Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 62, No. 3, March 1983
Printedin U.S.A.

Traffic Service Position System No. 1B:

Software Development System

By T. G. HACK, T. HUANG, and L. C. STECHER

(Manuscript received June 30, 1982)

This article describes the Software Development System for the
Traffic Service Position System No. 1B (TSPS No. 1B). It discusses
the modern, multicomputer software generation and test facilities
that were provided to concurrently support both C-language and
emulated, assembly-level software development. The computing en-
vironment, software generation and test tools, and standard devel-
opment process that were developed for the TSPS No. 1B provide a
rich, robust programming environment for future network operator
services.

. INTRODUCTION

The development and testing of the software for the Traffic Service
Position System No. 1B (TSPS No. 1B) was a complex undertaking.
In addition to emulating the existing TSPS No. 1 assembly-level
program, 3B20 Duplex Processor (3B20D) native-mode (C-language)
software was developed to interface to the Duplex Multi-Environment
Real Time (DMERT) operating system and to provide the necessary
system integrity functions for the TSPS No. 1B."?

To support software development and testing in this mixed emula-
tion/native mode, it was recognized early in the project that a robust
Software Development System (SDS) and a rigorous set of standard
software development procedures (or methodology) were necessary.
Thus, basic requirements for tools, documentation standards, and
control procedures were established for the software development
environment for the TSPS No. 1B. These requirements specified that:

(i) A simple, interactive user interface to the SDS must be devel-
oped. Where possible, commands and procedures for emulation or

859



native-mode software development should be the same to minimize
the complexity of the programming task.

(i) The SDS for emulation-mode software development must be
upwardly compatible from the existing TSPS No. 1 SDS. In parallel
with the development of TSPS No. 1B, new generic features were
being developed and deployed for TSPS No. 1 (such as Automated
Calling Card Service).? To offer universal service, these features would
also have to be concurrently emulated on the TSPS No. 1B.

(i1) Complete software change procedures and tools must be estab-
lished to support the parallel development of TSPS No. 1 and TSPS
No. 1B. These procedures and tools would have to support the early
development phase of the project when programmers were initially
developing code, as well as later phases of the project when system
testing is converging to a certified, production software release.

(iv) Finally, a set of test facilities was needed to support the
integration and system testing of the software. Special tools would be
required to test the emulated, assembly programs, as well as the high-
level, native-mode software executing under the DMERT operating
system.

The following sections of this article describe how the TSPS No. 1B
Software Development System was implemented to meet these re-
quirements.

Il. COMPUTING ENVIRONMENT FOR TSPS SOFTWARE DEVELOPMENT

Before discussing the specific software generation tools and test
facilities of the TSPS No. 1B SDS, this section describes the computing
environment for T'SPS development and gives an overview of the
development system.

2.1 Overview

TSPS No. 1B software development is supported by a multiproces-
sor computing system. The system consists of five computers: one
remote IBM 3033 processor located at Bell Laboratories in Columbus,
Ohio; and four Digital Equipment Corporation (DEC) PDP-11/70
minicomputers co-located with the TSPS development organization at
Bell Laboratories in Naperville, Illinois. A variety of data links support
interprocessor communications. Figure 1* illustrates the configuration.

The IBM processor and the two PDP-11/70 computers (labeled
PSS1 and PSS2) constitute the Programmer Support System (PSS).
It is on these systems that source modification, load building, and

* Acronyms and abbreviations used in the figures and text are defined at the back of
this Journal.

860 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983



O
=

PROGRAMMERS
ICN
MVS/0S _B!L ¢ MVS/0S PSS1 PSS2
IBM 3033 IBM 3033 PDP11/70 PDP11/70
(cB) (NAP} (NAP) (NAP)
SPC 1A EDITS
EMULATED
ASSEMBLIES 3B SOURCE
LOADS CODE
POST-
PROCESSING
TERMINALS
AND

PRINTERS
\
\

BLICN- BELL LABORATORIES

EOATOY i R
PDP11/70 PDP11/70
CB - COLUMBUS, OHIO PRINTERS
LAB - LABORATORY I l
LSS - LABORATORY SUPPORT SYSTEM
MVS - MULTIPLE VIRTUAL STORAGES 18 38
NAP - NAPERVILLE, ILLINOIS PROCESSOR PROCESSOR
0S - OPERATING SYSTEM
PSS - PROGRAM SUPPORT SYSTEM LAB 1 LAB 2
(NAP) (NAP)

Fig. 1—Software Development System for TSPS No. 1B.

software administration are done. The remaining two PDP-11/70
computers reside in the TSPS system laboratories and are part of the
Laboratory Support System (LSS). Each is paired with a 3B20D
Processor and is used to support developer, integration, and system
testing for 3B20D-based generic programs.

2.2 Local interactive development environment

TSPS programmers use the PSS1 and PSS2 computers to modify
source files and create executable versions of software. These com-
puters run the UNIX* time-sharing operating system, which provides
a general-purpose, multi-user, interactive development environment.*
The UNIX operating system has a number of characteristics that
make it attractive for software development. First, it is extremely easy
to learn and use. The command-line interpreter (the “shell”), the
interactive editor, and the hierarchical file system are particularly
simple in nature. Second, the shell and C-language programming
environment provide powerful and flexible facilities to create and
combine software tools to support the generation and administration
of software. Many of the tools used in TSPS have been created in this

* Trademark of Bell Laboratories.

SOFTWARE DEVELOPMENT SYSTEM 861



environment. Finally, the Programmer’s Workbench facility,® available
with the UNIX operating system, offers:
(i) A sophisticated document preparation system to prepare doc-

umentation supporting the development process

(i) A Remote Job Entry (RJE) subsystem that transmits jobs to
other computing systems and returns output to appropriate users

(zii) A complete Source Code Control System (SCCS) for control-
ling and maintaining multiple versions of source code.
The software development is partitioned so that C-language developers
use the PSS1 system and emulated, assembly-language developers use
the PSS2 system.* System load building makes use of both PSS1 and
PSS2. C-language development is solely supported on the PSS1 sys-
tem. Emulated development, on the other hand, is accomplished
through the interaction of the PSS2 system and the remote IBM 3033
processor.

2.3 Remote batch environment for emulated development

TSPS emulated software is developed in a part interactive, part
batch-oriented computing environment. Much of the SDS for emulated
code has been upgraded and carried over from the previously existing
batch-oriented SDS for the TSPS No. 1.° The PSS2 system was added
to the previously existing SDS for the TSPS No. 1 and provides the
front-end user interface to the SDS for emulated programs. When the
PSS2 system was added, the programmers gained a modern set of
interactive commands that allow them to initiate the various software
generation jobs for emulated code. Developers log into PSS2 and
modify “edit files” that contain edit statements to be applied against
the emulated source files, which are stored on the remote IBM system.
The application of edits and all software-generation steps run under
the Multiple Virtual Storages (MVS) operating system in a batch
mode on the IBM processor.

For example, once a programmer has finished modifying the edit file
on the PSS2 system, a single swap command can be issued to construct
a Job Control Language (JCL) script designed to invoke, through the
UNIX RJE facility, a remote emulated assembly on the IBM processor.
The job file is sent via the Bell Laboratories Interlocation Computing
Network and queued to be executed on the IBM/MVS system at
Columbus. When the assembly is complete, the listing file is printed
locally. Commands similar to swap are provided for link editing and
other functions. These commands are described in more detail in
Section III.

* Subsequent references to “emulated, assembly” language will be shortened to
“emulated” language.

862 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983



From the programmer’s point of view, all activity takes place on the
PSS2 system. The commands that create the remote batch jobs look
very much like local commands. Since required output data (tapes,
files, or listings) are returned to the local users, the use of the IBM/
MVS system is transparent to the user.

2.4 Local interactive environment for C-Language development

The PSS1 system provides the computing environment for C-lan-
guage program development. It can support as many as 36 simultane-
ous interactive users, although prime-time usage is typically about 25
users. For the most part, terminals are connected through a dial-up
arrangement. There are, however, a few “hard-wired” terminal con-
nections into the TSPS System Laboratories to guarantee access to
programmers using laboratory test facilities.

Software tools that support C-language development on the PSS1
system include: the text editor, the 3B20D Software Generation Sys-
tem (3BSGS), the Change Management System (CMS), and the
Source Code Control System. The text editor is used to modify C-
language source files. The 3BSGS is a cross-compilation and link-
editing system that generates executable files for the 3B20D Processor
from source code. CMS and SCCS control and track the development
process and provide the mechanisms to maintain multiple versions of
source and object files.

From the programmer’s perspective, the development scenario is
quite simple. A source file is retrieved from SCCS, modified with the
editor, compiled to produce an executable file using the 3BSGS, and
data-linked to the Laboratory Support System computers for testing
in the TSPS System Laboratories. With the exception of testing, all
work takes place interactively on the PSS1 system.

2.5 Laboratory support processor

The support processor used in the TSPS Laboratory Support Sys-
tem (LSS) is a PDP-11/70 computer running under the UNIX oper-
ating system. The flexible environment of the UNIX operating system
can support multiple testers simultaneously. For TSPS development,
there are two system laboratories that are used to create the laboratory
environment for field support and to enable realistic system testing of
TSPS software. Section V describes the LSS in more detail.

2.6 Networking facilities

As we can see in Fig. 1, the processors within the TSPS computing
environment are interconnected by a variety of data links that create
a reliable, secure computer network. Each PSS computer is connected
by two separate links to the other PSS computer and the two LSS

SOFTWARE DEVELOPMENT SYSTEM 863



computers. One of the connections is a 9.6-kb link designed to be used
with the cu command. (The cu command gives a user on one system
the appearance of being logged into another.) Commands can be
executed on the remote system and files can be transferred in'both
directions. The second type of connection is a 56-kb link that uses
DEC DMC-11 hardware as the primary intercomputer file transfer
mechanism. It can support effective file transfer rates of up to 2000
bytes/second. The remaining data link is a component of the Bell
Laboratories Interlocation Computing Network connecting the Naper-
ville and Columbus locations. The primary connection is established
through 56-kb private lines between two IBM 3033 processors running
the MVS operating system, the remote IBM system at Columbus, and
a local interface system. The two T'SPS PSS computers are connected
to the local IBM/MYVS system with special-purpose 9.6-kb hardware.
Using the RJE subsystem, batch jobs can be sent through the local
IBM/MVS system to the IBM/MVS system at Columbus. The capa-
bility also exists to return files to the PSS system or generate local
output tapes or listings.

lll. SOFTWARE GENERATION TOOLS
3.1 Overview

The primary function of a software generation system is to transform
symbolic source language statements into a format executable by the
target processor. For TSPS No. 1B, the target processor is the 3B20D
Processor. A software generation system is usually a collection of tools
that perform this transformation in phases. The compilation (or assem-
bly) phase translates the source module containing symbolic instruc-
tion and data statements into machine-readable form, called a
“relocatable object file.” This file also contains symbol definitions and
relocation information to be used in the linking-loading phase. The
linking-loading phase enables separately compiled modules (relocata-
ble object files) to be combined into a single executable unit, called a
“load file.” A final process-loading phase is used to transform the load
file to a process-file format.

3.2 Emulated software generation

During the development of the TSPS No. 1B, special-purpose mi-
crocode was written for the 3B20D processor to emulate the Stored
Program Control 1A (SPC 1A) assembly language used in TSPS No.
1. This allowed a large portion of the existing TSPS software to be
transported to the 3B20D Processor without modification. In this
approach, the emulated source statements were kept identical to the
SPC 1A assembly-language statements. However, the object form (the
machine-equivalent form) was modified to take advantage of the

864 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983



powerful micro-instruction set of the 3B20D. This was done to maxi-
mize the real-time processing capability of the TSPS No. 1B system.
To ensure commonality between TSPS No. 1 and TSPS No. 1B
assembly-level programs, the existing SPC 1A assembler and loader
were retained. The new 3B20D object format for the TSPS No. 1B
was produced by two new software generation tools—a “load post-
processor” and a “listing post-processor.” The load post-processor
transforms an SPC 1A load file into a 3B20D load file, and the listing
post-processor reformats the assembly listing to reflect the new, emu-
lated instruction formats. In addition, many of the existing SPC 1A
SDS tools were retained and significantly upgraded by the addition of
the PSS2 system. Figure 2 shows the steps involved in emulated

software generation.

ADVANCED
PROCESSOR
EDITOR
EDITS

ADVANCED PROCESSOR EDITOR
SWITCHING ASSEMBLY PROGRAM

OBJECT
MODULE

STORED PROGRAM CONTROL
LOADER

LOAD POST- PROCESSOR

STORE
LOADER

POST-
PROCESSED
LOAD
FILE

STOO
- S§T37
{3B DATA
LIBRARIES)

Fig. 2—Basic steps in emulated, assembly-language software generation.

SOFTWARE DEVELOPMENT SYSTEM 865



3.2.1 The TSPS assembler and loader

The assembly process for TSPS emulated code combines both an
editing and an assembly operation. Editor statements are prepared on
the PSS2 system and transmitted to the remote IBM/MVS system.
These editor statements are then processed and applied to the emu-
lated source file by the Advanced Processor Editor (APE) running
under MVS. APE is a simple, line-oriented editor with the basic
“insert,” “replace,” and “delete” functions. It is specifically designed
to work with the assembler, passing the edited source as input to the
assembly process.

The assembly operation is performed by the powerful SPC-SWAP
(Switching Assembly Program) assembler,”® which also runs under
MYVS. Besides performing the standard source-to-object conversion, it
has a sophisticated macro capability and a variety of useful pseudo-
operations for controlling listing format and establishing symbol defi-
nitions. In addition, there is a mechanism for creating and maintaining
special-purpose “library” files. Library files of symbol or macro defi-
nitions can be created in one SPC-SWAP run, then later accessed by
subsequent source module assemblies for the purpose of symbol or
macro resolution. This is not only a convenient mechanism for sharing
global symbol definitions between source modules, but also allows a
single source file to be assembled in different environments, resulting
in different object modules. The latter technique is used in TSPS to
develop code for multiple generics from a single source file and is
discussed further in Section 4.1.

To perform an assembly, T'SPS developers invoke the swap com-
mand on the PSS2 system. This command creates a Job Control
Language script, which is executed on the remote IBM/MVS system.
The primary outputs of SPC-SWAP are an object module, which is
retained on the IBM file system, and an assembly listing, which is
printed locally.

After the assembly process, the next step in producing an executable
file for the 3B20D Processor is to combine the SPC-SWAP object
modules for a given generic using the SPC loader. This loader uses a
special set of control statements that specify what areas of emulated
address space are available for loading object modules, which modules
are to be loaded, and, optionally, what their load addresses are. The
output of the SPC loader is a file or magnetic tape containing the
relocated, fully bound, generic load file. At this point, however, the
load file is suitable only for loading into an SPC 1A used in TSPS No.
1. Further post-processing (described in Section 3.2.2) is then done to
produce a 3B20D-compatible format.

In addition to a full generic load, the SPC loader also has the
capability to produce what is called a “partial-load” file. During the

866 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983



generation of a full generic load, the SPC loader is directed to create
a special file on the IBM/MVS system called a HISTORY. This
HISTORY file contains the information necessary to completely char-
acterize the generated load file. This includes the load image itself; the
names, starting addresses, and sizes of the object modules; free space;
and all external symbol definitions and references. Once a HISTORY
file has been created, any TSPS developer on the PSS2 system can
reassemble a selected subset of generic source modules and issue the
ppload command to build a partial load on the IBM/MVS system.
The items input to the ppload command identify the HISTORY file
and the reassembled object modules. The partial-load process con-
structs a new load image from these input files, then compares it to
the image contained in the HISTORY file. The final output is a
magnetic tape containing the changed instruction or data words. This
tape, after post-processing, can be taken into the TSPS system labo-
ratory and overlaid on the full generic load file. The partial-load
capability is used extensively in the early stages of TSPS generic
development. It is a very flexible and convenient means of creating a
developer’s private software version for testing.

3.2.2 Post-processing— format conversion from SPC 1A to 3B20D
format

To convert from SPC 1A format to 3B20D format, a load post-
processor was developed to transform the output of the existing SPC
loader into the new 3B20D encoding. In addition, a listing post-proc-
essor was developed to convert program listings to account for the
changes in the order encoding and also to provide address and data
fields in hexadecimal, which is the native number base for the 3B20D.

The load post-processor accepts as input a HISTORY file produced
by the SPC loader. The HISTORY file contains not only the actual
load image but also specifies whether an SPC word corresponds to a
program or data instruction. Each 40-bit (double-word) SPC program
instruction is translated into a 64-bit, 3B20D encoding (two 32-bits
words) as required for the emulation.”? The reformatting that is done
depends on the SPC operation code and can completely rearrange the
fields in an instruction. The translation algorithm is encoded into a set
of common routines that are shared by the load and listing post-
processor. This ensures that listing and load translations remain syn-
chronized. Both the load and listing post-processors are run as batch
jobs on the IBM/MVS system and are initiated remotely from the
PSS2 system.

3.2.3 Creating a DMERT process from an emulated load file
The TSPS process is a key component of the TSPS No. 1B system
since it has primary responsibility for call-processing functions.? It is

SOFTWARE DEVELOPMENT SYSTEM 867



a DMERT kernel process made up of both C-language and emulated
software. The C-language portion is built in the standard fashion using
the 3B Software Generation System (see Section 3.3.1). The emulated
portion is stored in DMERT data libraries and appears as pure data
to the C-language software generation process. The data libraries are
stored as separate files on the 3B20D disk and are linked into the
TSPS process address space at process creation time. There are 32
data libraries for emulated software, each being one segment (128K
bytes) in size.

3.2.4 Overwrite generation

In the later stages of the development of a generic, rigorous change
procedures are introduced to tighten control over changes to the
software. This is known as the “frozen” mode of development and
begins normally with the start of system testing.® In frozen mode,
changes in emulated code are applied in overwrite form rather than by
full reassembly and linking of source modules. An overwrite consists
of just those program and data instructions that are being modified in
a program change. Thus, an overwrite tends to be small in size and the
impact of the change is local rather than global. Overwrites are usually
inserted into a stable program version and tested one at a time in a
cumulative fashion. In this way, the generic program evolves in a
controlled way with each change being tested before the next is
applied.

3.3 C-Language software generation

During the lifetime of the TSPS No. 1 system, all software devel-
opment was done in assembly language. However, for the introduction
of the TSPS No. 1B, as well as for the development of future operator
services, significant portions of the new software will be developed in
the C programming language. Thus, a new set of software tools was
implemented to support the native-mode development process for the
TSPS No. 1B.

3.3.1 The 3B Software Generation System

The 3B Software Generation System (3BSGS) is a collection of
software tools available with the 3B20D Processor.” These tools
transform C-language source code into object files that can be loaded
into the 3B20D disk and executed under the DMERT operating
system. The main constituents of the 3BSGS are the C compiler
(3bcc), the 3B20D assembler (3bas), the 3B20D link editor (3bld),
and the 3B20D process loader (3bldp). These programs are designed
to execute in the environment of the UNIX operating system.

The C compiler accepts C-language source files as input and trans-

868 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983



forms them into relocatable object files. The 3B link editor, 3bld, can
combine several object files into one by relocating program and data
instructions and resolving externally defined symbols. It also provides
the mechanism to resolve references to library routines. (Libraries are
collections of precompiled modules that typically contain commonly
used routines that are shared among many modules.) For TSPS No.
1B, the output of 3bld is passed to the 3B20D process loader for final
processing.

The 3B20D process loader, 3bldp, takes as input a collection of
relocatable object files produced by 3bcc or 3bld. By using a special-
purpose specification file, it constructs an output, called a process file,
which has a format appropriate for execution under the DMERT
operating system.

3.3.2 The Make Program

For TSPS No. 1B, a utility program, Make, is used extensively in
conjunction with the 3BSGS during the software generation process.
The purpose of Make is to automate the construction of a process file
when one or more of the source files on which it depends have been
modified. The generation process is controlled by a special-purpose
description file, frequently referred to as a “makefile.”

The advantages of the Make program are that it:

(i) Ensures that a process file is constructed correctly in that no
commands are accidentally forgotten or specified incorrectly
(i) Regenerates only those files that have been affected by a
change

(iii) Minimizes the programmer effort in building executable proc-
esses.

For these reasons, Make is used extensively in TSPS No. 1B devel-
opment. For the initial TSPS No. 1B generic, there are approximately
50 makefiles used in building over 300 3B20D processes.

3.3.3 Dependence on DMERT header files and libraries

The TSPS C-language software runs under the DMERT operating
system. The two chief software mechanisms that support communi-
cation between the TSPS application and the operating system are
header files and libraries. Header files are typically used to define data
structures that are shared between processes or shared between source
files within a single process. For example, there is a header file that
contains data declarations specifying the layout of a DMERT Process
Control Block (PCB) for a supervisor or user process. Any source file
that references the PCB will include this header file through the
“#include” mechanism provided by 3bcc, by which the PCB data
declarations are made available to the compilation process. Libraries,

SOFTWARE DEVELOPMENT SYSTEM 869



on the other hand, typically contain commonly used functions or
routines. References to libraries are resolved by 3bld during the
software generation process. Libraries are ‘usually organized on a
functional basis. For example, the craft interface library contains
functions and routines oriented towards applications involved with the
handling of craft input messages or the generation of output messages.

The DMERT operating system contains a large number of header
files and libraries to support TSPS development. With each DMERT
release, applications receive not only the latest version of DMERT
software, but also updated versions of the header files, library files,
and the 3BSGS. These are installed on the PSS1 system to support
TSPS development.

3.3.4 Linking C and emulated software

As previously mentioned, the TSPS process contains both C-lan-
guage and emulated programs. The emulated code is allocated one
megaword of the available two-megaword-process address space and
contains the bulk of the TSPS call-processing software. Naturally,
there is a need to transfer control between emulated and C-language
programs. Since these programs require different versions of micro-
code, a processor “mode switch” is required. Two special assembly-
language instructions, cale (call emulated) and smt (switch mode and
transfer), were developed to perform this function. Cale is a native-
mode instruction that effects a mode switch and a transfer to emulated
address space. Smt is an emulated instruction that performs a similar
function but in the reverse sense.

From a software-generation perspective, the interface between em-
ulated and native mode is quite simple. Routines called through cale
or smt are accessed through transfer vectors. An emulated program,
called MADEP, contains a table of transfer vectors, one for each
emulated routine called from native mode. To link from a native to an
emulated routine, the developer defines a symbol, say etv, equal to the
address of the transfer vector in MADEP. (These definitions are kept
in a header file dedicated for this purpose.) The emulation routine can
then be accessed by an “spcxfr(etv)” function call in a C program.
Spcxfr is an IS25 assembly-language routine that executes a cale to
effect the transfer.

To transfer from emulated to native mode, the developer defines a
global symbol, say ntv, equal to the address of the transfer vector for
the desired function. These transfer vectors are forced to specific
locations by special control statements in the loader specification file
of the T'SPS process. Thus, their location is known to the programmer.
The transfer is accomplished through the use of the smt instruction.

Although this emulated-native transfer mechanism requires some

870 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983



manual coordination between emulated and C-language files, this
effort is only required when a new routine (to be accessed from the
opposite mode) is added. These routines can be modified at will
without requiring the referencing programs to be regenerated. Since
these special-purpose routines are added infrequently, emulated and
C-language development can proceed, for the most part, quite inde-
pendently.

3.4 Overwrite considerations for the C-Language environment

For C-language software generation, there is no direct analogue to
an overwrite for emulated software. C-language frozen development
involves full recompilation and link editing of T'SPS processes. The
effect of this on TSPS development is discussed in Section 4.3.3.

3.5 Building a 3B20D disk image

Thus far, the mechanisms for constructing DMERT processes files
have been described. To complete the software generation process, it
is necessary to build a 3B20D disk image containing the total collection
of process files, special-purpose boot files, and equipment configuration
information. To accomplish this, the DMERT operating system uti-
lizes two major data bases: the Equipment Configuration Database
(ECD) and the System Generation (SG) database. The ECD contains
records describing the characteristics and status of all processor and
peripheral hardware. The contents of the ECD specify the current
hardware configuration of the system. This hardware status informa-
tion is placed in a central database, the ECD, to eliminate redundant
device information and to provide a unified approach to handling and
accessing hardware configuration data. The SG database contains
information specifying the structure of the 3B20D disk image as
designed by the application. This includes operating system param-
eters, disk partitioning information, file system names and sizes, names
and types of individual files, and the make-up of the operating system
boot image.

A DMERT tool, 3bmkdsk, provides the capability to construct a
disk image from the ECD and SG databases, DMERT process files,
and TSPS process files located on the PSS. This program generates
three 1600-bit-per-inch (bpi) magnetic tapes containing 32M bytes of
data. The image on tape is used to create a 3B20D disk.

IV. THE SOFTWARE DEVELOPMENT PROCESS

The development of the TSPS No. 1B with many software tools and
literally thousands of files requires a rigorous set of procedures (or
methodology) to allow the development of software to proceed in an

SOFTWARE DEVELOPMENT SYSTEM 871



orderly and controlled fashion. This section describes the methodology
employed for TSPS No. 1B development.

4.1 General support environment of TSPS

At the source-language level, the initial TSPS No. 1B generic
program comprises approximately 350 emulated source files and 380
C-language source and header files. In executable form, the emulated
software amounts to about 2.3M bytes of program. This excludes
scratch data areas and office-dependent data (describing the particular
line and trunk arrangements of an office), which also reside in the
emulation address space. The C-language source is transformed
through software generation tools into over 300 3B20D process and
data files.

To control development on this large collection of software modules,
official and test versions of both emulated edit files and C-language
source files are maintained under the Source Code Control System.
SCCS is a collection of programs that can store and retrieve multiple
versions of a file in a space-efficient manner. This not only maintains
a history of changes but allows the retrieval of various versions of
source code that, for example, might represent a recent release, the
current official software, software under system test, etc.

In addition to using SCCS for source control, TSPS also makes use
of a “featuring” concept. Featuring allows developers to maintain a
single source file regardless of the number of program generics under
development. In featuring, lines added, deleted, or replaced in a source
file are bracketed by feature-control directives which, during the
assembly of the source file, direct the assembler either to assemble or
ignore bracketed source code. The feature-control directives used in
TSPS emulated development are:

(i) INFOR feature-expression
(it) OUTFOR feature-expression

(i17) ENDFOR feature-expression.

Feature-expression is a Boolean combination of feature names. In
an assembly, each feature name, and consequently each feature-expres-
sion, evaluates to a true or false value. If the feature-expression
associated with an INFOR directive is true, the source lines between
the INFOR and corresponding ENDFOR are assembled. For OUT-
FOR, if a feature expression is true, it causes the bracketed source
lines not to be assembled. A set of feature expressions is associated
with each generic. In this way, a single source file can generate multiple
distinct object files, each associated with a particular generic program
under development. The featuring syntax used for C software is
different, but has the same basic capabilities.

There are two modes of development used in TSPS. The “non-

872 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983



frozen” mode is the first stage in the development process when most
of the new feature software for a generic is written. The intent is to
give the programmers as much freedom as possible in writing and
testing their code. When most of the new feature development is
complete, the “frozen mode” is entered. In this mode, tight control is
exercised over changes that are applied to the generic. Each change is
documented and tested individually to assure a controlled evolution of
the generic software. The sections that follow describe in some detail
how development works in these two distinct environments.

4.2 Non-frozen-mode methodology
4.2.1 Emulated development

4.2.1.1 Creation and modification of source modules. In the non-frozen
mode, programmers have a large degree of freedom in modifying
existing source files or creating new ones. To create a new source file
for emulated program development, the developer simply uses the
interactive editor to input emulated statements. The new source file
can be assembled, put into executable form by the partial load capa-
bility, and tested in the TSPS system laboratories. At the time of the
next “base load” (see 4.2.1.3), the source file will be installed on the
remote IBM/MVS system where all emulated source files are main-
tained.

Most non-frozen-mode activity involves modifying APE line edit
files under the control and administration of the TSPS Subsystem for
Non-Frozen Development (TSPNF).

TSPNF uses a strategy that allows multiple developer teams to
work in parallel in a non-interfering way. The hierarchical nature of
the file system is used to logically group edit files based on generic
name, base-load name, and team name. Thus, several teams may have
edit files affecting the same source file. Individual team members can
create edit files within the team directories via the TSPNF commands,
nfget and nfput. The nfget command is used to retrieve from the
TSPNF directory structure, for the purpose of editing, the edit file for
a source module corresponding to a particular generic, base load, and
team combination. If the TSPNF structure has no edit file for the
particular team, nfget retrieves the latest official version of the edit
file. The edit file is placed in the user’s current directory (work area).
Once the file is retrieved, the programmer can modify it as described
by interactively adding, deleting, or replacing source lines or feature
control directives. Once the edit file has been changed to the program-
mer’s satisfaction, it can be returned to TSPNF for safekeeping by the
nfput command.

4.2.1.2 Generation of private versions for testing. The PSS2 interface
for emulated program development contains a number of commands

GOFTWARE DEVELOPMENT SYSTEM 873



to be used for the generation of IBM Job Control Language (JCL)
scripts and for the submission of these scripts to the remote IBM/
MVS system for execution. Two of these commands, swap and ppload,
play a key role in generating software for testing in the non-frozen
mode of development. The swap command is used to generate and
submit the JCL for a SPC-SWAP assembly.

The swap command allows the programmer to assemble a new
source file that has been created on PSS2 or, in the case of a program
whose source is already resident on the IBM/MVS system, to specify
the name of an APE edit file to be applied to the program source prior
to assembly. Options are provided to retrieve the edit file from the
user’s current directory, the TSPNF team directory structure, or the
official set of line edit files.

Regardless of the source of the input, a generic-name parameter is
used to establish the proper environment for the assembly. This
includes setting up references to the correct SWAP symbol and macro
libraries, selecting appropriate feature names, and specifying generic-
dependent listing-format options. Typical output files from the swap
command are the assembly listing file and an object module. These
both reside on the remote IBM file system with the object module
placed in a special team partitioned data set (a single data set contain-
ing a collection of object modules for a specific development team).
The listing file can be printed locally in original or post-processed
format.

The ppload command provides the programmer interface to the
partial load capability described in Section 3.2.1. This command will
generate a partial load run using the HISTORY file from the latest
base load (see Section 4.2.1.3) and all of the object modules in a
specified set of team data sets. The result is a file on the IBM/MVS
system in post-processed format that contains just the program differ-
ences introduced by the team object modules. Through the use of an
optional parameter, this partial load file can be written to tape. This
then provides a convenient mechanism to create a private, team
version of software that can be taken into the system laboratory,
overlayed on the current official version from the last base load, and
tested.

The non-frozen development scenario from the programmer’s point
of view is quite simple. An edit file for the source file to be modified is
retrieved with the nfget command, and changed with the interactive
editor. Private developer or team test loads can be built by use of the
swap and ppload commands. Once the edits have been tested, the edit
file can be returned to the team TSPNF structure with the nfput
command. All programmer activity with the exception of the testing
itself occurs on the PSS2 system.

874 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983



4.2.1.3 Submission and integration of software changes. Periodically,
during the process of developing a new generic, newly developed
software is integrated with the latest approved version of the generic
program and tested. This process is called the “base load” process
because it results in a new, independently certified program load that
serves as the base for future development. For a base load, each team
leader is responsible for submitting a complete description of the team
input. This information includes the list of team edit files to be
incorporated into the base load, the features that are completed with
this submission, and other appropriate documentation as needed.
Using this input, a new software version is constructed and turned
over to the TSPS Integration Group for certification in the system
laboratory. When certification is complete, the software is made avail-
able to the developer community.

4.2.2 C-Language development

Thus far we have described the non-frozen development environ-
ment for emulated programs. This section addresses the C-language
development environment. The Change Management System (CMS)
plays a key role in both frozen and non-frozen C-language development
in TSPS. To understand how C-language development proceeds, it is
necessary to grasp the basic concepts employed in CMS.

4.2.2.1 The Change Management System. CMS is a collection of
UNIX programs aimed at controlling the activity of programmers,
test-teams, and administrators engaged in C-language software devel-
opment. In CMS, all development activity is tied to the notion of a
modification request (MR).

An instance of CMS has three main components:

(£) A set of project source files maintained under the Source Code
Control System (SCCS), described earlier. This allows multiple ver-
sions of a source file to be kept (for example, the current official
version, a version undergoing system test, and a developer’s private
version).

(ii) A relational database that maintains the status of MRs and
relates MRs to SCCS (version) identifiers. This not only provides the
status of MRs but also permits the retrieval of source file versions that
correspond to particular features or code changes.

(iit) A set of directory structures called nodes, each of which is
identical in makeup (i.e., reflects the generic program’s directory
structure) and is capable of holding all source, object, process, and
data files that constitute a generic program.

The use of CMS in TSPS C-language development will be the topic of
the next several sections.

4.2.2.2 Creation and modification of source modules. CMS maintains

SOFTWARE DEVELOPMENT SYSTEM 875



an official source repository that consists of one SCCS file for each
source file used in a generic development. For TSPS, this includes C-
language source files, header files, and makefiles. These SCCS files are
stored in a project directory structure, a subtree of the hierarchical file
system, organized so that files making up a single process typically are
found in a single directory, while the files associated with related
processes are grouped in directory structures that are subtrees of the
overall project directory structure.

As previously mentioned, the SCCS files can contain multiple ver-
sions of the corresponding source file. To modify a source file, the
programmer first extracts the latest version of the file to be modified
from the SCCS file in the official repository. The programmer then
edits the file with the text editor, builds an executable version of the
affected process file, and tests the resulting product. When satisfied
with the changes to the source file, the programmer returns the new
version of the file to SCCS.

All source file change activity is associated with an MR number.
Basically, the MR is a name under which a set of software changes are
grouped. The programmer is quite free to use MRs as necessary during
the non-frozen mode of development. Typically, the programmer will
define an MR to represent a feature or subfeature being developed.

4.2.2.3 Generation of a private version of software for testing. The
generation of executable process files from C-language source uses the
3BSGS and makefiles, as descibed in Sections 3.3.1 and 3.3.2. However,
rather than using the make command, an enhancement of make, called
build is employed by TSPS developers. Build is a software tool provided
as part of CMS. It provides a very convenient mechanism to construct
a private version of a process or set of processes. The programmer
executes a single command and only has to deal with those files that
have been modified. Other required files are automatically shared from
the official directory structure. This sharing not only saves file space,
but also eliminates the need for time-consuming, error-prone copying
of files.

In TSPS, each programmer maintains a private node for develop-
ment. All programmers share the official node. The developer scenario
is as follows:

(i) A command is issued to retrieve the source files to be modified.
(i) The retrieved source files are edited.

(iii) Executable versions of the software are constructed using build.

(iv) The executable files are transported to the system laboratory
for testing.

(v) When changes are complete, the source files are returned to
SCCS.
There is little chance for error during software construction since build

876 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983



automatically generates the commands to reprocess any and all files
that have been affected by the editing. This eliminates the manual
effort to reprocess files, the potential errors caused by forgetting to
reprocess files, and the overhead of unnecessarily reprocessing files.

4.2.2.4 Submission and integration of software changes. In the non-
frozen mode, as developers complete testing of new software associated
with an MR, the code is submitted by executing the CMS submit
command. This changes the status of the MR in the CMS database
from “active” to “submitted.” In addition, documentation specifying
the feature(s) covered by this submission and the source and process
files affected is turned over to the TSPS Integration Group.

As with emulated software, (and usually at the same time), C-
language software undergoes a “base load” process. After the load is
tested and certified, the official node is updated with all files in the
test node and the MRs are marked “approved” and “integrated” in
the CMS database. Non-frozen development can then proceed with
the newly tested and approved official node.

4.3 Frozen-mode methodology
4.3.1 Overview

In the non-frozen mode of development, the emphasis is on giving
the programmer freedom to make large-scale changes to existing
software to facilitate new feature development. As system testing
begins, TSPS software is placed under rigorous change control proce-
dures. Problems are documented in the form of trouble reports, which
are then carefully monitored. The developers submit correction reports
(CRs), which include a description of the fix, as well as the software
change itself. Each CR is tested individually against the existing
approved software version and must be approved by a Change Review
Committee with representatives from all involved project teams before
it is officially incorporated in the generic.

The intent of this method is to evolve the software in a rigorously
controlled manner. Thus, when operational problems arise, they can
be localized more easily to a particular area of software. With this
approach, a high degree of confidence in the evolving software product
is realized.

4.3.2 Emulated development

From a programmer’s point of view, the scenario for creating and
testing a correction in emulation code in frozen mode is similar to
developing code in the non-frozen mode; however, the unit of change
is substantially different. In non-frozen mode, the unit of change was
the partial load. In frozen mode, it is the overwrite described in Section
3.24.

SOFTWARE DEVELOPMENT SYSTEM 877



Special “patch” directives recognized by SPC-SWAP are placed by
programmers in the overwrite source code to ensure that a change
does not cause the entire object file to be relocated in memory.
Replacement of program or data words is permitted, but only by
instruction sequences of equal size. If a change is larger than the
instruction sequence being replaced, a transfer to “patch” area is made.
(Patch area is spare memory space reserved for this purpose.) In this
way, object modules remain the same size and the number of memory
locations whose contents change is minimized.

4.3.3 C-Language development

For C-language development, there is little difference between the
frozen and non-frozen modes. The same tools are used and the same
basic development scenario is followed. The main difference is that
each MR represents an existing system problem or minor enhancement
rather than a new feature. Therefore, the amount of software associ-
ated with an MR tends to be of a smaller quantity. In addition, as with
emulated software, software change reports are generated and submit-
ted to document the change and must be approved through the same
process.

V. LABORATORY SUPPORT SYSTEM

The Laboratory Support System is a software testing system that
enables users to test their programs in a TSPS system laboratory. It
is generally concerned with the laboratory execution environment of
TSPS programs.

5.1 System laboratory configuration

To provide sufficient test capabilities for TSPS development, there
are two independent TSPS system laboratories. Generally, both sys-
tem laboratories support parallel execution environments for TSPS
programs. The configuration for a T'SPS system laboratory is shown
in Fig. 3.

5.1.1 System laboratory hardware configuration

The TSPS No. 1B is controlled by the SPC 1B, which consists of a
3B20D Processor and a Peripheral System Interface (PSI). The com-
plete description of the SPC 1B is detailed in Ref. 11. In addition to
the SPC 1B, a TSPS system laboratory also contains a set of TSPS
peripheral units, operator consoles, and a Laboratory Support System.

5.1.2 Laboratory Support System

The Laboratory Support System is primarily used to support de-
bugging on the SPC 1B, for controlling the operations of the SPC 1B

878 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983



CCIO—CENTRAL CONTROL INPUT/OUTPUT
FTS—FIELD TEST SET
GRASP—GENERIC ACCESS PROGRAM
LOTS—LOCAL TOLL SIMULATOR
MESS—MICROPROCESSOR SERVICE
EVALUATION SYSTEM SIMULATOR
MICLOB—MICROPROCESSOR-CONTROLLED

LOAD BOX
MIP—MICRO-LEVEL TEST SET
FTS MLTS INTERFACE PROGRAM
DATA MLTS—MICRO-LEVEL TEST SET
LIN KS MOPS—MICROPROCESSOR OPERATOR
POSITION SIMULATOR
SLS—SINGLE-LINE SIMULATOR
TUS—TEST UTILITY SYSTEM
G
R
CCIO BUS
‘; SPC 1B SIMULATOR PDP 11/70
P
TUS
MIP
SIMULATORS
MICLOB I l
MOPS
uce DATA LINKS
SLS
LOTS
MESS

Fig. 3—Laboratory configuration for TSPS No. 1B.

in the test environment, and for loading the SPC 1B memory. The
LSS consists of a PDP-11/70 support computer, special laboratory and
generic utility systems, and TSPS call simulators, which support
program testing. The PDP-11/70 is connected to the SPC 1B by a
Central Control Input/Output (CCIO) bus simulator unit."

There are four major debugging tools associated with a TSPS LSS.
They are the Test Utility System, the Micro-Level Test Set (MLTS),
the Field Test Set (FTS), and the DMERT Generic Access Program
(GRASP). Each provides a distinct set of debugging capabilities.

5.1.2.1 Test Utility System. The Test Utility System (TUS) is the
principal, high-level, debugging tool for the software developed for the
SPC 1B. TUS provides symbolic access to data and a “C”-like utility
language. It resides partially on the LSS and partially on the SPC 1B.
The TUS support processor subsystem on the LSS performs TUS
input and output processing and TUS system control. Users log into
TUS on the support processor subsystem,; this subsystem converts the
user’s utility commands into executable command groups that are then
sent to the TUS test processor subsystem on the SPC 1B. The test
processor subsystem executes under the DMERT operating system.
Symbolic references are resolved on the LSS using symbol tables
constructed on the PSS as part of the base load process.

SOFTWARE DEVELOPMENT SYSTEM 879



As the TUS test processor subsystem on the SPC 1B receives
command groups to be executed, requested break points or matchers
are set up, and associated utility commands are processed. Any raw
data that result from the utility commands are collected and sent back
to the TUS support processor subsystem to be processed. Qutput to
the user includes symbolic references and processed data. Commands
are available to: read or write any memory location, display or send a
message to a process or port, enable or disable a program trace, copy
a file from the test processor to the LSS, start or stop a test process,
and send an event or fault to a test process with associated data input.

Because of its symbolic access to data and its “C”-like utility
language, TUS is a powerful debugging tool. In addition, TUS is an
integral part of the system overwrite facility. TUS supports a data link
that is capable of transferring files at a rate of 56K baud. Using TUS,
overwrites are quickly transferred from the LSS to the SPC 1B when
requested by the programmer or tester. More details about TUS can
be found in Ref. 10.

5.1.2.2 Micro-level test set. The micro-level test set connects to the
microbus of the SPC 1B and is used for direct access to 3B20D registers
and memory. From a terminal connected to the LSS, simple commands
can be sent to the MLTS to insert breakpoints. After a breakpoint
fires, the SPC 1B is halted so that the tester can display or change the
contents of registers and memory locations. Once this is done, the
processor can be restarted. MLTS (unlike TUS) is a stand-alone tool
that is completely independent of the operating system on the SPC 1B
and can be used to debug at the kernel level. However, it does not
provide symbolic testing capabilities and is used only for low-level
program debugging.

5.1.2.3 Field test set. The field test set is a portable debugging tool
capable of tracing the execution of processes without interfering with
normal processor operations (Fig. 4). As such, it provides an effective
debugging capability both in the system laboratory and operational
field sites. It interfaces directly with the dual-access utility circuit in
the 3B20D Processor to record information about the execution of
processes in the SPC 1B. The tracing capabilities of the FTS are
controlled by simple commands that set up matchers, trigger functions,
and trace memory. The FTS can be used to perform a process trace,
transfer trace, data history trace, simultaneous data history and trans-
fer trace, function trace, and simultaneous data history and function
trace. Like the MLTS, the FTS is completely independent of DMERT.

5.1.2.4 Generic Access Program. The final debugging tool used in the
development of the TSPS No. 1B is the Generic Access Program
(GRASP), which is a standard DMERT utility system resident on the
3B20D. It provides basic, non-symbolic capabilities to dump registers

880 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983



Fig. 4—The field test set.

and memory, and to set up breakpoints to stop program execution at
desired points. Using the 3B20D dual-access utility circuit, GRASP
also can trace the flow of execution of instructions of a process in a
non-interfering fashion. A typical trace might record the “from ad-
dress” and “to address” of every branch instruction executed. Addi-
tional information, such as the contents of the registers, may also be
obtained. Because it is running on the same processor as the test
processes and requires the support of the DMERT operating system,
GRASP will generally interfere (like TUS) with the normal operations
of a process and is not effective for kernel debugging.

5.1.2.5 Choosing the right debugging tool. As evident in the previous
discussions, the four debugging tools used in the TSPS No. 1B devel-
opment were designed for specific applications and have overlapping
utility eapabilities. TUS is a high-level, symbolic debugging tool. The
MLTS is a low-level debugging tool. The FTS is a non-interfering
debugging tool in the sense that normal instruction sequences and
timing are not altered when using it. GRASP is a generic tool available
on an operational 3B20D. Within a particular test session, a combi-

SOFTWARE DEVELOPMENT SYSTEM 881



nation of these tools may be used. Whenever possible, TUS is used
because of its powerful debugging capabilities. The MLTS, FTS and
GRASP are used only when needed for a particular problem.

5.2 Laboratory sofiware change facility

When a new TSPS generic is developed, the TSPS system labora-
tories are used to provide a realistic environment to test the new or
changed programs. These new or changed programs are built on the
PSS and then down loaded via the LSS to the SPC 1B for laboratory
testing. Changes are often required to correct program problems
uncovered during the lab session. These changes are in the form of
overwrites consisting of program and data instructions being modified.

5.2.1 Emulated program change facility

To modify emulated programs in the system laboratory, the OVGEN
program on the PSS is used to generate an overwrite file. This file is
then transferred to the LSS and used as input to an overwrite assem-
bler on the LSS to produce an overwrite object module. Using TUS,
this module is then transferred to the SPC 1B disk and a special loader
program on the 3B20D is run to overwrite the SPC 1B emulated
address space. The overwrite assembler and loader used in this process
are described in this section.

5.2.1.1 The overwrite assembler for emulated code. NOV A is a utility
program on the LSS used to assemble overwrites for SPC 1B emulated
code. The input to NOVA is the swap overwrite file produced by
OVGEN, and the output is an absolute or relocatable object module
and a relocation dictionary for the overwrite. The information con-
tained in the relocation dictionary consists of pointers into the object
file and addresses to be assigned by the loader. NOVA also produces
overwrite and cross-reference listings to document the change in the
laboratory.

5.2.1.2 The overwrite loader for emulated code. The loader program
(NULOAD) is a relocatable loader for emulation code on the 3B20D.
It provides a means by which NOVA-assembled overwrites are loaded
into the TSPS process address space in memory. During each lab
session, NULOAD automatically monitors the allocation of patch
space and assigns patch space as needed by the overwrites. It allows
the user to combine various overwrites assembled at different times
and by different people without having one patch in one overwrite
loaded on top of a patch from another overwrite. NULOAD also is
used to load a partial load created on the PSS system.

5.2.2 Native-mode program change facility

To modify C-language programs in the system laboratory, an entire
new process file (pfile) must be built on the PSS. Once this file has

882 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983



been transferred via the LSS and TUS to the SPC 1B disk, it is
installed on the 3B20D disk replacing the previous version of the
process file. The next time the process is loaded into memory, the new
pfile is used.

5.3 Laboratory simulators

Program testing in the TSPS system laboratory often requires the
ability to either place a single call or a substantial traffic load on the
TSPS and to automatically handle calls that require operator assist-
ance in a live site. A number of microprocessor-controlled simulators
including the Single-Line Simulator (SLS), Local Toll Simulator
(LOTS), the Microprocessor-Controlled Load Box (MICLOB), and the
Microprocessor Operator Position Simulator (MOPS) have been de-
veloped as part of the LSS to provide these capabilities for the TSPS
No. 1 system and were also used to test the TSPS No. 1B. These call
simulators are described in detail in Ref. 6.

Vl. SUMMARY

The TSPS No. 1B Software Development System provides a com-
plete set of facilities for TSPS generic development on the 3B20D
Processor. Software generation tools can compile and link both emu-
lated, assembly-language, and C-language programs. Administrative
software and a rigorous development methodology control the evolu-
tion of feature development and keep track of the multiple versions of
software that exist during the development process. Special-purpose
software and hardware in the TSPS system laboratories provide a
modern test environment for debugging and certification of the soft-
ware product. These facilities are an effective and productive software
development environment for future network operator services.

Vil. ACKNOWLEDGMENTS

~ Many individuals have contributed in a significant way to the design
and implementation of the TSPS No. 1B Software Development
System. In particular, the authors wish to acknowledge the contribu-
tions of K. M. Conness, G. F. Gieraltowski, B. E. Holmes, M. S.
Koehler, B. T. Rovegno, R. J. Welsch, and S. P. Winker, who were
responsible for major components of the Software Development Sys-
tem. In addition, we would like to extend our thanks to D. L. Atkins,
B. T. Rovegno, and E. S. Sachs for their many constructive suggestions
during the preparation of this article.

REFERENCES

1. R. E. Staehler and J. I. Cochrane, “Traffic Service Position System No. 1B: Overview
and Objectives,” B.S.T.J., this issue.

SOFTWARE DEVELOPMENT SYSTEM 883



2. R. J. Gill, G. J. Kujawinski, and E. H. Stredde, “Traffic Service Position System No.
Ifl; Real-Time Architecture Utilizing the DMERT Operating System,” B.S.T.J.,
this issue.

. B.S.T.J., 61, No. 7, Part 3 (September 1982), special issue on the Stored Program
Controlled Network. .

4. D. M. Ritchie and K. Thompson, “UNIX™ Time-Sharing System: The UNIX

Time-Sharing System,” B.S.T.J., 57, No. 6, Part 2 (July-August 1978), pp. 1905-
30 .

[

5. T. A. Dolotta, R. C. Haight, and J. R. Mashey, “UNIX™ Time-Sharing System:
The Programmer's Workbench,” B.S.T.J., 57, No. 6, Part 2 (July-August 1978),
PP 2177-2200.

. J. J. Stanaway, Jr., J. J. Victor, and R. J. Welsch, “Software Development Tools,”
B.S.T.J., 58, No. 6, Part 1 (July-August 1979), pp. 1307-34.

. M. E. Barton, N. M. Haller, and G. W. Ricker, “Service Programs,” B.S.T.J., 48, No.
8 (October 1969), pp. 2866-80.

. M. E. Barton, “The Macro Assembler, SWAP—A General Purpose Interpretive
Processor,” Fall Joint Computer Conference, 1970.

. J. C. Lund, Jr., M. R. Ordun, and R. J. Wojcik, “Implementation of the Calling Card
Service Capability-Application of a Software Methodology,” Int. Commun. Conf.,
Denver, Colorado, June 1981.

10. B.S.T.J., 62, No. 1, Part 2 (January 1983), special issue on the 3B20D Processor &

DMERT Operating System.

11. G. T. Clark, H. A. Hilsinger, J. H. Tendick, and R. A. Weber, “Integration of the

3B20D Processor into TSPS,” B.S.T.J., this issue.

= &

[1=T -]

884 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983



