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A method has been developed to evaluate the mechanical properties
of cables containing stranded-strength members in both linear elastic
and nonlinear plastic regions. The method extends Cannon and
Santana’s general system of equations describing the cable mechan-
ical characteristics. In the formulation of the method, the fundamen-
tal assumptions made by Cannon and Santana are first examined
and justified. Next, instead of using elastic constants for the constit-
uent cable materials in the system of equations, the regression anal-
ysis is applied to the tensile and torsional test data of dominating
high-strength cable components to obtain least-squares-fit polynom-
inals approximating the stress versus strain and shearing-stress
versus shearing-strain curves. By differentiating the polynominals,
the tensile and torsional moduli of these cable components as func-
tions of their axial strain and twist are derived. The relations
describing the mechanical properties of the cable in both elastic and
plastic regions are obtained by substituting the tensile and torsional
moduli of the high-strength cable components and the constant
moduli for the low-strength cable components into the system of
equations in differential form and integrating them. Application of
the method to the present experimental undersea-lightguide cable
yields excellent agreement with the tensile test results of the cable.

I. INTRODUCTION

Because of its long suspended length in deep ocean, undersea cable
normally experiences high tension and strain during its installation
and recovery.! High-strength stranded members are employed in the
undersea cable design to support the tension and keep the cable strain
below a prescribed level. The problems of high tension and strain cause
even greater concerns for the undersea lightguide cable because of the
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static and dynamic fatigue of optical fibers.” Adequate protection of
the fibers is essential to system reliability and requires accurate
evaluation of the mechanical properties of the cable in development.

Mechanical characterization of cable containing helically wrapped
or stranded members has been done by Cannon and Santana® using
linear elasticity theory, which assumes that the tensile modulas £ and
Poisson’s ratio » are constant and independent of the cable load. Using
two fundamental assumptions relating the external applied force and
moment at the cable ends to the tension developed in individual
helically stranded-strength members, a system of equations was de-
veloped that describes the mechanical characteristics of a cable having
one or more layers of helically stranded members. Application of this
theory to the present undersea lightguide cable yields excellent agree-
ment with the experimental data up to a strain level of approximately
0.5 percent. Beyond this strain level, the theory predicts lower strain
than the experimental data. This is not surprising because, at a strain
level higher than 0.5 percent, the cable has been stretched beyond its
elastic region to the plastic region, where the linear elasticity theory
does not apply. Since undersea cable normally experiences high tension
and strain, an understanding of the mechanical properties in both
regions is essential to the design of undersea lightguide cable.

In this paper, a method is presented to accurately predict the
mechanical properties of the cable in both elastic and plastic regions.
Since the present method uses the system of equations developed in
Ref. 3, the fundamental assumptions on which the system of governing
equations is based will be examined and justified in Section II. The
formulation of the new method is presented in Section III. Then the
method is applied to the experimental undersea lightguide cable in
Section IV. The results of the theory are compared with experimental
data in Section V.

Il. FUNDAMENTAL ASSUMPTIONS

The mechanical properties of cables containing helically stranded
members have been analyzed in Ref. 3 using a model consisting of n
identical wires of radius b parallel to one another in a circular array
and twisted into helices with a common helix angle a and radius r, as
shown in Fig. 1. The fundamental equations relating the applied force
T: and moment M, along the cable axis to the tension T developed in
individual wire were assumed to be

T:=nTsin o (1)
and
M, = nTr cos a. (2)
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Fig. 1—Cable loads and wire tension.

From these assumptions, a system of equations was developed, which
describe the mechanical properties of a cable containing helically
wrapped elements.

However, from the equations of equilibrium of a bent and twisted
thin rod, Costello and Phillips* have obtained a complete solution for
the same problem illustrated in Fig. 1. The solution relates the applied
tension and torque to the individual wire tension as

3 -
. cos’a sin a cos a
T,=nTsina+n Cr—A—— (3)
and
. . sin « cos a
M,=n|Trcos a — cos®asina|Cr — A—m8m—
>
cos’a

+ Crsina + A , (4)

where A and C are constants, depending on the elastic properties of
the material and the shape and dimensions of the rod cross-sectional
area. E is the tensile modulus, » is Poisson’s ratio, and, for a circular
cross section of radius b,

nEb' 7Eb*

A= and C=——.
4(1 + v)

Notice that egs. (3) and (4) can be reduced to (1) and (2) if the first
term on the right of the equations is retained while neglecting the
other terms. To neglect the second and third terms on the right-hand
side of eq. (3) requires that

b*r cos’u
4(1 + v)resin a

<1 (5)
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and
2

2 2
b cos’a «1, ()

2r~f¢;

where €, is the strain of helical wire along its own axis. Similarly, to
neglect the four terms on the right-hand side of eq. (4) requires that

7h2cos a sin a
4(1 + v)rE;

2

<1, (7)

b cos a sin a
2r Ve,
tb%sin «
4(1 + v)recos «

< 1, (8)

< 1, 9

and
2

b cos a
< 1. (10)

2r\/e—s

Inequalities (5), (6), (8), and (10) can easily be satisfied if &« = 7/2, i.e.,
for the large helix angle or small lay angle. However, to satisfy
inequalities (7) and (9), the additional condition 7 = 0 or b%/r = 0 is
required.

In undersea cable design and manufacture, the helix angle « of the
stranded members is usually close to 7/2, and the members are actually
made twist-free as they are formed into helices by a planetary-strand-
ing machine. The condition 7 = 0 can usually be satisfied. Therefore,
the approximate relations (1) and (2) assumed in Ref. 3 and the
resulting system of equations are justified.

IIl. FORMULATION OF THE NEW METHOD

For a cable containing multiple layers of helically stranded strength
members plus the cable core, the total axial load carried by the cable
is the sum of the core load and the strand load, according to the
following equation®

T, =T.+ Y nTgsin a;, (11)

=1

and the total cable moment equals the sum of the moment contribu-
tions from each of the strand layers plus that of the core, as shown by

Mt = "'"PJCG(' + E |niTsiricos a; — Hb(niJsiGsiSiﬂzai) |, (12)

=1
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where n; is the number of stranded wires in the {th layer; T is the load
experienced by the cable core; T is the tension supported by the ith
strand layer; m is the number of strand layers in the cable; a; is the
common helix angle of the wires in the ith layer; { is the untwist turns
experienced per unit length of the cable under applied tension; /. and
G. are the cable core’s moment of inertia and torsional rigidity; r; is
the radial location of the ith layer; J. and G are the ith strand’s
moment of inertia and moment of rigidity. Note that eqgs. (11) and (12)
use the approximate relations (1) and (2) for the stranded wires.
Equations (11) and (12) can be transformed to the abbreviated forms

T: = Csec — Coy (13)
and

M, = Ciec — Cay, (14)
where the coefficients C; are defined by

m
Ci = Y |sin’w — vfcos’ail|niEsiAsiricos ail, (15)

=1

Co=dJ.G.+ ) |n,-cL-,-Gs,-sin2a,- + 7risin 2a;|niEsiAsicos ail|, (16)
i=1

Cs = E.A. + ¥ |sin’a; — v¥cos’|ni EsiAsisin ail, (17)
i=1
and
C4 = 2 |'rrr,-sin 2a,—|n[—E5,-A,,.l-sin ;. (18)

=1

Here, v} is a pseudo-Poisson’s ratio for the ith layer and is a measure
of its diametric contraction; E.; and A, are the tensile modulus and
cross-sectional area of the stranded member in the ith layer. For a
cable with its ends twist-restrained, ¢ = 0, and eqs. (13) and (14)
become

| I ( )
€Ec|y= 19
y=0 (‘J3
and

M{ll;:o = C]Er. (20)

For a cable with its ends free to rotate, M; = 0, and egs. (13) and (14)
become
T,

C.Cy
Cs—
3 Cz

(21)

Er}lM,=D =
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and

C
| Mo = E; €. (22)

If the cable characterization parameters C;, Cs, Cs, and C, are known,
the cable strain €., cable moment M,, and cable twist can be evaluated
from eqs. (19) through (22) for a given cable tension, T;. If the elastic
properties of cable components are all constant and the twist ¢ is zero
or very small, the cable characterization parameters C, Cq, Cs, and C,
are all constant and the relations among the cable strain, moment,
twist, and tension from eqs. (19) to (22) are all linear. This is the case
illustrated in Ref. 3.

In reality, however, the tensile moduli E’s and moduli of rigidity G’s
of the cable components, either stranded or unstranded, are nonlinear
functions of the cable strain €. and twist ¢, i.e., E = E(e, {), G =
G (e., ¥), and thus the cable characterization parameters C,, C., Ca,
and C, are also functions of the cable strain e, and twist .

Thus, egs. (13) and (14) can only be applied in differential forms

dT, = Csde. — Cqdy (23)
and
dM; = C]dEc - C2dip. (24)

The above differential equations are meaningful only if the coefficients
C;, Cs, Cy, and C4 can be expressed in terms of the cable strain €. and
twist ¢. This can be accomplished in two steps. First, apply the
regression analysis to the tensile and torsional test data of dominating
cable components to obtain least-squares-fit polynominals, which ap-
proximate the stress versus strain and shearing-stress versus shearing-
strain curves. By differentiating the polynominals, we obtain the
tensile moduli and the moduli of rigidity of the cable components in
terms of axial strain and twist:

Ey = Ey(es)
E.= E(e) (25)
Goi = Gui({s)
G. = G(¢),

where €, and y.; are the strain and twist of the stranded member in
the direction of its own axis. Second, transform the independent
variables e,; and y.; in (25) into the cable strain e, and twist ¢ using the
following relations:?

€ = |sin’a; — v}cos’a;|e. — | licos’a | Y (26)
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Yo = ¢ sin a, (27)

where [; is the lay length of the ith stranded layer. Substitution of the
above equations into (23) and (24) yields

dT; = Csle., ¢|de. — Cq|ec, ¥|dy (28)
and
dM, = C\|e, y|de. — Co|ec, Y| dy. (29)

For a cable with its ends twist-restrained, ¢ = 0, and eqs. (28) and
(29) become

T = J Calec)de. (30)

MI=J'C1(€(')de('- (31)

Since Ci(e.) and Cai(e) are polynominals, the above equations can
readily be integrated. For a cable with its ends free to rotate, M; = 0,
and eqs. (28) and (29) become

— _ Cilec, ¥)Calec, ¥)
T.= j ‘Ca(&, ¥) Cote. 1) de. (32)
and
d'l,b _ Cl(E(-, ‘I‘) (33}

de.  Calec, V)’

In this case, the differential eq. (33) should be solved first to obtain a
relation between Y and e. This relation is applied to eq. (32) to
eliminate . Then, eq. (32) can be integrated to give a relation between
Tg and €e.

IV. APPLICATION

The recovery operation induces higher tensions in undersea cable
than any other handling operation. During a steady-state recovery, the
cable tension is highest at the overboard sheave, where the cable twist
is practically zero. Therefore, only the case of twist restraint, ¢ = 0,
will be studied here. The method is applied to an experimental under-
sea lightguide cable to characterize its tensile and torsional properties.
The cable structure and component dimensions are shown in Fig. 2.
The cable consists of a lightguide core protected by two layers of high-
strength steel-strand wires, a copper conductor, and a low-density
polyethylene (LDPE) jacket for high-voltage insulation and environ-
mental protection. The lightguide core consists of a copperplated-steel
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STEEL-STRAND

—_ LOW-DENSITY
POLYETHYLENE

CABLE STRUCTURE:

STRAND DIAMETER = 7.9 mm
CONDUCTOR OD (COPPER) = 10.5 mm
INSULATION 0D = 21.0 mm

T—~ELASTOMER

CABLE CORE:

CENTER WIRE OD = 0.8 mm
NUMBER OF FIBERS = 12
FIBER OD (COATED) = 250 m
SHEATH THICKNESS = 0.1 mm
CORE 0D = 2.6 mm

Fig. 2—Undersea cable design.
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Fig. 3—Tensile testing results and the least-squares-fit polynomials of the high-

strength steel-wire, copper sheath, and kingwire.
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conductor called the kingwire, up to 12 helically wound fibers embed-
ded in an elastomer material, and a thin outer nylon sheath.

From the cable structure, the metallic components, i.e., the steel
wires, the copper conductor, and the kingwire, will carry most of the
tensile load. Several tensile tests were conducted on individual steel
wires of different sizes and on the kingwire. The test results of a
representative 1.6-mm-diameter steel wire and a 0.81-mm-diameter
kingwire are shown in Fig. 3. A thorough experimental study on the
tensile behavior of the copper conductor was previously done in an
unpublished work by R. C. Mondello of Bell Laboratories. His result
on newly made copper conductors is also shown in Fig. 3. The nonlinear
behavior of each component is evident at high load. Application of the
regression analysis to each set of test data in Fig. 3 yields a least-
squares-fit polynominal of sixth degree, approximating the stress ver-
sus strain relation for each material. The polynomials with the stresses
g, in MP, and €. in mm/mm are given below.

4.1 Steel wire
The polynomial for the steel wires is

o, = 0.663587607686 + 214542.346398 €, + 3198478.98934 €;

— 1617068166.73 €2 + 111346531878 €:

— 3.45797334075 X 10" € + 4.21128175626 X 10" €5 (MP,), (34)
where the standard error for estimate “CHI” is CHI = 5.523 (MP,,).
4.2 Kingwire

The polynomial for the kingwire is
o, = 1.15682945607 + 162675.763595 €,
+ 7250437.88515 €2 — 4367711589.93 €}
+ 4596620050562 € — 2.03575240495 x 10" €
+ 3.3234268429 x 10™ €& (MP,), (35)
where the standard error for estimate “CHI” is CHI = 5.871 (MP,).

4.3 Copper conductor
The polynomial for the copper conductor is

o, = 0.299934161316 + 110226.149362 ¢,
— 28633487.4233 €; + 3792414452.98 €}
— 264983411326 €! + 9.25874279974 X 10" €
— 1.27105877316 x 10 €§ (MP.), (36)
where the standard error for estimate “CHI” is CHI = 1.780 (MP,).
UNDERSEA CABLE 711
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The tensile moduli E (e,)'s of each component can be obtained by
taking the derivative of the corresponding polynomial
do,

E(Ea‘) = de. .

(37)

For the stranded-steel wires and fibers, the independent variables e,
can be transformed to €. using eq. (28); for the copper conductor and
kingwire, €, can be directly replaced by €. since their axial direction
coincides with that of the cable. Substitutions of the tensile moduli of
the components into eq. (15) and (17) give

Cile) = |sin2a;-— V;COSzaflnfEfA[r[COS of
4
+ E |sin2a,- - v,"sinza.- " n;Ei(ec)Asirsicos a;|
i=1

Csle.) = Ex(e)Ar + EcAc + EnAn + Ec(e)Ac + EpA,

+ |sin’ay — v} cos’ay|| neErAssin ay|,
4
+ ¥ |sin’e; — v¥cos’ai|| niEsi(e.) Asisin ail,
=1
where the subscripts £, e, n, ¢, p, and f refer to the kingwire, elastomer,
nylon, copper, LDPE, and fibers, respectively. The tensile moduli of
the fibers, elastomer, nylon, and LDPE are all assumed constant and
are listed in Table I. Substitution of the above expressions for Ci(e.)
and Cs(e.) into egs. (29) and (30) and integrating give the tensile and
torsional properties of the cable under twist-restraint condition. These
functions are calculated and the results are shown as solid lines in Figs.
4 and 5. The dashed lines in these figures are the results using constant-
elastic moduli listed in Table L.

V. EXPERIMENTAL RESULTS

Tensile tests were conducted for five cable specimens, 100.5-meter-
length each. The cable ends of the cable specimen were potted into
tapered-plug epoxy terminations. The cable specimen with the termi-
nations was installed in the tensile test bed in a straight line configu-
ration with one end fixed to the anchor and another end attached to
the hydraulic ram. Both ends were twist-restrained. The cable tension
was increased in steps from 8.9 to 53.4 kN, then in steps from 4.5 to
the maximum load of 62.3 kN. The cable tension and moment were
measured by a load cell. The cable elongation was measured by using
a 10-turn, 10-k§ linear potentiometer. All data were monitored and
displayed in digital form on a control panel and then recorded.

The experimental results are also shown in Figs. 4 and 5. The
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Fig. ——Comparison of theoretical and experimental results for cable strain versus
cable tension.
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Fig. 5—Comparison of theoretical and experimental results for cable strain versus
cable torque.

calculated results from the present method and the experimental
results are in excellent agreement.

VI. CONCLUSION

A method has been formulated to evaluate the mechanical properties
of cables containing stranded-strength members, in both linear elastic
and nonlinear plastic regions. Application of the method to the exper-
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imental undersea lightguide cable shows excellent agreement to the
tensile test results of the cable. This method can be applied to future
cable design to evaluate the cable breaking strength, cable tension
versus strain, cable moment versus strain, and cable twist versus strain
in both linear elastic and nonlinear plastic regions.
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