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This paper presents a synthesis method and practical design considerations
for the Coupled-Single-Amplifier-Biquad (CSAB) realization of all-pole sym-
metrical bandpass (BP) filters. The CSAB topology consists of a cascade of
second-order SAB bandpass sections, together with negative feedback around
adjacent sections. A straightforward procedure that leads to the block diagram
representation of the CSAB is shown. Explicit design formulas are given for
the optimum element values of the Deliyannis-Friend SAB bandpass section,
as well as for the feedback resistors. This CSAB design offers improved
performance over the cascade SAB approach without using additional opera-
tional amplifiers. Also described are the effects on the filter response due to
finite amplifier gain, capacitor dissipations, noninfinite pole-Q sections, and
their compensation techniques. These are followed by discussions on maxi-
mizing the filter dynamic range and tuning.

I. INTRODUCTION

It is commonly known that in the realization of high-order active
filters, properly designed multiple-loop-feedback topologies offer far
superior sensitivity performance than the approach of cascading bi-
quadratic filter blocks.'® The multiple-loop-feedback structure is par-
ticularly useful in the design of bandpass filters, where reduced sen-
sitivity design is most often needed. Compared with the cascade biquad
approach, two drawbacks are usually attributed to these topologies,
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namely, the more complicated design procedures and the use of more
op amps. However, for the class of all-pole geometrically symmetrical
Bandpass (BP) filters, these drawbacks do not exist for a particular
multiple-loop-feedback structure commonly referred to as leap-frog,
active-ladder, or coupled-biquad.” ** The coupled-biquad topology con-
sists of a cascade of second-order sections together with negative
feedback around adjacent biquad sections.

Most of the existing coupled-biquad descriptions assumed multiple
op-amp biquads, but details on the use of Single-Amplifier Biquads
(SABs) are scarce. Our discussion here focuses on the use of SAB and
is further restricted to voice-frequency applications. Note that the
Coupled-Single-Amplifier-Biquad (CSAB) topology described here re-
quires n op amps for a 2n-order BP filter.

The first part of this paper presents a general design method for the
CSAB realization of all-pole symmetrical BP filters. A straightforward
procedure is given that leads to the block diagram representation of
the CSAB. Each of the second-order sections is then implemented by
the Deliyannis-Friend'* SAB configuration. Optimum element values
for these SABs are computed according to Fleischer’s results.’® The
second part of the paper discusses the effects on the filter response
due to finite op-amp gain, capacitor dissipations, noninfinite pole-
sections, and their compensation techniques. These are followed by
discussions on maximizing the filter dynamic range and tuning.

Il. CSAB DESIGN PROCEDURE

This section presents a straightforward design procedure for the
CSAB realization of all-pole symmetrical BP filters. Optimum design
equations are given for the Deliyannis-Friend SAB bandpass section
and the feedback resistors.

2.1 Block diagram representation of CSAB configuration

The starting point for the CSAB realization of an all-pole symmet-
rical BP filter, e.g., a Bessel-, Butterworth-, or Chebychev-type BP
filter, is its normalized low-pass (LP) prototype ladder configuration.
The ladder configuration is readily available from many existing
handbooks and is shown in Fig. 1.

Let wy = center frequency of the BP filter
(in rad/s)
B = passband bandwidth of the BP filter
(in rad/s)

A block diagram representation of the CSAB topology for the BP filter
is given in Fig. 2, where the coupled biquadratic transfer functions,
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Fig. 1—LP prototype ladder configuration.

FOR n = ODD

FOR n = EVEN

Ti(s) and T (s), are related to the element values of the LP ladder by

the following equations:

Ri+R: B s
‘R.C
T](S) - K R2 1v1
2 + 2
s+ Rlcl S wo
B
C
Ti(s) *
s? + B s+ wd
R.C, 0
B,
X
Tis) = Ti(s) = 4wl i=2, 3,
_ JLifor i even
and  Xi =10 for i odd
~ B
— s
g" for n odd
s? + Rl s + wi
Ta(s) = 4
B
Ln for n even
s + BR, s+ wd ’
L L, ’

(1)

(2)

-1 (3)

where K determines the overall gain of the filter. For unity (0 dB)

voltage gain, set K = 1.
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The above derivation is straightforward and is omitted here. For the
three-section case, discussions can be found in pages 726 to 729 of
Ref. 3 and pages 348 to 351 of Ref. 6. Note that in Fig. 2, the
Deliyannis-Friend SAB configuration is also shown. Besides its good
sensitivity properties, this particular SAB can simultaneously realize
both the forward and the feedback paths as required by Fig. 2.

One final step in the CSAB realization is to obtain the element
values for the individual SAB blocks. The optimum formulas are given
in the next section.

2.2 Optimum CSAB element values

For each of the second-order blocks shown in Fig. 2, let the forward
and feedback voltage transfer functions be represented by:

Vals) _ oy TmS

Vils) Tis) = oy dis + dy (5)
and

Vals) _ iy nis

vie - T = e s+ do (6)

As shown in Fig. 2 and egs. (1) to (3), the internal sections, i.e., i =
2,3, ---, n— 1, have an infinite pole-Q value or d, = 0. For improved
filter performances, a later section suggests the use of a very high-Q
value, say several hundreds, instead of the infinite value. This corre-
sponds to the use of a small value for d, in egs. (5) and (6). The high
but fixed @-value can be designed into the CSAB configuration by the
familiar predistortion technique.

Element values are first obtained for the forward transfer function,
T\(s), by the formulas given in Ref. 14, where the conductance value
of a fictitious resistor, R, is first computed and the values of C;, Cs,
Ra, and Rg can be conveniently chosen such that

Ry [ , Q) Ra 1/2
G = 3R, { d, + [d1 + 4d, (1 + o) R (7
G,
1+ ﬁ_
B
= 9
R, G 9)
1
Rs; = G, — G, (10)

BANDPASS FILTERS 1403



Rg = arbitrary [can be chosen according to eq. (15)] (11)
Rp = R4 (12)
R¢ = infinite. (13)

As shown by Fleischer,!® the value of Ry or the ratio of R4/Rp should
be chosen so as to minimize the overall SAB variability (sensitivity)
due to the combined active and passive elements variations. His results
are given below:*

8¢% + o2
Qo = [|A(so) |2 -u] (14)
SO'A(so)
& — —02 l (i — .il_) (15)
Rg Ci+CQ \Q Vd/

where A(s) represents the gain of the op amp, ¢%, ¢2, and o,
correspond to the variances of AR/R, AC/C, and AA(s)/A(s),
respectively, and s, is the pole location of the particular SAB transfer
function.

The values of R and R¢ are next modified according to the following
formulas to implement the feedback transfer function as well [see Fig.
2 and eq. (6)]:

ni

Kr=—7"—"—— 16
F (G'1 + G2 . %) ( )
C, o
1-K
(new) R = ra L Rp (17)
__RgRc
(new) Rp = R+ R, (18)
Rp = R, (as before). (19)

In summary, the optimum element values can be computed from
eqgs. (14), (15), (7) to (12), and (16) to (18).

* Equations (57), (61), (13b), (2) and (7) of Ref. 15 were used. For the case of C1 =
% ang single-pole op-amp characteristics, simpler formulas are given in page 323 of

f. 2.

t The derivation is given in the appendix. Note that, as shown in pages 362 to 364 of
Ref. 6, the feedback transfer function realized is not exactly a BP function but has
negative and real transmission zeros. However, in the vicinity of the Eole frequency,
where the effect of feedback is of interest, the function behaves like a BP function. In
any event, the error introduced is negligible.
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1Il. PRACTICAL DESIGN CONSIDERATIONS

The preceding section describes one practical design consideration,
namely, that component statistics are used to obtain an optimum
design parameter, R4/Rg, for the individual SAB blocks. This section
further discusses some important factors that cause the SAB or CSAB
response to deviate from its ideal characteristic. Compensations in the
form of predistortion techniques are described. These compensations
can be achieved by modifying the pole locations of the individual
second-order blocks as given by egs. (5) and (6). In a good design, they
must be considered as part of the original design and optimum element
values are to be computed from the modified transfer functions.

3.1 Nonideal op amp characteristics

For a given SAB realizing the transfer functions (5) and (6), the
major effect of finite op-amp gain is to shift the desired pole location,
or the roots of

s2+dls+do=sz+%s+w3=(s—so)(s—sg) (20)

from s; to s, + Aso. Fleischer”® has shown that this deviation is
approximately given by

Asq = —(1 + Eﬁ) 1 Dilao) (21)

RB A(Sg) s — Sa"
where
G+C1 G G
— o2 S e il 1
Dyls) = 5" + ( C,C; R + cz) s+ R,C,Cs’ (22)

In the actual design, one can apply the negative of this shift to the
nominal transfer function. Equivalently, as shown in pages 415 to 416
of Ref. 2, the shift in As, can be represented by:

Awo _ o (ﬁ) @3)
wo So

A9 _ oqim (@). (24)
Q So

Hence, instead of using the design parameters w, and @ in eq. (20),
one can use the modified parameters wj = wo — Awp and @’ = @ — AQ.

As pointed out by Fleischer, eq. (21) shows that the fractional
change in the complex pole location is inversely proportional to the
magnitude of the amplifier gain at the pole frequency. Hence, the use
of a two-pole, one-zero compensated op amp would provide at least an
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order of magnitude smaller pole shift magnitude than that obtained
from using a single-pole compensated op amp in most of the audio
frequency band.* For many practical voice-frequency-band applica-
tions, this pole shift is quite small for the former compensation and
its effect can often be ignored.

3.2 Nonideal capacitor characteristics

A nonideal capacitor is usually associated with a finite dissipation
factor or tan 4. It is commonly represented by introducing a resistor
(with conductance G;) in parallel with the capacitor C;, where

Gi = moCi tan 5;

and w, corresponds to the pole frequency of the SAB block, since we
are particularly interested in the variations of the transfer function
for frequencies near wy.

As with the op-amp finite gain, the major effect of the capacitor
dissipation factor is to cause a shift in the desired pole locations,
which again can be compensated for. Weyten’s approach’® is described
here. For a two-capacitor biquad section realizing eq. (5), Weyten has
shown that

ﬁ—d‘ = Q(tan 5, + tan 6,) (25)
1
Ad—% = tan §, tan &, — % (S2 tan 8, + S tan 4,), (26)
0
where
-S# =1 + S& (27)

and the coefficients in eq. (20) move from d; to d; + Ad;. For the SAB
under consideration (Fig. 2), Ref. 15 gives
- __CG Qe 1
S& - 382 - Cl + Cg QD 2; (28)
where @, is as given before.

Hence, instead of using the design parameters d; and d, in egs. (5)
and (6), the modified parameters di = d; —Ad,; and d§ = dy, — Ad, can
be used. Note that the fractional change of d is usually very small
and can practically be ignored. Alternately, egs. (25) and (26) can be
rewritten as

d
4Q = _Ad _ —Q(tan é; + tan 8y) (29)
Q dy

* See for example, pages 84 to 85 of Ref. 6.
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Awo tan 6, tan 6, — % (S# tan 6, + S& tan §,) (30)
since the variations of wp are usually very small. The decrease in pole-
Q value due to capacitor dissipation factors is usually appreciable and
should be compensated for. As an illustration, for a medium-@ BP
section, say @ = 20, and for a capacitor dissipation factor of 0.0015,
such as that encountered with thin-film capacitors, this fractional
change in the pole-Q value is 6 percent.

[~

DO | =

wo

3.3 Infinite pole-Q sections

As we see in Fig. 2, all of the second-order sections except the first
and the last have an infinite pole-Q value, i.e., d, = 0 in eq. (5). Note
that the negative feedbacks in the coupled-biquad configuration move
these poles away from the jw-axis and into the desired pole locations.
Except for very high-@ BP filters, realization of the infinite pole-Q
sections in the CSAB configuration is not very critical as long as the
value of these pole-Qs is high, say several hundreds. The effects of
using a high but finite pole-Q value in these sections are a lower overall
gain of the filter and a reduction of the effective passband bandwidth."’
A decrease in gain is easily compensated for in active filter design,
while the reduced passband bandwidth may usually be absorbed in the
original design margin.

On the other hand, a closer approximation to the desired response
is obtained if each of the internal sections is a priori designed to have
a high but finite pole-Q value. This value can be chosen to be the
highest and practically realizable pole-Q value, say Qu. For the SAB,
this is in the order of a few hundreds. Note that in the actual
realization, these pole-Q values will deviate a great deal (higher or
lower than Q). Computer simulations have shown that the overall
circuit variability is smaller for the finite internal pole-Q design than
the design with infinite pole-@s.

Having presented the virtues of noninfinite internal pole-@ sections,
we show now how this can be achieved with the classical predistortion
technique. If we refer back to Section 2.1, instead of starting with the
ladder configuration, we see that the overall transfer function for the
normalized LP prototype is used (again this is available from many
handbooks). A shift « is introduced to the complex frequency variable
s, s = p — a, where p represents the new complex frequency variable,
and

Wo
a = .
BQu

In eq. (31) all variables are as defined before. The new transfer function

(31)
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in p is used to realize the ladder configuration shown in Fig. 1. With
the following modifications to egs. (1) through (4), where R{ and R;
are used in place of R, and R,, respectively, the CSAB configuration
is again as shown in Fig. 2:

Ri= S (32)
L + oC
R, L
! for n odd
1 tac
Rj=< R, T 9tn (33)
Ry + al,, for n even
B,
’ Xf .
Tis)=Ti{(s) =———— i=2,3,---,n—1. (34)
s+ o4 wd
Qu

In addition, the value of K in eq. (1) must be modified to obtain the
desired overall gain of the filter. This value is easily determined by
computing the gain of the ladder in Fig. 1 after replacing each inductor
L; with a resistor of value o*L; and each capacitor C; with a resistor of
conductance a*C;.

The ladder realization of the shifted LP prototype transfer function
can be obtained by the classical synthesis technique, or with a filter
synthesis program.’® For best sensitivity performance, this ladder must
correspond to the maximum power transfer design.’

3.4 Maximizing the filter dynamic range

A rule-of-thumb design procedure for maximizing the dynamic range
of a high-order filter is to make the maximum voltage output level at
the various amplifiers equal. Variations among the various amplifier
outputs in the CSAB are generally much smaller than in the corre-
sponding cascade SAB design. For many applications, one may find
the CSAB design as obtained before to be satisfactory.

The maximum voltage output levels at the amplifiers usually occur
at frequencies within the filter passband or the transition bands. A
practical procedure to maximize the filter dynamic range is to evaluate
the filter frequency responses (via a computer program) at each of the
amplifier outputs and at a set of discrete frequencies chosen from the
passband and transition bands. The maximum output values thus
obtained are used to rescale the gain of each of the transfer functions
given by eqs. (1) through (4). More formally, let
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G,‘ = MBX( V,) - Max( Vnut) in dB:

where V; (in dB) is the voltage level at the output of the ith amplifier
and Max(V,) is the maximum value over the chosen set of frequencies.
Compute

Hi=1020 i=]_,2,...,n,—1

with Hy = H, = 1.
Multiply each of the forward transfer functions, Ti(s) by Ki, where

KE=H1'/H!'*1 i=1!2:"'!na

and multiply each of the feedback transfer functions, T{(s), by K/,
where

K{ = Hi/H:s, i=1,2--,n-1

3.5 CSAB tuning

When the STAR realization'* is used to implement the SAB, the
manufacturing tuning procedure is to measure values of the two
capacitors on the substrate and then compute the resistor values,
based on these measurements, from the predistorted transfer function
using the equations given in Section 2.2. The resistors are laser-
trimmed to these values. The individual SAB blocks are then con-
nected as shown in Fig. 2. In general, this procedure is sufficient for
all practical purposes.

For extremely high-precision filter applications where functional
tuning may be desirable, the SAB, like any other single-amplifier-
biquad configuration, does not exhibit an orthogonal set of tuning
parameters. However, when the desired tuning range is small, e.g.,
during final mop-up trimming, the following tuning sequence is sug-
gested: For the forward BP transfer function, with R¢ connected to
ground, use R, to adjust for the gain at the pole frequency, R; for the
pole-Q, and then R, for the pole frequency. The adjustments for the
pole-Q and pole frequency can be monitored by the 45-degree phase-
shift points and the 180-degree phase-shift point, respectively. Finally,
with R, connected to ground, the feedback factor can be adjusted by
Re. As in any coupled-biquad configuration, the CSAB overall response
is relatively insensitive to these feedback resistors.

IV. BP FILTERS WITH FINITE TRANSMISSION ZEROS

Extensions of the CSAB design to BP filters with finite transmission
zeros, e.g., elliptic-type BP filters, are available. There are two ap-
proaches here. The first is to realize these transmission zeros within
the individual SAB blocks;'''? however, their design procedures are
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rather complicated. A second approach is to form these transmission
zeros by a weighted sum of the individual SAB BP sections (Fig. 2)
with an additional summing amplifier (in a manner analogous to the
feedforward technique described in Ref. 9). Simple design formulas
exist for this purpose. The second approach is particularly useful and
exhibits excellent sensitivity properties for low-order filters, say fewer
than five sections.

V. CONCLUSIONS

A straightforward design procedure is given for the coupled-single-
amplified-biquad realization of high-order, all-pole, symmetrical BP
filters. Practical limitations and their compensation techniques are
discussed. Many of these considerations, i.e., optimum choice of ele-
ment values, nonideal op-amp and capacitor characteristics, are the
same for the cascade or coupled designs. With this in mind, the CSAB
design procedure is seen to be not more (if not less) complicated than
the cascade design, since the individual second-order transfer func-
tions are more readily computed.

The CSAB approach uses the same number of op amps as that of
the cascade SAB approach. This number is equal to n for a 2n-order
BP filter and is approximately half the number required by the many
inductance simulation techniques, e.g., the two-op-amp Generalized
Impedance Converter (GIC) designs. Sensitivity performances of the
coupled-biquad may be considered as the best among all the various
multiple-loop-feedback topologies® and are far superior to the cascade
biquad. These observations, together with the fact that the Deliyannis-
Friend SAB, from a sensitivity point of view, is as good as any other
circuit in the audio frequency band,' suggest that the CSAB described
here should be the choice for the design of low to medium-high @ (say,
€ < 60) BP filters in the audio frequency band.*
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APPENDIX

Derivation of the Element Values for the Feedback Transfer Function

With ideal op amp, the voltage transfer functions for the SAB
circuit of Fig. 2 are given by:

and

where

Va(s) _ s
Vis) s*+dis + do

Va(s) _ Kr(s® + Fs + do)
Vi(s) s +dis + do

o= (Cl - Cz) (Gi + Gs) G
| = 4T )

CC ) Ge+ Gp) G
BANDPASS FILTERS

(35)

(36)

(37)
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— (Gs + G5)G

o= G2 G (38)
n = (%2) (1 + ﬁ) (39)
Ke= i (40)

F- (G—-’“g-’“—"— " %) (1)

The element values as given by eqs. (7) through (13) satisfy the
forward transfer function, egs. (35) and (37) through (39). Note that
G(; = (.

In the vicinity of the pole frequency, the feedback transfer function,
eq. (36), is closely approximated by

Va(s) _ nis
Vi(s)  s®+ds + dy’

(42)

where
n{ = Kg-F. (43)

To realize the feedback transfer function, the value of G- must be
finite, say G¢. If we let the value of Gy take on a new value, G5, and,
furthermore, let all the remaining elements take on the values as given
before, then the forward and feedback transfer functions, Egs. (35)
and (37) through (43), can be simultaneously satisfied if the following
two conditions are met:

Gs_ _ Gg
Gp Gt+ Gp (44)
and
_ni__ G
Kr = F~ G:t+ Gy (45)

Note that in eq. (45) the coefficient n{ corresponds to the like
coefficient of eq. (6).
The new value of G¢ is obtained from eq. (45) and is given by:

, _ KeGp
G =T

Equations (44) and (46) yield the new value of Rp, which is given
by:

(46)
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Gs(Ge + Gp)
Gp )

Equations (46) and (47) correspond to egs. (17) and (18), respectively.

Gp = (47)
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