
M. P. Publishing Co. Box 378

ECS
Publisher's Introduction:

Belmont, Mass. 02178 Vol. 1 No.4 April '75

THE MONTHL Y MAGAZINE OF IDEAS
FOR THE MICROCOMPUTER EXPERIMENTER

Here you have the April 1975 issue of ECS, complete and unexpurgated. The main
theme of this issue is the introduction of the "SIRIUS-MP" language as a notational form
for expressing programs. The idea of SIRIUS-MP is to slightly generalize the low
level code approach to program notation so that it will be fairly expedient for subscribers
to hand "cross compile" programs on whatever variation of the "home brew computer"
concept they have implemented. The variations on this theme include •••

1. The SIRIUS-MP Language. • • This article, beginning on page 2, is a first
statement in these pages of some of the concepts involved in the language.
It also provides information useful in understanding the several SIRIUS examples
found in this issue.

2. BOOTER: An "Emergency" Bootstrap Loader... It is common knowledge
what to "do when the lights go out." But what do you do after the lights go out
when your computer and volatile software were on the same power source as
the lights? Turn to page 11 for a description of an emergency bootstrap loader
concocted one weekend to combat electron deficiency anemia.

3. IMP Extensions For Tape Interface Control (Continued •••) In the last issue,
I did not quite fit all r intended to print within the confines of 28 pages. The re
maining segments of the tape interface are presented in a SIRIUS fashion along
with the equivalent 8008 code, beginning on page 14.

4. Comments on the ECS-8 Design: Turn to page 19 for a short note on one
aspect of the ECS-8 design which I should have pointed out in the March article,
and was the source of a complaint from my brother Peter Helmers.

5. Notes on NAVIGATION IN THE VICINITY OF <X-AQUILA ••• *1. So, you
went out and got your self an Altair computer? Now what? Turn to page 20 for
the first in a continuing series of articles on the use and abuse of the Intel 8080
instruction set in an ECS context - with occasional intermingled information on
hardware interfaces to be supplied from time to time (but not this time however.)

6. Erratum: Turn to page 24 for a smrt note about an ECS-7 diagram error.

7. A Note Concerning The Motorola 6800 MPU: Also on page 24 is a short note
concerning the use of the M6800 in an ECS context, now possible to contemplate
on a practical basis in the near future.

This issue is going to press April 211975. The next issue is fairly well defined as of
this date, and will include: an article by subscriber James Hogenson concerning the
design of a unique oscilliscope graphics interface featuring a 4096 point (64 x 64 grid)
matrix of spot locations; a continuation of the software discussions begun in this issue;
and possibly a review of one or two tools which will be of interest to readers.

tAd tJ, ?kAw.w, t.
Carl T. Helmers, ~r.
Publisher April 20 1975

@ 1975 M. P. Publishing Co. All Rights Reserved.

ECS Volume I No.4 2 April 1975

Th e SIRIU S- MP Lan g u ag e •..

a n approach to machine independent low level c ode.

This issue begins a subject which will continue in the pages
of E C Sfor some time to come: the subject of expressing pro
grams in a fairly well defined low level "language" which is in
principle independent of any particular microprocessor or other
small computer you might have. This will facilitate your use
of published programs written for an 8080 if you own an IMP-l6,
or programs written for 8008 if you own an M6800, etc. - pro
vided the programs in question are expressed in the SIRIUS way.

The name I have chosen for this language is "SIRIUS-MP".
The SIRIUS is a combination of an April pun and the following
input: if Altair is the brightest star (visual magnitude) in the
constellation Aquila, then let me modestly name this mode of
program expres sion after the brightest star in the sky, the
star oC-Canis Major or SIRIUS. So, if you are SIRIUS about
Altair (or other computers available inexpensively both now and
in the near future) you will find this series of articles illumin
ating. So much for the advertisement now to turn to some ·
information content .••.

WHAT IS A COMPUTER LANGUAGE ?

The answer to this question (as is always the c ase with complicated subjects) can
range from the superficial to the formal mathematical intricacies of compiler-writing
and language design. Since this publication is not a technical journal on software eng
ineering, it must neces sarily leave out a lot of the detailed information on the subject,
to concentrate on the application of the concept. (Upon sufficient interest - one inquiry
I'll spend an evening sometime and compile a bibleography on the subject of compilers
and computer languages.) With this disclaimer I'll proceed to the subject of computer
languages in the context of a home brew microcomputer system.

Starting from first principles, what is a "language" (eg: English, German, Pidgin,
integral calculus, set theory) in general? I'll confine the subject arbitrarily to the
c oncept of "written languages" and put forth the following formulation:

A LANGUAGE IS A HUMAN INVENTION FOR THE PURPOSE OF
EXPRESSING THOUGHTS.

This definition is filled with implications: language is an invented technology (probably
the first) of humans (or other critters.) language is utilized in communicating thoughts
between individuals. Language is appropriate to thinking beings. Now what could
this possibly have to do with your urge to program and use a microcomputer ?

)

ECS Volwne 1 No.4 3 April 1975

A fair amount of course! The specific application of the language conc ept to the
problem of programming a computer is the concept of a "programming language."
The specific part of this application is the limiting of computer languages to certain
c1as ses of thoughts •••

A COMPUTER LANGUAGE IS A HUMAN INVENTION FOR THE PURPOSE
OF EXPRESSING COMPUTER PROGRAMS.

Just as there are numerous variations on the "natural language" concept (Eg: ENGLISH),
the diversity of h\Ullan thought has lead to a wide range of computer languages from the
most general to the specific and application oriented. In each such language, the
author(s) have s elected a set of elements needed to solve the particular problem and
combined these in a (more or less) self consistent manner and come up with a solution
to the problem of expressing programs of a particular class.

The creation of a programming language for the particular case of a microprocessor
system in the "homebrew" (ie: limited hardware) environment is the object of this
series of articles in ECS. When you design and or build a hardware system, your first
problem is solved - a computer that "works". To get beyond this first phase the problem
become s developing the programs enabling your system to do interesting things. A
language can be used for~.3 purposes in the process of programming your computer:

a. An appropriate language enables you to abstractly specify a program in
a first iteration of design without worrying "too much" about details. Get
the control flow figured out first, then worry about low level subroutines r

b. An appropriate language will enable you to hand compile programs ex
pressed in that language for use on your own computer, even if the program
was developed and debugged on another computer. You know the "algorithm"
works even though you have not yet translated it to your own use.

c. A language appropriate for the home microprocessor will be of sufficient
simplicity to allow hand compilation or compilation by a very simple compiler.

These considerations - the definition of a "home brew computer" context - are a major
input into the design of the SIRIUS -MP method of program expression.

SETTING THE PROJECT IN CONTEXT:
HOW WILL SIRIUS-MP COMPARE TO EXISTING LANGUAGES?

The approach taken in the choice of elements for the SIRIUS-MP language is that of
a "pseudo assembly language." An assembler is the simplest of all software developme'
aids to write, so this choice tends to satisfy criterion "c" above. But what about "a"
and IIb ll? This is where the IIpseudo" part enters the description: it is a language
one step removed from the detailed instruction level in many of its operations. SIRIUS
is an assembly-type language for a class of similar machine architectures - with opera
tions found in general on such machines forming its "primitives." The subject of addres
resolution is left intentionally non- specific and symbolic so that variations in the way

ECS Volume 1 No.4 4 April 197 5

data is accessed can be left to the hand or machine-aided process of generating code
for your own system. Many of the statements written in this form will generate only
a single instruction on the "object" machine - but others will require a series of sever
al instructions to specify required actions on a given machine. It is my intention to
include within this "pseudo as s embly language" concept several programming constructs
borrowed from high order languages in current usage - but stripped of the complex syn
tax of a true high level language and specified in the simplified form of the SIRlUS-MP
syntax, such as it is. Thi s adaptation of a language to a specific purpos e and clas s of
users is a widespread practice in the compiler Ilanguage design business. Several ex
amples come to mind of specific languages for specific usage contexts:

XPL - this language is the compiler -writer I s language to a great extent. It
is a specific and limited subset of PL/I by McKeeman, Wortman and
Horning which isdocumented in a book entitled "A Compiler Generator. "
The adaptation here is to concentrate on those features necessary for the
writing of compilers and exclude all else. (Intel PL/M is very close to XPL)

HAL/S - this language was developed for guidance; navigation and control appli
cations of NASA by Intermetrics Inc., the author's employer of several years.
HAL/S is specialized to include the vector and matrix data forms used in space
craft navigation - and to provide highly visible "self-documented" code which was
not pos sible in the as sembly language style approach used in the Apollo progratn.

SNOBOL - here is a language which is primarily oriented to "string handling"
programs - a very broad range of applications, i n some sense including
the writing of compilers as well.

ALGOL - this language is the antecedent of many currently used languages,
whose original intent was a specialization in generality - the ways in which
algorithms could be best specified, in the abstract form.

These languages are all examples of much more extensive and complex methods of
program expres sion from a compiler writer I s standpoint - although from the user's
standpoint they are orders of magnitude easier to program with than doing the equivalent
in a low level "pseudo assembly language" or formal assembly language for a specific
machine. It i s the problem of generating code by hand or with minimal program aids
which limits the possibilities of SIRlUS program specifications to the low level approach.

WHAT ARE THE COMPONENTS OF A COMPUTER LANGUAGE ?

For those readers with a software or computer-science background, this di s
cussion is in the nature of a reyiew. For readers with little programming background
this will present new information.

When you build a computer from a kit or from scratch, your problem is to put together
a set of hardware components according to a certain system design (usually inherent in
the microcomputer chip design) such that all the components play together as a working

system. At a level of abstraction far removed from - yet still within the context of -
the detailed hardware, a language for computers is also a construction of component parts
which must "play together" according to a particular design if the languag e is to be

ECS Volume I No.4 5 April 197 5

useful as a means of expressing programs. At the most abstract level of discussion, a
language consists of two major component parts designed to provide an interface between
a human being's thoughts and the :requirements of computing automata. These are:

SYNT AX: - this component of the language is the set of rules concerning the
correct formulation of basic "statements" or "expressions" in the lang':lage
in que stion.

SEMANTICS: - this c omponent of the language is the set of rules governing the
intelligible combinations of syntax elements - the combinations which produce
a well defined and translatable meaning which can be used in turn to generate
machine code for some "object" or "target" machine of a compiler.

The syntax and semantics of a programming language can be chosen with a somewhat
ill-defined border: one of the major trade-offs to be done in designing a language and
associated compiler is deciding how much of the work is to be performed by the syntac
tical analysis and how much is to be left to semantic interpretation. At one extreme there
is the complex syntax of a high order language in which much of the semantic intent of
a statement is inherent in the syntax used; at the other extreme there is the case of the
simple "assembly language" style of syntax in which very little function is inherent in
the syntax - which merely distinguishes labels, operators and operands.

SIRIUS-MP is at the "assembly language" end of the trade - its syntax i s kept simple,
so that a minitnal compiler (or hand compilation) will be used to translate it to machine
codes, and the semantic interpretations are largely look-ups based on the specific content
of the statements coded in a program, with very little variation on c ertain basic forms
for operands and operators.

SPECIFICATION OF SIRIUS-MP:

The specification of a language can be a very formal and very dry process. A languag,
specification is ultitnately required in order to clearly convey the meaning of statements
coded in the language, the legal variations on such statements, etc. · etc. A certain level
of consistency in specification is required, for instance, if . I want to write a compiler
for a given language. At the present time, however, my reasons for formulating SIRlUS
are much less demanding than the formal specification of a language: I am interested
in creating a method of describing programs which will be heavily commented and used
principally for publication in ECS (and possibly other publications.) Thus the specifica
tion is left in a fairly "soft" form for the time being within a general framework describec
in this issue. The time for a formal specification will be the day I sit down and write
an appropriate compiler - or a reader decides to do so through impatience and the desire
to write one for publication (wi th the usual royalty of course.)

In lieu of a really formal specification of the SIRIUS-MP language, the next few pages
contain an informal description of several notational devices employed in the examples of
SIRIUS-MP programs in this issue, and comments on why the forms are used. The areas
covered are: STATEMENTS, ADDRESSING & REFERENCE, DATA REPRESENTATIONS,
and OPERATIONS. Omitted in the present discussion are several languages forms to
be described at a later time, including certain "structured programyning" concepts and
details of argument/parameter linkage conventions for subroutine calls in SIRIUS-MF.

ECS Volume I No.4 6 April 1975

STATEMENTS:

The basic notational unit of a program which is written in SIRIUS-MP is the "state-
ment. II The statement concept embraces the others mentioned on page 5, as can be
illustrated by the following prototype format:

LABEL:
TARGET OP SOURCE * COMMENTS ;

As in most decent assemblers, the intent is to make the statement "free form" and
thus requirin~ no fixed column or line boundaries. Hence the following devices are
used as a part of the syntax:

The end of a statement is indicated by a
PL/l-like languages. *

II." , (semicolon) as in a host of

A label, if present, is distinguished from the first (TARGET) operand or
the operation mnemoni"c (OP) by a ":" (colon) •. With this choice of trailer,
labels must not duplicate any operation codes (OP) which can have similar endings.

An asterisk (*) is shown as a separator between the main part of the state
ment and the comments field at the right.

For examples of the use of this format, see the several program listings included with
this issue below. The fields in this prototype statement are as follows:

LABEL - this field (and its ":" separator) is optional and is used to define a symbolic
program label. A label is ultimately required to define all symbols used in a pro
gram with the exception of certain implicitly defined symbols such as CPU registers
and flags.

TARGET - this field (optional) specifies a symbolic reference or absolute address for
the memory location (s) or I/O devices which will receive data as a result of an op
eration. Certain operations will not require a target field for proper notation.

OP - this field is required in order to specify an "operation" to be performed at some
time. Certain operations will correspond to executable code in the translation. Others
will be used to reserve storage and indicate aspects of the program generation pro

cess.

SOURCE - this field is required to specify a minimum of one operand for each opera
tion. Its format will vary depending upon the type of operation intended :- variations
will include various forms of symbolic reference as well as compound forms used
to control functions such as "FOR" loop constructs or "IF" statements.

COMMENTS - here the field interit and use is fairly obvious - to explain what is going
on it is us eful to make notations.

* Note: The alternate form of statement boundary indication to the ";" is to start
a new statement on a new line. The examples in this issue all omit the ";" specified
above - a detail to be corrected in future issues.

ECS Volume I No.4 7 April 1975

ADDRESSING AND REFERENCE:

For those individuals who have experience with high level languages (eg: FORTRAN,
COBOL, PL/I, ALGOL, BASIC etc.) the common experience is to blithly go ahead and
program an application with the various "variables" declared within a program by impli
cit or explicit means. This approach is appropriate for a high order language in most
instances because the problem of addressing and referencing. data in the computer has
been solved in a fairly general and quite reliable manner by the compiler writers. When
the time comes to drop down one level of abstraction to the assembly level, the problem
of addressing has to be again considered in a more explicit manner since many more
details of machine architecture are inherent in such programming. In deciding what
forms of addres sing and data reference to include in SIRIUS-MP, the low level approach
is augmented by several methods of more abstract reference. The following are sOlne
key referencing concepts:

ABSOLUTE ADDRESS: The concept here is of a fixed location in the memory address
space of the computer or a given I/O instruction channel designation. In a system
built around a Motorola 6800 for example, most I/O operations will be carried out
with reference to absolute addresses for the I/O interface memory locations - at
least in simple programs this will be the case. In the INTEL or National IMP-16
architectures explicit choices of I/O channel require designation of numbers, often
in an absolute form.

EXAMPLE: The Octal expression 020023 could represent
an absolute address.

SYMBOLIC ADDRESS: The concept here is to reference the name of a data item in an
instruction rather than its actual address. In principal all such names map into a
fixed and unique address at execution, either through the operation of a compiler's
address resolution or through a run time lookup mechanism such as the SYM routine
used in the previously published ECS 8008 software. In SIRIUS notation, a symbol
is defined by its appearance as a LABEL of a statement, or its existence as a pre
defined entity such as a register designation.

EXAMPLE: Given label ANYSYM, a reference in some other (eg: assignment)
statement might be:

ANYSYM =; 0 (as the TARGET operand.)

INDEXED SYMBOLIC ADDRESS: The concept here is to reference the starting loca-
tion of a block of memory by the first symbol involved, and to indicate an offset
(from zero up) in bytes by a second symbol or literal in parentheses following the
fir st. Thus:

or

ANYSYM(OFFSET) is a reference to the location ANYSYM
plus the current value of OFFSET when the statement is
executed.

ANYSYM(23) is a reference to address ANYSYM plus 23.

An alternate form of expression for this would be to show an addition (+) operator
rather than use a FORTRAN or PL/I- like subscript reference with parenthesis.

ECS Volume 1 No.4 8 April 197 5

SPECIAL SYMBOLIC ADDRESSES: Here the concept is the notation of certain sytnbols
with a fixed meaning, which in an assembler would effectively become "reserved"
sytnbols not subject to redefinition. The forms used in the listings in SIRIUS in this
issue are the following:

W(ANYSYM) means "the whereabouts of ANYSYM" and is the notation used
to indicate a reference to the absolute address of the symbol.

M(ANYSYM) means "memory reference to the location found jn the value of
ANYSYM." This is the basic "pointer" form used, and will assume that

the v.alue in ANYSYM is a full address (eg: 16 bits for most machines.)

T(ANYJMP) means "the address portion of a jump instruction at ANYJMP".
This notation was introduced to allow the equivalent of a FORTRAN
assigned GO TO to be used by altering a jump instruction.

A, B, C, D, E, H, L . are sytnbols used freely to represent registers on the Intel
8008 and 8080 type of machine architectures. In translating this reference
to a Motorola 6800 or National IMP-16, or other computer architecture,
an appropriate software equivalent would be used if registers
are not available.

L(ADDRESS), H(ADDRESS) are used to reference the Low and High order porHons
of a full address (eg: 14 or 16 bits) on typical microcomputers when it is desirE'
to examine only one byte. This is especially useful as a notation for the Intel
architectures, but the same functional meaning goes on other machines.

The various forms of addressing and reference described c.an be used t o specify the
"operands" - SOURCE and TARGET - of a statement. The concept of a "SYMBOL"
is the generalized idea of one of these forms of reference (excluding absolute references.)
A "symbol table" for a program is a list of such sytnbols, usually including some
additional information about the item. In a future article on the hand generation of code
this concept will be explored in more detail.

DATA REPRESENTATIONS:

A "data representation" is a method of conc.eptually treating a group of data bits in
the storage of a machine, and is. usually fairly dependent upon hardware features of a
given machine. The basic data representation of all the extant 8.,. bit microcomputers is
the 8- bit binary integer (two's complement is the rule.) This is augmented in certain
machines such as the 8080 and the 6800 by a limited set of 16-bit operations implemented
to handle address calculations. For the l6-bit microcomputers and minicomputers, the
word length as a rule sets the basic representation as a 16-bit integer, although smaller
8 bit quanta can usually be employed. This immediately suggests that the basic assump-

tion to be built into SIRIUS-MP is that data ought to be operated upon in 8 and 16 bit

ECS Volume 1 No.4 9 April 1975

quanta. This will prove a useful decision for most processors likely to be in common
use by readers of this publication (if there is enough interest, I'll make some comments
at a future time on adaptation to l2-bit machines such as the DEC PDP-8 and its imita-
tors.) The two representations are thus (pictorially) . . • '

I
~M~S~B~ _______ -=LS~B~ MSB LSB

~.~~_~~~~I~~ __ ~II ~~I~I~I~~I~I~I __ ~I ~r~I~~~I~I~I~I~ ___
7 6 5 4 3 2 1 0 15 141312 11 10 9 8 7· 6 5 4 3 2 1 0

8-bit integer l6-bit integer

The fact that there are two possible ways to reference integers built into the hardware
operations of the typical 8 and 16 bit microcomputer formats, (8008 excluded) leads
to a desire to specify a notation for the length of data involved. I could choose among
two basic alternatives in this area:

a. Specify data type in some form of declaratory way. This would be analogous
to an XPL statement such as "DECLARE X FIXED;" or a FORTRAN state
ment such as "INTEGER X".

b. Specify data type(length) as a part of the croice of operands used. Here the
information on length of operations is specified when the data is used - thus the
program has a bit of extra redundancy in its notation (the extra characters needed
to specify this type information) but the operations performed are much more
visible at the local level.

The choice I made was for the second alternative, primarily to reduce the need for a
symbol table to the barest minimum of information - consistent with the simplifications
needed for a compact assembler or hand compilation. A secondary reason is the one'
stated in "b" - local type indications give a better documented program. In the integer
operations used by programs in SIRIUS, a single colon (as in "AND:") is used to indicate
where CIl 8-bit operation is involved, and a double colon (as in "AND::") is used to
indicate the 16-bit form of an operation. A final comment on integers: where a signed
integer representation is required in two's complement notation, the sign of the number
is represented by the most significant bit (bit 7 of length 8 words, bit 15 of length 16
words.) This is the bit tested by the "S" flag on the various microcomputers.

Byte String Data: One additional data type will be required for programming the
various microcomputers using SIRIUS-MP. This data type is the generalized concept
of a "byte string. II The representation is
designed for manipulation of blocks of data in
memory, in a form consisting of a length byte
at the "anchor" (starting address) of the string,
followed by from 0 to 255 data bytes at consec
utive addresses. This is a format which is iden
tical to that used in many byte oriented compilers
(eg: XPL) and is a virtual necessity for handling
character texts. Applications will not be restric
ted to character texts, however, for one partic-

ular use could include variable length decimal
arithInetic using packed BCD byte strings.

ECS Volume I No.4 10 April 197 5

Byte strings are most conveniently handled on computers which have byte addressability
of memory locations - eg: the IBM 360/370 series as well as the smaller (8080 p 8008,
6800) microcomputers. For 16 bit minicomputers and microcomputers p the concept is
still us eful, but requires explicit address calculations as a part of unpacking and manip
ulating two bytes per word. Operations on byte strings will use the notation of a number
sign "#" to indicate the variable munber of bytes involved.

OPERATIONS:

With the above introduction regarding data representations p it is now possible to
consider the basic operations possible. The list here represents those used in the nota
tion of the programs in this is sue. In a later issue PH expand the explanations of some
of these operations and corresponding machine code for typical machines. There
are also several operations which I have not used in the notation of the current set of
programs, but which will be the subject of future notes in this area. The following
is a list of the operations used with program notation in this issuep omitting the type
indicators

AND
Assignment(=)
CALL
CLEAR
DECR

GOTO
HALT
IF
IFNOT
INCR

INPUT
IOEXCH
KEYWAIT
OR
OUTPUT

The operations AND, OR, GOTO, HALT p INPUT and OUTPUT all have direct ana
logs in the CPU operations when 8-bit quantities are used with machines such as the
8008, 8080 or 6800. The examples I 8008 generated code versions illustrate one such
representation. Some further notes will help illuminate the code generation process for
the other operations.

For all operations which have direct analogs in the machine architecturep the code
used for the machine level version must consist primarily of establishing the address
ability of operands (source and ta,rget) and then execution of the operation. This process
is illustrated in the several examples. For 8 bit machines with 16 bit operations p the
code generated must be generalized to 16 bits - for the 8008 this is done in the illustrated
programs by appropriate subroutines for increment, decrement and comparison, so code
generation consists of writi.ng down machine codes for a subroutine call and argument

linkage.

Assignm.ent always will map into a sequence of operations needed to move data from
the source to the target. The 8008 generated code of these exampies is an extension of
the previously described symbol table mechanism for address lookup (see February 1975
ECS.) For 16 bit quanta this process can often be done using a CPU register pair for
the 8 bit mac hines. but will invariably require a subroutine when byte strings are involved.

The IF statement form used in the examples is found in both a negative and positive
sense. In either case the TARGET (lefthand) operand is the place where execution will
go if the condition tests true. Two forms of the condition (SOURCE) operand are used :

1-

1

•
" ~-

ECS Volume I No.4 11 April 1975

a. Flag Reference: Here the intent is to use a mnemonic key word,
for example "ZERO" to reference one of the CPU flagsofa typical micro
after an ins truction which might alter such flag s.

b. Tests: Here the intent is to specify two operands symbolically which
are to be compared. I have grouped such references in parenthesis to sim
plify mechanical interpretation by a compiler, and have used the assignment
symbol "=" with its length code with the usual duplicitY to indicate the compar
ison test operation.

A disclaimer is appropriate at this point - I am not satisfied with the IF condition test
format illustrated in these examples of several programs, and will be experimenting with
SOIl1e alternatives.

GENERATION OF CODE:

The semantic intent of the language forms used to represent the several programs in
this issue can be deduced from the comments in the listings and the general descriptive
information in the previous pages. One remaining problem is the generation of code.
For the time being, I am limiting information on this (very large) subject to the exazn
pIes illustrated below for an 8008 case and the notes accompanying the examples. I
think there is sufficient information content to facilitate interpretation and generation
of corresponding machine code for proces sors such as the 8080 (very close) or the
6800.

BOOTER: AN "EMERGENCY" BOOTSTRAP LOADER

The first example of a SIRIUS-MP . program is a short and self-contained program
called "BOOTER. ". All programs ultimately solve problems. This particular program
solved a problem which I had one weekend, and served as an "acid test" of the utility
of the ECS-8 tape interface. As soon as I had the interface software up and running (the
dump portion presented in March ECS' s pages) I began dumping the entire CPU software
load to cassettes at regular intervals asa "failsafe" against Boston Edison's next power
failure. The planning for that contingency - which by the way did happen in an ice storm
in January to my consternation - paid off in a different way: I made the foolish mistake
of turning off the power via a switch on my bench, now taped over solidly. Since I was
working on SIRIUS-MP as a program writing tool, I took the opportunity to test out the
expression it provides by writing the BOOTER source program appearing at the top of
the next page. I won't claim perfection, however the original form of the program was
essentially the same as the listing illustrated.

Loading is accomplished as follows: in the tape format described in the last issue,
the first legitimate data is the length code (two bytes which I knew had "007" and "377"
values for my tapes.) Since none of the tape spacing and preparation routines of the IMP
program would be available in the blank computer memory being boo·tstrapped, the only
way to synchronize tape data with the program was to listen continuously for the "007/1
character (state 1, LOOKFIRST tests for "007"), then check for a succeeding "377"
byte (state 2, WELLMAYBEtests for "377"), then commence loading bytes starting at

ECS Volume 1 No.4 12 April 1975

The BOOTER program, listed in .SIRIUS-MP.

1
2
3
~.

6

A
9

BOOTER:

BLOOP:

B
X
36

A

A
A
A
BLOOP

GETCHAR:
H(X)

=:
=: :
OUTPUT
CLEAR
IOEXCH

=:
IOEXCH
AND:
IFNOT

INPUT
DECR:

10
11
12
13

LOOKFIRST IF
DECR:

~ WELLMAYBE IF
DECR:

16
17

FORSURE IF

FORSURE:
18 36
19 37
20
21 B
22

LOOKFIRST:
23 B
24 BLOOP
25 B
26

WELLMAYBE:
'2.7 B
28 BLOOP
29 B
30

HALT

OUTPUT
OUTPUT
INCR: :
=:
GOTa

=:
IFNOT
=:
GOTO

=:
IFNOT
=:
GOTO

1
2000
377
A
4
27
4
140
(A=:140)

2
B
ZERO
B
ZERO
B
ZERO

H(X)
L(X)
x
3
BLOOP

1
(A=:007)
2
BLOOP

1
(A=:377)
3
BLOOP

It INrI! AL STATE IS 1
* (UlTELESE 004/000) START ADDR
I} TURN ON A DISPLAY

* * RESET THE 10 UNIT

* "0001 01 1 1" UNIT CONTROL
* CHECK STATUS OF TAPE * MASK OFF RDY & RDA BITS
* LOOP BACK UNTIL READY

* READ THE DATA (NO EXCHANGE)
* * HAVE STATE 1 DETECTED
* * HAVE STATE 2 DETECTED

* * HAVE STATE 3 DETECTED * (OOPS! SHOULDN'T GET HERE)

* WRITE TO DISPLAY * LOW ORDER ADDR TO DISPLAY * POUlT TO NEXT BYTE IN MEMORY * RESET STATE 3 INDICATION
I} BACK FOR HORE INDEFINITELY

* DEFAULT STATE 1 CONTINUE * LOOK FOR OCTAL "007")
* IF FOUND. STATE SET TO 2
* AND GO BACK TO FIND "377")

* DEFAULT BACK TO STATE 1
* LOOK FOR OCTAL"377" * MAIN LOAD LOOP IF FOUND NOW
*

Variables

A : CPU register for I/O
B CPU register orm,em.
X Address pointer (CPU)
ZERO: CPU flag for zero result

Notations

M(X) : memory at location in
pointer variable X.

L(X) : low order 8 bytes of X

And the equivalent 8008 version of this algorithm ••••

Label 8008 Code Bytes SlRlUS-MP
Statement

BOOTER: 00 \110 • 016 LBI
• 1. 00 \111 .. . 001 1

00· \112 .. 056 Lin 82.
00 \113 " 004 h(LOAD POINT)
00 \114 .. 066 LLI
00 \115 " 000 I(LOAD POINT)
00 \116 .. 006 LA! • 3 •
00 \11" .. J '''' 377
00 \120 .. 175 OUT36
00 \121 • ~50 XRA • -4.
00 \122 .. III IN-4 • S.

BLOOP: 00 \123 .. 006 LA! • 6.
00 \124 .. 021 "0001 Oill"
00 \.125 .. III IN4 • 7.
00 \126 .. 044 NDI & 8.
00 \121 " 140 "01100 000"
00 \130 .. 0"4 CPI • 9.
00 \lJI .. 140 "01 100 000"
00 \IJ2 .. 110 JFZ BLOOP
00 \133 .. 123 L
00 \lJ4 .. 000 H
00 \IJS • 113 IN5 tRead Tape) .10.
00 \lJ6 .. 3-'0 LMA
00 \137 · 011 DCB s ll.
00 \140 .. 150 JTZ 1.00KFlRST 812.
00 \141 .. 166 L
00 \142 .. 000 H
00 \143 -Oil DCB • 13.
00 \144 • ISO JTZ WELLMAYBE • 14.
00 \145 .. 202 L
00 \146 - 000 H

·00 \147 -Oil DCB .15,

00 \150 .. ISO JTZ FORSURE .16.
00 \151 .. 154 L
00 \152 • 000 H
00 \153 .. 3 '11 HALT .17 •

F'OltSURE:
00 \154 .. . JO·' LAM .18.
00 \155 • 175 OUT36
00' \156 .. J06 LAL • 19.
00 \151 • 117 OUT37
00 \160 • 055 NEXTA .20.
00 \161 " 016 LBI 8 21.
00 \162 .. 003 3
00 \16J - 104 JMP BLOOP • 22.
00 \164 " 123 L
00 \165 .. 000 H

Label 8008 Code Bytes

LOOKFlRST:
00 \166
00 \16"
00 \1"10
00 \1'/1
00 \172
00 \1 'IJ
00 \1'14
00 \175
00 \116
00 \1 '17
00 \200
00 \201

WELLMAYBE:
00 \202
00 \203
00 \204
00 \205
00 "\206

wow "TO

S,"TU~F

M~M()RY

00
00
00
00
00
00
00

\207
\210
\211
\212
\213
\214
\215

• 016
.. 001
• 0'/4
.. 007 .. 110 .. 12J
.. llUU

• 016
.. 002
E 104 .. 12J
.. 000

.. 016

.. 001

.. 0"/4
- J-'" -110 · 123
- 000
.. 016
.. 003 .. 104 .. 12J
.. 000

LBI
1
CPI
7
JFZ BLOOP
L
H
LBI
2
JMP BLOOP
L
H

·LBI
1
CPI
377
JFZ BLOOP
L
H
LBI
3
JMP
L
H

By . (
II SOOT l=OR.CE" ~-\''-l...J..,<.~oI-'2

LL""~

SIRlUS·MP
Statement

.23.

.24.

.25.

.26.

.27.

.28.

.29.

'.30.
I

t

ECS Volume I No. 4 13 April 1975

the known load point (location Z0008 = intelese 004/000) as initialized at the beginning
of the program.

The program is a "state driven" algorithm which has 3 states of execution set by
the content of the variable "B" (which maps into a register in the generated code for
a Inicrocomputer such as the 8008 code illustrated.) The sequence of states during
~xecution of the main loop "BLOOP" during normal execution is as follows:

Start: e I I I I I I",:> Z t 3 3 3 3 3 3 3 3 3 ••• •• 3 3 3 3 3 3 ~ End

Scan for "007" Y ----"J S ·
Found it look for "377" ~
Found i;, transfer any further bytes to memory

The program is set up so that if a false' synchronization pattern is detected ("007"
followed by any byte other than "377") the "WELLMAYBE" branch of the loop
conclude s "maybe not" and goes back to scanning the input. The reason for
scanning in this manner is to enable .the program to be started via an interrupt, after
which you can turn on the manual controls of the tape drive confident that the invalid
data produced by the MODEM/UART combination during the leader and start up periods
will not be falsely interpreted as good data - the specific 16-bit pattern of two bytes in
volved is not likely to occur due to random noise.

The 8008 code corresponding to the BOOTER program1s SIRIUS-MP notation is shown
at the bottom of page 12.with symbolic notations of labels, mnemonic op codes and refer
ence numbers to the SIRIUS-MP statements in the listing at the top of the page. The
specific hardware assUJl1ptions used for this code are docUJl1ented in previous ECS
issues and are not repeated in detail here. For this simple program, the "X" . data
quantity (a memory pointer) is translatef;l as the content of the Hand L register pointer
of the 8008. One of the restart routines defined in January ECS is utilized by the gener
ated code - "NEXT A" · calculates the next addres s in Hand L. On an 8080 this could be
performed without a subroutine using the INX instruction with Hand L selected. On a
6800 the correSpOnding function would be performed using its INX instruction~ with the
variable X assumed to signify the index register "X".

BOOTER uses output instructions directed at a binary display to illustrate the prog
ress of the program. At initialization, the display left half (OUT36) is loaded with S
"on" bits. (SIRIUS statement 3). Then .. following the synchronization detection, the
data transfer branch FORSURE displays the current byte at left (OUT36, statement IS)
and the current low order address at right (OUT37 generated by statement 19).

The small loop from statemfllts 6 to 9 is used to cause the program to wait UD~l the
flags of the UAR/T subsystem (see article ECS-6 and January 1915 ECS) indiCfate that
a character has been r~ceived. The tape unit cGntrol code IIOZ7S"defined at statement
6 is used to signify the data rate (110001" for UIO baud), channel (1101") and, , " selection
for input (the last two bits.) i

If yo.u use BOOTERto load IMP from one of the cassett~s supplied by M. ~. Publish~
ing Co. ($7.50 each post paid) you will have to additionally load by hand the content of the
o,ther 'restart instructions routines before changing the interrupt branch to pOint to the IWF
entry point at location 013/000 (Intelese.)

ECS Volurn.e 1 No.4 14 April 1975

IMP EXTENSIONS FOR TAPE INTERFACE CONTROL (Continued •••)

In the March issue of ECS, I started a presentation of
extensions to the Interactive Manipulator Program for tape
block write, compare and read operations. This article
contains the remainder of the listings. With the exception
of the three routines on this page, the additional 8008 code
is given in its SIRIUS-MP form and in absolute octal with
mnemonic s decoded.

One aspect of the SIRIUS-MP language which I have not dealt with explicitly in this
issue's discussion is that of argument/parameter linkage for subroutine calls. Because
a machine-dependent argument/parameter linkage is used for the 8008 ver sions of the
three routines on this page, I present them here in the same commented listing forIn used
for previous issues of ECS. The
routines are utility functions for the
two-byte increment/decrement func
tions and comparison. The parameter
linkages to these routines ' are formed
by passing symbols (see Feb. 175 ECS)
in registers for lookup.

D2B is the two byte decrement
operation, which is entered with the
symbol of the operand contained in
the 8008' s A-register. The operand
is decremented by subtraction due
to the properties of a zero underflow
(the Zero flag detects this state one
number too early at 0, not -1.) On
return, the carry flag indicates a
16-bit underflow if any

I2B 1s the corresponding two byte.
inc~ent operation, which is also
entered with the symbol of the oper
and in the 8008' s A register. The
80081 S 'in~re~ent instructions ar'e
used, since the zero state is a reli-
able overflow indicator. On return,
the ,zero flag indicates a l6-bit over-
flow if any.

C2B is a two byte comparison op
erat1on~ with a more complicated link
age. The. hvo operands are passed as
symbols i~ the Band C registers. The
result is pas sed back as the content of

DZB:

IZB:

CZB:

the "E" register: 1 if not, equal, 2 if
equ~l. Thi s can be tested by a decrement
instruction followed by a jump on zero.

012\132 .. 075 SYM
012\133 .. 060INL
012\134 R307 LAM
012\135 " 024 SUI
012\136 • 001 1
012\137 " 3 '/0 LMA
012\140 2 003 RFC
012\141 " 061 DeL
012\142 " 30 '/ LAM
012\143 .. 024 SUI
012\144 .. 001 I
012\145, " 3'/0 LMA
012\146 " 007 RET

Go pick up argument address
Point ahead (assume not at page bound)
Fetch the low order byte.

Subtract I - decrement will not do'

Save result
Return on 'no borrow condition.
Point to high order byte
Fetch it
Also decrement with subtract

eo that borrow (C) may be aet • .•
Save result
With carry indicating net underflow,

Routine {o incremt.nt two bytes -
07~ 011\313

011\314 ,,' 060
011\315" 317

SYM
INL
LBM
INB
LMB
RFZ
DeL
LBM
II'lB
LMB
RET

enter with symbol parameter in A

lpok up the parameter add'reu
Point to,

o I I \3 I 6 • 0 I 0
o 11 \31 7 " 371
011\320 " 013
011 \3OlI " 061
o I I \322 a 3 I ./
o I I \323 eo 0 I 0
011\324 " 371
OIl \325 .. 00 '/

Routine to compare bytes - in two's.
010\234 " 046 LEI
O'10\2J'~ ' " OUI 1
010\236 " 301 LAB
010\237 • U·/5 SYM
010\240 • 3J7 LDM
010\241 .. 302 LAC
010\24?' • 075 SYM
010\243 • 3031.AD
010\244 .. 2 '/7 CPM
010\?45 013 RFZ
010\246 " 055 NEXTA

,010\241 • 337 LDM
010\250 • 301 LAB
01U\251 " 0·/5 SYM ,
010\2~2 O ,~~ NEXTA
010\253 " 303 LAD
010\254 " 277 CPM
010\2~5 .. 013 RFZ
010\256 .. 046 LEI
010\257 002 Z
010\260 • 007 RET

load from memory,
increment and

save the low order byte.
Return direct if no overflow
Point to,

load from memory,
increment,

and save the high order byte.
Then return always.

Enter with symbol parameters 'in
regiaters Band C.

Return default I fnot equal.)

Fetch fir"t parameter address
and fetch the parameter.

:Fetch second parameter address
and comp .. re agai:lst

, first parameter value •••
Return (E: I) if unequal.
Point to n'ext addre.s of secondparm.
Fetch eecond parm second byte

Point to first parm again
look NEXT A him too ! II

Compare first parm, second byte
And again return (E:!) if unequal.
Otherwise both bytes of both

two sets are equal and can'
return with equality result.

~
t

f

ECS Volum e 1 No.4 15 April 1975

The notational power of a more abstract method of programming is illustrated by com
paring the expression of the new IMP extension segments on page 16 with the correspon
ding "generated code" for the 8008 printed later. The routines' listed in SIRIUS-MP
form for the tape extension begin with the main portion of the program •••

READ/COMPARE main rQutine isat the len hand side of page 16 held sideways. This
33- statement SIRIUS - MP program is in\Oked when the IMP command decoder detects a
"shift R" for read or IUshift Cil fer cempare. The difference in the two routines is deter-
mined by the entry point - line 1 for READ~ Hne 28 for COMPARE. The logic at the
entry points sets up a jump address in the IiGPJMpli indirect branch location (this over
writes the previous use of GPJMP tQ get tc READ er COMPARE from IMP.) This
switch (the choice of branch paths) is required. so that the same general control flow can
be use for both the READ and COMPARE Qperations - the difference being in what is
done with the information read from tc;.pe. The switch point in the flow occurs at state
ment 14, and can be illustrated in
flow chart terms by the diagram at
the right.

The common portion of the prQ
gram provides the overall structure
of a read operation~ initialize the
UAR/T, read a dummy character
at the first RDA time~ read the
two length code bytes written by
the OUTCNT routine (see below) when
the tape is prepared, then enter a
loop which continues until the data
count is exhausted.

When the READI branch of the
flow is taken during a read opera
tion, the current memory location
pointed to by IB UFF receives the
input character found in a variable
called "B" (a CPU register for the
8008 ver sion of the program.)

When the COMPI branch of the
flow is taken during a compare oper
ation, the current byte pointed to by
IB UFF is compared to the input
byte in the variable BUB" - and an
error count is incremented in the
variable "BADDAT Ali (16 bits worth)
to keep a tally of the badnes sese

The data count is kept in the var
iable "ICNT" which starts out at -1
and is counted up until it equals the
block count stored in !'NCNT" after
it is read from the tape. The test for

end of transfer is found at statement
20, a SIRIUS "IFNOT" operation.

51:T CaMfl
QPJMP

· · · · FoaAL\.:
· · ,.....~. ____ ttl". "
: 8VTE
• · · · ~ .-oro ., 6'ZN.

: ••••••••••••• 00 •••••• " ", --
a.I.ADl

YE.S NO

,

CoM"".&
TO ... {s.1If.l

? ~ __________ ~~ kW& ,
VES

~(WT=XC"''' I EN'A\.\.:

Itt". "
WI~"\.A"
",*,\, CIWI'T

--,
READ: HWUT2:

1 T(GPJMP) =: : W(READl) * SET READ JUMP SWITCH 1 A =: TAl'ECTRL * FETCH 10 CONTROL WORD H
RC: 2 A IOEXCH 4 i:· EXCHANGE FOR STATUS ~ 2 TAPECTRL OR: "0000 00 1 1" * FonCE INPUT SELECT 3 B =: A U SAVE STM.'US IN B

3 CLEAR A ~ A AND: "01 100 000" * MASK DESIRED BITS ~
4 A IOEXCII 4 i. RESET TIm 10 UNI T I Nl'UT2 IFNOT (A=:"Ol 100 000") " WAIT TILL READY '0 INITIAT,IZE: 6 A =: B i' RESTORE STATUS FROM B ·Ii
5 4 ou'rpU1' TAPECTHL i~ SET SF..LECTED CONTROL STUFF ~ A AND: "00 000 Ill" i:· MASK ERROR BITS 0
6 I BUFF =:: MEMADDH * START INI'U1' AT MEMADDR I Nl'UTIT IF (A=:"OO 000 Ill") " INVERTED NO ERRORS ()Q

7 ICNT =: : -1 * INITIAL COUNT TO MATCl! OUTPUT 9 HICR:: BADFORM * INCREMENT DATA FORMAT ERRORS Ii
DUMMYII.: INPUTIT: . III

8 CALL INPUT2 i~ GO FETCH BYTE (WAIT LOOP) 10 A INPUT 5 * READ THE LATESTCHARACTER S HIGIII,NGTH: 11 B =: A * PASS BACK VIA B REGISTER
9 CAI.r. I Nl'UT2 * GET HIGH ORDER LENGTH 12 RETURN * BACK TO CALLER
10 NCNT =: B i. SAVE B INPUT IN NCNT H.O. III

LOWLNG:l'H: '0
11 CALL I Nl'UT 2 * GET LOW ORDER LENGTH

(b

12 NCNT(l) =: B * STORE AT NCNT+l (b

FOHALL: NEWOUTCNT: X
13 CALL INPUT2 i. NORMAL DATA BYTE FETCH 1 B =: 151:0 if MAKE IT 1.5 SEC DELAY.

(b
14 GOTO Gp3MP l:- SELECT COMPAlm OR READ VIA 2 CALL WA 'TCS * VIA CENTISECOND DELAYER ::s

* VARIABLE JUMP TARGET 3 A =: COUNT * SEND OUT THE FIRST rn
READJ.: ~ B =: A * COUNT BYTE

15 M(IBUFF) =: B * IF READ THEN STORE IT 5 OUTPUT A if AND SAVE IN B 0
GOTCHA: 6 CALL ·WAITOUT i~ WAIT UNTIL NOT BUSY ::s

16 37 OUTPUT B * DISPLAY INPUT DATA 7 A =: COUNT(l) * GET SECOND BYTE AT COUNT+l rn
1-7 36 OUTPUT 0 if CLEAR OTHER DISPLAY TO ZERO 8 C =: A * SAVE IT IN C (b

18 INCR: : I BUFF * POINT TO NEXT INPUT ADDRESS 9 5 OUTPUT A * AND OUTPUT TO TAPE X
19 INCR: : leNT if INCREMENT WORKING COUNT 10 CALL WAITOUT * WAIT Ul~IL NOT BUSY '0
20 FORALL IFNOT (ICNT=: :NGNT) * TEST END OF BLOCK 11 RETURN * THEN BACK Ii

ENDALL: (b

21 CAT,L I Nl'UT2 if READ FINAL LENGTH BYTE rn
rn 22 36 OUTPUT B * AND DISPMY ca

23 CALL INl'UT2 * READ SECOND FINAL LENGTH BYTE ONOFF:
0. 24 37 OUTPUT B * AND DISPLAY IT TOO 1 A =: TAPECTRL * FETCH OLD TAPE CONTROL

25 TApECTRL AND: "1111 '11 0 0" i~ TURN OFF INl'UT SELECT 2 A AND: "00 000 010" * CHECK OLD STATE OF SELECT
26 4 OUTPUT TAPECTRL if TURN OFF THE DRIVE ••• PATCH 3 TON IF ZERO * CHANGE TO ON IF OFF ::s

* IN A 2 SECOND WAIT HERE TOPF: III
* IF NEEDED - SEE TEXT ••• ~ B =: 2 * CHANGE TO OFF IF ON

27 KEYWAIT * SLEEP PERCHANCE TO DREAM GOTO EITHER if THEN DO THE CHAIIGE Ul
H

COMPARE: TON:
~ 28 T(GPJMP) =:: W(COMPl) if SET COMPARE JUMP SWITCH 6 B =: 0 * CHANGE TO ON IF OFF

29 BADDATA =:: a * ZERO OUT BAD DATA ••• COUNT EITHER: c::
30 GOTO RC * EL~ER NORMAL FLOW 7 A =: TAPECTRL * FETCH OLD CONTROL AGAIN Ul

COMP1: 8 A AND: 374 * MASK AND SAVE HIGH ORDER 6 BITS
31 GOTCHA IF (M(IBUFF)=:B) * TEST TAPE AGAINST MEMORY 9 A OR: B ~. 'COMBlNE WITH NEW CONTROL

....,
III

32 INCR:: BADDATA .:!- ' MISSED S{)ME BITS·! 1 ! 10 TApECTRL =: A '* SAVE NEW CONTROL f1l
33 GOTO GOTCHA * BACK FOR MORE ••• 11 4 OUTPUT A * TURrI TAPE MOTOR OFF OR ON ::r 12 KEYWAIT * BACK TO SLEEP YOU IMP!!!!

0

Note: Reference numbers to SIRIUS statements are Notations: T(GPJMP) : address part of jump ?
provided at the local level for each block of functional W(READI) : memo address of READI ..
code illustrated here. They correlate to the 8008 examples NAME(n) : nth byte of NAME
of executable machine codes, within each block.

.., ... ~

trJ
(')
Ul

< 0
~

S
(b

~

Z
0

~

.....
(J)

.G'
Ii
~

~

-..0
-:J
111

ECS Volume 1 No.4 17 April 1975

8 0 0.8 G en era ted Cod e for REA DIe 0 M PAR E r 0 u t l' n e s (16 1 f l p. , e t

Label

READ:

RC:

8008 Code Bytea

004\000 • 006 LAI
004\001 • 010 e(GPJMPAL)
004\002 • U"/:> SYM
004\U03 • 016 LMl
004\004 • 107 L(READ1)
004\00!> • 060 JNL
004\006 • 0"/6 LMJ
004\00"/ • 004 H(READl)

004\010 • OU6 LAJ
004 \0 I 1 • 014 • (T"APECTRL)
004\012 • O"/!> SYM
004\013 .. 30"/ LAM
004\014 • 064 ORJ
004\015 • 003" "00000011"
004\016 - 370 LMA
004\017 .. 2!>0 XRA

SlRJUS-MP
Statement ,

• I.

• Z.

. 004\020· " III IN4
.3. .4.

INlTJAUZE:

PUMMYlN:

004\021 - 006 LAJ
004\022 - 014 • (TAPECTRL)
004\023 - O"/!; SYM
004\024 • 307 LAM
004\O2!> - III IN4
004\026 .. 006 LAJ

004\027 • 006 .(MEMADDR)
004\030 • 0"/5 SYM
004\031 - 317 LBM
004\032 .. 060 JNL
004\033 .. 321 LCM
001;\034 - 006 LAJ
004\03!> • 020 s(JBUFF)
004\036 - O"'!> SyM
004\OJ7 • 371 LMB
004\040 .. 060 INL
004\041 • 372 LMC
004\042 • 006 LAJ
004\04j • 016 .(lCNT)
004\044 • O"'!> SYM
004\045 .. 006 LAJ
004\046 - 377 "l111111l"
004\047 • 370 LMA
004\050 .. 060 JNL
004\0!>1 • 3"'0 ~A

004\052 .. 106 CAL JNPUTZ
004\0~J • 0(,1 L
004\054 - 012 H

.5,

.6.

• 7.

.8.

HIGHLNGTH:
004\U55 • IU6 ·CAL INPUTZ
004\056 .. U61 L
004\057 - 012 H
004\060 .. 00(, LAJ
004\061 • 022 s(NCNT)
004\062· - 07!> SYM
004\063 - 371 LMB

.9.

.10.

LOWLNGTH:

FORALL:

004\064 - 106 CAL JNPUTZ
004\065 • 061 L
004\066 .. 012 H
004\067 - 0(,6 LAJ
004\070 - 02l! .(NCNT)
004\0"'1 .. 0"':. SYM
004\072 • 0~5 NEXTA
004\073 - 371 LMB

• 11.

.IZ.

004\074 - 106 CALL JNPU1"Z .13.
004\0"/5 - 061 L
004\076 • 012 H
-0011 \0 n • 006 LAJ f, Globa11y
004\IUO • 020 5(IBUFFI optimizecl:code
004\101 .. 10C> CALL MEMSYM moved .. hud
004\102 - 002 L ,,{ the CPJMP
004\IU3 - OIl! H .
004\104. = 104 JMP GPJMP • 14.
004\IO!> • 015 L
004\10(, .. 000 H

Label

READI:

COTCHA:

ENDfoLL:

COMPARE:

COMPI:

8008 Code Pyln

004\107 • 371 LMP

004\110 - 301
004\111 - 177
004\112 • 2:.0
004\113 - 115
004\114 - 006
004\115' • 020
004\116 -106
004\117 - 313
004\120 - 011
004\121 • 006
004\122 - 016
00,.\123 - 106
004\124 • 313

.004\125 .. Oil
00"\12(> • 016
004\12"/ .. 016
00 .. \130 - 026
004\1 31 • 02l!
004\1311 - 106
004\133 - 234
004\134 - 010
00""35 - 041
00"\136 • I!>O
004\137 - 0"'4
004\'''0 - 00,.

004\141 - 106
004\142 • 061
004\143 • 0111
004\144 - 301
004\1"5 - 17!>
004\146 • 106
004\.47 - 061
004\150 - 012
004'151 • 301
004\151! - 171
004'153 • 006
004\15" - 014
00"\155 - on
004'156 • 30'/
004\1!>7 • 044
004\160 • 37"
004\161 - 370
004'162 - III
004\163 - Oil!>

004\164 - 006
004\165 - 010
004\166 • 0"/5
004'167 - 0"/6
004\170 - 206
00"'111 - 060
004\1711 • 076

00"'173 "- 004
004\17" - 006
00"\175 - 024
004\176 - 075
00"\171 - 250
004\1100 • 3"/0
004\201 - 060
00"'202 - 370
00"'203 - 10"
00"\20" - 010
004\20$....- 004

LAP
OUT37
XRA
OUT36
LAJ
a(lPUFF)
CALUP
L
H
LAJ
.(ICNT)
CALUB
L
H
LBI
a(lCNT)
LCI
.(NCNT)
CALCZP
L
H
DCE
JTZ FOR ALL
L
H

CALLINPUTZ
L
H
LAB
OUT36
CALLINPUTZ
L
H
LAB
OUT37
LAJ
• (TAPECTRL)
SYM
LAM
NOl
"U lU 100"
LMA
IN4
KEYWAlT

LAJ
• (CPJMPALI
SYM
LMl
L(C OM Pli
l~L
LMl
H(COMPlI
LA!
• (BADDATA)
SYM
XRA
LMA
INL
LMA
JMP RC
L
H

004\206 • 301 LAB
004\207 • 277 CPM
004\210 • 1:'0 JTZ COTCHA
OU4'211 • '10 L
0\)11\212 - 004 H
004\213 - 006 LA!
0011\21" - 024 e(BAODATAI
004\21!> - 106 CALUB
004\216 - 313 L
004\211 • 011 H
004'l!l!O .. 104 JMP GOTCH A
004\221 - 110 L
004'222 - 004 H

SlRIUS-MP
StatTlent

• 15.

.16.

. ·17.

.18.

.19.

.20.

.21.

• u.
.23.

.201 •

.25.

.26. .27.

.21.

• 29.

.30.

.<)i.

•)Z.

.33.

ECS Volume 1 No.4 18 April 1975

8008 Generated Code for MISCELLANEOUS routines (p 16, right)

Label B008 Code Byles SIRlUS-MP Label
Statement,

* ONOFF:
INPUTZ:

012\061 "' 006 LAI 8 I.
012\062 "'014 s(TAPECTRL)
012\063 c O"/b SYM
012\064 .. 30"1 LAM
012\065 " III IN4 8 Z.
012\966 " 310 LBA 8 3.
012\067 .. 044 NDI 8 4.
012\070 " 11.10 "01 100 000"
012\071 .. 074 CP- s 5. TOFF:
012\072 " 11.10 "01 100 000"
012\0"/3 " 110 JTZ INPUTZ
012\0"1.1 = 061 L
012\0';b " 012 H
012\0"/6 " 301 LAB 8 6.
012\0"-' = U"'~ NDI • 7. TON:
012\100 " 00"1 "00 ,000 Ill"
012\101 " 074 CPI 8 8.
012\102 " 0'07 "00 000 Ill" EITHER:
012\103 .. I !l0 JTZ INPUTlT
012\104 c ILl L
012\105 " 012 H
012\106 c 006 LAI • 9.
012\101 026 s(BADFOHM!l
012\110 " 106 CALL IZB
(112\111 " 36~ L
012\112 " 010 H

INPUTIT:
810. 012\113 c 113 INS

01!:!,114 " 310 LIlA • 11.
012\115 • O~17 RETURN

OUTCOUNT:
012\2UO . 104 JMP NEWOUTCNT Here i8 a patch to get to the
012\201 116 L new version of OUTCOUNT.
011'\202 c OIU H

NEWOUTCNT:
• 1. 010\116 ". 016 LBI

010\117 " 017 '1510
010\120 c 106 CALL WAITCS • Z.
010\121 116 L
010\122 012 H
010\123 006 LAI s 3.
010\124 .. 022 .(COUNT)
010\125 " 075 SYM
010\12ti " 307 LAM
011l\127 c 310 LBA 84.
010\130 " 113 INS & S.
010\131 c 106 CAL WAITOUT • D.
010\132 " 147 L
010\133 012 H
010\134 c 006 LA! • 7.
010\135 c 022 , ,(C;;OUNT)
010\136 = 0 '/5 SYM •
010\13 '/ " 060 Il'lL
010\140 .. 307 LAM
010\141 " 320 LCA 6 B.
010\142 " 113 INS • 9.
010\143 c 106 CAl.L WAITOUT • U.
010\144 " IIJ'I L
010\14!) " 012 H
01U\146 " 007 RETURN 5 lZ.

Patches to Previous Code

TAPECMDS:
01~'3!)2 c 31'1 "0"
01~\3~3 321 L(JONOFF)

o 12\~'/2 " Ol~ "34" is TAPECMDS (ncw value)
012\2'13 Jb2

JaNOFF:
012\'321 ONOFF IMP entrr to the " 104 JMP
012\3~2 2b4 L ONOFF rO'Jline sand-
012\nJ " 011 H wiched in spare bytes.

READJ:
New IMP READ 013\313 104 JM? READ

01a\314 " IJOO L entry addre!lh in

01;'\3Itl 004 H this jump.

COMPJ:
013\316 = IU4 JMI' COMPARE New IMP COMPARE
a 13 \31 '/ • 164 L rout ine entry .. ddres &

013\J20 = OU4 H now in this jump,

B008 Code Byte. SIRIUS - MP
StatelT1ent

, 011\264 • 006 LA!
011\265 .. 014 8(TAPECTRL)
011\266 c O'/b gYM
011\267 .. 307 I.AM
011 \270 .. 044 NDI
011\271 .. 002 "00 000 010"
011 \2'/2 .. ISO JTZ TON '
011\273 .. 302 L
Oil \211.1 • OII"H

011\215 .. 016 LBI
01 1\276 c 0000
Oil \27"1 .. 104JMP EITHER
011 \300 .. 304 L
011\301 .. 011 H

011\302 .. 016 LBI
011 \303 .. '002 Z

Oil \30 1j .. 307 LAM
011\305 c 044 NDI
Oil \306 .. 3"/4 "II 111 100"
011 \307 .. 261 ORB "xx xxx xBo"
011\310 .. 3711 LMA
011\31t .. III IN4
011 \312 " 025 KEYWAIT

Tape Extension
VARIABLES

* .1. '

.. Z •

• 3 •

• 4.

• 5.

• 6.

• 7.

• B.

8 9.
. 10.
8 11.

(in order of appearance)

GPJMP, symbo110

T APECTRL, symbol 14

A, CPU register

MEMADDR, symbol 06, input
to tape transfer s.

IBUFF, symbol 020

ICNT, symbol 016

NCNT, symbol 022

B, CPU register

BADDATA, symbol 24

BADFORM, symbo126

COUNT, symbo122

ZERO, CPU flag

Note: NCNT,COUNT are
equivalent; ICNT and
TCOUNT (see March ECS)
are equivalent.

ECS Volume 1 No.4 19 April 1975

The INPUT2 subroutine is at the top right hand side of page 16 held sideways. This
12-statement SIRIUS-MP subprogram is invoked bY'a subroutine CALL whenever another
program wants to "read" a byte from the tape unit according to the content of TAPECTRL.
The reading method incorporat ed in the software of IMP to date is a "p oIling II technique
in which a loop tests status bits of the I/O device (UAR/T "RDAII an4 a motor turn-on
oneshot "readyll signal.) The loop consists of SIRIUS-MP statements 1 to 5 of INPUT2.
The routine breaks out of the loop, reads the data and returns with the data byte in the
variable IIBII (a register in the 8008 generated code). The three UAR/T reception
status bits (parity error/framing error/overrun error) are checked and an error count
in BADFORM is incremented if no errors are detected.

The OUTCOUNT routine of the March issue of ECS was modified to improve performan,
ih the course of rewriting the comparison software in SIRIUS for this issue. The prob
lem with the original version was the fact that an explicit output wait is required for
reliable reading of the data. Thus a patch is placed at location 012/200 to jump to the
new version of the program, loaded in some spare memory address space at 010/116.
The NEWOUTCNT has two changes: a) I increased the time delay before output to
1.5 seconds (SIRIUS statements 1 and 2); b) I have inserted calls to W AlTOUT after
each output of a byte (SIRIUS statements 5 and 9 of NEWOUTCNT.)

The ONOFF routine is a new routine added to support a new tape control command,
liTO" entered from tqe keyboard device. .The idea here is to have a way to turn on the
motor for purposes of listening to data with the ear, for rewinds of long duration, or
for recording non-digital comments with the cassette recorder's built-in microphone.
The ONOFF routine itself is very si::nple, comprising a set of 12 SIRlUS statements
which map into 23 8008 bytes in the sample generated code. The liTO" function comple
ments the current state of the motor control bit in TAPECTRL and outputs the r.esult to
currently selected tape drive via the "IN4" instruction connected to the tape controller.

In setting up to run IMP with the new extensions, the patches to TAPECMDS, JONOFF)
and READJ /COMPJ locations of IMP must be made as indicated in the detail listing
of page 18. The T APECMDS table is extended for the new 11011 subcommand by starting
it. one byte earlier; the symbol table symbol 113411 for TAPECMDS is adjusted to reflect
this addition. . The new execution jump JONOFF is added to get the program into the
ONOFF routine, and the READJ/COMPJ jumps are changed to reflect altered placement
of these routines from the original layout. One other change is required to the symbol
table published previously: the address of symbol 1120" should be changed to 11220" in
byte 012/301 of the 8008 code. This symbol has been changed from its original use
and now becomes the memory pointer "IB UFF" with two bytes instead of the original
1 byte of reserved space.

COMMENTS ON THE ECS-8 DESIGN:

The output of the TSI (serial data to the computer interface) line is not suitable for
an interrupt driven UAR/T software interface without use of some masking logic. The
problem is this: the FSK input decode is done by the phase lock loop of the XR-210.
When null inputs (eg: tape leader period, or any time without a mark signal) occur, the
phase lock loop hunts around for a lock - thus causing the comparator to have its input
switch back and forth with the result being a digital noise signal on the TSI line. If
the UART is listening, it will decode erroneous characters in this mode. The software
of this article ignores the pr~blem by not listening unless good data is coming.

ECS Volume 1 No.4 20 April 197 5

Notes on N A V I GAT ION I NTH E V I C I NIT Y 0 F 0(~ A Q UI LA. • .

This article begins a regular series of information and
commentary on the use of the Intel 8080 in an ECS context,
with occasional specific reference to packaged systems such
as the MITS Altair product. In addition to the MITS product,
there is at least one other source of the 8080 chips and boards
advertising in the pages of Radio Electronics / Popular Elec
tronic s. This first installment concerns some general com
ments on the 8080 instruction- set and specific suggestions con-

• cerning 16-bit arithmetic operations (addition/subtraction) in
applications other than address calculations.

AO -1. 1: Addressing Modes.

1

One of the most basic questions to be asked whenever you ponder the use of a new
computer instruction architecture is "what are its addressing modes? 11 The answers all
lie in the hardware de signer's backyard whenever a specific existing machine such as the
8080 is considered. How do I get at the data in memory when I want to perform some oper
ation in the machine? Are there different ways of reaching the same data item? And so
on. The effects of address ing and data reference will color the whole process of gen-
erating programs for the architecture of the machine in question. For instance, if the
machine is a "stack machine" (not a machine with a stack, but one designed for opera
tions between stack elements) then the addressing can almost exclusively be implied by
the way operations are done. On such a machine, the only bits needed for an instruction
are the data bits which specify an operation. But in the real world of existing and
implemented machines available to the ECS type of application, the coloring of coding is
much more conventional - addr es sing is performed as part of the instruction or as
part of an implied setup in a CPU register under program control. In the Intel 8080
(as in the 8008) the design of addressing modes is a fairly arbitrary pot-pouri of methods
fraught with special case s not arruTlenable to concise summary without losing information.
In order to write programs these addressing modes must be known and understood so that
the best of alternatives (if any) can be evaluated and used in a given programming situa
tion. In the comments below, a few of the conventional addressing concepts in
computer designs are isolated and illustrated with regard to the 8080.

AQ-l. 2: Immediate Addressing.

Immediate data addressing exists in some form inmost contemporary computers,
with the usual definition being a constant bit pattern of one word length, following the
operation code in a program. The 8080 includes this form of addressing with all the
immediate operations which exist on its antecedent the 8008, plus some extensions which
make the architecture more useful as a general purpose computing element. The primary
extension of immediate addressing is to the inclusion of a long (16-bit) form of the con
cept in certain limited classes of move (load/ store) operations with respect to CPU reg
isters. The 8080 partitions 6 of the 7 CPU registrs into three pairs "index register ,!"·
which may be loaded with 16-bit numbers using immediate addressing. The primary in
tention of such operations is the loading of an address, but programmers can and

ECS Volume 1 No.4 21 April 1975

do use operations for whatever purpose is required to solve a problem - so whenever
one needs a l6-bit "literal" data item this form of double byte immediate operation can
be used to load CPU registers.

One particular use of the two-word immediate form in its intended application is
the initialization of the stack pointer as a part of setting up execution of a prog
ranl. In large scale systems the equivalent of a stack poi~ter (ie: system defined
addressing parameters) is usually determined by the "operating system" prior to
the call which invokes a user-program. But in your use of a microcomputer of
the 8080 (or Motorola 6800) design, with minimal software, you can make no as
sum.ptions about the initialization. To be used, the stack must exist in random
access read/write memory so that the temporary linkage data associated with
the CALL operation and its arguments can be stored. In order for this linkage
to occur, the stack pointer (SP) must point to the RAM area. One way to initial
ize the stack pointer following the start of execution is contained in the following
SIRIUS-MP notation and its 8080 translation:

SIRIUS: 8080:
SP -:: location LXI SP, location

In both instances, the "location" is the 16-bit integer num.ber which is the address
of the stack ar ea.

AO-I. 3 : Absolute Addressing.

The design of a computer instruction set involves many trade-offs, the evaluation of
options with inputs ranging from the preferences of programming individuals to the phys
ical constraints of the LSI chip. In the best of all possible programming worlds, one
would like to see a consistent set of addressing modes applicable in principle to any of the
basic operations possible. In particular, a more extended use of an absolute (in-instruc
tion stream) form would be desirable than has been implemented with the 8080. There
are two basic operations available in the 8080 instruction set which reference memory
from within the instruction stream. These are the load (LDA, LHLD) and store (ST A,
SHLD) operations in 8 and 16 bit variations. For progranl code which involves fixed
data areas at locations allocated by hand or by an assembler/compiler, these operations
will be used extensively to prepare data for the execution of actual "work" -since the
actual work cannot reference memory directly. The use of load and store for this pur
pose is highly conventional in many minicomputers, although usually at least one of the
algebraic/logic operation operands can be acquired by a direct or indirect memory ref
erence in the instruction stream. (As a point of contrast, the Motorola 6800 microcom
puter can perform most of its arithmetic/logical operations with one in-instruction addresl!

reference to memory.)

AO-l. 4: Pointer Addres sing.

One area where the 8080 has some excellence is in the number of CPU registers it

has and the fact that three different pairs can be used as "index registers" for fetching

ECS Volume I No.4 22 Aprill975

data to an accumulator (all pairs) or referencing memory operands (H/L only) of the
aritlunetic operations. It is thus fairly easy to keep pointers around locally in the
CPU without the need to transfer them to another location when making a reference
based upon the index. The pointers are, however, only good for one operation in
general - referencing data in load/ store situations, and thus not as useful .
as they might otherwise have been. The memory reference modes of all the 8-bit
aritlunetic and logical instructions use one of these pointers, the H/ L register pair,
to address the one memory operand (the implied ·second operand is the accumulator
register A.) All the procedures and tricks applicable to setting up H/ L pointer addresses
in the earlier 8008 microcomputer design apply as well to the equivalent H/L forms of
the 8080.

One particular programming trick which will prove useful in manipulating blocks
of data involves the use of one pointer pair - D/E - to point to one operand block
and a second pointer pair - H/L to reference the second block. Suppose the
problem is to "AND" all the bytes of one block with the bytes of another and to
store the result in the second. The basic set of inst ructions used to set up the
loop would be:

LXID
LXIH

address I
address 2 set up addresses

With this setup, the heart of a loop to transfer the data with an AND condition as
req uired by the problem statement would be:

MOV, A,M Fetch first operand byte
XCHG Establish second operand address, but

save first operand address
ANA M AND with second byte
MOV M,A Save in secorxi operand byte
INXH Increment address
XCHG Move back in exchange
INXH Increment address

This c ode doe s not include the instructions needed to establish a loop - to trans
fer a block with this operation would require a loop count and loop count decre
ment followed by conditional test for continuation.

This same general scheme of switching the D/E with H/L registers can be used
quite widely your program must step simultaneously through two regions of mem
ory. The technique only works with D/E & H/L unless you want to take a calcu-

,

lated risk and exchange with the stack pointer instead of D/ E. (

AQ-I.5: 16-Bit Operations & l6-Bit Addition/Subtraction.

The 8080 has a specific and limited set of 16-bit operations which can be used to some
advantage both for the intended purpose (address calculation and setup) and in more gen
eral problems. The 16-bit operations are

l6-bit Load and Store between reg~ster pairs and memory or immediate
(Load only) data.

16-bit Addition intended for address calculation.
16-bit Increment/Decrement useful in loop counting & address changing.

EC::S Volume I No.4 23 April 1975

For the mor e g:eneral usage of the 16-bit addition operation in programs requiring
the extended precision addition I subtraction, the H/L register pair can be treated as
if it were a 16-bit accumulator for the purposes of calculation with the actual results
being stored ultimately in memory operands. The boxes below illustrate two calculations
in 16 bit precision, under the following assumptions:

a. Variable P is a two-byte operand at locations P and P + 1.
b. Variable Q is a two-byte operand at locations 0 and' Q + 1.
c. The content of A, Hand L registers is irrelevant prior to and

fall owing the calculation.
d. Absolute addressing will be used with the result stored back in P, as if

P were a "software accumulator. II

Note the differences in the size of the little routines involved - for the additi.on case,
the setup and execution is fairly compact. For subtraction the need to form the two's
complement neg ative of the 0 operand complicates the picture •••

The SIRIUS-MP statement:
generates ••.

LHLD
XCHG
LHLD
DADO
SHLD

Q

P

P

The SIRIUS-MP statement:
generates •••

LDA 0
CMA
MOV D,A
LDA 0+1
CMA
MOV E,A
INX D
LHLD P
DADD
SHLD P

P +:: 0 * l6-BIT ADD

Get first operand bytes to 0
Move first op to DIE
Get second operand (soft. accum.)
Add 0 to P giving P
Store result back into new P value

P -:: 0 * 16- BIT SUBTRACT

Get first byte, negative operand.
Complement it.
Move it to D of DIE pair.
Get second byte, negative operand.
Complement it.
Move it to E of DIE pair.
Increment complement giving -0 value
Get software accumulator value
Value of P - 0 now in H/L
Save back in software accumulator.

After either of these operations, the carry flag can be tested to find out if an overflow
occu:red, thus in principal allowing extended precision of greater precision than 16 bits.

One pa rticular 16- bit operation may prove of use in certain contexts. This is the
16- b it addition of the HI L register pair to itself by means of the DADH instruction.
Th e re are two instances where this variation of l6-bit addition stands out for potential

utilLitr:
a. Suppose I want to address an extended array of data kept in Z, 4,8 or Zn
byte quanta. The shift properties of this addition (it multiplies HI L by Z) can
be used 'rn" times to modify an integer array index ala FORTRAN or PL/I into
a us e.t'ul addr es S offs et.
b. "This left shift operation can form the basis of an integer multiply operation.

ECS Volume 1 No.4 24 April 197 5

AO-l.6 A Ceremonial "Nit":

It serves no good end to act the part of a contentious critic, but... at the risk of
being in the position of a pot calling the kettle black I do protest MITS' use of the
Anquish Languish (technical dialect) in the Altair 8800 manual I examined recently:

ImElement: This verbalized noun is conventioI1-ally used in technical con-
texts such as "to implement a system. II (Ie: to create the system.) A
computer designer imElements an LDA or STA instruction; the programmer
codes said implemented instruction (ie: s elects it) as part of his own pro-
cess of implementing a software system. Programmers never use unimple-
mented instructions as a matter of course. (If you take Webster literally
one m.ight c orne out with the MITS definition of, the term irnElement.)

Variance: A variance exists and is defined in the legalese terminology of
"obtaining a variance (exception)r, to some law by bootlicking and bribing
the appropriate petty bureaucrats. It is also the square of the standard
deviation in the terminology of statistics. A variance is not a variation on
an instruction I s operation, that is unless one wished to redefine conventional
usage.

I have been collecting reports from several subscribers on the Altair product and wit&.....,
the excep~ion of what appear to be relatively minor technical problems, most purchasers
of the system indicate satisfaction with the product and service on it.

ERRATUM:

Charles S. Lovett receives a one issue subscription extension for being the first sub
scriber to report an error in the ECS-7 design article of February 1975 ECS. The line
from pin 2 of IC -14- which is shown connected toground should instead have been a
• 01 mfd capacitor to ground. (Switch Sl would have no effect if wired as drawn.)

A NOTE CONCERNING THE MOTOROLA 6800 MPU •••

With this issue, I have started to make references to the M6800 MPU system. pri
marily because I expect it to be available to the Experimenter I s Computer System market
in the near future. I have been in fairly close contact with the local Motorola sale. s office J
in connection with some hardware/software desigh work I am currently doing, and I have
indications that supplies of this product will soon be fairly widely distributed.

If you want to find out about the M6800 in detail, I wholeheartedly recommend purchase
of the M6800 Microprocessor Applications Manual (approximately 700 pages 8.5 x 11 @
$25.00) and the M6800 Microprocessor Programming Manual (approximately 250 pages
@ $10. 00). The applications manual includes lots of useful information including inter
faces (hardware and software) to floppy discs, cassette tape drives, teletype, Burroughs
self-scan di splays, adding machine tape printers, etc. etc. I have verbal assurances
from the-local Motorola sales office that these books will be sold to private individua)n
request. If you are interested I suggest that you look up the telephone number of the near
est office and inquire. If you have any problems, let me know and HI try to make formal
arrangements to distribute copie s. These documents will set the standard for some time
to come, and would easily serve as the basis of a "software engineering" course in appli
c ations.

ECS - The Monthly Magazine of Ideas for the MICROCOMPUTER EXPERIMENTER •• 0

News & Notes to accompany Volume 1, No.4 - April 1975 . Some further midnight mad
nes s .••

FLOPPY DIS C DRIVE REPORT: I spent some time talking to Don Whitehead this week
concerning th e floppy disk purchase and its progress. Here is the latest status report
on the operation:

a. There is sufficient interest to warrant going through with the purchase as orig
inally intended. .• BUT ••.

b. When Don went back to the Memorex representative to make the firm commit
ment on an order of the drives he found several business points had changed from the
time of his preliminary arrangements, to whit:

- The delivery dates are getting pushed steadily back by the manufac
turer as priority is given to the larger purchasers of the unit. Current
estimate is June - original was April.

- M emorex will not allow the technical details of the interface (ie: detailed
manu.~ Is) be distributed for at least six months for competitive reasons. This
is de f pite all assuranc es to the contrary earlier. The demand for a non-dis
closure agreement effectively rules out distribution of technical specs , thus
in itself wipingout any possibility of using the Memorex drive.

c . The individuals sending in the deposits have all had their checks returned for
the time being, until a new arrangement can be made with an alternate source.

The idea and intent are not being abandoned due to this setback. Among other things, Don
wants to locate the sourc e for his own consulting software busines s. Between now and the
next progres s report, we'll both be doing a bit of research on several other options avail
able in regard to floppy disk drives.

JIM FRY INDICATES to me in a letter that he will be repeating the memory IC offer in
May of this year. Again, his address is Po O. Box 6585, Toledo, Ohio 43612 - write
him for details on the 2102's selling new at approximately $5.00.

PC BOARD FOR ECS-8. After one false start with a vendor who could not deliver, the
ECS-8 modem PC boards have arrived (April 15) and been shipped to all subscribers. who
ordered the product. The boards have a layout looking (roughly) like this: (preliminary.)

D 0 0 0 0

The price is $9.00 plus postage for 4 ounc es (approximate), and there is no discount
applicable to this item.

TWO PUBLICATION REFERENCES WHICH MAY BE OF INTEREST TO SUBSCRIBERS:
Hal Singer (Cabrillo Computer Center, 4350 Constellation Road, Lompoc, Ca. 93436)

puts out the Micro-8 newsletter, devoted to information concerning the original home
brew 8008 system of Radio Electronics summer '74.

The Computer Hobbyist, 520 Sorrel Street, Cay North Carolina 27511 is a publication
for which I only have an existence proof - several new subscribers referencing a letter
from Gordon French.

