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Transmission Errors and Forward Error
Correction in Embedded Differential
Pulse Code Modulation

By D. . GOODMAN* and C.-E SUNDBERG!

(Manuscript received December 11, 1982)

We have derived formulas for the combined effects of quantization and
transmission errors on the performance of embedded Differential Pulse Code
Modulation (DPCM), a source code that can be used for variable-bit-rate
speech transmission. Our analysis is more general and more precise than
previous work on transmission errors in digital communication of analog
signals. Special cases include conventional DPCM and Pulse Code Modulation
(PCM). Our main result is a signal-to-noise ratio formula in which the effects
of source characteristics (input signal, codec design parameters) and the effects
of transmission characteristics (modulation, channel, forward error correction)
are clearly distinguishable. We also present, in computationally convenient
forms, specialized formulas that apply to uncoded transmission through a
random-error channel, transmission through a slowly fading channel, and
transmission with part or all of the DPCM signal protected by an error-
correcting code. Numerical results show how channel coding can have different
effects on conventional and embedded DPCM. They also show how the binary-
number representation of quantizer outputs influences performance.

I. INTRODUCTION
1.1 Embedded Differential Pulse Code Modulation

Embedded coding can play a valuable role in variable-bit-rate speech
transmission. With an embedded code the analog-to-digital (a/d) and
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digital-to-analog (d/a) converters operate at a constant, high bit rate,
and the transmission system controls the instantaneous rate. Proposed
applications for variable-bit-rate operation include a digital private
branch exchange,’ digital speech interpolation,® packet-switched voice
transmission,® and mobile radio.*

Sophisticated versions of Differential Pulse Code Modulation
(DPCM) are promising speech codes for these and other environ-
ments.’>” However, conventional DPCM is not suited to variable-bit-
rate transmission because the decoder amplifies the effects of bit-rate
adjustments. On the other hand, a slightly modified form of DPCM
avoids this problem and produces an embedded code.?

Figure 1 shows the codec (coder, decoder) structure of embedded
DPCM. Although up to E bits/sample can be transmitted, the signals
presented to the two integrators have a resolution of only M bits/
sample, the minimum bit rate of the channel. While Fig. 1 is a useful
guide to practical implementations, Fig. 2, which is equivalent, is
easier to analyze. It shows the quantizer at the encoder as a successive-
approximation combination of two quantizers: a “minimal” quantizer
with M bits/sample and a “supplemental” quantizer with E-M bits/
sample, operating on the error signal of the minimal quantizer.*

In embedded DPCM, all of the bits from the minimal quantizer
arrive at the decoder; the transmission system can delete some or all
of the supplemental bits. With S bits/sample of the supplemental
quantizer transmitted to the decoder, the rate is D = M + S bits/
sample, and the quantizing distortion is very close to that of a conven-
tional codec with D bits/sample.

Errors in the two bit streams have different effects on the decoder
output. Errors in the M, minimal bits, are enhanced by the decoder
integrator, which has no effect on errors in the S, supplemental bits.
This situation compares favorably with conventional DPCM, where
all errors are integrated at the decoder. It also has implications for
forward error correction in embedded DPCM. Figures 1 and 2 will be
further explained in Section II.

1.2 The scope of this paper

Our principal contribution in this paper is an analysis of the com-
bined effects of granular quantizing distortion and transmission errors
on the mean-square error of embedded DPCM. The analysis
is quite general: special cases include Pulse Code Modulation (PCM)
(M = 0) and conventional DPCM (S = 0). The formulas for the noisy-

* Based on the structure of Fig. 2, Jayant has recently described an enhanced
supplemental quantizer (called an explicit noise coder) that uses memory and delay to
improve speech quality.?
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channel performance of conventional DPCM are new, and the spe-
cialization to PCM is more precise than previous work on the sub-
ject,’®'? which includes several approximations that are accurate for
multibit (= 6-bit) quantizers, but are rather imprecise at lower bit
rates. The method of analysis has the advantage of separating source
effects from transmission effects. The source effects include the char-
acteristics of the analog input signal and the codec design parameters.
The transmission effects include modulation and demodulation, the
channel, forward error correction, and diversity reception.

The main result is eq. (61), in which the transmission effects are
contained in the discrete probability function P(l), where [ is an index
of binary error patterns. The other symbols in (61) are source param-
eters and functions of source parameters. After deriving (61) we apply
it to specific transmission environments and present, in Table VI,
specialized formulas that are convenient for numerical computation.

In all, there are 78 formulas in Sections III through VI, most of
them intermediate steps in derivations of a few key results. Anticipat-
ing that few readers will require all these details we provide here a
summary of the analysis and we display a few numerical results.
Sections I, II, and VII contain the main ideas of our work and sufficient
information to allow readers to perform, on hand calculators, compu-
tations similar to the ones we present.

Section III introduces the notations for the signals and errors in the
M-bit minimal DPCM codec and the S-bit supplementary PCM codec
of Fig. 2. The analysis of Section III leads to (2), which expresses the
sampled-data error sequence as a function of quantization errors,
transmission errors, and integrator characteristics. Section IV begins
the analysis of the mean-square value of (2) by deriving (35), the ratio
of the mean-square codec input to the mean-square value of the
encoder difference signal. Section V defines A factors, which are
conditional mean squares of the errors due to specific binary error
patterns, and derives (61), the general signal-to-noise ratio (s/n)
formula. Section VI adapts (61) to specific transmission models and
provides guides to numerical computation.

1.3 Examples of numerical results

Figure 3 shows the performance of embedded DPCM in four trans-
mission environments, all of them employing Coherent Phase Shift
Keying (CPSK) modulation at 32 kb/s in a white-Gaussian-noise
channel. The encoder operates at 32 kb/s (8-kHz sampling, 4 bits/
sample), and in format 1 all of this information is transmitted. Figure
3 indicates that when the channel s/n falls below 10 dB, the audio
s/n deteriorates rapidly. In format 2, the least significant bit of each
DPCM code word is deleted, and the remaining 3 bits/sample are
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Fig. 3—Performance of embedded DPCM in four transmission environments.

protected by a rate 3/4 convolutional code. Although there is more
quantizing noise than in format 1 (the s/n is 6 dB lower in the absence
of transmission errors), the convolutional code permits accurate re-
ception of the transmitted bit stream at channel s/n’s down to 3 dB.
Going one step further with this approach to channel coding, we have
format 4, in which 16 kb/s of speech data are transmitted under the
protection of a rate 1/2 code. The threshold of essentially error-free
performance is now extended down to a channel s/n of about 0 dB.

In code format 3 the speech transmission rate is 24 kb/s, as in
format 2, but now only 2 of the 3 bits/sample are protected by the
convolutional code, which has rate 2/3. The threshold of curve 3 in
Fig. 3 is about 1 dB lower than that of curve 2. On the other hand,
format 3 is slightly worse than format 2 in intermediate channel
conditions (s/n’s between 3 and 5 dB). Over this range, format 2 is
essentially error free, while format 3 is affected by errors in the
unprotected third bit of each code word. The effect is small, however,
because these errors are not amplified at the decoder.

With conventional, rather than embedded, DPCM, the correspond-
ing picture, Fig. 4, is rather different, especially with respect to format
3. Here channel errors in the unprotected third bit are amplified by
the integrator at the decoder. The result is a noticeably lower output
s/n relative to format 2 (all three bits protected) when the channel
s/n is between 3 and 6 dB. On the other hand, in clear channels the
greater accuracy of prediction in the conventional encoder causes the
output s/n of conventional DPCM at 24 kb/s (formats 2 and 3) and
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32 kb/s (format 1) to be about 0.7 dB higher than that of embedded
DPCM.

Figure 5, which applies to 24 kb/s speech transmission with a rate
2/3 code, summarizes the performance differences between conven-
tional and embedded DPCM. Conventional DPCM has somewhat
lower quantizing noise, which is reflected in the higher s/n in good
channels. In intermediate conditions, when errors in the unprotected
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Fig. 4—Performance of conventional DPCM in four transmission environments.
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Fig. 5—A 24-kb/s speech transmission with a rate of 2/3 code (Format 3) used to
summarize performance differences between embedded and conventional DPCM.
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bit influence performance, embedded DPCM is better because the
effects of these errors are not amplified at the decoder. In very difficult
channels, errors in the two coded bits dominate performance and the
s/n’s of conventional and embedded DPCM are virtually equal.

Il. EMBEDDED DPCM SIGNAL PROCESSING

Figure 1 shows the signal processing operations that take place in
embedded DPCM encoding, transmission, and decoding. While the
analog-to-digital converter at the encoder generates E bits/sample,
the resolution of the signal presented to the integrator is limited to M
bits/sample, where M is the minimum bit rate of the transmission
system. The transmitted bit rate, D, can vary between M and E. At
the receiver E-D filler bits are appended to the incoming signal. As in
the encoder, E-M bits are deleted at the integrator input so that in
the absence of transmission errors the encoder integrator and the
decoder integrator produce the same approximation signal. When this
signal is added to the full-resolution (D bits) quantizing error, the sum
has nearly the quality of a conventional DPCM signal with D bits/
sample.

While Fig. 1 demonstrates practical implementations, Fig. 2, which
is equivalent, is easier to analyze. It represents the analog-to-digital
conversion as a two-step, successive-approximation process. First the
input to the converter is represented by M bits/sample. Then the error
of this representation is processed by another analog-to-digital con-
verter with E-M bits/sample. Taken together, the two digital signals
comprise an E bits/sample representation of the DPCM difference
signal. All of the M bits of the minimal analog-to-digital converter are
transmitted. The other E-M bits are subject to deletion by the trans-
mission system. At the receiver the minimal, M-bit signal is processed
by a conventional DPCM decoder. The result is added to the supple-
mental, S = D — M bit representation of the DPCM error signal to
produce the system output.

. SIGNAL ANALYSIS
3.1 Error sequence

To analyze Fig. 2, we introduce Fig. 6, which shows the signals that
appear in the analysis and defines their notations. We are interested
in the overall error signal

e(k) = x" (k) — x(k), (1)
the difference between decoder output and encoder input. In particular
we will derive the formula

e(k) = np(R) + en(k) + 3, biew(k — i), @)

i=1
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where np(k) is the quantization noise of the two-stage, D-bit analog-
to-digital conversion, ep(k) is the effect of a transmission error on the
entire D-bit transmitted code word, and em(k) is the effect of a
transmission error on the minimal, M-bit DPCM code word. The

coefficients b; are related to the predictor coefficients ai, @z, --- ax
according to (12).
Formally,
em(k) = qu(k) — qu(k), (3)

the difference between the quantized inputs to the decoder and encoder
integrators. To define np(k) and ep(k), we view the combined code
word with M + S = D bits as a digital representation of £(k) = x(k) —
y(k). A D-bit digital-to-analog converter would produce the quantized
signal qp(k), and so we have the definition of quantization error:

np(k) = gp(k) — £(k). (4)

At the receiver, where the D bits/sample are possibly corrupted by
transmission errors, a digital-to-analog converter would produce gp (k).
The transmision error is

ep(k) = gp(k) — gp(k). (5

In the remainder of Section III we derive eq. (2); in Section IV and V
we analyze its mean square.

3.2 Derivation of the error sequence

Here the signal analysis is facilitated by the transform notation of
Table I. The reader may verify that the output of the minimal encoder,
Qu(2), is related to input and quantizing noise® by

Qu(z) = [X(2) + Nu(2)][1 — F(2)]. (6)
Table I—Transform notation for codec signals
Encoder Signal Description Decoder Signal

X(z) Encoder input, decoder output X' (2)

Minimal decoder output X'u(2)
Y(2) Approximation signal Y'(2)
Qul(z) M-bit representation of X(2) — Y(z) Qu(2)
Nul(z) Qul2) — [X(2) - Y(2)]

Quantizing error in Qu(2)

Qil(z) — Qul2) En(2)

Transmission error in @(z)
Qs(z) S-bit representation of —Nj(2) Q5s(2)
Np(2) Qs(z) + Nu(2)

Quantizing error in Qs(2) E

Qs2) - @s@®) s(2)

Transmission error in @%(z)

K

F(z) Predictor Y aiz™" F(z)

i=1
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In the minimal decoder

, _ Qul2)
Xul(z) = 1-FQ)’ (7)
which leads to
i En(2)
Xu(z) = X(2) + Nu(2) + 1-Fa) (8)
In the supplemental encoder,
Qs(z) = —=Nu(z) + Np(2), 9
and at the decoder
Qs(z) = =Ny(2) + Np(2) + Es(2). (10)
Combining (8) and (10) we have the output of the entire decoder,
E
X'(6) = Xiul®) + Q42) = Xa) + No@) + Ba(a) + 72 (11)
To transform (11) to time-domain notation, we defined b;, i = 0, 1,
2, -+-, to be the inverse z transform of 1/(1 — F), such that
1 .,, —i
1— F(z) = ;‘go b.‘Z . (12)
Then we have
x'(k) = x(k) + np(k) + es(k) + 3 bem(k — i), (13)
i=0

and the error is
e(k) = x'(k) — x(k)
= np(k) + es(k) + en(k) + Y bem(k — i), (14)
i=1

where we have substituted b, = 1. Equation (14) is identical to (2)
because

en(k) = en(k) + es(k). (15)

IV. MEAN-SQUARE ERROR
The square of (2) is

e*(k) = [np(k) + ep(®F + 3 bledi(k — i)

+ 2 i bilnp(k) + ep(k)lem(k — i)

i=1

+ 2 E E b;bjeM(k — 1)em(k —j) (16)

i=1 j=it+1
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To analyze the mean value of (16), we assume that the sequence {x(k)}
is drawn from a stationary ergodic random process. In our derivations
we ignore all correlations in (16) between nonsimultaneous samples.
That is, we assume
E{lnp(k) + ep(k)]em(k — )} = 0; 121 (17)
and
Elem(k — i)em(k — j)} = 0; L # J. (18)
Equation (17) indicates that the overall error (quantizing plus channel
distortion) in the kth sample is uncorrelated with errors in other
samples of the minimal M-bit quantized samples. Equation (18) states
that errors in different minimal samples are uncorrelated. These
approximations are accurate because the sequence of samples at the
input to a DPCM quantizer is decorrelated by the differential coding
process and because transmission errors affecting different code words
are independent or only weakly correlated.
The approximations, (17) and (18), remove the last two sums from
the expected value of (16), leaving

Efe*(k)} = E{[np(k) + ep(R))*} + bpElei(k)}, (19)
in which we summarize the influence of the predictor in

i=1

The expectations in (19) are related to the quantization and trans-
mission of £(k), the DPCM difference signal. In Section V, we present
a complete theory of the errors due to these operations. While this
theory relates these errors to o} = E{£*(k)}, we are ultimately interested
in the s/n of the codec input, x(k):

s/n = E{x*(k)}/Ele*(k)} = o%/0e. (21)
To find this quantity, we will now derive ¢%/0% and then combine it

with the results of Section V. To begin the derivation, we refer to Fig.
6 and verify

Y(2) = F(2)[X(2) + Nu(2)], (22)
which leads to
K K
£(k) = x(k) — y(k) = x(k) — 21 aix(k — 1) — ;1 anm(k —1). (23)
We write the mean-square value of (23) as

K 2 K 2
oi=E {[x(k) - ¥ ax(k - i)] } +E [Z anu(k — i)]

i=1 =1

- 2E {[x(k) — § a;ix(k — i)] [§ ainm(k — i)]}. (24)
i=1

i=1
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The first term in (24) depends on the spectral properties of x(k) and
on the predictor. The ratio of ¢% to this quantity is called the prediction
gain,

K 2

G = /E {[x(k) - ¥ ax(k - i)] } (25)
=1

It indicates that extent to which the predictor (in the absence of

quantization) reduces the mean-square value of the signal to be quan-

tized. Formally we have

K K
G'= 2 2 ajajrij, (26)
j=0 i=0
in whichag =1,a/=—a;,i=1,2, ---, K, and r, is a normalized
covariance coefficient of the stationary input,
r. = E{x(k)x(k + n)}/d?. (27)

In evaluating the second and third terms of (24), we ignore corre-
lation between different quantizing-noise samples and correlations
between quantizing-noise samples and samples of the codec input.
Thus we use (18) and the approximation

Elny(k)x(j)} = 0. (28)
This allows us to write
ot = G7'o} + apE{nk(k)}, (29)
where we define
ap = )KI ai. (30)

i=1

The noise component of (29), which depends on the quantizer
overload point and on the statistical properties of £(k), is analyzed in
Section V, where we restrict our attention to granular quantizing noise
and derive o2(B), the noise power of a B-bit quantizer with unity
overload point. If the actual overload point is £max, the noise power of
the M-bit minimal quantizer is

E{n% (k)] = Ermoi(M) = A}4/12. (31)
The quantizer step size is
AM = fmaxz_(M_U’ (32)

and the approximation would be exact if ny (k) were uniformly distrib-
uted over the range —Ay/2 to Ay/2. Table II presents o%(B) numeri-
cally and indicates the fractional error due to the above approximation.
A parameter in Table II is the dimensionless load factor
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Table 1l—Quantizing noise

Gaussian Exponential
Load
Factor 2 bits 3 bits 2 bits 3 bits
1.78 Noise power oa(B) 0.02066  0.005198 0.02189  0.005276
Approximation error*  —0.01 0.00 0.05 0.01
3.16 Noise power aa(B) 0.02082  0.005207 0.02394  0.005419
Approximation error* 0.00 0.00 0.13 0.04
5.62 Noise power aa(B) 0.02292  0.005209 0.02885  0.005836
Approximation error* 0.09 0.00 0.28 0.11

* Relative error of the approximation o2(B) =~ 272/3,

L = fnax/ 0. (33)
Combining (29), (31), and (33), we arrive at
o} = G'a% + apL’c%(M)dt, (34)
or the quantity we set out to derive:
o%/o} = G[1 — apL?a3(M)]. (35)

V. QUANTIZATION NOISE AND TRANSMISSION NOISE IN PCM
5.1 Granular and overload conditions

To analyze (19), we study, statistically, the quantization and trans-
mission of the DPCM difference signal £(k). In this type of study it is
customary to separate the quantizing error into two components:
overload distortion and granular noise. In speech communication this
distinction is valuable for predicting subjective quality.'*'* Moreover,
in analyzing DPCM the distinction is essential because, except for a
codec with an ideal integrator,'® (F(z) = 2™, which is pathologically
vulnerable to transmission errors), there is no theory for computing
the mean-square slope-overload distortion. Thus our analysis sepa-
rates the transmission of clipped samples of £(k) from samples subject
to granular distortion. Our theory pertains only to the transmission
of unclipped samples. For those samples we add two different distor-
tions, quantizing noise and noise due to transmission errors. Unlike
slope overload, both of these impairments are essentially uncorrelated
with the signal. This gives us confidence that the mean-square sum is
a reasonable quality measure.

Formally, we rewrite (19) as

0% = poEle*(R)| | £(R) | > bmudd + PaBle?(R) || E(R) | < £muds  (36)

where £(k) is the quantizer input and £max is the overload point of the
uniform DPCM quantizer. The probability of overload is p,v and p,; =
1 — pov is the probability of granular quantization. By definition, the
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quantizer is overloaded at time k if the quantization error exceeds half
of a quantization step, i.e., if

lgn(k) — E(R)| > Ap/2. (37)
The step size of the D-bit uniform quantizer is
Ap = Eman2 P7V = Ay /20°M, (38)

Our remaining analysis will be confined to the second expectation
on the right side of (36) and in particular to the ratio,

s/n = U.zt/Elez(k)l |E(R)| < fmax!- (39)
To be concise in the remainder of this paper, we will omit the granular
condition, | £(k)| < &£max, from our notation of expected values.
5.2 Transmission model, normalized quantizer

To facilitate numerical evaluation of s/n’s, we will present three
tables of normalized error terms. The normalization relates these
errors to a quantizer with a unity overload point and an input with
probability density function p,(-). If the quantizer of interest has an
overload point of &, and the input has the probability density p,(-),
the relevant errors are table entries scaled by £%..,. The two probability
densities are related by

pu(u) = EmaxpE(Emuu)- (40)

To confine our attention to the granular quantization condition, we
perform our averages with respect to the conditional probability den-
sity

Pelw) =T‘% lul <1

pu(u)du
1
=0 lu| > 1. (41)

The model is illustrated in Fig. 7. The signal u = £/£max is processed
by a B-bit analog-to-digital converter with overload point 1 and step
size

Ag = 2781 (42)

The digital output of the a/d is i, and the corresponding quantized
signal is u;, which is related to u by the graph in Fig. 7 and by

u;=-1+ (i + 0.5)Ag when
—1+iAg<su<-1+4+(i+1)A i=0,1...,28-1 (43
In Fig. 7, the B-bit code word i is transmitted, and i’ is received,
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with the transformation of i to i’ characterized by a binary-error
pattern with index /, [ being an integer in the range 0, 22 — 1. To relate
the error effect to /, we refer to the natural-binary representation of [
and specify that a 1 in the bth least-significant position of [ causes an
inversion of the bth most-significant* bit in the binary representation
of i. Thus [ = 0 refers to error-free transmission (i = i’); [ = 1 refers
to an error only in the most significant bit; [ = 5 refers to errors in
the first and third most significant bits; etc.

With u the quantizer input and [ the binary error pattern, we denote
the received sample in Fig. 7, u;. It is helpful to separate the complete
error u; — u into quantization-noise and transmission-noise compo-
nents as follows,

ug —u = (u; — u) + (uyg — w). (44)

5.3 Conditional expectations of transmission-error effects
5.3.1 The general approach

Our goal is to evaluate the mean-square of (44) over the joint
distribution of input statistics and binary-error patterns. The key to
our analysis is the definition of A factors, which are conditional mean-
square errors, each related to a specific binary-error pattern, I. By
analyzing these conditional errors, we separate the effects of source
characteristics from the effects of transmission characteristics. The
source effects are embodied in the A factors; the transmission effects
are embodied in probabilities of error patterns. These probabilities
govern the weighted addition of the A factors to produce the final
result.

This approach to analyzing transmission impairments was intro-
duced by Rydbeck and Sundberg,'®'* who were mainly concerned with
quantizers with 6 to 8 bits/sample. This high resolution admitted
various approximations that are inaccurate in the 2- to 4-bit quantizers
of greatest interest for embedded DPCM transmission. Thus we pro-
ceed to a precise calculation of two types of A factors: conditional
expectations related to the isolated effects of digital transmission
errors and conditional expectations that include correlations between
transmission errors and quantizing noise. In high-resolution quantiz-
ers this correlation is negligible, and the two types of A factors are
essentially equal.

5.3.2 Analysis

To compute the mean-square value of (44), conditioned on error
pattern [, we will identify three important quantities: ¢%(B), the

* This reversal of the bit ordering of ! relative to the binary representation of i will
facilitate bookkeeping in subsequent computations.
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granular-noise power of a B-bit quantizer; Ai(B), the mean-square
effect of error pattern ! on the quantized signal u; and A;(B), the
overall effect of error pattern [ on the mean-square error of the analog
output u;.

To derive computationally convenient expressions for o5(B), A(B),
and A,(B), we defined the integrals

p = f " Pulwdu (45)

g = f l (i — u)pg(u)du (46)
1

o = .[1 U’pg(u)du, (47)

in which »; is the lower boundary and v, is the upper boundary of
quantizing interval i:

Vi = _1 + iz—(ﬂ_u; i = 0! 1! tt 2B' (48)

The first integral (45) is the probability of using interval i. The second
integral (46) is the average quantization error in interval i. If B is
large, Ap is small, and g; = 0 because u; is in the center of the
quantization interval. The third integral (47) is the mean-square signal
when the quantizer is in the granular condition.

Now we write the definitions followed by computational formulas
for the quantizing noise and the effects of error pattern I:

281
o2(B) = E(ui — w)?=op + 2 (2 — piuf) (49)
i=0
28—
A(B) = E(uqg — u)* = ¥ pilua — w)? (50)

i=0
2B-1 .

A(B) = E(uy - w)* — E(w; —w)* = A(B) + 2 ¥ qi(ua — w).  (51)
Ai(B), the difference between the total noise and the quantizing noise,
includes the correlation between quantization effects and transmis-
sion-error effects. In multibit quantizers (B > 4) this correlation is
small, and A,(B) = A,(B), an assumption inherent in previous work on
PCM. Because low-resolution quantizers are of interest in DPCM, we
take account of this correlation in our present work.

Finally, we combine (49), (50), and (51) to write the mean-square
value of (44)

& = E(us — u)? = ¢X(B) + A/(B). (592)
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5.3.3 Computations

Table III displays formulas for p;, g;, and o that apply to inputs
with Gaussian and exponential probability density functions. Because
the input, u, of the normalized quantizer is related to the input, £, of
the quantizer with overload point £max by u = £/, we have

0'5 = U?/Egmax = 1/L2, (53)

where L is the dimensionless load factor defined in (33). Because L is
a familiar quantizer design quantity, we have written the formulas in
Table III as functions of L.

With the formulas in Table III, it is a simple matter to compute
o2(B) precisely. However, for B = 4 the approximation

oa(B) = A%/12 = 2728/3 (54)

is very accurate (within 3 percent of the exact value for L < 5.6). For
B = 2 and 3, Table II shows the exact values of ¢Z(B) and the
approximation errors

[03(B) — AB/12)/05(B) (55)

for L. = 1.78, 3.16, 5.62 ng = 10 + 5 dB).
To compute A,(B), A(B), it is necessary to know uy — u;, which
depends on the binary number representation of u;.

5.3.4 Binary number representations

We consider two representations: natural-binary and sign-magni-
tude, both defined in Fig. 7. Although in general the A,(B) and A,(B)
depend on p; and g;, there are some special cases that are important
and illuminating. For example, in the natural-binary code, the single-
error A factors are independent of the signal statistics and of the
quantizer. An error in the most significant bit causes uy — u; = +1
provided it is the only error in the B-bit code word. Thus A;(B) = 1.
Likewise, any isolated error in the second most significant bit causes
an output error of +1/2, and in general a single binary error in position
b causes the mean-square error

A(B) = (1/4)7% =20, (56)

In the sign-magnitude code, isolated binary errors in positions b =
2, 3, -+, B have the same effects as corresponding errors in the
natural-binary code. However, an isolated error in the most significant
position transforms u; to uy = —u;. The mean-square effect is

A((B) = 4E{u}} = 4ql. (67)

The approximation becomes more and more precise as B increases.
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5.4 The s{n of the embedded codec

Referring to (52) and Fig. 7, we have the mean-square difference
between £’ and £, over all possible error patterns

281
E{(¢" = £)*) = EnmElel) = Eha [aé(B) + El P(E)A:(B)], (58)

where P(l) is the probability of error pattern L. The effect of the
transmission errors on the quantized version of ¢ is £2,, Z?:;l
P(l)A,(B). Returning to (19), we have two expectations: the first is the
combined (quantizing and transmission) noise of a D-bit signal; the
second expectation is the noise due to transmission errors in the M-
bit minimal signal. Thus, we can write (19) as
2Py . 2M—_y
ol = E?m[trﬁ(D) + Y P(HA(D) +bp T PUHAM )], (59)
=1 =1
where {2, = L%0} is related to o2 by

L?g?
2 x
max G[1 — apL*¢i(M)] (60)
The s/n, which is the principal subject of this paper, is, therefore,
_ 2 2
o/n = Qn_lG[l apL aq(l'laf)gm_1 61
L*[o3(D) + !E P(DA(D) + bp Y P(A(M)]
=1

=1

With the exception of the two summations in the denominator, all of
the quantities in (61) are properties of the input signal and the codec
design parameters. These summations,

20— 2M_)

oi = % P(DA(D) + by Z POAM) (62)
=1 =1
comprise the effects of transmission errors on the performance of
embedded DPCM. We analyze them in Section VI.

VI. TRANSMISSION EFFECTS, BINARY-ERROR PROBABILITIES

The 2” probabilities, P(l), of binary-error patterns are properties of
the digital transmission system, which includes a modulator, a channel,
a demodulator, possibly a codec for forward error correction, and
possibly a means for combining different versions (diversity branches)
of the received signal. Depending on these components, the P(l)
exhibit properties that facilitate evaluation of the sums in (61). In the
following subsections we consider three paradigms: (1) random errors
with statistically independent transmission of all bits; (2) slow fading
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with the bit-error probability constant over each code word, but
independent from word to word; and (3) channel coding that makes
all error patterns equally likely.

6.1 Random binary errors

Errors in all bits are statistically independent of each other and
occur with probability, P. The probability of error pattern ! depends
only on w, the Hamming weight of , i.e., the number of ones in the
B-bit binary representation of I. Thus,

B—w
P(l) = P*(1 - PP =P* ¥ (-1) (B ; “’) Pl (63)
j=0

This expansion leads us to express the summations in (61) as poly-
nomials in P. The coefficients of the polynomial involve the sums of
all A factors with a fixed weight, w. Let us denote these sums S.(B)
where, for example,

S1(B) = Ay(B) + Ax(B) + AB) + -+ + Ap-(B);
Sx(B) = Aa(B) + - -+ + Agi-1,052(B), (64)

and in general,
Su(B) = EEA:(B); Su(B) = ; A(B), (65)

where [, is the set of all error patterns with Hamming weight, w.
Combining (63) and (65), we can write

251 B B-w B —w
:21 P()A(B) = Z_]l Z‘,ﬂ PP )Sw(B). (66)

The summations in (66) can be manipulated to form

281 B w (B—j »
¥ PAB) =Y P" ¥ W — 7 (—=1)*7S;(B)
=1 w=1 j=1 J
B
= Y P“TuB), (67)
w=1
where we define
_ . B_] _1\w-iqQ. .
T.(B) = Z& (w _ j) (=1)"7S;(B);
T,(B) = ¥ (B - 13) (—1)*7i8;(B) (68)
“ =1 \W =] .

For the natural-binary and sign-magnitude representations we have
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discovered and proved that for any input probability distribution,
Tu(B) = Tw(B) = 0 for w = 3. Thus the tranmission term in (61) is

2M_1

P()A(D) + bp 121 P()A(M)

20

031— E

=1

Y P*[T.(D) + bpTu(M))

(69)

This formula is valid for channels with random binary errors, and
Table IV presents values of Ty(B), Tx(B), T:(B), and T5(B) for three
quantizer load factors, B = 2-6 bits and Gaussian and exponential
inputs.

Table IV—Error constants for uncoded transmission

B T\(B) Ty(B) Ty(B) To(B) T\(B) Ta(B) Ty(B) T(B)
Sign Magnitude Natural Binary
Gaussian Inputs, Load Factor 1.78
2 1.146 —0.146 1.085 —-0.137 1.250 —0.354 1.194 —0.354
3 1.186 -(0.186 1.170 —0.183 1.313 —0.439 1.298 -0.439
4 1.196 -0.196 1.192 —-0.195 1.328 —0.461 1.3256 —0.461
5 1.198 —0.198 1.197 —0.198 1.332 -0.466 1.331 —0.466
6 1.199 -0.199 1.198 —0.199 1.333 —0.467 1.333 —0.467
Gaussian Inputs, Load Factor 3.16
2 0.725 0.275 0.670 0.219 1.250 -0.776  1.167 =0.776
3 0.726 0.274 0.711 0.262 1.313 —0.899 1.292 —0.899
4 0.726 0.274 0.723 0.271 1.328 -0.930 1.323 -0.930
5 0.726 0.274 0.726 0.273 1.332 —0.938 1.331 —-0.938
6 0.727 0.273 0.726 0.273 1.333 —0.940 1.333 —0.940
Gaussian Inputs, Load Factor 5.62
2 0.510 0.490 0.506 0.273 1.250 -0.990 1.137 -0.990
3 0.460 0.540 0.467 0.485 1.313 —1.165 1.292 -1.165
4 0.460 0.540 0.461 0.527 1.328 —1.196 1.323 -1.196
5 0.460 0.540 0.460 0.537 1.332 —1.204 1.331 -1.204
6 0.460 0.540 0.460 0.539 1.333 —1.206 1.333 —1.206
Exponential Inputs, Load Factor 1.78
2 0.943 0.067 0.898 0.000 1.250 —-0.557 1.176 —0.557
3 0.958 0.042 0.950 0.024 1.313 —0.667 1.296 -0.667
4 0.964 0.036 0.962 0.031 1.328 -0.692 1.324 -0.692
5 0.966 0.034 0.965 0.033 1.332 -0.698 1.331 -0.698
6 0.966 0.034 0.966 0.033 1.333 —=0.700 1.333 =0.700
Exponential Inputs, Load Factor 3.16
2 0.693 0307 0660 0168 1250 —0.807 1147 —0.807
3 0.667 0333 0670 0285 1313 —0958 1291 —0.958
4 0.666 0.334 0.668 0.321 1.328 -0.990 1.323 -0.990
5 0.666 0.334 0.667 0.330 1.332 —-0.998 1.331 —0.998
6 0.666 0.334 0.667 0.333 1.333 -1.000 1.333 -1.000
Exponential Inputs, Load Factor 5.62
2 0.637 0.463 0.527 0.205 1.250 —0.963 1.111 -0.963
3 0.465 0.635 0.492 0.430 1.313 -1.160 1.287 -1.160
4 0.459 0.541 0.468 0.512 1.328 -1.198 1.323 -1.198
5 0.458 0.542 0.461 0.534 1.332 -1.206 1.331 -1.206
6 0.458 0.542 0.459 0.540 1.333 —1.208 1.333 -1.208
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6.2 Slow fading

Now the binary-error probability is a random variable that is con-
stant over each code word but varies from word to word. In this case
the effects of digital errors can be calculated as in (69) but with the
average values P” replacing P*. These averages are computed over the
distributions of channel s/n’s that govern the random fluctuation of
P from one code word to the next.

6.3 Error-correcting codes

To analyze the performance of embedded DPCM protected by an
error-correcting channel code, we make three simplifying approxima-
tions. The first one, which pertains to the error-correcting code, states
that when there is a decoding error, all error patterns are equally
likely. Thus we assume that if the C most significant DPCM bits are
protected by the code,

1 1
P(l)=§F-_—1Pw=2—c:;Pe. =12 ---,2°=1, (70)
where Py is the word-error probability and P. is the binary-error
probability of the channel code. They are related by
2€ -1

et P (T1)

Py =
The other two approximations apply when C < D, so that the C
most significant DPCM bits are protected and the other D-C bits are
uncoded. To simplify computations for this case, we (1) ignore simul-
taneous errors in the protected and unprotected parts of the D-bit
word and (2) ignore multiple errors in the unprotected part. We
consider separately three different relationships among C, the number
of coded bits; D, the length of the entire DPCM code word; and M,
the number of bits in the minimal quantizer.

6.3.1 Entire code word protected (M < D = C)

In this case P(I) may be calculated according to (70) for all D-bit
error patterns, [ =1, 2, ---, 901 This value of P(l) is constant
throughout the first sum in (62). In the second sum we have the
probability of M-bit error patterns. For each M-bit error pattern there
are 2°~M D-bit patterns. Hence P(l) in the second sum of (62) is higher
by the factor 2°~ than P(l) in the first sum. Because each sum in
(61) is a constant probability times a sum of A factors, we write

1 -
o = o1 PJJARN(D) + bp2P MAGR(M)], (72)

where we define the sum of the first 2€ — 1 A factors
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26-1 2€-1
AD) = ¥ A(D); AGn(D) = ¥ AuD). (73)
=1 =1
Table V contains numerical values of Agum and Asum for the sets of
conditions of interest to us here.

6.3.2 Entire minimal code word, parts of the supplemental code word
protected M < C< D)

In this event we assume that all of the unprotected bits have the
binary-error probability P and that as before the protected bits have
binary-error probability P.. Furthermore, we set to 0 the probability
of simultaneous errors in the protected and unprotected parts of the
code word. (These errors occur with probability related to P.P.) We
also set to 0 the probability of multiple errors in the unprotected part
of the code word (which occur with probability less than P?). Thus we
break the first sum in (61) into two parts. The first part accounts for

Table V—Error constraints ASL(B) and AS\(B) for coded transmission

B=2 B=3 B=4
Load
Factor C=1 C=2 C=1 C=2 (C=3 C=1 C=2 C=3 C=4
Gaussian Inputs, Sign Magnitude
1.78 0.90 2.15 0.87 2.11 4.37 0.87 2.10 4.35 8.78
3.16 A 0.47 1.72 0.41 1.56 3.45 0.40 1.52 3.37 6.91
5.62 0.26 1.51 0.15 1.11 2.92 0.13 1.05 2.1 5.84
1.78 N 0.84 2.03 0.86 2.08 4.31 0.86 2.09 4.34 8.75
3.16 A 0.39 1.56 0.39 1.52 3.37 0.39 1.51 3.35 6.86
.62 0.15 1.28 0.13 1.07 2.84 0.13 1.04 2.75 5.80
Gaussian Inputs, Natural Binary
1.78 1.00 2.15 1.00 2.15 4.37 1.00 2.15 4.37 8.78
3.16 A 1.00 1.72 1.00 1.72 3.46 1.00 1.72 3.45 6.91
5.62 1.00 1.51 1.00 1.51 2.92 1.00 1.51 2.92 5.84
1.78 N 0.95 2.03 0.99 2.12 4.31 1.00 2.14 4.36 8.75
3.16 A 0.89 1.56 0.97 1.68 3.37 0.99 1.71 3.43 6.86
5.62 0.78 1.28 0.95 1.46 2.84 0.99 1.50 2.90 5.80
Exponential Inputs, Sign Magnitude
1.78 0.69 1.94 0.65 1.81 3.92 0.64 1.78 3.85 7.86
3.16 A 0.44 1.69 0.35 1.41 3.33 0.34 1.35 3.20 6.66
5.62 0.29 1.54 0.15 1.09 2.93 0.13 0.99 2.69 5.83
1.78 - 0.62 1.80 0.63 1.77 3.85 0.63 1.77 3.83 7.82
3.16 A 0.34 149 0.33 1.37 3.25 0.33 1.34 3.18 6.62
5.62 0.15 1.26 0.13 1.03 2.83 0.12 0.97 2.67 5.79
Exponential Inputs, Natural Binary

1.78 1.00 1.94 1.00 1.94 3.92 1.00 1.94 3.92 7.86
3.16 A 1.00 1.69 1.00 1.69 3.33 1.00 1.69 3.33 6.66
5.62 1.00 1.54 1.00 1.54 2.93 1.00 1.54 293 5.83
1.78 090 180 097 191 38 099 193 39 7.82
316 A 083 149 095 164 325 099 168 331 6.62
5.62 0.73 1.26 0.92 1.46 2.83 0.98 1.52 2.90 5.79
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errors in the first C (protected) bits when the other D-C bits are error
free, /=1, 2, ---, 2° — 1. The second part accounts for single errors
in the remaining D-C bits when the first C bits are error free, [ =
2¢ 2¢+1 ... 20-1 The result is

Pe N D-1 . ‘F)e
ok = = AC(D)+ P :'Z:c As(D) + bp2t™ 2c1 AQDM).  (74)
In the second term we use the approximation
P = P(1 — P)’"%'(1 — Py) (75)

for the probability of a single error in the unprotected part of the code
word. A further approximation Az(D) = A»(D) simplifies computation
of the second term of (74) because, for natural-binary and sign-
magnitude representations, (56) applies for b > 1. This allows us to
derive

D-1

T AxD) = 4(47¢ — 47°)/38 = AQ(D). (76)
1=C

Thus for M < C < D we have the formula

1 .
ok = = PJACL(D) + bp2°~MAM(M)] + PAQ(D).  (77)

6.3.3 Part of the minimal code word protected (C <M < D)

Just as we decomposed the first sum in (61) into two parts in the
previous case, we similarly decompose the second sum when some of
the M minimal bits are unprotected. The result is

P, .
oo = 901 [ASW(D) + bpAGH(M)] + P[AQ(D) + bpAR(M)].  (78)

VIl. NUMERICAL RESULTS

The useful computational formulas (61), (62), (69), (72), (77), and
(78) are summarized in Table VI. In this section we apply these
formulas to illustrate some of the properties of embedded DPCM and
its relationship to conventional DPCM.

7.1 Source characteristics

All of our numerical results pertain to a Gauss-Markov input signal
with adjacent-sample correlation r; = 0.85. The codec uses single
integration with coefficient a; = 0.85 and the load factor, L = v10.
For this configuration the coding gain is G = 3.6. If the embedded
codec has a minimal quantizer with M = 2 bits, Cyource in Table VI is
0.31. For conventional DPCM Ciource = 0.35 with 3 bits/sample and
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Table VI—Signal-to-noise ratio of embedded DPCM

Cmum G[l - dpLEG':(M)]
= . Clnum =¥
/0= 3D) + ok L’
(a) Notation
General Formula for Single
Symbol Description Formula Integration
G Coding gain (26) (1 - 2aim + ad)!
ap Predictor gain (30) a?
L Load factor (33)
M Minimal codec bits
bD Trargsmitted bits (@0), 1)
1 + bp is integrator gain 20), (21 2/(1 — a2
r; B) aﬂjacpent-sample autocorrelation 227; ai/( a1)
4 antizing noise 49 —28
ggl Transmission-error effects (62) Z7/3 or Table II
(b) Error Formulas*
Transmission Format Error Effect o2,

2

No channel code (Table IV) ¥ PY[Tu(D) + bpTu(M)]
1

C bits coded (Table V) -

M<D=C S {ARAD) + b2 AL (M)

M<C<D (ALLD) + b2 MALM)] + PAS(D)
C<M=<D éf—jl[ASE.’..(D) + bpASLM)] + PIAS(D) + bpA(M)]

* P: binary-error rate, uncoded bits; P.: binary-error rate, coded bits; AS)(D) =
4(47C — 470)/3.

0.36 with 4 bits/sample. Thus the quantizing-noise penalty of the
embedded codec is 0.54 dB when 3 bits are transmitted, and 0.68 dB
when 4 bits are transmitted. As indicated in Ref. 8 these penalties
increase for higher values of L and a,. They decrease rapidly as M
increases.

7.2 Modulation, channel, error-correcting codes

In our numerical examples the modulation is coherent phase shift
keying (CPSK) so that in a white-Gaussian-noise channel the binary
error probability is

P = Q(v2p), (79)
where p is the channel s/n and
— L f B —t%/2
Q(x) 7 ., e 2 dt. (80)

Figures 3 and 4 depict performance with three different convolutional
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codes. For all of them, we use the following truncated union bound to
calculate binary-error probability:
1 d+4

P. == ¥ wiQ(+2ip). (81)
m i=q

where m = 1, 2, 3 for the rate 1/2, 2/3, and 3/4 codes, respectively,
and the coefficients w; and the free distance, d, characterize the
convolutional coder and decoder. The codes considered here are punc-
tured codes!® with constraint length 5 (16 states in the decoder mem-
ory). Table VII contains their coefficients and free distances. The
combination of (79) and (81) with the formulas in Table VI produces
the curves in Figs. 3, 4, 5, and 8.

For transmission environments other than CPSK in a white-Gaus-
sian-noise channel, there are formulas for P and P. to be used in place
of (79) and (81). There are many families of modulation schemes,
channel conditions, error-correcting codes, and reception techniques
that are of practical interest. This paper provides the tools for studying
their effects on the performance of embedded and conventional
DPCM. This is a subject worthy of further investigation.

7.3 Binary number representation

Without forward-error correction, the noise due to transmission
errors is dominated by the effects of single errors in the most signifi-
cant part of the transmitted code word. With the natural-binary
representation, an error in the most significant bit always causes a
noise impulse of half the peak-to-peak range of the quantizer (56).
With the sign-magnitude representation, an error in the sign bit
inverts the polarity of the quantized signal, thereby producing a noise
impulse of approximately twice the magnitude of the quantizer input

Table VII—Source and channel code formats,
convolutional code properties

Format 1 Format 2 Format 3 Format 4
Source code
bits/sample 4 3 3 2
bits/second 32K 24K 24K 16K
bits/sample
protecte 0 3 2 2
Channel code
rate No code 3/4 2/3 1/2
Free distance, d 4 5 7
Weight w, 22 25 4
W Error 0 112 12
Wasa Properties 1687 357 20
Wd+a 0 1858 72
Wass 66964 8406 225
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Fig. 8—Performance of embedded DPCM with sign-magnitude and natural-binary
representations of quantizer outputs.

(67). Consequently, quantizers employing the sign-magnitude repre-
sentation are somewhat less affected by transmission errors than
quantizers with the natural-binary representation when the input
probability distribution has its mode at zero. This is illustrated in Fig.
8, which pertains to uncoded 32 kb/s embedded DPCM transmission.
When transmission errors are the dominant distortion, signals repre-
sented in the natural-binary format are about 2 dB noisier than signals
represented by the sign-magnitude format.

With forward error correction, all error patterns are equally likely,
and the two representations have essentially the same s/n.
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