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A wide variety of procedures have been proposed for identifying a
finite impulse response (FIR) linear system from the input and output
of the system. Most recently, a fast, efficient, least-squares method
was proposed by Marple, and was shown to require less computation
and storage than any other known procedure for identifying moderate
to large FIR systems. In this paper we measure the actual perform-
ance of the newly proposed fast system identification algorithm by
using it to estimate a variety of FIR systems excited by either white
noise or a speech signal. It is shown that essentially theoretically
ideal performance is achieved for white noise inputs; however, for
speech signals poor performance was obtained because of the lack of
certain frequency bands in the excitation. A simple modification to
the estimation procedure is proposed and is shown to provide sub-
stantial performance improvements. Using the spectrally modified
speech signal, the performance of the fast system identification al-
gorithm was found to be acceptable for a wide variety of applications.

I. INTRODUCTION

In previous papers,'™ two system identification methods, the class-
ical least-squares analysis (LSA) and a short-time spectral analysis
(SSA) procedure, had their performance compared and contrasted in
the presence of high noise levels and in situations where the input
signal was band-limited (nonwhite noise and speech). This earlier work
found that, while the LSA method produced better performance than
the SSA procedure, the computational burden of the Cholesky solution
of the equations of the LSA method became prohibitive when com-
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pared to the SSA method as the system order became large (as it can
be in speech processing, where the filter order can be on the order of
1000). This factor weighed in favor of the SSA method. However, the
development of fast algorithms for the solution of the LSA normal
equations®® has greatly reduced the computational complexity. This
paper evaluates the performance of the LSA procedure in the context
of these fast algorithms.

The fast algorithm that we will consider for solving normal equations
for the least-squares FIR system identification has computational
complexity proportional to M? where M is the filter order, and storage
that grows linearly (rather than quadratically) with M. A byproduct of
the computation is an estimate of the linear prediction coefficients of
the input process. The fast algorithm also has simple, built-in, numer-
ical ill-conditioning checks. If the model order is uncertain, the fast
algorithm recursively provides all optimum least-squares solutions
from filter order 1 up to some user-selected maximum order, M,
thereby providing a built-in search capability for finding the appropri-
ate system order without having to start over.

The outline of this paper is as follows. In Section II we review the
normal equations of the least-squares system identification and show
how a fast algorithm can be derived to solve these equations. In
Section III we present an evaluation of the performance of the fast
algorithm for several different FIR systems with both broadband noise
and speech inputs. In Section IV we review the results and compare
them to those obtained previously using short-time spectral analysis
methods.

Il. REVIEW OF THE LEAST-SQUARES NORMAL EQUATIONS

Figure 1 shows a block diagram of the finite-impulse-response system
identification model. The discrete input signal, x(n), drives the un-
known system to produce the discrete sequence, y(n), where n is an
integer index. The unknown system was modeled as an FIR filter,
assumed to have an impulse response duration of M + 1 samples, so
that the estimated impulse response, /i (n), is zero for n < 0 and n > M.
The order M of the FIR system is defined here as the highest index of
the impulse response, fz(M ).

The approach used is to determine the impulse-response coefficients,
ﬁ(n), and the system order M that minimize the squared error based
on a finite number of measurements of the input process, x(n), and the
output process, y(n). Denoting the linear estimate of y(n) by y(n),
then

M
F(n) = ¥ Am)x(n —m), (1)

m=0
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Fig. 1—Block diagram of the FIR system identification.

which is the familiar convolution expression of a finite-impulse-re-
sponse filter. The estimation error, e(n), is then

e(n) = y(n) — j(n). (2)

We wish to minimize the total squared error, Py, of an Mth-order
model

Py = E 92(”) (3)
with respect to h(0), -+, A(M) and based on the block of finite data
sets x(1), - -+, x(N) and y(1), --- , y(IV). Note that the index range for

n in eq. (3) has purposely been left unspecified. To operate only on the
available data samples, the range must be selected to be n = M + 1 to
N, which is the index range selected for this paper because it provides
the best performance for relatively short data segments. However, by
defining the unobserved data to be zero for n = 0, then a so-called
“prewindowed” index range of n = 1 to N can be used [the data x(n)
and y(n) for n = 0 is “windowed” to zero]. These two cases are
illustrated in eq. (4) using a matrix structure to describe the error
terms:

e Y
€2 yo
2 =0 | -
er+1 YM+
1 : :
ey YN |
x1
X2 X1 0 f}o
2 o h (4a)
XM+1 XM -+ X1 i
1 : : : hm
XN XN-1 *** XN-M
or
Ey= Yy — XuHu (4b)
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and
Py = E}En, (5)

where Ey, Y, Hy are column vectors and Xy is a rectangular Toeplitz
data matrix. The T denotes matrix transpose. If X» includes only that
portion within the 1 brace, this corresponds to the index range n = M
+ 1 to N. If Xy includes that portion indicated within the 2 brace, this
corresponds to the prewindowed index range n = 1 to N.

If P, is now minimized by setting the derivatives with respect to
h(), -+, A(M) to zero, then the resulting least-squares solution can
be expressed in matrix form as

O5Hy = ©, (6)

where
@ = X5 Xy = an (M + 1) X (M + 1) matrix

@4 = X5 Yy = an (M + 1) column vector.

This is the discrete Wiener-Hopf equation. The minimum squared
error is

min Py = Y5 Yy — (®3) " Ha. (7)

Note that this solution is applicable no matter what index range is
selected. Also note that while the matrix ®37 is not, in general, Toeplitz,
it is the product of two rectangular Toeplitz data matrices. This will
prove to be a key factor in developing a fast algorithm solution for eq.
(6). For the index range of interest here, individual elements of ®3f
are

N

o, J)= Y xn-—jflxn—1i) forO0<i,j<=M. (8)

n=M+1

The elements of @}; for the unwindowed index range are

N
oui)= Y yn)xn-1) for0<i=<M. 9

n=M+1

Also, we have

N
YiYu= 3% »(n). (10)
n=M+1
Note that the number of data samples must be at least twice the
system order plus one, N = 2M + 1, in order for ®j; to be nonsin-

gular.

It is also possible to perform a linear-phase FIR system identification
by forcing symmetry in the filter. The linear-phase estimate is then
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F3 M F 3
y(n) = h(0)x(n) + ¥ A(m)[x(n + m) + x(n — m))] (11)

with error

e(n) = y(n) — F(n). (12)

Note that the total impulse-response duration of this filter is 2M + 1.
Forming the sum of squared errors over all valid error terms
N-M
Qu= Y ¢€(n) (13)

n=M+1

and minimizing leads to the normal equations

Vil = ¥,
where
[ Ao ] [ =) |
. Aa) (1)
HM = }}(0) ] \I’E = ry-’((o) ]
h(1) r*(1)
| Ao | ) |
©rE(0,0) .- rE(0, 2M)
Ui = : :
Lri(2M, 0) .- - rzz(2M, 2M)

N-2M

rit(f, k)= Y [x(n+jlx(n+ k) + x(n + 2M — jlx(n + 2M — k)]
n=1

N-M

rik)=Y yn)xn+ k) + x(n— k)] Osk=M

n=M+1

with minimum squared error

N-M 1 . M A
Qn = % ¥y¥(n) — 3 h(0)r3;(0) — El h(m)ry(m).
n=M+1 m=

As before, in order for the normal equations to be nonsingular, the
number of data samples must be at least twice the system order (2M
in this case) plus one, or N = 4M + 1.

2.1 Basis for a fast algorithm solution

In this section, a brief outline of the basis for a fast algorithm that
solves eq. (6) with a number of operations proportional to M? is
presented. For details of the full algorithm, consult Ref. 5. A fast
algorithm also exists for the linear-phase FIR system identification,?
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Fig. 2—Block diagram of the lattice system identification.

but will not be discussed here since the focus is on the general FIR
system identification algorithm.

The fast algorithm presented here processes the available data as a
block. The algorithm recursively generates all solutions from order
m = 1 to M, where M is the maximum order. This algorithm is just one
of a wider class of fast algorithms for solutions of least-squares predic-
tion problems. If processing data on a sequential sample-by-sample
basis is preferred to block processing of the data (such as for adaptive
equalizer applications), then an alternative, but numerically equiva-
lent, solution to eq. (6) is to use a lattice filter in lieu of the FIR filter.
The lattice-filter output is e(n) rather than j(n) (the FIR output), as
shown in Fig. 2. An example of such a sequential fast algorithm for the
“prewindowed” data range is presented in Ref. 6.

The key to a fast algorithm for solution of eq. (6) is the recognition
that the matrix ®jf appears in the context of the linear prediction
problem. The linear prediction filter tries to make the best estimate of

the current value of x(n) based on past samples of x(n),
M
Zn)=—Y amx(n —m). (14)

m=1

The prediction error e/(n) is then
M

e'(n) = x(n) — £(n) = ¥ a(m)x(n —m), (15)
m=0
where a(0) = 1 and the superscript f denotes this as the “forward”
linear prediction filter error. A “backward” estimate X(n) can also be
defined as

M
En—-M)=-73 bm)x(n+m— M) (16)
m=1
with “backward” prediction error
M
e’(n) =x(n— M) — £(n— M) =Y bm)x(n+m — M),
m=0

where 5(0) = 1. If we now minimize the forward squared prediction
error
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Ply= Y [e/n)]

n=M+1
and the backward squared prediction error
N
Pi= Y [0
n=M+1

then we obtain the usual least-squares linear-prediction normal equa-
tions

Pl 0
oian=| 0 ). eEBu=| | |. (17)
0 P}
where vectors Ay and By are defined as
1 b(M)
Ay = a(El) , By = b (:1)
a(M) 1

Equation (17) is the so-called “covariance” equation of linear-predic-
tion speech analysis. An efficient, recursive algorithm for their solution
has been previously presented’ and is incorporated as part of the FIR
fast algorithm without further discussion. Equation (17) can be rewrit-
ten as

1 0
Siiau=( 0 | oFau=( | (18)
0 1
where
1/1){,,1r b(M)/Pi
=) SN |y
a(M)/Piy 1/Pjs

Thus, o/» and % form the first and last columns of the inverse of the
®jf matrix. Since the solution to eq. (12) involves the inverse [®3F]7),

Ay = (5) 03, (19)

then we would suspect that the linear-prediction solution is an integral
part of the system identification solution [eq. (19)]. This is indeed the
case. In fact, only the first and last columns of the inverse (or alter-
natively, the vectors Ay and By) of ®if are required to obtain a
recursive solution for H),.
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Three fundamental relationships govern the ability to obtain a
recursive algorithm. To illustrate these relationships, it is first neces-
sary to combine egs. (5) and (6) into a single augmented expression as

follows:
QMEM = pM!
where
o3(0) | (@37
Oy=|——-———|t M+2
(1343 D
M+2

Pyu=| . |[IM+2  ¢32(0) = YhYum.

0

An alternative relationship for ®y is
- N —
Oy= Y Xum)Xin),
n=M+1

where X(n) is the vector
y(n)
Zumy = | *
x(n - M)

We may obtain the three basic partitions:
_ #2(0) 1 (@37 11
Bu= |———|———

oy | O
1 M+1

By | Wi
By = |-——F————

Wi | o3(M, M)

M+1 1

Biy1 = Bary — Xnea M X T (M),
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where the definition of W, is

N

Wy = E x(n — M)XM—I(H)-
n=M+1

All the recursive relationships in the algorithm have their roots in egs.
(22) through (24). Using these equations, it is possible to derive the
following key recursive relationships for the system identification
parameters

o 5 e(M) 0 .

Hy1=Hyy + —— t 2
M-1 M1 T —om) (DMI) ime update (25)
'+ R Hﬁ,{—] am 0
Hy = ( 0 ) + P ( BM) order update, (26)

where ap, 8y are scalar gain values, By is the vector of backward
linear-prediction coefficients, and Dar = (®5) 'Xu(M + 1) is a vector,
all of which are obtained as part of the linear-prediction-algorithm
solution. Equations (25) and (26) highlight the intertwined relationship
of the linear-prediction fast algorithm with that of the fast algorithm
for the system identification solution. One also can see how all lower-
order solutions are obtained recursively along the way to the final
selected order.

Counting only second-order terms, the number of multiplications
required in the fast algorithm is 2NM + 12M?, the number of adds is
2NM + 9M?, the number of divides is 8M, and a total storage of
2N + 7TM + 20 parameters is required (including input and output data
sequences). Here N is the number of data values and M is the system
order. Roughly NM? operations are required to directly solve eq. (6)
by Cholesky decomposition if the fast algorithm described here is not
used. The Cholesky technique also requires storage proportional to
M?, whereas the fast algorithm requires storage that only increases
linearly with increasing M. Exact operation counts for the Cholesky
method are given in the appendix. A simple numerical ill-conditioning
check in the algorithm is to verify that the scalar variable 8y in eq.
(26) is in the range 0 < 8y < 1, which is required by the mathematics
of the solution. If it is not in this range, then the fast algorithm
recursion has become ill-conditioned.

FORTRAN computer code of the general FIR system identification
algorithm may be found in Ref. 5. Code for the linear-phase FIR
algorithm may be found in Ref. 8.

lll. PERFORMANCE EVALUATION OF THE FAST ALGORITHM

To evaluate the performance of the fast, least-squares, FIR system
identification algorithm that solves eq. (6), the system of Fig. 3 was
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Fig. 3—Block diagram of excitation generation and signal generation for identifying
an unknown system.

used to generate the required input and output signals. The signal
source was either a white noise signal or a speech signal. The signal
source was passed through a given Mth-order FIR system with known
impulse response, h(n), n =0, 1, ---, M. An additive, random, white
noise g(n) was added to the output of the FIR system, at a specified
signal-to-noise (s/n) ratio, giving the output signal, y(n). The system
was assumed to be in steady state whenever y(n) and x(n) were
sampled for system identification purposes [i.e., no initial transients
were present in y(n)].

The performance measure used in this study was the logarithmic
misalignment error defined in Ref. 1 as

M
Y [h(m) — h(m)]’
Q(N, s/n) = 10logo | == , (27)
Y h(m)

m=0

where h(m) is a function of N and s/n, and M is the true_ FIR system
order. Note that A(m) are the true FIR coefficients and h(m) are the
estimated FIR coefficients obtained from the fast algorithm. For
nonwhite input signals, a weighted @ function can also be defined
using the estimated linear-prediction coefficients, a(n), available as
part of the fast algorithm. See Ref. 2 for details.

To fully evaluate the performance of the fast algorithm, five different
FIR filters were used, including:

(i) Filter 1—A 7-point, nonlinear-phase filter with about 10 dB of
spectral deviation across the frequency range. Figure 4 shows plots of
the impulse and frequency responses of this filter.

(if) Filter 2—A 25-point, linear-phase, equiripple low-pass filter
with about 54 dB of stopband rejection for frequencies above 0.2 times
the sampling frequency. Figure 5 shows the impulse and frequency
responses of this filter.

(i1i) Filter 3—A 64-point, nonlinear-phase, reverberation filter with
about 30 dB of spectral variation. This filter had an impulse response
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Fig. 4—(a) Impulse response and (b) frequency response of 7-point FIR filter.

that was zero except forn =0, 1, 3, 7, 15, 31, and 63, at which A(n) was
1.0. Figure 6 shows the impulse and frequency responses of this filter.

(iv) Filter 4—A 255-point, linear-phase, bandpass filter with 48 dB
of rejection in both stopbands. Figure 7 shows the impulse and fre-
quency responses of filter 4.

(v) Filter 5—A 256-point, nonlinear-phase, reverberation filter
with impulse response that was zero except forn =0, 1, 3, 7, 15, 31, 63,
127, 255, at which h(n) was 1.0.

This set of five filters spans a broad range of impulse-response dura-
tions, spectral properties, and temporal properties, and it was felt that
it would provide an adequate test of the fast identification algorithm.

3.1 Performance with noise excitation signals

The first set of tests used as the excitation signal the white noise
source of Fig. 3. Figure 8 shows plots of the long-time average auto-
correlation and power spectrum of the source. The noise spectrum is
essentially flat to within +3 dB.

The white-noise signal was used to drive the system of Fig. 3 for
each of the five FIR filters discussed above. For filter 1, data lengths
of N from 50 to 1950 were used, and values of s/n from —6 dB to « (no
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Fig. 7—(a) Impulse response and (b) frequency response of 255-point FIR bandpass
filter.

additive noise) were used. For each of the other filters, values of N
from the minimum possible (2ZM + 1) to 1950 were used, along with
s/n = o and s/n = 30 dB.

The results for filter 1 performance scores are shown in Fig. 9, which
gives a series of curves of @(N, s/n) versus log N for several values of
s/n. Also shown in the figure are the theoretical expected values for
Q(N, s/n) for a white-noise input,’ which are of the form

Q(N} S/n)lwhite input = 10 IOEID(M/N) - S/n(dB) (28)

It can be seen from Fig. 9 that the measured values of @ are very close
to the theoretical expectations for s/n’s in the range —6 to 42 dB, and
for all N. For s/n = o, the measured values of @ (from —88 to —103
dB) reflect the obtainable single-precision accuracy of the computa-
tion.

Figures 10 and 11 show similar results for filters 3 and 4, the 64-
point reverberation filter and the 255-point bandpass filter. For s/n =
o, the algorithm had @ values of from —100 dB to —109 dB for the 64-
point filter, and from —98 dB to —104 dB for the 255-point bandpass
filter. The small degradation in performance is due to the higher
roundoff errors for the longer impulse responses. For the case where
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Fig. 10—Plots of @ versus N for s/n = 30 dB and s/n = « for noise input and 64-point
FIR echo filter.

s/n = 30 dB the @ curves of Figs. 10 and 11 show about 10-dB worse
performance than the theoretical average when N is on the order of
2M + 1 (the minimum N required to ensure nonsingularity), whereas
the performance of the fast algorithm approaches the theoretical
estimate as N becomes much larger than 2M + 1.

The performance of the fast, least-squares estimation algorithm for
filters 2 and 5 was essentially identical to that for filters 3 and 4.

As a final example of the noise-excited results, Fig. 12 shows a plot
of Q(N, s/n) versus log N for filter 2 (the 25-point low-pass filter)
cases, where N is varied from 30 to 70 in steps of 1 and s/n = o. The
values of @ are very poor for N < 2M; however, once N exceeds this
critical value, the values of @ fall below —75 dB, indicating excellent
algorithm performance.

In summary, the results on the white Gaussian noise excitation show
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Fig. 11—Plots of @ versus N for s/n = 30 dB and s/n = o for noise input and 255-
point FIR bandpass filter.

that the fast, least-squares system identification algorithm performed
exceedingly well for all FIR filters, signal-to-noise ratios, and data
lengths (so long as N = 2M + 1).

3.2 Performance on speech excitation

The second series of tests of the performance of the fast system
identification algorithm used speech samples as the excitation. Figure
13 shows plots of the long-term average autocorrelation and power
spectrum of the speech signal used in our tests. It can be seen that the
long-term average power spectrum exhibits a 60- to 70-dB variation in
spectral magnitudes, and noticeable gaps in energy throughout the
frequency range. Thus, system identification based on speech inputs
and outputs is significantly more difficult than it was for white-noise
inputs.

The speech excitation was used as input to each of the five FIR
filters of Section III. In this section we will concentrate on results
obtained using filter 2, the 25-point linear-phase low-pass filter. Results
on the other filters were more or less comparable, considering the
problems that were encountered.
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Fig. 13—Long-time average (a) autocorrelation and (b) power spectrum for speech
input signal.
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Figure 14 shows plots of @ versus log N for s/n = « and s/n = 40
and 60 dB for the filter 2, and for values of N from 100 to 1000. [These
results were obtained using the fast algorithm designed for linear-
phase systems. Results using the nonlinear-phase system algorithm of
eq. (6) were consistently worse than for the linear-phase algorithm,
and will not be presented here.] For s/n = o the values of @ range
from —30 to —46 dB. These results, for the case with no additive noise,

10
s/n = 40 dB
0 ~
s/n = 60 dB
10
0
- |
w
=]
Q
w
(a]
Zz
Q
20
-30
s/n = oo
-40 -
-50
100 1000

N ON log SCALE

Fig. 14—Plots of @ versus N for several values of s/n for speech input and 25-point
FIR low-pass filter.

734 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983



are significantly worse than those for the white-noise inputs. In the
s/n = 40-dB case, all values of @ were about 0 dB or higher, indicating
very poor performance. For s/n = 60 dB, the results showing values of
Q@ from —43 to —14 dB indicate marginal performance at best.

The results shown in Fig. 14 are anticipated from previous stud-
ies'™ and our understanding of the mechanisms of the system identi-
fication algorithm. The problem is illustrated in Fig. 15, which shows
an estimated impulse response and the resulting frequency response
for one set of conditions. It can be seen that the frequency-response
estimate is quite good for frequencies in the passband of the low-pass
filter (i.e., frequencies less than 0.2 times the sampling frequency).
However, the combination of the nonwhite source and spectral gaps
with the 54-dB rejection in the stopband leads to extremely poor
spectral estimates in the stopband.

To eliminate the spectral gaps in the speech spectrum, a small
modification was made to the system block diagram of Fig. 3. A
random white noise was added to the speech signal prior to the linear
filtering operation to guarantee that all frequencies were present (to
some extent) at the input to the linear system. The white noise was

0.268
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Fig. 15—(a) Plots of estimated impulse response and (b) frequency response for
speech input to a 25-point FIR low-pass filter.

FIR SYSTEM IDENTIFICATION 735



added to give an effective signal-to-noise ratio (at the source) of 40 dB.
The speech plus noise signal was considered the new input to the
system identification procedure.

Figure 16 shows the results obtained using the modified-speech
signal input. Shown in this figure are plots of @ versus log N for
s/n = oo, 80, 60, and 40 dB, and for values of N from 100 to 1000. For
s/n = o values of @ as high as —78 dB are obtained, showing the vast
improvement in system estimation. Similarly, for s/n = 40, 60, and 80
dB vast improvements in € values are obtained, leading to useful
system estimates in most cases.

In summary, the results of system identification using the fast, least-
squares algorithm on speech signals indicate that without some spec-

s/n = 40 dB

s/n = 60 dB

@ IN DECIBELS

N ON log SCALE

Fig. 16—Plots of @ versus N for several values of s/n for frequency-stabilized speech
input to a 25-point FIR low-pass filter.
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tral stabilization to guarantee some excitation at all frequencies of
interest, the performance of the system identification algorithms is
unacceptable in most cases of interest. However, it was shown that
even a fairly trivial form of spectral stabilization produced greatly
improved system estimates in all cases, and hence made the estimation
procedure viable.

IV. DISCUSSION

The results presented in Section III show the following:

(i) For white-noise input signals the fast, nonlinear-phase, least-
squares system identification procedure performed extremely well over
all filter types, filter durations, and signal-to-noise ratios. For such
cases the proposed algorithm appears to have significant computa-
tional and storage advantages over all other proposed methods.

(i) For nonwhite input signals with spectral gaps (e.g., speech
signals) the fast, linear-phase, least-squares system identification pro-
cedure was at best barely adequate (for infinite signal-to-noise ratio)
and inadequate for signal-to-noise ratios in the practical range of
interest (15 to 50 dB). This poor performance was shown to be due
primarily to the spectral gaps in the source and a simple modification
was proposed whereby a white noise was added to the speech signal to
provide a stabilized spectral magnitude at all frequencies of interest.

(iit) When the spectral stabilization procedure was used on speech
signals the fast, linear-phase, least-squares system identification pro-
cedure performed fairly well over a broad range of signal-to-noise
ratios and is useful for a wide range of applications.

To appreciate just how well the fast, least-squares algorithm per-
formed, it is worthwhile comparing the results of Section III with those
obtained for alternative FIR system identification algorithms. The two
main alternative procedures are the short-time spectral analysis (SSA)
methods of Rabiner and Allen'™ and the classical “slow,” least-squares
analysis (LSA) solution obtained by the Cholesky method. For the
SSA methods it has been found that for white-noise inputs one can
approach the theoretical bounds for sufficiently long data sequences
(large N). Hence the new fast, least-squares method performs signif-
icantly better than the SSA method for noise inputs, except when N
becomes very large. In such cases the performances are similar, but
the SSA method is still computationally more expensive than the fast,
least-squares method.

In the case of speech inputs, the SSA method (which is essentially
doing a spectral divide on two power spectrum estimates) runs into
extremely bad sensitivity problems because of the missing frequency
bands in the input signal. The spectral stabilization method proposed
here does not entirely solve the problem for the SSA method because
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of the large dynamic range variations in both the input and output
signals. The SSA method tends to need a fairly constant spectral input
level to perform at its best.

The classical least-squares method, on the other hand, performs as
well as the new, fast, least-squares method. However, the computation
grows as NM? (rather than NM) and thus the classical LSA method
is greatly restricted to small values of M and N. In addition to the
computational advantage, the fast least-squares algorithm has a sig-
nificant storage advantage over the classical least-squares approach,
growing linearly with the assumed filter order rather than quadrati-
cally. Furthermore, the classical Cholesky decomposition used for the
LSA method is notoriously sensitive to numerical ill-conditioning and
often yields invalid (improper) solutions for cases such as the speech
signal input. Hence, except for small values of N and M, the fast, least-
squares algorithm appears to be preferable to the classical LSA
method.

Another important advantage of using the fast, least-squares algo-
rithm is that it provides information about the squared prediction and
identification errors [linear-prediction coefficient (LPC) and FIR] as
a function of filter order. These squared-error parameters, which are
computed directly in the algorithm at no additional computational
cost, are important to monitor for the following reasons:

(i) They provide good indications of the required filter order.

(if) The linear prediction and FIR system identification squared
errors are monotonically decreasing functions of the filter order (at
least for the nonlinear-phase algorithm).

(iii) When the linear prediction squared errors fall off more rapidly
than the FIR system identification squared error, then the input to
the filter is not spectrally rich, and therefore the solution may be ill-
conditioned, and the FIR quality, &, may be poor.

This latter case is illustrated in Fig. 17, which shows plots of FIR
system identification squared error on a log scale, and LPC forward
and backward squared errors (also on log scales). For this example the
25-point low-pass filter was excited by nonspectrally rich, voiced
speech. The LPC prediction errors decrease rapidly for low filter
orders, indicating strong spectral coloration in the input signal. In this
case a very poor FIR estimate was obtained.

Figure 18 shows a similar set of squared prediction and identification
error plots for the case of a white-noise excitation of the same 25-point
low-pass filter. In this case the LPC squared errors are essentially flat
(to within 0.6 dB) for all FIR filter orders, indicating a spectrally rich
input signal. A very good estimate of the FIR filter was obtained in
this case.

It should be noted that the squared error of the fast, linear-phase,
system identification estimate is not guaranteed to be a monotonically
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Fig. 17—Plots of squared prediction error versus FIR filter order, M, for a speech
signal excitation of a 25-point low-pass filter. (a) FIR error. (b) LPC forward error. (c)
LPC backward error.
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Fig. 18—Plots of squared prediction error versus FIR filter order, M, for a noise-signal
excitation of a 25-point low-pass filter. (a) FIR error. (b) LPC forward error. (¢c) LPC
backward error.
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Fig. 19—Plots of squared prediction error versus FIR filter order, M, for the linear-
phase algorithm with noise excitation of a 25-point low-pass filter. (a) Linear-phase FIR
error. (b) LPC forward and backward error.

decreasing function of filter order. This point is illustrated in Fig. 19,
which shows the normalized squared error versus filter order for a
noise-signal input to the 25-point low-pass filter. The reader will note
that for M in the neighborhood of 19, an increase in squared error
occurs. The non-monotonicity of the squared error in the linear-phase
algorithm is due to the fact that the algorithm is solving a linear
smoothing problem (taking future and past samples) rather than a
linear prediction problem (taking only past samples). Also, separate
forward and backward linear prediction squared errors are not ob-
tained in the linear-phase, fast algorithm; only a combined forward
plus backward linear prediction squared error is obtained.

One final point is worth reiterating. In all cases where the FIR
system to be estimated is known to be a linear-phase system, the
linear-phase, fast, least-squares method is preferable to the general
(nonlinear-phase) procedure in that it requires less computation and
yields more accurate results.

V. SUMMARY

We have shown that the fast, least-squares FIR system identification
algorithm originally proposed by Marple performs essentially perfectly
for white-noise inputs for a wide range of FIR system responses and
signal-to-noise ratios. For input signals whose spectrum is highly
colored (e.g., speech signals) it was shown that the simple expedient of
adding a low-level white noise to the input of the linear system
provided a high degree of spectral stabilization and enabled the fast,
least-squares algorithm to work well over a wide variety of conditions.
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APPENDIX

Count of Operations to Solve Classical LSA Normal Equations Using
Cholesky Decomposition

Solve ®a = ¥ for vector a.

Elements of matrix ®:
N

o= ¥ x(t—j)x(t—1) 8

t=M+1

=i=M
=j=1I
Elements of vector ¥:
N
Y= Y, y(t)x@—1i) 0=si=M.
t=M+1

In Step 1 we form elements of ® and ¥:

+ WNM? + %NM + 2N — % M® — 3M? — %M — 2

X WNM? + 3%NM + 2N — “%M® — % M? — oM

Storage  %M?® + %M + 2 (does not include x and y data).

In Step 2 we let ® = VDV, Solve for V and D:

+ BWM® + % M* + BM

X WM + %BM? — %M

Storage M.

In Step 3 we solve for vector Yin VY = ¥:
+ wM?® + %M

X wM?+ %M

Storage Store in place.
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In Step 4 we solve for a in DV7a =Y

+ BM?® — WM
X WM*® + %M+ 1
Storage Store in place.

N
In Step 5 we compute residual squared error E,, = Y y%(t) —

t=M+1

a™

+ N+1

x N+M+3

Storage 2.

As a result our total computations are:

Adds YBWNM? + %NM + 3N — hM?> — % M? — 26 M — 1

Multiplies WBLNM? + %NM + 3N — BWM® — M? — %M + 4

Storage %M* + %M + 4 (not including x and y data).
The fast, least-squares algorithm requires

Adds 2NM + 9M*

Multiplies 2NM + 12M?(+8M divides)

Storage M + 20 (not including x and y data),

which only counts terms of squared powers.

Running some various numbers for filter order M and data lengths
N shows that the Cholesky method is more efficient than the “fast”
algorithm when N < 25 and M < 10. If the Cholesky decomposition
must be applied many times to determine the correct order to select,
then the fast algorithm is more efficient since all lower solutions are
obtained recursively.
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