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The procedure for generating a Gaussian process with a specified
spectral density is well known. It is harder to generate a process with
a specified spectral density and a specified first-order probability
distribution. In this paper we explore, by simulation, the possibility
of generating a process with such a dual specification by passing a
Gaussian process with an appropriately chosen spectral density
through an appropriately chosen zero-memory nonlinearity. Several
applications are cited where such a dual specification is desirable.

. INTRODUCTION

The procedure for generating a Gaussian random process whose
power spectral density (psd) is a specified function of frequency, S(w),
is well known. As we see in Fig. 1, let H(jw) be the transfer function of
a linear time-invariant filter, and let the input to the filter be a
Gaussian random process {x(f)} with psd ®.(w). Then the psd of the
output process { y(¢)} is given by

Oy (w) = H(jw)H*(jw)Px(w) (1)

where * denotes complex conjugation. Since the filter H is linear, { y}
is also a Gaussian random process, and if {x} is a white noise’ with
unit psd, then { ¥} has the desired psd provided

H(jw)H*(jw) = S(w). (2)

H is then called a shaping filter (see Ref. 1) for the psd S(w). The
spectral factorization for eq. (2) can be accomplished analytically when

t A high degree of mathematical rigor is not intended here. For our purpose we define
white noise as a noise whose psd is constant over a wide bandwidth (— W, W) and zero
outside. The bandwidth is assumed wide enough so that any desired psd is negligible
outside it.
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Fig. 1—Generating a Gaussian random process with specified-power spectral density.

S(w) is a rational function of «®.! In such cases the resulting shaping
filter too can be synthesized by a standard procedure as a lumped
parameter filter (see Ref. 2). The appropriate shaping filter can of
course be derived for more general spectral densities as well as for
various nonstationary processes. Numerical approximations to the
shaping filter can be obtained for any reasonably well-behaved spectral
density, as we shall see in Section III.

This method of generating the random process, however, leaves no
choice as to the first-order probability density function (pdf) of the
process, i.e., the pdf of the random variable Y = y(¢). Since { y(f)} is
a Gaussian process, all joint probabilities of the random variables Y;
=y(t:),i =1, 2, ... are Gaussian. Hence, the pdf of Y too is Gaussian.
(Of course, if only the pdf is specified, then one does not have to follow
the above procedure. It is always possible to generate a white noise
with any specified pdf by passing, for instance, a uniform white noise
or a Gaussian white noise through a zero-memory nonlinearity. The
procedure is quite analogous to the one discussed in Section 2.1.)

Frequently it is desirable to specify both the spectral density and
the first-order pdf of the process. One situation where such a specifi-
cation would be useful is in the simulation of speech-waveform coders.
The performance of such coders can depend significantly upon both
the spectral density and the pdf of the signal to be coded. Measure-
ments have shown® that the pdf for speech signals is markedly different
from Gaussian, and is in fact much better represented by a “gamma”
distribution® (see Section II). At present, simulations with such coders
are carried out on Gaussian processes with appropriately shaped
spectra, or on sequences of uncorrelated samples with a gamma pdf.
The behavior of the coders on speech signals is not well predicted by
either of these; hence, tests are also performed on a variety of speech
sentences. Perhaps these tests could be standardized and their predic-
tive value improved by the use of random processes with a gamma pdf
and a selection of typical spectral shapes.

Another area where this dual specification can be important is in
perceptual studies. One such application is to Julesz’s experiments on
texture perception.’ The independent control of spectral density and
pdf of random dot patterns would enable one to decide between
competing theories of texture discrimination.

Finally, such control of pdf and spectral density would be useful in
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studying input-output properties of nonlinear systems, which can be
represented by a zero-memory nonlinearity followed by a linear filter.

The problem of synthesizing a random process to approximate the
pdf and power spectral density of a given process has been addressed
in the literature.® However, to the best of our knowledge no exact
procedure is known at present for generating a random process with
specified pdf and spectral density. In the next two sections we explore,
by simulation, the capabilities and limitations of one simple attack on
the problem.

Il. GENERATION OF THE RANDOM PROCESS

The method of generation that we wish to study is shown schemat-
ically in Fig. 2. For simplicity we will assume throughout that the
desired random process has zero mean and that the desired pdf has
even symmetry. These restrictions are by no means essential for our
analysis, but only simplify our presentation.

The basic idea of the proposal is as follows: We start with a “white”
Gaussian noise [see the footnote in Section I] and pass it through a
filter H(jw) and a scale factor K such that the random process {x(¢)}
is a zero-mean-Gaussian process with unit variance. Let g(.) be the
desired pdf of the random variable Y = y(¢). Then it is straightforward
to find the zero-memory nonlinearity F(.) such that Y has the desired
pdf. The problem then is to find H such that after the nonlinear
distortion by F(.) the spectral density at the output is the desired
function S(w). It is easy to come up with examples for which this
problem has no solution. For instance it can be shown that {v(t))
cannot be a strictly band-limited process for any choice of limiting
nonlinearity F(.).” Nevertheless, as we will show, in a variety of cases
of interest the problem has a solution, or an approximate solution.

Before proceeding to a detailed description of the method, we may
emphasize the reason for the choice of a Gaussian process for the
input. This is the property of the Gaussian process that it stays
Gaussian after a linear transformation. The Gaussian process is the
only well-behaved process that has this property. The same reason
also dictates the order of operations in Fig. 2. Thus, interchanging the
filter and zero-memory nonlinearity would be equivalent to generating
the output process by a linear transformation of a non-Gaussian white

WHITE
NOISE

—_—  Hlw) ! K fxin} Fl-) fvin}

FILTER NONLINEAR

Fig. 2—Method for generating a random process with specified-power spectral density
and specified first-order probability density.
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noise. While it is possible to generate processes with non-Gaussian
pdf’s this way, it is not easy to compute (or control) the pdf of the
output process.

2.1 Derivation of the function F(.)

Let us begin by deriving the required function F(.). It is convenient
to think of F(.) as a composition of two functions, P(.) and f(.), as
shown in Fig. 3. In view of the assumptions about the process {x(¢)},
the random variable X = x(¢) has the pdf

2

1 -=
p(x) =fe 2, (3)
m

If X = P(X) where P(x) is the cumulative distribution

P(x) = J PA)dA, (4)

then the pdf of the random variable X is uniform on the interval (0, 1).
Similarly, if ¥ = f()? ) and Y has the desired pdf ¢(y), then the
cumulative distribution @(y) is related to the function f~' by the
equation

Q(y) =J gN)dA = f (). (5)

Thus, in order for Y to have the desired pdf, f(.) must be chosen to
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Fig. 3—Computing the nonlinearity as the composition of a Gaussian cumulative
probability and the inverse of the desired cumulative distribution.
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satisfy eq. (5). As long as g(y) is not identically zero over an interval,
@ is an invertible function and eq. (5) defines f. The technical difficulty
arising when this condition is not met is resolved in an obvious manner.
Thus, if () is nonzero everywhere except on the interval a <y < b,
then Q(y) is constant from a to b. Hence, X as a function of Y has a
jump at Y = @(a) of magnitude b — a. The limit of the function f can
be defined from above and below this value. At @(a) the function may
be specified arbitrarily.
Finally, the function F(.) is given by

F(x) = f[P(x)]. (6)

From the assumed symmetry of g(y) it is evident that #(.) must turn
out to be an odd function of its argument.
By way of illustration in this paper we will consider three output

pdf’s:
the uniform pdf:
1
a(y) =—=, = V3 (7a)
Wi |yl
the gamma* pdf
31,"4
q(y) = e, (7b)
VBr V]x]|
and the binary pdf
q(y) =%[8(y — 1) + 8(y + D]. (7c)

In each case the constants have been chosen to normalize the variance
of the pdf to be 1. Our choice of examples is of course arbitrary.
However, the uniform and the binary are obvious simple examples one
expects to be useful, and the gamma has the relevance to speech
signals mentioned above. The function F(.) turns out to be quite simple
for each of these cases:

for the uniform pdf
F(x) = 2V3[P(x) — %], (8a)
for the gamma pdf
F(x) = % x?sign(x), (8b)
and for the binary pdf
F(x) = sign(x). (8¢c)

* Strictly speaking, a gamma 1/2 distribution.
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2.2 The covariance function of {y}

Having derived the nonlinearity F, we must now find the relationship
between the spectral properties of {x} and { y}. Because of the nonlin-
ear transformation, the relationship is best derived in the time domain,
i.e., between the autocovariance functions of the two processes. [Recall
that the autocovariance function (acf) is just the Fourier inverse
transform of the spectral density.] Let p(r) be the acf of the process
{x}, i.e., p(1) = E[x(t)x(t + 7)]. Let g(u, v, p) be the unit variance,
zero-mean, two-dimensional Gaussian pdf given by

e*-i(u2+uL2pHv)_ (9)

1
glu, v, p) =—F——=
27Vl — p?

Then the acf of the { ¥} process is given by
R= J j F(u)F(v)g(u, v, p)dudv, (10)

where, of course, p (and hence R) is a function of the lag, 7. A general
method of evaluating the integrals in eq. (10) is to use Mehler’s
expansion

| p"
glu, v, p) = 27 ¢ L %:?;T He.(u)He.(v) (11)

of the two-dimensional Gaussian pdf in terms of Hermite polynomials.®
Then if F(.) has an expansion in terms of the same polynomials

F(x) = § fuHen(x)/Vn!, (12)
i}
it can be shown’ that
R=7Y fi". (13)
1

When F is an odd function, as is the case here, the even coefficients in
egs. (12) and (13) vanish, and it is seen that R is an odd function of p.
[This can of course be seen directly from eq. (10) by noting that
g(u, v, —p) = g(u, —v, p), and changing the sign of one of the variables
of integration.]

For the examples that we have chosen, there is no need to use this
general procedure. In these cases the integration is easily carried out
in closed form. As shown in the appendix, the relationship between R
and p is as follows:

6
Uniform: R = - sin™* 2. (14a)
T 2
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2 .
Gamma; R = = [(1+ 20%)sin"'p + 3pV1 — p’] (14b)
via

2
Binary: R = —sin”'p. (14c)
m

The three functions are shown in Fig. 4 for 0 < p < 1; the odd symmetry
gives the function for negative p as well.

2.3 Derivation of the Filter H

The functions in Fig. 4 are monotonic increasing functions over the
whole range —1 < p < 1. [From eqs. (12) and (13) this property is seen
to be true whenever F has odd symmetry.] Therefore, the relationship
between p and R is invertible.

Suppose now that R(r) is the Fourier transform of the desired
spectral density S(w). Then the function

o(1) = p[R(7)] (15)

can be computed, where p(R) is the function corresponding to the
desired pdf. For the examples chosen we get

Uniform: ¢.(r) = 2 sin [% R(T)} (16a)

UNIFORM ~~

T T4 GAMMA

—BINARY

p—

Fig. 4—The relationship between the autocovariance (R) at the output and (p) at the
input of the nonlinearity appropriate to the generation of the three desired probability
distributions. The unmarked line is R = p. Since the functions have odd symmetry, only
the range of positive covariance values is shown.
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Gamma: ¢g(1) = p[R(1)] (16b)
Binary: ¢s(r) = sin B R(T)}, (16c)

where p, is the inverse of the relation (14b). We are unable to give p,
explicitly; however, its numerical computation is trivial.

The function ¢(7) is continuous and symmetric so that its Fourier
transform, ®(w), is real. For many specified acf’s R(7), ®(w) = 0 for all
w. In such cases we can obviously obtain an exact solution to the
problem. All we need to do is to synthesize a filter, H(jw), such that

K°H(jw)H*(jw) = ®(w) = F¢(r)], (17)

where F denotes the Fourier transform. Unfortunately, ®(w) is not
guaranteed to be nonnegative at all frequencies for every specified acf
R(7). This is because when p(r) in eq. (10) ranges over all possible
acf’s, R(r) ranges only over a subset of possible acf’s.

If the desired spectral density is such that ®(w) becomes negative at
some frequencies, the best we can do with our method is to give an
approximate solution as follows: Define the function ®*(w) such that

" (w) = P(w) if P(w) =0 (18)
=0 otherwise.

We then synthesize H(jw) such that
K*H(jw)H*(jw) = & (w). (19)

In the next section we will use eq. (19) [or its special case, eq. (17)] to
generate random processes with a variety of pdf’s and spectral densi-
ties.

ll. SIMULATIONS

In this section we will describe the numerical procedures required to
generate a random process with a pdf ¢(.) and a spectral density S(w),
based on the theoretical discussion of the previous section. We have
already shown how the nonlinearity F{(.) is to be computed. It remains
to be shown how to numerically approximate the shaping filter.

3.1 The shaping filter

We will approximate the shaping filter as a transversal filter (FIR
filter). Let R(7) be the desired acf. Unless R(7) happens to be of finite
duration, it must first be truncated. To ensure that the truncated
function R (r) is a legitimate acf, the truncation must be done by
multiplying the given acf by an acf of finite duration. (Recall that the
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product of two acf’s is an acf). We chose a Hamming window convolved
with itself as the truncating window. Thus let

w(r) = J h(t)h(t — 1)dt, (20)

where A(t) is the Hamming window defined as

h(lf)—054,+046cosL |t|=T (21)

=0 otherwise.

Then we define the truncated acf as
R(r) = w(n)R(7). (22)

For R(r) decaying rapidly enough as 1 — o, R(7) can be made to
approximate R(r) as closely as desired by choosing 7 sufficiently large.
For the rest of the paper, therefore, we will regard R(7) as the desired
acf, and S(w) = F[R(r)] as the desired spectral density.

The filter is synthesized from R(7) by the following sequence of
steps:

(1) Discretize ﬁ(f) to give the sequence Rn, —-N+1=n=N*

(i) Compute the sequence ¢, = ¢(R,), where ¢ is the function
defined by eq. (15) for the appropriate desired pdf.

(iiz) Find the FFT of the sequence ¢, and set any negative values
to zero. Let p, denote the resulting, adjusted Fourier transform.

(iv) The desired impulse response is then the inverse FFT of the
sequence V.

3.2 Examples

For each of the pdf’s (a), (b), and (c) we have generated several
examples of random processes with acf’s selected from the following
types:

R(r) =e™™ (23a)

R(7) = Y, aie*"cos(Bi), (23b)

where a; = 0 in the last equation. By proper choice of parameters in
eq. (23b), the spectrum can be made to approximate that of any vowel
sound up to about 4 kHz. The B/'s are the formant frequencies and the
a;’s the half bandwidths.

* The asymmetry of the range of values for n makes the number of values even.
Choosing N to be a power of 2 allows the use of efficient FFT (Fast Fourier Transform)
routines.
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The white noise input to the shaping filter was just a sequence of
independent, identically distributed Gaussian random variables. The
Gaussian distribution was truncated to +6 standard deviations.

In Figs. 5 through 9 we show several examples of acf’s and spectra
(both as predicted theoretically and as measured from the actual
outputs) that can be generated by our method.

Figure 5 shows in detail various covariances and spectra associated
with the generation of a binary process with an exponential covariance
function. Whenever a dotted graph is displayed it is the desired or
specified function.

In Fig. 5a the left side shows the acf and spectral density ¢(r) and
®(w) of the {x} process, which when passed through the clipping
nonlinearity gives the process { y} with the specified properties. The
right side of Fig. 5a shows the same plots for the process {y} that
would result if {x} were a Gaussian process that had the specified acf.

I I T I T T T T T
P . -
k
o
+ | -
L=
- = -
L | | | 1 | | 1 |
T I I T T T ! T T
_ L IN]
& 5dB
o
“ 1F
1 | 1 1 I 1 1 | |
0 5 kHz
f—-u
(a)

Fig. 6a—On the top the spectral density ®(w) required for the {x} process and on the
bottom the spectral density estimated from a 25,000-sample sequence. The spectral
density specified is the same as in Fig. 5.
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In Fig. 5b the left side shows the time and frequency domain plots
of the shaping filter to produce the required {x}, and the right side
shows the acf and spectral density estimated from a 25,000-sample
sequence generated by the method discussed above for the binary case.

In Figs. 6 through 9 we show spectral density plots only. Further, we
show only the plot for ®*(w), as defined in eq. (19), and the plot of the
output spectral density estimated from 25,000-sample sequences gen-
erated by our method. (Of course, ®* is often identical to ®.) Again, in
each case the dotted graphs represent the desired or specified function.
The selections shown are an exponential acf for the uniform and
gamma distributions in Fig. 6; spectra of vowels /a/ and /e/ with a
uniform distribution in Fig. 7; the same vowels with a gamma distri-
bution in Fig. 8; the same vowels with a binary distribution in Fig. 9.

The probability distributions of the generated processes are, of
course, not approximated; they are therefore exact except for fluctua-
tions because of finite sample size. Figure 10 shows the actual and

o2
rd

S{2mf)

0 5 kHz

(b)

Fig. 6b—Same as Fig. 6a but for the gamma distribution.
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dri2mwe

S(27f)

o] 5 kHz

Fig. 7Ta—The specified spectral density is a typical spectral shape for the vowel /a/.
On the top is ®(w) for the required {x} process. On the bottom is the plot estimated
from a 25,000-sample sequence of the generated process. The dotted line in each case is
the specified spectral density.

expected distributions for a 25,000-sample sequence with a uniform
and a gamma distribution.

Figures 5 through 10 are self-explanatory and demonstrate the
capabilities and limitations of the method. We may summarize the
main features as follows:

(i) When the specified acf is given by eq. (23a), the problem can
be solved exactly for any a for each of our examples of pdf. For the
uniform and the binary pdf this can be proved analytically, by expand-
ing the sin function in egs. (16a) and (16c) in powers of R. If we group
terms of these expansions in pairs, we can show that the Fourier
transform of ¢(r) is nonnegative in each of these cases. For the gamma
pdf we cannot prove this analytically; however by simulation over a
wide range of a’s we conclude that ¢(r) has a nonnegative Fourier
transform in this case too.
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Fig. Tb—Same as Fig. 7a but for the vowel /e/. The plots are for a process with a
uniform probability density.

(ii) Vowel spectra can be well approximated by random processes
with a uniform or gamma distribution. (In the two cases shown in Figs.
7 and 8, the spectrum is realised exactly with the uniform pdf, but only
approximately with the gamma pdf; however, the error in the spectrum
in the latter case is not much larger than the statistical fluctuations in
a 25,000-sample segment. So from a practical point of view the ap-
proximation error might not be serious.)

(ii) The nonlinearity required for the binary pdf is too severe to
allow a well-defined formant structure, especially at high frequencies.

IV. CONCLUDING REMARKS

We have described a method for generating a random process with
specified spectrum and first-order probability density. The method is
successful for many combinations of spectrum and pdf of interest.
However, with a given probability density, the method cannot achieve
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Si2rf)
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Fig. 8a—The specified spectral density is a typical spectral shape for the vowel /a/
for a process with a gamma probability distribution. On the top is ®(w) for the required
{x} process. On the bottom is the plot estimated from a 25,000-sample sequence of the
generated process. Note that ®(w) had to be corrected to ®*(w), as shown in eq. (15).

every arbitrarily specified spectral shape. One general way to charac-
terize an achievable spectrum is to say that the corresponding covari-
ance function must be representable in the form given in eq. (13).
Another way is to say that the function ¢(7) in eq. (15) must have a
nonnegative Fourier transform.
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(b)
Fig. 8b—Same as Fig. 8a but for /e/.

The class of achievable spectra may be extended by other methods
of generating the random process. One interesting method has been
suggested by E. N. Gilbert. Rather than nonlinearly distorting a
Gaussian process, the suggestion is to modulate a Gaussian process by
an appropriately chosen nonnegative random process. This method
has its own limitations. For instance, it cannot generate a process with
a uniform pdf. On the other hand it appears to be very promising for
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Fig. 9a—The specified spectral density is a typical spectral shape for the vowel /a/
for a process with a binary distribution. On the top is ®(w) for the required {x} process.
On the bottom is the plot estimated from a 25,000-sample sequence of the generated
process. Note that ®(w) had to be corrected to ®*(w), as shown in eq. (15).

generating processes with speech-like pdf’s (e.g., the gamma pdf dis-
cussed above). We are currently investigating this possibility.

To some extent the pdf and covariance function constrain each
other regardless of the method used for generating the random process.
For example, the covariance function of a time-continuous binary
process must have a cusp at the origin. If the specified acf does not
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(b)

Fig. 9b—Same as Fig. 9a but for the vowel /e/.

have this property, then the specifications are inconsistent and the
problem has no solution. Unfortunately, to the best of our knowledge,
no tractable procedure is known to decide whether a covariance
function is consistent with a given pdf. L. A. Shepp has drawn our
attention to some of his unpublished work in which he investigated
the class of covariance functions of processes with a given pdf. He
showed that this class is convex and that any such acf is a convex
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Fig. 10—A check on the probability distributions of the output processes. (a) The
expected ( - ) and measured (bars) pdf estimated from a 25,000 sample when the specified
distribution was uniform. The fit is approximately as good as this for every uniform-pdf
process generated. (b) Same as for Fig. 10a but for the gamma distribution.

combination of the extremal acf’s of the class. Unfortunately, no
general method is known to determine the extremal covariances.
Another relevant work is a paper’ by Brockway McMillan, in which
he considers covariances of binary processes, and gives a test for such
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a covariance in terms of the class of “corner-positive” matrices. This
test too is very difficult to apply in practice.

In some situations (for example, the experiment on texture percep-
tion mentioned above) it might not be important to specify the
spectrum and the pdf precisely. Instead, it might suffice to be able to
generate random processes with (i) different spectra and exactly the
same pdf, or (if) different pdf’s and exactly the same spectrum. The
first of these objectives is accomplished by keeping the nonlinearity
fixed and varying the spectrum of the shaping filter. Inspection of egs.
(12) and (13) shows how the second objective may be accomplished.’
Since the acfin eq. (13) depends only upon the squares of the expansion
coefficients, it is evident that two nonlinearities for which one or more
coefficients differ in sign (but not in magnitude) will yield identical
spectra. The pdf will in general be quite different in the two cases.
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[T= T

APPENDIX
Derivation of R(t)
In this appendix we will derive the three equations (14a), (14b), and
(14c) of the text. All three derivations depend on a well-known property
of the bivariate Gaussian pdf g(u, v, p), namely,
g g

. 24
dp  dudv (24)

This follows trivially from the representation of g as the Fourier
transform of its characteristic function, i.e.,

glu,v,p) = J' f gfluutarlgmilet ot 2ual iy dg. (25)
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Differentiating this expression with respect to p and then with respect
to u and v verifies eq. (24).

[In passing we note that Mehler’s expansion eq. (11) also follows
trivially from eq. (25). For if

glu, v, p) =Y aslu, v) p—, (26)
0 n!
it follows that

g
ap"

a,(u, v) =

p=0

- <} - -}
5 — 2
= J J (—wa) e/t e i gy dg

_pw)d'p() 27)
au"  avt

Here p(.) is the univariate Gaussian pdf, eq. (3). However, the Hermite
polynomials are defined by the relation
d"p(x)
dx"
which thus gives Mehler’s expansion.]

Let us differentiate eq. (10) of the text with respect to p and use eq.
(24) to evaluate the right-hand side. Thus,

= (—1)"p(x)Hex(x), (28)

drR (* [~ rg
B j ) L Fu)F(v) 2 dudv. (29)

Integrating eq. (29) by parts and assuming that g(u, v, p)F(u)F(v)
vanishes when u, v — +oo, we get

% = J‘ J’ F'(u)F’ (v)g(u, v, p)dudv. (30)
For the binary case (8¢c), F'(u) = 28(u). In this case
dR 2
— =4g(0,0, p) = ———. (31)
g = 8000 =——; =

Since R = 0 when p = 0 (because F is antisymmetric) this immediately
gives

2
R=—sin"p, (32)
T
which is eq. (14c¢).
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For the nonlinearity in the case of the gamma pdf,

F'(u) = T |u| (33a)
F"(u) = E sign(u). (33b)
Using eq. (24) twice we get
___f J |u||v|g(u, v, p)dudv (34a)
and
ZQR : f J sign(u)sign(v)g(u, v, p)dudv.
;sm o, (34b)

where the last step follows from the result just derived for the binary
case. Now at p = 0, R = 0 and, from eq. (34a) dR/dp = 8/3w. With
these initial values eq. (34b) can be integrated easily to give eq. (14b)
of the text.

Fina]ly, for the nonlinearity (8a) F'(u) = ZJE_lp(u) and, therefore,

= 12J j p(u)p(v)g(u, v, p)dudv

3 _ (2—p*) P +(2—p") " —2puv
= e 201-e") dudv. (35)
V1 - Jm Jz
The integrand in eq. (35) is of the same form as g(u, v, p) with a
somewhat different quadratic form in the exponent. It is a standard
integral whose value is 27/vA, where A is the determinant of the
quadratic form. Simple algebraic manipulation then gives

dR 6 1
—_——— (36)
dp 74— p®
Again since R = 0 when p = 0, this gives
~8sin?, (37)
T 2

which is eq. (14a).
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