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Assuming a particular model for “bursty” traffic at a packet-switching node,
we find expressions for the expected delay of packets that are valid in light
and heavy traffic. Each expression consists of a “correction factor” multiplied
by the expected delay experienced by packets when the arrivals are “smooth”
(Poisson) and of the same average rate. Approximate values for the correction
factor in arbitrary traffic can be obtained by interpolation. This provides an
example of a method that often gives fast approximate solutions for bursty
traffic models that are not themselves tractable but become so when the
offered traffic is assumed to be Poisson.

1. INTRODUCTION

Many models of queueing systems assume that arrivals occur ac-
cording to a Poisson process. Intuitively, the Poisson process may be
characterized by the properties that events occur one at a time and do
not depend on the past history of events. Typically, this situation
arises when there are large numbers of users of a system, as in the
case of arrivals of calls to a central office, since one arrival does not
significantly affect the probability of another. Fortunately, these
models are often mathematically tractable.

For other systems the Poisson assumptions are not realistic. Often
arrivals are indicative of overall activity and give information about
the probability of future arrivals. For example, suppose that all arrivals
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are generated by a single user who is alternately active and inactive.
An arrival indicates that the user is active and hence that there is a
greater than average probability of another arrival shortly thereafter.
A second example concerns the arrival of packets to a node in a
packet-switching network. When virtual calls are employed, the route
packets travel for a particular call is fixed for the duration of the call.
If we make the assumption that an individual virtual call generates
packets according to a Poisson process, then the instantaneous arrival
intensity at any node is equal to the sum of the intensities for the
calls routed through the node, which varies probabilistically with time.
In these examples the arrivals are correlated and the traffic is said to
be bursty.

Even the simplest models involving bursty traffic tend to be difficult
to solve analytically. Several authors have given approximations.
Heffes' matched the first three moments of the arrival process to
those of an Interrupted Poisson Process. Assuming that an arriving
packet requires an exponentially distributed amount of time to be
served, he was then able to use the results of Kuczura® to analyze this
system. Laue,” making a similar approximation for the arrival process,
assumed that an arriving packet requires a constant service time. The
mean waiting time of a packet could then be calculated using the
numerical matrix techniques developed by Neuts* and Lucantoni and
Neuts.® A third approach developed by Anick, Mitra, and Sondhi®
treats a different but related model. The models of Heffes and Laue
are based on the assumption that an individual customer generates
packets according to a Poisson process. Anick, Mitra, and Sondhi
assume that a customer generates packets at a constant rate for a
random time. The resulting fluid model was treated numerically by
calculating the eigenvalues of the resulting equations.

All of the above works derive numerical techniques to estimate the
traffic statistics of interest over a wide range of traffic parameters. It
is the goal of this paper to provide simple, closed-form expressions
that give insight into the effect of burstiness on delays. This is done
by studying queueing systems offered bursty traffic (see Section II for
a complete description) in light and heavy traffic.

In light (heavy) traffic, it is obvious that the expected delay tends
to zero (infinity). Surprisingly, when the expected delay is divided by
the expected delay for the same system offered Poisson traffic of equal
average intensity, the ratio goes to a nonzero finite limit in both light
and heavy traffic. These limits may be thought of as “correction
factors” by which the expected delay for the solvable Poisson system
should be multiplied to obtain the expected delay for the bursty system.
By interpolating between the light- and heavy-traffic results, one can
obtain insight into the approximate effect of burstiness for all values
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of traffic. Indeed, similar light- and heavy-traffic limits for the M/E,/
¢ system have been used to obtain very accurate approximate values
of the delay for all values of traffic (see Lauber and Smith”).

The remainder of this paper is organized as follows: The queueing
model for bursty traffic and our results are discussed in detail in
Section II. Rigorous proofs of the light-traffic results are given in
Section III when the service times are of the phase type. (Appendix A
presents a brief background on phase-type distributions.) Since any
service-time distribution can be approximated arbitrarily closely by
one of phase type, it is sufficient for practical purposes to establish
the light-traffic results for the latter. Appendix B presents an intuitive
approach for deriving the light-traffic results. Heavy-traffic results are
presented in Section IV and concluding remarks in Section V.

II. QUEUEING MODEL AND RESULTS

The specific queueing model treated here is one in which the arrival
process is a nonhomogeneous Poisson process whose rate equals Am,
where m is the state of an M/M /o queue with birth rate « and service
rate 3. The arrivals are offered to a single server whose successive
services are assumed to be independent and identically distributed
according to some general distribution with mean equal to x . Blocked
arrivals queue up and are served on a first-in-first-out basis.

This queueing model supports either of two (essentially identical)
scenarios for the queueing of packets of information at a packet switch.
In both scenarios, the switch is modeled as a single server with an
infinite buffer for queued packets, and the service time of a packet is
its length (in bits) divided by the line speed. In the first scenario, an
individual virtual call generates packets according to a Poisson process
with rate A, for an exponentially distributed length of time with mean
B7'. The distribution of requests for virtual calls is Poisson with rate
«, and the number of simultaneous virtual calls that can be supported
by the switch is unlimited. The second scenario is similar to a fluid
model treated by Mitra and Anick® and Kosten.? In this case an
individual customer is in one of two states, either “active’ or “inac-
tive.” It is assumed that the time in each of the states is exponentially
distributed with rates 8 and v, respectively. While in the “active”
state, the customer transmits packets according to a Poisson process
with rate A. If there are N (large) such customers with Ny ~ « and
vB™' ~ 0, then the number of “active” customers is distributed like
the number of customers in the M/M/e queue described above.

Throughout the remainder of this paper, we will refer to the entities
queued at the single server as packets and the entities in the M/M/e
system as virtual calls or calls. Our analysis will focus on the limiting
form for the mean delay of a packet in a lightly or heavily loaded
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system. The total number of packets generated during a virtual call is
geometrically distributed with mean A8~ and the mean total rate of
packet generation is AM(a/B).

There is a technical problem in the analysis for this model since the
packet arrival rate is unbounded. Hence, consider first the system
where the number of virtual calls is limited to N, i.e., the rate of
arrivals of packets is A times the number of calls present in an
M/M/N/N queueing system. The average rate of arrival of packets to
the queue is

w E Ma/B)1 - BV, a/8)], )
where B(N, «/B) is the Erlang Blocking formula. Let D be the
expected delay of a packet in this system, and let D}’ be the delay in
an M/G/1 with arrival rate Ay and the same service-time distribution.

Our key light-traffic result (valid for phase-type service distribu-
tions) is

Dg”

lim 55 = kY, (2)
A—0 M
where 0 < k¥ < », and
. 2u [1 — ¢(B)] def
(N) = —_—— =
,'l\rl—r.nm ki 1+ X 1+C° 1 (3)

where u~! = E(S), C* = var(S)/E(S)* (S is a service-time random
variable), and ¢(-) is the Laplace transform of the stationary excess
of S. The limit (2) is proved by using a simple extension of a lemma
established in Burman and Smith.’® The exact value of &{"’ is difficult
to compute; however, the limit k, as N — o is computable and can be
interpreted as the light-traffic limit of the ratio of the delay (Dp) for
the bursty system described earlier (with no limit on the number of
virtual calls) and the delay (Dy) for the M/G/1 queue with arrival
rate A(a/B). This statement can be summarized (although not explic-
itly proved) as

lim & = kg, (4)

A—0 DM
where %, is given in (3).

In the heavy-traffic case no rigorous limit is available. Nevertheless,
diffusion analysis gives the following approximation in heavy traffic:

D(N)
17;”_’ = kL, (5)
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where k" is known explicitly [see eq. (40)] and

. 2 1 def
e @
This supports the conjecture that
lim 22 — . )
.\—Q&DM

It should be noted that 1 < k; < k;, and while no proof is available,
it is reasonable to conjecture that k; < Dg/Dy < k, for all stable values
of X. (Indeed it is conjectured that Dg/Dy is monotone, as suggested
by a similar analysis for the delay in an M/G/c queue normalized by
the delay in an M/M/c queue (see Lauber and Smith”).

At this point it is worth noting that the manner in which the traffic
intensity p = (A/u)(a/B) approached 0 or 1 affects the limiting value
of Dg/Dy. The previously described results are based on the variation
of A only; one can also allow «, the rate of arrival of calls, to vary. For
an intuitive example of the difference, note that A — 0 corresponds to
light traffic with one packet per call, while @ — 0 corresponds to light
traffic with a geometrically distributed (with mean A/8) number of
packets per call. It can be shown (although it is not explicitly reported
here) that Da/Dys is completely different in the two cases.

We now focus our attention on the behavior of k; and &, for a fixed
mean number of calls in the system («/8). As a, 8 — o, (/8 fixed)
the arrival process of packets approaches a Poisson process and indeed,
by examination of (3) and (6), k and k; both goto 1. As &, 8 — 0
(a/B fixed), k; goes to o, and k; goes 1 + 8/a. To understand these
limits, note that in this case the number of calls remains constant for
longer and longer periods of time and steady-state effects become
significant. In heavy traffic, the process remains in states for which
the packet generation rate is faster than the service rate, so that the
delays become large. In light traffic, one may obtain the 1 + 8/« limit
in an intuitive fashion by conditioning on the number of calls m at
packet generation times and computing the conditional delay (using
known expressions for delay) assuming a constant arrival rate Am.

In (4) and (7), the delay for the bursty system was normalized by
the delay for the M/G/1 system. If instead we choose to normalize by
the delay for an M/M/1 system with the same arrival and service rates
(denoted by D,,), then the limits become

Dy Cc*-1

lim = =1 +
Al—rgDM 2

+ 201 - 9(8)] (®)

and
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. Dg C*-1
lim—=—=1+ -.

A—

These results are interesting in that they suggest separation of the
effects of variability of the service time (C* — 1)/2 and the variability
of the arrival process (the third term).

In addition to the results for the mean delay Dy, we show that the
light-traffic limit of the distribution of the delay D, given D > 0, is

oo oo

[a + Be™*9dH (x)dy

lim P(D>t|D>0)= (10)
A—0

a oo
- f #dH(x)
M 0

Agaip, in order for this to be rigorously stated it should be in terms of
the limit of similar quantities for systems allowing only a finite number
of virtual calls.

IIl. DERIVATION OF THE LIGHT-TRAFFIC RESULTS

In this section, we derive the light-traffic result stated in (4). Our
approach is to show that as the traffic intensity goes to 0, the
probability of having i (greater than 0) packets in the system goes to
0 asymptotically as . The exact rate of convergence can be derived
by a detailed study of the state equations and from there (4) follows
trivially.

Consider a single-server queue whose service times are of phase type
(see Appendix A). Let the arrival process be a nonhomogeneous
Poisson process whose rate is A times a function of the state of a
Markov process. Then, the multidimensional process consisting of the
number i of packets in queue, the state j of the arrival Markov process,
and the phase k of the packet in service is itself a Markov process. A
typical state will be denoted by (i, j, k) for {>0and (0,j) fori =0,
where j = 0 and k = 1, -+, m, the number of phases. The ergodic
distribution will be denoted by p(-, -, -) and define

p(i) = Zk p(i, J, k),

with the obvious definition for i = 0. When there is an upper bound
on the arrival rate (as when the arrival Markov process is finite), then
the technique used in Burman and Smith' to prove Theorem 3.1
therein can be employed to prove:
Lemma 1: There exists a constant R > 0 such that
p(i) = NR'.
One may define
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pli, j, k) = lim X7'p(z, J, k) (11)
A—0

with an analogous definition for i = 0, and these limits may be
recursively related and shown to exist by examination of the balance
equations. (See Smith'' and Burman and Smith'® for examples of this
technique.) Thus, when the arrival rates are bounded, the light-traffic
methodology is straightforward. It is quite possible, however, that the
resulting equations are difficult to solve.

This is exactly the case when the arrival Markov process is an
M/M/N/N queue (finite number of virtual calls). It is difficult to
explicitly solve for 5™ [the limiting light-traffic normalized probabil-
ities for this system, see (11)], although it can be shown that ;™ —
p as N — oo, where p is the solution to the equations (assuming Lemma
1) when the birth-death process is the M/M/w queue. At the core of
this argument (not presented here in detail) are the facts that the
equations involving p*¥'(-, j, -) for j < N are identical with those
involving p'"¥*"(., j, -) and that

. 1 :
lim 50, j) =+ (a/B) e
N J:

The existence of the limits [in (11)] can be shown by recursion on i
and the fact that the limit was previously established for i = 0. Thus
limy_6™ (=p) may be calculated by studying the system with N =
o0,

We now turn our attention to calculating 5 by studying the bursty
system with arrival rate X times the number of calls in an M/M/e
queue. For this system it is not hard to show that p, the steady-state
probability satisfies

= (JA+ a+jB)p(0,)) + ap(0,j — 1)
+ (j+ 1)Bp(0,j + 1) + ¥ p(1, j, n)E, =0,

=N+ a+jB— Twp(l,j, k) + ap(l,j— 1, k) 2

+(J+ 1Be(1,j+ 1, k) + § p(1, J, n)Tox

+ JAwrp(0, j) + we %: p(2, ], n)E, =0, (13)
and

—UN+a+jB—Two(,j, k) + ap(i,j — 1, k)

+(J+1Beli,j+ 1, k) + ? p(i, j, n) T (14)

+jd(i =1, j,R)+w X p(i+1,j,n)E, =0, for i=2,
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where j = 0 and -, T -, and E-, are the initial, transition, and exit
rates defining the phase-type distribution of the service-time process.
(These are discussed in greater detail in Appendix A.) We also assume
that Lemma 1 holds.

Next define the generating functions

qi, z, k) = L 2/a(i, j, k),  i>0,
j

and
q(0, z) = 2 2/p(0, j).

From (12) to (14), we see that g satisfies the following equations
—a(l = 2)g(0, 2) + B(1 — 2)g:(0, 2) = 0, (15)
q(1, z, )T = a(l — 2)I] + ¢.(1, 2, -)B(1 — 2)] = —w2q:(0, 2), (16)
and
qli, z, )T — a(l = 2)I] + q.(i, 2, -)B(1 — 2)]
=—zq.(i—1,2 -) for i>1. (17)

Equation (15) immediately gives

q(0, z) = e™/P1=2), (18)

The next lemma relates Dy, the expected delay in this system, to
q(1, 2, -).
Lemma 2:

lim x'Dg = _B q.(1, 1, )T 7 e,
A—0 o

where e is the vector of ones.
Proof: The mean number L of packets in the queue is given by
L=3 (-1 X pGj k.
i>1 ik
By Lemma 1,

lim A_EL = 2 f;(z: js k) = Q(zl 1’ ')e-
A—0 J.k

From (17), we get that
Q(29 1; ') = _qz(]-r 11 ')T—l

and by Little’s Law we are done. O
We now establish (3). The previous lemma shows that the key
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quantity is g.(1, 1, .). Differentiating (16) with respect to z and
evaluating at z = 1 gives

ag(l, 1, ) +q.(1,1, (T =8I =w % (g + 1) , (19)

where we used (18) to give us ¢(0, z). Substituting for z = 1 into (16)
gives that

1,1, ) =2 (meT™) = = ¢,
q( ) B(w ) fﬁlg

where £ is the stationary distribution of the service-time process [see
(42) and (43)]. Rearranging (19) we get

2
g:(1,1, -) = % wT™ N8I = T)™ + g (% + 1) w(BI = T)™

= — % (BB = ) = (a + Ba(sl - T)7)

—% [awT™ — Bu(BI — T)™]

2
(%) (—~wT™Y) + (%) w(BI — T)™. (20)

Finally, from Lemma 2 and Corollary 1, we get

lim A™'Dg = _B g.(1,1, )T %
A—0 o

L ermre) - 1 T8I - T)'E

a4
B u

'322 f f H(s)dsdx.

Normalizing by the expected delay in the M/G/1 queue and integrating
by parts gives us (3). O

We next calculate the Laplace Transform E(e™”|D > 0). In light
traffic, a customer who is delayed (D > 0) will usually see only one
customer in the system and will just wait for the service completion.
This is made rigorous by Lemma 1. The probability that such a
customer arrives and finds the server in phase & is given by

Y mp(1, m, k)

Z mp(]‘! ml n) '

m,n
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or in terms of g this is
a1, 1, k) 1)
¥ a(1,1,n)

From (21) we get that
§ q:(1, 1, R)Ex(e™)
—sD O =
Ee™1D >0) Y q.(1, 1, n)

(1,1, )sI = T)'E

- QZ(ls 1, ‘)e ’
where E,(e™) is the Laplace transform of the remaining service time
given that the current phase is k, and we have used proposition (1)

from Appendix A.
Evaluating the denominator first, from (20) and Corollary 1 we see

that

(22)

2
(1L, 1, -), e}=(5) e +(3)1g(31— T)"'E
B8] u B/ u

() 2o G oo
_(a\'1, (2\1-H®
_(ﬁ) .u+(f3) B

where ¢ is the vector of ergodic probabilities for the service-time
variable and H(s) = [edH(x) is the Laplace Transform of the
service-time density. The numerator, after some algebraic reduction,
becomes

2
g-(1, 1, :MsI = T)'E = (%) w[(=T)"XsI — T) E
+F)MM—TPE—MH—TWE
B s—
=GY1—B@y+G)Hwy-Hm

8 s B s—p ’

Combining the two calculations, we get
1-H ~
a . (S)]+sfﬁ[H(,8)-I:I(S)]
E(e™?|D>0) = . (23)

a1+1—3w)
1

It is not difficult to show that (23) is the transform of (10).
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IV. DERIVATION OF THE HEAVY-TRAFFIC RESULTS

In this section we describe the technique that allows us to arrive at
(5) and (6). This approximation is derived by first proving that the
number of packets in the system, when appropriately scaled, converges
to a diffusion process X(t) as p"™) converges to one. Given the drift
and infinitesimal variance of the diffusion process, one can obtain the
steady-state mean of X(t), and by using Little’s Theorem, we get the
approximation given in (5).

The main theorem of this section, which can be proved rigorously
using the techniques in Burman,'? forms the theoretical basis for (6).
We will outline its proof and show in detail how to calculate the mean
and variance of the resulting diffusion, which from an application
point of view is the difficult part of developing these approximations.

Consider a sequence of processes X,(t), where the nth process
represents the number of packets at time ¢ in a single-server system
to which packets arrive at an instantaneous rate A, times the state of
an M/M/N/N queueing system (representing the number of virtual
calls). The heavy-traffic limits are found by defining X, as follows:

0
Jﬁ 1
where 4 is a positive constant and E™"'V is the expected number of
calls in the M/M/N/N system. We are initially interested in studying
the sequence of scaled processes n™'/2X,(nt) as n — oo,

We start by investigating the limiting behavior of the infinitesimal
generators of a sequence of Markov processes created by appending
supplementary variables to X,(t). A limiting generator is identified
and the Trotter-Kato Theorem (see Kato'®) implies that the finite-
dimensional distributions converge. The form of the limiting generator
completely determines the limiting process. Weak convergence can be
established via a theorem of Stroock and Varadhan.

Let V(t) be the number of virtual calls at time t and let Y(¢) be the
time since the packet currently in service entered service. The multi-
dimensional process

M,(t) = [n"*X,(nt), Y(nt), V(nt)]

MENMVY =y — (24)

is Markov. We denote a typical element of the state-space as (x, y, j),
where x =0, n™%, 2n72 ... |y € [0, %) andj= {0, 1, ---, N}. For
the remainder of this paper, let h(y) be the density of the service-time
distribution,

h(y)
H(y)

He(y) =f h(s)ds,  ply) =
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and assume that for some constants vy and T,
O0<y=ply)=T=ox, (25)

The implications of and conditions for relaxing (25) are discussed in
Burman.!? These conditions are required for the method of proof and
do not pose any significant restrictions on the results.

Let B and @ be the infinitesimal generators of the processes V(t)
and Y(t), respectively. The generator Bis an (N + 1) X (N + 1) matrix
given by

[ —a a
B8 =B+ o
28 —(28+ a) «a

L NB —NB |
and @ is a first-order linear differential operator given by

Qf(y) = f'(¥) + u(¥)f(0) — A(y)]

The following two lemmas are needed to carry out the calculations
needed in the main theorem of the section (to be stated below):
Lemma 3: The equation
Bv=w (26)

has a solution v if and only if

(e, w) =0, (27)
where e, = 1/k!(a/B)* = 1/E! p*. In this case v is unique to an additive
constant and is given by

L
o(k + 1) = v(0) + )_: it ) %w(i). (28)

Proof: Since B is a finite-dimensional linear operator corresponding
to an ergodic Markov process, it has a one-dimensional null space
spanned by the vector e. Hence, (27) is both necessary and sufficient
for a unique solution of (26) to exist. This solution is easily seen to be

given by (28). O
Lemma 4: The equation

Qf=g (29)
has a solution f if and only if

j{: g(y)H (y)dy = 0. (30)
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In this case, f is unique to an additive constant and is given by

1 Y
f(y)=Hc(y)J; H¢(s)g(s)ds. (31)

Proof: The operator @ is the generator of an ergodic Markov process
with the stationary density uH(y). A unique solution exists if and
only if (30) holds. Solving the first-order linear differential equation
gives (31). O

We are now ready to state the main theorem of this section:
Theorem 1: Under assumption (25),

n~Y2X, (nt) = X(t),

where X(t) is a diffusion on R* with pure reflection at the origin,
downward drift § and infinitesimal variance s* given by

1 N k-1 2
tpemenee o fEnnsf].

1{a\ / % 1/[aY
P*=k‘:(;§) /2,(3)

is the steady-state probability of finding k calls in the M/M/N/N
blocking system.

Proof of Theorem: As mentioned earlier, we will show how to identify
the mean and variance of (32). The infinitesimal generator for M,(t)
is given by

where

Afx,y,j) =nB+ Q)f + N [f(x + % ¥ f) - flx, y, f)]
n

1 . . 1

+ u(y) [f(x - 0,1) - flx, 0, J)] for x= Wy (33)
and
Anf(0, 0, j) = nBf + N\ [f (Ji— 0, j) - f(0, 0, j)}- (34)
n
For f(x) twice continuously differentiable with f’(0) = 0, set
; 1 ' 4 1 ” H

falx, ¥, J) = flx) + Ef (x)g(y, J) + - f"(x)h(y, j).  (35)

We construct bounded functions g and k so that
A.f. — Af
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uniformly, where
Af(x) = mf'(x) + s*f"(x).

The constants m and s are determined in the process. Given (25),
these constructions will complete the proof (see Burman').
From (35) and (33) we see that

Anfo = n(B + Q)f + VYnf' (x)[\aj — u(y) + (B + Q)él

+ f"(x) {% Aaf + u(¥)] + Ajgly, J) — w(¥)8(0, j)

+ (B + @hl, j)} +0 (%) (36)

First note that since f is independent of y and j, (B + Q)f = 0. Set g
equal to the solution of the equation
(B + Q)g = —[Aj — ME™V — u(y) + ul. (37)

Lemmas 3 and 4 imply that g exists and

: 1 ’
gy, J) = WJ; H(s)[u(s) — ulds

J-1 k! k i
R HEITERLY!

k
o p=0 P =0 L

(38)

Let h be the solution of the equation
(Q + B)h = —[w(y, j) — s°L, (39)

where w(y, ) = 1/2[A\j + ()] + Ajg(y, ) — u(y)g(0,j). The constant
s? [see (26)] can be easily calculated from conditions (27) and (30),

ie.,
N pi o
) T,f H(y)w(y, i)dy = 0.
i=0 L 0
Using g and h calculated above we have
1
Anfn = =8f'(x) + 8" (x +O(—).
f f'(x) + s7f"(x) 7

When x = 0 analogous calculations give that A,f, converges provided
f/(0) = 0, and the proof is complete. O

The limit theorem for the M/G/1 queue with arrival rate \,E™'V
(see Iglehart and Whitt'®) gives the same mean § with the variance
AEMV 4+ 4Pu, for the limiting diffusion. Calculating the steady-state
expected number in the limiting systems and using Little’s Theorem
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(see Cooper'®) yields the asymptotic expression for the ratio of D4

and DY), the delays in the two systems:

4 o]
— Piu — N
D(BN)~1+2k={) P, 1S ( )
D~

Letting N go to infinity, P, goes to the Poisson distribution and (40)
goes to

3 (40)
au pa

1
1+ 2u/a (W)

as promised. 0

Remark: We are careful here not to write (40) as a limit but as an
approximation. In order to strictly prove convergence in (40), two
rather technical steps remain to be proved. The first is that the steady-
state number in the queue (when scaled) converges to the steady-state
value of the diffusion. The second is that the expected values of these
steady states converge. Both are difficult issues in themselves and,
aside from mathematical completeness, add little information to the
approximation, which is the germaine issue of this paper.

V. CONCLUDING REMARKS

We considered here a single-server queueing system with a nonho-
mogeneous Poisson arrival process whose rate is some constant A
times the state of an independent M/M/ system. In this paper, we
derived limiting values for the mean delays as the traffic intensity
goes to zero and to one.

This system was used to model the delay of packets at a packet
switch. In this setting, an individual data customer generates packets
at a constant rate A and the number of customers generating packets
is given by the state of the M/M /o system. This is, of course, not the
only possible model for packet arrivals. Packets generated by an
individual virtual call may be “smoother” or more “bursty” than
packets generated by a Poisson process. It is also possible that restric-
tions could be imposed on the total number of simultaneous virtual
calls, thereby making the infinite-server assumption unrealistic. Work
is currently under way to extend the techniques of this paper to cover
these and other more general models of bursty traffic.

Our ultimate goal in studying Dg/Dys in both light and heavy traffic
is to be able to derive simple, closed-form approximations for Dy for
all values of the traffic intensity p. One candidate approximation is to
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linearly interpolate between the values obtained for Dp/By when p —
0 and when p — 1 [see (4) and (5)]. This approach gives the following
estimate for the mean delay:
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More sophisticated interpolations are possible (see Lauber and Smith’
for applications of these techniques to estimating the delays in an
M/G/c queue); however, in the absence of any test data, verification
is difficult. One method of verification is to study the accuracy of these
approximation techniques when applied to other models of bursty
arrivals for which explicit expressions are known (see Yechiali and
Naor'”). This work is currently under way and will be reported on in
the future.
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APPENDIX A
Background on Phase-Type Distributions

Appendix A summarizes results for phase-type distributions that
are used in Section III. A service time is said to have phase-type
distribution if it is distributed like the first exit time from a continu-
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ous-time, finite-state Markov chain. Any distribution can be arbitrar-
ily approximated in the sense of weak convergence by one of phase
type. We assume that the states (also known as phases) are the
nonnegative integers i, i = 1, - .- , m. Let the rate of transition from
phase i to phase j be T}; (i # j), and the rate of exiting from phase i
be £. Define T; = —Y,+; T — E;, i.e., minus the rate of leaving state
i. We assume that T, the matrix of T3, is invertible; this is sufficient
to imply that the real part of the spectrum of T is strictly negative. A
customer starts service in phase i with probability w;. Following Neuts,*
we use the notation (w, T") to describe this distribution, where w is the
vector of initial probabilities and T is the m-dimensional matrix of
rates.

The vector ¢ of ergodic probabilities for the service phase of the
renewal process is determined by normalizing the solution to the
equations

=&T: = E T + (ZEE))w;, (41)
J
or in matrix notation,
(T =—(§ E)o. (42)
The service rate u is defined as
u= (¢ E). (43)

It is not difficult to show that u is the reciprocal of the mean service
time.

Let 7 be the first exit time from the chain; let M;(s) = E;(e™), the
Laplace Transform of r given the initial state is i; and M? = E;r". The
results of Proposition 1 are well known (see Kielson,'® page 82, and
Burman and Smith'?).

Proposition 1. For v, M(s), and p" defined above,

M(s) = (sI - T)'E (44)
and

M" = nl(=1)"T ", (45)

where e is the vector of all ones. In particular, the nth moment of the
service-time distribution (M") is

M" = n!(—1)"(w, T ). (46)

If H°(x) equals the tail of the service-time distribution, then the
following corollary is immediate.

Corollary 1.
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_ET e = f xuH"(x)dx = 57, (47)
0

and

—tT'(BI-T)'E = J; e f uH*(s)dsdx. (48)

Proof: To see (47), observe that uH*(x) is the density of the remaining
service time when the process is sampled in equilibrium, and apply
Proposition 1. The identity on the integral can be obtained by inte-
gration by parts. In a similar fashion,

((T -8 —T'E

ET T —-BI)'E=

8
[ J; pHe(x)dx — f e"”pH‘(x)dx]
0
—_ B ’
and integration by parts gives us (48). O

APPENDIX B
Intuitive Derivation of the Results in Light Traffic

The following argument is based on the intuitive notion that, in
light traffic, almost all arriving packets arrive to an empty system and
are served before the arrival of another packet. Furthermore, the times
when there is exactly one packet in the system constitute almost all
of the time in which an arriving packet might be subject to delay.
Thus, in light traffic, it is easy to derive the proportion of time in
which an arrival will be delayed, and to find the delay for such an
arrival. A slight complication is introduced in the analysis by the fact
that the arrival rate of packets is not constant, but this is easily
overcome.

While the overall derivation is not rigorous, it is convincing and
gives insight into the light-traffic behavior. The results, of course, are
consistent with the rigorous results derived for phase-type distribu-
tions in Section III.

We will begin with traffic-independent results for the model de-
scribed previously in the beginning of Section II, in which the instan-
taneous arrival rate equals A times the state of an M/M/x queue with
birth rate a and service rate equal to 8. The equilibrium distribution
of the M/M/ queue governing the arrival process is easily seen to be
Poisson with mean a/8. However, this is not its distribution immedi-
ately after an arrival, since the rate of arrivals is proportional to the
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state of the M/M/o queue. Thus, the conditional probability that the
state of the M/M/e queue is m (for m = 1) immediately after an
arrival is

m _l_ —a/f
m(a/B)"™ — e N N
5 Wl men e
Ka/B) 5 €

k=0

This may be thought of as the distribution of a Poisson random
variable with mean (a/8) with support right-shifted one unit. This
point of view is useful in computing the distribution of the state of
the M/M/e queue ¢ time units after an arrival of a packet (denoted
N,), since the Poisson distribution is stationary, and the additional
unit is still present with probability e . Thus,

E(z™) = e@®E[] + ¢~z — 1)]. (49)

Now consider the system in light traffic. Denote the state of the
system by (N, M, T') where N is the number of packets in the system,
M is the state of the M/M/® queue that modulates the arrival process,
and T is the remaining service time of the packet being served.

We first obtain an expression for E(e™*7z™5,y) in light traffic, where
dx=0for N # 1 and é;; = 1. We then show how to use this quantity
to obtain the desired limits. In light traffic, almost every packet arrives
to an empty system and is served before another arrival. By Little’s
Law

P(N = 1) = Eé;xy ~ AaE(S)/B.

Again, making the assumption of the last sentence and looking at the
system at only those times for which N = 1, we obtain by standard
renewal theory arguments that

E( ~37'2MN _ 1) _ i E fs E(ZN‘) —s(S—g)dt dffi G( )
¢ =V T Es Y| ¢ - Es &%

Multiplying, we obtain that
E(e™*"2M5,x) ~ Ma/B)Glz, s). (50)
By conditioning on S and using (49), we obtain

Gz, ) = o@D % {[1 — H(s)] + (; - 1) [H(s) — H(ﬁ)}, (51)

where H is the Laplace Transform of a service time.
Equations (50) and (51) can be used to find desired properties of
the queue in light traffic. For example, since nearly all packets that
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are delayed are generated when there is only one other packet in the
system, and since the rate of generation of packets is A times the
number of calls, we find the rate of generation of delayed packets, Ap,
is

Ap ~ N(a/B)G.(1, 0), (52)

or

Ap ~ \? {(a/ﬁ)z % + a/B[1 - ﬁ(ﬁ)]}- (53)

The Laplace Transform of the delay, given that the delay is greater
than 0, defined to be ¢(s), is also found easily since the delay of a
packet equals the remaining service time on arrival. Thus,

G.(1, s)

o(s) ~ G.L 0)’

or

a/sll = HE) + 57— [H6) = H)]

i ofu + 1= H(p) &4
Inversion of the Laplace Transform gives (10) and also gives
1 1 ~
i U (C)
E(D|D>0) = £ (55)

a/u+1-HE

where u, = E(S?). Of course, P(D > 0) = (2‘; T that (52) and (54)
give
ANape 1 1 N
~ 2422, 11— HP).
E(D) 8 { 2 + 2B [1 (3)]} (56)

This may be combined with the Pollaczek-Khintchine formula to give
(3).
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