilibrium, the rate in equals the rate out, so

A Y p:s(x) = ¥ psjx| =m.
xe8 xS

Evidently the total attempt rate can be written as A[(N — m)® + 0%],
and the general Erlang formula is proved.

Remarks: The gist of the Erlang formula is that six of the parameters
of interest cannot assume arbitrary values but must lie on a surface
described by a simple rational function. It is apparent that similar but
more complex formulas can be proved for one-sided networks, or two-
sided ones with different numbers of terminals on each side; we shall
not consider these, because the basic ideas are the same. Note that
blocking, a complicated quantity in the model, is determined solely by
the first two moments of the number of calls in progress. Also, if N
and A vary so that (1 — p)® + (o/N)* approaches 1, the formula
apprrl)aches the exact form m = a(l —bl) it has in the “true” Erlang
case.

XV. SOME TECHNICAL RESULTS

The generalized Erlang formula has many useful consequences.
Some of them are summarized in the next few results, all of which are
additional relationships among the engineering parameters.
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Lemma: % <p-p2 (2)
Proof: Clearly, E|x.|* = ¥ p.x|* = Nm. Hence,
xES
o’ = E|x:|* — (E|x|)> = Nm — m?®.

@3)

m
Lemma: m =1- p.
Proof: Lemma (2) implies that
@
PP=-2p+1+— Nz <1l-p.

By (1) the left-hand side is m/a (1 — bl).

Representation of N:
+ N L 2, 2
m ¢m [1 bl)] (m* + o%)
m
T
1+v1-p
___m
a(l — bl)
where
=" |1+
A a(l — b)) m?
and
O<p<l
Proof: N is one of the quadratic roots
m(l = V1 - p)
—_— (5)
_ m
a(l — bl)

To show that the plus branch is the right one we note that the
quadratic (in y) function

2 m 2
l-—————— | - 2my+ m* + o® 6
y[ a(l_bn:l my + m (6)
equals m? + o® at y = 0, and has a negative minimum at
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yr= =

1 m

T a(l - bl)

This value is a minimum because the second derivative is

m
2[1‘a(1—b1)]>2’”

by Lemma (3). This value is negative because it is
2
m
m? + o? —
m

1=ca-m
and the Erlang formula (1) implies that

2 4 m?=2mN—-N*|1-—0—|.
o‘+m mN N[ a(l—bl)]

Substituting this into (7) we see that the value is

m2

m
—N2|1] ——— -
[1 a(l_bn]+2mN ) ,

a1l = bl

(M

@

clearly negative. Thus y* separates the two real roots of (6). However,
Lemma (3) implies that N > y*, so N must be given by the plus sign
in (5). It is obvious that p is positive; to show p < 1 we divide (8) by m?

and multiply by 1 — to get

_m
a(l — bl)

N m 2
p=1—{1-;[1-___a(1_bn]} <1,

which incidentally strengthens Lemma (3) to

m
<]————m<2p.
P aq—on - F
Lemma: If v is such that, at most, w calls can be in progress, then for
w<N
' m
= — e
(@) bl=1 AN — )

(ii) w= N(1 -V1 -p)

(iii) p =< 3;,3 - {%}2

9)

Proof: In this situation the average calling rate is greater than or equal
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to (N — w)?, so (i) follows from the generalized Erlang formula (1).
Thus also

m < m
AN -p  + N3 AN -
< N[(1 — p)* + 0°N?] = N?

w)E{N - w)?
m
a(l — b))’

But by Lemma (3),

—m—5 1-p
a(l — bl)
and thus (i) and (iii) via
N-w=N ﬂ
The same argument proves

w= N[1- V(1 -p)’+o?N72.

XVI. NONCONCENTRATING NETWORKS GROW LIKE N LOG N EVEN
IN THE WEAK LIMIT

One way to display the value of concentrating traffic is to show how
bad things are when you do not do it. We shall look at a large class of
practical networks that have no concentration, and show that to all
intents and purposes, these networks grow like N log N for N terminals.
In particular, without concentration, these networks have no way of
trading off nonzero or even substantial blocking (up to some € > 0) for
slow growth, i.e., slower than N log N, or constant X N log N with a
constant that depends on usage p. Especially, these networks have
N log N growth even in the weak limit a = AN? = constant; we show
later that, in this special case, linear growth is achievable if concentra-
tion is used, even with blocking kept less than e.

Now the prototypical network without concentration is one that is
made of square switches arranged in stages, and these constitute the
class we consider. Since engineers are primarily interested in networks
with a high degree of symmetry, which “look the same” from any
terminal within a junctor group, or from any inlet, or outlet, we shall
restrict attention to networks » with these properties:

(i) » has s = 1 stages

(Z) The switches in each stage are square, and identical.

Note that the number of stages is not fixed, and that different stages
may have different numbers of switches; also, the interconnection
patterns between the stages (in old terminology, the cross-connect
fields) can represent arbitrary N-permutations.
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Theorem: Let n,, na, -+ , n, be s divisors of N, possibly with repeti-
tions, and consider a network v with N/n; ni X n; switches in its ith
stage, and blocking bl < €. Then its crosspoint count X (v) satisfies

X(y)gNEn.-ZNlogN+N(s+log(1—e))—a. (10)
=1
Remark: The number of outlets reachable from an inlet is at most
I1%., n;. If every inlet can reach every outlet, then this product exceeds
N — 1, and in this “usual” case

En;as+log1'[lnfzs+logN (11)
i=1 i=

and the conclusion of the theorem follows. In the opposite “unusual”
case, ITL; n: < N, some calls are permanently blocked, and the network
does not provide full access. Thus, one point of the theorem is that
even in this combinatorially poor situation, blocking cannot save more
than a linearly growing number of crosspoints when @ = AN? is
constant or grows at most linearly, so that X (») = O(N log N).

Proof: Only the “unusual” case N > ITi.; n; need be considered. Let
s(x) be the number of possible “successes” in x, i.e., of inlet-outlet pairs
idle and not blocked in state x, so that

(N —|x|)* — s(x)

is the number of idle inlet-outlet pairs that cannot be connected in x.
In the unusual case an idle inlet cannot reach at least N — ITi-; n;
outlets. In state x, at most | x| of these unreachable outlets are busy;
thus there are at least
N-1I ni — | x|
=1

idle outlets with no path to our test inlet. This being true for each idle
inlet, and there being N — | x| idle inlets, the number 8- of blocked idle
inlet-outlet pairs in state x satisfies

Be= (N - |a]) (N— IT i~ |x|),
or since (N — | x|)* = s(x) + B,
s(x) = (N - |x|) _Hl ni.
Averaging this inequality with respect to the equilibrium state proba-
bilities { px, x € S}, and noting that m = ¥ :es | x| Pz = A Yzes 8(x) s,
we find
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>3

<(N-m) I ni

=1

° Nm
Enia———a(l =)
Therefore,
X»=N3Y n:

=1

2N(s+logﬂna)

i=]

2NS+NlOgN+Nlogm.

To find a suitable lower bound on the last term we use the basic
generalization (1) of Erlang’s formula:

1-bl= m - n
TAMN-=-mP+ A’ a[(1-p)+aN 7
m
=
a(l — p)?

Since the blocking b! is less than €, one finds

m
log(l1 — €) =<log(l — bl) <log—————
g(1 — €) = log( ) 8 2 —p)

X()=Nlog N+ sN + Nlog(l — p) + Nlog(1l —e).
Next we argue that, as in Lemma (2),

—log(1 — p)

¢’N?2=<=p-p*
(1-p)+e¢’N2=<1-p,
and so by the Erlang formula (1) again,

1-bl o2 en-zy 1P a
N a[(l1 - p)’+d*N¥] = N aSN+a

p =
whence

log(1 — p) >log N — log(N + a) = —

2|a

and the proof is complete.

XVIl. GROWTH OF NETWORKS ARRANGED IN STAGES
Almost all the connecting networks used in practice are made of
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stages, or arranged in stages. This property means that the terminals
of the network are partitioned into disjoint sets Th, Tz, ---, Ts,
which are simply ordered as indicated; the first set T} consists of the
inlets, the next s — 2 sets are internal junctors, and the last set 71
consists of the outlets; crosspoints are placed only from terminals in a
given set T: to terminals in the next set T+ in the ordering (see Fig.
1). Thus every call in progress is a path from an inlet to an outlet that
passes through each set T} once in the order specified. The crosspoint
pattern between successive sets is called a stage of switching, and is
representable as a bipartite graph. The sets T; need not all have the
same numbers of terminals; if they do not, there is expansion or
concentration. The size of the smallest T is called the “neck size,” and
is of course an upper bound on the number of calls in progress:

|x| =n= min |Ti|.
1=si=s+1

We shall restrict attention to symmetric networks, in which the
network looks the same to every terminal in a given T}, i =1, ---,
s + 1. A network provides full access if every inlet-outlet pair can be
connected by a path through the network, with no doubling back
allowed. Full access is a natural convenient condition that greatly
simplifies arguments, but it is not necessary for proving N log N
growth.
Theorem: Let v be a symmetric network with N inlets (& outlets), with
neck size n, providing full access through s stages. Then the
crosspoint count X (v) satisfies

X(v)=enlogN e=271828 ... . (12)

Proof: Let n;, i = 1, ---, s, be the number of crosspoints in stage i
connected to a junctor between stages i and i + 1. By symmetry this
number is the same for all such junctors or terminals. If stage i is
represented by a bipartite graph, n; is the degree of each “input”
vertex. Thus, if the neck size is n, then stage i has at least nn;
crosspoints, and so

8
Xv)=n Y ni.
=1
Since » provides full access it must be true that
N=I1I n;
i=1

for an inlet can reach no more than ITL; n; outlets; so if N exceeded
this product there would be some it could not reach. Hence, by the
inequality linking arithmetic and geometric means,
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X(v)=n 2", n;

i=1

s 1
>ns (H ni)"
=1

=nsN®.

1
But sN¢, viewed as a function of a real variable s, has a unique
minimum at s = log N, so that
1

X(@)=nlog NN¥=¢enlog N, e=271828 ...

Remark: If the neck size is N, as it is for networks made of square
switches, then for symmetric » providing full access

X(v) =e Nlog N.

Lemma: If v has neck size n < N, then

1/2
n=N{1-|—2—_| l=N{a-vi-p). (13)
a(l — bl)
This result links the neck size n to the performance parameters m
and bl and to the traffic parameter a. The second inequality is
remarkable in involving only the line usage p; the higher p is to be,
the closer the neck size must be to N.
Proof: If v has neck size n, then at most n calls can be in progress at
a time, so that N — |x| = N — n, and by the Erlang formula (1)
_ m - m
AZp.(N — |x))2™ AN —n)?
m
a(l —bl)’

1-5l

(N —n)*= N?

The second inequality follows from Lemma (3); it leads at once to this
basic result:

Theorem: If v is a symmetric network arranged in stages, providing
full access and with each inlet carrying p erlangs, then

X(») =e(l — v1—p)Nlog N. (14)

Proof: (12) and (13).

Discussion: This inequality says that any symmetric network providing
full access has const. N log N crosspoints, where the constant depends
only on the line usage, no matter what blocking is incurred. Using the
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first inequality in (13) gives a larger constant, now dependent on loads
(offered and carried) and blocking.

Theorem: Let v be a network arranged in stages, not necessarily
providing full access. Then

X(») = e(1 — V1 — p)[%N log N — AN log A
+ Nlog(l—bl) + Nlogp]. (15)
Proof: As in the proof of Theorem (12) we find
s 1
X(v) = ns(H n,-)". (16)
i=1

Next, the averaging argument of Theorem (14) gives

. .= Nm = 'p
Em=on—p " xa-p
1 1
For b > 0, sb® assumes a unique minimum at s = log b, and (b)"#* =
e = 2.71828, - .., so by (16),

X(v) = ne logﬁ

= e(l — V1 — p)N[log p — log A — log(1 — p)]. (17)
The generalized Erlang formula (1) can be put in the forms
AN(1 - b)[(1-p)+o®N ] =p (18)
AN(L = bl)(1—p)®+ (1=p) =1+ AN(1 - bl)e’N?=0. (19)
The second form is a quadratic equation for 1 — p whose solution,
picking the plus branch, is
_ VI+4AN(1 - b)[1 - A1 -0bl)’N'] -1
2AN(1 — bl) )

By (18) above, the quantity (factor) 1 — A(1 — bl)o’N~" under the
square root is equal to

1-p

_ o
PN+ &

and lies strictly between 0 and 1. Therefore,

- <J1_+4}\N(1—bl)-1
p 2AN( — bl)

Let y = 2\N(1 — bl) for short, so that

1
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vi+2y—-1

1-p<
y
Hence,
vi+2y—-1 2
log(1 — p) < log = log
y Vi+2y+1

—log(1 — p) > log(v1+ 2y + 1) —log 2

1
> 3 log(1 + 2y) — log 2

>% (log 4 + log A + log N + log(1 — bl)) — log 2.

Returning now to formula (17) we find
X(v) =e(l — V1 —p)N[logp — %% log A + %2 log N + % log(1 — bl)].

Remark: Theorem (15) shows that full access is not necessary for
N log N growth; it just makes the constant bigger and the argument
simpler.

Theorem: Let vy be a sequence of networks on N terminals arranged
in stages, and such that
(@) p(vn) =Zpo>0
(ii) bl(vy) <€ (20)
(éiZ) A(vw) is bounded.
Then as N —

X(ow) = g (1 = V1= po)N log N + O(N).

Proof: Immediate from (15).

Remarks: Theorems (15) and (20) of course apply also to the networks
made of stages of square switches considered in Theorems (10) and
(11). However, it should be noted that the possible traffic asymptotics
in the two theorems are different, although they might overlap. In (11)
a = AN? grows at most linearly, while in (20) it grows at least linearly;
in (11) @ = AN? could be identically a constant (the weak limit case),
so that A and p both go to zero, and X(v) grows like N log N instead of
linearly as it might [see Theorem (24)]; in (20), on the other hand, p is
bounded away from zero, hence AN is also, so @ = AN? increases at
least linearly, and X(v) grows like constant X N log N, with constant
depending on the lower bound for p. The point is that the absence of
concentration exemplified in the square switches compels N log N
growth even in the weak limit (@ = AN? constant, p vanishing), while
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in general if concentration is allowed it takes the “strong condition”
p = po > 0 to force N log N growth.

XVIIl. ANALYZABLE LARGE NETWORKS

We turn now to the study of three simple patterns or structures for
networks with concentration. Interest in them arises from the fact that
their loads, losses, and complexity can be calculated or rigorously
bounded for arbitrarily large values of N. Most of them embody
features, such as frames and concentrators, which are familiar in
telephone network design, and some provide tenuous links to previous
approximate blocking formulas based on independence assumptions.
These formulas suggest inequalities stating that certain natural “block-
ing polynomials” are in fact upper bounds on the probability of
blocking; their proof or disproof has eluded us so far, but they are
worth mentioning nevertheless.

XIX. CENTRAL BUSES CONCEPT

A useful extreme case is a network that, like the trunk group, has no
blocking states until a certain number c of calls in progress is reached,
at which point all calls are blocked. One way to build such a network
is to concentrate both the N inlets and the N outlets down to ¢
terminals in a nonblocking way, and then to put a c-by-c nonblocking
network in between, as shown in Fig. 5. A better way results when we
note that the central network is superfluous; all you need are ¢ central
buses with “expanding” networks on each side such that any idle
terminal can reach an idle bus. An arrangement of this kind is shown
in Fig. 2, in which each bus has an appearance on every (inlet or
outlet) subnetwork; when these are nonblocking, a theoretically useful
solvable case results. We call such networks central bus networks.

Remark: Clearly, the central bus idea for networks springs right out of
the idea that in a large network with lightly loaded lines, only a

~Nxc NONBLOCKING CONCENTRATOR

~c¢ JUNCTORS
/ \

INLETS N — * N OUTLETS

I
¢ X ¢ NONBLOCKING CORE
¢ X N NONBLOCKING CONCENTRATOR-"

Fig. 5—Network nonblocking up to c calls.
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moderate number of customers will be talking. The thought is this: if
the low and moderate occupancy states have all the probability, let’s
use all our switching gear to make them as nonblocking as possible,
and just ban the unlikely high occupancy states altogether. Accord-
ingly, the designer guesses or calculates what that moderate occupancy
might be, on the average, and provides some larger number c of central
buses, with nonblocking access for everyone.

Remark: The central bus network is also a good candidate for the best
disposition of a fixed number X of crosspoints at very low traffic A. For
it is known? that

blocking = const. A™ + o(A™) as A |0,
where

m= mlg {|x|: some call is blocked in x}.
xE

Thus, of all networks made out of X crosspoints, the ones for which m
is largest will have asymptotically least blocking at low traffic, as
A— 0.

For traffic purposes, the number of calls in progress is an adequate
notion of state for central bus networks. Under our assumptions, the
equilibrium probabilities p, of n calls up satisfy

n

Pn =Po%(N—n+ 1)) (N—n+2)%... N?
and so the blocking is

A—1(N—c)2(N—c+ 1)?... N?
bl = C:

c \J "
N%+ 2%(N—J‘)2(N—j+1)"---N2
=i

We introduce the parameter a = AN? by writing this as

a’ c 2 c—1 2 1 2
H(“ﬁ) (1__N_) "'(I"ﬁ)
bl = . (21)

T o j 7 j—12 N\
—(1=-L)(1-L=—) ... [1-=
1+,§1ﬂ( N)( N) N

If we extend each product in the denominator all the way up to ¢, and
replace the 1 by the product in the numerator, we increase the formula
to exactly the Erlang loss function E(c, a). Thus,

bl < E(c, a). (22)
A similar argument shows that the traffic carried, m, satisfies
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m < a[l — E(c, a)]. (23)

Thus, for central bus networks the load and loss are bounded above
by the corresponding Erlang load and loss for ¢ trunks and incoming
traffic a.

XX. LINEAR GROWTH IS POSSIBLE IN THE WEAK LIMIT

The central bus concept also leads to an asymptotic estimate of
what is possible in the way of network growth. We prove
Theorem: For every e > 0, there is an integer c, and a sequence vy of
networks on N terminals with ¢ central buses such that as N —
with a = constant

(i) bl(vn) < E(c, a) <€, bl(vy) = E(c, @)

(it) m(vn) < a[l1 — E(c, a)], m(vy) = a1l — E(c, a)]
(iii) X(vn) = 136N logzc + O(c)
(iv) s(pn) = 4(1 + logzc).

Remarks: This result says that there exist arbitrarily large networks
with specified blocking whose growth in crosspoints is linear (with
slope dependent on blocking), whose complexity in number of stages
is logarithmic, and whose load approaches a constant. Here the growth
in “size” N is accompanied by a diminution in the offered load A per
idle pair, according to AN? = g, a constant, in a natural passage from
finite to infinite sources. Because of the way these networks will be
defined, they will be at the “combinatorially efficient, hard to control”
end of the trade-off spectrum.

Proof of Theorem (24): Given € > 0, choose ¢ to be the smallest integer
such that E(c, a@) < ¢, and construct a sequence of networks vy with N
terminals on a side and ¢ central buses, with nonblocking access to an
idle bus from each side. Property (i) follows from (21), (22); (i) is a
result of (23) and the general Erlang formula (1); we have

(24)

N=m(l+\/1-—p)’ @
1——"
a(l — bl)

where m is the load, @ = AN?, bl = blocking, and p € (0, 1). Since
m =< ¢ we must have, by (4)
n
a(l — bl)
But by (i), bl — E(c, a), whence the limit in (it).
To complete the proof we use the basic bounds on the complexity of

nonblocking networks given® by Bassalygo and Pinsker, according to
whom each of the ¢ X ¢ nonblocking networks needed in Fig. 2 can be

—1 as N1Too
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made using at most 68¢ logzc + O(c) crosspoints and 2(1 + logzc)
stages.

XXI. A DIRECT ARGUMENT

It is a property of the “direction” picked for the asymptotics in
Theorem (24) that the carried loads m approach a limit, so that the
line usage p = m/N goes to zero. In practical terms this means that a
fixed amount of traffic is being spread over more and more customers,
while the load contribution from any one vanishes. Ultimately, then,
this limit “direction” is suitable only for very many lightly loaded lines,
and it would be more interesting to have similar or analogous results
in which the carried load would increase as the networks grew, and
the usage p would be bounded away from zero, with the blocking
always less than some prescribed number € > 0.

We know from Theorems (15) and (20) that even without the
constraint “bl < ¢” such a positivity constraint on p necessitates
N log N growth for practical networks. It is instructive, however, to
give a separate direct argument for this behavior in the case of the
networks constructed in Theorem (24).

Lemma: For 1 > € > 0, let ¢ be the earliest integer such that
E(c, a) = e. Then

c=a(l —e). (25)

Proof: By hypothesis, E(c, a) < € < E(c — 1, a). As is well-known, the
Erlang function satisfies the recurrence

E(c, a) = 1 .
I+t Ee-1Ta
Thus,
1

p =e<E(c—-1,a).

1+ aE(c— 1, a)
Replacing E(c — 1, a) on the left by the smaller € will decrease the left,
giving
1

=E€
c
1+—
ae

Proposition: Let » be a central bus network constructed to have bl <
€, as in Theorem (24), by the method® by Bassalygo and Pinsker. Then

X(v) = 8pN logoN + 4Np[logz2(1 — €) + logzA]. (26)
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Proof: v achieves usage p = m/N, so there must be a state x € S with
|x| = Np. The method of construction implies that » is a network
having 4 + 4 log.c stages, where ¢ is the number of central buses,
chosen to be the earliest integer ¢ such that E(c, @) < €. Thus every
call passes through 4 + 4 log.c crosspoints. Since two calls do not pass
through the same crosspoints, the state x has at least 4Np logzc busy
crosspoints, and so

X(v) = 4Np logac.
But by Lemma (25) and the choice of ¢, we have
c=a(l —€) =AN*(1—¢)
logz¢ = 2 logaN + loga(1 — €) + logzA (27)
X(v) = 8pN log:N + 4Np[log:(1 — €) + logzA].

It follows that any sequence of such networks, growing so that p is
bounded away from zero, will grow like N log N. For then AN is
bounded below, and (27) implies

X(v) = 2pN log:N + O(N), as N— .

XXIl. FRAME CONCEPT

The second kind of network structure we shall study is called a

frame. It is familiar to engineers from the No. 5 and earlier crossbar
systems. The idea of the frame is to mount all N terminals on a side in
k groups of N/k on subnetworks that are connected pairwise by
dedicated junctor groups. In the two-sided case shown in Fig. 3, these
connections are described by a complete bipartite graph. We shall
suppose that the inlet subnetworks are N/k by kc and identical, and
are mirror images of the outlet subnetworks, with ¢ trunks or junctors
connecting each pair of inlet-outlet subnetworks. A solvable limiting
case results when we make the subnetwork nonblocking, so that loss
is due always to overload of one of the groups of ¢ junctors between a
pair of subnetworks.
Remark: It is tempting to conjecture here that in the natural “weak”
limit N — o, A — 0, AN? = a, a constant, the loss for the frame network
with nonblocking concentrators will approach the Erlang loss
E(c, ak™?) for ¢ trunks and Poisson traffic ak ™.

It is not hard to see that if the subnetworks in Fig. 3 are nonblocking,
then to define the transition rates that devolve from the stochastic
model it is enough to know how many trunks are busy in each of the
k2 dedicated groups of size c. Therefore we can use, instead of our
usual microscopic semilattice, a very much reduced’ notion of state, as
follows: we describe the system by a & X k matrix x of integers (xy),
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0 =< i, j < &, with the interpretation that

x; = number of calls in progress from subnetwork i on the left to
subnetwork j on the right.

The x; are restricted to be integers between 0 and ¢, the capacity of
each (i, j) trunk group. It is useful to have the notations
]

xi = ¥ xy = number of calls in progress on subnetwork
j=1

i on left
k

x/ = ¥ x; = number of calls in progress on subnetwork

=1

J on right (28)
x*(i, j) = the state resulting from x when a new call

is added to the (i, ) trunk group
x~(i, j) = the state resulting from x when a hangup occurs

on the (i, j) trunk group.

With p. the stationary probability of x, the statistical equilibrium
equations are

* k
Px[ T xi+tA Y Lo (N—-x)(N - x")il

ij=1 ij=1

k
= ¥ [Pprrun(xir) e, + Alzy o Prap)(N — xi+ 1)(N — 27 + 1)].
i,j=1
Here the indicator functions for x; # 0 and x; # ¢ give the right
equations on the “boundary” of the state space. The solution of these
equations has the convenient product form

Al o [NY(N

- 11 .

D= = po T x,! E XX’ (x.')(IJ
L

= |x| Xi * v N
_po?\ E (xﬂ, veu, xr‘.k)(xlh s ,xk,-)(x.')(xl),

where p, is the chance that no calls are up, given as the reciprocal of
the normalizing sum as

1 _ 9l X x/ N\(N
Po gA E(xﬂ’...,x‘-_k)(xu, “'!xkj)(xi)(x“' .

The sum over the states x is over all 2 X & matrices whose entries are
integers in [0, ¢], including the identically 0 state, which contributes a
term 1.

Under our symmetry assumptions the probability of blocking be-
tween two outer subnetworks i and j is the same as the overall loss,
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and is given by
prlx‘-,-c(N - x)(N - xj}

b= Y px(N — x:(N — x7)

This formula does not depend on the normalizer ps'. Although it is
exact, it will be of interest to us primarily for the insight it gives into
the asymptotic behavior of b/ as N — o, A — 0, with AN” = a, constant.
To this end it is enough to look at p./po. Writing it in the form, for
x#0,and using ¥ x; =Y, 2’ = | x|,

A||1| xi—1 N x/-1 N
. = e II - =
o (3-m) T (-9

H xy i,j m=0 =0
b
mz |=l
= (T*_) .
xi—1 1 x =1 1
(1“ N/k) (1 N/k)(l" Nk ) (l“n/K)
I1
ij xy!
(the products interpreted as 1 if x; or x/ is 0) one can see that

. _ (ak ™)

i ps/po =

A—0 iLJ

write a = ak 2 for simplicity; the probability of loss goes to
of alxl-c

o sije | I'I X!
ook,

$ 2% a
n=0 n x,!-n
H x{k! )
koo,

It can be verified that for the various n up to ¢, the ), summands in
xi=n
the denominator are all equal, and equal to the ) sum in the
xu-c

numerator. Thus, as conjectured,

e

“_
lim bl = = E(c, ak™®). (29)
= 32
AN? a=0 N

g
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Table |I—Load loss relationships

Loss Load
Central bus E(c, a) a[l - E(c, a)]
Frame E(c,ak™)  a[l — E(c, ak™)]

As for central bus networks, one can get linear growth in the weak
limit, described as follows:

Theorem: For every € > 0, there is an integer ¢ and a growing
sequence vy of two-sided frame networks on N terminals, with N/k
subnetworks on a side, such that as N — o, A — 0, and a = AN? =
constant,

(i) bl(vn) > E(c,ak™) <e

(it) m(vn) = a[l1 — E(c, ak™%)]
(iii) X(vw) < 2k[68N logsc + O(c)] (30)
(iv) s(vw) = 4(1 + logokc).

Remark: The reader can check that it is quite proper to regard the
frame network with % concentrating subnetworks on a side as a system
of k* central bus networks: the loss is asymptotically Erlang E(c, -) in
both cases, and the carried load for the frame is %22 times the carried
load on the corresponding central bus, as shown in Table I.

Proof of Theorem (30): This proof is very much like that of (24). We
chose c to be the least integer such that E(c, ak~?) < ¢, and construct
nonblocking N/k X kc concentrators for the subnetworks, each using
no more than 68(N/k)logz(kc) + O(kc) crosspoints and 2(1 + logzkc)
stages. Convergence of the loss has been proved as (29), and that of
the load follows as usual from the Erlang formula (1), as in (24).

XXIll. REMOTE CONCENTRATOR CONCEPT

A third network structure worth looking at consists of concentrating
subnetworks each connected only to one and the same central “core”
network by a group of ¢ high-usage trunks, as in Fig. 4. We call this
structure, well-known to traffic engineers, the “remote concentrator
concept;” it represents an extreme form of the advice to separate
concentration and distribution in the network. We shall suppose that
the subnetworks are divided into two groups, one carrying the inlets,
the other the outlets, so that the whole network is still two-sided.
When the outer subnetworks (concentrators) and the inner core are
all nonblocking, a useful solvable case results, and we can again guess
that as the right limit is taken there will be some connection with
Erlang’s E function. Since the success of a call attempt depends
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entirely on finding first a free trunk into the core, and then one going
out from it to the destination concentrator, it is tempting to guess
that asymptotically the loss is given by the “blocking polynomial”
1 — (1 — b)? where b is the chance that all ¢ trunks in a group are
busy. This simple guess is probably not true, because of the correlation
between loads on trunk groups; it may nevertheless be a bound,
although we have not been able to prove this: the question whether
the blocking owing to simultaneously full groups is larger or smaller
than b is open. We can, however, give Erlang E bounds on both kinds
of blocking, as well as exact loss formulas for finite N in terms of
logarithmic derivatives of a partition function.

Let % be a divisor of N, fixed henceforth, to be interpreted as the
number of concentrators on the inlet side of the network, each with
N/k inlets, ¢ trunks to the core, and nonblocking. The outlet side is
similarly constituted. As a notion of state we can take the matrices
x = (xy, 0 < i, j < k) with the meaning

x;; = number of calls in progress
from inlet concentrator i to outlet concentrator j.

These matrices are subject to the condition that both rows and
columns must not sum to more than c, the trunk group size. This is
the same notion of state used for frame networks, except that there
the entries had to be at the most ¢, while here the row and column
sums are thus bounded.

Using the same notations (28) as for the frame networks, we can put
down the following equilibrium equations:

k k N .
Dx [ 2 Xij +A 2 Iz,-<r:,.tj<c (_k‘ - x")]

iJj=1 i, f=1
k N N :
= 2 p:*‘(l'.ﬂ(x(i' + 1) ly<c+ A1::‘,;-l)p::-(u‘.j) —Xix1 || 5 — x’+1 .
i,j=1 Y k k

Again, the indicator factors give the right equations at the boundary
of the state space, and the solution has the same product form as for
frame networks:

R .
= ] x o N/k N/k
P=x W UIII (xil, s ,Ii&)(xij, e ,xy)( Xi x! P

where po is the chance of no calls in progress, the reciprocal of the
normalizer

G I Xi x/ N/E\(N/k
xS ij=1 \Xi1, *** , Xie )\ Xij ==+, Xij Xi xj )

The sum over the states x € S is over all £ X k matrices with
nonnegative integer entries, and row and column sums at most c.
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By symmetry, the probability of blocking between two remote
concentrators i and j is the same as the overall loss, and is given by

xgspx[lx,-c A ]-x-"-c] ('Ig - xl') (% - xj)

25 )

This formula depends only on the known ratios p./po. We examine its
asymptotic comportment as A — 0, N — o, with AN? = q, constant.

The argument for (29) gives
a ||
E?

bl =

Lim p./po =
A—0 H xu-
AN?=a ij=1

XXIV. THE PARTITION FUNCTION
We have, for the remote concentrator concept,

Il j
— || Xi x N/k N/fe
P<=PoA - (1'-'1, ,xik)(xlj, ---,xhi)( Xi )( x

= poAlFle(x).
Hence, introducing the generating function
ke
N=1+3y ¥ elx),

J=1  |x|=y
x€ES

the moments of the number of calls in progress can be expressed as
logarithmic derivatives; especially,

=\ log 6(A)

&=\ ;}\2 log (M) + )\2 — log o(A),

and by the generalized Erlang formula ( 1), the blocking is determined
via

1 m
l_bl_X(N—m)2+az
d
ax log ¢(A)

d 2
[N Y —log ¢()\)] +A? W log ¢(A) + A? —3{ log ¢(A)
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The interested reader can verify that analogous results hold in the
Erlang case of ¢ trunks offered traffic a: the generating function is

_ ¥ ¥
S =1+y+T+ e+

so that
L _¢'(a)
1-bl=1—E(c,a) = o@)
m=a(l — E(c, a)) = ailog o(a).
da

The essential form of these relationships persists in the weak limit
A— 0, N— o, AN? = a = constant. We write

k J -
= nanl® x; x! (N/E){(N/R)IN 2=
px Poa i,jIIl. (xﬂ, ___,x“)(xlj’ "';xkj) N N ) .
(I - xf)!x.-(z - x’)!x’!

and take the limit as above. Stirling’s formula implies that the partition
function becomes

ke
¢(y)=1+{§y y k¥

|x|=¢
Xi x’
k Xity =+, X J\ Xnjy ==, Xy
I1 .

TOW BUmMS =C
column sums <¢

) xlx/! (31)
Then since (N — m)? + o> ~ N? in the weak limit, one finds
m—a % log ¢(a) (32)
1-bl—> i log ¢(a) (33)
da g ¢la).

Theorem: For every integer k and every € > 0, there is an integer c,
and a sequence vy of “remote concentrator” networks, with c trunks
from each of k N/k X c concentrators on a side to a central core
ke X ke, such that as A\ — 0, N — o, AN* = a = constant

@) bllow) — 1 “d% log é(a) < €

- d
(i) m(vn) > L log ¢(a) (34)

(iit) X(vw) < % [68c logac + O(c)] + 68kc logzke + O(kc)
(iv) s(rn) = 6(1 + logec) + 2 logok.
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Proof: Again, this proof is like that of (24). Using (32), the blocking
can be written as

bl=1-— m -] m

2 _ i _ x/ B a + o(l)
w6

d
=1- E]og o(a) + o(1).

So with AN? = g, fixed, pick the integer ¢ in the partition function
¢(y) defined by (31) so that

d
1- Elog ¢(a) <e

This is possible because the limit blocking must decrease to 0 with
increasing c. Thus, (32) proves (i) and (ii); (iii) and (iv) follow by the
same kind of concentrator construction as before, using the method of
Bassalygo and Pinsker.’

XXV. BLOCKING INEQUALITIES FOR REMOTE CONCENTRATOR
CONCEPT

When the concentrating subnetworks and the core are nonblocking,
it is possible to derive some interesting Erlang E bounds for the
blocking in a remote concentrator structure. We first note that the
contributions to blocking are of two kinds: a call is blocked between
subnetworks i and j because x; = ¢, or x/ = ¢, or both, i.e., x; + x/ = 2¢.

Thus,
N N ;
IES px(I - x&') (E - xj)(lz,-c + 1y — lx,-+xj-2c)

12(53-%)(F-)

= z px(lx;-c + lijme — 1.:,-+xf-2c) + 0(1)
xS

By symmetry the 1.-. and 1.._. terms contribute the same amount, so
the problem of estimating the blocking reduces to estimating:

(i) the probability Pr{x; = ¢} =3 .- p. of having “all trunks busy”
on concentrator i, and _

(i7) the “double trouble” term Pr{x; + x’ = 2c}.
It is convenient to define, for states x €S, and 1 <,/ < &,
N N N ;
s'(x) =(1- 1:,-1')(1 - lﬂ—c)(? - xi) (T - x’).

This is the number of unblocked idle inlet-outlet pairs (z, v) with z on
concentrator ¢ and v on concentrator j.
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Lemma: For integers 0 < t < w = max.es|x|, the chance of t calls up
on concentrator i can be represented as
t -1

Pr{x; = t} = Pr{x: = 0) % I 1, (35)

where

k

_ ap-2e P= i
ne=N _E;Pr{x.- = ¢} ng (%)

= N~%E{number of unblocked calls on i|£i-trunks are busy}
<k

Proof: This follows from the form of the statistical equilibrium equa-
tions, which says that the rate into a set is the rate out of it. We use
the sets {x € S: x; = t}, which partition S and communicate by pairs
in a simply ordered array except at the endpoints £= 0 and ¢= c. The
result follows by iteration. In a similar way it is found that

Lemma:
) . at !
Prixi+x' =t} =Pr{x;+x’ =0} = II &, (36)
t! =0
where
2¢ b :
N~*E{number of unblocked calls to i or i|xi + x' = ¢}
2k -1
= 72
Theorem:
Pr{xi=c} = E(c, ak™?
Pr{x; + ' = 2¢} = E(2¢c, 2ak™" — ak™). (37
Proof: Introduce the function on the positive orthant
_ Nyz ---Ye _ ﬂ )
f(yls ,.Yc) 1+y1+y1y2+...+y1y2...yc DI

this is increasing in each y; there, since

3_f=N(1 +y2 4 Yaya+ oo FY1Y2 000 Yic1) >0
ayi y:D* )
By normalization, Y5 Pr{x; = t} = 1, so Lemma (35) says that
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a
Pr{xi=c} = f(ano, g M cey g Th—l)

sf(a/k,ggi, e ’aT/k) = E(c, a/k).

The proof for the “double trouble” term is analogous, from Lemma
(36).

XXVI. CONCLUSIONS AND PROSPECTS

For the narrow class of probability models for telephone networks
described by “finite sources, exponential holding times,” we have
shown that the N log N rate of growth (of the number X of crosspoints)
characteristic of nonblocking networks extends also to those with
blocking. This narrow class provided easy methodological devices for
carrying out the proofs. Extensions to more general statistics have
been mentioned in an interesting series of papers by N. Pippenger,
listed in the bibliography. However, his results are either combinatorial
or restricted to Markovian models similar to ours. Since some of his
principal demonstrations depend on what amounts to the old “lost
calls held” convention applied to finite sources, his results are strictly
not comparable to those given here. Extensions to the distribution-free
context remain to be made. As Pippenger suggests, the most useful
tools are likely to be the entropy concept and ergodic theory.
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