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In this paper we analyze the delay in a single-server queue in
which the server, when it becomes free, selects for the next service the
oldest customer with current delay smaller than T. If no such cus-
tomer is present, then it selects the youngest customer with the current
delay in excess of T. This service discipline is desirable in applica-
tions where the success or failure of a service depends on the delay in
providing the service. Telephone call processing and steel rolling are
two of these applications. We obtain the delay distribution for this
service discipline using a combination of level-crossing arguments
and renewal theory, and compare this performance with that of the
last-in-first-out discipline with respect to the throughput of success-
fully served customers.

I. INTRODUCTION

The following situation is common in telephone call processing or
data-processing systems. When a customer requests service, an entry
is made in the queue that is serviced by a processor. The processor
serves the queue of entries according to some specified service disci-
pline. When an entry is served, the corresponding customer is notified
of the completion of the service. The customer, however, does not wait
forever for the completion of the service. At some random time, R,
after its arrival, the customer will renege if service is not completed.
The associated entry remains in the queue, and the server does not
know that the customer has reneged until after it completes the service
and attempts to notify the customer. Such a service is wasted. The
customer may make the situation worse by reattempts at getting the
desired service, thereby increasing the load on the server. It is therefore
necessary to keep the proportion of reneging customers as small as
possible. This can be done by selecting an appropriate discipline.

In this paper we study a specific model of the above situation. In
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Fig. 1—Customer behavior function 1.

particular, we have a single-server queue with Poisson arrivals at rate
A>0.

Let G be the distribution of the service time. Let P(¢) be the
probability that the customer does not renege before time £. We may
think of P(¢) as the expected reward obtained by completing the
service of a customer at ¢ time units after its arrival. With this general
interpretation P(t) need not be restricted to be between 0 and 1. Let

P(t) = j P(t + y)dG(y) (1)
o

for 0 < ¢ < . Then P(t) is the expected reward from a customer whose
waiting time (excluding the service time) is £. Let W, be the distribu-
tion of the waiting time under the specified service discipline, 7. Then
the expected reward from an arbitrary customer is

VW=J' P(t)dWa(¢). (2)
o

We want to select a service discipline that maximizes V,. It was shown
in Doshi and Lipper' that if P(f) is convex (respectively, concave),
then the last-in-first-out (LIFO) [respectively, first-in-first-out (FIFO)]
discipline is optimal. More realistic functions P(t), however, are of the
forms given in Figs. 1 and 2.

For such functions, P(¢), an optimal service discipline, is not known.
However, our results for concave and convex P(t) indicate that a
hybrid discipline may provide better performance than either the
FIFO or the LIFO discipline does. In this hybrid discipline the server,
when it completes a service, first looks at the customers with the
current waiting time less than T and selects the oldest waiting customer
for the next service. If no such customer is waiting, then the server
looks at the customers with the current waiting time in excess of T
and selects the youngest customer. Note that this hybrid discipline
includes FIFO (T = «) and LIFO (T = 0) as special cases. Since P(¢)
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Fig. 2—Customer behavior function 2.

is assumed to be given, we only need W,(¢), 0 < ¢ < oo, for this hybrid
discipline , to calculate V... In this paper we obtain W, for general
service time distribution. We do this in three steps. First we describe
another queueing system for which the distribution of the waiting time
is the same as for the original system. Moreover, for this equivalent
queueing system the distribution of the waiting time can easily be
expressed in terms of the distribution, F(x), of the work in a subsystem.
We then use level-crossing arguments to derive an integral equation
satisfied by f(x) = F’(x). Finally, we use some results from renewal
theory to solve this integral equation.

Some comments about the model are in order before we proceed to
give an outline of the rest of this paper. Models similar to the one
studied here can be useful in a variety of other applications. Some of
these are the management of steel-rolling operation and the manage-
ment of blood bank. Also, in many applications the customers do not
necessarily renege. They simply take actions (start to dial, become
cold, etc.) which make any subsequent service worthless.

This paper is organized as follows: In Section II we formally define
the queueing system under consideration. We describe an equivalent
queueing system in Section III. There we also show the relationship
between the distributions of the waiting time in the original system
and of the work in a subsystem of the equivalent queueing system. In
Section IV we derive an integral equation for the steady-state density
of the work in the subsystem. We give the solution of this integral
equation in Section V. There we also derive the steady-state distribu-
tion of the waiting time in the original system. Finally, we give some
numerical results in Section VL

1. MODEL

The queueing system and the hybrid service discipline discussed in
Section I can be formally described as follows: We have a queueing
system with a single server and two queues, Q1 and Q2. Customers in
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Q1 have a nonpreemptive priority over those in Q2. The order of
service is first-in-first-out (FIFQ) in Q1 and last-in-first-out (LIFO) in
Q2. Customers arrive according to a Poisson process at rate A > 0. On
arrival the customer is put in Q1. If its service has not started within
T seconds after its arrival, then at that time it is transferred to Q2.
The service times of the customers are independent and identically
distributed with distribution function G with continuous density g.

Let ux denote the Kth moment of the service time and let p = Ap;.
Assume that the waiting-time process is in the steady state. Let W
denote the distribution function of the waiting time seen by an arbi-
trary customer. Since G has a continuous density, W is differentiable
on (0, ). Let

w(x) = Wix) 0<x<oo.

We are interested in obtaining an expression for W(x) or, equivalently,
for W(0) and w(x), 0 < x < oo,

lil. AN EQUIVALENT QUEUEING SYSTEM

We now describe a queueing system that is equivalent to the one
described in Section II as far as the waiting times of the customers are
concerned. However, the number of customers in Q1 and Q2 at a given
time may be different in the two systems.

Consider the subsystem consisting of the server and Q1. Let X,
denote the work, at time ¢, in this subsystem. Thus, X, is the sum of
the remaining service time of the customer, if any, being served and
the service times of all the customers in Q1. If a customer arriving at
time ¢ finds X, = T, then it joins Q1; otherwise it joins Q2. Recall that
Q1 has a nonpreemptive priority over Q2 and that Q1 is served FIFO
and Q2 is served LIFO. A little reflection shows that the waiting time
of a customer is the same in this system as in the one described in
Section II.

We now relate the waiting-time distribution, W, to the steady-state
distribution, F, of the work, X, in the subsystem consisting of the
server and Q1. If an arriving customer sees X < T, then its waiting
time will be X because the service in Q1 is FIFO and because Q1 has
a nonpreemptive priority over Q2. Thus,

Wi(x) = F(x) O=x=<T (3)
In particular,
W(0) = F(0), (4)
and
wx) =fx)=Fx 0<x<T (5)
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If an arriving customer sees X > T, then it joins Q2. Since Q1 has
priority over Q2 and since Q2 is served LIFO, this customer has to
wait for the duration of a busy period in the M/G/1 queue with initial
work, X. Let B, denote the distribution of the busy period in the
M/G/1 queue started by initial work, y. Since G has a continuous
density,

b,(x) = B(x) (6)
exists for all x > y. Then

w(x) = j f(Nby(x)d(y) x>T. (7
T

Thus, it is sufficient to find the distribution of X.

IV. INTEGRAL EQUATION FOR f(x)

We now use level-crossing arguments (see Ref. 2) to derive an
integral equation for f. Figure 3 shows a typical sample function for
the process {X,}. Assume that at time 0 the queues are empty, the
server is idle, and a customer arrives and enters service. If X, > 0, then
it decreases at unit rate as in a M/G/1 queue. Symbols O represent
arrivals which see X; = T and join the subsystem, thus increasing X;
by a service time. A symbol in the shape of a dot (®) represents
arrivals that see X; > T, and join Q2 without affecting X; on their
arrival. When X, reaches zero, two things can happen: Q2 is empty and
the server remains idle until the next arrival, or Q2 is nonempty and
a customer from Q2 enters service, thus increasing X, by its service
time. Such arrivals from Q2 into the server are denoted by a symbol in
the shape of a square (H).

The stochastic process {X,} is not Markovian because what happens

[ —r

Fig. 3—Typical sample function for the process {X,)}.
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when X, reaches zero depends on the past. On the other hand, the
vector-valued process {(X;, N;)}, where N, is the number in Q2 at time
t, is a Markov process. We can derive the steady-state distribution of
(X., N;) using the standard results and use that to obtain the marginal
steady-state distribution of X. We, however, use a simpler approach
here. Recall that ps < . Consider the following two cases:

(i) p < 1. In this case the process {X;} is regenerative and with the
regeneration points corresponding to the external arrivals that make
an idle server busy. Denote this event by E. Then E is a positive
recurrent, regenerative event.

(ii) p = 1. In this case the queue length in Q2 grows without bound
and, in the steady state, can be assumed to be . Thus, a customer is
removed from Q2 to enter service every time X, reaches 0. This event,
E’, is then positive recurrent.

Standard regenerative arguments now show that {X;} has a steady-
state distribution and that

x3x,

where the distribution of X is the steady-state distribution of {X,}.
Moreover, for any x, 0 < x < oo, the steady-state rate, D(x), at which
X, crosses x from above, equals the rate U(x), at which X, jumps from
below x to above x. We now express D(x) and U(x) in terms of f(x)
and get the desired integral equation by equating these expressions.

X, decreases at unit rate until an arrival occurs or until X; = 0. Thus,
during every downcrossing of level x, the {X;} process spends dx units
of time in the interval (x — dx, x). Hence,

D(x) = f(x) O0<x<oo (8)

Before deriving an expression for U(x) we introduce some notation.
Let p denote the rate at which X, jumps from 0 to some positive value.
These jumps may be due to either external arrivals coming to an idle
system or to customers from Q2 moving to the server. Also, let G
denote the complementary service time distribution defined by

G(x) =1— G(x) 0=<2x<oo, (9)
Assume that G(0) = 0, G(0) = 1. Then, forx = T

Ux) =A j f(»G(x — y)dy + pG(x). (10)

Since an external arrival causes a jump in X, only when X; = T, we
have, for x > T,

T
Ux) = A J f(»)G(x — y)dy + pG(x). (11)
0
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Thus,
TAx
U(x) =X f f(y»)G(x — y)dy + pG(x) O0<x<o (12)
0

Let
f(0) = liﬁlf(x). (13)

Then f(0) is the rate at which {X.} hits level zero. In the steady state,
this must equal the rate at which {X;} jumps from 0 to some positive
value. Thus

p =f(0). (14)
We now have for 0 <p < o, 0 < x < oo,
f(x) = D(x)
= U(x)
xAT
=A f f(»)G(x — y)dy + f(0)G(x). (15)
0
Let
_fo
q z
Then
AT
flx) =X f f(»)G(x — y)dy + gA\G(x). (16)
(1]

This is the desired integral equation for f. The additional conditions
needed to solve this completely depend on whether p <1 orp = 1.

First consider the case where p < 1. Let P; be the probability that
an arriving customer sees X; > T and joins Q2. Since, for p < 1, every
arriving customer is eventually served, the rate at which customers
enter the server from Q2 is AP:. Also, the rate of arrivals coming to an
empty system is AF'(0). Thus,

_f0) _A[F(0) + P.]

g="F =" =FO) +P. a7

Also,

P;= | flx)dx, (18)
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and

F(0) + Jm flx)dx=1. (19)
0
For p = 1, Q2 is always nonempty in steady state. Hence F'(0) = 0,
q= @; (20)
and
Jm f(x)dx = 1. (21)
0

Equation (16), together with either conditions [eqs. (17) to (19) or
20], characterizes f completely. We solve this equation in the next
section.

V. SOLUTION OF THE INTEGRAL EQUATION

We now solve eq. (15) to obtain an expression for f(x). For 0 < x <
oo, let

h(x) = AG(x) (22)

and let m(x) be the renewal density function for A(x). Then m(x)
satisfies (see Ref. 3):

X

m(x) = h(x) + f A(x — y)ym(y)dy. (23)

0

Equation (15) can now be rewritten as
f(x) = qh(x) + J flx — y)h(y)dy 0<x<T), (24)
1]
and
T
f(x) = gh(x) + j f(»)h(x — y)dy T=x<o. (25)
(1]

Equation (24) is a renewal equation and its solution is given by

X

f(x) = gh(x) + q j h(x — yym(y)dy

0
=q [h(x) + J h(x — y)m(y)dy}
0
= gm(x), (26)
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where the last equality follows from (23). Note that 0 < A(x) < o, and
j h(x)dx = A, = p.
0

Thus, A is like a probability density with total mass, p. The function
m(x) is well defined for any finite x irrespective of the value of p, 0 <
p < . To obtain an expression for f(x), x = T, we note that the right-
hand side of (25) involves f(y) for y only in the interval (0, T'), which
we have obtained in (26). Thus, replacing f(y) on the right-hand side
of (25) by gm(y), we get

T
flx) = [qh(x) + J gm(y)h(x —y)dy}

T
=q [h(x) + f h(x —y)m(y)dy] x=T. (27)
(1]

We now use conditions (17) through (19) or (20) through (21) to
evaluate g and thus completely characterize f. First, consider the case
p < 1. We have

g=F(0) + P, (28)

and
T

F(0) + ¢ j m(x)dx + P2 = 1. (29)

0

Also, equating the rate of customers coming to the system with the
rate of customers leaving the system, we get

A= k [1-F(0)],
m

or

F)=1-p. (30)

We can now solve (28) through (30) for g and P- to get

T
p—(1—p) f m(x)dx
Py = °

b}

T
1 +j m(x)dx
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and

1
g=F(0) + P, =

= .
1+ J’ m(x)dx
0

Thus,

flx) =—F—— x<T
1 +] m(x)dx

T
h(x) + J’ h(x — y)m(y)dy
y=0

= x x=T.
1+ J’ m(x)dx
0
Next, consider the case where p = 1. Here,
f(0)
qg= Ts

and

T oo

f f(x)dx +j flx)dx = 1.

0 T

Thus,
T T T
f(0) [f m(x)dx + p [1 +f m(x)dx] —f m(x)dx} =1,
[1] (1] (1]
or
1
f(0) = 7 ==
p [1 + J m(x)dx
flx) = m;x) - x<T,
[ [1 +f m(x)dx
0 .
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and

T
h(x) + f h(x — y)m(y)dy
0

T
P [1 + J’ m(x)dx]
(1]

x=T.

flx) =

(36)

We now consider a special case where G(x) = e ™, p = 1/p:. Then,

h(x) = Ae ™ 0<x <o,

m(x) = Ae®™*  0<x <o,

T
1+ J’ m(x)dx = [1 = pe#**)T],
0

1
(1-p)

and, for x = T,

T
h(x) + f h(x — y)m(y)dy
0

T

= e ™ + ;@j e—ntx—y)e—tp—J\Jydy
0

T
= Ae™F + A% J e*™Mdy

[i]

= Ae PHAT
Thus, forp <1
FO)=1-p
f(x) =%e"‘““’” x<T,
and
1-p _
f(x)=me wAt o x=T.
Forp=1
F(0) =0,

1-p .
f(x) =me““’ 1 x<T,

QUEUEING
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and

1-p -
f(x) =me watAT x=T.

VI. WAITING-TIME DISTRIBUTION

We now use the results of Section V to obtain an expression for the
waiting-time distribution and its Laplace Stieltjes Transform. From

eqgs. (4), (5) and (6) we get

1— 1
W(O)=F(0)={O pop=

p=1,
( n;(x) p<l
[1 +J m(x)dx:|
0
w(x) = flx) =<
m(x) =1
T _— 4y
0 [1 +j m(x)dx]

and
( x T
j {h(y) +j h(y - z)m(z)dz} b,(x)dy
. S p<1
1+ j m(x)dx
ww ={ -
j [k(y) + J h(y — Z)m(z)dz} by(x)dy
- ° T p=1.
P [1 + j m(x)dx}
Let

oo

W*(6) = E[e™""] = W(0) + j e "w(x)dx Ref>0.

1]

Also, for Re 8 > 0 let

g0 = f e g (x)dx
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h* () =I e "h(x)dx
0

_A[1-g%(0)]
and
m*(9) = J e "“m(x)dx
0
_ k¥
T 1—A*6)
Al1—g*(8)] (43)

TO-AN1-g"0]

Let B*(8) be the Laplace Stieltjes Transform of the ordinary busy
period in an M/G/1 queue with the arrival rate A > 0 and the service
distribution, G. Then B* satisfies

B*(6) = g*{0 + A[1 — B*(0)]1}. (44)
Also, let B} () be the Laplace Stieltjes Transform of B,. Then
B} (0) = e, (45)

We now express W*(#) in terms of m, m* and B*. First, consider the
case p < 1, where

T
W*(@=1-p +—T1—-—{J' e *m(x)dx
1+ J m(x)dx

T
j j [h(y) +J h(y — z)m(z)dz} J,(Jc)d’ylri’x}
y=T a

1 T
=l-p+ J e "*mix)dx
1+ J m(x)dx
0

6 B —{6+A[1-B*(6)])x
o NT—B" @] ), e m(x)dx |. (46)
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Forp>1,

1

0 [Hfm(x)dx} {

9
YOI =B 0]

T
W*() = J' e "m(x)dx
0

f e—[ﬂ+Ml—B‘(ﬂ)].rm(x)dx}' (47)
T

6.1 Mean value of the waiting time

Let W denote the mean value of the waiting time. For p < 1, every
customer is eventually served. Hence, W is the average over all the
customers. For p > 1, some of the arriving customers do not get served
and, in this case, W is the average waiting time of those who do get
served. In the first case,

W=—-W*(0%),
and for the second case,

- —W*(0%)

W= Wron

For p < 1, all customers are served and the order of service does not
affect the mean waiting time. Thus, in this case the mean waiting time
is the same as that for an M/G/1 queue with the FIFO discipline. That
is,

- A’_Lz

W=—"—. (48)

2(1-p)
For p > 1, the busy period distribution is defective. Let
b, = P{Busy period < o}.

Then b, is the unique solution in (0, 1) of

B*(0") = b, = g*[A(1 — bo)]. (49)
Also,
o &ML= B)]
BYO0 = e - o)) 0
and
B*"(0+) _ gtﬂ[A(l - ba)] (51)

{1+ Ag™A1 = b))
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Now, from eq. (47), we get

1
W*(0*) = -
p [1 +f m(x)dx]
0
T
. —(6+A[1-B* ()]} x
[J; m(x)dx + NI = bo) e—-o"J’ Be (x)dx}
1
= - [j m(x)dx + 1]
p [1 + J' m(x)dx] 0
0
1
== (52)
P
and
1
—-W*(0%) = =
p [1 +J’ m(x)dx]
T 1 T
; {J; xm(x)dx + XT=5) [1 + L m(.r)dx}}
T
f xm(x)dx
_1 2 + (53)
P T AL = bo)
1+ J m(x)dx
From (52) and (53) we have
T
W 0") J’ xm(x)dx
V=0 A=) (54)

T
1+ j m(x)dx

Equation (54) shows that the mean waiting time of the customers who
get served is minimized by the LIFO discipline (7" = 0).

VII. NUMERICAL RESULTS

In this section we present some numerical results. Instead of calcu-
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lating the waiting-time distribution, we calculate the quantity of inter-
est, namely

V= f P(t)dW(t)
o
for a specific P. Let
1 t=T
P(t) = {e—u(:—'n t>T. (65)

We now evaluate V for the hybrid discipline with parameter T and
also for the LIFO discipline. For the hybrid discipline we have

T
Vr=g: [j m(x)dx + e*'m*{o + A[1 — B*(0)]}
0

(1 + h*{c+ A[1 = B*(0)]})
—e’"(1+ h*{a + A[1 - B*(0)]})
T
) J' m(y)ey(ﬁmn-a‘(n)]dy} (56)
0
where

p<l (57)

p>1. (58)

T
p [1 +[ m(x)dx]
(1]

We need some more notation before writing an expression for V.
Let byr(-) denote the density function for the busy period started by
the forward recurrence time of the service time. Thus,

brr(x) = f by(x) 1_—G(y)‘dy- (59)
0

Ha

Then, for p < 1,
T

o

brr(x) + pe“TJ e "“brr(x)dx

T

VL=1—p+pJ

0

T T
=1—-p+p [j brr(x)dx — e"TJ’ e“bFR(x}dx]
0 0

A1 — B*(0)]

; (60)
6 + A[1 — B*(0)]

+e°T
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and, forp > 1,
T

T
V.= J' brr(x)dx — e j e “brr(x)dx
0

[}
1— B*(o)
m{o +A[1-B*(0)]}’

(61)

For numerical calculations we considered all integrals in eqs. (56)
through (58) and (60) through (61) as functions of T, obtained their
Laplace transforms, and inverted the transform at the specified value
of T using the inversion method of D. Jagerman.’ Thus, let

t
Rit) = j m(x)dx,
0
¢
R(t) = f m(x)e e NI=B N gy,
0

¢
Ra(t) = f brr(x)dx,
0
and
t
Ru(t) = j e “brr(x)dx.
(1]
Also, for i = 1, 2, 3, 4, and @ in the appropriate domain, let

R¥ () = f e "R.(t)dt.
i}

Then
(0
R0 =",
R;w)=m*{0+a+?;[1—B*(0)]}’
.o 1 - B*()
R3(0) = 6{6 + A[1— B*(O)]}’
and
R1(0) = 1—B*@#+ o)

g+ 0+ A1-B*@+0)]

For numerical examples we had the service time distribution gamma
with mean 1 and variance 1/K. We used two different values of K,
K = 1 (exponential distribution), and K = 10. We used two different
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values of T, 1 and 3. Finally, we used two values of g, 2.0 and 0.15.
These give us eight parameter sets. The values of Vr and V; as
functions of the load A = p are given in Figs. 4 through 11. From these
figures we observe:

({) For both service disciplines, the throughput of good calls is
larger for larger T, smaller o, and larger K. The behavior of the
throughput with respect to T'and o is obvious. Larger K implies smaller
variability in the service time, thus reducing the probability of a
customer getting served after a long wait. This, in turn, results in a
higher throughput.

(i1} For the assumed customer behavior, the hybrid discipline al-
ways provides higher throughput than the LIFO discipline does. The
difference is larger for larger T, larger o, and larger K.

=
o

o
)

o
o

V¥ (THROUGHPUT OF GOOD CALLS)

‘0.6 0.8 1.0 1.2 1.4 1.6
A=p

Fig. 4—The values Vr and V. as functions of the load A = p for T' = 3.0, 0 = 2.0, and
K=1.

1.0

Vr

Vi
081
>
0.6
0.4 | | 1 1
0.6 0.8 1.0 1.2 1.4 1.6
A S P —

Fig. 5—The values Vr and V, as functions of the load A = p for T'= 3.0, ¢ = 2.0, and
K =10
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0.4 | | | |
06 0.8 1.0 1.2 1.4 16

)\=p—-’

Fig. 6—The values Vrand V,, as functions of the load A = p for T'= 3.0, ¢ = 0.15, and
K=1

0.4 | | | 1
0.6 0.8 1.0 1.2 1.4 1.6

A= P i

Fig. 7—The values Vr and V. as functions of the load A = p for T = 3.0, o = 0.15, and
K=10.
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Fig. 8—The values Vr and V,, as functions of the load A = p for T =1.0,0 = 2.0, and
K=1
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Fig. 9—The values Vr and V; as functions of the load A = p for T'= 1.0, 0 = 2.0, and
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Fig. 10—The values Vrand V.. as functions of the load A = p for T'= 1.0, ¢ = 0.15, and
=]

Of course, our knowledge of the customer behavior may be more or
less accurate, depending on the application. An issue of interest then
is the sensitivity of the throughput to the assumed customer behavior.
This was studied for a special case (K = 1) in Ref. 1. The analysis in
this paper can be used to answer such issues for more general service
time distributions. Qualitatively, however, the conclusions will remain
the same: the last-in-first-out (LIFO) discipline is robust with respect
to the knowledge of customer behavior. The hybrid discipline, on the
other hand, is very sensitive to the customer behavior and should be
used only when the customer behavior is adequately known and does
not change in time, or when the parameters of the customer behavior
can be estimated and used to change the control parameters dynami-
cally.
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Fig. 11—The values Vrand V. as functions of the load A = p for T'= 1.0, 0 = 0.15, and
K=10.
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