Copyright © 1983 American Telephone and Telegraph Company
THE BELL SysTEM TECHNICAL JOURNAL
Vol. 62, No. 3, March 1983
Printed in U.S.A.

Traffic Service Position System No. 1B:

Real-Time Architecture Utilizing the DMERT
Operating System

By R. J. GILL, G. J. KUJAWINSKI, and E. H. STREDDE
(Manuscript received June 30, 1982)

The Traffic Service Position System No. 1B (TSPS No. 1B) archi-
tecture was conceived to increase performance significantly for future
features and traffic growth. The design preserves the TSPS No. 1
software with minimal changes. At the same time, the 3B20 Duplex
Processor (3B20D) used in TSPS No. 1B provides additional proc-
essor peripherals and a modern programming environment with a
real-time operating system. This paper describes how the TSPS
No. 1 software, initially designed to run on the Stored Program
Control No. 1A (SPC 1A), executes on the SPC 1B of the TSPS No.
1B. The SPC 1B is a 3B20D tailored for the TSPS application and
provides an SPC 1A environment by directly emulating its instruction
set. The paper also presents major TSPS application processes and
their interaction with the emulated TSPS process and the Duplex
Multi-Environment Real-Time (DMERT) operating system of the
SPC 1B. In addition, the paper describes the integration of TSPS
maintenance software into the DMERT maintenance structure.

. INTRODUCTION

The Traffic Service Position System No. 1B (TSPS No. 1B) real-
time architecture was designed to meet the project goals discussed in
Ref. 1. The implementation of this architecture entailed four major
developments:

(i) Replacement of the Stored Program Control No. 1A (SPC 1A)
of TSPS No. 1 with the 3B20D Processor, the TSPS Peripheral System
Interface (PSI), and microcode to execute the SPC 1A instruction set,

775

which together comprise the Stored Program Control No. 1B (SPC
1B)

(i) Emulation of most existing TSPS No. 1 software structured as
a process under the Duplex Multi-Environment Real-Time (DMERT)
operating system

(iii) Development of additional processes to support the emulation

(iv) Integration of the PSI and TSPS peripheral maintenance into
the overall DMERT maintenance structure.

Before discussing the TSPS No. 1B real-time architecture, this
paper presents two sections of background information. Section II
presents an overview of how TSPS operates using the SPC 1A. Section
III reviews the fundamentals of DMERT, and Section IV describes
the SPC 1B and the TSPS No. 1B software architectures. These
sections enable the reader to understand the real-time architecture of
the TSPS No. 1B. More detailed information can be obtained by
reading the references.

Il. TSPS NO. 1 REAL-TIME ARCHITECTURE

This section presents a brief overview of the TSPS No. 1 operation
on the SPC 1A and provides a base for understanding how the TSPS
No. 1 was emulated on the TSPS No. 1B. A complete description of
TSPS No. 1 operation on the SPC 1A can be found in Refs. 2 and 3.

2.1 SPC 1A programming environment

The SPC 1A uses 20-bit addresses to reference approximately one
million 20-bit words of main memory. The address spectrum consists
of up to 30 store name codes with each name code containing 32K 20-
bit words. Store name code 0 is not used since low memory addresses
are mapped into the SPC 1A’s buffer bus (see Section 2.2). Store name
code 31 (037) is not implemented. Hence, the maximum physical
memory size for the SPC 1A is 960K 20-bit words. The SPC 1A does
not support memory management. Hence, there is no virtual address-
ing; all addresses are physical addresses. All of memory is equally
accessible (shared) by all programs.

Write protection can be set on a 2K word boundary within a name
code. Protected areas within the name code, however, must be contig-
uous, and there can be only one protection change boundary within a
name code. Memory is unprotected from the high end of the address
spectrum within each name code. For example, if one fourth of a name
code is to be unprotected (read/write), then the first three quarters
would be read only, and the last quarter would be unprotected.
Protected areas can be unlocked to change programs or fixed data by
having the processor execute a special unlocking sequence. Typically,
protected areas are used for office data, read-only tables, and program

776 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

logic. Unprotected areas are used for volatile data (e.g., call informa-
tion).

SPC 1A instructions are 40 bits wide (two 20-bit words). The odd-
addressed word contains the operation code, while addresses or data,
when present, are placed in the even-addressed word. There are
relatively few instructions, but a single instruction can have many
options and perform several operations. Each instruction takes from
one to three 6.3-microsecond machine cycles to execute. The execution
time of each instruction is fixed regardless of the number of options
specified. Hence, the time a segment of code will execute can be
precisely determined.

2.2 Buffer bus

The SPC 1A buffer bus is an internal collection of processor and
peripheral status and control registers. The buffer bus registers are
used for such things as peripheral and processor configuration control
and status indications, interrupt sources, and interrupt masks. The
buffer bus consists of 24 registers with 20 to 24 bits each. Each register
has a low-memory address (e.g., 600 or 2200) associated with it. All
buffer bus registers can be read with Memory to Register (MR)
instructions. Some registers can be written, set, or reset using Regis-
ter(s) to Memory (RM or RRM) instructions or Constant to Buffer
Bus (CBB) instructions. Other registers are read-only.

2.3 Interrupt structure
2.3.1 Interrupt levels

There are nine interrupt levels in the SPC 1A. These interrupt levels
are A (highest priority), B, C, E, F, G, H, J, and K. A tenth level, L
(commonly referred to as base level), runs continuously in the absence
of any interrupt. Normally, base level is only interrupted every 5 ms
by J-level. Although, base level is the lowest-priority processing level,
the bulk of TSPS software (e.g., call processing, diagnostics, audits)
executes in base level.

Each interrupt level can only interrupt lower-priority levels with the
sole exception being that A- and B-level can interrupt each other. An
A-level interrupt is caused either by a manual action at the Mainte-
nance Control Center (MCC) Control and Display (CD) frame or by
the execution of an ANOP instruction (used to fill unused instruction
space). B-level is entered as a result of a processor switch or for
emergency actions required as a result of system-sanity-check failures.
C- and K-level interrupts generally occur as a result of processor
errors. C-level handles SPC 1A Processor fault recovery. K-level
interrupts are only enabled during processor diagnostics for error-data
recording. SPC 1A store errors will generate E- and G-level interrupts.

REAL-TIME ARCHITECTURE 777

E-levels also result from software errors such as invalid addresses or
protection violations. E-levels provide data for immediate problem
analysis and necessary store reconfiguration. G-level is used for col-
lecting store-error data for intermittent failures. Peripheral-unit errors
will generate an F-level interrupt. F-level software is dedicated to
peripheral fault recovery. J- and H-levels perform the system 1/0.

2.3.2 J- and H-level interactions

The J-level interrupt is generated every 5 milliseconds by a clock
pulse. Because of its periodic nature, J-level provides the main time
reference for all application processing. Within J-level there are two
classes of jobs: high priority and low priority. The high-priority jobs
are executed first. While they are running, H-level is inhibited. In
making the transition to low-priority jobs, H-level is enabled. H-level
programs consist of the high-priority, J-level jobs. An H-level is caused
whenever J-level executes longer than 5 ms and low-priority
jobs are being run (see Fig. 1*). This ensures that the high-priority
jobs are executed every 5 ms, unless H-level runs longer than 5 ms. In
this case the high-priority jobs would miss an execution, as H-level
cannot interrupt itself. _

J- and H-levels on the SPC 1A have two separate interrupt sources
that are driven by the same clock pulse. The H-level interrupt source
is only enabled when low-priority J-level is executing. When a return
from interrupt is performed from low-priority J-level, the H-level
inhibit bit is set.

2.3.3 Interrupt handling

When an interrupt occurs under normal conditions on the SPC 1A,
the processor saves the address of the interrupted program and passes
control to the first instruction of the interrupt program for that level.
The address of the interrupt program and the save area (bin) for the
interrupted program address are known (i.e., hard-wired) by the proc-
essor. The interrupt-handling program for each interrupt, except J-
level, first saves the contents of the seven general-purpose registers in
memory and then determines what actions to take. Because of the
frequency of the J-level interrupt (every 5 ms), general-register con-
tents are copied to an auxiliary set of registers by the hardware. The
overhead of saving and restoring the registers every 5 ms is greatly
reduced by performing this function in hardware.

The return from interrupt is normally performed by the Execute Go
Back To Normal (EGBN) instruction. The one exception is J-level. J-

* Acronyms and abbreviations used in the figures and text are defined in the
Glossary.

778 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

LEVEL

H HIGH
HIGH- LOW-
PRIORITY -PRIORITY
J0Bs / JoBS
J —_—
¥ ' y HIGH " LOW I L HIGH
| | |
|
BASE
] I I I
0 5 10 15

TIME IN MILLISECONDS

Fig. 1—5-ms input/output processing.

level uses the Go Back To Normal H- or J-level (GBNHJ) instruction.
In returning, the interrupt handler (except for J-level) first restores
the general-purpose register contents from memory (if it were going to
return to the point of interrupt) and then executes the EGBN. The
EGBN instruction determines what interrupt level is being returned
from by looking at the interrupt-level activity flags in the buffer bus.
It restores the address of the interrupted program from the save area
for that interrupt and clears the highest interrupt bit in the buffer bus
interrupt-level activity word, thus dropping to the next highest, pre-
viously active level. If an intermediate-level interrupt is pending, it
would be serviced at this time. The GBNHJ is slightly different in that
it causes the general-purpose registers to be restored by hardware from
the auxiliary set of registers. It also disables the H-level interrupt in
addition to performing the functions of the EGBN.

Any interrupt servicing routine can change its point of return by
overwriting the saved address in the appropriate interrupt bin in
memory. Also, an interrupt is effectively returned from by merely
clearing its activity bit in the buffer bus, which essentially erases the
history of the interrupt. This immediately puts the program into the
next lower, previously active level. This re-enables that interrupt level
as well as any intervening levels.

2.3.4 Interrupt inhibiting

Interrupts are normally only masked when the program is handling
a higher-priority interrupt. The interrupt activity bits in the buffer bus
inhibit lower-priority interrupts from occurring. E-, F-, H-, and J-level
interrupts can also be individually inhibited by setting the specific
inhibit bits in the buffer bus. The H-level inhibit should always be set
except when in low-priority J-level. The J-level inhibit can be set for
brief periods when executing “critical region” code in base level, which

REAL-TIME ARCHITECTURE 779

should not be interrupted by J-level activity because of potential
interference. Similarly, the H-level inhibit could be set in low-priority
dJ-level to prevent H-level interference. Some instructions have an
“inhibit I/0 interrupt” option that inhibits H- and J-level interrupts
until the completion of the following instruction. For some instructions
this option is implicit (not an option, but always on}). The E- and F-
level inhibits can be set manually as well as by software. C-level
interrupts can be inhibited by software, and A- and B-level interrupts
can be manually inhibited from the MCC.

2.4 Program stiructure

J-level (and H-level) programs execute under control of the Execu-
tive Control for 1I/0 (ECIO) program. For the most part ECIO passes
control to a predetermined and fixed set of programs every 5 ms. The
list of jobs varies from execution to execution, but is cyclical over a
300-ms interval for high-priority work and over a 200-ms interval for
low-priority work. Thus, J-level jobs execute with frequencies that are
multiples of 5 ms, ranging up to 200 or 300 ms. Some program
executions are permanent (always active) while others are run only on
demand.

Similar to J-level, base-level programs are run under control of the
Executive Control for the Main Program (ECMP) routines. Base-level
programs execute in one of six priority classes. These priority classes
are interject (highest priority), A, B, C, D, and E. ECMP passes control
to jobs in priority classes A through E with a relative frequency of
15:8:4:2:1, respectively (see Fig. 2). Jobs within each priority class can
run every execution of the priority class or only as needed on demand.
Each priority class has a set of task dispensers that pass control to
individual programs (tasks) when work is to be performed.

Interject work is requested when certain immediate actions are
required (e.g., to immediately unload a full input hopper) or at a fixed
frequency on demand (i.e., J-level-initiated sanity check of interject
operation). A check for interject requested work is performed at least
once in every base-level loop (one E-priority class to E-priority class
cycle) and after every task. Interject should be serviced quickly. Hence,
all base-level tasks are designed to run in short segments. Figure 3
illustrates the base-level priority-class execution with the fixed-inter-
ject check and another representative interject job executing in the
middle of a priority class.

2.5 System integrity

The objective of system integrity is to provide an uninterrupted call-
processing environment. The reliability goal for TSPS No. 1 is to
achieve less than three minutes per year of total system outage

780 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

Fig. 2—TSPS No. 1 base-level loop.

PRIORITY
CLASS

B —— =i

R Rl

Fig. 3—TSPS No. 1 base-level, priority-class frequency.

averaged over all systems. This goal covers outages attributable to any
possible cause. Hence, the term “system integrity” is used in this and
other sections of this paper to encompass software stability as well as
the traditional hardware reliability.

2.5.1 Hardware integrity

The maintenance strategy for TSPS hardware is based on the
duplication of all critical units. This hardware redundancy allows

REAL-TIME ARCHITECTURE 781

faulty units to be switched out of service with the load being carried
by the remaining good unit. Maintenance programs are organized on
priority levels such that the faulty unit can be removed from service
as soon as possible, and then later, while the system is processing calls,
the faulty unit is diagnosed in order to isolate the failing circuit pack.
There are three main types of maintenance programs for the TSPS
peripherals. These are, in order of decreasing priority, fault-recognition
programs, diagnostic programs, and exercise programs.

Fault-recognition programs run when the presence of a fault is
detected. They determine which of the duplicated units is in error, and
reconfigure the system around the problem. Before returning to call
processing, the fault-recognition program initiates a diagnostic request
on the unit suspected of malfunctioning. The purpose of the diagnostic
program is to provide resolution of the fault by indicating to the craft
personnel the smallest replaceable unit (e.g., a circuit pack). This is
accomplished by running a series of tests on the suspected hardware
unit and then comparing the actual test results with a set of expected
values. Another method of detecting faults employs the use of exer-
cises. These programs are similar to diagnostics in that they run
selected tests on the hardware. They differ in that they are intended
to find faults in circuits not exercised by normal system operation (e.g.,
by call processing). Unlike diagnostics that are initiated by fault-
recognition programs upon detection of a fault, the exercise programs
are scheduled periodically.

2.5.2 Software integrity

2.5.2.1 Initialization and recovery. Whenever the state of the software
is such that normal processing cannot continue, call-processing recov-
ery actions are taken in an attempt to restore the system’s sanity. The
least severe actions are taken first. If these fail, the recovery attempt
is escalated to the next highest level. The five T'SPS recovery phases
are Minor Audits, Major Audits, Selected Audits (miniphases), System
Initialization A (SIA) and System Initialization B (SIB). Except for
Selected Audit phases, these recovery phases can be manually re-
quested or automatically generated by the software. Selected Audits
phases can only be initiated by software, but they can be manually
inhibited.

All audits that run during a recovery phase are “stitched” together.
This means that they are run consecutively. Meanwhile, the normal
base-level priority-class execution and all call processing is temporarily
suspended. Minor Audit phases are short and, as a result, they have
the least effect on call-processing activity. Major Audit phases are
more extensive, and, hence, have a more disturbing effect. Selected
Audit phases are run as the result of problems detected by software

782 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

sanity checks. A specific set of audits are stitched together, depending
on the error found. SIAs and SIBs run a complete set of audits. An
SIA also zeroes most unprotected memory and initializes the hardware.
An SIB is more extensive in that it performs a more thorough hardware
initialization. If an SIB fails to restore system sanity, another SIB will
automatically be taken with a different hardware configuration. Loop-
ing SIBs with hardware reconfigurations will continue indefinitely
until the system is recovered or manual intervention takes place. For
the Minor, Major, and SIA phases, recovery actions are identical
whether the phase is software generated or manually requested. On
the other hand, a manually requested SIB will zero all unprotected
memory, but it will not cause a hardware reconfiguration.

2.5.2.2 Reference returns. Under certain conditions, maintenance-
interrupt routines (levels A through K) must return to H-level, J-level,
or base-level at a reference point in the job administration stream
when a return to the interrupted point is not warranted. This safe
transfer of control is called a reference return. The base-level reference
return will result in the base-level cycle restarting at the end of E
priority. The H- and J-level reference returns result in the cancellation
of the job being run at the time of the interrupt, but the remaining
scheduled jobs are executed.

2.5.2.3 Sanity. Sane program execution is monitored via a hierar-
chical scheme. Base level checks itself every E-priority class by deter-
mining that the various priority classes have been run the proper
relative number of times (15:8:4:2:1). Base-level sanity is checked in J-
level by requesting an interject job every 500 ms and monitoring its
execution. Failure to execute interject suggests a base-level loop. High-
priority J-level (and, hence, H-level) monitors low-priority J-level by
monitoring the execution of a fixed 100-ms job. High-priority J-level
(and H-level) has the responsibility to reset a hardware sanity timer
every 500 ms. Failure to reset the timer within 640 ms or resetting it
too soon (less than 320 ms) will cause the timer to generate a B-level
interrupt. Low-priority J-level insanity will result in a minor audit call-
processing phase. Continued interject response failures or base-level
priority class execution insanity will also trigger a minor phase. High-
priority J-level also monitors system sanity by checking the average
time of the last three E-E cycles. If this time exceeds a threshold a
minor phase is taken. Lower threshold crossings will trigger overload
recovery actions.

2.5.2.4 Overload strategy. If at any point the elapsed time to run the
last three E-E cycles exceeds a minimum threshold, phase 1 overload
actions are taken. These actions consist of gradually busying trunks
back to the local offices and reducing the rate at which processing of
new calls is allowed to begin. If during phase 1 overload the elapsed E-
E times exceed another, higher threshold, phase 2 actions are taken.

REAL-TIME ARCHITECTURE 783

These actions busy all trunks to the local offices except for a minimum
number and inhibit the processing of any new calls in the system. As
E-E times return to acceptable levels, the system returns to phase 1
actions and eventually to normal. The return to normal operation
(unbusying trunks and increasing the new call-processing rate) is done
gradually as the overload subsides.

lil. DMERT OPERATING SYSTEM

The DMERT operating system* evolved from the MERT” operating
system. While MERT was designed to operate on a simplex minicom-
puter, DMERT has incorporated maintenance software to control the
duplex hardware in order to provide Electronic Switching System
(ESS) reliability on the 3B20D Processor.

3.1 Processes

An executable entity under DMERT is called a process. A process
is a collection of programs and data with a distinct virtual address
space (see Section 3.2) that is executed as a unit to perform a single
(or set of related) function(s). Once in execution, a process controls
the scheduling of its internal routines, barring any external stimulus
such as an interrupt or fault. While the process is executing it appears
to have an entire (virtual) machine to itself, although it may be
interrupted by higher-priority processes or even swapped out to disk
while waiting for some event to occur (e.g., the completion of an I/0
request). The process address space may be completely protected from
access by other processes or it may be shared at will. One process can
communicate with another via several mechanisms supported by
DMERT, as described in Section 3.6.

3.2 Memory management

The basic unit of memory handled by the 3B20D’s memory man-
agement system is a page: 2K 8-bit bytes (five hundred twelve 32-bit
words). A segment consists of 1 to 64 pages that need not be contiguous
in physical memory. A process in DMERT consists of at least three
segments, where one segment contains the process stack, another
contains the process control block (PCB), and at least one segment
contains executable code. Each process executes in its own logical (or
virtual) address space, which may be as large as 16M bytes (4M words).
Memory management swaps processes between memory and disk,
enabling many processes to coexist even though the sum of their
memory requirements exceeds the physical memory of the processor.
It also provides protection from misuse (i.e., writing into read-only
memory) and unauthorized access by other processes.

The information required to perform virtual address to physical

784 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

address translation is maintained by DMERT in segment and page
tables in memory. Accessing these tables for every address translation
would take a considerable amount of time (6.8 microseconds each). To
speed up this process a high-speed associative memory called an
address translation buffer (ATB) is used to keep the most recently
used translation data. There are eight 64- X 2-word-set associative
memories. Four of the ATBs can be dedicated to individual processes.
One other is dedicated to the kernel. The other three are shared
dynamically by all other processes. There is one each for kernel,
supervisor, and user processes. These processes are described in Sec-
tion 3.3. Address translation via the ATB is performed in 150 nano-
seconds.

3.3 Abstract machines

DMERT supports four levels of software. Each level provides a
different abstract view of the machine to the software. These abstract
machine levels are:

(z) The kernel
(if) Kernel processes

(i1z) Supervisor processes

(iv) User processes.

The kernel is the lowest abstract software level under DMERT and
the core of the operating system. It provides the basic services of the
operating system, such as interrupt control, process dispatching, sched-
uling, and timing. It essentially extends the set of operations for kernel
and supervisor processes.

The kernel-process level is used for those processes that have
stringent timing constraints and must respond rapidly to real-time
stimuli such as interrupts. Also, processes that must directly interact
with hardware devices (such as a peripheral-unit driver) are coded as
kernel processes. Similar to the kernel, kernel processes can have
direct hardware access. Kernel processes also share some system data
(e.g., the kernel stack and message buffers) with the kernel. Other
system data are accessed via kernel services. Because of their perform-
ance requirements, kernel processes are totally memory resident and
cannot be swapped out to disk. Some DMERT kernel processes (e.g.,
the process manager and memory manager) are referred to as special
processes and share the kernel address space.

The next highest abstract machine level is for supervisor processes.
This level is for those processes that neither have stringent timing
constraints nor require direct access to the hardware or system data.
Access to hardware (i.e., for I/O) and to system data is provided to
supervisor processes by the kernel and kernel processes. The hardware
and system data are completely shielded from supervisor processes.

REAL-TIME ARCHITECTURE 785

Because of this layered software structure, errors in supervisor proc-
esses are much less likely to have catastrophic system effects. The
price for this protection, however, is slower response time and perform-
ance. To improve response time supervisor processes have the option
of being memory resident and not being swapped out to disk.

Both kernel and supervisor processes have the option of being
nonkillable. A nonkillable process must perform its own internal fault
recovery. A killable process can be terminated and recreated under
certain error conditions.

The highest and most abstract software level under DMERT is the
user-process level. User processes exist only in conjunction with a
supervisor process, and in effect are just a unique state of that
supervisor. The user portion of the process, however, does have a
separate virtual address space distinct from the supervisor portion. A
supervisor process can gain access to its user address space, but the
reverse is not true. As a result, user processes are totally removed from
the details of the actual machine and operating system under which
they execute. Hence, the user level is the easiest programming level.
However, user processes have poorer performance than supervisor
processes.

3.4 Interrupt structure

Interrupts are detected between the execution of two instructions
and change the sequence of execution. More specifically, an interrupt
results in the interruption of the current executing process and a
transfer of control to a specific interrupt-handling process. The state
of the interrupted process is saved on the interrupt stack so that it can
be restored at the completion of the interrupt processing and the
interrupted process can resume execution. There are 32 maskable,
hardware interrupt sources contained in the interrupt source (IS)
register. The 3B20D also has four unmaskable interrupt sources.
Interrupts can be generated by hardware (i.e., clocks and peripheral
devices), microcode, and software. Corresponding to the IS is an
interrupt mask (IM) register. The IM and IS registers are “anded”
together to determine which interrupts are allowed to occur between
any two instructions.

Table I shows the layout of the IS as used in TSPS No. 1B. Bit 0 is
the highest-priority interrupt source. That is, if more than one inter-
rupt source is set and unmasked, the lowest-order bit position will be
serviced first. Of particular interest are the Program Interrupt Request
(PIR) sources (bits 17 through 31). There is one PIR per DMERT
execution level 1 through 15 (see below). A PIR is set in response to a
process request to send an event or fault (discussed later). The PIR
corresponding to the execution level of the receiving process is set.

786 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

Table I—DMERT interrupt source register
Bit Use

0-1 Hardware errors
Software errors
Unused
PSI errors
Timer (10 ms)
TSPS (5 ms)
7-9 Unused
10-13 Direct Memory Access Input/Output (DMA 1/0)
14-16 Non-DMA 1/0
17-31 Program Interrupt Requests (PIRs)

AN

Since supervisor and user processes always receive their events at level
1, PIR 0 is not required. For user processes, the associated supervisor
process receives events and faults and deals with them appropriately
on behalf of the user process.

Currently, the only use of the unmasked interrupt sources is for
Operating System Traps (OSTs). The execution of an OST by a
process causes this interrupt to be set, which results in the kernel
gaining control of the machine (the kernel services this interrupt
source) and providing the requested service. In some instances the
service is provided by a kernel process. UNIX* operating system user-
level services are provided by a DMERT supervisor process. In these
latter two cases the kernel passes control to the appropriate process
via its OST entry.

3.5 Execution levels and priorities

DMERT prioritizes processes into sixteen execution levels (see Fig.
4). Execution level 15 is highest in priority. Kernel processes run at
execution levels 2 through 15. Application kernel processes can only
use execution levels 3 through 14. Level 2 is reserved for DMERT
special processes, and level 15 is used by the DMERT Timer and Error
Interrupt Handler. Supervisor and user processes run at execution
level 0, and supervisor processes in a critical region run at level 1.
Running at level 1 prevents any other supervisor process from inter-
rupting the supervisor process while in its critical region. Within
execution level 0, all supervisor and user processes are further priori-
tized within a 256-level priority structure. Supervisor and user proc-
esses are scheduled on a highest-priority basis by the DMERT sched-
uler. Processes of equal priority are scheduled among themselves using
a round-robin scheme.

Kernel processes are dispatched as a result of an interrupt. This

* Trademark of Bell Laboratories.

REAL-TIME ARCHITECTURE 787

SUPERVISOR/USER
PROCESSES

SUPERVISOR PROCESS
(CRITICAL REGION)

KERNEL
PROCESSES

o ————,
- ~

KERNEL

EXL - EXECUTION LEVEL

Fig. ——Hierarchical organization of DMERT.

interrupt may be from a peripheral device or simply a PIR indicating
the reception of an event or fault. Each execution level has a unique
IM associated with it. The IM for each execution level inhibits all
interrupts that are handled at the same or lower execution level. Since
supervisor and user processes run at execution levels 0 and 1, they are
always preempted by kernel processes.

3.6 Interprocess communication

DMERT provides several mechanisms for interprocess communi-
cation. These include events, messages, faults, shared memory, and
shared files.

3.6.1 Events

An event is a single bit of information having a predefined and
agreed upon meaning between cooperating processes. When an event
is sent from one process to another, DMERT will set the PIR interrupt
for the level at which the receiving process executes. When that PIR
is unmasked (the current execution level specifies an IM that has that
PIR unmasked), DMERT will handle the PIR interrupt and dispatch
the process for which the event was intended at its event entry. The
type of event(s) sent is passed as a parameter.

788 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

3.6.2 Messages

A message is a mechanism for transmitting multiple words of data
between cooperating processes. The content of the message must be
predefined and understood by sender and receiver alike. The reception
of a message is indicated to the receiving process by a message event.
Except for kernel processes, the contents of a message buffer (the data
being passed) is copied from the sender’s address space into the
message buffer and then to the receiver’s address space by various
DMERT operations. All kernel processes include the system message
buffer segments in their virtual address space. Hence, transmission of
messages between kernel processes is much more efficient as the data
is actually passed in shared memory.

3.6.3 Faults

Faults are another mechanism for interprocess communication that
are usually used to indicate an error, system initialization, or other
emergency-type of communication. A fault consists of an 8-bit (byte)
fault code that has a predefined meaning between sender and receiver.
The reception of a fault causes a process to be dispatched at its fault
entry.

3.6.4 Shared memory

Processes can share memory on a segment basis. The entire segment
(up to 32K words) would be mapped into the virtual address space of
each process. This is the most efficient means of interprocess com-
munication, but it may result in tight coupling between the sharing
processes.

3.6.5 Shared Files

Sharing a file is very similar to sharing memory except the storage
is done on a secondary storage device (specifically a disk). This
mechanism is obviously not as efficient as memory, but provides a
media for sharing larger amounts of data.

3.7 DMERT system integrity
3.7.1 Structure and strategy

The DMERT integrity package is based on the duplex, self-checking,
nonmatching philosophy of the 3B20D Processor, and the hierarchical
organization of the DMERT operating system. It was designed to
provide tolerance to both hardware and software faults, so that the
3B20D Processor running under DMERT meets its reliability require-
ments. The functions provided by the integrity package running under
DMERT appear in all abstract machine levels. Their placement in the
hierarchical structure depends upon their complexity, the desired real-
time response, and the services that they require.

REAL-TIME ARCHITECTURE 789

The nondeferrable functions are activated when a hardware or
software fault has been detected or a maintenance request has been
made via a TTY message. They may initialize one or more system
components, reconfigure the system, or just generate status reports.
Some nondeferrable functions (e.g., processor initialization) cannot
assume operating system sanity and require a fast response time. They
are placed in the kernel and are initiated by the hardware self-checking
circuits of the processor. Other functions like the recovery from a fault
in an on-line peripheral can assume operating system sanity, but they
must be performed in the minimum amount of time. Consequently,
they are implemented as kernel processes.

Some functions such as diagnostics require services provided by
lower abstract machines and their execution can be defferred. These
execute under a DMERT supervisor process that provides a UNIX
operating system environment. The deferrable integrity functions in-
clude the initiation and control of the diagnostics, administration of
diagnostic requests, and requests to remove or restore a unit to service.

3.7.2 Software integrity

3.7.2.1 Overload and sanity. The focal point of the software integrity
package of DMERT is the System Integrity Monitor (SIM). SIM is a
kernel process that is responsible for, among other things, system
overload control, sanity monitoring, and coordination of initialization
actions. SIM coordinates its actions with an application process called
the Application Integrity Monitor (AIM). The combined action of
these two processes defines the overall software integrity strategy.
Further discussion on overload and sanity is presented below as part
of the TSPS No. 1B system integrity, which includes a description of
the AIM process.

3.7.2.2 Initialization levels. DMERT provides six levels of initializa-
tion (levels 0-5). The application can specify sublevels for DMERT
levels 0-4. Level 0 is for application initialization only. That is,
DMERT does not perform any initialization; DMERT merely notifies
the application to initialize. Level 1 results in DMERT initializing and
then notifying the application to initialize. In this case, all processing
in the machine comes to a halt, the kernel and interrupt stacks are
cleared, interrupt sources are disabled, and all kernel processes as well
as the currently running supervisor process are faulted. Level 2 is a
reboot of the system. At this level, however, certain protected segments
of memory specified by the application are not lost, nor is the system
Equipment Configuration Data (ECD). A Level-3 bootstrap reloads
the ECD from disk, while a Level-4 bootstrap reinitializes all of
memory including the protected application segments. Level 4 can
only be requested manually. Level 5 is also manually initiated. It

790 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

reloads the system disk from tape. A manual bootstrap is then required
to initialize the system.

IV. THE SPC 1B

The SPC 1B Processor is the functional entity that replaces the SPC
1A in TSPS No. 1B. In reality, the SPC 1B is an SPC-like environment
created on the 3B20D by several components. The Peripheral System
Interface (PSI), emulation microcode, 3B20D hardware, native-mode
software in the TSPS process, and the DMERT operating system all
play a role in realizing the SPC 1B image. This section will describe
the basic characteristics of the SPC 1B, briefly discuss its components,
and concentrate on those capabilities required to emulate the SPC
1A at the instruction level. Other aspects of the machine and the
cooperation of the components are developed in subsequent sections
of this paper.

4.1 SPC 1B components

The PSI provides the necessary interface between the 3B20D Cen-
tral Control (CC) and the TSPS peripheral buses. Emulated programs
communicate with the TSPS peripherals without hardware modifica-
tions to the peripherals themselves. The microprogrammed control
and the flexibility of the 3B20D architecture make it feasible to
emulate a machine of vastly different characteristics. Emulated in-
structions are implemented by a microprogram that co-exists with the
microprogram for the native instruction set. An off-line object code
post-processor complements the emulation microcode by creating in-
struction formats optimized for execution on the 3B20D hardware (see
Section 4.5).

Finally, some functions must be emulated at the system level.
Functions such as unlocking the write protection on an emulated store
or requesting a processor switch are handled by native-mode software
in the TSPS process. It provides services to emulated software not
easily performed in the SPC 1A environment. In many cases, TSPS
native-mode code interacts with other processes and the operating
system to realize other services. Section 5.1.1.1 discusses T'SPS native
code in depth.

4.2 Basic characteristics

The characteristics of the SPC 1B are quite different from those of
the physical 3B20D. In the 3B20D Processor, all data paths, memory
locations, and registers are 32 bits wide. Memory addressing is byte-
oriented and 24 bits wide, providing a 16-million-byte capability.
Invisible to both software and firmware is the memory management
hardware, which provides virtual addressing. A high-speed buffer cache

REAL-TIME ARCHITECTURE 791

is also included, which shortens the effective memory access time. The
Arithmetic/Logic Unit (ALU) provides ones or twos complement
arithmetic by allowing microprogram control of the carry in bit. A
Rotate-Mask Unit (RMU) provides right rotates in any amount up to
31. The rotate amount also selects a mask from 16 mask classes to
implement shifts and item extraction. In addition to the AND opera-
tion with a mask, the OR with the complement of a mask is possible
to facilitate operations such as sign extension. There are 16 general-
purpose registers in the 3B20D, although three are reserved for stack
maintenance.

On the other hand, the SPC 1B, like its predecessor SPC 14, is a 20-
bit word-addressed machine. The arithmetic is done in ones comple-
ment and emulates a subtractor circuit. The significance of a subtractor
is that the minus zero result is avoided in almost all cases. Seven
general registers can be used for indexing, data manipulation, return
addresses, and peripheral communication. A null (N) register can also
be specified as a source of a zero operand. Rotates and shifts are
allowed in both right and left directions. Contiguous bit masks of most
sizes from 1 to 20 bits can be used for item manipulation. An insertion
masking operation is also available to allow user-specified, non-contig-
uous bit masks.

4.3 Mapping the SPC 1A image

Since assembly-language programs are designed with an intimate
knowledge of the machine they are written for, the 20-bit structure of
the SPC 1A is embedded deep into the TSPS software. As a result,
operations such as rotation and arithmetic represent a potential source
of emulation errors. Because of this and the basic goal of emulating
with minimal changes, the 20-bit architecture of the SPC 1A has been
retained. Because of the difference in word size between the 3B20D
and the SPC 1A and other differences described in the previous
section, an image of the SPC 1B must be mapped onto the physical
3B20D hardware.

A 20-bit SPC word is contained right adjusted in a 32-bit 3B20D
word. The most significant 12 bits are maintained as zeroes in both
registers and memory locations. Twenty-bit word addresses are con-
verted into 24-bit byte addresses by multiplying each address by four
and forcing the uppermost two bits to be zeroes. The emulation of 20-
bit addressing retains the limitation of 1 million word addressability as
on the SPC 1A. Further, the one-million-word emulation address space
must start at virtual address zero in the four-million-word TSPS
process address space.

Registers zero through seven have been chosen as the SPC 1B
registers. This assignment is identical to the numerical encoding on

792 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

the SPC 1A, thus simplifying the post-processing of SPC object code.
Although the N register is assigned to be register zero, it requires
special handling. When used as a source or argument operand, register
zero must first be cleared. This guarantees a source of zero in the event
that the N register was modified by specifying it as a destination in a
previous instruction. The SPC 1B also contains an imaginary ones
register, which may be used in register-to-memory and register-to-
buffer bus instructions. The ‘ones’ register of the 3B20D is used for
this purpose.

4.4 Instruction implementation

The instruction set of the SPC 1B is very similar, but not identical
to, that of the SPC 1A. Maintenance instructions related to the SPC
1A Processor were deleted for the SPC 1B. Other instructions that
dealt closely with the SPC 1A hardware have required slight modifi-
cations. In spite of these changes, an SPC program or emulation mode
programmer cannot and need not distinguish between the SPC 1A and
1B in most cases. Architectural differences described in previous
sections are handled by microcode and are invisible to the programmer.

4.4.1 Related 3B20D processor hardware

To provide a framework for the description of instruction implemen-
tation, that portion of the 3B20D architecture directly affecting the
emulation will be presented. A complete description of the 3B20D
hardware can be found in Refs. 4 and 6.

As shown in Fig. 5, the CC is structured around a source and
destination bus. The Data Manipulation Unit (DMU) accepts data
from the source bus, and gates results to either an internal register or
to an external register via the destination bus. The DMU contains the
ALU, RMU, general registers, and parity circuits. Another circuit
between the buses is the Find Low Zero (FLZ) unit. This circuit
accepts 32 bits as input and yields the binary value of the bit position
of the least significant zero. Finally, a direct path between the buses
exists for fast data transfers between the external registers.

The store interface consists of the Store Address Register (SAR),
Store Control Register (SCR), Store Data Register (SDR), and Store
Instruction Register (SIR). These registers, along with a separate store
operation field in each microinstruction, allow store operations to be
done in parallel with 3BCC operations. To facilitate instruction fetch-
ing, hardware is dedicated to increment the Present Address (PA)
register. A Program Status Word (PSW) bit specifies the PA increment
amount to be 2 or 4, depending upon whether halfword or fullword
mode is desired. The output of the incrementer is loaded into the SAR
and back into the PA when a fetch is initiated.

REAL-TIME ARCHITECTURE 793

"2IN309}IYOIB [OIJU0D I0SS30LJ—C "B

SN8 NOILVNILS3a

LINN 21907
/OILANHLIHY

LINN
ASVIN
ENR-AKe} |

ASYIN
1dNYHILNI

30HNOS
LdNHHILNI

-

SLdNHHILNI

H31SI1934
v.iva
TANNYHD

—~—y

TINNVHD

_ 3 H3LSI93Y
= ssavaay
¥ > m NYNL3Y
>
=
a H31S1934
ssavaav
IHOLSOHIIW
H31S193H
SNLV1S 43151934
IWYMAYYH [NOILDNHLSNI
-OHOIW
asom
aivds, [
NOILINYLSNI
ssavaay
LN3S3Hd
H31S193Y
NOILONYLSNI
3HOLS
H31S193Y
ss3vaav ll_
ETLITS ETEED
_ . viva
. a EITIT)
>
X
—/ E >
>

AHOWIWOHOIN

JHOLS

SN8 32HNOS

794 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

The basic I/0 registers are the Channel Address Register (CAR),
and the Channel Data Register (CDR). The Hardware Status Register
(HSR) holds status and response information relating to channel
operations. Channel operations are performed by microcode via the
Pulse Point Register (PPR). Bits in the PPR are set and reset by
microcode to form control pulses on the CCIO bus.

4.4.2 Instruction fetching and decoding

An opcode on the 3B20D is eight bits wide. Multiple virtual machines
are implemented by providing four complete sets of 256 opcodes. The
instruction-initiation operation is a store-field function that operates
as follows. Fetched instructions are loaded by the store into the SIR.
When a new instruction is to be started, the contents of the SIR are
transferred into the Instruction Buffer (IB). The opcode portion and
two emulation-mode bits in the PSW are used to form a microstore
address, which is the entry point into the microprogram for that
instruction. Therefore, the mode bits effectively partition the micro-
store into four segments and, hence, four instruction sets.

4.4.3 Instruction staging

As mentioned above, the instruction currently being executed is
located in the IB. General registers and indices for the 16-way branch
microinstruction can be indirectly specified by four-bit fields (nibbles)
in the IB. For single-bit testing, the high-order bit of each nibble is
available as a condition for the conditional jump microinstruction.

Similarly, there are three fields defined in the IB for rotate and
mask operations. For a rotate and mask operation, a microinstruction
must specify a mask class, a rotate amount, and masking operation.
The rotate amount also selects which mask in the named class is to be
used. The three five-bit fields in the IB can be used to specify the
rotate amount and corresponding mask to be used.

4.5 Basic operation

The SPC 1B instruction set differs from other sets in that most basic
operations can be specified as options on many instructions. Hence,
the instruction set is small in number but rich in data-handling
provisions. As an example, there is no explicit ADD instruction.
Addition can be specified as an option on most instructions. This
section will describe the implementation of the basic operations com-
mon to many instructions.

4.5.1 Instruction formats

Instructions on the SPC 1A were encoded in a 40-bit double word
with a four-bit basic opcode. Opcodes were extended by other bits in

REAL-TIME ARCHITECTURE 795

STORED PROGRAM
CONTROL NO. 1A FORMAT:

39 35 32 29 24 23 20 19 0
Ry | LOSIC o
1110 Ry IR |A DATA ADDRESS'
ROTATE |W|
MASK | AMOUNT |m

OP CODE

SPC 1B FORMAT:
31 23 19 0

1110 00 |A|D IR DATA ADDRESS

OP CODE

-

23 19 16 1

Fig. 6—Memory-to-register instruction.

MASK ROTATE
SIZE AMOUNT

DN

some instructions, usually in a non-adjacent field. Register fields are
three bits. Mask size was specified in a four-bit field that was not
strictly binary encoded. The rotate amount is contained in a five-bit
field. Options are encoded in multi-function fields within the instruc-
tion. In general, these fields were not aligned with the IB fields
mentioned above for instruction staging. A bit-for-bit emulation would
have resulted in a very inefficient result. Since one of the fundamental
goals was an increase in real-time capacity, new formats were designed
to provide the most efficient encodings. As an example, Fig. 6 shows
the SPC 1A and SPC 1B formats for the Memory-to-Register (MR)
instruction.

A post-processor is used to realign the 40-bit SPC 1A object code
word into two 32-bit words suitable to execute on the 3B20D. In
addition to simple bit shuffling, the post-processor adds information to
aid the emulation microcode by performing those computations that
can be done off-line. In the same fashion, bits have been included with
the basic 4-bit opcode to take full advantage of 8-bit opcode encoding.
For example, bits specifying an option can be included in the opcode
to eliminate execution time required to decode that option. The unique
entry point for each opcode would specify not only the instruction, but

796 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

also the occurrence of the option. The post-processor is described in
more detail in Ref. 7.

4.5.2 Execution protocol

As mentioned previously, SPC 1B instructions require two 32-bit
words to hold the 40 bits of information contained in the SPC 1A
instructions. Even in those cases where all relevant information can be
held in one word, the spacing of two addresses between instructions
must be maintained. As an example, indexed transfers into transfer
tables, a common structure in TSPS software, would have had to be
recoded had this spacing not been retained. Unlike the SPC 1A, which
has a 40-bit memory bus, two separate fetches are required for each
instruction. The placement of argument fields in the instruction words
has to correspond to the logical execution flow for the instruction. SPC
1B formats are designed to match the flow of execution. Since instruc-
tions are a multiple of 32-bit fullwords, the mode bit in the PSW is set
for a PA increment amount of 4. In contrast, the 3B20D native
instruction set operates on 16-bit halfwords, with a PA increment
amount of 2.

The basic fetch-execute protocol is for each instruction to fetch both
words of the next instruction. When an instruction is started, the first
word is in the IB and the second word is being fetched into the SIR.
In this way, the processing of information in the first word can be
effectively overlapped with the fetch of the second word. When the
first word is no longer needed, the second word is gated from the SIR
into either the IB or a scratch register as needed. The SIR is now free
to accept the fetch of the first word of the next instruction. The last
microinstruction, in addition to requesting that the next opcode be
decoded, also starts the fetch of the second word of the next instruction.

4.5.3 Arithmetic

As described previously, the SPC 1B represents negative numbers
in ones complement form. A difficulty arises in the end-around carry
for a 20-bit word on a 32-bit arithmetic unit. The algorithm used is to
insert ones in the upper 12 bits of one of the operands to propagate the
carry from bit 19 to the carry-out bit. In addition, a carry-in of one is
initially assumed. If the carry-out is a one, then the carry-in assumption
was correct and the operation is complete. If a carry was propagated
from bit 19 to the carry-out, the upper 12 bits of the result are
automatically cleared, as desired. Also, this assumption properly avoids
the minus zero result that would have occurred if the carry-in was not
made. This is the only case where the carry-in itself forces the carry-
out. If the carry-out is a zero, the operation is repeated without the
carry-in and with zeroes in the upper 12 bits of both operands. Since

REAL-TIME ARCHITECTURE 797

EMULATED 20-BIT SPC PHYSICAL ADDRESS

19 0
101 "o 101
SPC
MICROCODE
23 0
i

T
00 1101 ve 101: 00

|

1

24-BIT 3B/DMERT VIRTUAL ADDRESS

DMERT - DUPLEX MULTI-ENVIRONMENT REAL-TIME
SPC - STORED PROGRAM CONTROL

Fig. 7—SPC 1B address translation.

no carry-out of bit 19 will result, the upper 12 bits of the result will be

ZEero.

4.5.4 Effective address generation

For those instructions that access memory, indexing of the address
is performed by adding the address and the contents of the specified
index register. Any of the SPC 1B general registers, including the N
register, can be used as an index register. Since negative indices are
possible, the indexing operation is done in the same manner as ones
complement arithmetic described above. The resulting 20-bit word
address is then rotated left two bits (actually left 30 bits) and masked
to clear bits 23 to 22 and 1 to 0 to form a 24-bit byte address, as shown
in Fig. 7. Since indexing is costly in terms of execution time, the post-
processor detects the specification of N as the index register, and sets
an indexing bit to indicate that indexing is not required. The indexing
bit is usually contained in the opcode to provide free decoding. The
indexing bit, non-existent in the SPC 1A, is an example of information
provided by the post-processor to facilitate efficient on-line execution.

4.5.5 Shifis and rotates

In the SPC 1B, shifts and rotates are performed over 20-bit data
words, even though these words physically reside in 32-bit 3B20D
words. Since the 3B20D RMU only accepts right-rotate amounts, all
left-direction amounts must be converted by taking their complements
with respect to word size (i.e., word size minus left amount equals right
amount). For shifts, the proper mask is applied to inject zeroes into
vacated bit positions.

Implementation of the wrap-around from bits 0 and 19 for rotates is
more difficult. Values less than 12 can be handled by copying the

798 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

upper or lower 12 bits of the 20-bit data word into the upper 12 bits of
the 32-bit word. For left rotates, the upper 12 bits are used, while the
lower 12 bits are copied for right rotates. Rotates greater than 12 can
be converted to their equivalent value in the opposite direction before
applying the above algorithm. For example, a left rotate of 15 can be
effectively realized by a right rotate of 5. It should be noted that rotate
and shift amounts specified in the instruction can be converted by the
post-processor and encoded as an adjusted value. Rotates and shifts
based on the contents of a register must be adjusted during run-time
by the microcode.

4.5.6 Data handling

The SPC 1B provides the capability of reading (unpacking) and
writing (packing) contiguous data items of almost arbitrary size and
position within a 20-bit word. A data item is defined by its size, M, and
its position, Q. The unpacking operation involves reading a data word,
rotating it right by Q, and applying a mask of size M. The packing
operation involves applying a mask and then rotating it into position
by the amount Q. This value is then inserted, using a read-modify-
write sequence, into the target location.

Since the MQ option is used heavily in TSPS programs, implemen-
tation of the rotation in the manner described previously would be
very costly. Luckily, in most cases much of this overhead is avoided.
When the total of the rotate amount plus the mask size is less than or
equal to 20, no wrap-around actually occurs. The more efficient shift
operation can be used instead. In TSPS, this is true nearly every time
an MQ is specified.

4.5.7 Conditional transfers

The SPC 1B, like the SPC 1A, has no explicit condition flags.
However, the results of data manipulations can be tested by condi-
tional transfer instructions. Conditional transfers provide the capabil-
ity of testing either the entire contents or a specific bit of any general
register. The 3B20D condition codes, carry, overflow, zero, and nega-
tive, are used for these tests. It should be noted that like the SPC 1A,
the minus zero value, coded as all ones, is not detected as zero in these
conditionals.

A special conditional transfer instruction is the Detect Right Most
One (DRMO) instruction. This instruction transfers if no ones are
present in the test register. If a bit is set, the bit position in binary of
the least significant one is loaded into a result register. The DRMO
and its variation, the DZRMO, which zeroes the rightmost one, are
used, for example, by task dispensers to initiate clients based on a job-
activity word. The 3B20D FLZ is used to implement these instructions.

REAL-TIME ARCHITECTURE 799

4.5.8 Alternate entry points

There are two functions in the SPC 1B instruction set that are
unique in that their operation extends across instruction boundaries.
They are the Inhibit Interrupt (I) option and the Execute (EXC)
instruction. The I option inhibits the J- and H-level interrupts until
after the next instruction is completed. Although hardware exists in
the 3B20D to unconditionally start the next instruction, blocking all
interrupts if error interrupts are pending is unacceptable. In this case,
the I option is implemented by raising the execution level to block J-
level and H-level, starting the next instruction, and restoring the
execution level during the instruction following the I-option instruc-
tion. The EXC instruction calls for the execution of an instruction at
a target address, followed by an automatic return to the next sequential
instruction after the EXC. The responsibility of the target instruction
is to restore the PA to resume sequential execution.

Since any instruction can follow an I-option instruction or be the
target of an EXC, every instruction must determine if a special
operation has preceded it. Explicit tests by microcode at the start of
each instruction would cause a prohibitive amount of overhead even
when these operations are inactive. Instead, an alternate instruction
set is used to force a different entry for the same opcode. The I option
and EXC microcode forces the next instruction to be entered at its
alternate entry by setting the appropriate emulation-mode bits in the
PSW. The alternate entry typically determines which operation to
unwind, restores the mode bits to their normal value, and transfers to
the normal entry point to execute the instruction. Since the SPC 1B
does not have condition codes, the PSW condition flags are available
to specify whether the EXC or I option is in effect.

4.5.9 New SPC 1B instructions

There are four new instructions in the SPC 1B instruction set. The
Register to Buffer Bus (RBB), Buffer Bus to Register (BBR), and
Ones to Buffer Bus (OBB) instructions have been added to reference
the buffer bus system. These instructions, along with the buffer bus,
are described in Section 5.1.4. The remaining new instruction is the
Switch Mode and Transfer (SMT).

The SMT instruction allows emulated programs to transfer to the
native mode and begin executing its instruction set. It is patterned
after the native-mode CALL instruction to provide a calling sequence
consistent with the C language. The SMT puts a stack frame, including
two register arguments, on the stack, switches the mode bits in the
PSW to specify native mode, and transfers to the address specified in
the instruction. Two instructions in the native language are also used
to support mode switching. They are the Call to Emulation (CALE),

800 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

and Return to Emulation (RETE) instructions. Except for the mode
switch, these instructions are identical to the standard native CALL
and RETN instructions.

The ability to transfer between native and emulated code allows C
language to be incorporated into the TSPS process. In fact, the TSPS
process has standard C-coded entry points, as described in Section
5.1.1.1. Mode switching eliminates the need for new instructions to
perform operations not possible with the emulated instruction set.
Examples are Operating System Traps (OSTs), 32-bit data manipula-
tions, and stack accesses. Finally, designers of new features can eval-
uate on an individual basis which language would be most suitable.
Trade-offs can be made between the necessary degree of coupling with
existing emulated code and the ease of programming in C.

4.6 Peripheral orders

As mentioned in Section 4.1, the PSI provides the necessary timing
and electrical interface to the TSPS periphery. The function of the
microcode for peripheral instructions is simply to pass necessary
information for the PSI to execute the order. At the end of the
sequence, the PSI passes back an answer word and an indication of
whether the periphery returned the correct reply signals. A failure
indication is used to generate the emulated F-level interrupt, as dis-
cussed in Section 5.1.5.1.

The CC communicates with its channels over the Central Control
Input/Output (CCIO) bus. An Application Channel Interface (ACHI)
is provided with the 3B20D processor to allow the PSI limited access
to the CCIO bus. In essence then, the PSI appears as a main channel
to the 3B20D processor. Commands and data are sent and data
received in a parallel fashion to/from the ACHI-PSI via the CDR
CAR, and PPR. Status information, returned by the PSI into the HSR,
is used to indicate a failed peripheral order.

The sequencer in the PSI performs four basic functions. In addition
to the peripheral order, there are sequences to read a register and
write a register. These functions are needed not only for buffer bus
references, but also for diagnostic access. The remaining sequence is a
pulse sequence, which is used to send special maintenance pulses to
the periphery.

All SPC 1A peripheral orders are retained in the SPC 1B instruction
set. In addition, a set of PSI instructions have been provided in the
native instruction set to execute the four PSI operations. The native-
mode PSI instructions were originally designed for the PSI diagnostic,
discussed in Section 5.3, which is written in C and native assembly
language. They are also used by the Application Integrity Monitor
(AIM) process for PSI fault recovery and initialization (Section
5.2.2.1.).

REAL-TIME ARCHITECTURE 801

One additional capability provided by the emulation microcode is a
set of microcode routines to execute peripheral operations on the off-
line processor. These routines accept data from the 3B20D Mainte-
nance Channel (MCH), temporarily release the inhibit on the off-line
PSI, and execute the order without making any main-store accesses.
By not interfering with the main-store update mechanism, these
routines can be executed while the off-line processor remains in the
standby mode.

Off-line sequences for pulse and peripheral orders are used by TSPS
peripheral fault recognition to retry failed orders and provide better
fault resolution. An off-line PSI initialization routine is used by AIM
just prior to a soft switch. It is also used periodically by AIM as a
hardware audit of the off-line PSI. Should this routine indicate a
failure in initializing the PSI, a diagnostic will be requested by AIM.
The benefit of this audit is to reduce the latency time for detecting
faults in the standby PSI.

4.7 Emulation-dependent software

Although the majority of SPC 1A instructions have been emulated
on the SPC 1B, there are functions that do not work in the same
manner as on the SPC 1A. In general, the functions requiring modifi-
cation are in the maintenance programs, which are by necessity more
processor-dependent.

The most obvious source of change is the need to recode or eliminate
those routines that contain instructions not carried over on the SPC
1B. The most common source of change is recoding buffer bus refer-
ences to use the new instructions. Unmodified buffer bus references
would simply reference a memory location in segment zero since the
microcode does not trap the address as a buffer bus address in normal
memory-access instructions. A third source of change is due to the new
object-code formats and the difference in size between instruction and
data words. Since the emulated code can only access 20 bits, instruc-
tions cannot be moved or created via data operations. Similarly, data
cannot be executed as an instruction because the uppermost 12 bits of
data words are zeros. On the SPC 1B, the zero opcode is interpreted as
the ANOP instruction. This protective measure would trap a wild
transfer into a data area by generating an A-level interrupt. Finally,
usage of part of an instruction as data may not work because of the
shifting of fields in the new object-code formats. An example of this in
TSPS No. 1 code is to read the address field of a transfer instruction
and store it to be used as an address later.

A more subtle difference is the execution time of instructions on the
SPC 1B. The SPC 1A is a fixed-cycle machine, and instructions are
made up of a number of these basic cycles. The execution time of an

802 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

instruction could be determined exactly, independent of the options
specified. A common dependence on the execution time of an instruc-
tion is in timing loops. A precise time delay is created by executing a
loop the correct number of times.

Since the 3B20D executes emulated instructions several times faster
than the SPC 1A,® timing constants coded for the SPC 1A produce
delays proportionately smaller on the SPC 1B. The modification of
these constants is not quite as simple as multiplying by a speedup
factor for the following reasons. First, the SPC 1B instruction set is
microprogrammed, and thus every option must be accounted for when
calculating the execution time for an instruction. Second, since the
3B20D employs virtual addressing, memory management delays owing
to translation are incurred as a function of program flow. The cache
memory also plays a role by shortening the memory access time when
the access is contained in the cache. Since the cache is shared by all
processes in the system, its effect is even less predictable. Finally,
Direct Memory Access (DMA) activity steals memory cycles from the
processor and represents an invisible form of interference.

As a result, timing loops with tight window tolerances cannot be
guaranteed. In several cases, routines that performed window timing
required recoding. On the other hand, minimum timing poses no
problem. Best-case estimates can be made to determine the minimum
execution time for a program segment by assuming no translation or
DMA delays and all cache hits. Any delays actually incurred during
execution serve only to lengthen the program segment time, which is
acceptable for minimum timing.

V. TSPS NO. 1B SOFTWARE

This section describes how the TSPS software was ported to run
under the DMERT operating system. In addition, it describes the
system integrity software and other processes required to complete the
emulation.

5.1 The TSPS kernel process

The emulated TSPS software has been incorporated into a single,
large, nonkillable kernel process under DMERT. This is due largely to
the real-time constraints of TSPS software operation and its existing
structure on the SPC 1A. All TSPS code on the SPC 1A shares a single
physical address space. All data and programs are equally accessible
from any other program. The entire software structure is very tightly
coupled. Subdividing the software into several processes would have
required a restructure and redesign of the TSPS software. Also, the
operational timing constraints of TSPS software (e.g., 5-ms I/O proc-
essing, interject responsiveness and base-level E-E times) require

REAL-TIME ARCHITECTURE 803

TSPS to be memory-resident and interrupt-driven at the kernel-proc-
ess level.

5.1.1 Emulation environment

Emulation of existing T'SPS software on the 3B20D Processor re-
quired the creation of an SPC 1A environment. That is, in order to
work properly the TSPS software had to be shielded from both the
actual physical machine (3B20D) it was running on and the DMERT
operating system it runs under. This environment has been established
with a combination of hardware (PSI), firmware (the microcoded SPC
1A instruction set), and software (native-mode code within the TSPS
process).

5.1.1.1 Native-mode code. Except for the emulated code within the
TSPS process, all software in the TSPS No. 1B system is coded in
3B20D native mode. Most of the software is coded with the C language.
Hence, the 20-bit emulated code exists in a 32-bit universe.

Figure 8 illustrates the structure of the T'SPS process. The TSPS
process is dispatched (given control of the machine by DMERT for
execution) at either its interrupt, event, or fault entry. These entry
points are coded in 3B20D native mode. Thus, the TSPS process
always begins execution in 3B20D native-mode code. These entry
points determine what type of processing is to be performed and
transfer, while simultaneously changing instruction sets, to appropriate
routines within emulated software.

In addition to the native-mode entry points, the TSPS process also
contains native-mode routines for communication with DMERT and
other processes and for performing certain functions which the emu-
lated code is incapable of doing. As a result, the native-mode code
within the T'SPS process completely isolates the emulated code from
the 32-bit universe surrounding it. Hence, to the rest of the system the
TSPS process appears to be a typical (albeit very large) native-mode
kernel process.

5.1.1.1.1 Interrupt entry. The only hardware interrupt source to
which the TSPS process is attached is a clock-driven 5-ms interrupt
for I/0 processing. This single interrupt source is used for both J- and
H-level processing. This same 5-ms clock pulse is transmitted to the
PSI to synchronize its clock with the processor. The PSI clock trans-
mits clock pulses to TSPS peripherals. When the interrupt source fires,
the TSPS process is dispatched at its interrupt entry point. The
interrupt entry is coded in 3B20D native assembly language because
of its simplicity and need for efficiency: it runs every 5 ms. Its only
functions are to determine whether this execution is a J- or an H-level,
set the appropriate bit in the interrupt-level activity flag buffer bus
word, and transfer to the appropriate emulated routine.

804 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

® SYSTEM
INITIALIZATIONS
L] EHHDR\S

A
N\

INTERRUPT ENTRY

® MESSAGES
. EVEJNTS

\

H, J LEVELS

INITIALIZATIONS, BASE LEVEL,
REFERENCE (ABACABAD .. .)
RETURNS

SPC VIRTUAL MACHINE

‘C' FUNCTIONS USING
DMERT PRIMITIVES

DMERT - DUPLEX MULTI-ENVIRONMENT o MESSAGES
REAL-TIME ® EVENTS
SPC - STORED PROGRAM CONTROL ® FAULTS

Fig. 8—TSPS Process.

Handling both J- and H-level interrupts with a single interrupt
source is accomplished by using two execution levels for J-level proc-
essing. When T'SPS is dispatched at the interrupt entry to handle a J-
level interrupt, it runs at execution level 12. While at level 12 the
interrupt source is masked off by the level-12 interrupt mask. Hence,
the interrupt entry cannot be re-entered. When high-priority J-level
work is completed, the H-level inhibit bit in the buffer bus is cleared.
In doing this the microcode for the buffer bus write operation drops to
execution level 11 for low-priority J-level work. This is possible since
no other processes in the system run at execution levels 11 or 12. At
level 11, the 5-ms interrupt source is unmasked and will allow the
TSPS interrupt entry to be re-entered if J-level does not complete
within 5 ms. The interrupt entry reads the buffer bus to determine
whether a particular execution is a J- or H-level. If neither activity bit
is set, then it is a J-level and the J-level activity bit is set. If the J-level
activity bit is already set, then an H-level has occurred and the H-
level bit is set. In the latter case low-priority J-level work has been
interrupted and its state has been saved on the interrupt stack.

REAL-TIME ARCHITECTURE 805

Although the interrupt handling begins in the native-mode interrupt
entry, the return from interrupt is always performed from emulated
code. At the end of H-level, the last job executes an emulated EGBN
instruction. The EGBN clears the H-level activity flag in the buffer
bus and performs a return from interrupt sequence, which causes the
saved J-level state to be popped from the interrupt stack. J-level then
resumes execution at the interrupted point. At the completion of low-
priority J-level an emulated GBNHJ instruction is executed. The
GBNHJ clears the J-level activity flag, sets the H-level inhibit bit, and
does a return from interrupt. Hence, the process that was executing
when J-level began is resumed at the point of interrupt. This inter-
rupted process itself may be the TSPS process performing base-level
work.

5.1.1.1.2 Event entry. The TSPS process event entry is coded with
the C language and runs at execution level 5. An event sent to the
TSPS process causes the process to be dispatched and begin execution
at its event entry. The primary events sent to the TSPS process are
for initialization upon creation, interprocess message reception, and
time-outs requested for real-time breaks in TSPS-base level process-
ing.

5.1.1.1.2.1. Initialization event. An initialization event is sent to a
process upon its creation. As TSPS is a nonkillable kernel process, this
will occur only after a system bootstrap. The native-mode code ini-
tializes the process (i.e., attaches to the 5-ms interrupt source, connects
to a system port for message reception, etc.) and prepares to take an
SIA or SIB call-processing recovery phase.

An important function that is performed during the initialization is
setting the proper page protection over the emulated-code address
space. DMERT creates processes with protection set on segment
boundaries. The TSPS process, however, emulated the SPC 1A pro-
tection mechanism. Hence, some segments may have both protected
and unprotected areas. The protection within these segments must be
modified by changing the protection on the appropriate pages. TSPS
uses a DMERT OST for this run-time page-protection change. This
same OST is used by the emulated recent change programs when
applying a modification to protected memory.

5.1.1.1.2.2 Time-out event. The T'SPS process is only one of many
processes time-sharing the SPC 1B. The TSPS process must voluntar-
ily take frequent real-time breaks to allow other processes at execution
level 5 and below to execute. (Base-level processing is done at execution
level 5, which is the lowest execution level at which the TSPS process
runs. This is described in more detail below.) These real-time breaks
are performed by issuing a time-out request to the DMERT timer*
and then relinquishing control of the machine. (The DMERT timer is

806 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

part of the kernel that executes at execution level 15. It runs every 10
ms as a result of clock-driven interrupt source. The Timer maintains
the DMERT system clock and provides general-purpose timing for all
DMERT processes.) At the end of the time-out period the timer will
send TSPS a time-out event. When TSPS takes the break, it remem-
bers where in emulated code it has left off. Upon receipt of the time-
out event it will resume execution within emulated code at the same
place where it had left off. A related event is one sent by the scheduler
when the system is idle to wake TSPS up early, before the time-out
event has fired. This is described further in Section. 5.1.6.

Currently there are five areas where the TSPS process takes real-
time breaks. These are during memory zeroing in an SIA or SIB,
during initialization timing loops that are longer than 10 ms, during
audit stitching, at the end of an SIA or SIB while waiting for the J-
level portion of the phase to complete, and during the base-level E-E
cycle.

messages from other processes. TSPS is notified of the message
reception with a message event. When TSPS fields the event, it will
process all queued messages and take whatever actions are appropriate.
Some uses of interprocess messages by the TSPS process are discussed
in the later section describing other TSPS application processes.

5.1.1.1.3 Fault entry. The TSPS process fault entry is also coded in
the C language. The TSPS process is dispatched at its fault entry as
a result of a processing error (i.e., a protection violation or an invalid
address), a system initialization, or a fault sent by another process as
a means of interprocess communication. The TSPS fault entry runs at
execution level 12 so that recovery actions can be taken without
interference from J-level processing.

5.1.1.1.4 Additional routines. Besides the standard process entry
points there are other special-purpose native-mode routines included
within the TSPS process. These routines are used to interface with
DMERT (e.g., to execute an OST), to use interprocess communication
mechanisms such as events and messages in order to communicate
with other processes, and to implement some functions that cannot be
performed in emulated code. In addition, some new code added to the
TSPS process was coded using the C language for development con-
venience.

5.1.2 Address space

TSPS is currently designed as a DMERT “small” process. A small
process can have up to 64 segments, and, hence, a virtual address space
as large as two million words. Figure 9 shows the TSPS process virtual
address space as a small process under DMERT.

REAL-TIME ARCHITECTURE 807

SEGMENT
0

EMULATED
STORED PROGRAM
CONTROL CODE

31

BUFFER BUS
32

3B NATIVE-
MODE CODE

KERNEL PROCESS
CONTROL BLOCK

» KERNEL STACK

» EQUIPMENT
CONFIGURATION DATA

® MESSAGE BUFFERS

63

Fig. 9—Virtual address space in the TSPS process.

5.1.2.1 Emulated code. The emulated code resides in the first 32
(0-31) segments of the virtual address space. Thus, the emulated code
resides in the first one million words of the virtual address space. This,
in fact, is the only part of the virtual address space that is directly
addressable by the emulated code. As mentioned previously, all ad-
dresses in the emulated code are 20-bit word addresses as in the SPC
1A. A 20-bit address can only address one million words. Hence, the
20-bit physical word addresses on the SPC 1A are now 20-bit virtual
addresses in the T'SPS process on the SPC 1B.

All 32 segments are fully allocated to their maximum size of 32K
words. In effect each segment emulates an SPC 1A store name code.
The emulated address space, however, includes segments 0 and 31,
whereas store name codes 0 and 31 do not exist on the SPC 1A.
Emulated buffer bus references are mapped by the microcode into
segment 32. As a result, the emulated code within the TSPS process
has a full 1M word address space.

5.1.2.2 Native-mode code. The remaining 31 segments are used for
native-mode code within the TSPS process. Not all of these segments
are currently used. Those that are used contain TSPS code and data,
the process control block, and shared DMERT segments such as the
ECD, the system message buffers, and the kernel stack.

808 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

5.1.3 Native-mode/emulated-code interface

The TSPS process contains both emulated SPC 1A and native-mode
code. As all processing begins in native code, all emulation-code
routines are called as functions (subroutines) from the process entry
points. Similarly, native-mode routines can be called as subroutines
from the emulated code.

All processes under DMERT use a program stack to save the state
of a function when it calls another and to pass arguments. Kernel
processes (including TSPS) share a common kernel stack with the
kernel. A standard stack frame must be maintained when calling
another function. Similarly, a standard return sequence is followed. To
maintain sanity while transferring between emulated and native code,
the TSPS process follows the same protocol. The mechanism used by
the TSPS process was patterned after the structure used to transfer
between native-mode assembly code and C-language code.

5.1.4 Buffer bus

As described in Section 2.2, the buffer bus on the SPC 1A is a
software-accessible set of hardware control and status registers. Since
the microcode emulates the hardware action on the SPC 1B, accessing
one of these registers causes the microcode to perform a special action,
emulating what the hardware would have done. Hence, firmware must
be aware that a buffer bus location is being accessed, and what action
is required. To eliminate the overhead required to test each memory
address in memory reference instructions, new instructions have been
added to explicitly reference the buffer bus.

The Register to Buffer Bus (RBB), Buffer Bus to Register (BBR),
and Ones to Buffer Bus (OBB) instructions are the exact images of
their SPC 1A counterparts, RM, MR, and OM. Converting an SPC 1A
buffer bus reference requires only a change to the instruction mne-
monic. The address and option fields are identical. The addition of
these instructions has the added benefit of not having to set aside store
zero as buffer bus images, thus allowing an additional 32K words of
usable memory. Depending on their function, buffer bus registers are
mapped into either memory locations outside of the SPC 1B address
space, PSI internal registers, or 3B20D hardware registers.

Not all registers have been carried over from the SPC 1A. Locations
used only in processor and store maintenance were removed along
with their corresponding programs. Other locations have been added
to maintain and access the PSI. Still others are partially retained, with
individual bits having been removed. The set can be broken down into
three components: interrupt system, craft interface, and peripheral
system.

Locations related to the interrupt system are the Interrupt-Level

REAL-TIME ARCHITECTURE 809

Activity Flags (ILAF), Maintenance Interrupt Sources (MAIS), Inter-
rupt Inhibits (PEST), 3B20D Inhibits (3BPEST), and the Millisecond
Clock State (MSEC). With the exception of the MSEC register, these
are discussed in Section 5.1.5. MSEC on the SPC 1B is the value of
the 3B20D Interrupt Timer. The Interrupt Timer is used as the 5-ms
clock source for the TSPS J-level interrupt. Access to this timer allows
programs to predict when the next J-level will occur. This function is
necessary for clients such as diagnostics, which must synchronize their
actions with J-level.

Buffer bus locations related to the craft interface are Maintenance
Control Center Data (MCCD), MCC Interrupts (MCCI), and Emer-
gency Recovery Display (ERD). The hardware of the SPC 1A MCC
has been replaced by the 3B20D craft interface hardware, and DMERT
and TSPS craft software. These locations reside in memory locations
accessible by TSPS native-mode craft software. The craft interface is
discussed in more detail in Section 5.3.3.1.

The remaining locations are all related to the peripheral system.
The PSI hardware directly implements many of these locations. Lo-
cations emulated by the PSI hardware require that microcode send
the necessary command to the PSI to access data or perform some
hardware action.

5.1.5 Interrupt structure

5.1.5.1 Emulated interrupts. The emulated interrupt structure con-
sists of A-, E-, F-, H-, and J-level interrupts. Of these, only the 5-ms
H- and J-level interrupts are driven by a 3B20D hardware-interrupt
source. A-level interrupts are either emulated by native-mode software
or generated by the microcode as the result of executing an illegal
opcode or an ANOP instruction. E-levels are emulated by native code
as the result of fault codes received from DMERT, and F-levels are
generated either by microcode or native-mode code.

The microcode for the ANOP instruction traps to an illegal instruc-
tion routine in the native microprogram that generates an error inter-
rupt. The DMERT kernel handles the error interrupt, and immediately
faults the TSPS process. The TSPS process fault entry determines
that an ANOP instruction was the cause of the fault, sets the A-level
activity flag in the buffer bus and transfers control to the emulated A-
level interrupt-handling routine.

An A-level interrupt can be simulated by native software through
setting the A-level activity bit in the buffer bus, which raises the
execution level to 12 (the level at which A-level runs), filling in the
interrupt-state bin locations, and transferring to the A-level interrupt
routine. This is done, for example, to indicate a manual request for a

recovery phase. The TSPS process fault handler will emulate the SPC

810 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

1A hardware by “generating” an A-level interrupt in the aforemen-
tioned way. When the A-level routine is entered, it appears to the
software that a hardware interrupt had occurred.

SPC 1A store-error E-level interrupts are not emulated, as this type
of error is not seen by the TSPS process. They are handled completely
by DMERT fault recovery. Software E-levels (i.e., protection viola-
tions and bad addresses) are fielded by TSPS as faults. When this type
of error occurs, the TSPS process is immediately interrupted and
entered at its fault entry with the state of the machine at the time of
the error passed as parameters. The fault entry sets the E-level activity
bit in the buffer bus and transfers to emulated code to handle an E-
level interrupt. Again, to the emulated code it appears just as if a
hardware interrupt had occurred on the SPC 1A.

During the execution of an emulated I/O instruction or buffer-bus
instruction,* any failures will be detected by the microcode. The
microcode ‘generates’ an F-level interrupt by setting the F-level activ-
ity bit in the buffer bus, saves the address of the interrupted program
in the F-level bin, and transfers directly to the emulated F-level
routine.

Most PSI errors are detected by the microcode also. An F-level is
also generated in these cases. This is done so that F-level can perform
an on-line and, if necessary, an off-line retry before letting AIM take
PSI recovery actions. In the few cases where a PSI error interrupts
AIM first, AIM will fault the T'SPS process. The fault entry will then
emulate an F-level in the same way as E-levels are handled. There is
another class of errors that generate 3B20D error interrupts. The
DMERT Error Interrupt Handler (EIH) will field these and fault the
running process. In these cases TSPS passes control (via a fault) to
AIM for recovery actions.

The microcode and native code must of course be aware of interrupt
priorities. If TSPS is already in A- or E-level processing, then the
microcode must only set the F-level interrupt source bit and continue
processing. An F-level will be generated by the microcode if the source
is still set when an EGBN is performed from A- or E-level. Also, if the
F-level inhibit is set in the buffer bus the error must be ignored. Setting
the J-level inhibit while in base level causes the microcode to raise the
execution level of the process to 12. The interrupt mask for execution
level 12 masks off the 5-ms interrupt source. Similarly, the “I” option
is implemented via the microcode. The microcode guarantees that
both J- and H-level interrupts are inhibited for the instruction with
the I option and the next instruction executed.

* As some of the buffer-bus registers are contained in the PSI, a failure while trying
to access these registers is considered a PSI error.

REAL-TIME ARCHITECTURE 811

5.1.5.2 Returning from interrupts. The emulated EGBN instruction
works the same as it does on the SPC 1A for A-, E-, and F-level
interrupts. Because H- and J-level interrupts are driven by a hardware-
interrupt source, the EGBN for H-level and the GBNHJ instruction
used by J-level operate differently. This difference (described below)
is undetectable by the programmer.

When a 5-ms interrupt occurs, the state of the interrupted process
is saved on the 3B20D interrupt stack. The return from interrupt
(EGBN for H-level or GBNHJ for J-level) must restore the state from
the interrupt stack and not from memory-resident bin locations.
Hence, these two instructions perform the same function as on the
SPC 1A, but the actions taken to restore the interrupted state of the
machine are different.

5.1.6 Emulated program structure

The emulated program structure within the TSPS process is almost
identical to that which exists on the SPC 1A; the major difference is
that processing always begins in native code. The native code sets up
the proper environment and passes control to the emulated software
for the bulk of the processing.

H- and J-levels still run under control of ECIO. As pointed out
earlier, the only difference is that a single interrupt source is used on
the SPC 1B. The front-end native code determines whether an H- or
J-level has occurred by the state of the buffer bus. Different execution
levels are used to unmask the H-level interrupt source when going
from high- to low-priority J-level.

Base-level programs still run under control of ECMP. Base level is
essentially called as a large subroutine of the event handler. Rather
than run continuously, as on the SPC 1A, base level must voluntarily
give up control of the machine to allow lower-priority processes (proc-
esses that run at execution levels below 5) to run. Base level requests
a time-out event from DMERT when at least 10 ms have elapsed, and
then exits.

There are two ways for base level to be re-entered in response to its
time-out request. If during the real-time break there are no processes
ready to run, the DMERT scheduler will enter its idle loop at the
lowest system priority. At that point, the scheduler finds that the
TSPS process has requested, via an OST during its initialization event
entry, that a specific event be sent by the scheduler whenever the idle
loop is entered. The event sent by the scheduler causes TSPS to be
entered at its event entry, thus waking base level up early. If the idle
loop is never entered during the break, base level must wait until the
full duration of the time-out request has expired. In this case, receiving

812 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

(a)
mnnonnon
BASE LEVEL + -

TIMER (®)
J-LEVEL +—
10 |
INTERRUPTS
BASE LEVEL —
OTHER
L L | | L1 L L R T

0 5 10 15 20 25 30 35 40 45 50
TIME IN MILLISECONDS

Fig. 10—Interaction between processing levels of (a) SPC 1A and (b) SPC 1B.

the time-out event from the DMERT timer causes base level to resume
execution.

This early wakeup mechanism employed by TSPS has a significant
impact on the real-time profile of the system. By eliminating idle
system real time, base level executes more E-E cycles. This is especially
true when the offered call load is light and real time is ample. A higher
E-E rate improves the execution of TSPS diagnostics, audits, and
other services that are run as a function of E-E rate. The full impact
of the early wakeup mechanism is described in Ref. 8.

Base-level code in ECMP was modified to take its real-time breaks
between priority classes. There are five breaks per E-E cycle: one after
each C and E priority class. Figure 10 contrasts the interaction between
various processing levels on the SPC 1A versus the SPC 1B. On the
SPC 1A, base level runs continuously, only being interrupted (in the
absence of errors or manual actions from the MCC) every 5 ms by J-
level. On the SPC 1B, however, there are other processes executing
concurrently with TSPS. DMERT I/0 processes run at execution
levels higher than base level, but lower than J-level. J-level executes
every 5 ms whether or not base level is executing or taking a real-time
break. Table II shows the execution levels of various DMERT proc-
esses, the TSPS process, and AIM.

The real-time breaks are not noticeable to the emulated software.
They merely appear as an additional priority class placed in between

REAL-TIME ARCHITECTURE 813

Table II—DMERT execution levels

Level Processes
15 Error Interrupt Handler, Timer
14 Generic utilities
13 System and Application Integrity Monitors
12 TSPS (Fault entry, A, E, F, H and high-priority J)
11 TSPS (low-priority J)
10 Disk and IOP drivers
9 —
8 —
7 File Manager
6 —
5 TSPS (Base level)
4 —
3 Plant measurements, Field update
2 Special processes (Scheduler and Memory Manager)
1 Supervisor processes (critical region)
0 Supervisor/User processes
15-ms BREAK 5 0 A B A

L 16-ms BREAK

;
15-ms BREAK ~

Fig. 11—TSPS No. 1B base-level loop.

the two priority classes separated by the break. Figure 11 shows the
modified base-level loop with the five real-time breaks. The insertion
of these breaks, though, has required one minor change to interject
processing. To guarantee proper interject responsiveness additional
interject checks have been inserted. A check for interject work is made
after each real-time break. Hence, interject is serviced within 20 ms as
a result of a base-level real-time break. Once the interject check is
made, base-level processing resumes with the next scheduled priority

814 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

PRIORITY
CLASS

B———-

E-—————— - —_—— ————— —b-l—'

Fig. 12—TSPS No. 1B base-level, priority-class frequency.

class. Figure 12 shows the base-level priority-class execution with the
added interject checks.

Another important point is the relationship between the DMERT
timer and J-level execution. As the timer runs at execution level 15, it
will interrupt J-level. The 10-ms timer interrupt, however, is offset
from the 5-ms interrupt by 1 ms. Hence, the timer runs every 10 ms,
1 ms after J-level begins. This guarantees proper operation of the
Automatic Message Accounting (AMA) data recording. The AMA
data transfer routine must write data to be recorded to the AMA
within 1 ms after the 5-ms interrupt occurs. (Recall that the AMA
tape unit is synchronized with the 5-ms clock pulse.) Since the timer
will not run until this 1-ms window has passed, it does not interfere.

5.2 System integrity

The TSPS No. 1B integrity software consists of three distinct
software packages. In addition to the software package provided with
DMERT and the emulated TSPS No. 1 integrity package, a new
integrity software package was developed. The major functions of this
software are:

(i) Interface and coordination of integrity-related activities be-
tween DMERT and the T'SPS application (e.g., initialization, overload,
and processor switch)

(it) Sanity and integrity of application processes

(iti) PSI maintenance.

These functions have been implemented in the Application Integrity
Monitor (AIM), the native-mode portion of the TSPS process, and the
PSI diagnostic process.

REAL-TIME ARCHITECTURE 815

5.2.1 Hardware integrity

The TSPS No. 1B hardware architecture and, in particular, the
design of the PSI, made it possible to retain most of the peripherals
used in TSPS No. 1. As a result, the maintenance strategy for these
peripherals remained virtually unchanged and the maintenance soft-
ware implementing it was emulated with only minor changes. The
entire maintenance software for the TSPS peripherals resides in the
kernel TSPS process and represents a distinct maintenance package.

Unlike the SPC 1A, the SPC 1B does not provide matching between
the on-line and off-line processors. Instead, both the 3B20D and the
PSI employ extensive self-checking hardware circuits to detect most
service-affecting faults. The basic switchable entity is the simplex SPC
1B. When a fault is detected in the on-line processor, a switch to the
off-line processor is performed. This switch may be followed by an
initialization sequence. The faulty circuit pack is then identified with
the aid of a diagnostic. The SPC 1B hardware is designed such that no
single fault in either processor can cause a system outage. The TSPS
No. 1B hardware architecture, including the PSI, and its maintenance,
is described in Ref. 6. TSPS No. 1B reliability is covered in Ref. 8.

5.2.2 Software integrity

5.2.2.1 Application integrity monitor. The Application Integrity Mon-
itor (AIM) process is the sole application interface to DMERT for
system integrity issues—initialization, sanity, processor switches, and
DMERT overload conditions. Primary responsibility for monitoring
the sanity of the TSPS application and controlling its recovery resides
with AIM. In addition, AIM performs PSI fault recovery and initiali-
zation. Reports of DMERT recovery actions and resource overload are
made to AIM, which in turn controls the application response to the
event.

AIM is a nonkillable kernel process running at the same execution
level as the DMERT System Integrity Monitor (SIM), higher than all
other application processes. It interfaces with SIM via interprocess
messages. AIM executes briefly every 500 ms at execution level 13 or
as a result of PSI error interrupt or faults sent from the TSPS process.
Since AIM is at a higher execution level than the TSPS process, it
runs immediately when faulted by TSPS. This is done, for example,
when TSPS requests a phase. TSPS faults AIM with its request, and
AIM requests the phase of DMERT and reports back to TSPS about
when to start its initialization.

5.2.2.2 Initialization. The T'SPS call-processing recovery phases were
integrated into the DMERT initialization levels to provide a coherent
strategy. In the resulting initialization mechanism, between two and
four TSPS initialization levels are associated with each DMERT

816 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

initialization level. Table III shows the mapping of T'SPS recovery
phases to DMERT initialization levels. TSPS minor and major phases
are not taken after a bootstrap (DMERT initialization levels 2 through
4). The bootstrap recreates the TSPS process in memory, zeroing all
its unprotected data areas. Hence, a minor or major phase will not
initialize the TSPS process; an SIA or an SIB is required.

The TSPS No. 1B initialization mechanism employs a sequential
escalation for most transitions. In addition, TSPS executes four SIB
phases, with each using a different peripheral configuration, before
escalating to the next higher DMERT level. However, in some cases,
such as manual initialization or an interrupted initialization, the se-
quential escalation may be bypassed. Control of the escalation se-
quence is distributed between SIM and AIM. If the highest automatic
initialization phase [DMERT level 3 and TSPS level 4 (SIB)] is
reached and the system still does not recover, the system will loop
continuously, rebooting the system and taking SIBs with varying
peripheral configurations until the system recovers or manual action
is taken.

A few minor changes were made to the initialization code to allow
the TSPS process to take real-time breaks during recovery phases.
Since ECMP is not cycling through priority classes during phases, it
was necessary to add other breaks during the phases. Continuous
running of TSPS during a several-minute-long phase would cause
several DMERT sanity and overload checks to fail as lower-priority
processes would not be run. Thus, during a phase the TSPS process
will break during memory zeroing, for timing loops greater than 10 ms
in duration, during audit stitching, and while base level waits for J-
level to signal the end of initialization. The length of the phase is not
affected by these real-time breaks. The length of the phase is deter-
mined by the amount of peripheral equipment, and hence the number
of 5-ms interrupts (J-levels) that must occur for peripheral equipment
initialization. Although each interrupt will execute faster, the total

Table IIl—DMERT level (EAl command)

0 (Application Only) 1 2, 3, 4 (Bootstrap)
(50) (61) (52, 53, 54)
Application parameter
No action Reference return Boot without TSPS
process

1 MNA MNA Boot + SIA
2 MJA MJA Boot + SIA
3 SIA SIA Boot + SIA
4 SIB SIB Boot + SIB
L Limp mode Limp mode Boot + limp mode
Other values No action Reference return Boot + SIA
No value (null) No action Reference return Boot + SIA

REAL-TIME ARCHITECTURE 817

elapsed time depends on the number of interrupts and not the speed
at which they execute.

5.2.2.3 Reference returns. Taking reference returns in the TSPS
process is more difficult than on the SPC 1A. All function calls,
whether they be between native-code routines or between native code
and emulated code (or vice versa), maintain a history of the function
call on the process stack. (Transfers between emulated routines do not
affect the stack. These transfers work just as on the SPC 1A. In fact,
emulated code cannot explicitly access the stack and is unaware of its
existence. Only the microcode for the SMT instruction manipulates
the stack to maintain a proper stack frame when calling a native
routine.) A function must make a normal return to the calling routine
to properly unwind the stack. Direct transfers between functions would
quickly result in an incongruous stack from which the process would
have no way of properly returning to the calling routines. Hence, when
taking a reference return, the TSPS process must properly unwind the
stack.

To further explain reference returns within the T'SPS process,
consider a fault generated as the result of an invalid address. The
TSPS process will be interrupted immediately, entered at its fault
entry, and passed the state of the machine at the time the fault
occurred. The fault entry then “generates” an E-level interrupt. The
state information indicates the instruction in error and the contents of
all the general-purpose registers at the time of the error. Because the
TSPS process contains both native and emulated code, this error could
have occurred in either. In addition the error could have occurred at
a point many levels deep in nested function calls. If a direct transfer to
a known “safe” reference point is performed, then a later return to the
original calling function (i.e., the event or interrupt entry) will fail as
the program stack will not have been unwound properly. To accom-
modate the existence of the stack, slight modifications to the handling
of reference returns had to be made.

If the E-level occurs in H- or J-level, an immediate return from
interrupt (using an EGBN or GBNHJ) will be executed. The return
from interrupt will clear all of the interrupt’s function call entries from
the stack and allow the interrupted process to resume processing. This
has the effect of canceling not only the current J-level job in progress
(as on the SPC 1A), but also all jobs scheduled to execute that 5-ms
entry.

If the E-level occurs in base level, a similar situation exists with
respect to the kernel stack. In this case, however, a simple return from
interrupt will not suffice. Base level must stimulate itself to be re-
entered at some later point in time. (J-level, of course, is re-entered by
the next 5-ms interrupt.) This is normally done with a time-out request.

818 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

This is not sufficient here, either, as base level must know that its next
entry is for the purpose of taking a reference return rather than
continuing its base-level loop. Hence, base level sends a fault to itself
and then performs the return from interrupt. As before, the return
from interrupt will clear the stack of any function call entries made by
base-level processing. When the fault entry is entered, the fault code
will indicate that a base-level reference return is to be made. The fault
entry drops to execution level 5 and transfers to the base-level refer-
ence point.

The base-level reference-return handling is functionally equivalent
to that on the SPC 1A. The only difference is that a momentary delay
is experienced while base level relinquishes control of the machine to
pop its function call entries from the stack and is then re-entered at its
fault entry before taking the reference return.

5.2.2.4 Sanity. The integrity of the system is preserved through a
sanity detection mechanism implemented as a hierarchy of sanity
timers, integrity checks implemented in native and emulated software,
and a recovery mechanism implemented as a hierarchy of initializa-
tions.

Each application process has a built-in set of checks designed to
detect any abnormal behavior that may lead to insanity. In particular,
the TSPS process has preserved, through emulation, the hierarchical
structure of sanity checks between base-level, low-priority J-level, and
high-priority J-level. Also retained are the critical data structure
checks and a monitor of the frequency of maintenance interrupts. The
only sanity check that could not be emulated was the hardware long
timer, previously implemented in the SPC 1A to check high-priority
J-level sanity. This has been replaced by a software sanity timer
implemented by AIM.

At the next higher level, the AIM process is responsible for moni-
toring the sanity of the TSPS process. It does so through the software
sanity timer implemented as a counter shared between the two proc-
esses. This counter is incremented by high-priority J-level and decre-
mented and then checked by AIM every 500 ms. The expected value
of the counter is 0. Repeated non-zero values indicate an insane
condition.

The sanity of AIM is in turn monitored by the DMERT System
Integrity Monitor (SIM), a process responsible for the sanity of the
entire software system. SIM monitors AIM, and implicitly the entire
application, by an application sanity timer. AIM activates the appli-
cation sanity timer after successful process creation in a system boot-
strap. AIM must continue to indicate normal operation by sending a
periodic sanity event to SIM to reset the timer.

The highest sanity check in the hierarchy is the 3B20D hardware

REAL-TIME ARCHITECTURE 819

sanity timer. SIM periodically resets the sanity timer. Hence, the
sanity of SIM is implied by the failure of the timer to fire. Should the
timer fire, a stop-and-switch operation will be performed to force the
off-line processor into the active role.

5.2.2.5 Overload control. The main objectives of the overload control
strategy in TSPS No. 1B are to:

() Preserve system sanity

(i) Maintain a high level of call completions regardless of the load
applied to the system.

There are two types of resources that may be exhausted and lead to
overload: TSPS call-processing resources, used exclusively by the
TSPS process (e.g., TSPS peripherals, software resources used for call
processing within the TSPS process, TSPS real time, etc.); and
DMERT resources, either used exclusively by DMERT or shared with
TSPS (e.g., kernel message buffers, nonswappable main memory, disk
swap space, etc).

The TSPS No. 1 overload control strategy for TSPS resources has
been preserved in TSPS No. 1B, with the software implementing it
being emulated within the T'SPS process. In this strategy, the E-E
cycle time represents the detection parameter, while the number of
calls being admitted and the number of active trunks represent the
load control parameters. As the load increases, the E-E cycle time also
increases in value. There are three thresholds for the E-E cycle time,
determining the transitions from normal state, to phase 1 (minor)
overload, to phase 11 (major) overload, and system initialization.
During overload, the number of calls admitted and the number of
active trunks are gradually reduced. As the load decreases, the E-E
cycle time also decreases in value and the system is returned to its
normal state.

The overload control strategy for DMERT resources shared by
DMERT and TSPS is based on overload detection by the process that
administers the particular resource, overload monitoring by the SIM
process, and overload control by the SIM and AIM processes. Upon
determining that an overload condition exists, SIM notifies the craft,
attempts to free some resources to alleviate the condition, and then
notifies AIM. For some DMERT-detected overloads (e.g., kernel or
supervisor and user-level lockout) an initialization is executed to
restore resources. Once notified of these overload conditions, AIM
requests a DMERT Level 1 and TSPS minor audit initialization
(MNA) initialization. Subsequent overload indications result in esca-
lation of initializations.

5.2.2.6 Processor switch. An example of the communication between
DMERT and the TSPS application required for effective control of
the system is illustrated by the processor switch, The duplex SPC 1B

820 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

normally operates with one processor on-line actively processing calls
and the other off-line with its memory continuously updated on every
write operation. The off-line unit is thus ready to be switched on-line
should the need arise. A processor-switch request can be one of three
types: recovery, routine, and manual. A recovery processor switch is
requested when a fault has been detected in the on-line processor and
processing cannot continue on it. The routine processor switches are
scheduled periodically, while the manual requests are made by the
craft when needed.

Certain time-sensitive activities within the TSPS application, e.g.,
writing on the AMA tape, benefit from an advanced notification that
a processor switch is about to take place. Such a notification is used to
complete time-sensitive operations and get ready for the switch. How-
ever, only routine and manually requested switches can be postponed
until the application has been notified and given its approval. There-
fore, the routine and manual processor switch requests are routed
through the AIM process. In turn, AIM notifies the TSPS application
processes of an imminent processor switch and, after their completion
of time-sensitive operations, returns a switch go-ahead to SIM. As a
defense mechanism, if the application does not approve the switch
within 10 seconds, DMERT will proceed with the switch.

5.3 Other TSPS application processes

In addition to the TSPS process numerous other native-mode proc-
esses were developed to support the emulation. These processes pro-
vide needed functions for a complete system under DMERT. The
major processes are discussed below. Figure 13 illustrates the interac-
tion between these major processes. The AIM process has been de-
scribed previously, and therefore will not be included here. The PSI
Diagnostic Driver and Control processes are detailed in Ref. 6.

5.3.1 Kernel processes

5.3.1.1 PSI diagnostic driver. The PSI Diagnostic Driver process is a
killable kernel process that performs diagnostic tests of the on-line
PSI. To perform the on-line tests the driver must synchronize its
operation with TSPS J-level operation in order not to interfere with
ongoing peripheral 1/0. It will execute the tests at execution level 12
when a non-interfering 3-ms window between J-levels is found. Its
other processing is performed at lower execution levels. The driver
shares memory with AIM and the TSPS process for synchronization
of activities and in order to monitor TSPS peripheral equipment
equippage and status.

5.3.2 Supervisor processes
5.3.2.1 File system interface. The TSPS No. 1B application has only

REAL-TIME ARCHITECTURE 821

*2IN0YITR

ssa001d g1 "ON SIS, W sessad01d LANG PUC SIS, Us9mIaq uonoeseyu—e 91

W3LSAS NOILISOd 3DIAH3S J1ddVHL — SdSL
S§5300Hd LNdNI H3700dS SdSL — dISL
SS300Hd TOHLNOD 39Vd AV1dSIO SdSL — dddL
HOLINOW ALIHO3LNI W3LSAS — WIS
JOVIHILNI WILSAS TVHIHJINIL ~ [Sd
SS3004Hd TOHLNOD SNE TVHIHdIHId — d08d
SHILIHM3IJALITIL JONVYNILNIVIN — ALLW
JONVNILNIVAN — 30LW
JOV4HILNI WILSAS 3714 — Isd
JWIL-TY3H LN3WNOHIANI-ILTINW X37d4NA — LH3IWA

$3S5300Hd

301N ANV
1dvdd

HOLINOW ALIHO3LNI NOILVIITddY — WIV

HLVYd NOILYJINNWWOD HOrvin

=

2

dd8d

T0HLNOD
J1LSON

S$83004Hd
RELTER]

SdS1

1H3wa

WIV

SdSL

-ovia
1Sd
H3asn

HOSIAHIANS

RELEER

H3AIHA

JILSON
-ovia
Isd

822 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

one supervisor process, the File System Interface (FSI). The SPC 1A’s
program tape unit (PTU) was not retained in TSPS No. 1B. All
required operations of the PTU were functionally reproduced with the
FSI. Examples of such functions include dumping emulated office data,
protected memory, or program to tape. The FSI shares the emulated-
code address space and interfaces with the DMERT file manager to
transfer data between the emulated address space and the DMERT
disk file system. The 3B20D’s nine-track tape unit and DMERT 1/0
facilities are used to move the data between tapes and the disk file
system. None of the FSI functions are time-critical. Hence, the FSI is
designed as a killable supervisor process that is created upon demand
and dies when it has completed its function. Multiple instances of the
FSI can simultaneously coexist as long as their respective functions do
not interfere with each other.

5.3.3 User processes

The TSPS application has numerous user-level processes. Most of
these perform demand tasks as the result of craft input. The process
is created to perform the task and then dies when it is completed. The
most significant user-level processes are described below.

5.3.3.1 Craft interface processes. The maintenance center craft in-
terface for the TSPS No. 1B consists of a video display terminal for
input, output, and status displays, along with an adjacent printer for
a hard copy of all output messages. The terminal’s screen is split into
four areas, as shown in Fig. 14. The top is for system status information
and is always displayed. The variable-sized middle section is for
displays which, for example, may show the status of a particular
hardware subsystem. The remainder of the screen is for scrolling
system output messages, and there is a single, dedicated line for input.
This interface is also remoted to the Switching Control Center System
(SCCS), described in Ref. 9, for remote maintenance.

Although the actual I/0 to the devices is done by the DMERT 1/0
driver, the data read and written to the devices are formatted and
interpreted by a collection of user-level processes. The major DMERT
processes include the input Shell, the Controller of Output Spooler
Process (CSOP), and the Display Administration Process (DAP).

The application interface to CSOP and DAP is designed to be from
other user-level processes. Hence, TSPS has developed two user proc-
esses that serve as intermediaries between the TSPS kernel process
and CSOP and DAP. The TSPS Spooler Input Process (T'SIP) shares
a memory buffer with the TSPS process. TSPS queues messages by
priority in this buffer. TSIP dequeues these messages and passes them
to CSOP via interprocess messages. CSOP then merges the TSPS-
generated messages into a single, systemwide, prioritized queue for

REAL-TIME ARCHITECTURE 823

‘€1 "ON SdS.L 10j 90BJI2JUI JJRID 19)Uad SoUBUUIB—F] S|

ALL gsv 1S5d 1954
dId 155d
VSY PI. 0Sd 0954
_ 1asd 1995
-1 SOd
w oasd 099s
- 00 - NDO 0 - TSSd 1T¥Yd01 -- 0%T SaWd
v.Ly/SSd nNd 4svd MNIT Hd¥dd3d nNd no HNI SAS QavOTd3A0
WION SZAS WIT LY¥D HNI 5078 ¥Md/9a1d YONINW HOLYH TVOILI¥D HIWH SAS
SS:WW:HH Ai/00/WKW <d> 0°1T°TLET SdSL XgvVI-11L9

824 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

printing to the maintenance terminals. The TSPS Display Page Con-
trol Process (TPCP) controls the TSPS application displays. TPCP
receives change of state information from the TSPS process via
interprocess messages. TPCP then translates this into the appropriate
display page control information and directs DAP via interprocess
messages to change the state of the various display page indicators.

The above-mentioned processes are potentially subject to being
killed as the result of a system error or manual action. However, they
provide a critical service and must have continuous operation.
DMERT provides a Craft Monitor (CMON) process that monitors the
operation of craft processes. CMON will immediately recreate any
craft process that dies, along with any other process that must be
reinitialized. CMON itself is monitored by the User-Level Automatic
Restart Process (ULARP). ULARP will automatically restart any
user-level process under its surveillance should it die. ULARP execu-
tion is monitored by the DMERT System Integrity Monitor process
(SIM).

TSPS input message syntax is quite different from that used by
DMERT. The processing of these input messages is also performed
quite differently. As such, it was necessary to modify the DMERT
shell to handle TSPS input as well. When an input message is entered
by the craft and read by the combined shell, it first checks for a TSPS
syntax message (the most likely to be input). If the input is a TSPS
message, it is sent to the TSPS process in an interprocess message.
The TSPS process will look up the message in its memory-resident
catalog and act on it accordingly. If the input was not a TSPS message,
the combined shell handles it in the standard DMERT fashion. That
is, a disk directory search is performed to find the appropriate user-
level process to execute in response to the command. This process is
then created and executed to handle the input accordingly.

5.3.3.2 PSI diagnostic control process. The PSI diagnostic control
process is a user-level process that controls the execution of diagnostic
tests on the off-line PSI. The PSI diagnostic was designed similar to
DMERT common-system diagnostic processes and is woven into the
DMERT diagnostic control structure. It is reacted and executed on
demand as a result of a manual request, routine exercise or automatic
diagnostic request. The PSI diagnostic creates the PSI diagnostic
driver and communicates with it through interprocess messages to
coordinate on-line and off-line PSI tests and TSPS process F-level
interrupt recovery actions.

5.3.3.3 Peripheral bus control process. Power to the PSI peripheral
buses is controlled by the 3B20D Processor’s scanner/signal distributor
(SC/SD). The PSI bus-power control points are duplicated with a set
on a SC/SD controller in each I/0 processor (IOP). The Peripheral

REAL-TIME ARCHITECTURE 825

Bus Control Process (PBCP) monitors and controls the status of the
PSI peripheral buses. PBCP interfaces with the DMERT SC/SD
administrator and the TSPS process via interprocess messages to
coordinate actions. PBCP is a critical process that must always be
active. Hence, it runs under the surveillance of ULARP.

VI. SUMMARY

This article has described how the characteristics of the TSPS No.
1 and the 3B/DMERT systems have been combined in the TSPS No.
1B architecture. Successful emulation of the TSPS No. 1 software has
been accomplished by hardware, firmware, and software in the TSPS
No. 1B. Emulated code, along with associated native code, has been
structured as a single kernel process running under DMERT. This
kernel process cooperates with other application processes and
DMERT to form integrated maintenance and craft interface packages.
The TSPS No. 1B provides a modern, flexible vehicle for the future
expansion of TSPS services.

VIl. ACKNOWLEDGMENTS

The TSPS No. 1B software described in this article was the result
of contributions by many people. The authors wish to acknowledge
their help in the preparation of this article. In particular, the authors
wish to thank J. M. Aiken, P. S. Bogusz, D. L. Brown, D. L. Hofmockel,
M. H. Richardson, E. S. Sachs, and M. D. Soneru for their contribu-
tions.

REFERENCES

1. R. E. Staehler and J. I. Cochrane, “Traffic Service Position System No. 1B: Overview
and Objectives,” B.S.T.J., this issue.
. B.S.T.J., 49, No. 10 (December 1970).
. B.S.T.J., 58, No. 6, Part 1 (July-August 1979).
. “3B20D Processor & DMERT Operating System”, B.S.T.J., 62, No. 1, Part 2
(January 1982).
. D. L. Bayer and H. Lycklama, “UNIX Time-Sharing System: The MERT Operating
System,” B.S.T.J., 57, No. 6, Part 2 (July-August 1978), pp. 2049-86.
. H. A. Hilsinger, J. H. Tendick, R. A. Weber, and G. T. Clark, “Traffic Service
Position System No. 1B: Hardware Configuration,” B.S.T.J., this issue.
7. T. Hack, T. Huang, and L. C. Stecher, “Traffic Service Position System No. 1B:
Software Development System,” B.S.T.J., this issue.
8. B. A. Crane and D. S. Suk, “Traffic Service Position System No. 1B: Capacity and
Reliability Evaluation,” B.S.T.J., this issue.
9. J. J. Bodnar, J. R. Daino, and K. A. VanderMeulen, “Traffic Service Position
System No. 1B: Switching Control Center System Interface,” B.S.T.J., this issue.

[=2] =] Ll)

826 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

