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In this paper we present an approach to speaker-independent,
isolated word recognition in which the well-known techniques of
vector quantization and hidden Markov modeling are combined with
a linear predictive coding analysis front end. This is done in the
framework of a standard statistical pattern recognition model. Both
the vector quantizer and the hidden Markov models need to be
trained for the vocabulary being recognized. Such training results in
a distinct hidden Markov model for each word of the vocabulary.
Classification consists of computing the probability of generating the
test word with each word model and choosing the word model that
gives the highest probability. There are several factors, in both the
vector quantizer and the hidden Markov modeling, that affect the
performance of the overall word recognition system, including the
size of the vector quantizer, the structure of the hidden Markov
model, the ways of handling insufficient training data, etc. The
effects, on recognition accuracy, of many of these factors are discussed
in this paper. The entire recognizer (training and testing) has been
evaluated on a 10-word digits vocabulary. For training, a set of 100
talkers spoke each of the digits one time. For testing, an independent
set of 100 tokens of each of the digits was obtained. The overall
recognition accuracy was found to be 96.5 percent for the 100-talker
test set. These results are comparable to those obtained in earlier
work, using a dynamic time-warping recognition algorithm with
multiple templates per digit. It is also shown that the computation
and storage requirements of the new recognizer were an order of
magnitude less than that required for a conventional pattern recog-
nition system using linear prediction with dynamic time warping.
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I. INTRODUCTION

There currently exist two standard approaches to isolated word
recognition, namely, feature extraction methods and statistical pattern
recognition models. A statistical pattern recognition approach has the
property of being a nonparametric approach to recognition and there-
fore is widely used in most commercial and industrial recognizers.'-
The feature-based approach to recognition has been primarily used in
the (computationally) less expensive systems, and as a basis for rec-
ognition of continuous speech (in conjunction with segmentation and
labeling algorithms).*?

In the past few years a new approach to speech processing has been
proposed, namely, using probabilistic functions of Markov models.
This approach has been applied at the Institute for Defense Analyses
for speaker recognition,' and at Carnegie Mellon University and IBM
to solve problems in continuous speech recognition'’? with good
success. Based on its success in these related areas of speech process-
ing, a question that arises naturally is how well these probabilistic
models would work on problems in isolated word recognition.

It is the prime purpose of this paper to provide an answer to the
question posed above. Before discussing the approach we have taken
to get at the answer, we must first describe the structure of a word
recognition system based on (hidden) Markov models (HMM). As in
most recognition systems we assume we have a labeled training set of
data from which we build a series of Markov models, one for each
vocabulary word. Then when we want to recognize an unknown token,
we compute a probability score for each word HMM on that token,
and choose as the recognized word the one corresponding to the model
with the highest probability score (i.e., the most likely word HMM).
Techniques for training and scoring such HMMs are discussed both
here and in the companion paper.’

In a conventional pattern recognition system the unknown test
token is time-aligned in turn to each reference pattern via some form
of time-warping procedure, typically, dynamic time warping (DTW).
By contrast, no such direct alignment is performed in the HMM
system; only an indirect time alignment is obtained based on the
probabilistic scoring. Thus it is interesting to study the relationship
between probabilistic scoring and DTW as applied to isolated word
recognition. As we shall see, there is no simple relationship. We will
point out several similarities and differences in the two approaches.

The organization of this paper is as follows. In Section II we briefly
review the conventional DTW word recognizer based on LPC model-
ing, since this will be the focus of comparison throughout the paper. In
Section III we review the basic ideas behind the use of HMMs for
isolated word recognition. It is the purpose of this section to establish
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notation and terminology that will define the basic parameters of
interest in the HMM system. Section III shows that one inherent
feature of the HMM recognizer (as we have implemented it) is that
the models need a discrete, finite set of observations (input data) to
obtain the best model parameters for each word in the vocabulary. A
vector quantizer (VQ) was used to transform the continuous set of
linear predictive coefficient (LPC) vectors into a finite observation set.
Therefore, in Section IV we describe the key ideas behind vector
quantization of LPC sets, and discuss the particular implementation
that we used. In Section V we describe the overall structure of the
HMM isolated word recognizer. In Section VI we describe a series of
experiments used to evaluate the performance of the HMM word
recognizer and compare it to the performance of a DTW recognizer on
the same vocabulary. The effects, on performance, of several parameter
variations in the HMM and VQ are also described in this section. In
Section VII we discuss the results of the performance evaluation and
comparison experiments. The strengths and weaknesses of the HMM
word recognizer are discussed, along with computational and storage
comparisons of HMM and DTW word recognizers. We attempt, in this
section, to determine the fundamental relationships between the HMM
and DTW systems.

Il. REVIEW OF CONVENTIONAL DTW WORD RECOGNIZER BASED ON
LPC MODELING
Figure 1 shows a block diagram of the LPC-based isolated word
recognizer.>® The input speech signal, s(n), recorded over a standard
dialed-up telephone line, is bandpass-filtered between 100 and 3200
Hz, and digitized at a 6.67-kHz rate. The first step in the processing is

LPC-BASED
REFERENCE
PATTERNS

REFERENCE
PATTERN

REP ‘PATTETSETHN l oW RECOGNIZED
) ] AN BLOCKING. LPC ALIGNMENT DECISION WORD
——= AND BLOCKING
INTO FRAMES ANALYSIS AND RULE
DISTANCE

Fig. 1—Block diagram of conventional LPC-based word recognizer using a standard
dynamic time-warping algorithm for registering test and reference patterns.
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the preprocessing block, a first-order digital network, which provides
a high-frequency pre-emphasis to the speech. The pre-emphasized
signal is blocked into frames of 456 ms (300 samples) with each consec-
utive frame spaced 15 ms (100 samples) apart. An 8-pole LPC analysis
(autocorrelation method) is performed on each frame of the word
(after isolating it with an endpoint detector'’), thus creating the test
pattern. This test pattern is compared with each reference pattern
using a DTW alignment algorithm that simultaneously provides a
distance score associated with the alignment. The distance scores for
all the reference patterns are sent to a decision rule, which provides a
classification of the spoken word, and possibly an ordered (by distance)
set of the best n candidates.

The word reference patterns for the recognizer of Fig. 1 are created
by a training algorithm. For speaker-trained applications, typically a
single reference pattern is created for each word in the vocabulary
using a robust training algorithm.” For speaker-independent applica-
tions, a set of @ reference patterns is created for each vocabulary word
using a clustering procedure.'®'” Typically, about 12 templates per
word are sufficient for recognizing words from a fairly homogeneous
adult population of native American talkers.

. BASICS OF HMM FOR WORD RECOGNITION
We assume we have a finite sequence, O, of observations,
0 = 0102 LR OT, (1)

where each observation is a discrete symbol drawn from a finite
alphabet of symbols. (For the system we will be describing, the
observations are the indices of the LPC vectors obtained from an LPC
vector quantizer.) We further assume that the sequence of observations
may be modeled as a probabilistic function of an underlying Markov
chain whose state transitions are not directly observable; hence the
name “Hidden Markov Model.” Figure 2 shows such a model, M,
which is characterized by the following:

(i) N = the number of states in the model. For the model of Fig.
2, N=5.

Fig. 2—A typical state diagram for a 5-state Markov model.
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(ii) M = the number of output symbols in the discrete alphabet of
the model. For the present example, M = 5.

(iii) A = {a;)}, the transition matrix of the underlying Markov
chain. Here, a;; is the probability of making a transition to state j,
given that the model is in state i. For the model of Fig. 2 we have

08 01 01 0 O

0O 08 02 0 O
A=|10 0 08 01 01

0O 0 0 08 02

0O 0 0 0 10

Note that only 11 of the 25 a;’s are nonzero.

(iv) B = {Bjz} = {b;(k)}, the model output symbol probability
matrix, where b;(k) is the probability of outputting symbol &, given
that the model is in state j. For the example chosen,

056 06 0 0 O
0 05 05 0 O
0 0 05 0 05
05 0 0 05 0
0 0 0 05 05

(v) 7={m},i=1,2, ..., N, the initial state probability vector.
For the left-to-right models of the type shown in Fig. 2, we assume the
system always begins in state 1,ie,m =1, m =0, i # 1.

Isolated word recognition using HMM consists of two phases, train-
ing and recognition (or classification). In the training phase, the
training set of observations is used to derive a set of reference models
of the above type, one for each word in the vocabulary. In the
classification phase, the probability of generating the test observation
is computed for each reference model. The test is classified as the word
whose model gives the highest probability. The computations in each
of these phases are fairly straightforward.

Let us begin with the classification phase. Given the observation
sequence, O, and a model, M (i.e,, N, M, A, B, and 7), the probability
of O having been generated by model M is

PO|IM)= ¥ mby,(0nais -+ @i, ibi(Or). (2)
T

g eend

B=

The summation in eq. (2) is more readily computed by defining a
forward partial probability, a:(i), as
a(i) = P(010; - - - O; and state i at time ¢|M). (3)

This leads to the recursion
N

ar1(j) = I:E sz(i)au‘] b;i(O¢+1), t=1,2,...,T—1 (4)

i=1
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by which eq. (2) can be expressed as
N
POM)=P=3 ar(j). (5)
Jj=1

In the training\phase an initial estimate of the model is made, and
P is computed for the training observation sequence according to eq.
(5). Next the model is iteratively adjusted to increase P. The iterations
are stopped when P stops increasing significantly, or when some other
stopping criterion is f!;et (e.g., when the number of iterations exceeds
a limit). \

One remarkable algorithm for improving a trial model is the Baum-
Welch reestimation algorithm.'®* However, maximizing P can also be
looked upon as a constrained optimization problem, for which many
algorithms have been propesed. In the companion paper in this issue
of the Journal,"® we discuss the relative merits of these procedures.

We now discuss a number of factors that influence the performance
of HMM recognizers.

3.1 Initial estimates of A and B

One factor of interest for the HMM recognizer is the choice of initial
estimates for the elements of the matrices A and B. The problem here
is that although the training procedure is guaranteed to reach a critical
point of P, the value of P obtained is typically a local maximum.
Hence, alternative starting values of A and B could yield models with
higher (or lower) values of P. For our simulations we have chosen to
start the training models with essentially random choices for the
nonzero elements of both A and B, normalized to satisfy the constraints

E a;=1 i=1,2 +.--,N (6a)
kz_‘,l bik)=1 j=12..-,N. (6b)
An alternative starting condition could be
a;=1/N+e€ (7a)
bi(k) = 1/M + ¢, (7b)

where € is a uniformly distributed random variable whose peak is much
smaller than either 1/N or 1/M. [Again the a;’s and b;(k)’s of eq. (7)
must be normalized using eq. (6) prior to running the optimization.]
3.2 HMM structures and the number of states

A second factor affecting the determination of optimum HMMs for
each vocabulary word is the model structure and the number of states.
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(b)

Fig. 3—State diagrams for: (a) unconstrained Markov model with four states,
(b) constrained serial Markov model with four states, and (c) constrained parallel
Markov model with six states.

We have considered three types of model structures, namely uncon-
strained, constrained serial, and constrained parallel. Typical examples
of each of these models are shown in Fig. 3. In the unconstrained
models (shown in Fig. 3a) a transition from any state to any other
state can be made—i.e., all a;’s are allowed to be nonzero. Both the
constrained serial models (shown in Fig. 3b) and the constrained
parallel models (shown in Fig. 3c) are left-to-right models, i.e., the
state transition matrix A is upper triangular. The serial models gen-
erally proceed sequentially through the states (although individual
states can be skipped over), whereas the parallel models allow multiple
paths through the model, with each path skipping one or more model
states. For example, there are four distinct paths through the model of
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Fig. 3c, 1-2-4-6, 1-2-5-6, 1-3-4-6 and 1-3-5-6, each of which traverses
four of the six model states.

Each of the model structures of Fig. 3 can be generalized to include
an arbitrary number of states. Recall, however, that the number of
free parameters of the Markov model is on the order of N 2 (for the A
matrix) plus NM (for the B matrix). Hence, if N gets too large, accurate
and reliable determination of the optimum A’s and B’s may become
difficult for a fixed-size training set. However, within these constraints
we have investigated models with as few as two states, and as many as
90 states. There appears to be no good theoretical way to choose the
number of states needed for a word model, since the states need not be
physically related to any single observable phenomenon.

3.3 Multiple observation sequences

A third factor affecting the determination of the optimum HMM for
each vocabulary word is the observation sequence used for training.
Since we are interested in obtaining speaker-independent models, the
observation sequence, O, actually consists of several independent
sequences O®, k= 1,2, - - -, K, where O™ is the training sequence for
talker k, and K is the total number of talkers used for training.
Typically, a value of K = 100 has been used in our clustering work for
speaker-independent training. The way in which we handle multiple
sequences is to calculate P(O™|M), using eq. (5), for each sequence,
and maximize the product of the probabilities, i.e.,

K
P =[] P(O®|M). 8)
k=1

The implementation of the computation of eq. (8) is straightforward
for the Baum-Welch reestimation procedure, as well as for the gradient
methods.’® Thus the fact that the training data consist of multiple
sequences causes no problem in estimating the optimum HMM param-
eters.

3.4 Constraints on A, B matrices during training

As we show in Fig. 3 we have considered three general HMM
structures. For the unconstrained structure the A and B matrix ele-
ments are allowed to assume any value consistent with the stochastic-
ity constraints. For the constrained serial models we have considered
two general constraints, namely:

SCl:a;=0 for j<i and j=i+3 (double skip allowed) (9a)
SC2 a;=0 for j<i and j=i+ 2 (single skip allowed). (9b)

These two cases are illustrated in Fig. 4 for a 5-state model. Constraints
SC1 allow single- or double-state jumps when exiting a given state,
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SC1 MODEL

SC2 MODEL

1 2 3 4 5
(b)

Fig. 4—Markov models for two types of serial constraints: (a) single and double
transitions allowed, and (b) only single transitions allowed.

whereas constraints SC2 only allow single jumps when exiting a state.
Hence, models of the type shown in Fig. 4a have somewhat more
flexibility than those of the type shown in Fig. 4b.

For the constrained parallel models we have only considered tran-
sition matrices of the type illustrated in Fig. 3c, i.e., a given state can
only exit to either of a pair of states in the next column of the grid.

For the most part we have not constrained the B matrix. However,
one problem arises if the B matrix is left completely unconstrained.
The problem is that a finite training sequence of length 7' may result
in b;(k) = 0. In classification it can then be the case that a,— (i) a; is
nonzero for only one value of j, and O, = k, then the probability of that
sequence arising from the model with b;(k) = 0 is P= 0; hence a
recognition error must occur. This is the so-called missing or inade-
quate training data problem. We handle this problem (see Ref. 13 for
a justification) by using post-estimation constraints on the &;(k)’s of
the form

bi(k) =€, (10)

where € is a suitably chosen threshold value. All b;(k)’s are compared
to the € threshold and those that are below € are replaced by ¢; for
each j. After this replacement, each b;(k) that was not changed to the
€ value is rescaled by the quantity 1 — R;e [where R; is the number of
b;(k)’s changed for a given j] to properly normalize the b;(k)’s.

It should be clear that all the constrained HMMs are left-right
models in that the observations must begin in state 1, must proceed
from state to state in a monotonically increasing manner, and must

WORD RECOGNITION 1083



end in state N. Thus, temporal information in the observation sequence
is coded directly into the left-to-right HMM.

3.5 Muitiple estimates of A, B, and averaging

As we mentioned earlier, the reestimation and gradient optimization
procedures are guaranteed to find a critical point of P for each HMM.
However, in practice, a large number of such points exist in the
parameter space. Thus, different initial conditions on A and B may
lead to different solutions. To understand the variability in model
parameters as well as its effects on overall recognition performance, a
series of HMMs were obtained for each word by selecting R random
starting sets for A and B, and solving for the optimum A and B in each
case. By scoring each of the R models individually, we can obtain an
indication of the statistical variability in performance score owing to
uncertainty in A and B.

An alternative procedure to using multiple HMMs for each word,
obtained from different random starting values for A and B, is to
average the R sets of A and B to give an averaged model for each
word. The effects of such averaging on word recognition accuracy will
be discussed in Section 6.3.

3.6 Scoring of observation sequences

One way to score a given observation sequence, O, is to use the
iterative calculation of egs. (4) and (5). We call this the Baum-Welch
score, Pew. For left-to-right models, eq. (5) is modified as

Psw = ar(N) (11)

because the sequence is constrained to end in state N.

An alternative scoring procedure for the observation sequence, O,
given the model, M, is the Viterbi algorithm,? which may be compactly
stated as:

(i) Initialization—8&,(i) = log[m:4:(0y)],i=1,2,---, N
(ii) Recursion—for2=<t<T,1=<j=N

8:(j) = lnlqlilfﬁv{at—l(i) + log[aib;(0:) 1}

(iii) Termination—Py; = 8r(N) for left-to-right models
N

= ¥ 87(j) for unconstrained models.
i

The above algorithm is a form of the well-known dynamic program-
ming method and can be shown to have the property of determining
the state sequence i = i1 - - - ir, which maximizes

P(i|O, M).
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It is easily shown that both the Baum-Welch and Viterbi scoring
procedures require roughly the same amount of computation. The
major differences are in the interpretation of the resulting solutions.

IV. VECTOR QUANTIZATION OF LPC COEFFICIENTS

In Section III we noted that in our implementation of HMMs for
isolated word recognition the inputs to the model are assumed to be
sequences of discrete symbols chosen from a finite alphabet. We
obtained these discrete symbols by using the method of vector quan-
tization'®*! of the LPC vectors measured as described in Section II. In
this section we review the theory of vector quantization and discuss its
implementation for isolated word recognition.

4.1 Theory of vector quantization

Assume we have a training set of LPC vectors, a;, i =1, 2, ---, I,
which are a good representation of the types of LPC vectors that occur
when the words in the vocabulary are pronounced by a wide range of
talkers. The main idea behind vector quantization is to determine the
optimum set of codebook LPC vectors, &»,m =1, 2, -- ., M, such that
for a given M, the average distortion in replacing each of the training
set vectors, a;, by the closest codebook entry, &, is minimum.

More formally stated, if we define d(ag, ar) as the distance between
two LPC vectors, ar and ar, then the goal of vector quantization is to
find the set, a,,, such that

I

| Da] = min {% in [d(dn, m)]} (12)

i=1 l=m=

is satisfied. The quantity || Dyl is the average distortion (distance) of
the vector quantizer.

The way in which eq. (12) is solved, for a given value of M, is due to
Juang et al.*! The algorithm first finds the optimum solution for M =
2 (two codebook entries), then splits each optimum LPC vector into
two components, and finds the optimum solution for M = 2. M. This
procedure iterates until M is as large as desired. A flow diagram of the
details of the codebook generation procedure is given in Ref. 21. The
local distance used in our system was the likelihood distance,?

ar Vrag

d(ag, ar) =
(ar, ar) arVeah

(13)

where V7 is the autocorrelation matrix of the sequence that gave rise
to LPC vector ar.
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4.2 Implementation of the vector quantizer

To train the vector quantizer we used a set of 39708 LPC vectors,
obtained by using all the vectors in one complete set of 10 isolated
digits uttered by each of 100 talkers (50 male, 50 female). Applying the
algorithm of Juang et al,?’ we generated vector quantizers of size
M = 2, 4, 8, 16, 32, 64, and 128. During the course of running the
algorithm, several performance criteria were monitored, including:

(i) Average distortion, || Dx||, of eq. (12)

(i7) Sigma ratio (cluster separation) of the resulting codebook en-

tries (clusters), defined as

1 (1 NS aa a
™ (srs) £ e
’ [Du | (4

where the numerator is the average intercluster distance, and || Dy || is
the average intracluster distance.

(iii) Cluster cardinality, N;, defined as the number of tokens in the
ith cluster (i.e., the cluster represented by the ith codebook entry).

(iv) Cluster distortion, d;, defined as the average distortion (dis-
tance) for the ith cluster.

It should be clear that the average distortion, || Da||, satisfies the
relation

1M
1Dl =7 X di-Ni (15)

i=1

and that the cluster occupancy satisfies the relation
M
¥ Ni=1 (16)
i=1

Results of running the VQ algorithm on the training set of 39708
vectors are given in Figs. 5 through 8. Figure 5 shows plots of || Dyl
versus M (on a log scale) (part a), and the o-ratio versus M (part b) for
values of M from 2 to 128. We can see that for values of M = 32 the
average distortion falls below 0.3, and that for M = 64 the value of
| Da|| = 0.2. If we use the conventional recognizer of Fig. 1, the average
distance between repetitions of a word (after DTW alignment) has
been found to be on the order of 0.3 to 0.4;'® hence, values of || Dy|| <
0.3 imply smaller error for the VQ than for interreplication variations
of words. The o-ratio plot shows ratios greater than 10 for M = 32;
hence, extremely good cluster separation is achieved in the vector
quantizer for these values of M.

Figures 6 through 8 show a detailed analysis of the statistics of the
vector quantizer output for M = 128. Figure 6a shows the cluster
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Fig. 5—Plots of vector quantizer performance versus size of codebook for: (a) average
distortion, and (b) sigma ratio.

cardinality as a function of the VQ index, and Fig. 6b a histogram of
cluster cardinality. The largest cluster has 857 tokens, whereas the
smallest cluster has 119 tokens; hence, a spread of over 7 to 1 in cluster
occupancy is obtained. The average cluster cardinality, for this case,
is 310 tokens, as denoted by the dashed line in Fig. 6a. The histogram
of cluster cardinality indicates that the vast majority of clusters have
fewer than the average number of tokens.

Figure 7a shows the cluster distortion as a function of the V@Q index,
and Fig. 7b shows a histogram of cluster distortions. The largest
distortion for any cluster is 0.303, whereas the smallest distortion is
0.047; hence, a spread of more than 6 to 1 is observed in cluster
distortions. The dashed lines in Fig. 7 denote the average cluster
distortion, which in this case is 0.165.

Finally, Fig. 8 shows a plot of the total cluster distortion, defined as
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CELL OCCUPANCY

VECTOR QUANTIZER INDEX

(b)

COUNT

CELL OCCUPANCY

Fig. 6—Plots of (a) cell occupancy versus codebook index, and (b) histogram of cell
occupancy for 128-codeword vector quantizer.

Nid,, versus VQ index. The range of total cluster distortion is from 25
to 72; hence, a spread of less than 3 to 1 is obtained. It is conjectured
that the “ideal” vector quantizer seeks to determine the set of
“optimum” codebook vectors such that the total cluster distortion is
as close to uniform as possible. Hence, clusters with large average
distortions should have low cardinality, whereas clusters with small
average distortion should have high cardinality. It can be seen from
Figs. 6 through 8 that the total cluster distortion statistics are much
closer to uniform than are either the cardinality or the average cluster
distortion statistics.

Based on the results shown in Figs. 5 through 8, it was decided to
implement the HMM recognizer using a M = 64 VQ, since the small
decrease in average distortion from M = 64 to M = 128 did not justify
the increased computation owing to the larger codebook.

Figure 9 shows some properties of the LPC vectors in the codebook
for M = 64. Shown in this figure are plots of the first few resonances
of the 64 codebook entries (part a), and plots of first versus second
resonance (part b), first versus third resonance (part c), and second
versus third resonance (part d). As we anticipated, typical vowel
resonances for the digits are seen clearly in the plots (e.g., high front
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Fig. 7—Plots of (a) cell average distortion versus codebook index, and (b) histogram
of cell average distortion for 128-codeword vector quantizer.

vowels, low back vowels, etc), along with characteristic resonances of
transient and other nonvoiced sounds. Detailed examination of the
spectra of the 64 codebook entries did not provide any further en-
lightenment as to the VQ properties.

V. OVERALL HMM/VQ ISOLATED WORD RECOGNIZER

A block diagram of the overall HMM/VQ isolated word recognizer
is given in Fig. 10. The recognizer operates as a speaker-independent
word recognizer, which runs first in a training mode, to provide the
codebook entries of the VQ, and the model coefficients of each word
HMM.

In the classification mode the LPC sets of the unknown word are
first sent through the vector quantizer (to give a finite set of VQ
indices) and then scored on each word HMM (using either the Viterbi
scoring or the Baum-Welch scoring) to give a probability score for
each word model. The decision rule chooses the word whose model
gives the highest probability.

In the next section we describe the results of several tests designed
to measure the performance of the HMM/VQ word recognizer and to
compare it with that of a conventional LPC/DTW recognizer.
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Fig. 8—Plot of cell total distortion versus codebook index for 128-codeword vect
quantizer.

VI. EVALUATION EXPERIMENTS AND RESULTS

Several evaluation tests were performed on the HMM/VQ and
LPC/DTW isolated word recognizers. For most conditions a single test
set of data, denoted as T'S1, was used, consisting of one replication of
each of the 10 digits by a set of 100 talkers. These talkers were the
same ones used to train the recognizer; however, the test replication
was recorded many days after the training replication. A second test
set of data, denoted as T'S2, was used in a couple of tests. This test set
consisted of 20 replications of each of the 10 digits by a set of 10 new
talkers (5 male, 5 female). Thus, TS2 contained twice as many test
tokens as T'S1, but represented only one-tenth the number of talkers;
however, none of the talkers was included in the training set for either
the VQ or the HMMs.

The results presented in this section are the output of a series of
recognition tests in which one or more features of the HMM/VQ
recognizer were varied. Following the presentation of the results of
each of the individual experiments, we shall endeavor to provide a
measure of coherency to the results.
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6.1 Effects of constrained and unconstrained HMMs

The first set of experiments sought to understand the effects of
placing constraints on the A and B matrices on the performance of the
overall recognizer. As such, the HMM was trained for an N = 5 state
model with the following constraints:

UC model: No constraints placed on A; epsilon constraints
[of the type given in eq. (10)] placed on B.
CO model: The constraints of eq. (9a) placed on A; epsilon
constraints of eq. (10) placed on B.
UC.35 model: Same as UC model but all training sequences with
VQ distortions greater than 0.35 were eliminated.
CO0.35 model: Same as CO model but all training sequences with
VQ distortions greater than 0.35 were eliminated.
For each of the above four models, the 1000-digit sequences of TS1
were used to measure the overall error rate as a function of the e
constant parameter. The results are given in Fig. 11, which shows plots
of error rate versus € (on a log scale) for each of the four models.
Several trends clearly emerge from these results. First, we can see that
a nonzero value of € is an absolute necessity for obtaining good
performance. Whenever a symbol, & (a VQ index), appears in a test
word in a state, j, where b; (k) = 0, the probability for that word model
is multiplied by the € value. If € = 0 then the word model is eliminated
from consideration and an error occurs. For finite, nonzero values of
€, however, such errors need not, and generally will not, occur. Hence,
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Fig. 11—Plots of average word error rate versus the minimum value of the symbol
probability matrix, ¢, for four types of hidden Markov models, for TS1 data.
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even for € on the order of 107, the error rate is substantially smaller
than for e = 0.

A second clear trend that can be seen in Fig. 11 is that the con-
strained serial models performed consistently better than the uncon-
strained models for all nonzero values of €. This result implies that the
extra freedom of the unconstrained models tends to raise the proba-
bility scores for incorrect words more than for correct words. This is
somewhat reminiscent of the fact that opening up the search region of
a conventional DT'W search helps the wrong words much more than
it does the correct words.'¢

It can also be seen from Fig. 11 that it is always preferable to train
with all available sequences. This result suggests that the more training
data given to the HMM model estimation algorithm the better the
estimates of the HMM parameters, even if some of the data are less
than ideal.

The final trend that emerges from the curves of Fig. 11 is that there
is a large range of values of € for which essentially identical perform-
ance results. For example, in the range 107'° < € < 107, for model CO,
the recognition error rate changes by less than 1.6 percent. Thus, so
long as e is in this broad rangc, the exact value of € is not overly
significant.

Based on the results of this first series of experiments, we applied
the following restrictions:

(i) Consider only constrained HMMs
(if) Constrain B matrix entries such that b;(k) = e = 10~°

(Zii) Use all possible training sequences for the HMMs.

Before we proceed to the next series of experiments, some comments
should be made about practical methods of implementing constraints
on the B matrix. In Ref. 13 we show how the constraints on the b;(k)
coefficients, of the type given in eq. (10), can be incorporated directly
into either the gradient or the Baum-Welch reestimation algorithm.
We have also tried a post-normalization technique in which no con-
straints were placed directly on the B matrix. Following convergence,
the B matrix was examined and all entries whose values were below €
were reset to the value €, and the rows of the matrix were suitably
renormalized to sum to 1.0. Our recognition results indicate identical
performance for both the direct and the post-normalization constraint
methods. Hence, there appears to be no advantage to constraining the
B matrix directly.

6.2 Markov model with variable number of states

The second set of experiments consider the effects on recognition
accuracy of using the constrained serial HMMs with different numbers
of states. In particular we computed the optimum SC1 model (see Fig.
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4) for each digit where the number of states varied from 2 to 9. We
also computed the optimum SC1 model for a 20-state model for each
digit.

To evaluate these different models a recognition test was conducted
in which each digit was represented by a single N-state HMM, where
N took on the values 2 to 9, and 20. The results of this experiment are
given in Fig. 12a, which shows word error rate versus number of states
in the HMM for the data of TS1. We see a steady but slow decrease in
the average word error rate in this curve. We also see a statistical
fluctuation in the curve owing to the sampling variability in the A’s
and B’s for each word HMM. (We will return to this issue later in this
section.)

A second recognition test was conducted in which each word was
represented by all the word models with number of states up to some
maximum value, NMAX. The results of this recognition test (again
using TS1 data) are shown in Fig. 12b. A somewhat smoother curve of
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Fig. 12—Plots of (a) error rate versus the number of states in the HMM, and (b)
error rate versus the maximum number of states in the HMMs for TS1 data.
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errors versus NMAX is obtained in Fig. 12b than for the individual
models of Fig. 12a; however, the general behavior of both curves is
similar.

Figure 13 shows a breakdown of the error rates for each digit for the
experiment in which a single HMM, with N states, was used for each
digit. There is a highly complex interaction between error rate and
model size for all digits. Thus it cannot be argued, for instance, that
digits like zero and seven (two syllables) need more states in their
models than digits like two or one (monosyllables).

10 +++—— DIGIT

=3

j

i

ERROR RATE IN PERCENT

]

Wy

0 2 3 4 5 6 7 8 9 20
N, NUMBER OF STATES IN HMM

Fig. 13—Individual plots of digit error rates versus the number of states in the HMMs,
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From the results shown in Figs. 12 and 13, it was concluded that
there is very little gain in using HMMs with more than five or six
states when the SC1 structure for each model is being used. It was also
concluded that no simple relationship existed between word (digit)
accuracy, number of sounds (syllables, etc) in the word, and number
of states needed in the word HMM.

6.3 Effects of random starting points

The third set of experiments was concerned with the statistical
variability in the performance scores resulting from statistical varia-
bility in the parameters of the word HMMs because of different
random initial estimates of the parameters. To quantify this effect, a
5-state SC1 model was generated for each digit using 10 different
random starting sets of model parameters. Thus, for each digit, 10
“equivalent” HMMs were created.

A recognition test was then run, using TS1 data, in which each of
the 10 models was tested separately. Also tested was the case in which
all 10 models were used for each digit, as well as the case in which a
single model was used for each digit, where the model parameters were
obtained by averaging the parameter estimates for each of the 10 word
models. The results of these recognition tests are given in Fig. 14,
which shows word error rate versus the random start number. Also
shown, as single isolated values, are the error scores for the average
and the combined 10 state runs. The dashed line in Fig. 14 is the
average error rate of the 10 individual models.

From the data of Fig. 14, we can see that the 10 individual models
all performed identically to within +1 percent; hence, the expected
statistical variability in error rate scores, due to random starts, should
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Fig. 14—Plots of error rate for 10 different random starting sets of values of the
HMM parameters. Also shown are individual error rates for an averaged model and for
combining 10 random start models.
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be on the order of +1 percent. We can also see that the performance
of the “averaged” model (obtained by averaging HMM parameters for
each word) was somewhat poorer than that of any of the 10 individual
models. The fact that using all 10 word models for each digit gives an
error rate comparable to that of the best word models indicates that
multiple word models provide a small gain that comes at the cost of
greatly increased computation.

Overall, the data of Fig. 14 suggest that a single model per word
should be adequate for most purposes, and that the effects of different
random starts on the overall error performance are small.

6.4 Parallel constrained HMMs

The last factor investigated was the effect of using constrained
parallel HMMs for each digit. The main idea was that a true parallel
structure could model the effects of using a multiplicity of word models
in much the same way as multiple templates are used in the conven-
tional LPC/DTW word recognizer.

Figure 15a shows the 5-state constrained serial HMM that was used
in previous experiments along with a 7-state, constrained parallel
HMM (Fig. 15b), and an 8-state, constrained parallel model (Fig. 15¢).
The 7-state parallel structure was intended to represent four distinct
5-state word models, in that there were four sets of paths through the
model, namely, 1-2-5-7, 1-2-6-7, 1-3-5-7, and 1-3-6-7. The 8-state parallel
structure was intended to represent eight distinct 5-state word models
in that there were eight sets of paths through this model, namely,
1-2-4-6-8, 1-2-4-7-8, 1-2-5-6-8, 1-2-5-7-8, 1-3-4-6-8, 1-3-4-7-8, 1-3-5-6-8,
and 1-3-5-7-8.

Each of the three HMM structures of Fig. 15 was used to generate
a word model for each of the digits. The three sets of models were
then tested using TS1 data. The results showed each of the three
systems obtained the same word error rate (3.5 percent) to within +0.1
percent. These results indicated that there was really no advantage in
using the parallel structure.

6.5 Comparison with LPC/DTW recognizers

To provide some basis of comparison for the performance of the
HMM/VQ recognizer with that of more conventional word recognizers,
the data of T'S1 was tested on the LPC/DTW recognizer of Fig. 1. The
reference set consisted of 12 templates per digit, generated from a
clustering analysis of the 100 tokens of each digit in the training set
(the same training set used to train each word HMM). The decision
rule was the nearest neighbor rule (KNN = 1)."7

Tables I and II show average word recognition accuracies for the
following three recognizers:

WORD RECOGNITION 1097



(c)

Fig. 15—State diagrams for (a) simple constrained serial 5-state model, (b) con-
strained parallel 7-state model, and (c) constrained parallel 8-state model.

(i) HMM/VQ using a constrained serial structure with five states
for the HMM and the 64-element VQ.
(i) LPC/DTW, the conventional recognizer.

(ii) LPC/DTW/VQ, the conventional recognizer with both refer-
ence and test patterns quantized using the same VQ used in the HMM
case.

The results shown in Table I are for the 1000 digits of T'S1, whereas
those shown in Table II are for the 2000 digits (10 talkers) of T'S2. The
results given in Table I show that for TS1, both the LPC/DTW and
HMM recognizers, when using the VQ, achieved essentially the same
digit accuracy; however, the LPC/DTW system without the VQ
achieved a 2-percent higher word accuracy. For T'S2 in Table II the
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Table |—Comparison of results on HMM/VQ and
LPC/DTW word recognizers for [average word
accuracy (%)] TS1, 100 talkers, 10 digits per talker

Recognizer
Digit HMM/VQ LPC/DTW LPC/DTW/VQ
0 98 99 99
1 98 98 99
2 96 100 96
3 99 99 97
4 93 97 96
5 97 96 93
6 96 100 94
7 99 100 94
8 92 98 96
9 95 98 96
Average 96.3 98.5 96.5

Table Il—Comparison of results on HMM/VQ and
LPC/DTW word recognizers for TS2, 10 talkers,
200 digits per talker

Recognizer
Talker HMM/VQ LPC/DTW  LPC/DTW/VQ
1 74.5 96 87
2 99.5 100 99.5
3 94 99 97
4 89 99 91
5 95.5 100 100
6 95.5 99 99.5
7 100 100 99.5
8 91.5 96 93
9 91.5 99.5 93.5
10 96.5 98.5 98
Average 92.8 98.7 95.5

results show that the VQ led to a 3.2-percent reduction in accuracy for
the LPC/DTW system, and an additional 2.7-percent loss in accuracy
for the HMM system. A good deal of the loss in accuracy, however,
was contributed by talker 1, whose accuracy was 87 percent for the
LPC/DTW/VQ recognizer, and 74.5 percent for the HMM/VQ recog-
nizer. With only 10 talkers, the influence of a single talker on the
overall accuracy may be substantial.

An analysis of the actual errors of all three of the recognizers of
Tables I and IT shows the following:

(£) Of the 37 tokens misclassified by recognizer HMM/VQ in TS]1,
31 were correctly identified by the LPC/DTW recognizer, and 27 were
correctly identified by the LPC/DTW/VQ recognizer.

(ii) The vast majority (25) of the 37 errors made by recognizer
HMM/VQ were cases in which the probability of the correct word was
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lower than the probability of the incorrect word by a factor of e® or
larger.

The results show that when the LPC/DTW recognizer (either with or
without the VQ) has incorrectly identified the word, most of the time
the HMM recognizer has correctly identified the word. Hence, a side
result of this work is that the HMM/VQ model can be combined with
an LPC/DTW model to provide word accuracies greater than either
individual recognizer could obtain. In particular, for the data of TSI,
the combined recognizer could have achieved a 99.4-percent word
accuracy by using appropriate decision logic®® on all cases in which
both recognizers did not agree.

The same sort of trends are noted in the errors of T'S2. Of the 124
errors made by the HMM/VQ recognizer, 113 were correct in the
LPC/DTW or equivalently of the 26 errors made by the LPC/DTW
recognizer, 15 were correct in the HMM/VQ system. Hence, again a
combined system could potentially achieve an accuracy of about 99.5
percent on TS2 data. Considering that even the talkers in the TS2
data were different from those in the training set, this accuracy appears
to be quite remarkable.

In summary, comparisons between the HMM/VQ and LPC/DTW
recognizers indicate that without the VQ, the LPC/DTW recognizer
achieves from 2- to 6-percent higher accuracy than the HMM/VQ
system; with the VQ the differential in accuracy is from 0 to 3 percent.

VIl. DISCUSSION

In this paper we showed that the techniques of vector quantization
of LPC vectors and hidden Markov modeling can be combined in a
simple, straightforward manner to implement a speaker-independent,
isolated word recognizer. With adequate training of the vector quan-
tizer and the Markov model estimation algorithm, a digits vocabulary
can be recognized, with accuracies of from 93 to 96 percent across a
wide variety of talkers. Direct comparisons with a conventional linear
predictive coding recognizer using dynamic time warping for time
alignment with multiple templates for each vocabulary word showed
that the HMM/VQ recognizer performs only a little worse (0.2 percent
in one test, 2.7 percent in another) than the LPC/DTW recognizer
when using the VQ. Without the VQ, the LPC/DTW recognizer was
about 2 to 3 percent better than when the VQ was used.

Several general conclusions can be drawn from the results. The first
is that the HMM/VQ recognizer performed exceedingly well on the
difficult task of speaker-independent recognition of isolated digits. The
fact that the overall performance of the HMM/VQ recognizer was
somewhat poorer than the LPC/DTW/VQ recognizer appears to be
primarily because of the insufficiency of the HMM training data.
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Although 100 training sequences per word are adequate for a clustering
analysis, as used in the conventional recognizer, they appear to be
inadequate for obtaining good HMM models for these words. This
suggestion is made plausible by considering what is being estimated in
the HMM for each word. For an N-state Markov model, with M finite
symbols per state, a total of N* + NM parameters must be estimated.
(Of course with constraints there are somewhat fewer parameters.)
For N = 5, M = 64, we need 345 parameters to be estimated from
about 100 X 40 frames of VQ indices. The “curse of dimensionality”
would imply that this amount of training data is woefully inadequate.
[We have seen one consequence of this inadequacy in that we had to
use the e-constraints of eq. (10) on any b;(k) whose value fell below the
€ threshold.] In view of this, the fact that we achieve the results we are
getting is rather remarkable.

A second conclusion that can be drawn from the results is that the
use of the VQ on the LPC sets leads to a small, but not insignificant,
degradation in performance of both the HMM/VQ and LPC/DTW/
VQ recognizers as compared to the conventional LPC/DTW system.
This suggests the need for using more than 64 vectors in the codebook
or resorting to continuous models of the LPC parameters.

The results have shown that the errors made by the HMM/VQ and
LPC/DTW recognizers are largely disjoint. Here there exists the
potential of using some fairly standard techniques to combine the two
recognizers into one whose accuracy is as good as the best of both
recognizers on any given word.”® This topic merits further considera-
tion.

The experimentation with various forms of the Markov models used
in the recognizer showed fairly conclusively that:

(i) Constrained models (with constrained transition matrices) per-
formed consistently better than unconstrained models.

(i) A finite minimum constraint on the state symbol probability
matrix was a necessity for good system performance.

(iif) The effects of different random starting values for the HMM
parameters were negligible in evaluating overall recognizer perform-
ance.

(iv) The required number of states in each word HMM needed to
be on the order of 5. More states did not lead to significant improve-
ments in performance.

(v) Parallel HMM structures yielded no real improvements over
cascade structures, thereby indicating that an equivalent of multiple
HMMs is not readily obtainable by simply changing the model struc-
ture.

(vi) The Viterbi scoring and the Baum-Welch scoring of test se-
quences give essentially identical performance.
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7.1 Computational considerations of the HMM/VQ recognizer

It is worthwhile estimating the storage required and the computation
needed to process an unknown test utterance using the HMM/VQ
recognizer, and to compare them to the requirements of the conven-
tional LPC/DTW recognizer. OQur intention is to provide only a rough
estimate of computational expense. A number of straightforward re-
ductions in computation can be achieved for each recognizer through
the judicious use of table storage. Also we ignore overhead owing to
index computation, etc.

The first extra step in the HMM/VQ recognizer (after conventional
LPC analysis) is vector quantization of the unknown test pattern. If
we assume there are T frames in the test word, and M codebook entries
in the VQ, then we need a total of

Ci=M-T(p+1) (17)

multiplications* (where p = LPC order) to perform the M.T dot

products required to get the best codebook entry for each frame.
Evaluation of the word HMM score, using the Viterbi scoring

method with the constrained A matrix, requires approximately

Co=T-N-3 (18)

multiplications and logarithms per word model, where N is the number
of states in the model, and the factor 3 accounts for the number of
valid transitions into a given state. For a vocabulary of V words a total
of

C,=M-T-(p+1)+V.T-N-3 (19a)
Ciog=V-T-N-3 (19b)

multiplications and logarithms are required. For M = 64, T =40, V =
10, N = 5, and p = 8, eq. (19) gives C, = 29040 multiplies and Ciog =
6000 logarithms.

For a conventional LPC/DTW recognizer with @ templates per
vocabulary word, the computation for DTW processing is

Cy=Q-V-T?/3-(p + 1), (20)

which for @ = 12 and other parameters the same as above gives Cs =
576000 multiplications. Hence, the HMM/VQ recognizer requires
about 17 times less computation (assuming logarithms are equivalent
to multiplications) than the LPC/DTW recognizer.

With regard to storage, the HMM/VQ recognizer requires

* In this simplified analysis we neglect additions and comparisons of data and use
multiplication count as the measure of computation.
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Si=M(p+1) (20a)
S: = (M-N +3N)-V, (20b)

where S, is the storage (in words*) for the VQ codebook entries, and

S, is the storage (in words) for the set of V word HMMs. For the given

values of the parameters, the total storage is S = S, + Sz = 4106 words.
For the conventional LPC/DTW recognizer the storage is

S3=@Q-V-T-(p+1), (20c)

which gives 43,200 words for the assumed parameter values. Again we
see a 10 to 1 reduction for the HMM/VQ model over the LPC/DTW
model.

It should be noted that in our analysis of computation we have not
included the computation of LPC coefficients. This computation must
be performed in “real-time” and is independent of the vocabulary size,
V. Hence, for a sufficiently large vocabulary the computation for
scoring each word dominates the overall computation, and the rough
analysis given above is appropriate. Furthermore, the computation for
coding each LPC vector into the nearest codebook entry [eq. (17)] is
also independent of vocabulary size and often could be performed in
the “real-time” part of the recognizer. For such implementations the
gain in computation of the HMM/VQ recognizer, over the conventional
LPC/DTW recognizer, is even higher than our simple analysis predicts.
Finally, it is straightforward to show that if we compare the compu-
tation of the HMM/VQ recognizer with that of the LPC/DTW/VQ
recognizer, assuming that the VQ is done in real time and that tabular
computation of products and logarithms is used, then by comparing
the number of additions, the computational advantage of the HMM/
VQ system over the LPC/DTW/VQ system still holds.

7.2 Some comments on the relationships between DTW and HMMs

Contemporary research on speech recognition has produced two
algorithmic procedures for dealing with the nonstationarity of the
speech signal: temporal alignment techniques, and Markov modeling.
These methods display certain superficial similarities (e.g., both use
dynamic programming methods, can be cast in a Bayesian framework,
and have a state transition network associated with them), as a result
of which it has occasionally been claimed that they are identical. To
the best of our knowledge, the experiments reported here represent
the first direct comparison of the two methods. From these experi-
ments it is abundantly clear that the methods are not identical. While

* Words of storage refer to unquantized floating point data.
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their overall performances are comparable, they appear to make dif-
ferent errors and involve different amounts of computation and differ-
ent complexities of training.

In all of these respects the two methods reflect the dichotomy
between parametric and nonparametric methods of pattern recognition
in the sense of Patrick.” In Markov modeling we assume that there is
a family of models of a particular structure differing only in the values
of their parameters. We use a large training set to estimate these
parameters and assume that, if correctly done, the parameters will
capture the structure of the data. The training procedure is computa-
tionally expensive but need be done only once. After training is
complete, relatively little computation is required to determine
whether an unknown observation was generated by the model.

Temporal alignment methods are opposite in the following ways.
We assume that there is an underlying structure to the training data
but its form is unknown. We attempt to capture that structure by
simply storing one or more samples and measuring their “distance” to
an unknown sample with a metric that is sensitive to the distinctive
features of the categories that we seek to identify. The metric is
monotonically related to the class conditional density functions so that
minimum distance corresponds to maximum model probability. In this
case training is a computationally simple data collection and storage
process. Probability computation, on the other hand, is very costly
since we must measure the distance to every prototype in the training
set.

All of these characteristics are made manifest by our experiments.
What remains to be determined is whether the parity of these methods
extends to more difficult problems of speech recognition. We hope to
answer that question by further experimentation.

Vill. SUMMARY

We have described the results of an extensive investigation into the
applicability of the techniques of vector quantization and hidden
Markov modeling to speaker-independent, isolated word recognition.
We have shown that, when properly designed, the resulting recognition
system produces highly accurate word recognition on a vocabulary of
isolated digits. We have also discussed the effects of variations of
model parameters on system performance. Our experiments show that
the resulting recognizer requires about 10 times less storage, and about
17 times less computation for classifying a test utterance than does an
equivalent recognizer using LPC coding and dynamic time warping.
These economies are obtained at the expense of only a slight increase
in error rate.
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