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In this paper we present several of the salient theoretical and
practical issues associated with modeling a speech signal as a prob-
abilistic function of a (hidden) Markov chain. First we give a concise
review of the literature with emphasis on the Baum-Welch algorithm.
This is followed by a detailed discussion of three issues not treated in
the literature: alternatives to the Baum-Welch algorithm; critical
facets of the implementation of the algorithms, with emphasis on
their numerical properties; and behavior of Markov models on certain
artificial but realistic problems. Special attention is given to a par-
ticular class of Markov models, which we call “left-to-right” models.
This class of models is especially appropriate for isolated word
recognition. The results of the application of these methods to an
isolated word, speaker-independent speech recognition experiment
are given in a companion paper.

I. INTRODUCTION

It is generally agreed that information in the speech signal is encoded
in the temporal variation of its short-duration power spectrum. To
decode the signal, then, requires techniques for both estimation of
power spectra and tracking their changes in time. This paper is
concerned with the application of the theory of probabilistic functions
of a (hidden) Markov chain to modeling the inherent nonstationarity
of the speech signal for the purposes of automatic speech recognition
(ASR).

The use of hidden Markov models for ASR was proposed by Baker*
and, independently, by a group at IBM.>*? The theory on which their
work rests is due to Baum et al.'*'" Its first appearance in the literature
occurred several years before Baker’s studies and has since been
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explored in some detail.’®*!® Our previous work in ASR has used
temporal alignment procedures based on dynamic programming tech-
niques,” and we hoped that through studying the new (to us) body of
material we could improve the performance and/or capabilities of our
present ASR systems.

Our initial goal, therefore, was to understand the theory of hidden
Markov models sufficiently well to enable us to implement a new ASR
system that could be compared directly to our existing ones. We have,
in fact, been able to accomplish that goal, and a description and the
results of our experiments are reported in a companion paper.? In the
course of our studies, we have collected and integrated a number of
loosely related mathematical techniques pertinent to Markov model-
ing. We have also modified and adapted these techniques to the
specific ASR problems we wished to study. Our purpose in writing this
tutorial, then, is to present this synthesis in a way that will be
enlightening to those not familiar with the theory of hidden Markov
models. We also hope that this treatment will provide for a better
understanding of our companion paper. Finally, we hope to make the
presentation general enough so that the theory is seen to be applicable
to more than the problem of ASR.

We shall proceed as follows. We begin by defining probabilistic
functions of a (hidden) Markov® chain and then show how they may
be used in a natural way to model the speech signal. Once this is done,
our task is reduced to solving two specific and well-defined mathemat-
ical problems: (i) computing the parameters of a proposed model
conditioned on a sequence of observations assumed to have been
generated by the model, and (ii) calculating the probability that a
given set of observations was produced by a particular model.

First we review the solution to these problems as originally given by
Baum," who treated them as problems in statistical estimation. Lest
the problems be too narrowly construed, we look at them as problems
of classical constrained optimization. This allows us to give a partial
geometrical interpretation to the Baum-Welch algorithm and to relate
it to other studies of the problem by Baum and Eagon' and Baum
and Sell."” It also makes clear that there are other methods of solution
available that may, in certain instances, have advantages over the
Baum-Welch algorithm. Finally, we discuss the dynamic programming
algorithm of Viterbi® as an alternative to the so-called “forward-
backward” method of Baum' for computing the probability of a
sequence of observations conditioned on a specific model.

The treatment of these problems in the existing literature, and as
recounted here, can lull a prospective user of the theory into a false
sense of security. The equations look innocuous enough but, in reality,
they overlook two problems that, though uninteresting from a theo-
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retical standpoint, are of great significance for a robust implementa-
tion. We believe it is worthwhile to address, first, a numerical problem
arising from the evaluation of certain frequently occurring algebraic
expressions, and then an experimental difficulty precipitated by the
inescapable reality of finite training-data set.

The numerical problem arises because, regardless of the method of
solution chosen, one is required to evaluate a product of stochastic
matrices involving a number of factors proportional to the number of
observations. In any real computer, this will ultimately result in
underflow. Fortunately, the computation can be scaled using a tech-
nique that subsequently will be seen to have some very useful prop-
erties.

The problem of insufficient training data can be ameliorated by
changing the constraints on the optimization problem. This can be
simply and directly accomplished in the classical methods. We show
that the Baum-Welch algorithm, too, can be modified to produce the
same result. Both of these methods appear to be simpler in implemen-
tation than the technique proposed by Jelinek and Mercer.’

Finally, under the heading of implementational considerations, we
discuss techniques for model averaging. These can be used both for
block processing of observations in case one is subject to storage
limitations, and for increasing model stability under some circum-
stances.

The speech recognition experiment that we had in mind was on a
speaker-independent, isolated word recognition system with a small
vocabulary. Oddly enough, this is a simpler task than those to which
the theory had already been applied by Baker' and the IBM group.’'*
Perhaps our choice of a manageable problem is responsible for the
degree of success reported in the companion paper.”’ We determined
that for our ASR task it is advantageous to use a particular kind of
hidden Markov model, which we call a left-to-right model. In such a
model there are strong temporal constraints on the Markov chain.
First, any state, once left, cannot be later revisited. Second, there is a
final absorbing state in which all observation sequences are assumed
to terminate. These restrictions on the sequences affect both parame-
ter estimation and probability computation procedures. We show how
the Baum-Welch algorithm, the Viterbi algorithm, and the classical
methods can all be adapted for use with left-to-right models.

We conclude our presentation with several sample solutions to some
artificial but nontrivial problems that illustrate concepts treated in the
foregoing discussion.

Il. A REVIEW OF THE THEORY
A probabilistic function of a (hidden) Markov chain is a stochastic
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process generated by two interrelated mechanisms, an underlying
Markov chain having a finite number of states, and a set of random
functions, one of which is associated with each state. At discrete
instants of time, the process is assumed to be in some state and an
observation is generated by the random function corresponding to the
current state. The underlying Markov chain then changes states ac-
cording to its transition probability matrix. The observer sees only the
output of the random functions associated with each state and cannot
directly observe the states of the underlying Markov chain; hence the
term hidden Markov model.

In principle, the underlying Markov chain may be of any order and
the outputs from its states may be multivariate random processes
having some continuous joint probability density function. In this
discussion, however, we shall restrict ourselves to consideration of
Markov chains of order one, i.e., those for which the probability of
transition to any state depends only upon that state and its predeces-
sor. We shall also limit the discussion to processes whose observations
are drawn from a discrete finite alphabet according to discrete proba-
bility distribution functions associated with the states.

It is quite natural to think of the speech signal as being generated
by such a process. We can imagine the vocal tract as being in one of a
finite number of articulatory configurations or states. In each state a
short (in time) signal is produced that has one of a finite number of
prototypical spectra depending, of course, on the state. Thus, the
power spectra of short intervals of the speech signal are determined
solely by the current state of the model, while the variation of the
spectral composition of the signal with time is governed predominantly
by the probabilistic state transition law of the underlying Markov
chain. For speech signals derived from a small vocabulary of isolated
words, the model is reasonably faithful. The foregoing is, of course, an
oversimplification intended only for the purpose of motivating the
following theoretical discussion.

Let us say that the underlying Markov chain has N states qi, g2,

., g~ and the observations are drawn from an alphabet, V, of M
prototypical spectra, vy, vs, - - - , Uy. The underlying Markov chain can
then be specified in terms of an initial state distribution vector n’ =
(1, 72, +++, mn) and a state transition matrix, A = [a;]1 =<1, j= N.
Here, 7 is the probability of g; at some arbitrary time, ¢ = 0, and a;; is
the probability of transiting to state g; given current state, g;, that is
a;; = prob(g; at ¢t + 1|g; at £).

The random processes associated with the states can be collectively
represented by another stochastic matrix B = [ ;] in which for 1 =<
=< N and 1<k < M, b; is the probability of observing symbol v given
current state g;. We denote this as b;; = prob(v; at ¢|g; at ¢). Thus a
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hidden Markov model, M, is identified with the parameter set
(7, A, B).

To use hidden Markov models to perform speech recognition we
must solve two specific problems: observation sequence probability
estimation, which will be used for classification of an utterance; and
model parameter estimation, which will serve as a procedure for
training models for each vocabulary word. Both problems proceed
from a sequence, O, of observations 0,0; -+ Or where each O, for
l=t=<Tissome v EV.

Our particular classification problem is as follows. We wish to
recognize utterances known to be selected from some vocabulary, W,
of words wy, w, -- -, wy. We are given an observation sequence, O,
derived from the utterance of some unknown w; € W and a set of V
models M;, M, --. , My. We must compute P; = prob(O|M;) for 1 =
i = V. We will then classify the unknown utterance as w; iff P; = P; for
1=j=V.

The training problem is simply that of determining the models
M; = (m;, A:, B;) for 1 < i < V given training sequences 0", 0%,
.++, 0", where 0" is known to have been derived from an utterance
of wordw;forl=i=<V.

One could, in principle, compute prob(O|M) by computing the joint
probability prob (O, s{M) for each state sequence, s, of length T, and
summing over all state sequences. Obviously this is computationally
intractable. Fortunately, however, there is an efficient method for
computing P. Let us define the function a,(i) for 1 = ¢ =< T as prob(0,0;
... O, and g, at t|M). According to the definition a;(z) = m:b: (Oh),
where b;(0;) is understood to mean by iff O, = vg; then we have the
following recursive relationship for the “forward probabilities™:

N

a1(j) = |:2 ﬂt(i)aiji| b;(O¢+1) 1=t=T-1. (1)

i=1

Similarly, we define another function, B:(j) = prob(0s10:42 - - -
Or|g; at t and M). We set Br(j) = 1V j and then use the backward
recursion

N
Bei) = Z aijbj(owl)ﬁlﬂ(_f) T-1=t=1 (2)
J=1

to compute the “backward probabilities.”
The two functions can be used to compute P according to

N N
P= PI‘Ob(OIM) = Z 2 at(i)aﬁbj(ol+1)ﬁt+l(j) (3)

i=1 j=1

for any ¢ such that 1 < ¢ = T — 1. Equations (1) to (3) are from Baum®
and are sometimes referred to as the “forward-backward” algorithm.
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Setting t = T — 1 in (3) gives

N
P= E ar(t) (4)
i=1
so that P can be computed from the forward probabilities alone. A
similar formula for P can be obtained from the backward probabilities
by setting ¢ = 1. These and several other formulas in this section may
be compactly written in matrix notation (see Appendix A). For in-
stance,

P=aBAB>A ... ABrl, (5)
where 1 is the N-vector (1, 1,1, ---, 1)’ and
b1(0r)
B~ w00 0 ©
0 " bw(0)

for 1 = ¢ = T. From (5) it is clear that P is a homogeneous polynomial
in the m;, a;;, and bj.. Any of egs. (3) through (5) may be used to solve
the classification problem. The forward and backward probabilities
will prove to be convenient in other contexts.

When we compute P with the forward-backward algorithm, we are
including the probabilities of all possible state sequences that may
have generated O. Alternatively, we may define P as the maximum
over all state sequences i = i, i, --- ir of the joint probability
P(O, i). This distinguished state sequence and the corresponding
probability of the observation sequence can be simultaneously com-
puted by means of the Viterbi*® algorithm. This dynamic programming
technique proceeds as follows: Let ¢:(z) = m:b:(0y) for 1 =i < N. Then
we can perform the following recursionfor2<¢=Tand1=<j=<N

o(j) = fnstg[tﬁc—l(i)aij]bj(ox) (7a)
and
wl(j) = 1%, (7b)

where i* is a choice of an index ¢ that maximizes ¢,—1(z).
The result is that P = max [¢7(z)]. Also the maximum likelihood

=i=

state sequence can be recovered from v as follows. Let gr = i*, where
i* maximizes P. Then for T'= t = 2, g;—1 = ¥x(q:). If one only wishes to
compute P, the linked list, ¥, need not be maintained as in (7b). Only
the recursion (7a) is required.

The problem of training a model, unfortunately, does not have such
a simple solution. In fact, given any finite observation sequence as
training data, we cannot optimally train the model. We can, however,
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choose 7, A, and B such that prob(O|M) is locally maximized. For an
asymptotic analysis of the training problem the reader should consult
Baum and Petrie.””

We can use the forward and backward probabilities to formulate a
solution to the problem of training by parameter estimation. Given
some estimates of the parameter values we can compute, for example,
that the expected number of transitions, v;;, from g; to g;, conditioned
on the observation sequence is just

T-1

1 ) .
Yi = F E at(l)aijbj(ot+l)ﬁt+l(])- (8)
=1
Then, the expected number of transitions, y: out of g;, given O, is
N 1 T-1 ) .
Yi=2 Yi=p Y a(i)B(i), 9)
Jj=1 =1
the last step of which is based on (2). The ratio y;/y: is then an

estimate of the probability of state g;, given that the previous state
was g;. This ratio may be taken as a new estimate, @;;, of a;;. That is,

T-1
- 2 al(i)aijbj(ot+1)ﬁt+l(j)
gGi=t-= : (10)
Yi Y adi)Be(d)

=1

Similarly, we can make a new estimate of b; as the frequency of
occurrence of v in g; relative to the frequency of occurrence of any
symbol in state g;. Stated in terms of the forward and backward
probabilities we have

Y ad))Be))

- t30=vy

bjr = T
Y ad)Be())

=1

Finally, new values of the initial state probabilities may be obtained
from

(11)

7= Il, (i) Bi(i). (12)

As we shall see in the next section, the reestimates are guaranteed
to increase P, except at a critical point.

2.1 Proof of the reestimation formula

The reestimation formulas (10), (11), and (12) are instances of the
Baum-Welch algorithm. Although it is not at all obvious, each appli-
cation of the formulas is guaranteed to increase P except if we are at
a critical point of P, in which case the new estimates will be identical
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to their current values. Several proofs of this rather surprising fact are
given in the literature.'*'” Because we shall need to modify it later to
cope with the finite sample size problem, we shall briefly sketch
Baum’s proof'® here. The proof is based on the following two lemmas:
Lemma I: Let uj,i =1, -, S be positive real numbers, and let v;,
i=1, ..., S be nonnegative real numbers such that 3; v; > 0. Then
from the concavity of the log function it follows that

o(f2)-n[3 () <]

k

S l:El: (z:In v; — wiln ui)]- (13)
3
Here every summation is from 1 to S.

Lemma 2: If c; > 0i =1, --., N, then subject to the constraint
¥i x: = 1, the function

F(x) =3 ciln x; (14)

attains its unique global maximum when

Ci
Xi = -Z—C; (15)
The proof follows from the observation that by the Lagrange method
d Ci
E[F(x)—)\?x;]=—i—)\—0. (16)

Multiplying by x; and summing over i givesA = Y ci, hence the result.

Now in Lemma 1, let S be the number of state sequences of length
T. For the ith sequence let u; be the joint probability
|

u; = Prob[state sequence i, observation O | model M]
= P(i, O|M).
Let v; be the same joint probability conditioned on model M. Then
; ui=p(O|M) & P(M)

Yvi=p(O|M) & P(M) 1mn
and the lemma gives
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P (Nl) 1

PM) T P(M) - [Q(M, M) — Q(M, M)], (18)

where
QM, M) 2 ¥ wiln v. (19)

Thus, if we can find a model M that makes the right-hand side of (18)
positive, we have a way of improving the model M. Clearly, the largest
guaranteed improvement by this method results for M, which maxi-
mizes @ (M, M) [and hence maximizes the right-hand side of (18)]. The
remarkable fact proven in Ref. 13 is that @ (M, M) attains its maximum
when M is related to M by the reestimation formulas (10) through (12).

To show this let the sth-state sequence be so, s1, - - - , s7, and the given
observation sequence be Oy, - -+, Ok, Then
T-1 T-1

Inv,=Inp(s,0|M) =In7,, + ¥ In s, + Y Inbd,, (On1). (20)
t=0 t=0

Substituting this in (19) for @ (M, M), and regrouping terms in the
summations according to state transitions and observed symbols, it
can be seen that

N M
QM M) = 21 E cyln @;; + E Y djxln bi(k)
i=1j=1 J=1 k=1
+ 2 e:In 7;. (21)
Here
S
ciy =Y pls, O|M)n(s) (22a)
S
djx = g} p(s, O|M)myx(s) (22b)
S
= le(s, O|M)ri(s), (22¢c)

and for the sth-state sequence
n;(s) = number of transitions from state g: to g;
m;x(s) = number of times symbol % is generated in state g;
ri(s) = 1 if initial state is g;
= 0 otherwise.
Thus, ¢, d;x, and e; are the expected values of n,;, m;», r:, respectively,

based on model M.
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The expression (21) is now a sum of 2N + 1 indep_endent expressions
of the type maximized in Lemma 2. Hence, @ (M, M) is maximized if

Gy = Zczu (23a)
_ dj
Bi(k) = o (23b)
7= Zie (23c)

These are recognized as the reestimation formulas.

2.2 Solution by optimization techniques

Lest the reader be led to believe that the reestimation formulas are
peculiar to stochastic processes, we shall examine them briefly from
several different points of view. Note that the reestimation formulas
update the model in such a way that the constraints

N

Ym=1 (24a)
i=1

N

Ea,-,-=1 for 1=i=<N (24b)
J=1

and

M

Y br=1 for 1=j<N (24c)
k=1

are automatically satisfied at each iteration. The constraints are, of
course, required to make the hidden Markov model well defined. It is
thus natural to look at the training problem as a problem of constrained
optimization of P and, at least formally, solve it by the classical method
of Lagrange multipliers. For simplicity, we shall restrict the discussion
to optimization with respect to A. Let @ be the Lagrangian of P with
respect to the constraints (24b). We see that

N N
Q=P+Z?\;(Eaij—1), (25)
=

i=1

where the ); are the as yet undetermined Lagrange multipliers.
At a critical point of P on the interior of the manifold defined by
(24a through c), it will be the case thatfor 1=<1i, j= N

=" +t)x=0. (26)
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Multiplying (26) by a;; and summing over j we get

N 9P N oP
a;—=— aij | Ai=—Ai=—, 27
jgl " 8ai |:J§1 Jj| aai;

where the right-hand side of (27) follows from substituting (24b) for
the sum of a;; and then replacing A; according to (26). From (27) it
may be seen that P is maximized when

(28)

A similar argument can be made for the = and B parameters.

While it is true that solving (28) for a;; is analytically intractable, it
can be used to provide some useful insights into the Baum-Welch
reestimation formulas and alternatives to them for solving the training
problem. Let us begin by computing dP/da;; by differentiating (3),
according to the formula for differentiating a product,

-1
£ = E at(i)bj(ot+l)ﬁt+l(.j)- (29)

oa;; t=1

Substituting the right-hand side of (29) for aP/da;; in (28), we get

T-1

E ag(i)afjbj(OHl)BHl(j)

=1

(30)

a;; =

TN T-1 '
Y ¥ a(i)aibi(O) Bra(f)

J=1 t=1

Then changing the order of summation in the denominator of (30) and
substituting in the right-hand side of (2) we get
T-1
E Olt(i)a:jbj(ot-v—l) ﬁt+1(j)
ai; = = . (31)

T-1

Y ali)Bei)

t=1

The right-hand side of (31) is thus seen to be identical to that of the

reestimation formula (10). Thus, at a critical point, the reestimation

formula (10) solves the equations (31). Similarly, if we differentiate (3)
, with respect to m; and b;, we get

aPp X .
e = El bi(01)ai;bi(02) Ba(7)
= b,(01) (i) (32)
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and

aP N . .
= ¥ ¥ adli)aiBea(f) + 8(0s, ve)miBi()), (33)

bjr  ts0mu im1

respectively. In (33) 8 is understood to be the Kronecker § function.

By substituting (32) and (33) into their respective analogs of (28),
we obtain the reestimation formulas (12) and (11), respectively, at a
critical point. Thus it appears that the reestimation formulas may
have more general applications than might appear from their statistical
motivation.

Equation (28) suggests that we define a transformation, T, of the
parameter space onto itself as

(34)

where T(x);; is understood to mean the i, jth coordinate of the image
of x under T. The parameter space is restricted to be the manifold
such that x;; =0for 1 <i, j< NandY) x;=1for 1=<i=< N. Thus,
the reestimation formulas (10), (11), and (12) are a special case of the
transformation (34), with P a particular homogeneous polynomial in
the x;; having positive coefficients. Here the x;; include the =, the ai;,
and the b;;. Baum and Eagon'* have shown that for any such polyno-
mial P[T(x)] > P(x) except if x is a critical point of P. Thus the
transformation, T, is appropriately called a growth transformation.
The conditions under which T is a growth transformation were relaxed
by Baum and Sell'” to include all polynomials with positive coefficients.
They further proved that P increases monotonically on the segment
from x to T(x). Specifically, they showed that P[7T(x) + (1 — )x] =
P(x) for 0 = n < 1. Other properties of the transformation (34) have
been explored by Passman’® and Stebe.’ There may be still less
restrictive general criteria on P for T to be a growth transformation.
We can give T(x) a simple geometric interpretation. For the purposes
of this discussion we shall restrict ourselves to x € RY, x; = 0for 1 <
i = N, and the single constraint G(x) = ¥¥; x; — 1 = 0. We do so
without loss of generality, since constraints such as those of (24a, b,
and c¢) are disjoint, i.e., no pair of constraints has any common
variables. As shown in Fig. 1, given any x satisfying G (x) = 0, T(x) is
the intersection of the vector X, or its extension, with the hyperplane

aP
25\;1 x; — 1 = 0, where X has components x; ™ forl=i=<N.
Xi

This may be shown by observing that a line in the direction of X
passing through the origin has the equation y = rX, where r is a non-
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e

BT + -l x
/

n — —_
Gix) = X xj-1=0~—_ x + 7X)
i=1

- X3

DIR[T(x) ]

X

Fig. 1—Geometrical relationship of the quantities involved in the reestimation for-
mulas.

negative scalar. Component-wise this is equivalent to

aP .
Yi=rio— for 1=i<N. (35)
We can find that r for which y intersects the hyperplane G(x) = 0 by
summing over i. Thus

N N

aP
Zy.-=r2x.-a—n=1, , (36)

i=1 i=1
since y lies on the hyperplane G (x) = 0. Rearranging (36) we have

r =N—16P— (37)
2 Xi—

=1 0Xi

and
aP
Xi—
ax;

Yi = N—é)P (38)
z X —
o o
Furthermore, as also shown in Fig. 1, the vector [T(x) — x] is the set
of intersections of the vector (x + »X) with the hyperplane G(x) = 0
for 0 = 5 < +oo with T(x) corresponding to n = 4+ and x to n = 0.
Finally, in view of the result of Baum and Sell, quoted above, the
vector T(x) — x must also have a positive projection on VP. This,
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too, is easily seen. If P is a polynomial with positive coefficients, then
aP/dx; =0 for 1 = i< N. From the definition of T it is clear that
P _ X

) aP
T(x):=x: iff ’6?2 E xja= r, (39)
i J=1 J

where r is some constant. Then it must be true that

d apP
¥ [T(x): — x:] (— - r) =0 (40)
i=1 ax;

since both factors in each summand are of the same sign. Rearranging
(40) we have

N BP N
-21 [T(x): — x:] Fo =r _E] [T(x): — x:]=0. (41)
The right-hand side is zero since Y%, T(x); = ¥, x = 1. Thus
[T(x) — x]-VP = 0, proving that a step of the transformation has a
positive projection along the gradient of P.

This merely guarantees that we can move an infinitesimal amount
in the direction of [T(x) — x] while increasing P. The theorem of
Baum and Eagon, however, guarantees much more, namely that we
can take a finite step and be assured of increasing P. We may, in fact,
be able to continue past T(x) while still increasing P. We are unable,
at present, to give a geometrical interpretation of this fact.

While the reestimation formulas provide an elegant method for
maximizing P, their success depends critically on the constraint set
(24a, b, and c). As we will suggest later, in some cases there may be
advantages in using classical optimization methods.

The principle of the classical methods is to search along the projec-
tion of VP on the constraint space, G, for a local maximum. The
method of Rosen,® for example, uses only VP and a crude search
strategy. The method of Davidon is one of many quasi-Newton tech-
niques that uses the Fletcher-Powell” approximation to the inverse of
the Hessian of P and an exact line search with adaptive step size.
There are many collections of general purpose subroutines for con-
strained optimization that can be used to solve the training problem.
We have successfully used a version of the Davidon procedure from
the Harwell Subroutine Library.”® However, for the constraints that
7, A, and B be stochastic, the computation can be greatly simplified.

We illustrate this by outlining the gradient search algorithm for the
case where P is a function of the variables x,, - - -, xy subject to the
constraints x; = 0 for 1 < i < N and ¥¥, x; — 1 = 0. For convenience
we will call the last constraint Gy, and the inequality constraints on x1,

., xn as Gs, - - -, Gn+1, respectively.

An initial starting point x is chosen and the “active” constraints
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identified. For our case G, is always active. For i > 1, G; is active if
xi-1 =0. Let G, j =1, ---, ¢ be the active constraints (with n, = 1)
at the initial point. Let @ = P + Y1 A;G,. Then according to the
Kuhn-Tucker theorem,” the Lagrangian multipliers, A;, are deter-
mined by demanding that V@ be orthogonal to VG,, for 1 = j = /£ Now

'3
VQ = VP + ¥ \VG,,

J=1
=VP +TA, (42)
where I' is the N X ¢ matrix with I';; = (VG,.I,),- = 0@y, /dx:, and A is the

vector with components A; for j = 1, ..., £ Thus the Kuhn-Tucker
requirement is equivalent to

ve =0 (43)
or, from (42),
A=—(I"T")'IVVP. (44)
For our special constraints we have ‘
T'n=1 for 1=i=N (45)
and, for j# 1
_J1 if i=n;—1
L= {0 otherwise. (46)
With I'" defined this way
N 1 1 ... 1
1 1
I'’'=| 1 1 O (47)
: 0 *.,
1 1
and (I'T)~! may be shown to be
1 -1 -1 v -1
1 -1 N-¢ 1 cen 1
'MH!'s —moao0—|[ - - .
N A e :1 1 N-¢ 1 } (48)
—1 1 1 N-¢

Substituting (48) into (44) gives A. When this A is substituted back into
(42), it turns out that the resulting vector V@ can be computed by the
following simple steps:

(i) Compute VP and let S be the sum of all components of VP
except (VP),.j_,,j =2 00,4
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(z£) Then
v@)i=0 i=ny, J=2,-4,¢

S .
= (VP); — N=7/+1 otherwise.
Finally, the values of P are searched along the line
ve
xX(p) =X+ N (49)
Ivel
for a maximum with respect to 1. The procedure is repeated at this

new point.

In applying this technique to the actual training problem, there will
be 2N + 1 stochasticity constraints analogous to G, and a correspond-
ing number of positivity constraints analogous to Gz, Gs, - - Gn+1. In
this case we have the option of treating all the parameters and their
associated constraints together, or we may divide them into disjoint
subsets and determine search directions for each subset independently.

Notice that this derivation does not require P to be of any special
form. This may prove to be an advantage since the Baum-Welch
algorithm is not applicable to all P. Furthermore, the constraints may
be changed. Although, as we shall see later, the Baum-Welch algorithm
can be somewhat generalized in this respect, it does not generalize to
work with arbitrary linear constraints.

Ill. CONSIDERATIONS FOR IMPLEMENTATION

From the foregoing discussion it might appear that solutions to the
problems of hidden Markov modeling can be obtained by straightfor-
ward translation of the relevant formulas into computer programs.
Unfortunately, for all but the most trivial problems, the naive imple-
mentation will not succeed for two principal reasons. First, any of the
methods of solution presented here for either the classification or the
training problem require evaluation of a.(i) and Bi(i) for 1=t = T and
1 < i = N. From the recursive formulas for these quantities, (1) and
(2), it is clear that as T — oo, ar(i) — 0, and B:(i) — 0 in exponential
fashion. In practice, the number of observations necessary to ade-
quately train a model and/or compute its probability will result in
underflow on any real computer if (1) and (2) are evaluated directly.
Fortunately, there is a method for scaling these computations that not
only solves the underflow problem but also greatly simplifies several
other calculations.

The second problem is more serious, more subtle, and admits of a
less gratifying, though still effective, solution. Baum and Petrie'® have
shown that the maximum likelihood estimates of the parameters of a
hidden Markov process are consistent estimates (converge to the true
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values as T'— o) of the parameters. The practical implication of the
theorem is that, in training, one should use as many observations as
possible which, as we have noted, make scaling necessary. In reality,
of course, the observation sequence will always be finite. Then the
following situation can arise. Suppose a given training sequence of
length T results in b;; = 0. (It is, in fact, possible for a local maximum
of P to lie on a boundary of the parameter manifold.) Suppose further
that we are subsequently asked to compute the probability that a new
observation sequence was generated by our model. Even if the new
sequence was actually generated by the model, it can be such that
a,-1(1)a;; is nonzero for only one value of j and that O, = v, whence
a,(j) = 0 and the probability of the observation then becomes zero.
This phenomenon is fatal to a classification task; yet, the smaller T is,
the more likely is its occurrence. Jelinek and Mercer® have dealt with
this problem in a slightly different context. Here, we offer the much
simpler solution of constraining the parameter values so that x;; = €;
> 0.

Finally, in this section we discuss the related problem of model
stability. Baum and Eagon'* note that successive applications of the
reestimation formulas converge to a connected component of the local
maximum set of P. In case there are only a finite number of such
extrema, the point of convergence is unique to within a renaming of
the states. The component of the local maximum set to which the
iteration converges as well as which of the N! labelings of the states is
determined by the initial estimates of the parameters. If we wish to
average several models resulting from several different starting points
to achieve model stability, we must be able to match the states of
models whose states are permuted. We have devised a solution to this
problem based on a minimum-weight bipartite matching algorithm.?®

3.1 Scaling

The principle on which we base our scaling is to multiply a, (i) by
some scaling coefficient independent of i so that it remains within the
dynamic range of the computer for 1 < ¢ < T. We propose to perform
a similar operation on B;(i) and then, at the end of the computation,
remove the total effect of the scaling.

We illustrate the procedure for (10), the reestimation formula for
the state transition probabilities. Let a; () be computed according to
(1) and then be multiplied by a scaling coefficient, c;, where say,

N -1
C = [2 ﬂ:(l):l (50)

i=1

so that E,—"‘_il cia(t) = 1for 1 < ¢t =< T. Then, as we compute B:(i) from
(2), we form the product ¢,8:(i) for T=¢t=1and 1 <i=< N. In terms
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of the scaled forward and backward probabilities, the right-hand side
of (10) becomes

T-1

2 Czat(l:)aijbj(0¢+1)ﬁ:+1(j)Dt+1

= : (51)

=1 N
Y ¥ Ciar(@)aicbo(Orrr) Besr(€) Desa

t=1 £=1

where

t
Ci=1]] c (52)

=1

and r
D, = H Cr.

=i
This results from the individual scale factors being multiplied together
as we perform the recursions of (1) and (2).

Now note that each summand in both the numerator and the
denominator has the coefficient C;Di+1 = [[%~; ¢.. These coefficients
can be factored out and canceled so that (51) has the correct value a;;
as specified by (10). The reader can verify that this technique may be
equally well applied to the reestimation formulas (11) and (12). It
should also be obvious that, in practice, the scaling operation need not
be performed at every observation time. One can use any scaling
interval for which underflow does not occur. In this case, the scale
factors corresponding to values of ¢ within any interval are set to unity.

While the above described scaling technique leaves the reestimation
formulas invariant, (3) and (4) are still useless for computing P.
However, log P can be recovered from the scale factors as follows.
Assume that we compute ¢, according to (50) for =1, 2, --- T. Then

N
Cr Y ar(i) =1 (53)
=1
and from (53) it is obvious that Cr = 1/P. Thus, from (52) we have
T
IMe= P (54)

=1

The product of the individual scale factors cannot be evaluated but we
can compute

T
log P=-Y logc:. (55)

=1

If one chooses to use the Viterbi algorithm for classification, then
log P can be computed directly from 7, A, and B without regard for
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the scale factors. Initially, we let ¢:(i) = log[:6:(0:)] and then modify
(7a) so that

$ulJ) = max [pe—1(2) + log ai;] + log[5;(0:)]. (56)

In this case log P = max [¢r(i)].
1=i=N

If the parameters of the model are to be computed by means of
classical optimization techniques, we can make the computation better
conditioned numerically by maximizing log P rather than P. The
scaling method of (50) makes this straightforward.

First note that if we are to maximize log P, then we will need the
partial derivatives of log P with respect to the parameters of the
model. So, for example, we will need

d 1 aP oP
— = = COp—. 57
oa;; (log P) P oa;j T oa;; (67)
Substituting the right-hand side of (29) for aP/da;; in the right-hand
side of (57) yields
T-1

a—a— (log P) = CT 2 ﬂt(i)bj(Otﬂ)ﬁHl(j)
Qi t=1

T-1

= ¥ Cia(2)b(Or1) Be+1(J) Drar

t=1

T-1 t T
=3 (H c,) ae(2) b;(Oe+1) Berr () ( II CT). (58)
t=1 \r=1 T=t+1

So that if we evaluate (29) formally, using not the true values of the
forward and backward probabilities but the scaled values, then we will
have the correct value of the partial derivatives of log P with respect
to the transition probabilities. A similar argument can be made for the
other parameters of the model and, thus, the scaling method of (50)
provides a means for the direct evaluation of V(log P), which is
required for the classical optimization algorithms. Later we shall see
that the combination of maximizing log P and this scaling technique
simplifies the solution of the left-to-right Markov modeling problem
as well.

3.2 Finite training sets

We now turn our attention to solving the problems created by finite-
training-set size. As we noted earlier, the effect of this problem is that
observation sequences generated by a putative model will have zero
probability conditioned on the model parameters. Since the cause of
the difficulty is the assignment of zero to some parameters, usually
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one or more symbol probabilities, it is reasonable to try to solve the
problem by constraining the parameters to be positive.

We can maximize P subject to the new constraints a;; = € > 0;
bjx = € > 0, most easily using the classical methods. In fact, the
algorithm described earlier based on the Kuhn-Tucker theorem is
unchanged except that the procedure for determining the active con-
straints is based on € rather than zero.

While the Lagrangian methods are perfectly adequate, it is also
possible to build the new constraints into the Baum-Welch algorithm.
We can show how this is done by making a slight modification to the
proof of the algorithm given earlier (Section 2.1). Recall that the proof
of the Baum-Welch algorithm was based on maximization of 2N + 1
expressions of the type maximized in Lemma 2, eq. (14). Since these
expressions involve disjoint sets of variables chosen from A, B, 7, it
suffices to consider any one of the maximizations. In fact, it suffices to
show how Lemma 2 gets modified. Thus we wish now to maximize

F(x) = E ciln x; (59)
subject to the constraints
E_ xi=1 (60a)
and
Xi =€, i=1---N. (60b)

(From the following discussion it will be obvious that a trivial gener-
alization allows € to depend on £.)

Now without the inequality constraints (60b), Lemma 2 showed that
F(x) attains its unique global maximum when x; = ¢/} c;. Suppose
now that this global maximum occurs outside the region specified by
the inequality constraints (60b). Specifically, let

fi=at = for i=1,+--,N=¢ (61a)
X ¢
=1

<e for i=N-¢+1,..-,N. (61b)

From the concavity of F(x) it follows that the maximum, subject to
the inequality constraints, must occur somewhere on the boundary
specified by the violated constraints (61b). Now it is easily shown that
if %; for some i > N — ¢ is replaced by ¢, then the global maximum over
the rest of the variables occurs at values lower than those given above.
From this we conclude that we must set

xi=e€¢ for i>N-7¢ (62)
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and maximize
N-¢

Fx)= Y clnx (63)
=1
subject to the constraint ¥¥ x; = 1 — Ze. But this, analogously to
Lemma 2, occurs when

Ci

Xi=(1- fe) 5= iI=N-¢ (64)
DR

J=1

If these new values of Z; satisfy the constraints, we are done. If one or
more become lower than ¢, they too must be set equal to ¢, and ¢
augmented appropriately.

Thus the modified Baum-Welch algorithm is as follows. Suppose we
wish to constrain by, = efor 1 = j = N and 1 < 2 < M. We first evaluate
B using the reestimation formulas. Assume that some set of the
parameters in the jth row of B violates the constraint so that b, < €
for 1 =i = ¢ Then set §;s, = e for 1 =i < ¢ and readjust the remaining
parameters according to (64) so that

5,k=(1—fe)-ﬁ_t’—j- Vi & {ki|l=i=<¢). (65)
S b
=1
After performing the operation of (65) for each row of B, the resulting
B is the optimal update with respect to the desired constraints. The
method can be extended to include the state transition matrix if so
desired. There is no advantage to treating 7 in the same manner since,
for any single observation sequence, 7 will always be a unit vector with
exactly one nonzero component. In any case, (65) may be applied at
each iteration of the reestimation formulas, or once as a post-process-
ing stage after the Baum-Welch algorithm has converged.

3.3 Combining models

The final implementational issue that we shall consider in this
section is that of combining models for improved stability. There are
several circumstances under which it may be desirable to combine
several models into one. In spectral estimation, for example, to com-
pute a long-term average spectrum of a stationary signal, it may be
convenient to average a number of spectra computed over shorter
intervals. It seems quite natural to apply similar block-processing
techniques to the Markov modeling problem if the source is assumed
to be ergodic. We may, for example, divide a long sequence of obser-
vations into contiguous subsequences, estimate model parameters for
each subsequence, and combine the results.
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Whether or not the source is ergodic, we may still attempt to
increase the robustness of our model by averaging the parameter
estimates derived from multiple initial values and/or independent
observation sequences.

In any case, the difficulty that will be encountered is that even if
there are finitely many isolated local maxima of P, they are only
unique to within a renaming of the states. For two different observation
sequences, g; and g; may be topologically equivalent, but ¢ # j. We
might try to avoid this problem by using the final parameter values for
one observation sequence as the initial values for the next in hopes
that this will restrict the search to a neighborhood of a single local
maximum. This method, unfortunately, is not reliable. A better ap-
proach is that of finding a renaming of the states that minimizes, in
some sense, the difference between two models.

Suppose b; and b;, 1 = j =< N are, respectively, the rows of two
estimates of B. Let p(j) be a permutation of the state index, j, and let
d(.,-) be some distance metric. Then we seek the permutation, p, of
(qlv qz, =" QN) such that

N
D=} db;, Beiin] (66)

is minimized. The naive solution is to try all possible N! permutations
and select the best one in the sense of (66). However, for N > 10 the
computation becomes intractable. The problem can be brought within
reach, however, by transforming it into a minimum-weight bipartite-
graph-matching problem on 2N vertices. In the literature on combi-
natorial optimization (see, e.g., Ref. 28), several algorithms are avail-
able for accomplishing such a match in a number of operations that
grow as N°. In Appendix B, we describe one such algorithm based on
an outline provided to us by R. E. Tarjan.

IV. LEFT-TO-RIGHT HIDDEN MARKOV MODELS

For the purposes of isolated word recognition, it is useful to consider
a special class of absorbing Markov chains that leads to what we call
left-to-right models. These models have the following properties:
(i) The first observation is produced while the Markov chain is in
a distinguished state called the starting state, designated g..
(ii) The last observation is generated while the Markov chain is in
a distinguished state called the final or absorbing state, designated gn.
(iii) Once the Markov chain leaves a state, that state cannot be
revisited at a later time.
The simplest form of a left-to-right model is shown in Fig. 2, from
which the origin of the term left-to-right becomes clear.
In this section we shall consider two problems associated with these
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a2 a3 234

bk bok b3k bak

Fig. 2—The simplest form of left-to-right model.

special hidden Markov models. Note that a single, long-observation
sequence is useless for training such models, because once the state gn
is reached, the rest of the sequence provides no further information
about earlier states. The appropriate training data for such a model
are a set of observation sequences obtained by several starts in state
q:. In the case of isolated word recognition, for instance, several
independent utterances of the same word provide such a set. We wish,
therefore to modify the training algorithm to handle such training
data. We also wish to compute the probability that a single given
observation sequence, Oy, O; ..., Or, was produced by the model,
with the assumption that O, was produced in state g, and Or in state
gn-. The three conditions mentioned above can be satisfied as follows:

Condition (i) will be satisfied if we set # = (1,0, - - -, 0) and do not
reestimate it. Condition (ii) can be imposed by setting
. |1 for j=N
Br()) = {0 otherwise. (67)

Condition (Zif) can be guaranteed in the Baum-Welch algorithm by
initially setting a; = 0 for j < i (and in fact for any other combination
of indices that specify transitions to be disallowed). It is clear from
(34) that any parameter once set to zero will remain zero. For the
gradient methods the appropriate a;/’s are just set to zero and only the
remaining parameters are adjusted.

The modification of the training procedure is as follows: Let us
denote by O = [0, 0%, ... 0'*] the set of observation sequences,
where O® = 0{"0%" ... Of is the kth sequence. We treat the
observation sequences as independent of each other and then we
adjust the parameters of the model M to maximize

K
P = [ Prob(0®|M).

k=1

K
= [] Ps. (68)

k=1
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Since the Baum-Welch algorithm computes the frequency of occur-
rence of various events, all we need to do is to compute these frequen-
cies of occurrence in each sequence separately and add them together.
Thus the new reestimation formulas may be written as

K Ty-1 o
> ¥ af(i)a.-jbj(OL)ﬂﬁfﬂ(f)
By = £=1 :-1K — 69)
Y Y af@)Bi()
k=1 i=1
and
K
¥y ¥ of (2)BE (i)
b—g — k—l‘;Or(;;)—vj ) (70)
121 :.Z:: af () BE (i)

As noted above, 7 is not reestimated.

Scaling these computations requires some care since the scale factors
for each individual set of forward and backward probabilities will be
different. One way of circumventing the problem is to remove the scale
factors from each summand before adding. We can accomplish this by
returning the 1/P factor [which appears in (8) and (9) and was
cancelled to obtain (10)] to the reestimation formula. Using the rees-
timation formula for the transition probabilities as an example, (69)
becomes

K 1 Ty—1

D B, b af(i)aijbj(ogijl)ﬁf+l(j)
_ k= Pr 2
V= = . (71)
¥ P ¥y of (1) BE(1)
k=1L k t=1

If the right-hand side of (71) is evaluated using the scaled values of the
forward and backward probabilities, then each term in the inner
summation will be scaled by C#D#,,, which will then be cancelled by
the same factor which multiplies P;. Thus, using the scaled values in
computing (69) results in an unscaled @; The procedure is easily
extended to computation of the symbol probabilities. Also note that
for the purposes of classification only one subsequence is to be consid-
ered so that either (55) or (56) may be used unaltered to compute P.

To apply Lagrangian techniques to left-to-right models we note that
upon taking logarithms of (68) we have

K
log P = ¥, log Ps. (72)

k=1

The derivatives needed to maximize log P in (72) can be obtained by
evaluating expressions for the derivatives of each individual subse-
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quence and summing. For example, for a;; we have [cf. (57) and (58)]

d K o, .
— (log P)= ¥ (log P) = C% Y af(i)b(0OH)BEA(). (73)
da;; k=1 0Q;j =1

As in all previous cases an analogous formula may be derived for the
other parameters.

In practice, A and B for left-to-right models are especially sparse.
Some of the zero values are so by design but others are dependent on
O. Parameters of this type will be found one at a time by standard line
search strategies. We have found that the convergence of the Lagran-
gian techniques can be substantially accelerated by taking large enough
steps so that several positivity constraints become binding. The cor-
responding variables are then clamped and (65) is applied before
beginning the next iteration.

V. NUMERICAL EXAMPLES

In this section, we give some instructive examples of the behavior of
several of the algorithms discussed above. The algorithms were all
coded in FORTRAN 77 on a Data General MV-8000, which uses a 32-
bit floating point word. The data used in the tests came from either a
Monte Carlo simulation of a hidden Markov chain or from a portion
of a newspaper text that was edited to include only the 26 characters
of the English alphabet and a special character denoting an interword
space. The simulations have the valuable property that the model is
known a priori, so that simple models may be used for checking
program correctness while the more complicated ones can elicit some
subtle and important numerical and methodological characteristics of
the algorithms.

In our experiments we used the following procedure to generate
observation sequences by means of a random number generator whose
output is uniform on [0, 1] and specified values of 7, A, B, T, and V:

(Z) Partition the unit interval proportionally to the components of
7. Generate a random number and select a start state, g;, according to
the subinterval in which the number falls. Set ¢ = 1.

(z7) Partition the unit interval proportionally to the components of
the ith row of B. Generate a random number and select a symbol, vy,
according to the subinterval in which the number falls. Set O, = v;.

(zii) Partition the unit interval proportionally to the components of
the ith row of A. Generate a random number and select the next state,
gj, according to the subinterval in which the number falls.

(iv) Increment ¢. If t = T set g; = g; and repeat (if) through (iv);
otherwise stop.

Using this observation generator, several two- and three-state Mar-
kov models were simulated. These simulations were used to verify that

SPEECH RECOGNITION 1059



the parameter estimation algorithms were working correctly and to
study the effects of the scaling interval on the accuracy of the algo-
rithms. In this study we found that all scaling intervals that were
sufficiently short to prevent underflow yielded numerically identical
results. Thus one can, at one extreme, scale the forward and backward
probabilities after each observation or, at the other, wait until a
threshold signaling that underflow is imminent is exceeded and only
then perform the scaling operation.

We next proceeded to study a pair of four-state (N = 4), four-symbol
(M = 4) models shown below and referred to as SRC44 and SRC45.

SRC44:

0 0 05 0.5 05 05 0 0
A= |05 0 0 05 |0 05 05 0
“l105 05 0 0 10 0 05 05
0 05 05 0 05 0 0 05
7=[0256 025 025 0.25]
and
SRC45:
0 0 0.25 0.75 025 075 0 0
A= 015 0 0 0.85 g=|0 015 085 0
02 08 0 0 0 0 01 09
0 022 078 0 02 0 0 0.8

»=[025 025 025 0.25)].

The state transition diagrams for these models are shown in Fig. 3.

Model SRC44 is a balanced model in the sense that all permissible
transitions and symbols are equally likely, whereas model SRC45 is
skewed in that it distinctly favors some transitions and symbols over
others.

Fig. 3—The four-state model used for testing.
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For each of these sources we processed observation sequences rang-
ing in length from 100 to 4000 with the Baum-Welch algorithm. Initial
values for A, B, and 7 were chosen at random and the algorithm was
terminated in one of two ways; either when the change in log P from
one iteration to the next fell below an arbitrary threshold, or when the
number of iterations exceeded a specified maximum value. The maxi-
mum number of iterations was varied from 100 to 1000. For each
estimate, B, of the source matrix B, a measure of estimation error

251/2
"E Bl|l={—— E E bir — bp(jik : (74)
j—l k=1
was computed, where p() is the state permutation that minimizes the
-10.6
100 ITERATIONS (a)
299 1 | _ L 1 | 1 1 1
-10.5
200 ITERATIONS (b)
@ -
e
@ -466 1 1 I 1 | ] 1 1 ]
o
g -10.5
z A 400 ITERATIONS (C)
T;: —
@ -
-48.4
100
NUMBER OF OBSERVATIONS
08
—_—— MAXIMUM
RN ~ERROR (d)
- \\\ AVERAGE
- “OF B
— (.____\ MINIMUM ~~
- N ~"ERROR Y
- ~ —— 7 ~
- ~ - -
-41.7 I | 1 L >~ | | 1 |
100 1000

NUMBER OF OBSERVATIONS

Fig. 4—Estimation error as a function of number of observations for source SRC44
for: (a) 100 iterations maximum, (b) 200 iterations, (c) 400 iterations, and (d) 10 random
initial starts with 200 iterations maximum.
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estimation error. The technique of minimum bipartite matching (see
Appendix B) was used to determine the optimum state permutation.

Plots of the quantity ||B B|| (on a log scale) versus T, the number
of observations, are given in Fig. 4 for source SRC44. Separate results
are shown for 100 iterations maximum (part a) of the BW reestimation
procedure, 200 iterations (part b), and 400 iterations (part c). Also
shown in Fig. 4d are the results of using 10 random initial starts with
200 iterations maximum. Shown in Fig. 4d are the maximum and
minimum estimation errors for each T and the estimation error for the
average of all 10 B matrices. (The reader should note that T' goes to
4000 in parts a through c, but only to 1000 in part d of Fig. 4.)

The curves given in Fig. 4 show several very interesting properties
of the reestimation procedure. First we see that as the number of
observations increases, a slow decrease in the average estimation error
is obtained. However, we can see that statistical fluctuations (owing to
different initial guesses for the model parameters) are often of larger
magmtude than the slowly decreasing components of the curve. As the
maximum number of iterations increases, the magnitude of the statis-
tical fluctuations decreases, especially for larger values of 7.

The curves of Fig. 4d show that although there is a wide range in
the value of the estimation error for multiple starting choices, aver-
aging the B matrices (after appropriate state alignment) leads to
estimation errors comparable with the best single estimates.

Figure 5 shows a similar set of results for the Markov source SRC45.
Figure 5a shows a curve of estimation error versus number of obser-
vations for a maximum of 400 iterations, Fig. 5b shows the same curve
with a maximum of 1000 iterations, Fig. 5¢c shows the curve when the
initial estimates of both A and B are set to the source values exactly,
and Fig. 5d shows maximum and minimum estimation errors for 10
random starting points.

Although the general trends of the data in Fig. 5 are similar to those
of Fig. 4, there are several key differences. From Fig. 5b it can be seen
that even for 1000 iterations, the variation in model estimates is
enormous (36-dB variations). This result suggests that it is significantly
more difficult to estimate parameters of a skewed Markov model than
those of a fairly uniform model. The curves of Fig. 5c, in which the
initial conditions were set to the source generator values, show that
extremely good solutions could be obtained if the reestimation proce-
dure could start in the neighborhood of the “exact” solution. Obviously
this situation (i.e., starting near the correct parameter values) is not
enforceable for real data.

The curves of Fig. 5d, in which multiple estimates of the Markov
model are averaged, show that averaging the individual parameter
estimates does not lead to a low error estimate for SRC45. This is
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Fig. 5—Estimation error as a function of number of observations for source SRC45
for: (a) 400 iterations maximum, (b) 1000 iterations maximum, (c) initial estimates of A
and B set to source values, and (d) maximum and minimum estimation errors for 10
random starting points.

undoubtedly because of the parameter estimates with high errors that
occur and which have an undue influence on the average.

5.1 Left-to-right Markov source estimation

The second series of experiments dealt with the left-to-right Markov
models, as would be appropriate for our intended application to iso-
lated word recognition. Figure 6 shows four such models. For each of
these models (denoted as SRC195, SRC295, SRC395, and SRC495 in
Fig. 6), the specifications were:

N=5M=97=(L0,00,0)}
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SRC195
0.8 0.9 0.8 0.9 10

Fig. 6—Left-to-right models used for testing for: (a) SRC195, (b) SRC295, (c) SRC395,
and (d) SRC495.

and
07 03 0 0 0 O 0 0 0
0 0 08 02 0 0 0 0 0
B=1]0 0 0 0 1 0 0 0 0
0 0 0 0 0 02 08 0 0
0 0 0 0 0 0 0 03 0.7

The state transition probabilities were those shown in Fig. 6. The
SRC195 model is a left-to-right model. The SRC295 model allows a
transition between states 1 and 3 and states 3 and 5, as well as
transitions between sequentially numbered states. Both the SRC395
and SRC495 models include states whose self-transition probabilities
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(a;) are very small. We will see below that the average occupancy of
such states is only 1 to 2 observations. For these non-ergodic models
the concept of occupancy of the transient (i.e., non-absorbing) states
is important.

If we denote the probability of a transition from a state to itself as
p, then the probability of a transition out of that state at time T + 1
(assuming the state was entered at time ¢ = 0) is

Prob(g;at¢t=0,1,2,..-,T and g;#qatT+1)=pT(1-p)

for models of the form of SRC195. Hence the average occupancy of a
state is given by

d=73 (t+ 1)p'(1 —p)
t=1

1

1-p° (75)
For p = 0.9 we get d = 10, for p=0.8 we getd =5, for p= 0.5 we get
d = 2, and for p = 0.1 we get d = 1.1. Standard formulas are available
for computing average state occupancies for arbitrary transition ma-
trices. We will not consider them here; however, it is clear that states
2 and 4 in models SRC395 and SRC495 are of low occupancy.

To test the reestimation procedure on the Markov sources of Fig. 6,
a set of K sequences were generated for each model, where K was the
set (10, 25, 50, 100). Each sequence was generated using the Markov
sequence generator described earlier, modified slightly to ensure that
each sequence terminated in state 5 (the final state) and stayed there
for 5 observations. The sequences were, however, of variable duration,
depending on the exact sequence of state transitions that occurred.

The results showed that for sequences generated from model
SRC195, the correct model parameters (to within small estimation
errors) were obtained for all values of K from 10 to 100. For sequences
generated from model SRC295 only the 10 observation training se-
quence yielded grossly incorrect model parameter estimates. All other
sequences (K = 25, 50, 100) yielded the correct parameter values.

For both source models SRC395 and SRC495, however, no com-
pletely correct parameter estimates were obtained. In particular, the
states whose expected occupancy was small (i.e., states 2 and 4 in both
models) were merged with either the preceding or the following state
(or both), while other states whose expected occupancy was larger
were often split into 2 states, each with the same set of output symbols.
These experiments indicate that it is difficult to reliably estimate
parameters of a state, in a left-to-right model, whose average occu-
pancy is very much smaller than that of the states to which it is
connected.
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5.2 Tests on a non-Markov source

In the experiments described above, the observations were in fact
generated by a known probabilistic function of a Markov chain. A
more difficult test of these techniques was performed in which the
observations were 5000 characters from a newspaper article edited to
contain only the letters of the alphabet and spaces. We used the
observation sequence to train a four-state, 27-symbol model. Of course,
the “true” underlying model is not known, as it was in the tests
previously described. Nor is it likely that the four-state model is
complex enough to model the richness of structure of written English.
Even if it were, it is unlikely that 5000 characters is sufficient to
capture the structure. Unfortunately, these are exactly the limitations
with which the experimenter will be faced in trying to model “real”
processes. Our hope was that the text analysis problem would reveal
some of the ambiguities that will be encountered in making hidden
Markov models of natural phenomena.

The text was first analyzed using the Baum-Welch reestimation
formulas with a randomly chosen starting point. The algorithm con-
verged in 310 iterations with log P = —1.317 x 10%. For purposes of
comparison, we analyzed the same data with a quasi-Newton optimi-
zation routine, VEO1A, from the Harwell Library.” It required 125
iterations to obtain a maximum value of log P of —1.356 X 10*. In this
case some care was required with the parameter values. The finite
precision arithmetic occasionally results in a parameter value of -1077,
which appears to satisfy the positivity constraints. Such a value is fatal
to the computation of log P since it will result in an attempt to take a
logarithm of a negative quantity. Fortunately, this condition is readily
detected in the scaling routine and corrected by setting the offending
parameter to zero.

Finally, we applied the Lagrangian technique described earlier to
the same observation sequence but with a different set of initial
parameter values. After 136 iterations, a still different model with
log P = —1.327 x 10* is obtained. These results illustrate some
important features of hidden Markov modeling. The computational
methods used to obtain the models are roughly equivalent. All of the
resulting models capture some of the structure of the data being
analyzed. There are many different possible models with very little
evidence for selecting the “best” one. For even very simple models,
the likelihood function is too complicated to attribute the selection of
one model or another by one algorithm or another to its properties.
Finally, we note that all of the algorithms tested make large improve-
ments to P during the early iterations and only slight incremental
improvements later. In fact, the last half of the iterations provides no
significant change to the model. We have used a convergence criterion
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of 1077 on the relative increment between iterations. This may be
relaxed substantially, resulting in many fewer iterations with no at-
tendant degradation in the model.

VI. CONCLUSION

We have presented some of the salient theoretical and practical
issues associated with modeling data by probabilistic functions of a
Markov chain. In our presentation we have concentrated on three
issues: alternatives to the Baum-Welch reestimation algorithm, critical
facets of implementation, and behavior of Markov models on certain
artificial but realistic signals.

We have observed that, while most of the discussion of parameter
estimation for Markov models in the open literature is devoted to the
Baum-Welch algorithm, classical optimization techniques are not only
a viable alternative but may even be preferable in some cases. In
particular, classical techniques are virtually unrestricted by the forms
of either the likelihood function or the constraints. The reestimation
formulas may be growth transformations for a wider class of functions
and constraints than has heretofore been proven; however, it is not
likely that a universal reestimation formula exists. For applications to
continuous density functions (c.f. Liporace®), the classical techniques
may have still other advantages.

The open literature has provided only a perfunctory, if any, discus-
sion of some crucial numerical and implementational problems asso-
ciated with Markov modeling. We have given details of methods of
dealing with floating point loss of significance, finite-training-set size,
and model stability. Wherever possible we have made our techniques
formal and algorithmic.

Finally, we have given several examples of the behavior of Markov
modeling techniques on some reasonably realistic data. The most
important lesson that can be drawn from these experiments is that
even under ideal conditions (i.e., when the data are associated with a
known hidden Markov process) and all the more so under realistic
conditions, the computed models may contain artifacts and may not
faithfully represent the inherent structure of the data. Thus, great
caution and empirical validation is required in using these techniques.

Despite this caveat, hidden Markov models may be beneficial in
studying many diverse problems. In our companion paper® we recount
a successful application of this body of theory to a problem in auto-
matic speech recognition.
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APPENDIX A

Several of the formulas derived in the text are much more compact
in matrix notation. Let ’ denote matrix transposition, as usual, and let
the column vectors = and 1, and the matrices A, B, t =1, ---, T be
defined as in the text. Also let a; and ; be column vectors with
components (i), i =1, ---, Nand B:(i),i =1, .-+, N, respectively.
Then the recursion for a; is

a1 = BraA'ay, t=1,-..,T-1. (76)
The recursion for g, is
Bt = A BB t=T-1,.--, 1L (77)
The starting values are
o = By
Br=1. (78)
The probability P is given by
P = Bla, for any tin (1, T). (79)
The special cases t = 1 and ¢ = T give
P =a'B\f (80)
and
P=1ar
= 1'BrA'Br, --- A'Bym. (81)

In each of these formulas P can be regarded as the trace of a 1 X 1
matrix, which [as expanded in (81)], is a product of several matrices.
The fact that the trace of a product of matrices is invariant to a cyclic
permutation of the matrices can be used to advantage in finding the
gradient of P. Define V4P as the matrix whose {jth component is
dP/da;. Similarly, define VzP and V,P. Then it is straightforward to
show that

V.P = B\p
T-1

VaP = E QIBLIBHI

t=1

(VeP)ir = ¥ (A’ar1);(B);. (82)
230=k
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In the last equation, if O, = vy then the corresponding term in the
sum is just 7'B..

APPENDIX B

As we mentioned in Section 3.3, it is frequently necessary to compare
(or average) two different estimates B and B of the symbol matrix.
The optimization procedures, in general, relabel the states; therefore
the rows of B may, in general, be permuted relative to those of B.
Before comparison, therefore, the optimum permutation must be
found. This is defined as one that minimizes the distance D defined in
eq. (66). The problem of finding this permutation can be converted to
a network optimization problem called “bipartite weighted matching.”
To this end define w; as the distance of the ith row of B from the jth
row of B. As we have done in Fig. 7, draw two sets P and @ of N
vertices each. For 1 < i, j < N, draw an edge from the ith vertex in P
to the jth vertex in @, and label this edge with the weight w. The
resulting graph is a complete weighted bipartite graph, and the prob-
lem is to find an N-match (i.e., one to one matching with N edges)
such that it has minimum weight.

Suppose that Z, is a k-match (& = N). With respect to this match
make the following definitions:

-=-FREE VERTEX

Was

Fig. 7—Complete bipartite weighted graph (N = 4) and a 2-match (matched edge
—). Path shown in heavy lines is an alternating path for the 2-match. It also happens to
be an augmenting path.
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(i) A matched edge is an edge in Z,.

(if) A free vertex is one that is not on a matched edge.

(iit) An alternating path is a path along edges that alternately
belong to Z; and do not belong to Z;. [N.B. the number of matched
edges, m, on an alternating path may have any value m =< k. The
degenerate case m = 0 is also valid.]

(iv) An augmenting path is an alternating path between two free
vertices. Again note that a single edge connecting two free vertices is
a valid augmenting path.

An augmenting path has the structure

nUqaMp.Ugs --- Ug,. (83)

Here U represents an unmatched edge, M represents a matched edge,
and p, and g; are the only free vertices on the path. (Here p; is the ith
P-vertex along the path. The g; are similarly defined.) Note that the
number of U’s on an augmenting path is exactly one more than the
number of M’s. Hence the total number of edges in an augmenting
path is always odd.

Suppose we are given a k-match Z; and an augmenting path ap of
length 2/ + 1. Then we can obtain a (2 + 1)-match Z;.; by a
complementary labeling of the edges of ap (i.e., by changing every U

to M and vice versa). If w,, ws, -- -, wy are the weights along ap,
then the weight Z,., exceeds that of Z, by the amount w;, — w: +
w3 — -+ + Wy

This method of obtaining a (¢ + 1)-match from a k-match has the
following key property (proof given below): Suppose M, is a minimum-
weight k-match. Let apm be an augmenting path for M; with minimum
incremental weight. Then the match Mg+, obtained from M; and apm
is a minimum weight (k 4+ 1)-match.

Assuming this property for the moment, a minimum-weight N-
match can be determined by the following N-step algorithm:

Fork=1,2, ..., N generate M, by finding an optimum augmenting
path for M,_,. (Note that M, is an empty set.)

We now show that finding an optimum augmenting path is equiva-
lent to a shortest path problem. With reference to Fig. 8 let us generate
a directed graph by directing each edge in M, to the left and each
unmatched edge to the right. Also let us multiply the weights of all
matched edges by —1. Finally, add two vertices labeled s and t.
Connect s to all free vertices in P by right-going edges of zero weight.
Similarly, connect all free vertices of @ to t by right-going edges of
zero weight. In this directed graph any path from s to t is an aug-
menting path for the matching M,_,. Hence, if we interpret the weights
as lengths, it is clear than an optimum augmenting path is a shortest
path from s to t.
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Fig. 8—Directed graph obtained from Fig. 7. Every path from s to t is an augmenting
path of the 2-match (except for the dummy edges of 0 weight from s and to ¢).
Interpreting weights as lengths, the length of a path from s to t is the incremental weight
of the corresponding augmenting path.

A shortest path problem can be solved in polynomial time. However,
the problem can be solved much more easily and efficiently if the path
lengths are all nonnegative. In that case the problem can be solved in
N? time by Dijkstra’s method.”

It is possible to avoid negative distances in our problem by the
method of assigning a “potential” f(v) to each vertex. Suppose that at
step k the graph has nonnegative weights, and the edges corresponding
to Mj_; have zero weight. Then use Dijkstra’s method to find shortest
paths to all vertices (including t) from s. Define f(v) for the vertex v
as its shortest distance from s. Next, modify the weight w; of the edge
from i to j to

wii = wy + @) = (7). (84)

It is easily seen that this procedure leaves all weights nonnegative,
does not alter shortest paths, and all shortest paths have weight 0.
Reversing a shortest path from s to t gives us a matching My, and the
new graph has nonnegative weights and zero weights for the matched
edges. Now M, trivially has the postulated properties. Therefore, at
every step the graph will have these properties.

An important property of the above procedure is that if a vertex p
(or g) is on some matched edge in My, then it will be on some matched
edge in Mz+1 also. In writing the actual computer program, this
property simplifies the bookkeeping considerably.

Another important property concerns the vertex potentials. Suppose
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MAE M,
Fig. 9—Types of paths in the symmetric difference between M and N+ € Nour
+1

ey

There must be exactly one more path of type (iv) than of type (iif).

F(v) is the sum of the potentials assigned to vertex v at each of the N
steps. Suppose w;; and d;; are the original and final weights, respec-
tively, of the edge connecting vertex i to vertex j. Then

dij = wi + F(i) = F(j) =0, (85)

and d;; = 0 for every edge in the final N-match. The numbers F(v)
thus provide a simple proof that the final match is indeed an optimum
match.

We turn now to a proof of the key property mentioned above. Let
M;. be an optimum k-match and let N+ be any optimum k + 1-match.
Then we will show that there is a £ + 1-match obtained from an
augmenting path of M, such that its weight is equal to that of Ny4i.
For this purpose define S as the set of edges in the symmetric difference
of M and Ni4,. (Recall that the symmetric difference of two sets, A
and B, is the set of elements that belong either to A or to B but not to
both.)

From the geometry of a bipartite graph three properties of the set
S are obvious:

(i) The number of edges in S which belong to Ny, must exceed
the number that belongs to M, by exactly 1.

(if) The edges on any path in S must alternate between M, and
Ni+1.
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(iii) A vertex on an edge in S cannot be shared with any edge in My
or Ni+: that does not belong to S.

From the first two of these properties it follows that there can be four
types of paths in S (see Fig. 9).
(i) Circuits, each consisting of an even number of edges;

(ii) Open paths, each with an even number of edges;

(iii) Open paths, each with an odd number of edges beginning with
an edge in M;;

(iv) Open paths, each with an odd number of edges beginning with
an edge in Nj+1. The number of such paths must be exactly one more
than the number of paths of type (iii).
1t is easily seen that the incremental weight of every path of type (i)
or (if) must be exactly zero. (If it is negative then the weight of M can
be decreased by a complementary labeling of the path; if positive then
the weight of N4, can be decreased in the same way. But this
contradicts the hypothesis that M and Nj., are optimum matches.)

In view of this and property (3), Nx+1 can be modified by replacing
its edges on all paths of types (i) and (if) by the corresponding edges
of Ms. The modified £ + 1-match has exactly the same weight as that
of Ni+1; however, the symmetric difference between M, and the mod-
ified £ + 1-match has no paths of type (i) or (ii).

The same argument applies to pairs of paths, one path each of types
(iii) and (iv). Thus a final modified 2 + 1 match is obtained whose
symmetric difference with M, is exactly one path of type (iv). The
weight of this final modified % + 1-match is exactly the same as that
of the original N+, and is obtained from an augmenting path of M.

We have written a subroutine that implements the above procedure.
The timing, from a number of test runs, is approximately 0.063N % ms
central processing unit (CPU) time on the MV-8000. Thus for N = 40
about 4 seconds of CPU time is needed.
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