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This paper presents a queueing model to assess the performance of Fasnet,
a recently invented local-area network. Fasnet is intended for high-speed lines
capable of carrying a wide mix of traffic. We confine our attention to data
traffic only. An approximate formula for the expected delay of a packet is
obtained; the approximate formula compares favorably to simulations of
Fasnet.

I. INTRODUCTION

Fasnet is an implicit token-passing local-area network.! It is in-
tended for high-speed lines capable of carrying a wide mix of traffic
(data, voice, video, and facsimile). In this paper, we present a queueing
model to assess the performance of Fasnet with data traffic only. An
approximation for the expected delay of a packet is obtained; the
approximate solution compares favorably with measurements taken
from a simulation of Fasnet. Qur numerical results yield a mean delay
that is less than 1 ms for a 1-kb packet when the line speed is 100
Mb/s and the occupancy of the line is 0.9.

Section II consists of a brief description of Fasnet. Section III
describes our model and its approximate solution and Section IV
presents comparisons with simulations. The effects of bursty traffic
are given in Section V and our conclusions are stated in Section VI.

Il. A BRIEF DESCRIPTION OF FASNET

We will now give a description of Fasnet that will enable the reader
to appreciate the model in Section III. A complete description is given
in Ref. 1.
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Fig. 1—Physical configuration of a Fasnet link.

The basic link as shown in Fig. 1 consists of two lines. One line
carries traffic in one direction and the other line carries traffic in the
reverse direction. For line A (which carries traffic from station 1
towards station N), station 1 is called the head station and station
N + 1is called the end station. For line B, the roles are reversed. Each
station makes two connections to each line. A read tap precedes a
passive directional coupler used for writing. The signal read from the
read tap will be unaffected by the signal being written simultaneously
on the line via the directional coupler. Except for specific fields of the
header, the protocol ensures that only one station at a time writes on
the line. Thus, once a message is written on a line, it is not removed
or changed by any station.

The access control is similar for lines A and B. For line A, the head
station (station 1) will initiate a cycle, which operates in the following
way. One time each cycle, each station with packets destined toward
the end station is allowed to access the line for a single time interval,
during which at most p... packets can be sent. A station knows when
to place its packets on the line by reading a particular bit (called the
busy bit) in the access control field. This bit is added to the message
packet by the network layer of the protocol. Thus, in each cycle,
station 1 has the first opportunity to send packets, station 2 has the
second opportunity, and station N has the Nth and last* opportunity.
Each station has exactly one opportunity per cycle to send packets.
When station N + 1 receives a packet in which the busy bit indicates
that the packet has not been used, it sends a message to station 1
(using line B) to start a new cycle. There may be synchronization
delays at each end of the transmission of this message. The operation
on line B is identical to the operation of line A, with station N + 1 as
the head station and all flows reversed accordingly.

* We assume that station N + 1 will not send messages to itself.
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ill. THE MODEL

Fasnet behaves as an implicit token-passing protocol because con-
trol passes from station to station as if a token were sent from station
1 to station 2, - - -, to station N + 1 to station 1, and so forth. This
suggests that a queueing model of queues served in cyclic order would
be appropriate. In this type of model, there is a single server that visits
N + 1 different queues in the cyclic order described above. For Fasnet,
the server is conceptual: it is the opportunity to place packets on the
line. The service time is the length of time to write a packet. The
queues correspond to the buffers at each station.

Several papers have been written about queues served in cyclic
order. In most of these papers, it is assumed that there is exhaustive
service at each station. This means that the server processes all
customers waiting at the station at the epoch that the server reaches
the station. The most general model of exhaustive service is in Eisen-
berg,” where each queue is of the M/G/1 type and the times to travel
between adjacent stations may depend on the pair of stations involved.
The solution of this model is in terms of transforms that are not given
in closed form; however, the equations can be solved numerically. A
special case of the model in Ref. 2 is treated in Konheim and Meister.?
Here, all service times are the constant A, and all travel times between
adjacent stations have the same distribution, which is concentrated
on A, 24, ---. Konheim and Meister are able to obtain closed-form
solutions for steady-state performance measures in this case. Their
results will be used in our analysis. The only paper where service is
not exhaustive is Ref. 4 by Eisenberg. That paper contains two M/M/1
type queues, and the server can process at most one customer during
a visit to a server. The solution to this model requires extensive
calculations, and the restriction to two stations is unrealistic for
Fasnet.

We have chosen to seek approximate solutions where each station
is of the M/D/1 type and service is either exhaustive or one-at-a-time
(as in Ref. 4). These correspond t0 Py = % and pp., = 1, respectively.
When the system is not heavily loaded, each station will have a small
load 80 pmax = % should not behave much differently from pp.. = 1.
This behavior is exhibited by our approximate solution and by simu-
lations.

We will analyze our models by embedding them in a server-vacation
model. In an M/G/1/FIFO queue, assume that at the end of each busy
period the server takes a vacation. The vacations are iid random
variables generically denoted by T. The expected delay of a customer,
in the steady state, is given by

o E(T?)
E(D*) = E(D) + 2E(T)’

(1)
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Here E(D) is the Pollaczek-Khintchine formula for the expected delay
in an M/G/1 queue: E(D) = ab,/2(1 — ab,), where a is the arrival rate
and b, and b. are the first and second moments of the service times.
A derivation of eq. (1) can be found in Levy and Yechiali.® Our first
step is to describe the vacations.

3.1 Assumptions and notation

The notation used in this paper and some self-explanatory symbols
are given below.

N = number of potential transmitting stations.

A: = packet arrival rate at station i.

A = constant service time/packet.

pi = MA = load due to station .

R = ¥¥ p; = load on the line.

A = ¥ A\ = total arrival rate.

T = one-way propagation delay.

v = 27 + A = average overhead/cycle.

Lines A and B shown in Fig. 1 are the same except for direction, so
it is sufficient to model only line A. Notice that station N + 1 does
not send messages on line A and that station 1 does not send messages
on line B. We assume that packets to be transmitted appear at station
i according to a homogeneous Poisson process with rate \;, i = 1, 2,
..., N. The arrivals at station i and j are independent when i # j.
We assume that all the packets contain the same number of bits. The
amount of time that a line spends taking a packet from a station is
the time required to read the bits of the packet. Therefore, the service
time of each packet is a constant, A, say, where A is the number of
bits/packet divided by the line speed in b/s. The time for a bit to
travel between adjacent read taps is called the walk time; the average
walk time between stations is denoted by w.

Let r be the time to send a bit from station 1 to station N + 1 (and
from N + 1 to 1). Then 27 is expended in each cycle to send a message
indicating that the busy bit must be reset. An average of one-half of a
packet processing time is lost in synchronization at each end station,
so v = 2r + A is the average overhead per cycle. Notice that 7 is the
time to walk from station 1 to station N + 1.

3.2 Analysis of the exhaustive service model

In this subsection, we assume that the packet arrival rates are the
same at each station. We let A denote the common arrival rate and p
denote the common load on a station. The load on the line is R = Np.
We also assume that stations 1, 2, - - - , N + 1 are evenly spaced along
the line.

Let T represent the amount of time between a departure from
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station 1 and the beginning of the next visit to station 1. Then T is
the length of a vacation from station 1. By symmetry, T is the length
of a vacation between successive visits to any station. Thus, when a
station gains access to the line, an average of AE(T) packets are
present. With exhaustive service, the expected time to clear a station
is AE(T')A/(1 — p). Since a vacation from station 1 consists of reading
packets at stations 2 through N and overhead,

B(T) = v + (N — 1) DA
1-p
SO
_y(1 —p)
BT) =2, R<1 (2)

Equation (2) is a special case of eq. (54) in Ref. 2.
Let X denote the number of packets at station 1 at the end of a
vacation. Then

E(X) = AE(T), (3a)
and
Var(X) = A*Var(T). (3b)
Theorem 4.7 in Ref. 3 asserts that
M1 = (N + 1)p + (2N — 1)p%]

Var(X) = 1= R (4)
From egs. (2), (3), and (4) we obtain
E(T?) - p(N = 1)A + v(1 — p)® (5)
E(T) (1 -p)1-R)
Equation (5) is exact when the walk times between any pair of stations
are concentrated on A, 24, ---. In Fasnet, we expect that the walk

times are much less than A because the packets travel between stations
at the speed of light and the read times are controlled by the speed of
the line. Thus, we should regard eq. (5) as an approximation.

From eqgs. (1) and (5),

o PA p(N — 1)A ¥(1 = p)
E(D) = 2(1 — p) + 21=-p)1—-R) 2(1-R)
RA (1 — p)

=R + 21 =Ry R<1. (6)

By symmetry, eq. (6) gives the expected delay of a packet at any
station. The expected number of packets in a buffer, E(Q), say, is
obtained from eq. (6) and Little’s theorem:
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Rp YA(1L — p)
= *) =
E@ =MD =50 _®m* 20 -R)
Consequently, the expected number of customers in buffers 1 through
Nis

(7

5 vA(1 — p)
NEQ =57 _"R® * 20 -R @

Equation (7) is compared to simulation experiments in Section IV.

An intuitive understanding of eq. (6) may be gained by considering
what happens for light loads. When p is small, the vacations are almost
of constant length because (mostly) no customers are served during a
vacation. Then E(T?) is about [E(T')]% Now merge all the customers
to obtain an M/D/1 queue with mean delay RA/[2(1 — R)]. Then eqgs.
(1) and (2) yield

o RA v(1 = p)
EDY =3a-m T2a-ry

which is eq. (6). It is surprising that this heuristic light traffic argument
produces the exact (modulo our other approximations) result for any
R<1.

3.3 Analysis of the one-at-a-time service model

In this subsection we will obtain an approximate solution to a model
where pumax = 1. The approximation is based on an idea used in
Lehoczky, Sha, and Jensen® for a similar model. We do not assume
that the arrival rates are the same at each station (as we did in Section
3.2).

A central notion in the approximation is the completion time of a
station. The completion time of a station is the duration of the interval
that starts when that station begins processing a packet, and ends at
the first epoch that another packet may begin (does begin, provided it
is present) its processing at the station. The purpose of the approxi-
mate solution is to estimate the mean and variance of the completion
time, use these moments in the Pollaczek-Khintchine formula, and
apply eq. (1) to an appropriate server-vacation model.

Let V; denote a generic completion time at station i, in the steady
state. Then
V;: = cycle overhead + A(1 + number of other stations sending a packet

in this cycle).

Let p; be the asymptotic proportion of time that packets are present
at station i. For T very large, the number of packets served at station
i by time T is
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T
E(V))
where o(T') is some function such that o(T)/T — 0 as T'— . The

arrival rate at station i is A;. Equating the arrival and departure rates
yields

+ o(T),

pi = NE(V)). 9)

Now we make our first approximation.

Approximation 1: In each cycle, the probability that station ¢ trans-
mits a packet is b; & L, E(V;).

The effect of approximation 1 is to use the long-run proportion p;
as a probability for each cycle. Thus, the expected number of other
stations sending a packet during a completion time of station i is

=i by, s0
E(V)) =A (1 + X b,-) + 7. (10)
j#i
Hence,
b & NE(V) = p; (1 +,-§.- b,-) +XNy, (=12 .-.,N. (11)
The solution of eq. (11) is

pi 1+ v/A =§
1+p,' l—a’ 1

i=1!2:"'lN: (12)

P =

1 + pi’
which can be verified by substitution into eq. (11). When p; = p and
v =0, eq. (12) becomes

bi = £ =
"T1-(N=-1)p N-1

for all i,

which is the approximation given in Lehoczky et al.®
Since b; must be no larger than one (because it is a probability), eq.
(12) constrains the feasible values of {p;}. When all the arrival rates
have the common value A, « = Np/(1 + p) = R/(1 + p), so
Ry/A
bh<le N> ——, 1
= - R (13)
Equation (13) shows that for a given total load, R, stability is
achieved only when the load is shared by a sufficiently large number
of stations. For Fasnet, v/A = 3 is a typical value. Then eq. (13)
asserts that for R = 0.9, N > 27 is required for stability; for R = 0.8,
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N > 12 is required for stability; and for R = 0.5, N = 8 is required for
stability.

Here is why N cannot be too small. When N is small, the overhead
per cycle () will be spread over a few customers, which has the effect
of decreasing the capacity of the line. To see this more precisely, let ¢
be the expected number of packets processed in a cycle. Then use eq.
(11) to obtain
C14+y/AY a1+ y/A)a

C=§b,‘— E

14
11+p; l1-—a ( )

l—a
When all the arrival rates have the common value A, eq. (14) yields

_RQ +v/4)
C_].+p—R' . (15)

where p = AA. From eq. (15) we compute the average amount of
overhead expended per packet per cycle* y/c:

y 1-R+R/N _ v C—R 1) (16)

R TN/

¢ RO++/8) T 1++/A

Egq. (16) shows that the average overhead per packet is a decreasing
function of N, so if N were small, the overhead per packet might cause
the line to be overloaded.

It is interesting to note that this consideration does not arise in
Section 3.2. When pmax < ®, from time to time a station will stop
transmitting packets because its quota for the cycle has been filled.
This is the effect that is shown in eq. (16). We conjecture that when
all other parameters are fixed, y/c is a decreasing function of pmax.

Now we turn to an approximation for the mean delay. This will be
done by proposing a suitable server-vacation model and applying eq.
(1). The service-time moments in the Pollaczek-Khintchine formula
correspond to completion-time moments here. When a packet arrives
at station i, and no other packets are waiting to be transmitted at
station j, that packet cannot be transmitted until station i gains access
to the line. The length of time that station i does not have access to
the line is the length of time to process the other stations in a cycle
plus the overhead time, which is the completion time less one service
time. Thus, T; = V; — A, so

E(T) = E(Vi)) — A, (17)

* The fact that v/c is the right quantity to compute may not be obvious. A rigorous
proof could use ergodic theory for regenerative processes (see, e.g., Section 6-4 of
Heyman and Sobel,” particularly Theorem 6-8).

-
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and
Var(T;) = Var(V;). (18)

From egs. (10), (12), and (17) we can obtain E(T;). From eqs. (1) and
(18) we see that only Var(V;) remains to be obtained. To get it, we
make our second approximation.

Approximation 2: In each cycle, the event that station i transmits a
packet is independent of the event that station j transmits a packet
for every j # i.

The effect of approximation 2 is that the variance of the number of
packets served at station i is b;(1 — b;) and the variance of the number
of packets served in a cycle is Y%, b;(1 — b;). This yields the approxi-
mation

Var(V.-) = A2 E b](]. - bj). (19)
J#i

Using egs. (10), (12), (17), (18), and (19) in eq. (1) produces our
approximation for the expected delay at stationi,i=1,2, ..., N. The
resulting formula does not appear to provide any insight and is omitted.
As a partial check on the efficacy of our approximation for the mean
delay, we consider the limiting case of no overhead and identical
stations. In this situation, the total content of the output buffers at
stations 1, 2, - - - N fluctuates as the queue length in an M/D/1 queue
with arrival rate A and service time A. From the Pollaczek-Khintchine

formula, the expected queue length in the steady state, E(Q,), say, is

RZ

E(Qo) = 201-R)

R < 1.

Our approximations produce (after some algebra)

R? pl[R+ (1—R)R—-p)]+1—-R
2(1 — R+ p) 1-R

E(Q) = » R<L

Now let N — o and p | 0 with R = Np held fixed. This represents a
system with many lightly loaded stations. Then

E(Q) — 5 as p| 0.

R
(1-R)
In this limiting case, E(Q,) overestimates E(@y) by R/2 and, the
relative error is (1 — R)/R. Thus, the absolute error increases with R
and is less than one-half, and the relative error decreases as the
absolute error increases.
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IV. COMPARISONS WITH SIMULATIONS

A computer simulation of Fasnet has been constructed. There are
N = 50 sending stations equally spaced along the line. The propagation
time (r) equals the packet processing time at each station (A).
We have chosen to consider 1000-bit packets and a line speed of 100
Mb/s, which is representative of the operating region. Then A = 10
us, and A = (R/50) X 10° packets/s.

The measure of performance is the average queue length at the
stations. Specifically, the simulation estimates the steady-state distri-
bution of the queue length at station i and then computes the mean,
E(Q;), say. The average queue length is ¥’ E(Q:)/50 & E(Q). The
corresponding quantity from our formulas is called E(Q). From the
queueing formula E(Q) = AE(D)) we use E(Q) to estimate the average
delay of a packet, E(D).

Table I shows the results.

The analytic approximation adequately replicates the simulation
results. Table I and Fig. 2 demonstrate that for R as large as 0.8,
Pmax = 1 and ppax =  produce nearly the same average queue size.
This means that the efficiency (in terms of not incurring too much
overhead) of pmax = ®© and the protection against a few stations
dominating the line of pma = 1 can be simultaneously obtained by
setting 1 < Ppmax < . Table I shows that pmex = 3 is almost as efficient
88 Prmax = .

The approximation for the mean delay of a packet is less than 1/2
ms even when R = 0.9 and ppax = 1.

V. THE EFFECTS OF BURSTY TRAFFIC

In this section we return to the exhaustive service model and replace
the assumption that packets arrive according to a Poisson process
with the assumption that packets arrive according to a compound
Poisson process. Fuchs and Jackson give statistical analyses of arrival
times for terminal-to-computer calls.® Two of their conclusions are as
follows:

1. The exponential distribution is a reasonably good approximation
of the times between bursts.

Table I—Comparison of simulations and analytic approximations

Proax E(Q) Simulation E(Q) Analysis E(D)
1 0.216 0.209 130 ps
R=08113 0.184 — —
o 0.184 0.150 94 us
1 0.684 0.782 430 us
R=091.3 0.440 -—
= 0.398 0.346 192 us
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Fig. 2—Expected delay vs R for 1-kb packets, 50 stations, and 100-Mb/s line speed.

2. The size of a burst (measured in various ways) has a geometric
distribution.
Recent analyses by Morgan of host-to-host file traffic indicate that
the assumption of Poisson arrivals may not be justified.?

The purpose of this section is to find out how sensitive the average
delay is to the assumption of Poisson arrivals. We will see that in the
exhaustive service model, the average delay can be significantly greater
with bursty arrivals than with Poisson arrivals with the same rate.

Specifically, we assume that the bursts arrive according to a
Poisson process with rate A, and the burst sizes B;, B,, ... are iid
with

P{B, =i} = (1 — )£, i=12 ...,

This arrival process can be interpreted as one where messages arrive
according to a Poisson process with rate A,, and the jth message
consists of a random number of packets with a geometric distribution.
One reason for choosing a geometric distribution is that it equates the
average delay of a packet and the average delay of a message (see
Halfin'%). (The delay of a message is the delay of its last packet.)
Another reason is that it uses only one parameter, and so we can
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specify the mean (Mt, say) and variance (Vt, say) of the number of
arrivals in an interval of length ¢ and then solve for A, and £. Doing
so yields

2M? V-M
M=ury @ Sy
Letting z = V/M = 1 yields
2M z—1

(20)

WE1ye W oo
Equation (20) relates the parameters we might obtain from meas-
urements, M and z, to the parameters of the model, A, and £.

We will now obtain the delay of an arbitrary packet in the steady
state. The analysis is similar to the analysis in subsection 3.2; as
before we assume that the stations have statistically identical arrival
processes.

The analog of the Pollaczek-Khintchine formula for compound
Poisson arrivals is given in Burke.! In our notation, the formula is

_ MM +E) | EA
E(D) =0+ T p (21)

where p = MA/(1 — £) = MA.
To obtain the mean and variance of the vacation times, let X
denote the number of packets at station 1 at the end of a vacation.

From theorem 4.7 in Ref. 3, for R <1

_yM(Q - p)
EX) = 57" (222)
and
XV
Var(X) = (1——-?)2 [1 - (N + 1)p + (2N - 1)p2]. (22b)

Since X is the number of packets that arrive in an interval of length
T,

E(X) = ME(T), (23a)
and
Var(X) = E[Var(X| T)] + Var[E(X| T)]
= E[VT] + Var[MT]
= VE(T) + M*Var(T). (23b)
From egs. (22) and (23) we obtain
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E(T?) _ Var(X) _ _‘I{F
E(T) MEX) M?

_(N=DVA + (1 — )’

+ E(T)

d— (- R) @)
Substituting egs. (21) and (24) into eq. (1) yields
E(D*) = MAML+E) (A (N—DVA*+ (1 = p)’
2(1 - p) 1-¢ 2(1 — p)(1 — R)
Using eq. (20) yields
E(D*) = ; RAz vyl —p)  (—-1)A  phzz-—1) (25)

1-R) 20 -R) 2 20— +2)

To compare eqs. (6) and (25), let a subscript z denote batch arrivals
with variance to mean ratio z. Then
N . _A(z—l)_ pAz(z — 1)
E(Dz) - B(DY) 20— R) 2(1-p)1+2)
When N is large, so that p is much smaller than R, the first term
dominates, especially in heavy traffic.

Table II shows the values of E(D}). The case E(Df) represents
Poisson arrivals. The data are the same as in Section IV: A=7=10
us, and N = 50.

Table II shows that bursty traffic can have much larger expected
delays than Poisson traffic with the same arrival rate. A crude ap-
proximation of the increase is E(D¥) = E(Df)vz — 1for 2 = z < 10.
Even when z = 10 and R = 0.9, the mean delay is less than 1 ms.

VI. CONCLUSIONS

We have three conclusions. The first is that the approximations
presented in Section III are sufficiently accurate for data transport
performance studies of Fasnet. The second is that p.., = 3 appears to
be a good choice if the offered traffic is reasonably smooth (Poisson)
and approximately equal to all stations. The third is that Fasnet
should be able to provide 1-ms average-delay performance for bursty
traffic.

Table I—E(D7) in us for several values of z
E(DY) E(D%) E(D¥) E(D}h
R=08 94 119 193 318
R=09 192 242 392 642
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