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Batch Delays Versus Customer Delays
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For a large class of contention schemes with messages transmitted by
subdividing them into packets, we show that the delay distribution of a message
is the same as that for an individual packet. We conclude this from analyzing
queueing systems with batch arrivals, where batch sizes have a’ geometric
distribution and the queue discipline is indifferent to batch sizes and service
times. There we prove that the customer (packet) delay distribution is the
same as the batch (message) delay distribution, where delay is defined to be
the delay of the last served customer in the batch. The proof is hased on the
discrete-time analog of the Poisson Arrivals See Time Averages (PASTA)
theorem. We conclude that, in many cases, we can obtain message delays by
calculating or measuring the packet delays, which is usually an easier task.

I. INTRODUCTION

Consider a queueing system with batch arrivals. We define the delay
of batch to be the maximal delay of the customers in the batch. For
example, consider the case where data messages arrive at a node of a
network and await transmission. Each message is subdivided into
packets that may be transmitted individually. Here the customers
correspond to the packets and the batch to a message, and it is natural
to say that the message is delayed as long as at least one of its packets
is delayed.

Next, assume that the number of customers in a batch has a
geometric distribution:

Pr(batch size = n) = p(1 — p)*", n=12 ...
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In our example, if the message lengths (in bits) are exponentially
distributed, and each message m is “chopped” into i(m) packets whose
lengths (in bits) are independent and identically distributed and
independent of the message length, then i(m) has a geometric distri-
bution. [Note that the i(m)th packet usually will not be full.]

We prove that for a wide class of such systems the batch delay in
equilibrium has the same distribution as the individual customer delay.
Here delay is the time from arrival to start of service. In Section II we
discuss the various queue disciplines for which this result holds. A
discete-time analog of the Poisson Arrivals See Time Averages
(PASTA) theorem is introduced in Section III. The main result is
stated and proved in Section IV. Section V contains some additional
comments, and conclusions are stated in Section VI.

1. QUEUE DISCIPLINES

The stated result does not hold for all queue disciplines. Consider
the case where customers are selected for service independent of their
service times. Then it is well known that the expected delay of a
customer is independent of the queue discipline." On the other hand,
the expected batch delay may depend on the discipline. For instance,
if one always chooses the next customer from a batch with the smallest
number of remaining customers, the expected batch delay will be
smaller than if the next batch is chosen randomly, or in a preassigned
order. This can be proved by arguments similar to those showing that
giving preferential treatment to customers with small service time
reduces the expected waiting time.? Thus, to prove equality of the
delay distributions, such disciplines must be excluded.

Next, we characterize disciplines for which the result holds:
Definition: A queueing discipline will be called impartial if it selects
customers independently of their services times, and selects batches
independently of their sizes.

The following are examples of impartial disciplines:

e First in, first out (FIFO) for batches and for customers within
batches.

e Last in, first out (LIFO) for batches and for customers within
batches.

o Random choice of a batch, and then a random choice of a customer
from that batch (but not a random choice among all waiting customers
because this will favor large batches).

e Random choice of a batch, and then serving all the customers of
that batch in FIFO, LIFO, or random order.

e Contention schemes: each batch chooses a candidate customer for
next service (independent of its service time) and the contention
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between the candidates is resolved independent of the sizes of their
respective parent batches.

The last family includes disciplines that are applicable to the case
of transmitting messages by subdividing them into packets. Here the
candidate packet for transmission in each message is the first packet
not yet transmitted. Examples of relevant contention-resolving meth-
ods are (1) the round robin (token) scheme, and (2) Carrier Sense
Multiple Access (CSMA) scheme.*?

1. DISCRETE-TIME ANALOG OF PASTA

The following result will be needed later. Let X,, n=1,2, --- be a
sequence of random variables, and let B be a set in the value space of
X. Let U, be the indicator function of the event X, € B, for all n. Let
A,,n=1,2 ... be asequence of 1i.d. Bernoulli random variables
defined on the same probability space as the X,’s.

i=1

n n n -1
Let Vn = n_l 2 br,', Yn = E U,‘A,‘, and Zn = Y,—, (2 An) .
i=1 i=1

Then the following hold:

Theorem 1: If for every n the set of random variables X,, X5, - - - , Xy, is
independent of the set A,, Ap+,, - - - then: V, — V w.p. 1 if and only if
Zn—Vwp.l,asn— oo,

Remark: This theorem is a discrete-time analog of the PASTA theo-
rem,® which is stated in terms of a continuous time stochastic process
X(t), and a Poisson process A(t). The assumption in the theorem is
called by Wolff ‘Lack of Anticipation Assumption’ (LAA). The name
PASTA comes from the special case where A(t) is an arrival process
to a queue, and X(t) is the number of customers in the system at time
t. In that case the theorem states that the long-term proportion of
time for which X(t) = m (arbitrary nonnegative integer) is equal to
the long-term proportion of arriving customers that find the system
in state m.

Proof: Wolff’s Lemma 1, Lemma 2, and Theorem 1° can be easily

stated and verified in the discrete-time case, and thus the conclusion
holds.

IV. THE RESULT AND ITS PROOF

Theorem 2: Given a queueing system with batch arrivals where:
1. The batch sizes are i.i.d. with a geometric distribution, and inde-
pendent of the arrival times process
2. The service times are independent of the arrival times and batch
sizes

QUEUEING DELAYS 2013



3. The queue discipline is impartial, then the customer delay distri-
bution is equal to the batch delay distribution.

Remark: We interpret the conclusion of the theorem in a time average
sense. Thus, for any x = 0 we compare the proportions of customers
and batches that are delayed x time units or less. We prove that if one
of these proportions has a long-term limit, so does the other, and they
are equal. In the common case, when the queueing system is ergodic,
the conclusion can be also interpreted in terms of delay distributions
of individual customers and batches.

Proof- Let Xi, X,, - - - be the sequence of delays of customers arranged
in the order in which they go into service. Let x = 0 be fixed, and let
B = [0, x]. Let A, = 1, if the nth customer in the above order is the
last to go to service in its batch, and A, = 0 otherwise. Next, observe
that the LAA assumption holds for this setup because for any n, X,
..., X, are determined by the arrival process, service times of the first
n — 1 served customers, and queue discipline, all of which are inde-
pendent of the batch size of the nth customer. (Note that if the
discipline is not blind to service time, the above service times could
depend on the batch sizes. Also note that the delays do depend in
general on the number of present batches, and thus A, and X,.; would
typically be dependent. For instance, if A, = 1, the probability that no
customer remains waiting, implying X+, = 0, increases.) The proof is
now completed by applying Theorem 1.

V. FURTHER COMMENTS

The assumptions of Theorem 2 are quite weak. The theorem is true
for a queue with many servers, even with different service rates, as
long as the assignment of customers to servers is again independent
of the present batch sizes.

We do not require that a service begins immediately when a server
becomes free, even if customers are waiting. There may be a “dead
period”, as is the case in some contention schemes. However, the
length of this dead period has to be independent of the present batch
sizes.

If we want to derive a similar theorem for time in system (rather
than delay), then it will not hold in general in the multiserver case.
For example, it will not be true for an infinite number of servers, and
nonconstant service time. (Ward Whitt” provided this example.)

Although the last customer to enter service in a given batch has the
same distribution of time in system as a typical customer, its time in
system may be different from the batch’s time in system. This is so
because, in the multiserver case, when that customer completes service,
other customers of its batch may still be in service. If we apply
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Theorem 2 to the setup where we order the customers by the time
they leave the system and let the X,’s be the corresponding times in
system, the application will fail because the LAA assumption will no
longer be valid.

VI. CONCLUSION

We have shown that for many queueing systems with batch arrivals
having geometrically distributed sizes, the individual customers expe-
rience the same delay distribution as the batches themselves. This
seems to affect the case of transmitting messages by packets, since in
many cases it is possible to obtain packet delays, while from a per-
formance point of view one is more interested in the message delays.
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