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This paper examines how imprecision in the way humans name things
might limit how well a computer can guess to what they are referring. People
were asked to name things in a variety of domains: instructions for text-
editing operations, index words for cooking recipes, categories for “want ads,”
and descriptions of common objects. We found that random pairs of people
used the same word for an object only 10 to 20 percent of the time. But we
also found that hit rates could be increased threefold by using norms on
naming to pick optimal names, by recognizing as many of the users’ various
words as possible, and by allowing the user and the system several guesses in
trying to hit upon the desired target.

I. INTRODUCTION

Computer-based information management systems can store, ma-
nipulate, and transmit enormous quantities of information. They can
allow almost unlimited organization, multiple indexing and cross
referencing, and are capable of performing rapid and complex search
operations. Thus, they can provide far more powerful tools for knowl-
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edge management than have been available previously. Such tools will
be important to almost everybody: cooks wanting to find recipes,
doctors needing patients’ histories, managers tracking inventories,
clerks filling orders and keeping records, and buyers looking for
products. It would be fine if such systems could be used directly by
inexperienced and occasional users, people whose main job or talents
lie elsewhere. The hope is that new information-seeking tools could
be operated with no more training than is needed to use a card-file or
a book index, but with much greater success.

We believe that some of the greatest difficulties blocking this dream
are psychological. Certainly, more available speed and capacity, and
new algorithmic and data structure developments involving deep and
difficult problems will be needed before the arrival of fully satisfying
information systems. But, progress along these lines has already been
enormous and continues at a brisk pace. Meanwhile, although even
existing computational capabilities are very great, our ability to make
them easily usable by nonspecialists has been quite limited. An im-
portant psychological problem is in understanding the relationship
between what people say and what they want. This understanding is
the key to designing systems that can infer what services or informa-
tion users need from the input they provide. This basic capability is
needed by information systems of many sorts, bibliographic reference
search systems, business management databases, airline reservation
systems, plant inventory and customer record systems, and even text
processors. We believe that current systems generally fall very far
short of the ideal of always knowing just what to give the user.

At this time although it is clear that there is a problem, very little
relevant work has been done (see Carroll' and Landauer, Galotti, and
Hartwell2). We do not even know the locus of the problem in the chain
of actors and events. For example, the main problems may lie at the
source; perhaps the human intellect is basically incapable of forming
information specifications that are very precise. If so, perhaps no
system could do much better than the current ones. But, it is also
possible to believe that if systems could understand people as well as,
say, close friends understand each other, there would be much less of
a problem.

We have tried to get some idea of the extent of this problem by
attacking a small but important part of it. We have asked people to
give descriptions of various information objects, and analyzed their
responses to determine how well the objects to which they refer can
be inferred from what they say. We have begun by studying the
referential properties of isolated words and short phrases.

Our goals in this research have been twofold; first, to advance
understanding of the psychological processes by which human seman-
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tic reference is generated, and second, to model and estimate the
strengths and weaknesses of information systems that take human-
generated descriptions of sought items as their input. Empirical ob-
servations of naming behavior provide the necessary data for both
enterprises.

In this article we first describe four sets of object-description data,
the way they were collected and reduced, and some of their more
interesting features. Then we present a series of analyses in which we
treat the collected descriptions both as representative of what users
would provide as input to information retrieval systems, and as the
source of the information that the system would use in determining
user wants. The hypothetical systems we consider are limited to ones
in which the user’s initial entry or query consists of a single word or
short phrase. We do not attempt to analyze the possible performance
of systems that make use of sentential syntax, or linguistic or real
world context. The reason for this limitation is largely pragmatic; it
postpones analysis of many difficult complexities. However, the char-
acteristics and limitations of single-word to object reference that we
have investigated have strong implications for many access methods
(by which we mean the access method provided for the user, not that
used by the program). We are, of course, aware that there are data
access methods that do not start with the user entering a key word or
phrase; for example, there are strictly menu-driven systems, ones that
rely on well-formed queries and restricted query languages, and also
ones that attempt some form of natural language understanding. These
other methods share some, but not all, of the same conceptual and
practical difficulties of key-word methods, and each raises somewhat
unique and interesting psychological issues of its own. Where our data
bear on these issues in reasonably direct ways, we offer some com-
ments, but we focus primarily on the key-word comprehension process
and its ramifications. In the final section of this paper, we discuss
some of the reasons why key-word access is as limited as we find it to
be and consider several potential methods for overcoming the deficien-
cies.

1. DESCRIPTION OF DATA SETS

There are things a computer system has or does to which a user
might wish to refer. These “information objects” are just the objects,
e.g., operations or data sets, to which commands and queries apply.
We have collected descriptions of information objects in four quite
disparate domains, chosen in an intentional effort to achieve variety,
and also for their relevance to a number of special problems that are
outside the concerns of this paper. The four sets are: the verbs used
in spontaneous descriptions of the operations needed to perform
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manual text-editing operations, descriptions of named common objects
designed to induce another person or a computer to return the name
in a game like the PASSWORD™ game, superordinate category
names for items available in a swap-and-sale listing similar to classi-
fied ads in newspapers, and index words provided for a set of main-
course cooking recipes.

In this section we will describe how the object specifications were
obtained from people, how they were reduced to single-word or short-
phrase keys, and then summarize a few qualitative and statistical
characteristics of the responses.

2.1 Text-editing operations

The first data came from language applied to text editing. The study
was one of two conducted to explore “naturalness” in command
names.? Forty-eight secretarial and high school students were asked
to provide instructions to another hypothetical typist describing what
operations needed to be performed on text marked by an author for
correction. These corrections involved two examples each of 25 sorts
of edits: five basic operations (insert, delete, move, change, and trans-
pose) on each of five textual units (blanks, characters, words, lines,
and paragraphs).

Preprocessing in this case reduced each response to the main verb
or phrase in the instruction describing how to perform the editing
operation. While this was in fact accomplished manually here, we
believe that a simple parser and English word list could in principle
have given nearly identical results. These expressions may be consid-
ered candidates for command names for editing systems.

Perhaps the most striking result was that there was extensive
disagreement in the verbs people produced. This point is the main
focus of the current article, and will be dealt with in considerable
detail later. For now let us just make a few preliminary notes, e.g.,
that the three most popular names for each operation accounted for
only 33 percent of the total number of responses. The intersubject
agreement, the probability that any two people used the same verb in
describing a particular text correction, is only .08. Since each of the
95 sorts of edits occurred twice, we also have a measure of within-
subject (with 1200 observations) agreement. The probability that an
individual subject used the same main verb in the two cases was .34.

What agreement there was did not favor the terminology used by
our locally popular editor (the UNIX* Operating System text editor
ed). For 24 out of 25 of the types of edits, the name in ed was not the
most frequent spontaneously given name. Use of the terms “delete”
and “substitute” was quite rare, for example. (Landauer et al.? went

* Trademark of Bell Laboratories.
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on to show, however, that this caused no problems initially in learning
the basic editor.) People preferred “add” for the insert operations,
“omit” for delete operations, and “change” for the replace operations.
There was little consensus in describing the transpose and move
operations.

2.2 Common object descriptions

These data were originally collected in a study by Dumais and
Landauer® that examined how people naturally obtain information
from one another. The information objects here were names of 50
common items chosen from 10 “categories.” The categories were: cities,
proper names, clothing, animals, food, household items, abstract
words, a category of words with highly associated opposites (e.g., black,
love), and two categories whose members were words selected in such
a way that negation might figure strongly in the descriptions, e.g., to
eliminate the unwanted set members. A total of 337 New York Uni-
versity students were asked to write down a description that would
enable another person (or in half the cases a hypothetical computer)
to guess the object. There were no restrictions as to the form or
content of the descriptions, except that they could not contain the
target word itself. Subjects also indicated whether they had any
computer experience. Those with at least one computer course were
classified as computer-“experienced” in the data summaries discussed
below.

A subsequent study was conducted to evaluate the effectiveness of
the descriptions generated in the first study. Twenty-five subjects (6
Murray Hill area homemakers and 19 employees of Bell Laboratories)
were each given 150 descriptions randomly selected from those gen-
erated by the NYU students. They were asked to: (1) guess (without
knowing the alternatives) the item being described, and (2) indicate
on a five-point scale their confidence in their guess.

Principal results from the main study include the finding that when
communications were intended for computers, people with computer
experience were relatively more terse, and nonexperienced people were
relatively more verbose than when communications were intended for
people. However, there was no simple relationship between verbosity
and effectiveness, i.e., guessing accuracy as indicated by the second
study. People were somewhat more successful in guessing the target
items when the descriptions had been provided by people without
computer experience (81.2 percent vs. 78.5 percent), but this difference
is not statistically significant.

A point of considerable interest here was the style of specification
that subjects used. Subjects’ descriptions were not very precise; typi-
cally they refer to a whole set of items, not just the intended target
(although we have no good measure of this other than informal ratings
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of denotative class size). Still, the average successful guess rate of the
second group of subjects was over 80 percent. We will return to a
discussion of this paradoxically high success rate towards the end of
this paper. The most frequent way of specifying target items, used
about 60 percent of the time, was to describe them in terms of a
superordinate (sometimes followed by characteristics or attributes that
distinguish the intended target from other members of the superordi-
nate category). Another fairly common form of description (~20
percent) was the use of exemplars. For several of the target words
(e.g., motorcycle, magazine, sports, games, science), subjects listed
examples of more specific items falling into the target category (e.g.,
Harley, Suzuki ..., in the case of motorcycle) instead of attempting a
more formal definition. Negations (and opposites) were used less than
50 percent of the time for the words we thought were particularly
amenable to this form of description.

For the purposes of the analyses undertaken in the current paper,
these descriptions were preprocessed to merge minor variations in as
automatic a fashion as possible: uppercase was folded to lowercase,
word endings were stripped (plurals, tense markers, etc.), and “non-
content” words (including articles, imperatives, conjunctions, prepo-
sitions, pronouns, and tenses of the verb “to be”) were removed.

An average of 8 words per description were in this way condensed
to an average of 5.4 words. The first of the remaining words (i.e., first
standardized content word) was tabulated for the statistical analyses.

2.3 Superordinate categories for swap-and-sale items

The major purpose of collecting these data was to develop empirical
networks of “ISA” relations, that is, classification hierarchies based
on user knowledge and representations, for a set of items to be
incorporated in an experimental menu-driven information access sys-
tem.*

The information objects were 64 items taken randomly from roughly
300 entries on a monthly bulletin board listing of items for swap and
sale at Bell Laboratories. The subjects were 30 local New Jersey
homemakers. Each subject worked with a random 32 of the 64 target
items. They were told that they were participating in the study to find
out how they classified various items being sold on local bulletin
boards. The use of these categories in helping people in future com-
puterized retrieval systems was mentioned. Subjects were instructed
to complete successive “All __ are ___” sentences. Beginning with
the specific target they were to give its immediate superordinate (e.g.,
“all red Delicious apples for sale @10¢ ea. are apples”). Then they
copied the first given superordinate (“apples”) to the beginning of the
next incomplete sentence and finished the new sentence with a still
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more general category (e.g., “all apples are fruit”). They were to
continue in this way (e.g., “all fruits are food”) until they could go no
further. They were then to go back and find some category that had
another superordinate in addition to the one they had already cited,
and list that category with its new superordinate. These data were
also standardized by stripping off endings and discarding noncontent
words.

On average, an individual subject produced 2.1 different chains of
successively more general superordinate categories for each stimulus.
The chains averaged 2.5 superordinates each, with superordinate cat-
egories named in phrases containing an average of 1.7 standardized
(content) words. For the current paper, only the lowest level (most
specific) category, from the first generated chain of superordinates,
was used. The category name was used in its (standardized) entirety.

The categories given in this study make it apparent that the con-
struction of a network that will faithfully match all users’ conceptions
of a domain is not an easy matter. People have difficulty in generating
superordinates and show considerable disagreement as to how things
should be grouped under those superordinates. Categorization and
indexing schemes currently in use always depend on a user’s either
generating the same superordinate as the system knows about, or at
least being able to choose the right one from a list. Perhaps the
difficulty and lack of agreement among people in categorizing infor-
mation objects account for much of the perceived deficiency of current
menu-driven data access methods.

2.4 Recipe index words

The original motive for this data set was to study the effect of
domain expertise (i.e., cooking skill) on indexing and key-word usage.’
The information objects were 188 main-course cooking recipes
(French, Italian, Mexican, and American cuisine) taken from 12
cookbooks of explicitly varied sophistication (ranging from a garden
club’s cookbook,® through The New York Times Cookbook,” to The Art
of French Cooking®).

There were three groups of eight subjects each: experts, who taught
cooking classes; and intermediates and novices, selected from local
homemakers who came out at the high and low extremes of several
self-rating scales on culinary sophistication.

Subjects were told their task was to describe each of the recipes in
key-word form, selecting at least three but no more than seven descrip-
tive words or brief phrases for each recipe. They were told that their
job was similar to that of a librarian who is creating an index or card
catalog, and that the descriptions should be useful to another person
trying to locate that recipe in a large set of recipes. Half of the subjects
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in each experience group were instructed to direct their descriptions
to expert cooks using the index, the other half to novice cooks. The
description task was self-paced by each subject in her home. Subjects
required between 5 and 10 hours to complete the task.

Terms here were again preprocessed to remove word endings and
noncontent words. All multiple-word productions were scored by two
judges (the experimenters) to determine if the phrase could be decom-
posed into its constituent words and maintain its meaning. Subjects
produced an average of 5.4 key words per recipe, the first, “most
important” of which was studied here.

Again we found considerable diversity. For the 188 recipes, a total
of 303 different word types were used by the 8 experts, 220 by the 8
intermediates, and 252 by the 8 novices. It is interesting to speculate
on the reasons why these groups differ. Perhaps the experts have a
large and specialized vocabulary and the novices have an unruly,
haphazard one. In any case, there seems to be something more con-
ventional about the word use of intermediates, a point to which we
will return later.

2.5 General comments on the data sets

These data sets all pertain to information objects that one might
want accessible on a computer. They were also all of modest size.
Other than that, though, they tapped very different knowledge do-
mains, they asked for specification in a number of different ways, and
they were provided by different kinds of people. Moreover, the method
of reducing the free-form descriptions given by our participants to
single words and short phrases varied somewhat from one case to the
other. This variety of data is important for our purposes. In order for
results to have any pretense of robustness, it is important that they
be obtained on a sufficient variety of cases to assure that it is not the
particulars of the objects at hand that are responsible for the observed
characteristics. We know of no way to actually sample data domains,
descriptive methods, and reduction methods in a representative way.
However, we believe that results that hold for all of the disparate sets
that we have studied stand a good chance of holding for most others.

For each domain, our data can be represented as a table in which
the rows are words provided by the subject, the columns are the objects
to which these words were applied as descriptions, and the cell entries
indicate the number of times each word was used in the description of
a given information object. The questions we ask concern how the
information contained in such a table might be used to guess from an
input word what object is intended. Two partial tables are shown in
Tables Ia and b. Table Ia is derived from the text-editing study (for
five objects) and Table Ib from the common object data. The numbers
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Table |—Word-object data
(a) Sample data from the text-editing study

Objects
Words insert delete replace move transpose
change 30 22 60 30 41
remove 0 21 12 17 5
spell 4 14 13 12 10
reverse 0 0 0 0 27
leave 10 0 0 1 0

make into 0 4 0 0 1

(b) Sample data from the common object study

Objects
Words calculator lime Lucille Ball pear raisin robin. . .
small 17 0 0 0 7 4
machine 4 0 0 0 0 0
green 0 18 0 7 0 0
bird 0 0 0 0 0 21
fruit 0 1 0 19 1 0
red 0 0 8 0 0 7
female 0 0 2 0 0 0

in the tables represent the frequency with which a word was used to
refer to an object.

In fact, there is an implicit third dimension to these tables, repre-
senting the person from whom the description was obtained, and
sometimes a fourth dimension, representing which of several words of
a multiple-word description provided by a given subject is involved.
However, for most of the analyses we consider only the first word
given, and the matrices are all very sparse, so we have chosen to
collapse across subjects. It is worth noting that the tables are not
sparse simply because we have failed to collect enough data. Word
usage tends to resemble Zipf’s distribution® (supposedly straight line
relation between occurrence frequency and rank frequency when both
are plotted logarithmically) in that a few words are used very fre-
quently and many words (over 340 here) used only once (see Fig. 1).
As more and more data are collected some cells increase in frequency,
but the number of unique words also grows so that the sparseness of
the table tends to be preserved. Moreover, most words refer only to a
limited number of objects, so that such tables usually have a large
number of empty cells.

1. INTRODUCTION TO ANALYSES TO DETERMINE REFERENT
EFFECTIVENESS

In the analyses that we report in Section IV, we have been interested
in how much information about referent object identity is contained
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Fig. 1—Plot of common object word usage data.

in the words used to describe them. To consider how good a word or
expression is as a reference to some object, it is necessary to suppose
some sort of a mechanism by which the expression is comprehended.
We can only estimate the value of inputs as determinants of output if
we can specify the function that takes one into the other. The inputs
of our problem are the words provided by people in specifying infor-
mation objects. The output is a guess or set of guesses about which
object was intended. Our approach has been to specify various ways
in which the input can be made to yield the output. We have considered
models or functions that are intended to mimic what happens in
typical information systems and also ones that try to improve on
current methods in various ways. We also develop models that allow
us to estimate what ideal input/output mappings could accomplish. It
is in this sense of ideal or asymptotic performance that we can appraise
the limits of word reference.
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The models that we examine have in common that they use the
frequency table of users’ word reference, and only this data, to guide
the system in guessing users’ intents.

3.1 The general model

In the sections below we consider a number of special cases of the
following rather general baseline model. To retrieve a desired item the
user is assumed to enter one (though in some instances, K different)
key word(s). The system is assumed to make either one or M guesses
as to the user’s intent. Success is counted if the intended object is
among the system guesses.

As an actual system, our baseline model would operate as follows.
The user would enter one (or more) key words or phrases. If it could
recognize the input at all, the system would return one or more
potential objects according to some rule, perhaps relying on data in a
table of observed word-use frequencies. (If it could not recognize the
input, it would return nothing.) In cases where the system returns
several alternative objects, it can be assumed that the user would be
able to select from among them the one intended without error. This
corresponds to a simple case of what might be called a “menu-on-the-
fly” technique, in which the first entry is a freely chosen key word,
and the next step is a choice among a menu of items selected on the
basis of the system’s knowledge about referents the human user might
have intended by that key word.

We will now describe the models that we have analyzed, beginning
with the simplest ones, those closest to the way typical systems are
currently set up, and proceed to more sophisticated models. Each
model is characterized by a set of assumptions or constraints on the
input/output function of the system.

Sections 3.2 to 4.7 consider a number of models and analyses in
considerable technical detail. Some readers may wish to skip these
sections and continue to a summary of the highlights in Section 4.8.

To give a preview, the results convince us of three major points.
First, the vocabulary problem is a serious one for untutored users of
computers, particularly given the poor naming techniques typical of
current practice. Second, the difficulties come from a severe and
fundamental lack of consensus in the language community on what to
call things. Finally, our research suggests that, by using a very non-
standard approach, namely trying to make the best possible guesses
on all user words, substantial improvements could be made in meeting
the underlying objective of providing access to the things people want.

3.2 Formalizing the general model

Let us make things more formal. We have two sorts of entities, the
user-generated inputs, referred to here as “words,” “terms,” or “de-
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scriptors,” and the system outputs, called “information objects,” “tar-
gets,” or just “objects.” We are concerned with two relationships
between these entities. On the system’s side are the associations
dictating how the system will respond to a user’s words—which words
will be associated with what system objects. On the user’s side are the
actual intended associations—what the user in fact meant by a given
word. Both the system’s and the user’s relationships can be shown in
the form of a table. The system table gives the input/output mapping
of which object the system will retrieve (execute, etc.) for what words,
with a 1 wherever a word is associated with a system object, and a 0
otherwise. The user table shows the frequencies with which people say
what words for what objects. Examples of a user table were shown in
Table 1. This table can be used in the evaluation, and, if one wishes,
in the design of the system table.

3.2.1 The system table

The system table has two aspects. First is what might be called the
set of structural constraints. These concern how much and what
variety of input the system will respond to, and are imposed by capacity
limitations on memory, processing, data collection, or sometimes by
the computer algorithms used. Second is the choice of a particular
instance of the input/output system table, that is, the assignment of
exactly which words the system will respond to, and with what objects.
One design problem centers on whether assignments will be made in
an effective or possibly optimal way.

Structural constraints in the system’s input/output table correspond
to general restrictions on which cells may be used in the mapping of
input to output. We consider patterns based on limiting the number
of cells in rows and columns (e.g., the number of words understood as
referring to each object and the number of objects taken as possible
referents for each word). In particular, we will be considering models
where, in the system table, there are various restrictions on:

1. Total words recognized by the system (number of nonzero rows
in the system table)

2. Number of words recognized for each object (column totals)

3. Total objects referenced (number of nonzero columns)

4. Number of objects referenced by each word (row totals)

5. Total word-object associations “understood” by the system
(grand total of cells).

Once a general structure has been determined, one still must choose
which associations to give the system, i.e., exactly which cells to
include in the mapping. We consider three cases that give rise to
different versions of each model. The first is a purely random assign-
ment. Within the specified structural constraints, the cells defining
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the system’s associations between words and objects are chosen ran-
domly. Clearly, this is not a realistic system model, but it is useful in
the conceptual analysis of other models and as a baseline of compari-
son. The second case is a weighted random assignment, assigning a
word to an object with the same probability that the word and object
occur together in usage. That is, input/output associations are chosen
with probabilities proportional to their frequency of use, as indicated
by the user table. This is, in fact, a very important case to consider,
since it approximates the way many systems are currently designed.
We will often refer to this as the “armchair” method: a single human
designer sits in his or her proverbial armchair and makes the name-
object associations by some sort of intuitive guessing. The user table
is in effect a compendium of many humans’ “armchair” attempts to
assign good words to the system objects. A weighted random sample
from the table thus corresponds to a random person’s “armchair”
nomination. Such weighted sampling therefore allows us to estimate
the effectiveness of “armchair” design. The last assignment technique
is by the best available optimization procedure. Optimization methods
make generous use of the empirical data in the user table to pick the
best cells. For some system constraints we do not know a combinato-
rially feasible way to find the best configuration, but it is possible to
improve substantially upon the weighted random method. Note that
the success of any optimization attempt is also limited by the quality
of the data available in the user table.

3.2.2 The user table

The user table is a data matrix compiled from the studies mentioned
earlier in this paper. It records the frequency with which untrained
users employed various terms in referring to the system objects.

We assume that the descriptions given by our subjects for the
information objects in the various sets bear a close resemblance to the
entries similar users would make in trying to specify the same objects
in a database system. This assumption may be wrong in detail; in
using actual systems people might give descriptions somewhat differ-
ent from those induced by our instructions. However, when we varied
the intended recipient of the descriptions, as in the recipe (experts,
novices) and common object data (people, machines), there were only
small changes in the descriptions. So we believe that descriptive
language would change little in attempts to communicate with real, as
compared to hypothetical, systems. (We cannot, however, estimate the
effect that prolonged interaction with a given system might have on a
user’s vocabulary.)

We also assume that collection of user descriptions is a good basis
for predicting actual user intent from key-word input. In approaching

STATISTICAL SEMANTICS 1765



a data access system, the user must have some information object in
mind, and must give a description to the system. In actual use, it is
difficult to know what the user really has in mind. Sometimes the user
has no clear idea at all. It is not apparent whether this “diffuse target”
case is easier or harder for a system to handle. A user with an unclear
goal may or may not be more easily satisfied, but is probably less
likely to give precise specifications.

It is obvious, however, that the diffuse target case is harder to study.
Reliably inducing such a state in the user is difficult, and the system’s
success is not easily appraised. Therefore, we have collected data and
investigated models based on the clear target case.

Thus, in these models it seems to us that the best information the
system could start with is to know what typical users would give as
descriptions, given the intended object was well known and clearly
defined. Our assumption is that the descriptions people give of objects
when we specify them will closely resemble the description they would
give if they had thought of the specific objects themselves. This seemed
a practicable and, we hope, realistic starting point.

3.2.3 Going through the models

Insofar as possible, we will use a consistent expository framework
to describe each model. The framework is as follows:

1. Name: A mnemonic title, by which the model will be referenced.

2. Interpretation: What the model is all about.

3. Motivations: Where and why it might come up.

4. Structural constraints: The general form of the system’s input/
output table (“system table”) for the model. This will be given as
clearly as possible in English, with a more formal summary of the
constraints for each model appearing in Appendix A. This appendix
is a very useful reference source in comparing the models.

5. Analyses: For each of three methods of selecting cells for the
system table (random, weighted random, and optimized), the following
information will be given whenever possible.

(a) Version: what the method means in this model.

(b) Evaluation by: what statistic is used to assess its success.

(c) Result: Statistics are computed for the four data sets:

(1) Edit command data

(a) All 25 Operation x Text-Unit combinations (abbrevi-
ated: “Ed25")

(b) For purposes of comparison we include a second analysis
of the same data: the five basic operations collapsed
across textual units (“Ed5”)

(2) Common object data, all 50 objects (“CmOb”)
(3) Swap-and-sale data, the 64 sale items (“Swap”)
(4) Recipe data, the 188 main course recipes (“Recp”)
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The following statistics will be given:

Recall probability: how often the method succeeds in returning
the desired object.

Mean number returned: when the system is able to make a guess
about the user’s desired object; this is a record of how many guesses
it makes to achieve the reported probability of recall.

A few comments are needed about the “number returned” statistic.
First note its importance in considering recall success probabilities. If
the system returns a large number of guesses, it can obviously be
expected to have a greater chance of including the target. Thus,
comparisons of performance demand that this number be kept in
mind. Second, note that these indicate the number of things returned
when the system in fact recognizes the user’s input and so is in fact
able to hazard a guess. For some systems it will be common to have
insufficient data and to make no guess at all for many user words.

We denote the number of objects, or columns, in the table by C, and
the number of user words, or rows, by R. The former is in part well
defined by the designers of the system but the latter, the vocabulary
size, is usually an artifact of data collection, as it would tend to expand
if more data were collected. Here it refers to the size of the vocabulary
in the corpus of data we collected.

1IV. ANALYSES TO DETERMINE REFERENT EFFECTIVENESS
4.1 Madel 1: “One name per object.”
4.1.1 Interpretation

Each object in the system is assigned a single term or name. The
user enters one term. Success depends on the user’s word coinciding
with the system’s.

4.1.2 Motivations

This approach is common in computer systems—each entity has
one and only one name. The name is usually chosen by the designer
or by an expert indexer. The designer hopes to establish a convention
about what system objects will be called. Users must either learn or
guess the names to make the system work. Such learning may be
feasible in small systems or for highly practiced users. The growing
community of novice and infrequent users, however, are often reduced
to trying to second-guess the system, even to find documentation.
This is often frustrating and we shall see that in principle the approach
is far from adequate. Moreover, the real difficulties of such a scheme
often go unremarked simply because traditional computer users have
come to accept as normal the necessity of extended learning, repeated
second-guessing, lengthy searches, or expert consultation in finding
the correct names for programming commands, file names, or infor-
mation categories.
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4.1.3 Structure

The only constraint is that there be exactly one word for each object.
Note especially that this model allows the possibility that any given
word can be used to name more than one object. This is a situation
that designers often try to avoid. It nevertheless arises in several
situations, as when programs, commands, file names, or index cate-
gories are assigned by many independent users, or to highly similar
objects (like bibliographic subject or author specifications, or the case
of several functions being collapsed under a single command name).
We evaluate models that disallow such “collisions” later. Note that
for the likelihood of recalling a given object at all, the aspect of the
problem on which we focus in these first analyses, assigning a word to
more than one object as we do here, can only improve the expected
system performance.

4.1.4 Analyses

4.1.4.1 Version: random. For each object one name is chosen ran-
domly from the total vocabulary for that object, i.e., one cell from each
column. That is, the name of each object is a random choice among
all the total set of descriptors given to all the objects.

Evaluation: by theoretical value. In this case we can calculate the
expected performance of the system exactly. The success rate is given
simply by the ratio of ¢, the total number of cells included in the
system mapping, to RC, the total number of cells in the matrix. A
simple proof of this appears in Appendix B. See Results Table 1.

Results Table 1

recall probability = C/RC = 1/R, i.e., the reciprocal of the total number of
words that users use for all the objects
Ed5 Ed25 CmOb Swap Recp
recall probability = .012 .008 .002 .001 .001
mean number returned =1 + (C — 1)/R

The “mean number returned” is a measure of the amount of ambi-
guity or imprecision in the terms as the system understands them. It
is the average number of things the system knows by a given name
that the system recognizes; the system must return all of these objects
when trying to guess a target. For some of our models the number of
objects that the system returns will be fixed ahead of time by design,
but here it is the mean of a random variable, easily calculated to be 1
+(C-1)/R*

* Under the pure random method, each object has one of the R words associated with
it randomly and independently. Thus, for each object, any given word arising or not
becomes a Bernoulli event with probability 1/R. So having chosen a word for one object,
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4.1.4.2 Version: weighted random. A system name is assigned to an
object with the same probability that users attributed the term to the
object. Here the user enters one key word; and the system has had a
key word assigned to each object, based on one other person’s nomi-
nation. This model mimics, more or less, a currently fairly typical
situation for key-word systems (or program-name or command-name
access systems) in which the system designer has provided an entry
name for each object, obtained only from one usage datum (the
designer or indexer’s “armchair” introspection), and the user is re-
quired to enter just that name. We assume that system designers or
indexers are like our subjects in their choice of names, so that the
relative frequency with which a name was given to an object by our
subjects provides an estimate of the likelihood that a designer would
choose that name for that object. (One source of support for this
assumption is that experts gave no more consistent names than
novices; see below.)

Evaluation: by the “column repeat rate” statistic. We estimated how
well such a system is likely to work by estimating the probability that
a given word chosen randomly from our population (e.g., by one user
on one occasion) would match another word chosen from the same
population (e.g., by one designer). This probability is known as the
repeat rate.'’ If we index rows (words) by i, and columns (objects) by
j, in a word-by-object table, then repeat rate for a given object, rep; is
defined as:

=X P

This formula can be understood by considering that a match between
two randomly chosen words occurs when, for any given word first
chosen, the second word is the same. Say the first word was word;; the
second word will match it with the probability of word; occurring in
the population, p;;. The probability of a word; being the first word is
also pjj, so the probability of word; being involved in a match is pi
Summing across all possible words, we get the equation given above.

An unbiased estimate of the population probability of such a match
comes from calculating the true probability of such a coincidence in
drawing from our sample without replacement, given by:

the number of the other C — 1 objects having randomly been assigned that same word
is given by a binomial distribution with parameters p = 1/R and C — 1. Thus the mean
number of other objects with the same name as our given object is the mean of this
distribution, (C — 1)/R. The system will return any of these objects plus the original
object, or 1 + (C — 1)/R objects.
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where N is a column total and n; is the frequency of the ith cell in the
column j.

Here we are interested in the average probability of success, given
any particular target, throughout the table. So we decompose the
overall probability by conditionalizing on columns, calculating the
repeat rate for each column, and then average these success probabil-
ities using weights proportional to the column total frequencies. (In
our data these column totals are approximately equal by design.)
These weighted average column repeat rates are given below for our
four sets of data. These numbers may be interpreted as answering the
following question: Given that all objects are equally often the desired
target, what is the probability that the name given by a user trying to
specify a target would match the name assigned to it by a designer?
See Results Table 2.

Results Table 2

Ed5 Ed25 CmOb Swap Recp
recall probability = .07 11 12 14 .18

While there is some variation among the values, they are all quite
small. People do not agree with one another very well as to the first
word or phrase with which to label an object. The probability that two
typists will use the same main verb in describing an edit operation is
less than one in fifteen. The probability that two people will use the
same first key word for a recipe is less than one in five. (These
numbers also tell us something about the size of the set of alternatives
that people use in their disagreement. It is a property of repeat rate
that the set of alternatives must be at least 1/r, and can be quite a bit
larger if they are not equally likely, as is the case here.)

Most of the interesting comparisons will be between the different
models presented (e.g., this model with the subsequent ones), and not
the different data sets. To facilitate model-to-model comparison, all
results appear together in a summary table in Appendix C.* The reader
is strongly encouraged to refer to this table throughout Section IV.

* Of course, some comparisons between data sets are also of interest. Note for example
that the value for Ed25 is higher than for Ed5. This says that the set of words applied
to the individual objects is more sharply restricted than for the collapsed classes. This
is to be expected, since any diversity between objects in the pattern of terms applied
becomes within-class diversity, when the objects are collapsed together, driving the
column repeat rate down. Only if all objects in a class had identical naming patterns
would the repeat rate not decrease.
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The mimicked method is one in which the designer provides the
system with only one entry word that it can understand, and the user
enters just one key word. This is clearly unsatisfactory for untrained
users. The usual solution has been for system designers to rely on
users learning the chosen vocabulary, i.e., to try to force the user’s
table to adapt to a fairly arbitrary system table. When the system is
small and the user’s interaction frequent, this can work quite well.
Indeed, Landauer et al.? have shown that using unrelated random
names has little or no detrimental effect on initially learning to operate
a small editor. But, if the system is large and its use intermittent and
nonexpert (as for example in large-scale information retrieval systems
like library catalogs, recipe files, or classified product catalogs), it is
simply unreasonable to require users to learn a specialized vocabulary.*
Despite the designers intentions, the uninitiated will try to make the
system work without memorizing extensive naming conventions. Thus
the problem remains a real one.

One approach we might consider at this point is to seek expert
advice in choosing names. This is a fairly common approach, taken in
the hope that experts in a given subject area know what things are, or
should be, called and so might generate words of more general cur-
rency. Indeed, the indexes to books, libraries, user manuals, and other
information sources are customarily created either by subject matter
experts or by professional indexers.

We have collected some data relevant to this issue in the recipe
study. Our key-word providers represented several levels of expertise.
The situation is not unrepresentative; usually the indexes of cookbooks
and recipe collections are created by cooking experts, presumably on
the assumption that their characterization and labeling will be supe-
rior, even for less sophisticated users. We calculated repeat rates
separately for the three groups of key-word providers (experts, inter-
mediates, and novices) subdivided by whether they had produced the
key words under instructions to make them appropriate to novices or
to experts. The results are shown in Table II. The repeat rates shown
were calculated in a special way. For each cell, the index words were
provided by particular subsets of describers, and the proportion of
matches was calculated on a pool of descriptor words provided by
other subjects. Thus, the (ee, ee) cell estimates how likely a word
provided by one expert for other experts was to match that provided
by another expert with the same, expert, audience in mind. The (en,
ne) cell estimates the probability that a word provided by an expert

* In intermediate cases, like program and command names for an operating system,
the method may be satisfactory for expert users, while leading to dissatisfaction for
others (see Refs. 11 and 12).
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Table II—Repeat rate measures of agreement between
indexers and users for the recipe data set

Group ee en ie in ne nn
ee 11 17 14 .15 .10 22
en A7 A1 .18 AT .16 21
ie 14 18 .20 .20 21 23
in .15 17 .20 .19 A7 .26
ne .10 .16 21 17 .16 .16
nn 22 21 .23 .26 .16 .32

for novice users would match the word provided by a novice for expert
users. Clearly, the differences among marginal values (i.e., the averages
of repeat rates for different index providers) are not large, and more
clearly still, expert cooks do not provide better descriptions for the
use of either other experts or novices. (If anything, novices do the best
in using each other’s words.)

The usual armchair approach, even if undertaken by subject matter
experts, has only a small rate of success. The obvious step at this point
is to seek explicitly optimal choices of names, treating this as the
empirical question that it clearly is.

4.1.4.3 Version: optimized (best). If we want to use the name that has
the greatest currency among subjects, we must choose the term that
is in fact maximally used by subjects for each object. We pick the
maximum cell in each column and use the corresponding term.

Evaluation: by various estimates of the range of expected performance.
The lower bound is based on split halves analysis; the upper bound is
based on a transformation of the column repeat rate and from an
analysis that assumes that the sample data exactly reflect the popu-
lation probabilities.

To know the performance of this model we need to know the true
population magnitude of the maximum cell in a column. That cell is
the one we would choose according to an optimum name assignment
scheme, and its size would be the proportion of future users’ terms for
the given object that would coincide with our optimal choice. Problems
arise in that there are no known distribution-free, unbiased estimators
of the population magnitude of the maximum probability cell. We
have, however, been able to devise a few techniques that let us put
bounds on the performance of this system. The first uses a split-halves
technique to give a lower bound estimate. The data in each column
are split into two halves, and the maximum cell chosen on the basis
of the first half (as though we had to design our “optimal” system on
the basis of half the data). This cell is then matched against the second
half to see how well it succeeds. Thus, the second half acts as a virtual
experimental test of the performance of the “optimal” method. The
split-half results shown here are the average performance of ten
independent splits of each data set. See Results Table 3.
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Results Table 3

Ed5 Ed25 CmOb Swap Recp
recall probability = .15 .19 26 .26 31

These numbers are an unbiased estimate of how well a system would
do using this optimum strategy but constrained to a small amount of
data (namely the amount in each half). It clearly underestimates how
well one could do with more data. We have used two approaches to
obtaining an upper bound. One is based on an interesting inequality
relation that holds between the size of the maximum cell and the
repeat rate statistic described above: It can be shown that the former
is no greater than the square root of the latter.*

Thus, the performance of the optimum model is expected to be no
greater than the square root of the performance of the weighted
random (armchair) model. This statistic will overestimate perform-
ance to the degree that individual words other than the maximal one
are also applied frequently to a given object. Since our own data
suggest that this is commonly true, this upper bound is likely to be
quite generous. It has an important pragmatic advantage, however, in
that it is independent of sample size and easy to obtain. Other
estimates of optimal performance require collecting detailed data on
the precise pattern of naming. This estimate requires only that one
observe the probability that two people use the same name (i.e., the
repeat rate), without even having to note what particular terms they
use. Taking the square root then yields an upper bound estimate for
the best possible single name per object. For our data, these quantities
are listed in Results Table 4.

Results Table 4

Ed5 Ed25 CmOb Swap Recp
recall probability = 27 .32 .33 .35 42

The final way to estimate the performance is to let the data predict
itself. The observed largest proportion falling in a cell is taken as the
estimate of the population maximum. A familiar result in rank order

* This relation follows from two inequalities. First note that the repeat rate is the
sum of the squared cell probabilities. This sum is clearly greater than or equal to any of
its terms, since all are positive. In particular, it is larger than the square of the maximum
probability cell. Thus, the expectation of the repeat rate is larger than the expectation
of the squared maximum cell. Second, note that the expectation of any squared variable
is always greater than or equal to the square of that variable’s expectation. Putting
these together, the expectation of the repeat rate is greater than or equal to the square
of the expected magnitude of the maximum cell. Thus, an upper bound on the maximum
cell is estimated by the square root of the repeat rate.
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statistics is that in the presence of error the observed maximum of a
number of observations is expected to be larger than it should be.
Thus, using the maximum to estimate itself is likely to be an overes-
timate for any limited sample size. This is particularly true for small
samples. In the extreme case note that if a column of cells has only
one observation, the observed maximum will be in the one cell where
the single observation fell, which will have an estimated probability of
1.0, regardless of the true underlying probabilities. This will become
more relevant later when we calculate similar statistics on rows of the
matrix, where many of them will involve small numbers of total
observations in each row. For now, however, the samples are not too
small, and the results are presented in Results Table 5.

Results Table 5

Ed5 Ed25 CmOb Swap Recp
recall probability = .16 .22 .28 .34 .36

4.1.5 Discussion

It appears that performance would be about twice as good when
using an optimum naming strategy than when using the weighted
random model (which we believe to be an approximation to typical
current practice) in a one-word-per-object system. Still, the overall
levels are not very impressive. It should be noted that these optimal
strategies represent the best any single-name scheme could do. No
expert, human or otherwise, could choose single names that would

work better.

Is this the best that we can hope to do for people? The answer is
no. There are other, more effective approaches. One is to use multiple
names, sometimes called “aliases”, for each object, which leads us to
our second general structure for a system model.

4.2 Model 2: “Several names per object.”
4.2.1 Interpretation

Each object in the system is assigned M terms or names. The user
enters one term. Success depends on the user’s word coinciding with
any one of the system’s M words.

4.2.2 Motivations

Giving things single names is not adequate for the uninitiated, so a
reasonable next step is to try giving the system several names by
which to recognize each object.

4.2.3 Structure
The constraint is that exactly M words are stored for each object.
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4.2.4 Analyses

4.2.4.1 Version: random. For each object M names are chosen ran-
domly from the total vocabulary, i.e., M cells are chosen from each
column. The recall probability is M/R, and in our sample tables would
range from .01 to .04 for three names per object (M = 3).

4.2.4.2 Version: weighted random. The first name is chosen with a
probability proportional to its frequency in the given object’s column
of the table. Each successive name is then similarly chosen, without
replacement, from the remaining cells. This is as though someone
“sitting in an armchair” thought up several distinct names, any one
of which the user could use with success. We make an independence
assumption that the probability of a word being chosen is independent,
except for renormalization, of the words already chosen. This is
probably a faulty approximation for a single human generating a series
of words, where the first word thought of may influence the next. If
the words were separately proposed by different designers, this inde-
pendence assumption might be more nearly correct.

Note that by reversing the roles of the system and the user we
obtain a very interesting dual interpretation of this model. That is, let
the system store a single word and the user make M different guesses.
Success would be counted if any of the user’s M words matches the
system word. Either of these interpretations merely involves the
probability that a single sample from the column will match one of M
samples drawn without replacement from the cells of the same column
(that is, without replacing the whole cell, not just the observation from
the cell).

Evaluation: by “M-order repeat rate” statistic, within columns. These
success probabilities can be estimated using an extension of the repeat
rate statistic to this case of multiple samplings without replacement
of types. The probability for column j can be shown to be estimated
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This formula requires a calculation time that grows exponentially in
M. We therefore limit results to M < 3. See Results Table 6.

Results Table 6

Ed5 Ed25 CmOb Swap Recp
recall probability
M=1) .07 11 12 .14 .18
(M=2) 14 21 21 .25 .33
(M=3) 21 .30 .28 .34 46

Note that allowing the system (or, equivalently, the user) several
words for each object in trying to match its partner achieves consid-
erable gain. Performance almost doubles and triples as we go to two
and and three guesses.

It should be remembered that the estimated probabilities of success
for 1, 2, and 3 guesses were calculated on data from subjects’ first
responses only. Under the interpretation of this model in which
subjects make repeated guesses at a system’s single word, this is
equivalent to assuming that successive guesses, given that previous
guesses had failed, would resemble other first-provided words. To get
a true estimate of the expected performance of a system that actually
used this technique, we would need data on people actually making
successive guesses. One would have to know how many such guesses
can actually be made and with what quality before one could know
what the maximum performance would be. However, if one supposes
that the system, or perhaps the users’ desires and abilities, limited
input to three guesses, performance of such a system would not be
likely to exceed about one chance in three of correct return.

4.2.4.3 Version: optimized. Choose as the M names for each object
those terms that are maximally used by subjects for the object; that
is, pick the highest M cells in each column and use the corresponding
terms. This is a simple generalization of the single-name case. '

Evaluation: by split halves and self-estimation. We again run into
the problems involved in estimating maximum, and now also the
nearly maximum, cells. The split-half and self-estimation procedures
were used here to estimate upper and lower bounds. The split-half
results represent the average performance of ten independent splits of
each data set. The results are presented in Results Table 7.

Results Table 7
Ed5 Ed25 CmOb  Swap Recp

recall probability
(M=1) .15 .19 .26 .26 31 (split half)

.16 .22 .28 34 .36 (self-estimation)
(M=2) .26 .32 .36 .36 .49 (split half)

.28 .37 41 .50 .56 (self-estimation)
(M=3) 37 42 42 A5 .58 (split half)

.38 49 .48 .69 .67 (self-estimation)
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4.2.5 Discussion

Considerable benefit is obtained both from using data to optimize
choices and from giving the system several names for each object (or,
equivalently, allowing the user several guesses). Though it was not
undertaken here, it would be interesting to explore the possibility of
letting both the user and the system use several names to try to match
each other.

The improvement gained by storing multiple words has associated
with it a potential cost in ambiguity. Nowhere in either this model or
the previous, one-name model has there been any concern that the
names be distinct. The names for each object were picked from the
corresponding column, with no regard for what names were being
chosen for other objects. This means that two objects could be assigned
the same name, with consequent ambiguity should the user give that
name. The system would be unable to tell which object the user
intended, and would have to present the user with a menu of choices
to differentiate among them. (Recall that at the outset we stated that
we would be assuming such a system, and, moreover, that choices
among the items on the subsequent “menu-on-the-fly” would be as-
sumed error free.)

Naming choices will collide when two different objects have the
same words applied to them. One might expect this to happen, for
example, if two objects are very similar, so that the same words apply
to them. We have collected some data that confirm the existence of
this similarity effect. For both the recipe and the common object data
we compared the probability of a naming collision for random and
similar objects in the set. Subjects were given 5 “focal” objects and 25
“match” objects, all drawn at random from the set. For each of the
focal objects, they were told to select the one match object that was
most similar to it. Using the weighted random naming method, the
naming collision rates were compared for these five pairs of similar
objects and the same five focal objects paired with random members
of the match set. That is, we calculated the probability that a word
applied by one user to the first object would be the same as the word
applied by another user to a second object. Using subject differences
as a random error estimate, there was a highly significant increase in
naming collisions for the pairs of objects judged to be similar [t(14) =
3.86 and t(24) = 5.37 for the recipe and common object data, respec-
tively].

To examine the effects of trying to avoid collisions, we studied the
next model.

4.3 Model 3: “A distinct name for each object.”
4.3.1 Interpretation
Each object in the system is assigned a single term, with the proviso
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that no term may be used more than once. Success depends on the
user’s spontaneously produced word coinciding with the system’s
distinct name for the intended object.

4.3.2 Motivations

Note that in typical naming circumstances the intent is often to
establish conventions about terminology so as to avoid the ambiguity
that would otherwise arise. Naming conventions are used not only to
set by fiat the name by which an object will be known to a system, but
also to proclaim that only that object will be so known. Often inter-
action will reach a stage where complete precision is needed, e.g., for
actual command execution.

It may be the designer’s motivation in selecting names that users
learn terminology that allows them to be precise. As had already been
pointed out, however, the designer’s intent may not correspond with
the user’s reality; the untutored may try to deal with the system
anyway. Thus, we explore the user-guess success for systems designed
with the unique name constraint.

The models discussed here are just like those of the “one-name”
case, except that words cannot be used more than once.

4.3.3 Structure

One distinct word is stored for each object, i.e., this is the same as
Model 1, except that the words must all be distinct, so that at most
one object is referenced by each word. This imposes strong constraints
on the system table, on both row and column totals, and the number
of rows and columns used overall. This high degree of constraint
makes mathematical treatment difficult, as will be discussed shortly.

4.3.4 Analyses

4.3.4.1 Version: random. For each object, one name is chosen ran-
domly from the total vocabulary. Once a vocabulary item is used,
however, it is eliminated from any future consideration.

Recall probability would be 1/R and range from .002 to .014 for
these data. The “number returned” is easy to give for this case, as it
is set by the structural constraint, that each name have a unique
referent. It is therefore 1 for all models having this structure. That is,
when the system finds a target it returns exactly one candidate.
However, there are many occasions when the user word matches no
system word, and so no target is returned.

4.3.4.2 Version: weighted random. Here the name is chosen with a
probability proportional to its frequency in the given object’s column
of the table. Then the chosen word is eliminated, and a name is chosen
in an analogous way for another object from the remaining words, etc.
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The results are clearly influenced by the sequence in which objects are
dealt with. The approach used here was to choose in the following
way: a word/object pair is chosen by a weighted random sampling from
the whole table. This gives the right distribution within each column
and allows appropriate representation of each column. Once such a
cell is chosen, the corresponding object has been named and the word
used, so both are eliminated, and the procedure is iterated on the table,
now reduced by one row and column, until all objects have been
named.

Evaluation: by Monte Carlo simulations with split halves. We could
devise no way to evaluate this model analytically, so we used a Monte
Carlo simulation on split halves. We divided the data in the user table
in half and randomly picked names, according to the model outlined
above, using the data from one half. The second half of the data was
then used to evaluate the effectiveness of the names thus chosen. The
results presented here are the average for ten split halves with ten
independent Monte Carlo simulations of name selection in each. See
Results Table 8.

Results Table 8

Ed5 Ed25 CmOb Swap Recp
recall probability = 07 .08 11 12 .09
number returned = 1.0 (by des1gn)

Note that, as might be expected, success is less than for the com-
parable model in which names did not have to be distinct. In some
instances this decrease is small, as with the edit studies; in others it
is large, as with the recipes. This should depend on whether there were
a few high-frequency words that were used for many different objects.

4.3.4.3 Analysis of precision versus popularity of terms. In all of our data
sets there was a slight trend for high-frequency words to be less
discriminating than low-frequency words. In studying this relation
quantitatively, the measure of discriminating power of a word was
given by the repeat rate statistic, this time applied within each row.
This row-repeat rate is a m.easure of the probability that two uses of
a word refer to the same object. When this probability is high, the
word is very discriminating. Below we present the correlation (Spear-
man r) of row-repeat rates with the marginal frequency of the words.
See Correlations Table 9.

Correlations Table 9

Ed5 Ed25 CmOb Swap Recp
corr: —-.28 -.30 -.21 -.24 -.16
(N words): (74) (84) (301) (145) (167)
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This correlation points to the cause of the difficulties run into by
the constraint of distinct names. There is something of a conflict. If
one chooses high-frequency names, they will be likely to collide. If one
chooses less frequent names, the chances of collision will be somewhat
less, but fewer users’ queries will be handled. Unfortunately, there is
no correspondence between the size of these correlations and the size
of the decrease in performance for each data set. The reasons for this
are not clear.

4.3.4.4 Version: optimized (though not best possible). The idea is to
choose the distinct names such that the total probability in the cells
chosen is maximal. The method used here is a greedy algorithm that
is not truly optimal, but it is a reasonable improvement over the
weighted random method. It begins by picking the highest cell in the
matrix; then, after eliminating the corresponding row and column
from the matrix, it iterates, picking the next highest cell, etc., until all
objects have been assigned a name. Algorithms like this are called
“greedy” because at each step they take the biggest possible chunk of
what is left, without regard for what later problems that may cause.
In this case, it is possible that an early choice will eliminate a word
that would be very good for another object, when there was an alternate
word that would have done almost as well at no such cost. Algorithms
that would take such future complications into consideration, or
equivalently consider so many possibilities at once, are typically com-
binatorially explosive. Thus we present the results of the straightfor-
ward greedy algorithm approach.

Evaluation: by split halves. There is no simple method to estimate
the performance of such an approach. Again we turned to the split-
halves technique of dividing the data in half, applying the algorithm
to one half and then testing the chosen names on the other half. The
results, averaged over ten independent splits, are given in Results
Table 10.

Results Table 10

Ed5 Ed25 CmOb Swap Recp

recall probability = 14 A1 .23 19 A1
number returned = 1.0 (by design)

4.3.5 Discussion

As we expected again, the optimization attempt, even though im-
perfect, has a dramatic effect, in many cases doubling the performance
of the system. Even in the best case, however, the system succeeds
only about one quarter of the time, and typically little more than a
tenth of the time. We note that the numbers here are substantially
lower than in the case where there was no requirement that names be
distinct. In fact this improved method really does no better than an
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armchair (weighted random) version of the unconstrained model, and
often worse. The lesson here is that adding the requirement of unique-
ness, common in establishing conventions, hurts naive users quite a
bit. The need for such conventions is not denied, it is simply asserted
that auxiliary aids will be needed for systems that make heavy use of
such conventions. It is worth noting that, for our data sets, the number
of objects that are not disambiguated and would have to be presented
for a second stage choice is always small, and the gain in recall always
large. Thus, the “menu-on-the-fly” method implicit in several of the
models presented here appears to be very promising as an aid to
unsophisticated users.

4.4 Model 4: “Distinct names, augmented with M extra referents.”
4.4.1 Interpretation

Each object is given a distinct name. M — 1 other referents for those
words are also stored.

4.4.2 Motivations

Part of the inferiority of the distinct-name models, when compared
to the unconstrained models, came from the fact that people often
want to use the same names to refer to several objects. The motivation
for the next model is to recapture access to some of those other
interpretations of the term. A simple extension of the distinct-name
structure is to begin with the situation where each object is associated
with a distinct name, one that can be memorized and used unambig-
uously by experts, but also to store M — 1 other objects that the term
applies to, explicitly for use in a “menu-on-the-fly” for the untutored.
A reasonable system implementation might be to give the “distinct”
name a special status (the “real” meaning of the term), and to admit
the other interpretations as secondary, perhaps to be verified in the
context of use.

This is the first model in which we explicitly design in more than a
single system guess as to the intended object. To be sure, several
guesses for the meaning of a term could (and would) have arisen in
the uncontrolled name cases of Models 1 and 2, but here we predeter-
mine exactly how many guesses the system makes and evaluate per-
formance as a function of this parameter.

As more objects are returned, the likelihood of including the in-
tended target is increased, but a certain cost is incurred—the cost
associated with discerning the true target among all the returned
objects. Data searches can fail not only by not giving access to a
desired object, but also by returning too many unwanted objects. In
information science the problem is familiar as the trade-off between
recall—the number of desirable items returned—and precision—the
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proportion of items returned that are desirable. This is also similar to
the hit versus false alarm trade-offs of signal detection, familiar to
psychologists and communication theorists. In the latter context the
trade-off is sometimes examined by tracing out operating character-
istics and interpreting them in terms of parameters of an underlying
statistical theory. There does not currently exist a corresponding
statistical theory for our precision and recall rates, but it is useful to
be able to examine, or in this case, control, precision explicitly and
see what gains in recall result. This yields an operating characteristic.
Any version of the general baseline model in which the system is set
up to return an explicit number of guesses provides a direct way to do
this.

4.4.3 Structure

At least one name is given to each object, but each name that is
used by the system also refers to M different system objects.

4.4.4 Analyses

4.4.4.1 Version: random. Here the primary cells are again chosen
completely blindly, eliminating rows and columns already used in an
iterative manner exactly as in the distinct-name case. After the C
primary cells are chosen, the M — 1 additional or secondary cells are
chosen randomly from each new row chosen.

The resulting probablity is M/R and would range from .001 to .035.
The number returned is, of course, M by design for all versions of
Model 4.

4.4.4.2 Version: weighted random. Cells are chosen at each step with
a probability reflecting their magnitudes. Thus, first C distinct names
are picked, as in the distinct-name model (Model 3). Then, in the row
of each cell just picked, M — 1 more objects are chosen with a
probability equal to their relative frequencies in the rows.

Again, the weighted random case is an approximation to what an
individual designer might do without collecting data from other people.
The process of coming up with additional interpretations requires a
bit of further explanation. The asymmetries found in free association
data suggest that people starting from terms and generating objects
would yield probabilities quite different from those obtained from
people starting with objects and generating terms.”® This asymmetry
means, in this model, that the additional interpretations cannot be
thought of as the result of the designer sitting in an armchair and
thinking up other interpretations for the terms. The efficacy of such
an approach is not estimable from our data.

A scenario that might better satisfy the assumptions of this model
would have the system memorize the first M — 1 nonstandard uses of
its known terms that it comes across.
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Evaluation: by Monte Carlo simulation on split halves. The data are
given in Results Table 11.

Results Table 11

Ed5 Ed25 CmOb Swap Recp
recall probability =
M=1 07 .08 11 13 .08
(M =2) 13 15 15 17 .15
(M=3) .18 21 .18 .20 .20

The number of guesses that the system is requiring to achieve this
performance is of course, M, the number returned by design.

4.4.4.3 Version: optimized (though not best possible). Again it was not
feasible to find the completely optimal choice of cells. Instead, the
primary cells were found in the same “greedy” way used for the simple
distinct-name “optimal” case. The subsequent choice of secondary
referents for the words so selected can be optimized by choosing the
M — 1 largest cells remaining in the row. Note that it is possible for
some of these remaining cells to be larger than the primary cell, as
when they refer to an object that was eliminated before the row was
chosen. (It is the vagaries of the need for convention in names that
brings about this ironic use of the term “primary.”)

Evaluated: by split halves. In the now familiar procedure, the data
are split and the first half used to choose the cells following the
algorithm just outlined. Then the second half of the data is used to
evaluate the choice of cells. See Results Table 12.

Results Table 12

Ed5 Ed25 CmOb Swap Recp
recall probability =
M=1) .14 A1 22 21 A1
(M=2) 21 .20 28 27 17
(M =3) .27 .29 31 .30 .22

number returned = M (by design)

These results, for one to three total guesses, are plotted in Fig. 2.
The model curves can be viewed as operating characteristics, giving
total recall as a function of decreasing precision. The dashed diagonal
lines represent expected chance performance if the system returns
guesses at random. Note that in the case of the Ed5 data, the random
performance is better than that of this model. This is possible because
this model, like most current computer systems, makes no response at
all to any but a few words. By failing on so many of the words it
encounters, it can be surpassed by a system that only guesses, but at
least guesses for all words. Admittedly, in the context of command
execution any level of guessing without confirmation may be danger-
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Fig. 2—Recall as a function of the number of system guesses for Model 4 (‘distinct
names, augmented with M extra referents’) is shown by the solid lines. The dashed lines
represent expected chance performance if the system returns guesses at random.
(Different chance performance for the different data sets simply reflects the different
number of objects in each set.)

ously out of place, but there are safer arenas, like help facilities, that
could benefit. In any case the cost of ignoring so many user words is
made clear. Notice that the total probability does not approach one,
even in the case of command verbs for editing operations where there
were only five objects. The reason is again that many words were used
by our subjects to describe these objects, and the algorithm picked
only a maximum of C of them to recognize. The modeled assumption
was that if a subject supplied any word not recognized by the system,
no choices would be returned and a failure would result.

4.4.5 Discussion

These models use the same number of cells as the multiple-names
models, yet do not do as well. The implication, presumably, is that
there is considerable cost in limiting oneself to a small number of
words. The users distribute their descriptors too broadly for any such
limitation to be very satisfactory.

Thus we are motivated to try a completely different approach. All
the models up to this point have inherently focused on what the
system brings to the interaction. The modus operandi has been to set
all the system’s objects before us and then try various ways to guess
what users will call them, albeit with some improvements as we give
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deference to the empirical characteristics of the user’s language as
seen in the user table.

Suppose we turn the tables, so to speak, and focus on what the users
bring to the interaction: the terms they use when trying to specify
things. Start with the terms, all of them, and concentrate on trying to
guess to what object they refer. This brings us to our next model.

4.5 Model 5: “Recognize one referent for every word.”
4.5.1 Interpretation

The system stores every word that it can, and for each has one guess
as to the intended object.

4.5.2 Motivations

One of the principal problems with the approaches studied so far
has been that a large proportion of the recall failures can be attributed
simply to not recognizing many of the user’s words. The systems
modeled have paid too little attention to the wide variety of the terms
people use spontaneously. Here we focus on this essential character of
what the users bring to the interaction. For every word produced
during the collection of the data for the user table, a guess is made.
The different versions vary as to how these guesses are made.

It is useful to note that these models, and their generalizations in
the next section, are really duals of the single- and multiple-names
models. In those models the system had words for each object, and it
succeeded when its name was the same as the word the user would
use. Thus, to evaluate those models we calculated the conditional
probability that, given a target object, the system and user names
would coincide. Then we summed probabilities across objects, weight-
ing each by its column’s marginal probability (all essentially equal in
our data, by design). Here we conditionalize the other way. Given the
word used, we find the probabilities that the system and user associate
the same object with the word. Then we sum across words (rows),
weighting by the very uneven observed marginal frequencies for each
word, to get the overall performance.

4.5.3 Structure

The system makes use of every word in the table, associating each
with one, and only one, system object.

4.5.4 Analyses

4.5.4.1 Version: random. Here the system will associate random ob-
jects with the input words. That is, the system will simply make a
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random guess for anything the user says. The recall probability is just
1/C, and ranges from .005 for the recipes to .200 for the Ed5 data. The
number of guesses being made to achieve these performances is pre-
determined by design to be 1 for all these models.

4.5.4.2 Version: weighted random. Here an object is associated with
each word by a random method that takes each object with probability
proportional to its relative frequency in the row. Arguments similar to
those made for the augmented distinct-name model here imply that
this is not the analog of having the designer sit down with the list of
words and hazard guesses as to what they mean; the data used here go
in the other direction. The more appropriate scenario is as if a system
records the first encounter with a new word, and its intended referent,
and makes a single pointer based on this single observation, forever
freezing the meaning of the word. This is perhaps an unreasonable
scenario, but the model is worth investigating because the statistics
that result have other valuable interpretations.

Evaluation: by row-repeat rate statistic. The probability of success
in this case is the probability that two users will mean the same thing
by a given word. The results below are the average row-repeat rates,
weighted by total row frequency. (Rows with a frequency of one were
excluded, since the repeat rate is not calculable in that case.) This
number is an unbiased estimate of the overall probability that any two
occurrences of any word will be in reference to the same object. See

Results Table 13.

Results Table 13

Ed5 Ed25 CmOb Swap Recp
recall probability = 41 15 .52 .62 13
number returned =1.0 (by design)

We note how variable the probabilities are. They are low where the
same words mean different things, and high where any one word refers
to only one object. Apparently these domains differ in this aspect.
There are at least two possible explanations. First is the similarity
effect discussed in connection with Model 3. There it was shown that
pairs of objects judged to be similar had higher overlap in the patterns
of names applied to them than did random pairs. The resulting naming
collisions meant that it was more difficult to find distinct names for
similar pairs. Here we are explicitly interested in a different, though
related, effect. We can use the previous experimental data (see Section
4.3.4.3) again, this time to demonstrate the similarity effect on a row-
repeat rate measure. In this version we consider pairs of cells in each
row: one cell from the target column, and one from either a column
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rated similar or from a random control column. The repeat rate is
calculated on the two cells and summed (weighted by row sum) down
all the rows. Since a low repeat rate for a given word indicates that it
does not discriminate well between the objects, we predict a lower
repeat rate for the similar pairs of objects, and that is what we obtain.
In the recipe data the mean repeat rate of the similar pairs was .73
and for the random pairs was .91 [£(14) = —5.83]. For the common
object data, the similar pair repeat rate was .89 and the random repeat
rate was .95 [£(24) = —5.71]. Thus similarity has a strong effect on
repeat rate. Unfortunately, what we need to make sense of the varied
results is some measure of the relative internal similarities of the
various domains. Such data are neither available nor easily obtained.
Still, it might be agreed that the set of common objects is more diverse
than is a set of cooking recipes, or text editor operations, corresponding
to observed differences in average repeat rates.

There is another factor that might be helping the swap-and-sale
descriptors. Analysis of the other data sets was either strictly limited
to single words, or else only to short phrases with few content words.
Swap-and-sale descriptors contained an average of 1.7 content words,
where there were fewer than 1.2 content words in the others. If these
words tend to be used in a conjunctive sense and if they are not
redundant, they should contribute to the high selectivity of the de-
scriptors seen for the swap-and-sale data.

A final note should be made of the higher repeat rate for Ed5
compared to Ed25. Part of this is due simply to the fact that even with
a purely random, undiscriminating distribution of name usage across
objects, there would be an increase in repeat rate as the number of
objects is decreased. If there are only two objects, people will have to
mean the same object by any given term at least half the time. A more
intriguing possibility is that the classes are more distinct entities than
are the individual objects, and that this makes word usage more
discriminating, above and beyond the chance effect just mentioned.

4.5.4.3 Version: optimized. In this case the user matrix is used to find
the best possible choice for a word’s referent. This is done by picking
the maximum cell from each row, the object to which the word has
most commonly referred.

Evaluation: by split halves, square root of the row-repeat rate, and
self-prediction. Evaluation is again problematic. While there is no
question that picking the maximum cell is the best possible strategy,
there is no unbiased estimate of its true magnitude. Thus we resort to
the same three methods used when similarly confronted in the optimal
version of the one-name model (Model 1): the split-half technique, an
unbiased estimate of how well one could expect to do with half the
data; and two estimates of upper bounds. See Results Table 14.
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Results Table 14
Ed5 Ed25 CmOb Swap Recp

recall probability =

.49 .18 43 .35 13 (split half)
.62 35 .65 .12 .28  (square root of row-
repeat rate)

.54 .26 .69 81 .25 (self-prediction)
number returned =1.0 (by design)

4.5.5 Discussion

There is considerable variability, both in the performance and in
the range of these estimates. The largest range is for the swap-and-
sale estimates. This is due to the very large number of descriptors that
occurred only a few times. The data for each such descriptor are
statistically unreliable, so the maximum cell cannot be accurately
identified; this problem is severely aggravated by splitting the data
and only using half to make the identifications. Note that this is not
an experimental artifact. A very long tail on a descriptor distribution
is a legitimate real-world problem, because it means that new terms
will keep arising that the system will not have seen before, and about
which it will not be able to make any educated guesses. A wide range
in the estimate reflects the fact that very large amounts of data would
be needed to approach asymptotic performance.

As for the overall diversity of scores from domain to domain, the
arguments about similarity and number of words in the descriptors,
given above for the repeat-rate case, are equally applicable here.

The most important point to be made about this optimized model
is that it represents the best one could possibly do. We can do no
better than to recognize every word users use and make an optimal
guess as to its meaning. Clearly, if we have insufficient data to do this
well, either preventing us from recognizing a word, or from being able
to estimate the modal referent, performance will suffer. But the upper
bound estimates represent the real, strict limits of performance. No
other pattern of structural constraints could do better, except at the
cost of precision. This trade-off with precision is explored in our final
model, in which an explicitly prespecified number of multiple guesses
is returned to increase the chance of including the user’s intended
object among them.

4.6 Model 6: “M referents for every word.”
4.6.1 Interpretation

The system stores every word that it can, together with a set of M
possible referents. Whenever the user enters a word, the system
returns the M guesses, possibly ranked in some way.
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4.6.2 Motivations

The “one referent for every word” model (Model 5), in its optimized
version, gave the best possible performance for a system that hazards
only one guess for a user’s word. The only way to increase the chance
of returning the user’s intended object is to return more than a single
guess. These guesses could be returned in the form of a menu of M
items, among which users would choose.

As we mentioned, this is the dual of the multiple-name set of models,
and several of the evaluation procedures differ only in that rows have
traded roles with columns.

4.6.3 Structure

Like the previous model, the system makes use of every word in the
table, but here it associates M system objects with each.

4.6.4 Analyses

4.6.4.1 Version: random. The system makes just M pure guesses,
without replacement, from the set of system objects. The recall prob-
ability for these cases is thus exactly M/C, and the number returned
is M, by design, for all versions of Model 6.

4.6.4.2 Version: weighted random. In a manner following the single
referent weighted random model, the M cells are chosen with a
probability that is proportional to their relative sizes. The M choices
are required to be distinct, and so a cell is excluded from further
consideration once it has been selected.

The scenario that this might correspond to would be one in which
the system learns the first M distinct referents of the word that it
comes across in use. Its encounters would be governed by exactly these
probabilities.

Evaluation: by M-order repeat rate statistic, within rows. We want
the probability that the user’s single intended referent coincides with
any of the system’s candidates, when both sets are drawn from the
same probability matrix. These success probabilities are estimated
using the same extension of the repeat rate statistic used in evaluating
success of the many-names-for-one-object model (Model 2, Section
4.2.4.2). Here though, it is applied to the cells within a row, rather
than within a column.

It should be noted that the formula requires there to be M nonempty
cells in the row, to prevent some of the denominators from going to
zero. For example, it is not possible to give an unbiased estimate of
how well three guesses would do if the data only show two objects.
Note that while rows with highly discriminating words should in
general have high M-order repeat rates, it is exactly such rows that
will be less likely to satisfy this requirement, especially at lower
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marginal frequencies. Thus, ignoring rows where this statistic cannot
be calculated biases the average value of this statistic downward.
Though it is not clear how to get an upper estimate, there is another
way to get a lower bound, by recognizing that performance for M
guesses is at least as good as performance for M-1 guesses. Thus, a
lower bound on the average performance comes from using for each
row the calculable repeat rate of highest order not greater than M. See
Results Table 15.

Results Table 15

Ed5 Ed25 CmOb Swap Recp
recall probability =
(M=1) 41 .16 52 .62 13
(M=2) .66 .26 .65 .4 21
(M=3) 81 .36 .7 .80 27

4.6.4.3 Version: optimized. This version takes the optimal strategy
for multiple guesses. The user gives one word, and the system makes
guesses that the user means one of the M most likely things the word
has meant in the past, as deduced from the data in the user table.
That is, it returns the objects associated with the M highest cells in
the row corresponding to the word given. (A sequential version of the
model would give the user the guesses in decreasing observed fre-
quency, beginning with the maximum cell.)

Evaluation: by self-estimation and split halves. As in other cases
where evaluation of performance depends on the estimation of true
population ordered frequencies, we must resort to indirect methods to
give a range. We use split halves to give a lower bound and self-
estimate to give an upper bound. See Results Table 16.

Results Table 16
Ed5 Ed25 CmOb  Swap Recp

recall probability =

M=1) 49 .18 43 .35 13 (split half)
54 .26 .69 81 .25 (self-estimation)

(M=2) .70 .30 53 43 .20 (split half)
76 42 82 .92 37 (self-estimation)

(M =3) .83 40 .58 A7 .26 (split half)
53 .88 .96 46 (self-estimation)

.38 X
number returned = M (by design)

The recall rates, as estimated by the conservative split-half proce-
dure, are given in Fig. 3. The curves can be interpreted as operating
characteristics; the distance between the curves and the corresponding
dashed diagonal line reflects how much the implied system could be
expected to outperform a simple menu system based on the pure
random model given above, i.e., on a random choice of M objects. All

1790 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1983



0.9

O EDITING COMMANDS 5
e EDITING COMMANDS 25
08 O COMMON OBJECT
A SWAP AND SALE
A RECIPES

RECALL PROBABILITY

NUMBER OF SYSTEM GUESSES (M)

Fig. 3—Recall as a function of the number of system guesses for Model 6 (‘M referents
for every word’) are shown by the solid lines (split-half estimation). The dashed lines
represent expected chance performance if the system returns guesses at random.
(Different chance performance for the different data sets simply reflects the different
number of objects in each set.)

of our models do substantially better than chance. More importantly,
they do much better than the augmented distinct-name model (Model
4) presented in Fig. 2.

4.6.5 Discussion

There are really two important points to be made about these results.
The first is that these performances are variable and but moderately
high. Note that the very high value of the three-system-guess case in
Ed5 is rather vacuous, since there were only five objects to guess from.
In the common object case, however, the high values are quite mean-
ingful, since there were 50 objects.

The legitimate high values lead us to the second observation, that
substantial improvement has been gained over the traditional, one-
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distinct-name approach. The presumption is that this gain is due in
part to the increase in capturing all the user’s inputs. There are, after
all, two ways for the system to fail in retrieving the user’s target. One
is by making wrong guesses, the other is by being unable to make any
guesses at all. To give an idea of the size of this problem: for three of
our data sets, no system using only C words (e.g., one for each object)
could recognize even half the user’s words. Thus, recall rates can only
increase as the system is taught more words, and often this can be a
sizable improvement. The only conceivable decrements (except those
associated with time and space in index management) would be if the
additional words were less precise, thus decreasing precision for a
fixed recall rate, or decreasing recall for a fixed precision. But our
finding of a consistent, albeit small, negative correlation between a
word’s frequency and its selectivity suggests that the opposite is true.
As a greater number of lower-frequency words are included, precision
will go up.

Recall also increases dramatically if the choice of algorithms is
optimized, though it never exceeds the square root of the performance
obtained by “armchairing”, i.e., making pointers based on a single
observation. The cost is in the trouble it may take to collect data. In
some cases the variety of terms is so great that data collection must
continue for quite a time before asymptotic performance is approached.
Performance also increases as the system is allowed to make more
guesses; this involves a direct trade of recall probability for reduced
precision. In many circumstances, particularly in help facilities, this
presents little problem. The user need only be given the various options
and whatever additional information it takes to decide what is really
sought.

4.7 Other possible models and some limits

The models presented so far have covered a large share of the space
of simply constrained models where the user makes one guess, but
they do not exhaust the ways in which a system could use empirical
data on user descriptions to guess the user’s desired objects.

One might consider, for instance, models that take advantage of
redundancy in the tables. A good theory or description of what such
tables are like could be used to augment the data to make better
estimates of true population usage probabilities. For one example, if
we knew that some single shape of distribution characterized all
columns, we could use the data to estimate parameters of that distri-
bution instead of individual cell probabilities. This would reduce the
number of parameters that need to be estimated from the data, and
consequently improve stability and reliability of predictions.

A related, and perhaps more interesting, idea would be to look for
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latent structure in the similarity between objects, and between words,
and use this to improve predictions. For example, if we knew or could
infer from the data that two words were used almost identically, we
might pool the cell frequencies for the two words; or if we knew that
the objects and words related to each other by some more elaborate
structure (e.g., a hierarchical tree), we could base predictions on
calculated indirect reference paths.

While these ideas might be useful, the research presented in this
paper puts strict limits on the success of any such approaches. As
noted above in Models 5 and 6, the self-prediction evaluation procedure
(determining the best guesses from the data and then using the same
data to estimate success) and the “square root of repeat rate” evalua-
tion procedure yield upper bounds on expected performance. Indeed,
no analysis method of the kind we have just been discussing, no matter
how clever, could improve on this result. The reason is as follows.
Even using inherent structure to improve predictions could do no more
than increase the accuracy of estimation of the population values for
the input/output tables. Even with true population probabilities, how-
ever, the guessing decision rule would be the same; choose first the
most probable referent of each word, and so forth. The input/output
tables are inherently probabilistic, as a result of disagreement in word
usage, not just of the estimation uncertainties. For a given user
population, with a given degree of training, a certain amount of
disagreement in word usage will occur, Even with perfect knowledge
of the probabilities describing this usage, we could not predict individ-
ual referents perfectly. Now, the objective of having true population
probabilities as cell entries is mimicked by our upper bound estimating
procedure. It pretends that the values observed for each cell are exactly
the probabilities that would exist in further sampling from the popu-
lation. Thus, no method of “cooking” the data to reduce sampling
error could achieve a better result than is illustrated by our upper
bound values.

To improve performance beyond these limits, it would be necessary
to construct systems that use different input, e.g., multiple words or
interactive dialogues, or make the user learn to use more easily
interpretable language. The last of these is the current default ap-
proach—make the user learn everything—and it has its limits for
large systems or occasional users. Thus, we believe a more fruitful
direction to explore further is multiple-word inputs.

The simplest models of multiple-word query might assume only
content words (no syntax) and a statistical independence between
words. Independence would allow the performance of such a system
to be estimated from single-word data of the sort we have collected.
Multiple words could be used disjunctively. In this case the system
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would return any objects that matched any of the input words. This
would result in an increase in probability of recall. Alternately, the
words could be used conjunctively, so that the system would return
only objects matching all the key words. The result would be higher
precision. Mixtures of these two approaches (e.g., conjuncts of dis-
juncts) then clearly could be used to improve both precision and recall.

Of course, from our data we do not know how people can or do use
multiple words, even without considering syntax. The popular balances
of conjunction and disjunction are unknown, and spontaneous multiple
guesses are no doubt not independent. But what sort of nonindepend-
ence is common? For example, do multiple terms tend to be more
unrelated, or more redundant, than independence predicts? These
questions must be explored before multiple-word systems can be
theoretically evaluated, or optimized for the naive user.

The consideration of syntax leads to a whole new set of problems,
those often encountered in Artificial Intelligence work on natural
language understanding. We will not address them here.

4.8 Highlights

In the previous sections we used the tables of observed word usage
to explore various models of how systems could name, and thereby
give access to, their contents. We devised six general schemes for
assigning names to objects. To test the schemes, we approximated
user behavior by sampling appropriately from the tables.

Thus, for example, we simulated what word a designer might assign
to an object (pick from the table), what word a user might choose (pick
again from the table), and looked at how frequently the two words
were the same. The results were taken to indicate how well a set of
spontaneously generated single names for objects can be expected to
work for untrained users. This particular example was called the
“armchair model.” The table is, after all, only a compendium of many
people’s spontaneous armchair attempts to give the best possible
names for these objects. Thus, sampling from the table mimics design-
ers picking names from their armchairs.

We used this general technique to explore variants on our basic
model of interaction, in which we assume the designer builds in certain
connections between names and the system’s objects or services. These
names were in some cases purely random, and in other cases were a
simulation of a designer’s best armchair guess; in still other cases the
names were chosen more systematically, with a goal of optimality. In
all cases, we assume that the user must “guess” the right name because
we are concerned with untutored users who do not know the system
words. The user’s choice of words was always mimicked by sampling
from the tables.
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Of the models and variations, summarized in Appendices A and C,
perhaps the most important are:

(1b) “One name per object: weighted random”
(1c) “One name per object: optimized”
(6c) “M referents for every word: optimized.”

The first of these (1b) was the so-called “armchair” naming method
just described. Expected results from the armchair method are shown
in Fig. 4 model (1b). Note that despite the fact that the four domains
differ dramatically in content, data collection style, and subject pop-
ulation, the results are quite consistent. They are all low. Two people—
the designer and the user—will come up with the same name only
about 15 percent of the time.

These results indicate that the current practice is deficient; it
guarantees that it will be difficult for people to tell machines what
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Fig. 4—Summary of expected success for three of the most important models pre-
sented. (a) “Armchair” model (1b); (b) Best possible single-name model (1c); (c) Model
where the system recognizes all words and returns three guesses (6¢).

STATISTICAL SEMANTICS 1795



they want, unless they already know what to say. Note that designers
often have other, legitimate motives in assigning names—e.g., lack of
ambiguity, memorability, or cuteness. But such naming practices only
make the current problem worse; they lead to even less likely names.

The source of the problem is this. There are many names possible
for any object, many ways to say the same thing about it, and many
different things to say. Any one person thinks of only one or a few of
the possibilities. Thus, designers are likely to think of names that few
other people think of, not because they are perverse or stupid, but
because everyone thinks of names that few others think of. Moreover,
since any one person tends to think of only one or a few alternatives,
it is not surprising that people greatly overrate the obviousness and
adequacy of their own choices.

To improve performance of the “armchair” method we investigated
whether experts in one of the content areas could pick better words.
We had expert chefs choose key words for cooking recipes and found
essentially no improvement: experts do not seem to do noticeably
better picking terms from their armchairs than does anyone else
(Section 4.1.4.2).

The next model of major interest (1c) substituted objective data for
armchair suggestions. It used our data tables to identify the name that
was most commonly used for each object. Thus, for example, for the
operation we referred to as DELETE, the most commonly used term
was “omit”, with a frequency of 110, and that was the name used in
this model. This empirical approach, occasionally advocated by human
factors people, achieves the levels of expected success illustrated in
Fig. 4 model (1c).

As discussed in Section 4.1.4.3, for statistical reasons we can only
estimate certain upper and lower bounds on performance here. The
lower one indicates how well one could do with a limited amount of
empirical data from which to try to pick the best names. The upper
one liberally estimates how well one could do with an infinite amount
of data. The improvement over the armchair method is substantial,
typically almost doubling the hit rate. This makes the point that the
best name is a good bit better than the typical name. But it is also
clear that even the best one is not very good.

It is critical tc note that these numbers represent the best one could
possibly do by assigning a single name to each object. The problem is
not solved by finding the right name. Different people, contexts, and
motives give rise to so varied a list of names that no single name, no
matter how well chosen, can do very well. Figure 5 is a plot of how
many names are needed to account for a given percentage of the users’
attempts, here for the common object data. (Here again we have the
statistical estimation problem, so the boundary is double.) Note that
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even 15 words (word types or “aliases”) per object account for only 60
to 80 percent of the words people apply. That is, even with 15 names
stored per object, the computer will miss 20 to 40 percent of the time.
The lesson clearly is that systems must recognize many, many names.

After considering several other models, we turned the problem
around a bit. Instead of starting with system objects and looking for
names, the new strategy was to begin with user’s words and look for
interpretations—that is, try to recognize every possible word that the
users generate, and use empirical data to determine what they mean
by that word.

We inject a cautionary note here: when word meanings are to be
surmised from word usage data, there is always a risk that the same
word may have been used in reference to several objects in the system.
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In such a case, the system would not have a unique guess. (This was
actually an implicit problem discussed for several of the earlier
models.) In our simulations, we limited the system to returning just
its single best (Model 5, Section 4.5) or best three (Model 6, Section
4.6) guesses as to what was wanted, given the word the user said. For
discussion here we will mention only this last model (6¢). The results
in Fig. 4 show what can be achieved if all words are saved by the
system, and it uses behavioral data to make the three best guesses as
to what was meant. (Here too we can only present estimates of upper
and lower bounds on performance.)

These results are encouraging. The big improvement is due primarily
to the fact that the earlier methods, like most in current use, failed to
recognize all the rare words. The unfortunate truth is that the majority
of words used are “rare” words, and so it is a mistake not to reckon
with them. Indeed, it turns out (see Section 4.3.4.3) that less common
words tend to be more precise, more discriminating, and so are partic-
ularly valuable for the computer to know.

While we studied quite a wide variety of intermediate models, this
last one really is the best. At the risk of belaboring the point, here it
is summarized again. It requires: (1) the computer to keep all words
that people use; (2) that data be collected on what users use each word
to refer to; (3) that when someone uses a word, the computer goes to
the data table and looks up the top few candidates to determine what
its interpretation should be (what the word is most probably referring
to); and (4) the computer presents the candidates to the user as a
choice, since the interpretations may be in error. This model amounts,
really, to a rich, empirically (i.e., behaviorally) defined cross index.
Without it, performance is near abysmal, with it, potentially quite
good.

Further improvements are shown to require the input of multiple
words. This would entail means for representing and evaluating rela-
tions as well as reference, and matters of logic, syntax expression, and
language comprehension. Detailed analyses of the complicated usabil-
ity issues that would be involved are beyond the scope of this paper,
but a number of related issues were addressed in Section 4.7.

V. DISCUSSION

We have seen that the object referent of a word cannot be predicted
with great accuracy from knowledge of its past referential use. The
use of statistical data on reference behavior can improve the choice of
a single name by roughly a factor of two over the common procedure,
in which only a single designer-chosen word is stored as an entry point
for each object. Even the best system input/output function of the
general kind we have described, while adding another factor of two or
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so to performance, can be expected to perform at well below perfect
reliability. In this section, we touch on some of the reasons for this
limitation and suggest some avenues for further exploration of better
means for understanding object reference.

Obviously, one of the main difficulties in predicting an intended
object from a provided word is synonymy. There are many different
words that can refer to the same object. Even though the receiver may
know several of them, the communicant (or user) may choose another.
It is the long-tailed distribution of the word usage for objects, as
illustrated in Fig. 1, that is the villain. Unfortunately, however, this is
only a part of the problem. Indeed, our upper bound estimates assume
that this problem does not exist, that we know every word that will be
used, and with what probability each will be applied to every object.
Still our best upper bound predictions are quite error prone. Another
part of the problem is polysemy; each word means many different
things and can refer to many different objects. In our observed data,
words that were frequently used tended to be applied to several objects.
Clearly, if a word is used for two or more objects, there is no way that
we can guess from the use of that word which unique object is its
referent. The more similar the objects in the domain, the more likely
it is that a single word will include more than one in its scope (Section
4.5.4.2). In general, then, one might expect that the more similar the
objects in a set seem to people, the more difficulty they will have in
describing them uniquely and the more difficulty a receiver of their
descriptions would have knowing to what they refer.

How might one interpret descriptions of objects more accurately?
Observe that in the common object experiment, human subjects were
able to make a single guess as to the intended object with over 80
percent success. This is well above any of our performance estimates
for systems based on the statistical information in single-word input/
output tables. How do people do this? What other sources of infor-
mation, either in the input description or in the receiver’s mind, are
brought to bear? What is needed to build a system that would approach
human capacities?

One possibility is that the limits we observed may be due to utili-
zation of only a single word or phrase from the input. Perhaps if
multiple words, or the combined meaning implied by conjunctions of
several words and their syntactic order, were utilized, much better
reference could be achieved. The conjunctive use of words primarily
serves to more narrowly specify the object of discourse. This presum-
ably increases the precision of reference and would reduce the chance
that we would guess an incorrect object from a provided description.
But, under models that assume the comprehender can return several
guesses as to the likely object, the recall provided by a full description
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would not necessarily be much greater than that provided by the
unrestricted meaning of its most important word. However, if users
can provide many independent words, each an essentially new attempt,
the recall rate could be raised substantially, as Model 2 suggests. Thus,
allowing longer, more complex specifications and learning how to
understand them is one promising direction to be investigated.

Recall also that using experts to generate armchair key words did
not work well, at least in the recipe data where we tested it. We also
note that in informal demonstrations, programmer subjects do not
fare well in providing a name for a program to be matched by other
programmers. Similarly, there have been a number of studies of
indexer reliability in bibliographic indexing.’*® These come from
quite favorable circumstances, in which the index terms are chosen
from restricted vocabularies and the indexers are highly trained. The
chances of one indexer choosing the same categories as another, even
under these circumstances, are usually disappointingly low. Thus, the
chance that professional indexers will agree with the first word entered
by an untrained user does not seem to offer a promising route.

A possibility for improvement that seems worthy of further inves-
tigation is the study of the structure of the conceptions or mental
representations of the objects in a domain to be referenced. The
polysemy aspect of the problem arises because two or more objects are
not linguistically separable. If we could learn how to group such objects
into “super-objects,” then we could potentially improve at least our
ability to predict which of these “super-objects” is being sought.
Similarly, informal impressions from the swap-and-sale superordinate
data suggest that certain levels of superordination give rise to more
consistent naming than others. If means can be found to reveal and
represent strong hierarchical structure in the concepts being named,
then possibly one can choose the levels or nodes in such structure that
are best represented as the objects to be found in a data set. These
“super-objects” also might be more amenable to automatic reference
by the means we have modeled.

We have generated statistics relevant to this hypothesis, in the
double treatment given to the editing terms. The five objects in the
Ed5 data are in fact “super-objects”, made by condensing the 25 editing
operation-text unit pairs into categories involving just the editing
operation. A look back at the numbers involved shows a uniform
superiority in the retrieval and discrimination of “super-objects” over
that of the individual constituent objects. In part this is just because
there are fewer objects to be dealt with, but our hypothesis is that
performance is further enhanced by the lower overall similarity at the
super-object level. Suppose a system were built to capitalize on this
kind of situation, that is by first empirically discovering the lowest
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level of subdivision of a given domain at which natural descriptive
language is adequate. Freely chosen key-word entries might well be
effective for specifying objects at this level. But the whole problem of
retrieval would not yet be solved. Users who wanted to access partic-
ular subordinates of these super-objects would have to be provided
with some further mechanism. A hybrid approach in which early stages
of specification are done by freely chosen keys and later stages by
menu selection seems a promising approach.

An especially important matter, which we have so far neglected, is
the prior probabilities of a user’s intending various objects. Our data
have been aimed at estimation of the input/output pointer functions
of words to objects, and were collected with equal numbers of occasions
for nomination of key words for each object. In real life, and in a real
system, people seek different objects with different frequencies, per-
haps with steep distribution functions resembling Zipf’s law.® Our
ability to predict what object a person has in mind by a word could be
greatly improved by taking into account its prior, unconditional like-
lihood of being sought. Again, our informal impressions from the kinds
of descriptions provided in the common object data is that human
describers and recipients take great advantage of such frequency
information. For example, in specifying the Empire State Building as
a tall building in midtown Manhattan, the describer probably assumes
that the receiver would choose, from the large set of possible objects,
the one that is most likely to be the object of specification.

It will also require further work to see how such information could
be incorporated in an automated access system. A start would be to
consider an adaptive system that keeps track of the frequency with
which objects are sought (as well as the frequency with which the
particular input is satisfied by a particular output). Then object prior-
probability data could be combined with input/output conditional
probability data, like that we have investigated, by the use of Bayes’
rule.’ This would almost certainly yield much better predictions than
our models estimate, or any that are currently achievable in available
systems. Such a scheme might also take advantage of individual
differences in cases where the same people will use the system repeat-
edly.

There are still other plausible means for circumventing the limita-
tions our models suggest. There are other kinds of data access devices,
such as menu-driven systems, query languages, or natural language
understanding systems. These approaches all have something to offer,
and probably can overcome some of the deficiencies of the pure key-
word entry method. But each also has problems of its own. For
example, menus cannot list a very large number of alternatives at
once, so the desirable feature of turning the recall or production
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problem into comprehension and choice is limited. (Note also that in
menus the user must understand the system’s terse descriptions of
objects, much as the system has to understand those of the user of key
words.) When there are many objects, a menu system must use a
successive search method that relies on some kind of hierarchical tree
or other presentation of the relations among the objects. How to do
this in a way that leads to correct user choices at each level, to good
overall performance, and to acceptable convenience are unsolved is-
sues. Query languages generally require users to input well-formed
relational algebra or Boolean expressions that are unlike anything
seen in the data specifications provided in our password study. Such
expressions require the kind of logical thought that is known to be
extremely difficult for ordinary people.” Natural language understand-
ing systems, as so far implemented at least, have yet to deal adequately
with the lexical reference problem. They have usually glossed over the
issue by restricting themselves to very limited domains and limited
lexical input, for which they can store a reasonably adequate “hand-
tailored” synonym list. We suspect that when such systems are devel-
oped for use in real data applications they will have to solve the
synonymy and polysemy problems in some of the same ways (e.g., by
the use of statistical input/output tables and prior object probabilities
that we have been suggesting here. It is probably a mistake to take a
too naively optimistic view of the value of “natural language” input to
a computer device. For example, although our human subjects were
much better than our model automatic systems at predicting the
referent of a description, it is not obvious that their success was based
on being able to “understand” the natural language of the input, at
least if this is taken to mean successful syntactic parsing, etc. We
believe that it is also possible that human success is based largely on
statistical knowledge of the likelihood of objects and the likely refer-
ents of words, and that this is a matter that could be incorporated into
a system without it doing highly intelligent natural language under-
standing.

VI. SUMMARY

The data we have collected on people describing objects have allowed
us to estimate the likely performance of several mechanisms for
understanding the references of words to information objects. We have
found that input/output functions based on normative naming behav-
ior of users will work much better than systems based on a single
name provided by designers. We have also shown that a system that
made several best guesses, and/or allowed the user to make several
tries, and then returned a menu-like set of guesses to be chosen among,
would substantially improve performance beyond current popular
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methods. The best approach was to focus on what the user brings to
the interaction, namely a great variety of words, and for each word
have the system make one or more best guesses as to what the user
meant.

But such a system for understanding references will still not perform
nearly as well as a human receiver would. Thus, this model of the
process of reference certainly does not fully capture what goes on in
people’s minds. Thus, we are clearly not yet ready to hazard a theory
of how humans succeed as well as they do in this task, or to propose
an automated method that would do as well or better. However, we
believe that the evidence and analyses reviewed here lead to some
promising suggestions for further exploration in both regards.
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APPENDIX A
Formal Model Structures

In Table III below we present the formal structures for each of the
six models studied. The constraints critical to the definition of each
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Table 1ll—Summary of constraints defining each model
Objects
Words Used Rgfegen ced

Total
Per Word-Ob-
Model Description Per Object Total Word Total ject Pairs
1 One name per object 1 =R =C C [
2 M names per object M =R =C C MxC
3 Distinct name for each 1 C { 1 C C
object or 0
4 Distinct names, aug- l<n<M C ‘ M C MxC
mented with M—1 extra or0
referents
5 Recognize one referent for =C R 1 Cc R
every word
6 M referents for every =C R M C MXR
word

Defining constraints for the models are in boldface. C = number of columns (objects),
R = number of rows (words).

model are marked with asterisks. (Note that these constraints are to
be met whenever possible, and for simplicity, the numbers below
assume that this is always possible.)

APPENDIX B

Evaluating the Pure Random Versions of the Models

The success of any pure random model considered in this paper is
given simply by the ratio of ¢, the number of cells included in the
system mapping, to RC, the total number of cells in the matrix. To
see this simply note that any structural constraints we might impose
are only defined up to a permutation of the rows and columns. Thus,
consider any table and its group, i.e., all its variants obtained by row
and column permutations. The table that is the cell-wise total of all
these tables must, for reasons of symmetry, be everywhere the same,
and its grand total must be ¢ times the number of tables in the group.
The success of any individual table is given by the dot product of the
user and system matrices (treating the matrices as vectors, i.e., sum
the products of corresponding cells). The total success for the group
is the sum of these dot products for the members of the group. But
the sum of the dot product of one vector with several others is the dot
product of that vector with the sum of the others, so the total success
for the group is just the dot product of the user matrix and the total
matrix. But since the total matrix is uniform, and we divide by the
size of the group, we conclude that the average matrix then is just
t/rc times the sum of user matrix. If the user matrix is in relative
frequencies, the success is a probability.
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APPENDIX C
Summary of Recall Probabilities

Table IV—Summary of recall probabilities

Recall Probabilities
Eds Ed25 CmOb Swap Recp
(n= (n= (n= (n= (n=
Model Description Version M 5) 25) 50) 64) 188)
1 Onenameperob- WGT 1 074  .106 117 d42  182¢
ject OPT 1 .151 194 .257 .258 312*

271 322 .329 353 419"
163 221 .279 .337 .362¢

2  Several names per WGT 1 .074 .106 117 142 182"
object 2 144 .205 .210 .253 332"

3 211 .295 .284 .337 445"

OPT 1 .151 .194 257 .258 312

.163 221 279 .337 .362¢

2  .263 319 .358 .358 .490*

.281 .369 .406 .496 564

3 .365 424 420 .452 .578*

.381 .492 478 .695 .670%

3 Distinct name for WGT 1 .073 076 .105 124 .086*
each object “OPT” 1 .140 .109 226 194 .105*

4 Distinct names, WGT 1 .067 .076 .109 127 .084*
augmented with 2 125 145 .151 172 .149*

M extra refer- 3 175 212 .181 .196 .200*

ents “OPT" 1 .140 .109 221 .208 .105*

2 214 204 277 .266 .170*

3 .266 .287 306 .296 .220*

5  Recognizeonere- WGT 1 413  .153 516 617  .128
ferent forevery OPT 1 489 .176 434 351 .129*

word .620 .353 647 715 276"
541 .258 .686 813 247

6 M referents for WGT 1 .413 153 518 617 128t
every word 2 656 264 646 743 207"

3 811 .368 713 795 .266"

OPT 1 489 .176 434 351 .129*

541 .258 .686 813 24T

2 .699 .302 532 427 .203*

761 416 819 919 373%

3 .830 405 b7 4656 .259*

884 531 881 956  .455%

* Split halves
*One of the several repeat rate related statistics
*Self-prediction
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