THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 62, No. 8, October 1983
Printed in U.S.A.

Upper Bounds on the Minimum Distance of
Trellis Codes

By A. R. CALDERBANK,* J. E. MAZO,* and H. M. SHAPIRO?
(Manuscript received March 16, 1983)

A trellis code is a “sliding window” method of encoding a binary data stream
into a sequence of real numbers that are input to a noisy transmission channel.
When a trellis code is used to encode data at the rate of k bits/channel symbol,
each channel input will depend not only on the most recent block of k data
bits to enter the encoder but will also depend on, say, the v bits preceding this
block. The » bits determine the state of the encoder and the most recent block
of k bits generates the channel symbol conditional on the encoder state. The
performance of trellis codes, like that of block codes, depends on a suitably
defined minimum-distance property of the code. In this paper we obtain upper
bounds on this minimum distance that are simple functions of k and ». These
results also provide a lower bound on the number of states required to achieve
a specific coding gain.

I. INTRODUCTION

In this paper we are concerned with transmission of digital data
using trellis codes to gain some noise immunity over standard uncoded
methods. We assume pulse amplitude modulation whereby the values
of the transmitted data are estimated from a sequence of samples r/
generated by a receiver. These output samples are often modeled as

r'=x/+n) (1)

where x’ is a real number sequence determined by the source sequence
of binary data and n’ is an independent zero-mean white Gaussian

* Bell Laboratories. ' Swarthmore College, Swarthmore, Pennsylvania.

©Copyright 1983, American Telephone & Telegraph Company. Photo reproduction for
noncommercial use is permitted without payment of royalty provided that each repro-
duction is done without alteration and that the Journal reference and copyright notice
are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free by computer-based and other informa-
tion-service systems without further permission. Permission to reproduce or republish
any other portion of this paper must be obtained from the Editor.

2617



noise sequence of variance o2 For uncoded transmission at rate k bits/
symbol, x/ takes on one of 2 fixed values. Error performance may be
improved using coding, but if we insist on transmitting at rate k bits/
symbol then we must increase the number of possible values taken by
the x/. We can choose either a block or tree (trellis) structure for the
code. In this paper we consider only trellis codes. The performance of
trellis codes, like that of block codes, depends on a suitably defined
minimum-distance property of the code. We obtain upper bounds on
this minimum distance, dy;,. The analogous problem for block codes
is well studied, but little work has been done on distance properties of
trellis codes.?

We assume the following model for encoding the binary data (i.e.,
choosing the x/) prior to transmission over the Gaussian channel.
Regard the incoming binary digits as partitioned into blocks of k&
consecutive bits. The real number x’ is to be a time-independent
function of the most recent k-bit block and also of the » bits preceding
this block. Thus if {a;} is the binary data sequence, we assume

x) = x(ajk, Qjg—15 * * * 5 Qjp—(k—1); A(i—Dks ** "> ﬂ(j-nk-(v—l))- (2)

This is an example of a k-bit/symbol trellis code. We regard the »
“old” bits as determining the state of the encoder (there are 2" possible
states) and the k “new” bits as generating the channel symbol (there
are 2* possible symbols) conditional on the encoder state. The trellis
structure is made evident by drawing an example. Fig. 1 shows the
casek=1,r=2

If, in this example, the encoder is in state (00) at time j, and the
next bit (block of k = 1 bits) to be transmitted is a 1, then we transmit
the symbol x(100) and move to state (10).

Other trellis codes exist. For example, we could define a code with
just three trellis states or the symbols x’ could also depend on the time
index j. However, we shall only consider trellis codes determined by
(2). The trellis structure of (2) is identical to that of linear algebraic

00
10 0 @.
>
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x(110)
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Fig. 1—Diagram of a trellis code.
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convolutional codes. We use the term sliding window trellis codes for
trellis codes determined by (2).

To simplify the discussion in the text we shall assume that k divides
v. The general case is treated in Appendix B.

The problem we consider involves certain distance properties of
trellis codes. T'o motivate it, consider the decoding problem. Optimum
decoding involves finding the most likely path through the trellis,
given the observed sequence (1).? Typically, the path chosen will not
coincide with the correct path for all time but will occasionally diverge
from it and remerge at a later time. This is called an error event, and
we generically denote it by the letter E. For example, with the trellis
in Fig. 1, x(000) may have been sent several times in succession,
resulting in the straight path shown in Fig. 2, but noise may have
caused the decoder to choose an alternate path. In Fig. 2 the decoder
chose the symbols x(100), x(010), x(001) instead of x(000), x(000),

x(000).

An error event E of length L lasts from time { to time i + L, the
decoder having decided upon the symbol sequence %*!, ..., &™*L
instead of the correct sequence x**?, . . ., x™*L, The (squared) Euclldean
distance d? (= d*(E)) between the two paths of E is given by

i+L
Y - (3)
j=itl

and is crucial to determining the probability P(E) of an error event
E. With the white noise assumption made in (1), P(F) is easy to
calculate and, when d? > o7 it is approximately given by

P(E) = exp (— %) (4)

Equation (4) leads us to expect that, for small noise, symbol error
probabilities will be determined by error events having the smallest
minimum distance between their two paths and it becomes of interest
to design codes that have good minimum-distance properties in this
sense. Such designs have recently been considered by Ungerboeck,
who obtained on the order of 3-dB performance improvements (factor

x(000) x(000) _ x(000) (000) 000!
00 O——O o o0 o, X000

x{100,
10 O o] (o] o] (o]
x(010) %(001)
01 O (o] o O o]
1 0 @] (o] o] o o]

Fig. 2—Example of an error event.
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of 2 in minimum distance) over the uncoded case for k = 1, 2, and four
or eight states in the trellis.*

Ungerboeck based his designs on a computer search of binary
convolutional codes with 2° states, rate k/(k + 1), and a particular
mapping of the output binary (k + 1) tuples to 2% equally spaced
channel symbols (+1, £3, etc.). His use of convolutional codes thus
conforms to the general scheme of (2), which implies the same trellis
structure as described herein. However, his a priori choice of only 2**!
equally spaced channel symbols is certainly restrictive in principle. In
this paper we consider the natural question of how large dm../P can
be made if these restrictions are removed. Here, dmin is the minimum
distance between all pairs of paths associated with error events in the
trellis, and P is the average transmitted power.

Section II gives a detailed description of the trellis structure and of
error events. If S is a finite set of error events, then

min (d%(E)} < I;I d*(E), )

since the minimum of a set of real numbers is bounded above by their
average. This observation is the basis of our first two bounds. The
first and simplest bound is

dZin v
- < 4 (1 + E)’ (6)
which is obtained in Section III. A more detailed analysis in Section
IV gives
dZ 2k+l v
P<2*—1(1+E)’ M

which is stronger than (6) provided k > 1. Let T be another finite set
of error events and let ry, r; = 0 be real numbers satisfying ry + r, =
1. Then,

min {d%(E)} < n( ) dz(E)) + rz( . 2 dz(E)), (8)
EeSuT ITI

[S] &

since the minimum of a set of real numbers is bounded above by any
weighted average of those numbers. In Section V, by choosing S, T,
r1, and r;, appropriately, we prove

dxzmn 22k+1
5= (5—_—1) (2 +2). ©)

This bound is stronger than (7) provided » > k(2" — 1). Combining (7)
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and (9) we have

d?min . 2k+l v 22k+l v
?Smm |:2k_1(1+k), 2u_1(2+—k)] (10)

Extensions of bounds (6), (7), and (9) to the case when k does not
divide » are given in Appendix B.

Il. A GROUP ACTION ON THE TRELLIS

In later sections we obtain upper bounds on dZ;,/P by considering
sets of error events that are fixed by a group of symmetries of the
trellis. In this section we describe the group.

We consider trellis codes with 2” states transmitting k bits/channel
symbol and for simplicity we assume that k divides ». States are
labelled with binary » tuples, and edges of the trellis are labelled with
binary v + k tuples. We identify the binary r tuple (b, - - -, b—;) with
the integer

b2’ + by2' + --- + b, 271,

The states are labelled with binary » tuples 00---0, 10-..0,
010...0,110...0, ---, 11 ... 1, in increasing order, from top to
bottom as in Fig. 1. The edges are labelled with binary » + k tuples
%=x(0-..-0), 2, =x(10---0), x, = x(010 --- 0), x3 = x(110 - - - 0),

-+, xg+h_y = x(11 - - . 1), also in increasing order, from top to bottom
as in Fig. 1. Set N = (k + v)/k. If we write an edge label as x(so, - - -,
sy-1), then it will be understood that each s; is a binary k tuple. A “+”
appearing in the argument of a label means bit-by-bit modulo 2
addition. A similar notation will be used for states.

We define a group of symmetries of the trellis. These symmetries
will map error events of length L to error events of length L. For each
binary v + k tuple ¢, we define a permutation g, of the edge labels x(s)
by the rule

8:(x(s)) = x(s + ¢t). (11)

For example, when k=1, » = 2, and ¢ = (010),

[ x(000) ] [ x(010)
x(lOO; x(110)
x(010 x(000)

_ | x(110) _ | =(100)
x(101) x(111)
x(011) x(001)

| x(111) | | x(101) |
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This may also be written

gowlx) = Tk, (13)
where T is the permutation matrix
[0 0 10 7
00 01
1000
0100
T= 0010/ 14)
0001
1000
L 010 0

If Gy, = { & |t is a binary » + k tuple}, then Gy, is an abelian group of
order 2¢**, and every element g; of Gy, satisfies gf = e, where e is the
group identity.
Lemma 1: Any pair of edge labels is interchanged by a unique group
element.
Proof: Edge labels x(s) and x(u) are interchanged only by ge+u. O
We call the time sections (0, 1), (1, 2), - -- the components of the
trellis. We shall now show how to choose binary » + k tuples ¢ = t°, t',
... 8o that if g, is applied to the edges in component i, then an error
event of length L is always mapped to another error event of length
L. It is, in general, necessary to choose a different g, for each compo-
nent since if we simply apply the same permutation g, to the edges in
every component, then an error event E need not be transformed to
another error event. Thus, if go;o is applied to each component of the
error event shown in Fig. 2, then we obtain the edges shown in Fig. 3.
The permutation go;o transforms the edge labelled x(uvw), joining state
vw and state uv, into the edge labelled x(u(1 + v)w), joining state
(1 + v)w and state u(1 + v). If t = t° = 010, then go0 permutes the
encoder states at time 0 by the rule

vw — (1 + v)w, (15)
and permutes the encoder states at time 1 by the rule
uv — u(l + v). (16)
® o x(000) o

x(011)
o]

Fig. 3—Permutation goyo applied to all edges of an error event.
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Similarly, the permutation g, permutes encoder states at time 1 and
encoder states at time 2. If we want to map error events to error
events, then the action of g» on encoder states at time 1 must be given
by (16). Choose t' = 001, t* = 100, t* = 010, t* = 001, - - . . The action
of g, g1, and g,2 on components 0, 1, and 2 is shown in Fig. 4. Thus
the sequence (g, g1, &2, ---) transforms the error event shown in
Fig. 2 to the error event shown in Fig. 5.

For general k and », let t = t° = (t,, - - -, tx—1) where N = (k + »)/k
and ty, - - -, ty-, are binary k tuples. Let t! = (ty_, to, -+, tn-2) be
the vector obtained from ¢° by cycling the blocks of & bits to the right
and moving the last block, ty_;, to the front. Repeat this operation i
times to obtain t' = (ty_i, - - - , tN-1, to, - - - » En—i-1). For i = N we view
i as an integer modulo N. Thus t¥ =¢t° =¢, t"*' = ¢!, ... . The action
of g, on encoder states at time i coincides with that of g, being given
by the rule

8> (tn-i+1, *++, tN-1, Lo, +++ tN—i1) + 8. (17

If GE, = {(&o, g, - -+)|t° is a binary k tuple}, then G%, is a group of
2"** symmetries of the trellis. The group G}, is abelian, and every
element has order 2. We denote (g, g, ---) by gh, since it is
determined by ¢°.

Lemma 2: If i = 0 and if x(s), x(t) are any pair of edge labels in
component i, then there is a unique element of G¥, that interchanges
x(s) and x(t).
Proof: This follows from Lemma 1, since the restriction of G, to the
edges in component i is just Gg,. O

A set S of error events is said to be fixed by G%, if for all g € Gf,
and all E € S we have g(E) € S.

t=0 =1 t=1 t=2 =2 =3
00 (o] o
10 xluvw) xlvww) O O xluww) 3
o C x(u(i‘\ﬂ)w] Jtiuv(‘“‘wno © XHH!JIVW);
1 o} o)

COMPONENT 0 COMPONENT 1 COMPONENT 2

Fig. 4—Action of g, g1, and gz

Fig. 5—The symmetry (g, g1, g, - - -) applied to an error event.
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Lemma 3: Let i = 0 and let S be a set of error events of the same length
that is fixed by GE,. If mi(x(a)) is the total number of times the edge
label x(a) occurs in component i of the error events of S, then

2|S|

2k+v

m;(x(a)) = for all » + k& tuples a.
Proof: Let s, t be binary v + k tuples. By Lemma 2 there is an element
of G, interchanging error events involving x(s) in component i with
error events involving x(t) in component i. Hence m;(x(s)) = m;(x(t)).
Since the total number of edges in component i is 2|S|, we have
mi(x(a)) = 2|S|/2** for all » + k tuples a.

An orbit S of the group G, is a set of error events satisfying

1. if E € S and g € G£, then g(E) € S, and

2. if E;, E; € S then there exists g € G, such that g(E;) = E;.
Fig. 6 shows an orbit of G¥2. Observe that m;(x(a)) = 1 for all i and
for all a.

Ill. THE FIRST BOUND
In this section we derive the upper bound

dZi. v
—P'—-“:..4(1+k)

This bound will be strengthened in later sections but it seems worth
presenting the simpler argument here.
Observe that the average transmitted signal power is simply the
average of the transmitted channel symbols, namely
1 orth_y

P=gm X a (18)

i=0

o o} [0}

[l F100 HE)
9001 G100-010 (90110101110} (E)

Fig. 6—An orbit of G¥2.
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(Recall that the channel symbol x(ap --- @.x) is also denoted x;
where i = ay + ;2! + .- + @,4+412""*"'.) The Euclidean distance
between the paths of the error event E shown in Fig. 2 is

d*(E) = (xo — 11)* + (%0 — x3)* + (%0 — x5)%,
which is a quadratic form in the variables x;. In general we define
&T = (xo, X1y, * "0y xz“‘"—l), (19)

where the superscript T denotes matrix transpose. Then the Euclidean
distance d*(E) between the paths of an error event E is given by

d*E) = z"A(E)zx, (20)

where A(E) is a symmetric, positive semi-definite matrix which we
call the distance matrix of E. The distance matrix A(E) has two
properties that we wish to note:
Property I. The ith diagonal element of A(E) counts the number
of times the symbol x; occurs in the error event.
Property II. The rows of A(E) sum to zero.
By (18) and (20),

2. T T
% = mbin ¥ AI(JE); = Otk mén LR :;f)x, (21)

where we minimize over all error events E.

Although we will make no use of the fact in this work, we note that
in (21) only a finite number of error events need be considered, for no
error event need be considered that has a repeated pair of states. Thus,
if the pair of states u and w occur at time { and also at a later time j,
all components between i and j may be eliminated and the remainder
of the error event after time j may be placed after time i. Since
components cannot make a negative contribution to d%(E) the new
error event has distance no greater than the original one. By (21) the
best normalized minimum distance that can be achieved for any choice
of channel symbols is

T
2"*% max min L&E)J‘E (22)
x E XX

Consider an error event E with initial state (time ¢ = 0) a =
(ay, ---, ay-1) and final state z = (2, ---, zy-1). If k tuples b, bf
are input at time 0, then at time 1 the two paths occupy states
(by, @1, - - -, an—2) and (b¥, a,, - - -, an—2). There must be at least N —
1 further inputs before the paths can remerge. To remerge at z, the k
tuples zy-1, 2N-2, - -+, 2, must be input in that order to both paths.
We denote this error event by E(a, z; b, bf). Thus, the minimal length
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of an error event is N = (k + v)/k. Fig. 2 shows the error event
E(00, 00; 0, 1) which has minimal length 3.
Given an arbitrary set S of error events, define

QS) = = T A(B). (23)
|S| res
Let SN be the set of all error events of length N. Note that S" is fixed
by the group G#,.
Theorem 1: If k divides v then the normalized minimum distance of any
sliding window trellis code with 2’ states and rate k bits/channel symbol
satisfies

dZin v
—E;'ﬁ 4 (1 + k).
Proof: By (22),
dmin _ gue . x"A(E)x
P =2 m;ax min s
x"A(E)x

< 2** max min =——
z EesN XX

2T\ X AE))x

2v+k EESN

= .
|S¥| oax 17z

The last inequality simply states that the minimum is not more than
the average. Setting Ay = Yzesv A(E), we have

2u+k IT Anx 2v+k

ISNI mf-x -!T;- = |SNI A1(}11'\’):
where \,(Ay) denotes the largest eigenvalue of Ax. By Property I, the
ith diagonal entry of Ay counts the total number of times the edge x;
appears in some component of the error events of length N. By Lemma
3 all diagonal entries are equal to 2N |S™|/2"**, Property II implies
that all row sums of Ay are zero. By the Gersgorin Circle Theorem®

N
M(Ax) < 2(diagonal entry) = 2 (%),

and so

din v
—]5— 4N =4 (1 +'k). O
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Remarks: In Section IV we derive a formula for @(S"), and, by
computing A;(Ay), we prove

d12'nin 2k+1
< (1 + 5).

P 2k—1 k

In Appendix B we prove that if v = (N — 1)k + [, where 0 < [ < k,

then
d?nin v
—P-' <4 (1 + I:E]),

where L y] denotes the integer part of y.

IV. A FORMULA FOR Q(S") AND A SHARPER BOUND

In this section we derive a formula for Q(S”), the matrix obtained
by averaging the distance matrices of all error events of minimal
length N = (k + v)/k. We require a matrix representation of the group
Gy,

If A is an m X n matrix and B is an m; X n, matrix, then the tensor
product A ® B (also called the Kronecker product) is the mm, X nn,
matrix

’- auB apB -..... a,,B ]
anB axB ...... a:,B
A®@B=
| amB @B --..-. QmnB

Tensor products are discussed in Ref. 5, where they are called direct
products. For appropriately sized matrices, A, B, C, and D, we have
(A®@B)(C® D) = (AC) ® (BD). If A\ is an eigenvalue of A with
associated eigenvector v, and g is an eigenvalue of B with associated
eigenvector w, then Ap is an eigenvalue of A ® B with eigenvector
v®w.

We denote the n X n identity matrix by I, and we abbreviate I, to

I. Set
01
A= [1 0]. (24)
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Consider the 2°t* X 2"** matrix
P=I®...0I ®A® I®...®1
— —

J terms 1 terms
=L®A® I (25)
where i + j + 1 = v + k. This is the matrix
0 Ix
Izl' 0 0
0 Izl'
Li 0O

0 ‘ 0 I
Izi 0
with the indicated block repeated 2’ times along the main diagonal.

Define u;, i =0, 1, - --, 2°** — 1, to be the binary » + k tuple with a 1
in position i and 0’s elsewhere. Let

X = (xU! "'|x2'+"'—l)T=(x(0 Lo 0)! "':x(l e 1))T-

The permutation g, maps x(s) to x(u; + s) and so it interchanges edges
with subscripts differing by 2. But this is precisely the effect of the
transformation x — P;x. If t is an arbitrary » + k tuple then the matrix
describing the permutation g, is obtained by multiplying the appropri-

ate matrices P;. For t = (to, t1, - - - » t,+r—1) We define
M@t) =M1 ® --- @ M, ® My, (26)
where
_JI if =0
M; = {A if =1 @7

Note that the subscript order in (26) is the reverse of the subscript
order in the vector t. We have now proved the following lemma.
Lemma 4: If t is a v + k tuple, then the permutation g,: x(s) — x(s + t)
is represented by x — M(t)x.

As an example, the permutation goyo given in (12) is represented by
the matrix P = I ® A ® ] given in (14). By Lemma 4 we may regard
G, as the following group of matrices:

Gy, = {Myp1 ® --- @ M, ® My|M; =T or A,
j=0,---,v+k—1} (28)
We shall prove that @(S™) is a particular linear combination of
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matrices M(t) in Gy,. To calculate A\;(Q(S")) we need to work with
eigenvectors and eigenvalues of the matrices M(t).

The matrices M(t) are symmetric and they all commute; hence, they
can be simultaneously diagonalized. Let H be the tensor product of

v + k copies of
111 1
V2|1 —-1f

Observe that H™' = H". Since (1, 1)” and (1, —1)7 are eigenvectors of
A, the columns of H are eigenvectors of M(t) for all » + k tuples ¢.
Thus, H"M(t)H is diagonal for every matrix M(t) in Gy,. If p=
(Po, *++ , Pv+r—1) is & binary » + k tuple, define

wp)=w-1® .- @ w; ® wy,
where

w = 4@ D7, if p=0
7@, -7, if p=1.
The vectors w(p) are the columns of H. Note that w(p) is formed by

reversing the vector p. We have A(1, 1)" = (1, 1) and A(1, -1)T =
=1, -1)T.Ift = (ty, - - - , t,en—1) then by (27) and (29)

(29)

v+k—1 v+k—1
M(t)w(p) ,?L M;w; =( [=I0 (-D‘f"f’) w(p)

= (=1)"‘w(p), (30)
where p-t is the dot product of the vectors p and t.
Lemma 5: Suppose R is a diagonable matrix that commutes with every
matrix M(t) in Gy,. Then R is a linear combination of the matrices
M(t) in Gg,.
Proof: If s, t are different » + k tuples, then by Lemma 1, g,(x,) #
8:(xo). The permutation matrices M(t) are therefore linearly independ-
ent because the 1’s in row 0 are in different positions. Thus we have
2"** linearly independent diagonal matrices H~'M(t)H. Since R com-
mutes with every matrix M(t), H'RH commutes with every matrix
H™'M(t)H, and therefore H'RH is diagonal. The matrices HM(¢)H
span the set of diagonal matrices so H'RH is a linear combination of
matrices H'M(t)H and the lemma follows. [J
Lemma 6: If S is a set of error events fixed by G, then (3 ges A(E)) is
a linear combination of the matrices M(t) in Gy,.
Proof: The distance matrix A(E) of an error event is the sum of
contributions from each component:

A(E) = ¥ A(E), (31)
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where we sum over the components ¢ of E. The restriction of G£, to
the edges in any component c is just the group Gu,. If edges x(s), x(8)
appear in component ¢ of error event E, then edges &(x(s)), g:(x(8))
appear in component ¢ of error event E’ = g:(E). We have

A(E’) = M(t)"ALE)M(¢). (32)

Since M(t) is a permutation matrix and M (¢)? = I, we have M(t)T =
M(t)™. Now g; merely permutes the error events in S, so that by (32),

Y A(E) = T Ada(E)) = ¥ M(t)"A(E)M(t)
EesS EeS

EEeS

= M(@)" (EES Ac(E)) M(t) (33)

for all matrices M(t) and for all components c. Summing (33) over all
components c finishes the proof. [J

Example: If S is the orbit of error events shown in Fig. 6 then

3 —1]-1 -1
-1 3 -1 -1
-1 3 -1 -1
5 A(E) -1|-1 3 -1
-2 T -1 3 —-1|-1
-1 -1 3 —1
-1 -1 3 -1
-1 -1]/-1 3

=3IRIQRI-(IRIRA+I®ARI+ARIRI). (34)

Consider SV, the set of all error events E(a, z; by, bf) of minimal
length N = (k + »)/k. Recall that a = (ay, - - - , an-1) is the initial state,
z= (2, -+, zy-1) is the final state, and b, b} are the first pair of

. ok
inputs. We have |S¥| = (2) 2.2,
Lemma 7:

(1) Lett = (to, ey tN_1) and let t' = (tl, ey, tN—l) where t;, i= 0, 1,

..., N—1,is abinary k tuple. If g = (&, 8, - -+ g~-) € GE,, then
gHE(a, z; by, b¥)) = E(@a + t', z + t', by + to, b + to).  (35)

(2) The group G, partitions the set S™ of error events of length N into

2*(2* — 1) orbits each of size 2"**7".

Proof: Part (1) follows from the definition of g: given in (17). To

verify part (2) we note that E(a, z; by, b}) is fixed only by the symmetry
g¥, where b = (b, + b}, 0, 0, ---, 0). Hence, each orbit consists of
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2% distinct error events. Since the total number of error events in
S¥is (2°.2(2F)(2*F — 1))/2, we see that there are 2'(2* — 1) orbits. O

The orbit containing the error event E(a, z; by, b}) is determined by
a + z and b, + b¥. Setting f = b, + bf, we denote this orbit by
S(a+ z; f). This orbit contains E(a, z; 0, f); note that f # 0 because
b, # bf. Recall that if f is a k tuple, then the v + & tuple (f0 ... 0)°
equals (yo, y1, -+, Yn-1) where y; = fand y; = 0 for j # i.
Lemma 8: Let SY be the set of all error events of length N and let
S(a + z; f) be the orbit of G¥, containing the error event E(a, z; 0, f).
Then

Ne1

(1) 2*Q(S(a + z; f)) = 2NI»+— 2 ¥ M((f0 --- 0))) (36)

=0

(2) 27%%(2* — 1)Q(SY) = 2(2% — 1)NLs

N-1 )
-2 % X M((fo---0)). (37

f#0 i=0

Proof: We calculate the contribution to Q(S(a + z; f)) made by pairs
of edges in component 0. Since the restriction of G}, to the edges in
any component is just the group G,,, this distance contribution is

i 5 180, - an) — glx(far -+ ay-)P
= % 2 [x(t + (0ay -+ an-1)) — x(t + (fay --- an-1))]?

= ok [2 2 x(t)? =2 ; x(t)x(t + (fO --. 0))]

1
= 2v+k

x"[2L — 2M(fO --- 0)]x.
In general, the distance contribution made by edges in component i is
# ; [ge(x(2n—i - - 2v-10a;1 - - - an-i-1))
— gi(x(zne: -+ 2noafar - -+ anoict))]?
= # zt‘, [x(t + (zy—i -+ 2y_10ay - -+ an—iy))

— x(t + (zy—i -+ Zv—1fay - -+ an—iz))?

1
2u+k X

T[2Lps — 2M((fO - - - 0))]x. (38)
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Summing (38) over all components i, we obtain (36). Since (36) is
independent of a + z, we obtain the formula for Q(S") by summing
(36) over all nonzero k tuples f. [

Remark: When k = 1, there is only one choice for f, namely f=1, and
so every form Q(S(a + z; f)) is equal to Q(S™). For k=1, » = 2, we
have

Q(S(00; 1)) = Q(S(10; 1)) = Q(S(01; 1)) = Q(S(1L; 1)) = Q(S)
=1/48; - (IQRI®A+I®ARI+ARIBI)]

[see the matrix given as (34)]. However, for £ > 1, the form
Q(S(a + z; f)) will change with f. Thus, for k = 2, v = 4, we have

QS(a+ 2z 11)) = 1/32[3ls — (1, @, ® (A ® A)
+L®ARA)RL+(A®A)RIL B L),
while
Q(S(a + 2 10)) = 1/32[3[ss — ([, @ I, ® (I ® A)
+L,®UIRARRL+(IBA)RIL®I]

Theorem 2: If k divides v, then the normalized minimum distance of
any sliding window trellis code with 2 states and rate k bits/channel

symbol satisfies
dlznin 2k+l v
—p“-zk_l(”z)-

Proof: From the proof of Theorem 1, we have

dain gy [QUSM)]
P = 1

1
=_1 M(Qw), (39)

where Qn = (2 — 1)2"*Q(S™). Let ¢ = (co, - - - , tn-1) be a binary » + &
tuple and let v be the number of nonzero k tuples c;. Then by (30), the
eigenvalue of @y associated with w(c) is

N-1
20 -1)N-2 Y ¥ (-1
f#0 i=0
N-1
=22*-1)N -2 ¥ ¥ (-1)%/, (40)

i=0 f»0
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where we sum over all nonzero k tuples f. Since

¥ (=15 = {2" -1 if =0

f#0 —1, if ci # 0,

eq. (40) becomes
2(2F — 1)N — 2[(2* — 1)(N — 7) — 7] = 2**'y. (41)

The largest eigenvalue of @y is obtained when v = N = (1 + (v/k)).
The theorem now follows from (39). O
Remarks: Observe that the largest eigenvalue of Q(SY) is associated
with w(c), where ¢, ¢;, - - -, cy—; are all nonzero. For example, with
k=1, the largest eigenvalue, 4(1 + (¥/k)) has multiplicity one and is
associated with the eigenvector (1, -1)7® (1, -1)7® ... ® (1, -1)T.
When k > 1, there will be several linearly independent eigenvectors
associated with A\;(Q(S")) because there are several choices for ¢ with
all ¢; # 0. Also, note that Theorem 2 gives the same bound as Theorem
1 when k = 1. For k = 2, the bound of Theorem 2 is an improvement.
In Appendix B we prove that if » = (N — 1)k + [ where 0 < [ < &,

then
dlzm.n 2k—[+1 v
P ST\t E|)

where L y] denotes the integer part of y.

V. A FINAL BOUND OBTAINED FROM A WEIGHTED AVERAGE

Let S¥*! be the set of all error events of length N + 1 = 2 + (v/k).
Let @(S™*') be the matrix obtained by averaging the distance matrices
of all error events of length N + 1. In this section we derive a formula
for @(S™*') and we prove

d?.,in‘: Q2k+1 2+v
P 2% _1 k

using a weighted average of Q(SV) and Q(S™*').

An error event E of length N + 1 is determined by the initial state
a=(a, -+, ay-1), the final state z = (z,, - - -, zy_,), the inputs b,, b*
at time 0, and the inputs b, b3 at time 1. Since the two paths diverge
at time 0, we must have b, # b}. To remerge at z the last N — 1 inputs
must be the & tuples zy_,, zy—s, - -+, z; in that order. After N inputs
the two paths occupy states z; --- 2y-1bs and 2z --- zy_b%. At this
stage the two paths must be disjoint so b, # b¥. We denote this error
event E by E(a, z; by, bf; by, b3) [equivalently E(a, z; bf, b;; b%, bs)].

The group G¥, maps error events of length N + 1 to error events of
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length N + 1. To be specific, let t = (to, - -+, tn—1) beav + k tuple and
Set t’ = (tls Tty tN—l), t” = (tl)’ R ] tN—ﬂ)- Ifg;k = (gt, 8y sy gt"‘lg
g:) then it follows from the definition of g: given in (7) that

g1 (E(a, z; by, bi; by, b?))
= E(a + t’, z+ t”; bl + to, bf + to; b2 + tN—l: b-: + tN—l)- (42)

This group action does not preserve a + z but it does preserve b; + bt
and b, + b}. Set g = b, + bf and f = b, + bi. We denote the orbit of
G}, containing the error event E(a’, 2"; 0, g 0, f) by S(a’, 2"; g, f) (in
the discussion above, a’ = (ay, - - - , GN-2, Gy—1 + by) and 2" = (2 + by,
22y "y ZN_l)). Note that f, g # 0.

If f, g are k tuples, then the » + k tuple (fg0 - -- 0)°= (fg0 ... 0)
and (fg0 - -- 0)' is obtained from (fg0 - -- 0)' by cycling the blocks
of k bits to the right and moving the last block to the front. Thus
(fg0 --- 0)¥2 = (0 --- 0fg). Define matrices M;(fg0 --- 0), i =
0, -+, Nin G,, as follows:

Mo(fg0 -+ 0) = M(g0 --- 0)
Mi(fg0 --- 0) = M((fg0 --- 0) i=1,..,N—1,
M(fg0 --- 0) = M(O --- Of). (43)

Example: For k = 1, v = 2, the orbit S(00, 00; 1, 1) is shown in Fig. 7.
The quadratic form Q(S(00, 00; 1, 1)) is given by

8 —2 —9| -2 -2
—2 8|-2 —9 _9
2| 8 —2|-2 -2
(S(00, 00; 1, 1)) = 1|72 —2 8 —2 —2
Q ’ y L - 8 _2 _2 8 _2 _2
-2 —2|-2 8|-2
—2 —2 —2| 8 -2
-2 —2| -2 -2 8
=%(813—2(I®I®A+I®A®A+A®A®I
+ARI®I))
1 3
=3 (31,, —2¥ M.-(llO)). (44)
i=0

Lemma 9: Let SN*! be the set of all error events of length N + 1 and let
S(a, z; g, f) be the orbit of G, containing the error event E(a, 2; 0, &; 0,
f). Then,
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E=E(00, 00; 0,1; 0,1) (910090109001 100 (£)

(90109001 #100- 9010 €} {9110-9011 8101 9110) (€}
O O O 0O O

{9001 91009010 9001 (E) 19101 F110.9011 101} {E)
O A O © O . O o, O
d o U C O

O 0 0o o o

(90119101 81109011 ) (E) (93118111 G111 G111} E)
o O O O o

Fig. 7—The orbit S(00, 00; 1, 1).

N
(1) 27**Q(S(a, z; &, f)) = 2(N + 1) — 2 ¥ Mi(fg0 --- 0). (45)

=0
(2) 27%(2% — 1’Q(S™M) = 2(2* — VAN + Do
N
-2 ¥ X Mdfg0---0). (46)
f.g+0 i=0

Proof: We calculate the contribution to @(S(a, z; g, f)) made by pairs
of edges in component 0. This distance contribution is

1
P 2 [x(t + (0ay --- an-1)) — x(t + (gay - -+ an-1)]?

# x"[20pn — 2M(g0 - - 0)]x

as found in the proof of Lemma 8. Similarly, the contribution made
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by pairs of edges in component N (the last component of the error
events) is

o D+ (2o 2na0) = 3+ (2o )

1
2,” xT[2Lp+ — 2M(0 - - - Of)]x.
Fori=1, ---, N — 1, the contribution made by pairs of edges in

component I is

1
?ﬁ 2 [x(t + (2n—is1 - - - 2v—100a; - - - an-i-1))
t

— x(t + (zN-i+1 -+ ZN-1f8QL - - an-i-1)I?

= E}ﬁ [2 ¥ x(t)? —2 g x(t)x(t + (fg0 --- Q)i—l)]

= L T2l — 2M((f50 - OV

The sum of the contributions from all N + 1 components is

N
Q(S(a, z; 8, f)) = ﬁ xT [Z(N + 1)y — 2 Y, M(fg0 --- 0)1 .

=0
This proves part (1). Observe that (45) is independent of a and 2. We

obtain Q(S™*') by summing (45) over all pairs g, f of nonzero k tuples.
Since there are (2% — 1)? such pairs,

(Qk — 1)22v+kQ(SN+1)
N
=22" - 1D)AN+1Dh~—2 3 ¥ M{fg0 ---0)
f.8+0 i=0
as required. [

Remarks: When k = 1, we must have f = g = 1 and so every form
Q(S(a, z; g, f)) is equal to @(S™*"). In this case, N =1+ v and

QSN = ,1+1 [2(2 + p)Iprt — 2 li" M (110 . 0)}

i=0

[see the matrix given as (44)]. For k > 1, there are several choices for
fand g. Thus, for k = 2, » = 4, we have, with g = (1, 1) and f = (0, 1),

Q(S(a, z 11, 01)) = 1/64[81s; — 2(1, ® I, ® (A ® A)
+LO®A®A)®MARI
+(A®A)BRMAUBDN®I
+(A®®L® L),
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while with g = (01) and f = (10) we get
Q(S(a, 2; 01; 10)) = 1/64[8les — 2([, ® [, ® (A ® I)
+L,®RARNBUIR®A)
+(ARNB®(I®A)®I,
+(I®A)®IL® L))

Theorem 3: If k divides v then the normalized minimum distance of any
convolutionally derived trellis code with 2’ states and rate k bits/channel

symbol satisfies
dZin 92k+1 v
—p*szu_l(“z)-

Proof: If @ is any weighted average of @(S™) and Q(S™*'), then by (8)
we have

dfnin

5 <2"M@Q. (47)
Let 6 = 1/(2% — 1). Then 2(2* — 1)é + (2* — 1)?6 = 1. Define @ to be
the following weighted average of Q(S™) and Q(S™*"):

Q = 2(2* - 1)6Q(SY) + (2 — 1)%Q(SN*Y).
Set
Qn = 27%(2* — 1)Q(S™)
and
Qne1 = 277428 — 1)°Q(S™).

Then by (47)

dfnin
P = 6M(2Qn + @nr)- (48)
The eigenvectors, w(c), of @y and Qn+; are in 1-1 correspondence with
binary vectors ¢ = (¢y, -+, ¢y), where ¢;, i = 1, ---, N are k tuples.
By (41)
Qnw(c) = 28y (c)w(c), (49)

where y(c) is the number of nonzero k tuples c;. Introduce k tuples
¢o = cn+1 = 0 and define

ale) = |{ilei=0,¢c41 # 00r¢; # 0, ¢ipq = 0}

and
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B(e) = |{ile: # 0 and cita # O} ]. (50)
There are (N + 1) — a(c) — 8(c) indices i, 0 < i < N, for which ¢; =
¢is1 = 0. By (30) the eigenvalue of Qn+1 associated with w(c) is

N
22— 1N+ 1) -2 T ¥ (-1)lrame

f.e+0 i=0

A - DN+ -2 ) (2 (—1)*-'*) ( D) (—1)%-'). (51)
g#0

i=0 \f#0

Recall that the sum ¥.o (—1)%7 is (2* — 1) when ¢; = 0, but equal to
—1 whenever ¢; # 0. Hence (50) is equal to

2(2* — 1N + 1) = 2[((N + 1) — alc) = Be)(2" - 1)*
~ ale)(2* = 1) + B(©))
= 2(2* — 1)%(alc) + B(c)) + 2(2* = 1alc) — 28(c)
= 2¥(2¥alc) + Ble) — 2(ale) + B(c)) + alc))
= 2[2¥ale) + B(e)) — (ale) + 28] (62)

Now, y(c) is the number of nonzero ¢/’s. Since each nonzero c;
appears in two pairs, (¢;-1, ¢;) and (c;, ¢i+1), we have

alc) + 28(c) = 2v(c). (563)

Substitution in (52) shows that the eigenvalue in (51), of Qx4 asso-
ciated with w(e) is

21252 (c) — B(c)) — 2y(c)]. (54)
By (49) and (54) we have
(2Qn + Qn+1)w(c)
= 2¥1(2v(c) + 22v(c) — B(c)) — 2v(c)w(c)
= 2%*1(2v(c) — Blc)wlc). (55)

There are N — y(c) indices i, 1 < i < N, for which ¢; = 0. Since every
¢i, 1 < j < N, appears in the two pairs (¢j-1, ¢;) and (cj, cj+1), there are
at most 2 + 2(N — v(c)) indices i, 0 < i < N, for which ¢; = 0 or ¢;+; =
0. Hence

Ble) = (N+1) =2 —2(N = () =2y(c) - N -1

and
2(y(c)) — Blc) = N + L. (56)
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Now (48), (55), and (56) imply

d?min 22k+1 22k+1 v
P 5.22k_1(N+1)—W(2+E . O

Remarks: Equality can hold in (56). If N is odd, set co = cg = ... =
cvy1=0andey, ca, ---, cn # 0. Then y(c) = (N + 1)/2 and B(c) = 0.
(Observe that for k = 1, v = 2, the largest eigenvalue of the form
2Qn + Qn+1 is associated with eigenvector (1, — 1) ® (1, )T ®
(1,-1)T)If Nis even, set co =c3s =¢c; = ¢y = --- = ¢y = 0 and
€1, C2,C4, Cs, ++ +, Cn 7 0 to get y(c) = (N + 2)/2 and B(c) = 1. Setting

2k+1 v 22k+1 v
2’“—1(1+k)—22"—1(2+k)

yields » = k(2% — 1). If » < k(2* — 1), then Theorem 2 gives the stronger
bound; if v > k(2* — 1) then Theorem 3 gives the stronger bound. In
particular, for k = 1, Theorem 3 gives a stronger bound for any » > 1.

The bound given by Theorem 3 is obtained from the largest eigen-
value of a particular weighted average of Q(S™) and Q(S™*!). In
Appendix A we use the duality theorem of linear programming to
prove that no other weighted average of @(S™) and Q(S™*') gives a
stronger bound.

In Appendix B we prove that if v = (N — 1)k + |, where 0 < [ < k,

then
d?nin 22(‘!-n+1 v
P Sz _1\2*|x])

where Ly | denotes the integer part of y.

VI. CONCLUSIONS

Three upper bounds on the normalized minimum distance, (d%;,/
P), have been given for trellis codes. The bound

d‘ro'nin < v
o <4 (1 + k)

given in Theorem 1 is typical. This certainly provides nontrivial
information. For example, is it possible to gain 10 dB in minimum
distance using 2° = 64 states at rate 1 bit/symbol? The answer is no.
Theorem 1 bounds the gain at 8.4 dB; Theorem 3 bounds the gain at
7.3 dB. Nevertheless, there still remain the questions of how tight
these bounds are and if they exhibit the “right” dependence on the
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Table |—Possible gains at rate
1 bit/symbol

Upper Bounds

Lower
Bound Theorems 1

(Ungerboeck) and 2 Theorem 3

2.5db 4.7db 4.3db

3 6. 5.2

3.4 7.
7
8

=

— S0 00 -1 Uk LB
0500000511 M
OMNPW-IO

ST
WO

=

parameters » and k. For example, consider the normalized minimum
distance for block codes of length n, having 2" code words (k bits/
symbol). In that case, known upper bounds behave, for large n, like
d?/P s 2n/4* Thus the linear dependence on », a quantity analogous
to block length, appears correct. However, the true dependence on k
may be different from our bound. Table I gives upper and lower bounds
on the gain (in dB) that is possible at rate 1 bit/channel symbol. The
lower bounds arise from codes constructed by Ungerboeck.*

Also minimum distance is by no means the complete story with
regard to error rate. The heuristics leading to the claim that terms
involving d.;n would dominate an upper bound on the error rate make
the assumption that the infinite series determining the upper bound
converges. Even if a code with a good dpin were found, an upper bound
on error rate should still be computed for that particular code. As an
example of a catastrophe that may occur, consider the assignment of
edge labels 7 = (1, —1, -1, 1, —1, 1, 1, —1) to the trellis of Fig. 1. One
observes that a pair of edges leaving a node always contributes (1 —
(=1))? = 4 to the distance and similarly for a pair of edges merging
into a node. One immediately concludes that no error event has
distance less than 8 for this edge assignment. Since P = 1, thisisa 3
dB gain over the uncoded 1 situation. How could this happen with
only +1 symbols? One answer is that we forgot to include unmerged
events, events which go on forever. We had implicitly assigned infinity
to their distance, but now some have distance 4. However, this could
be rectified by perturbing the +1 edge labels by small amounts. A
more serious trouble with this code is that an infinite number of error
events have (essentially) the minimum distance and so a coefficient
that we did not explicitly consider turns out to be infinite for this
particular code.
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APPENDIX A

The upper bound of Theorem 3 is obtained from the largest eigen-
value of a particular weighted average of the quadratic forms Q(S%)
and Q(S™*?). In this appendix we prove that no other weighted average
gives a stronger bound. We shall assume throughout that » = k(2% —
1) since the bound given in Theorem 3 improves upon that given in
Theorem 2 only for v in this range.

Ifri,ro=0and r; + r; =1, then

2
Ton < 20 QS™) + ra@S™).

Recall from (29) that the eigenvectors w(c) of Q(SV) and Q(S™*!) are
1:1 correspondence with binary » + k tuples ¢. Let ¢ = (¢,, - - -, cy),
wherec;, i =1, ..., N is a binary & tuple and let ¢, = cy4+; = 0. Recall
that

a(c) = [{ile; = 0, cipq # 0 0r ¢; # 0, ciyy = 0},
Blc) = |{ile; # 0 and cis1 # 0},

and
() = |{i]e; # 0}].

Define ¢n(c) and ¢n.i(c) by 27*(2* — 1)Q(SM)w(c) = ¢n(c)w(c) and
2752k — 1)’Q(SM*Mw(c) = dn+1(c)w(c). Then by (49) and (54)

énle) = 28'y(c) (57)
and
dnale) = 28252y (c) — B(c)) — 2v(c)]. (58)

To find the optimal weighted average we have to solve the following
linear programming problem.

Choose real variables ry, rp, r = 0 so as to minimize r subject to the
inequalities

—(r+r) <-1 (59)
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and

¢n(c) Pn+1(c)
r 2,,__1+r2 (2,¢+_1)2—r=<.0, forall v+ ktuplesec.
In Theorem 3 we proved that a feasible solution to (43) is
2 2k -1 22k+1 »
n=yyr T¥r1r [T %o 2+3) (60)

The linear program (59) is the dual of the primal linear program given

below.
Choose real variables a., a = 0, where the index ¢ runs through all

binary » + k tuples, so as to maximize a subject to the inequalities

1
2k — 1

(): ¢N(c)ﬂc) -a=0

1

-1 (? ¢N+1(C)ac) —az=0

—(2 ac) = -1. (61)
If we can find a feasible solution to (61) with
92k+1 v
“=22*—1(2+E)’

then by the duality theorem of linear programming,” (60) is an optimal
solution to (59). We consider two cases.

Case 1. N odd
Pick f=(fi, -+, fn), where f,i =1, - --, N is a binary k tuple and
every f; is nonzero. Pick g = (g1, ---, gv), where g;,i=1, ... ,Nisa

binary k tuple and g; # 0 if and only if i is odd. Then v(f) = N, 8(f)
= N —1and y(g) = (N + 1)/2, 8(g) = 0. By (57) and (58), ¢~(f),
on(8), dn+1(f), and ¢n.i(g) are as follows:

f g
N 2FIN %N + 1)
dner | 2P 2K(N + 1) — 2N] | 2 [(2* - 1)(N +1)]
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Set

(" (ok
B e
ac=J1—a,= k2(N—2'“) , if c=¢g
2+ 1)(N-—-1)
.0, otherwise,
2k+1 v
@=‘m_q (2 + E) (62)

Direct calculation shows that (62) is a feasible solution to (61). (Since
v = k(2* — 1), the variables a, are all nonnegative.)

Case 2. N even

Pick h = (hy, -+, hn), where h;, i =1, ..., N, is a binary & tuple,
h2=h5=h7=hg= e =hN_1=0,andh1,h3,h4,hﬁ,hs, "',hN&l'e
nonzero. Then y(h) = (N + 2)/2, 8(h) = 1 and, by (57) and (58),

dn(h) = 25(N + 2) and ¢ni(h) = 282" — 1)(N + 2) — 2%
Set

(2* = 1N -2 it =
(2" + 1)(N - 2)
a. = _ 2(N-2% e
S A 17 v SR
0, otherwise,
2k+1 v
a= W (2 + E) (63)

Direct calculation shows that (63) is a feasible solution to (61). (Again
since v = k(2" — 1), the variables a, are all nonnegative.)
We have now shown that (60) is an optimal solution to (59).

APPENDIX B

In this appendix we extend Theorems 1, 2, and 3 to the case when
k does not divide ». Setting v = (N — 1)k + [, where 0 < [ < k, we have
N = L(v + k)/k] where L y] denotes the integer part of y.

Encoder states are labelled with binary » tuples in the way described
in Section II. Edges of the trellis are labelled with real numbers x(s),
where s is a binary » + k tuple. The group G, is defined in the way
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described in Section II; for each binary v + k tuple ¢, we define a
permutation of the edge labels x(s) by the rule

&(x(s)) = x(s + t).

The symmetry g is the sequence
gt* = (gp’ gt" gt’s - ')3

where t° = t and ¢’ is obtained from ¢! by cycling the entries % bits
to the right and moving the last k bits to the front. When & = 2 and
v=23,

* =
£t1001 = (&11001, Sor110, 10011, L11100, Goo111, L11001, * * 2.

In general, t' = t** where d = (k + »)/ged(k, k + v). Given any
component of the trellis and any pair of edges x(s), x(f) in that
component there is a unique element of G, interchanging x(s) and
x(t). The proof of Theorem 1 goes through without change and we
have

d'fin

T =< 4N,, (64)

where N, is the minimal length of an error event.

To see that N, = N, consider an error event E with initial state
(time t = 0) @ = (@) - - - an—1an), where ay, - - -, ay-, are k tuples and
ay is an [ tuple. If k tuples b;, b are input at time 0 then at time 1 the
two paths occupy states (b, @i, - - - , Gn-2, Gv-1) and (bY, @y, - - -, an-1,
d@n-1), where § denotes the [ tuple (s, - - - s;) obtained from the % tuple
(sy - -- i) by deleting the last & — [ bits. At time 1 the k-tuple zxc is
input to both paths, where c is a fixed but arbitrary k — [ tuple. At
time 2 the two paths occupy states (znc, by, a1, - - - , @N—3, Gn-2) and
(zwc, bf, @y, - -+ , @N-3, GN-2). At time N, after inputs zy_y, - - -, 23, the
two paths occupy states (2o, 23, * - , 2N-1, 2NC, by) and (23, 23, - - - , 2N,
znc, bY). If b, = b} then the two paths remerge at time N in state
2= (23, 23, - - - , ZN-1, 2NC, D;). We denote this error event by E(a, 2; b,

b¥). Thus by (64)
d%i v
P <4 (1 + [k]) (65)
for general k and ».
Let S(a, z; by, b%) be the orbit of G, containing the error event

E(a, z; by, b%). We calculate the contribution to Q(S(a, 2; b, b)) made
by pairs of edges in component 0 in the same way as Lemma 8. Setting
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f= b, + bf this distance contribution is
1
F Y [gx(bray - - - an-1an)) — glx(btay --- aN—laN))]2
t

= L T[212-+k — 2M(f0 --- 0)]x.

- 2.v+k X
Similarly, the distance contribution made by pairs of edges in com-
ponent N — 1is

_2.};3 7[2Lp — 2M((fO - -- 0)¥ )]z,

Note that the first [ bits of f are zero and that the last [ bits of
(fOo --. 0) are zero for 0 < i < N — 1. Arguing as in Lemma 8 we
obtain

N-1

2"*Q(S(a, z; by, b)) = 2NIp+ — 2 g:o M((f0 - 0)).

There are (2~ — [) k tuples f for which f # 0 and /= 0. Hence

27+k(2k — 1)Q(SN) = 2(2* — 1)Nlpws — 2 3 Nz: M((f0 --- 0)).
f=0
Setting @ = 2"*(2F~' — 1)Q(S™) we obtain
B g M@, (66)
P 27 =1

which reduces to (39) when [ = 0. The proof of Theorem 2 goes through
(change “c; = 0(%0)” to “the last k — [ digits of c; are zero (nonzero)”)

M(Q) = 2F™IN. (67)

d?nin 2k—I+1
2 et (14 2) )

By (66) and (67)

for general k and ».

Finally we consider the set S’ of all error events of length N + 1 for
which the k tuples b;, b% input at time 0 satisfy b, = b* = 0 and for
which the k tuples b,, b} input at time 1 satisfy b, = bf = 0. Let
E € S’ with initial state a = (ay, - - -, an—1, any) and final state z = (z;,
-+, 2N-1, 2n), where a;, 2;, i =1 ..., N — 1 are k tuples and ay, zy
are [ tuples. At time 2 the two paths occupy states ((2x0 --- 0) + b,,
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by, @1, - -+, GN-3, Gy-2) and ((zn0 - - - 0) + b%, b, a1, - - -, an-3, Gn-2).
At time N the two paths occupy states (zz, 23, - -+, Zn-1, (2n0 - -+ 0)
+ bz, El) and (Zz, 23y "y zN—l(zNO O] 0) + b’g", bf) Set f = b2 + b;
and g = b, + b} and define M;(fg) i =0, --- N as in (43). Arguing as
in Lemma 9 we obtain

2v+k(2k—l)(2k—t — 1)Q(S r)

N
=22 - 1)@ - 1DWN+DIpx—2 Y ¥ ¥ Mi(fg0---0).
f#0 g#0 i=0
f=0 &=0
Let 5 =1/(22*) — 1) and let @ = 2(2*' — 1)6Q(S™) + (2¥ — 1)%Q(S’).
Then 2(2¥*" — 1)6 + (2¥! — 1)25 = 1 and so
dain _ omr
? =2 “)\l(Q).
The proof of Theorem 3 goes through [change “c; = 0 (#0)” to “the
last k — [ digits of c; are zero (nonzero)”] and we obtain

2 2(k—D)+1
dimin _ _2 D (2 + lﬂj), (69)

p T 2h k
for general k and v.
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