
M. P. Publishing Co. Box 378 Belmont, Mass. 02178 Vol. 1 No. 5 May '75

ECS THE MONTHLY MAGAZINE OF IDEAS
FOR THE MICROCOMPUTER EXPERIMENTER

Publisher's Introduction:

For every process there is an initialization segment - a starting point in time,
during which time the program for the process sets up data values and begins its oper
ation. In a sense, this issue represents such an initialization - it is the first issue to
contCl:in a subscriber-written article, the Digital Graphic Display Oscilliscope Inter
face design and writeup prepared by JaJnes Hogenson. The graphics device was con
ceived by Jim as a neat idea to add to his own computer system which he was building
for a high school science fair. He first mentioned it to me in a letter late last year.
I suggested to him (or was it the other way around?) that it might be appropriate to
turn it into an article for ECS. After a fair amount of time spent researching the var
ious options - plus one lengthy phone conversation with me - Jim settled on the design
shown in this issue. He constructed the prototype using wire wrap techniques, and
interfaced it with his 8008 built using the RGS kit. The interface is very simple, and
can be adapted to virtually any computer with a parallel 8-bit output and a clock pulse
arriving to the interface during periods of stable data. The device is programmed using
a simple two-bit op code field and six-bit data/control field within the 8-bit interface.

I have a PC board version of the design completed as of the date of publication of
this issue (so I can get one myself) - with artwork by Andy Hay using Jim's layout. I
expect to have the board debugged and ready to offer to customers with the June issue
of ECS. The roster for this issue is equal in size to the base of that nUDlber system
which all computer "nuts" know 8Jld love •••

1. Digital Graphic Display Oscilliscope Interface, by James Hogenson. Turn
to page Z for the details which turn your scope into a LIFE matrix, a checker
board, a ping-pong game or whatever your imagination, a 64x64 bit-matrix and
appropriate software can represent.

Z. Concerning the Hand Assembly of Programs, by yours truly, in which the
"assembly" of programs by hand is discussed at some length, along with several
more comments on SRI US matters and an example in the form of CONCATTER -

a routine to concatenate byte strings.

This issue is going to press May 12 1975. The limits of space precluded the next in
stalment of "Notes on Navigation in the Vicinity of 0(- Aquila." In the next issue, the
8080 machine architecture will again be visited in the form of further "notes." Also
in the next issue, a SIRIUS-MP specified bootstrap sequence will be presented, along
with the 8008 code for same. In this case, I mean a "real" planned-in-advance boot-
strap load method with all the bells and whistles. Up and coming designs for
the near future include an electronic music peripheral (not necessarily as good as
Peter Helmers' "Metapianall) as well as an article with a small amount of hardware and
a lot of software concerning the programming of interesting digital clockt

W ~.1~,~,
Carl T. Helmers, Jr.
Publisher May 11 1975

® 1975 M. P. Publishing Co. All Rights Reserved.

ECS Volume 1 No. 5 2

INTRODUCTION

DIGITAL GRAPHIC DISPLAY OSCILLOSCOPE INTERFACE
duigned and (tIIU,tten btj Jameh Hogen6on

May 19 75

If you want your computer to cough up alpha-numeric information,
chances are, you won't have too much problem finding a suitable output
device. But if you want your computer to draw pictures, you may find
yourself facing a dead end. You could use one of those fancy commercially
available graphic CRT terminals, but the IBM you'd need to run the thing
might not fit on your workbench. If you do have a spare IBM collecting
dust on your closet shelf, fine, but if you Ire like the rest of us, you
need something inexpensive, uncomplicated, and within the scope of the
average 8008 or similar system. Thus we have the ECS Digital Graphic
Display Oscilloscope Interface. For $50 worth in semiconductors, your
computer can have under its own completely programmed control a full
raster on the screen of your oscilloscope.

The digital graphic display oscilloscope interface (DGDOI) is
programmed and operated through an 8-bit TTL compatible input. The
picture is produced by a pattern of dots. These dots are set in patterns
according to the computer's instructions, resulting in a computer gen
erated drawing. The entire pattern of dots is stored within the DGDOI's
own internal memory. Once the pattern has been generated and loaded
into the DGDOI, the computer no longer needs to retain any related data.
This also means the pattern may be generated 'and loaded in small parts,
one part at a time. During the scan cycle, the digital information is
converted to analog waveforms and displayed on the oscilloscope.

PRINCIPLE OF OPERATION

The raster begins its scan in the upper left-hand corner, scanning
left to right and down. The full raster contains 4096 dots; 64 rows of'
64 dots each. The horizontal ~can is produced by a stepping analog ramp
wave. Each step of the ramp produces one dot. There are 64 steps in
the wave. The vertical scan is similar. It is a stepping ramp wave
consisting of 64 steps. However, there is only one step in the vertical
wave for each complete horizontal wave. The result is 64 vertical steps
with 64 horizontal steps per vertical step. This produces 64 rows of
64 dots.

The ramp waves originate at a 12-bit binary counter, the center of
the entire circuit. The six .lower (least sig~nificant) bits of the
counter are connected to a digital-to-analog converter (DAC), which con
verts the digital binary input to a voltage level output. The output of
the DAC is the horizontal ramp wave. The six upper (most significant)
bits are connected to a second DAC. This DAC produces the vertical ramp
wave. Incrementing the 12-bit counter at high frequencies results in a
raster on the screen of the oscilloscope.

The control of the pattern of dots needed to represent a picture is
dependent upon the intensity of each dot. From this point, we will assume
a dot can be ei ther on or off. An "on" dot wi 11 show up on the screen as
a dot of light. An "off" dot will be a dim spot or blank on the screen.

(

ECS VoluITle 1 No. 5 3 May 1975

When a particular dot i s selected for programming, it is programmed
as either on or off. The on-off control can be represented by a single
bit. It is this bit which is.stored in the internal memory of the OGOOI.
There is one bit in the memory for each of the possible 4096 dots on the
screen. When selecting a dot for programming, you are actually addressing
the memory location of that particular dot. You then set the dot for on
or off. When displaying the image, the 12-bit counter which produces the
raster addresses each dot in the memory as itis displayed on the screen.
The on-off bit taken from the memory is converted to a Z-axis signal which
controls the intensity of the dot. The Z-axis signal is fed into the
Z-axis input on the scope.

Much of the circuitry is taken up in the 12-bit counter, the OACls.
and the memory. Figure 1 shows a block diagram of the OGDOI. The re
maining circuitry is the control circuitry ~hich decodes the 8-bit input
word and allows for completely programmed operation.

PROGRAftt1ING

°E ·Code
Tabte 1

17c.ta.l ItlruVtY Mnemonic. fYJl4nJLtion

OODDDDDD ODD STX sa x

OlDDDDDD IDD STY Set y

lOxxxOOO 2xO CNO Contlwt - No Op

lOxxxOOl 2xl TSF Contlwt - TUIUl 066 ~C4n

lOxxxOlO 2x2 ZON ContJr,ot - Set Z on

lOxxxOll 2x3 ZOF Contlwt - sa Z 066

lOxxxlOO 2x4 ZNI Contlwt - set Z 0 n w.itJr. .inclLement

lOxxxlOl 2x5 ZFI Contlwt - sa Z 066 with .inCItement

lOxxx110 2x6 TSN Con:tJr..ot - TWtn on ~c.an

lOxxxlll 2x7 CNO Contlwt - No Op

llxxxxxx 3xx CNO No Op

D = DATA X = NULL

The programming instruction format is shown in Table I. Bits 7 and 6
of the input word are the high-order instruction code. We will assume that
the addressing of dots is done on the basis of X and Y coordinates. The X
coordinate is the 6 bits in the lower half or horizontal section of the 12-bit
counter. The Y coordinate is the 6 upper bits or vertical half of the counter.
In programming from an 8-bit input source, all 12 bits of the counter cannot
be set at once. The counter is set one half or 6 bits at a time. It is for
this reason we assume an X and Y coordinate for programming. When the instruc
tion code (bits 7 & 6) is set at 00, the data in bits 0 through 5 of the in
put word is loaded into the lower halt' of the counter as the X coordinate.

ECS Volume 1 No. 5 4 May 1975

When the instruction code i s set at 01, the data in bits 0 through 5 is
loaded into the upper half of the counter as the Y coordjnate. In effect,
the Y cdordinate will select a row and the X coordinate will select a dot in
that selected row. The coordinates loaded into the counter will address the
memory and select the dot location we want to program.

After loading the coordlnates of the dot for programming, we set the
dot itself. Setting the instruction code at 10 directs the control cir
cuitry to decode the three lower bits of the data word for further instruc
tion. We will call the lower three bits the low order control code.

The first low order control is a No Op instruction. The eighth control
and the fourth high order instruction are also No Opls.

The second control will turn off the scan. The seventh control will
turn the scan on. When the scan is on, the counter is incremented at a high
frequency and the programmed image is displayed on the scope. The scan must
be turned off before a dot can be programmed.

The third control, set Z on, wi 11 program a dot to appear at the dot
location presently loaded into the counter. The fourth control, set Z off,
will program a blank to appear at the dot location presently loaded into the
counter.

The fifth and sixth control instructions set Z in the same manner as
controls three and four. However, after setting Z, these instructions will
also increment the counter by one. This will allow the entire 4096 dots to
be programmed using only a repeated "set Z" instruction. The counter will
naturally follow the regular scan pattern of the raster. This is especially
useful in clearing the contents of the DGDOI memory so that a new image can
be programmed. It can also be used in making horizontal lines or other
patterns in the image.

CIRCUIT OPERATION

Once the data word on the input is stable, only one clock pulse is
needed to execute the instruction. The high order instruction is decoded by
the 7410 triple three-input NAND gate and two inverters. The clock pulse is
enabled py the NAND gate to the appropriate counter section, or.to the strobe
input of the low order cdntrol decoder. The clock pulse is enabled according
to the instruction of bits 7 and 6. .

The 12-bit counter consists of two 6-bit counting sections. Each sec
tion consists of two cascaded TTL 74193 presettable binary counters. Bits
o through 5 of the data input are common to both sections of the counter.
The set X instruction will pulse the load input of the lower or X section of
the counter. The pulse on the load input will cause the data on bits 0
through 5 to be loaded into the counter section.

The Y instruction, similar to the X instruction, will pulse the load
input of the upper or Y section of the counter.

The two sections are cascaded by connecting the upper data B output of
the X counter section, pin 2, IC8, through inverter la l of IC 2 to the count
up input, pin 5, IC 9, of the Y counter section.

The low order control code is decoded by a 74155 decoder connected for
3 to 8 line decoding. Bits 0 through 2 are decoded by the 74155. The con
trol code is enabled by the pulse coming from the 7410 high order instruction
decoder. The low order control is enabled only when the high order code is
set at 10 on bits 7 and 6.

Decoder lines 1 and 6 are connected to an R/S flip flop which provides
the scan on/off control. The R/S flip flop enables a high frequency square
wave to increment the 12-bit counter.

(

ECS Volume 1 No. 5 5 May 197 5

Control instructions 2 through 5 are 'set Z' instructions, therefore
involving a data write operation. Decoder lines 2,3,4, and 5 are connected
to a group of AND gates (IC 5a,b,c) functioning as a negative logic OR gate.
The output of the gate is the Read/Write control line for the memory. When
this line is in the low state, the data present on the data input line of
the memory will be written into the memory location presently being addressed
by the 12-bit counter.

The data input of the memory is connected directly to bit 0 of the
a-bit input word. A bit will be stored in the memory only when a 'set Z'
instruction is executed. The Z-axis circuitry requires a high state pulse
for a blank. As shown in the binary fonnat, Table 1, bit zero will be a
binary zero for 'set Z on' instructions and binary one for 'set Z off' in
structions. The backward appearance of this binary format will be overlooked
when progranming in octal notation.

The high frequency square wave controlled by the RIS flip flop and
decoder lines 4 and 5 are negative logic ORed. The resulting pulse increments
the counter according to the control instruction.

The same clock pulse is used to write data into the memory and incre
ment the counter in control instructions 4 and 5. The data is written into
the memory on the leading edge of the pulse • . The counter is incremented on
the trailing edge. Figure 2 shows this waveform.

Output bits 0 through 9 of the 12-bit counter are connected to the ad
dress inputs of the memory. The memory uses four MM2102 1024 x 1 Mt MaS
RAM's (Random Access Memories). Bits 10 and 11 of the counter output are con
nected to the chip select circuitry which enables one chip at a time for. ad
dressing and data input/output operations. The chip select circuitry uses 2
inverters and a TTL. '7400 Quad two-input NAND gate.

The data outputs of the RAM's are OR-tied and connected to an AND gate.
The data output is synchronized with the high frequency clock for better
blanking performance. The output of this gate is connected to the Z-axis
blanking circuitry. This circuitry converts the TTL level signal to a ,scope
compatible signal. ;

Bits 0 through 5 of the 12 bit counter .are connected to the X coordinate
OAC. Bits 6 through 11 of the counter are connected to the Y coordinate OAC.
The OAC's are Motorola MC1406 IC's. They operate on voltages of' +5 and -9.
A current output is produced by the OAC's. The current output is converted
to a voltage output and amplified by the 741 Op Amps. The output from the
X coordinate circuitry is connected to the horizontal input of the scope.
(The scope should be set for external horizontal sweep.) The output from the
Y coordinate circuitry is connected to the vertical input of the scope.

CONSTRUCTI ON

A printed circuit board is being planned for this project, but for the
time being, the method of construction is left for the reader to decide upon
for himself.

Remember that the memory IC's are MOS devices and should be handled as
such. Static electricity will not do them any good.

Remember to use bypass capacitors. A 100 mfd electrolytic and several
.01 mfd disc capacitors are usually reconmended. An acceptable "rule of
thumb" is one disc capacitor for every two to three TTL chips and one electro
lytic per p.c. board.

The parts list is shown on the next page. The schematic diagram is
also included in one of the following pages.

ECS Volume 1 No. 5

Cl,C2
C3
C4
C5
Bypass
Bypass

01-03

IC 1
IC 2
IC 3,
IC 5
IC 6

IC 4

IC 7-IC 10
IC ll-IC 14
IC 15, IC 16
IC 17, IC 18
Ie 19

Ql, Q2

RI, R2
R3, R4
R5, R9
R6
R7
R8
RIO
Rll, R12

20pf
.Olmf
.0015mf
330pf
lOOmf
.Olmf

6

PARTS LIST

disc capacitor
disc capacitor
disc capacitor
disc capacitor
electrolytic capacitor
disc capacitors

silicon rectifier (lN914 or similar)

7410 TTL Triple 3-Input NAND Gate
7404 TTL Hex Inverter
7400 TTL Quad 2-Input NAND Gate
740S TTL Quad 2-Input AND Gate

74155 TTL Dual 2-to-4-line Decoder
74193 TTL Presettable 4-bit Binary

2102 MOS 1024-bit Static RAM
MC1406 Motorola 6-bit DAC

741 Op Amp
NE555 Oscillator

2N5l39 Transistor

3.3k ohm resistor
5.6k ohm resistor
2.2k ohm resistor all resistors
1.Sk ohm resistor ~ watt, 10%

1Sk ohm resistor
100 ohm resistor
7.5k ohm miniature potentiometer

10k ohm miniature potentiometer

SET-UP, TESTING, AND OPERATION

May 197 5

counter

Supply voltages needed are +5 VDC at 400 mA, +15 and -15 VDC at 10 mAo
The TTL and memory IC's operate on +5 VDC • . The DAC's use +5 and -15 VDC.
The Op Amps use +15 and -15 VDC. The DAC I sand Op Amps will also operate
with voltages of 9 or 12 instead of 15. This will allow you to use your ex
isting computer's power supply for the DGDOI as well.

When you are satisfied that your DGDOI is ready for operation, do not
inmediate1y connect it to an I/O channel on your computer. For initial test
ing, use the test circuit shown in Figure 5 (Included in following pages).
The only requirement is that the test rig be able to provide an a-bit binary
input word and a clock pulse. If a computer is used for initi~l testing, it
is difficult to pinpoint a problem as being in the circuit. A problem can
often be found in the software used with theDGDOI. . ..

The clock pulse should be active in the high state as shown in Figure
Three. If your computer operates with an active-low pulse, an inverter is
needed for inverting the clock pulse.

When you are ready to test, turn on the power and load a 'turn on scan'
instruction. The turn on scan instruction should produce a raster. If a
distorted concentration of dots appears, adjust the DAC voltage reference pots.

ECS VoluIl1e 1 No. 5 7 May 197 5

The high frequency square wave is provided by ~ 555 timer TC connected
as an astable mubtivibrator. Adjusting the frequency may be necessary to
obtain a stable appearing raster. (Note: you don't need a fancy scope for
this project. A cheap 250kHz scope was used with the proto-type.)

The next step is to check the blanking. You should get a mixture of
on and off dots simply by turning on the power. The frequency of the scan
and voltage supplied to the Z-axis circuitry both affect blanking performance.
The Z-axis amplifier may be disconnected from the -15 volt supply and con
nected to up to -25 v.olts. The frequency may be adjusted with the 7.5k pot.
It should be noted however, that raising either of these too high will have
adverse effects~ Ke~p in mind that the Z-axis is connected through a cap
acitor (in most cases) within the scope. Charging the capacitor with too
much voltage at a given frequency wi 11 cause the blank to carryover into the
next dot. Thus one blank pulse blanks out two dots. Avoid this situation.

Performance varies, depending upon each particular scope. The best way
to find the best contrast and blanking performance is by experimenting. If
you are unable to obtain any blanking, connect the Z-axis output to the ver
tical input of your scope. If no pulses are present, your trouble is back
in the DGDOI circuit.

After you have obtained a satisfactory raster, execute each instruction
manually to verify its operation. Clear the memory by setting the input at
205 (octal) and connecting a 10kHz square wave to the clock pulse input.
(Remember: Scan must be turned off before prograrrming 'any dots) Execute a
set X, set Y, a number of set Z on with increment's, and turn on scan. Your
prograrrmed dots should now appear.

If all operations seem good, connect your computer. You may write
programs to your hearts content, but just in case, there is a test pattern
program included in this article. If your OGOOI doesn't operate correctly
after connecting your computer, check all software first. This is usually
the cause of most problems.

The data output of the OGooI memory may be connected as a computer in
put, but this is optional. To read the status of a dot, you would load the
coordinate of the selected dot, then read the single bit data output.

TEST PATTERN PROGRAM

The program listed on the following page(s) will program the OGOOI for
a test pattern. The pattern will be a checkerboard pattern of 16 alternating
light and dark squares.

The program counts off 4 sections of 16 dots per section. Each section
is alternated to get a pattern of light-dark-light-dark or dark-light-dark
light. Rows are also counted off in groups of 16. Each row in the same
group is set with the same pattern, but each group is set with an alternate
pattern.

The set Z with increment instructions are used. The least significant
bit of the E register is used in OECLOOP to alternate between set Z on and
set Z off.

The various loops in the program are briefly described in the following
paragraphs.

DOTLOOP counts off each section of 16 dots and programs the section of
dots according to DECLOOP.

XSECLOOP counts off 4 sections per row and jumps back to DEC LOOP to
alternate the set Z instructions between sections.

ECS Volume 1 No. 5 8 May 1975

ROW LOOP counts groups of 16 rows and increments the E register an extra
time to reverse the order in OECLOOP between each group of rows.

YSECLOOP counts off 4 groups of 16 rows to halt computer when checker-
board has been loaded into OGOOI.

To invert the pattern on the screen, load E with 001 instead of 000 in
location 00 220. This will have the effect of inverting the parity register.
The result would produce a pattern of the opposite light and dark arrangement.

START 00/200 = 006 LAI 00/255 = 302 LAC
00/201 = 201 (TSF) 00/256 = 024 SUI
00/202 = 121 OUT 10 00/257 = 003
00/203 = 006 LAI 00/260 = 150 JTZ
00/204 = 000 (STX) 00/261 = 267
00/205 = 121 OUT 10 00/262 = 000
00/206 = 006 LAI 00/263 = 020 INC
00/207 = 100 (STY) 00/264 = 104 JMP
00/210 = 121 OUT 10 00/265 = 221

CLEAR 00/211 = 016 LBI 00/266 = 000
REGISTERS 00/212 = 000 ROWLOOP 00/267 = 026 LCI

00/213 = 321 LCB 00/270 = 000
00/214 = 331 LOB 00/271 = 303 LAO
00/215 = 351 LHB 00/272 = 044 NOI
00/216 = 361 LLB 00/273 = 037
00/217 = 046 LEI 00/274 = 024 SUI

PARITY REG 00/220 = 000 00/275 = 017
OECLOOP 00/221 = 040 INE 00/276 = 150 JTZ

00/222 = 304 LAE 00/277 = 305
00/223 = 044 NOI 00/300 = 000
00/224 = 001 00/301 = 030 INO
00/225 = 150 JTZ 00/302 = 104 JMP
00/226 = 246 00/303 = 221
00/227 = 000 00/304 = 000
00/230 ;::; 066 LLI YSEClOOP 00/305 = 303 LAD
00/231 = 332 00/306 = 044 NOI

OOTLOOP 00/232 = 301 LAB 00/307 = 340
00/233 = 024 SUI 00/310 = 330 LOA
00/234 = 020 00/311 = 024 SUI
00/235 = 150 JTZ 00/312 = 140
00/236 = 253 00/313 = 150 JTZ
00/237 = 000 00/314 = 326
00/240 = 010 INB 00/315 = 000
00/241 = 307 LAM 00/316 = 303 LAO
00/242 = 121 OUT 10 00/317 = 004 AOI
00/243 = 104 JMP 00/320 = 040
00/244 = 232 00/321 = 330 LOA
00/245 = 000 00/322 = 040 INE

OECLOOPJMP 00/246 = 066 LlI 00/323 = 104 JMP
00/247 = 333 00/324 = 221
00/250 = 104 JMP 00/325 = 000
00/251 = 232 END 00/326 = 006 LAI
00/252 = 000 00/327 = 206 (TSN)

XSECLOOP 00/253 = 016 . LBI 00/330 = 121 OUT 10
00/254 = 000 00/331 = 377 HLT

OU/332 = 204 (ZNI)
OU/333 = 205 (ZFI)

ECS Volume 1 No. 5

~
CONTROL

CIRCUITRY

~ ! "
MEMORY I.

~.

BlANK
CKTY

Z tUTPUT

9

. INPUT

1.
~ " - COUNTER

I
~

CHIP

'CKW,
~

Y X
DAC DAC

VEITICAL ...il ONTAL
OUTPUT OU~UT

FIGURE t.
DGDOI BLOCK DIAGRAM

May 1975

...... -PULSE WIDTH DETERMINED - ,---
BY EXTERNAL CLOCK PULSE SOURCE

MINIMUM 750 NS.

01."" STORED ·COUNTER INCREMENTED
FIGURE 2.

+SV n--------INSTRUCTION IS EXECUTED
DURING THIS PULSE.

MINIMUM 750 NS.

o SIGNAL ON CLL.O-CK-P\LSE----INPUT---~ FIGURE 3.

IC POWER AND NIC PIN CONNECTION CHART

IC +5 GND +9 -9 NIC

1,2,3,4,5 14 7 ",.-.-,::--::--=----~----....,...---------- - - - ---
6 16 8 9,4 .
7,9 4,16 8,14
8,10 16 8,14

10 9 11 ,12,13,14
15,16 11 2
17,18

-3----1
~~---=----~----::7~---.;4---158 -

-----.!.:~-
19 4,8 1
=-----~----..;:-------- -- -- -- - --

2102 MEMORY ADDRESS PIN CONNECTIONS

A-O -- p1n a : A-I -- pin 4 : A-2 -- pin 5 : A-3 -- pin 6
A-4 -- pin 7 : A-5 -- pin 2 : A-6 -- pin 1 A-7 -- pin 16

A-a -- pin 15: A-9 -- pin 14

ECS Volume 1 No. 5 10 May 197 5

CLOCK PULSE INPUT ~,_, '. ,. t:;BIT DATA INPU: ~

r-;=:+=.,= ~=~=,::t .. =============~='"'=" ="=" "='" =- ':::.'J~ - •• L,. ,~, :::t=t==r
:\~ '~ .. - , + •. , , .• ".~

',.,. "1 ""

.-----{G

~f'
".' " " ",, -- ~ "r;

"J;; ~----------'

"
6 .

R/W

:'. :- ~~.:' .

CIRCLED LETTERS,:INOICATE CONNECT;IONS
COUNTER INCREMENT

. .' '- :)

WITHIN CIRCUIT~{" .;.': ,' l':;',;"";,,n: i '

:~';' , ,:.DIGITAL.:: . QRAPHtC": DfSpLlA¥ .:- ~·;··
OSCILLOSCOPE INTERFACE ' " ''

CIRCUIT DIAGRAM
FIGURE 6 •.

TO e-BIT DATA INPUT "
.:'

SPOT
TOGGLE ",' !~ , :. ,: ';,

.- '
.. ,

, >,

+5V

"

TO
CLOCK PULSE

INPUT

o
I '

PUSH MOMENTARY SWITCH 'to
EXECUTE INSTRUCTION ' SET ON,
TOGGLE SWITCHES. 112 7400 TTL

NAND

MANUAL TEST CIRCUIT FIGURE S.

II

t •

•

ECS Vol 1 No. 5 F~ 1 1 May 1975

B

I i
AO Ag ·5V

___ 5;;.a...,. 1 "I Rll-JOkD '

/
r-BO~A A 3 5 A6 12 ~v~ ~. +5V
---; 8 8 2 6 RI·l~_
--:: C 6 7 IC 15 13 :!:::. v v v-.J:.

.: cI Co 0 7 8 t.AC 14106 14 CI-20..1 - ~~5Jk 1_ g ,. ['VV'"
IC7 t+++~ ~

H

C

74193 U. toHo++il JC~AI 4 2 1- "-
13 . I': ~8 OUTPuT i

~"""''''HOAIZONTAL

-9V -:- totA 741

+5V

DIGITAL GRAPHIC DISPLAY
OSCILLOSCOPE INTERFACE

CIRCUIT DIAGRAM
FIGURE 8b.

5 hi ,r-!

1
80 ~1&I"A-..;.L,.AiI::::.~ __ ~H-+~5 A8 AI2-IO!IA.-l +5 V
1--= 8 B c:; 8 lIZ A;.i3lc

10 8 7 -A.~:-
I-=C" IC 18 13 ~
I---i. D D 7 le MCI408 14 C2-20.... '=' ~~~8k

__ -,,9~ r r vv ...

IC 9 !L 10 AI 4 2 ~ ~
~ 74193 1- ,,~.-.G-...... VERTICAL

\

13 12 J~ 12 3K'18"8 OUTPUT

4 f -9V "* tA741

I~A Al=3:.....f-~
. 851 B BI=2=-+-.-.

i-'

IC 10
74193 !L

DJ------.....

ALL 2102 PIN CONNECTIONS ALIKE, EXCEPT CHP ENABLE
3 II T T .J..
RIW Olt::' != E ~-~® @
IC 14 ~ IC 13 ~ IC 12 r:: IC II t:::::::= A
2102 t:: 2102 ~ 2102 ~ 2102 ~ t:: ""'"" ""'"" I--- MEMORY

i- ~ ~ ~ ADDRESS
~ 00 ~ Ao- LINES

113 II~ 113 J 113 I 13

. ~ IC
~ 48

H

J

'02

Z AXIS OUTPUT

ECS Volume 1 No. 5 12 May 1975

CLEAR OGDOI PROGRAM

This program is used to clear the memory of the OGOOI. It simply sends
out a 'set Z off with increment' instruction 4096 times. It uses the B ana
C registers to keep track of the 4096. The register contents are decremented
once for each I/O instruction.

The program turns the scan off before clearing, but does not turn scan
back on. The DGOOI will then remain ready for programming.

START 00/344 = 006 LAI 00/357 = 150 JTZ
00/345 = 201 (TSF) 00/360 = 365
00/346 = 121 OUT 10 00/361 = 000
00/347 = 006 LAI 00/362 = 104 JMP
00/350 = 205 00/363 = 355
00/351 = 016 LBI 00/364 = 000
00/352 = 377 00/365 = 021 DCC
00/353 = 026 LCI 00/366 = 110 JFZ
00/354 = 021 00/367 = 355
00/355 = 121 OUT 10 00/370 = 000
00/356 = 011 DeB 00/371 = 377 HLT

These two programs are just to get you started. Although uncertain of
the medium, we expect to have further programs available in the future. Carl
Helmers has plans for a 'Life'game and possibly a 'Space War' game using the
DGOOI. The author of this article is. planning a Tic-Tac-Toe game and a pro
gram which would use an octal keyboard for rapid construction of images. (It
will be the closest we can reasonably come to an electronic pen.)

These programs, of course, will be in addition to your own. There are
many applications of a OGOOI. Outside of games, it could be used to graph
solution sets of mathematical problems. It could be used to graph results of
data aquisition programs. It could plot results in a digitally controlled
analog computer system. It could ••• well, who knows how many things it
could be used for? The exciting point is that such applications are finally
within the economical range of the 8008 system.

PRINTED CIRCUIT BOARD FOR THE "DGDOI" DESIGN:

As this issue of ECS goes to press, the first layout of a two-layer PC board with
plated-thru holes has been completed. A first printing of the board will be executed
prior to the next issue of ECS, at which time I expect to have details of pricina. Qa d!e
board.

SOME LAST MINUTE IMPROVEMENTS:

In cassette conversation with Jim Hogenson, the following items were pointed out
regarding updates of the article as it stands: 1) by connecting the "0" output of IC 6 (6-9)
to IC 9 "decrement input" (9-4) the "ZxO" (octal) opcode becomes decrement Y. Z)
by connecting the "7" output of IC 6 (6-4) to IC 7 "decrement" (7 -4) the "Zx7" (octal)
op code becomes decrement X. 3) The DAC chips may exhibit non-linearities due
to manufacturing variations - sometimes observable in particular cases.

- CTH

ECS Volume 1 No. 5 13 May 197 5

C ON C ERN I N G THE HAN D ASS EM B L Y OF PRO G RAMS

by Carl T. Helmers, Jr.

The purpose of computing is to solve problems. Problems are
solved by analysis followed by generation of a method - an algorithm -
for accomplishing the desired ends. The computing approach to prob
lem solution consists of automating the steps of such methods by pre
paring a "program" for the computer to execute. This article concerns
the process of preparing prograIns for execution on the assumption
that you have previously generated a detailed symbolic specification of
your problem's algorithm in the SIRIUS-MP language (or any other
method of program specification for that matter.) The remaining task
of program preparation is the translation of the symbolic form into a
detailed set of machine codes (numbers).

In April 1975 ECS, an introduction to the SIRIUS-MP language was
presented as a means of expressing programs for inexpensive "home
brew" computer systems. The present article continues this SIRIUS
information by discussing the process of hand assembly of machine code
from the symbolic representation. Hand assembly is a process which
the serious student of computing should perform as an exercise at some
point in time - whether or not the computer under study has an
assembler available. The tutorial value of "walking through" the assem
bly process is well worth the effort - whether or not the hardware limits
of you system make it mandatory.

The "hand assembly" process is in some respects a retrograde motion in compu
ter science - a step "against the normal direction" of progress towards more and
more automated programming aids and methods of expression: It is a process which
is the translation of existing assenlbler algorithms (no particular assembler among
a IIlyriad of assemblers is singled out as a model here) back into the realm of a
manually executed process - just as the first programmable machines had to be
programmed before the invention of software development tools. As an adaptation
of the "typical" assembler algorithm to manual operations, the manual assembly
process to be described is useful in several areas •••

- it illuminates the process of assembly as performed automatically,
so that the reader will be less tempted to blame all manner of programming
problems on the poor simple-minded assembler programs.

- it provides the microcomputer enthusiast with a method of software
development (albeit cumbersome) to be used until his or her personal
cOlllputer is integrated to the point needed for a real assembler.

- it highlights the problems of code generation from symbolic notation.

- it can serve as a model for the · implementation of an assembler
system by the reader for his own variation on the microcomput er concept.

ECS Volume 1 No. 5 14 May 197 5

AN ASSEMBLER SYSTEM

The concept of an as sembler system is illustrated at its highest level by the func
tional diagrcun. •• a "black box" of proc essing which accepts some input and produces
some output:

The input at the left of the
diagrcun is the "source pro
gram" - a generalized and sym-

Assemble bolic representation of your
progr am • The output at the
right (the principal output of

the assembler) is the "object progrcun" equivalent of the source program - a set of
binary (octal or hex) numbers which potentially can be loaded into appropriate memory
locations and executed. (I am leaving out the concepts of linkage editors, relocatable
loaders and other post-assembly tricks for the time being.)

What is this assembler "black box?" In an automated conventional assembler system
the black box is computer program used to translate a text file (eg: ASCII characters as
input fr om a teletype or other keyboard) of the source program into its equivalent binary
object file representation. The term "file" here means a set of many (eg: "n") computer
words containing some form of information - often used to signify such data sets as
stored on magnetic tape or disc. The usual assembler program is implemented and
runs on computer "X", producing an object program for complter "X" (self assembly)
or for computer "Y" (cross assembly.) In the corresponding hand assembly conception
the ass.embler "black box" is defined as you - the reader - performing a variation
of the steps required to translate the symbolic representation into its machine code
form.

THE SOURCE PROGRAM

The sourceprogrcunJor the assembly is usually written in the appropriate "Basic
Assembly Language" for the computer in question - each computer manufacturer comes
up with its own version of the type of prograzn involved, usually running on one of
the manufacturer's own .machines. For the microcomputer case, this is ,not usually
possible, since the number of variables in individual CPU Unplementations using the
sarne chip is immense. For the purposes of this publication and the generality of
notation, theartic1e assumes a source program written in the SIRlUS -MP formulation
which is to a large extent independent of any particular chip design. If you were to
substitute" Language X"for SIRIUS-MP in the ensuing pages, you can do so and apply
.the same process - although your translation function wiil technically be that of a
cornpiler or interpreter if any language other than an assembly language is used. This
article's methodology could in particular be applied to the translation of some of the
immense nuznber of published computer "games" in BASIC for instance, if you want to
get such progrcuns up and running - however tackling a high order language translation
will tend to get yO\! bogged down in detail and in routines you have to write to get
anything done, so it is only recommended in the simplest of cases when performed by
hand.

ECS Volume 1 No. 5 15 May 197 5

THE OBJECT PROGRAM c: L· •

The output ofihe as-s~mb1yprdces~ is an "object program" - a potentially execu
table set"()f ,codetf for the~6rll.ptiter. " The form in which an object program is specified
should be -Chosen 'ac(::ordirig to the i'teeds of the assembly proces s and the intended use
of the results'~i'f: ln a." "reall'assetriblet (ie: a computer program running on some com
puter) two major classes of output come to mind:

1. ,Absolute Machine ~:C.ode.> Her.,ethe object module output consists of
infol".m,ation needed todelinethe specific content of each memory location
in theprQ,gram" tie,d l d:~rectly. to, a , specific range of memory address space
in the computer. In this variation of output, all the work is done at the
time of assembly, and loading the program then becomes a task of copying
this Ilm,emory ima.ge,II, (archaic ,term: core image) into the computer.

2. Reiocatable' _Ma~hine C~de."H~re the object module is built by the assem
bl,erprq-gram ~~latiye ,to ~narbiti'a:,rily chosen starting address (often "0"),
withth,e finalre~olution o,,(ad,dressesfor symbolic references, jumps, etc.
lefLto an apprOpriatellr'eloc:at;~ng',~Joader. The object module in this form
is' more complicated for i.n adcUtton to the binary image of the program, in
formation on the address references inside the program must be retained
s:~ thatthe~oader ciln Cllt~r th,ern during the load process.

Iii ad~iition toth~ ' ~pec:ific form of th~' modules, there is the question of liriking multiple
progtarh ~egtltent:s " - ' which~a~ o-p~:nu'P a whole "can of worms II best ignored at this
stage~ ' For tpe put-pose bf'harid compilation, the "KISS" rule applies - "keep it simple,
stupid~ i.' < The 'ct~ 'stitnptiQn\~nl1 be that linkages between modules are made by commonly
addre'ss~d absolu~e address regions (for example, the first 256 bytes or base page of
a Motorola 6800~ ' the first 256 'bytes' of an 8008 designed according to my plans pub
lishe(leCl,.~J.~el"L.Or .aha:rbitra;ry ' ~eg-ionif no particular location is suggested by the
charaCteris'tfcsofha'rdwafe or software. }

~. : . :~.{ ~ ~-~ :l~~I '} ~. " .~ >.t'I ' ;::4:':~ ' /~~~:.:_ L' ~ ~ {
In order to ke~p. th,eprp:cess,;,s,imp~e, the Hand Assembly method as described here

is limited to the productfonof absolUte machine codes (type I object modules as listed
above.)"The'- actualforrii wiU'be 'a list of hardware addresses in memory address space
and the :c'b:f'~e~pon~ing machihecode i'for that addres s. I have written the article under
the assumption tha.t the 'M.P.' <'Publishing Co. Kluge-I Assembler coding sheets are
usecf'fOFili'e final -output ;"' 'but: thi~i's -by no means to be interpreted as an absolute " re _
qu,i~emerifl'~'(tli~ method: They are available at Sf each plus postage, and were cre
atedpr~riliJ2< .. satisfymy own purposes after I got tired of writing the same low order
address sequehces over and Over andover again. An alternate source of paper
for the process is used computer paper recycled from a handy local computer center,
or if you"are in position to make arrangements for time - you could whip off a quick
FORTRAN or PL/I (or ?) program to write the address sequences onto blarik paper in
a manner similar to th.'e Kluge-l sheets but on a line printer insteado

The .processof assembling and generating the code for a program has two major
(conceptual) steps which must be performed, assuming that a suitable symbolic nota
tion for the algorithm exists.

ECS Volume 1 No, 5 16 May 1975

Step 1: Translate the symbolic notations into equivalent sequences of the
Ynachine's operations. Pay attention to any address calculations which may
be required, but leave "open" the question of addresses of operands for
which no addres s is yet assigned. The purpose of this step is primarily to
allocate the memory address space requirements of the program by deter
Ynining the number of bytes of code required for each elementary statement
of the program which is translated.

Step 2: With all the required program and data locations allocated (typically
in a sequence of consecutive memory locations starting at a chosen "origin" or
first address) "fix up" all the unresolved references hanging around in the
code prototypes created in step 1.

This set of steps is a universal one, and is performed by every code generation pro
cess - whether it is an assembler, a compiler's code generation phase, or even an
interpretively executed programming language such as BASIC. The variations (and
there are many) in particular approaches to compiler and assembler code generation
strategies concern ways of implementing these conceptual processes of allocation
and reference resolution (the "fix ups"). In a classical two-pass assembler and/or
coxnpiler, there is an explicit separation into these two steps - pass one is the allo
cation phase (also syntax checking), followed by pass two which fixes things up. If
one restricts the types of references possible at any given point in the progrcun source,
it is possible to achieve a "one pass" compiler - the restriction being the rule that no
"forward" references be made to portions of a program yet to be referenced, or that
such forward references be made through a special mechanism in the generated code
such as a run time symbol table lookup/calculation. In the hand assembly version of
the process described here, a classic two-pass approach is taken, but the first pass
is further broken down into two operations which might be conceptually considered
"passes" through the data. The text continues following a short aside •••

WHY ARE TWO PASSES NECESSARY IN THE UNRESTRICTED CASE
AS A MINIMUM NUMBER OF SCANS THROUGH THE DATA?

The necessity of the second "fixup" pass becomes obvious when you con
sider the problem of forward references. (References to previously allocated
symbols are no problem - I already have their addresses figured out.) The
assembly process can only sequentially process the statements of the program,
starting with the fir st. A "forward reference" to some sym- F,IU1' .,....CICr
bol in the program is a symbolic reference made prior to

Nt,
the definition of the symbol in question - relative to the order It.ter t

of scanning the source. Pictorially, a forward reference is
illustrated by the assembler (an "iInp") finding the statement
fiX = : Y" closer to the beginning of the scan than the defini-

,
(

tion of the symbol Y. At 0(the little imp says "where's Y?"
and files it as an open question. A bit later in the first pass \ 5tii}
he can say "aha - I know where Y is" but - he has already gone ' Y' r
past the point where Y was referenced. Then on the second F;~_ y wI>EF~EJ>. . . \
time around, the little imp can use this information to fix up
the incomplete information in the statement with the forward
reference. Either the minimum. two passes through the data, \,,~ ~
or a logically equivalent IItrick ll is required to resolve the forward reference.

(

E CS Volume I No. 5 17 May 1975

The hand assembly process is outlined in the paragraphs following immed
iately below. The process is broken down into three sequential steps which
I have found to be components of a useful procedure: generate skeleton
code, allocate addresses, then fill in the final code of the program repla
cing mnemonic notations and symbolic address references. Of these steps
the first two correspond roughly to the allocation pass of a two pass assem
bier, and the last corresponds roughly to the reference resolution (fix up)
pass. Following this descriptive summary of the process, a detailed exam
ple is presented for the case of a subroutine used to "concatenate" bytes
strings of the form described on page 9 of April 1975 ECS.

SKELETON CODE GENERATION:

The first pass of the hand assembly process begins with a "skeleton code genera
tion" operation. The purpose of this operation is to figure out the mnemonic opera
tion codes required for the corresponding operations of the source program. If you
program exclusively in the mnemonic assembly language appropriate to a given machine
you have already performed this operation by writing your program on paper. If you
use a "higher level" specification such as SIRlUS-MP (or FORTRAN, PL/I~ BASIC,
and any other language you might care to use) this step is required in order to turn the
basic operations of the source program into sequences of operation appropriate for your
computer's instruction set. For the SIRIUS-MP language, this corresponds to a table
lookup (in your head) of an appropriate method of carrying out the functions of each
statement, and in many cases will result in a fairly one-to-one correspondence of oper
ations in the source program and in the machine code. If you automate this process,
it becomes roughly equivalent to a "macro expansion" process tacked on the front end
of many assemblers. I have found scrap computer listings to be most effective in this
stage since it involves no address allocation, merely listing the symbolic equivalents
of the program bytes on paper.

ADDRESS ALLOCATION:

The hand assembly process as conceived here is oriented to the generation of the
absolute, executable machine code for specific locations in the computer's memory
address space. This bypasses the question of generating relocatable code and keeps
the process simple. Error possibilities increase with complexity, especially when
a program is assembled by biological computing machinery with all its foibles. This
address allocation stage consists of taking the skeleton code sequences for the program
and assigning a memory addres s for each byte in turn. One way to do this is to re
cord the byte addresses on the paper used to write the original skeleton sequences.
Another method is to use the M. P. Publishing Co. Kluge-I Assembler coding sheets
with pre-printed low order addresses in octal to provide the allocation function - if
you write an operation code at some place on the sheet, it's address is "used up" and
no longer available for allocation. The skeleton code generation and allocation pro
cess can be done simultaneously on the Kluge-I sheets provided you are fairly sure of
the code being generated (or don't mind erasing a bit if you make a mistake.) The prob
le:rn of the combined skeleton/allocation approach is that whenever you write down the
use of a specific address, it COInmits the location to a specific utilization, which may

ECS Volume 1 No. 5 18 May 1975

be "premature." I like to get a program done completely in the skeleton form prior to
allocation of any addresses, so a review of its operation can be done. Then after the
review, I proceed to do the allocation by copying to the Kluge-I sheets. (Even so, I
make many mistakes and change things when I see a better way - one of the things which
guarantees an incentive on writing an assembler for SIRIUS and at a later stage some
form of compiler for a decent programming language.)

An Aside:
It may be possible for you to gain access to a minicomputer facility

and/or large computer facility. (Particularly for the readers of ECS who
are still in school and can wangle computer time.) One way to iInplement
an assembler for a language such as SIRIUS-MP is to use an existing as
sembler with a macro facility - eg: the IBM 360 Assembler, or a DEC
PDP-IO assembler or a host of others - and write a special set of macros
to iInplement the primitive operations as expansions based on the skeletons
of octal(hex) codes required for your target computer. Then all the symbol
table lookup and management of the original assembler can be used as is.
The troubles with this approach are several: most macro expansion opera
tions of assemblers tend to be inefficient; it is a lot of work to write a com
plete set of generalized macros and debug them as well; and so on.

FILLING IN THE CODE:

Once the addresses have been allocated to the skeleton, the final step is to fill in
the octal (or hex if you prefer) codes of each byte in the program by looking up the
mnemonics of the operation codes as noted on the Kluge-I sheets prepared during the
allocation stage. This step in the hand assembly corresponds to the "second pass" of
the classic two-pass code generation process, but with the added provision that the
mnemonic op codes which would be translated in the first pasa of an ordinary assembler
program are left until this last pass for translation. When the process reaches this
stage, all address references are known (as allocated in the allocation step) so that
all references can be made in the code resulting. Each byte of the allocated code has
one of the following possibilities:

it has a portion of a literal value which must be translated into its
machine code equivalent.

it has a reference to an address-related value, which for an 8-bit
micro means either haUof a 16(or 14 for 8008) bit address.

it has a mnemonic operation code which must be looke~ up in a table
of equivalent octal or hex operation codes.

it represents a byte of data which is not to receive any initialization,
which is siInply reserved for use as a run time data storage area.

Whatever the intent, the result for each byte is 3 digits octal (or two digits hex) repre-\
senting the machine coding for that piece of the program. In the "don't care" cases
of reserved data areas (the last option listed above) no explicit action is required to
generate the loaded codes of the program.

ECS VolUln e 1 No. 5

HAND ASSEMBLY BY EXAMPLE:

THE BYTE STRING CONCATENATION
SUBROUTINE "C 0 N CAT T ER 0 "

19

An example always helps to illustrate a new process
or method. To illustrate a hand assembly operation,
I have selected a simple little subroutine to perform a
string operation called lIconcatenation". In words, the
operation of concatenation is the building of a new
string (for example "Z") composed of a left half input
(for example "X") and a right half input (for example,
"Y"). In symbols, the following diagram illustrates
the operation ••••

Example: Byte String Concatenation Subroutine -CONCATTER

X: I m I TmS IS I Y: I nl A BIG STRING J

"
Z: BIG STRING I

k =: m + n

If you are fam.iliar with arithmetic and algebra, you
of course know there exists a set of operations which
are in some sense "fundam.ental", such as addition,
subtraction, etc. - Similarly, in boolean algebra, there
is a set of fundamental operations - AND, OR, NOT.
The sam.e holds when byte string operations are con
sidered as well: the manipulation of "text" is best done
using a few fundamental operations, including concat
enation, "substring" extraction (the opposite of con
catenation), comparisons, etc. The concateration oper
ation is one of the most useful.

The concatenation operation is shown in its most
ab stract form by the flow chart running down the
right margin of this page. This flow chart describes
the steps of concatenation - test the result length for
an error, move the left hali to the result, then move
the right hali to the result. The numbers on the dia-
grant correspond to the statement numbers of the
equivalent SIRIUS-MP program listed on the next page
of this article.

May 1975

Z =: Y +: X

-3.

KOVEX: 4.

.- --

5.

Eel) -: XCI'

-I
r 6.
~- ----

7.
KOVEI': ,..-_...L._--,

It -: X +: 1.

8.

It =: It +: 1

10.

zeit) =: yel)

11.

Cbacll: length

LERRS:

Z =: °
.u11 it

ECS Volume 1 Noo 5 20 May 197 5

The flow chart illustrated on the previous page is an afterthought - the original
written form of the SIRIUS-MP program shown in the box below was created without
using a flow chart as a toolo This SIRIUS form of the CONCATTER is assumed as an
input to the assembly process for the purpose of the example.

1
2
3

1
7
8
9

10
11
12

M

CONCATTER:

MOVEX:

MOVEY:

LERRS:

+:

Z =: Y * FORM SUM OF LENGTHS
Z +: X * AND TEST FOR OVERFL<M
LERRS IF CARRY * OF 8-BIT MAX VALUE

I POR: 1 X * TRANSFER LOOP CONTROLLED
Z(I) =: XlI) * BY X LENGTH BYTE

END: * END OF LAST PREV. FOR

It =: X * Z INDEX FOR Y TRANSFER
I FOR: l·.Y * Y TRANSFER LOOP CONTRLD

INCR: X * BY Y LENGTH BYTE
Z(K) =: y(I) * TRANSFERS EACH Y

END: * UNTIL DONE
RETURN * WITH Z CONTAINING RESULT

Z =s 0 * IflJLL STRING WITH ZPIRST
RETtJlUf * BYTE LENGTH=O

lew SIRIUS-MP operationa in CONCATTER:

--- Addition, with 8-bit lenSth indicator, replaces
the target operand (eg: Z ot atatement 2) with the .um
or the ol~ target's value and the aource operand value.

POR: --- In~remental "PORn loop header. Thia seta up the
.tart ot .a FOR loop with an asaumed integer 8-bit index
(":" length code). a starting value given by· the rirst
source operand subtield (see note 11 below), and an eDding
value given by the second. source operand subtield. The
target operand 111 optional - it OIDitted. the generated code
will keep .its internal count which ia then not available to
progru segments within the loop. A third source operand
subrield will be kept avaUable (optional) separated by ·
a comma and uaed tor the increment value ir other than one.

END: --- Incremental "FOR" loop trailer. All the atatament.
he. the POR to the END are considered part or the loop. An
implicit (ie: "structured") branch back to the last previous
POR occurs it the iteration count ia not exceeded. AI with
the POR statement. the END hal a type moditier to Indicate
the loop index precision •

• otel: In order to provide ror complex operationl such aa the FOR loop
operation. 1lU1tiple "source" parallleterl are 1000etilDei required. The
idea or an operand subrield accomplhhes the neceaaary Input. to the .

. P<Il loop operation. Thia concept will recur when the various byte un1p
ulation operations are Introduced in later diaouaslo~ or bJte atriags.

'pte 2: The FOR/EHD construct is a "natural" ror oDde generatIon using the
·CPU atack temporary data concept as it exiats on .achines such as the
PDP-II, M6800 or 8080. When the "PORn il encountered, a loop return
address Is pushed onto the stack, rollowed by the initial oount yalue and
the rinel count value. Then when the nERD" is encountered during · exeoutiOD
the stack is ref~renced (otr.et tro= .teck pOinter) to Inore .. nt the loop
oount and COlllpare it to the tinal count. 11' the rinal count ia not
exceeded. execution jumpa indirectly through the loop return addr.as ,alao
rererenced otr the stack pointer) back to the rirst exeoutable state.ent
or the body or the loop. It the branch back is not taken. tho "END" cleana
up the stack by adjusting the stack pointer to ita orisinal value prior to
the FOR atatement execution. The atack automatically can handle "neated"
POR loops to as lIIany levell as there Is temporary RAM ... orr to atore the
stacked data. More on thll aubJect in a later iuue •••

As in the examples of SIRIUS programs published in April ECS, I have not included
a generalized treatment of argwnent linkages in this example. The example of a
subroutine uses specific RAM string areas - X, Y and Z - as its argUInents, so that
any program utilizing this version would have to first copy X and Y's values from somE(
other place then call CONCATTER - and copy the Z result after getting back. With
this formulation, X, Y and Z might be considered the software equivalent of the accUIn
ulators (ie: CPU registers) of some hypothetical 3-register "string machine." For
large scale text processing applications, someone will sooner or later microcode a
processor with the string operations.

ECS Volume 1 No. 5 21 May 1975

Given the starting point of the previou s page, the first hand assembly step is begun
with the expansion of the SIRIUS code as a skeleton of the final code. I have illustrated
a small portion of the skeleton listing of CONCATTER at the left in th e following
ill ustration:

5 '<ELETOt-,J ~LU(,t.-I ALLO C.ATIO~

#1 ~TI'[Ir: 200 L"J: ------- --- -- - ----------
------- ~~ - - - ~-~~-~----

. 202 !)~M .----.- --- - -- ----------
20) L6~

------- --- -- -----------.. 2~ LAX ------- --- ----------.--
------- ~~~ ---~~~----

206 S~ ..
------- --- -------------207 LAM
------- iio - - - A-D~----

#3 211 3'Tt. LUllS ------- --- -- - ----------? 212 L ---_._-- --- --- ---------
H ------- --- --- ----------4t LBA ------- --- -------------

The code illustrated here is for an 8008 processor (my own "ECS" system) and uses
the software conventions (eg: SYM table lookup) described in earlier issues. The
Kluge-I allocation of addresses for the Skeleton code is illustrated at the right. In
the allocation step, numbers are used to reference SIRIUS statements of the source
progrcun, and the question marks ("? ") serve to denote address references prior to
definition. The LERRS example here is a "forward reference" to later code which
resolves (after allocation of the whole routine) to be location 007/334.

The code generated for the remainder of CONCATTER (8008 mnemonics from the
original Intel docum.entation) is printed on the next page. This listing contains the
results of the third hand assembly pass (filling in code and allocated address refer
ences) along with mnemonics and statement number references back to the original
SIRIUS-MP code.

The subroutine named "OFSET" was coded to perform the index calculation of the
type implied by the SIRIUS notation NAME(INDEX). It adds (16 bit calculation) the
current 8-bit loop count maintained in B (CPU register) to the address found in the H/L
pointer pair. For 8080 machines, this subroutine would not be necessary since there
is the 16-bit address calculation possibility for the H/L pair.

The FORI END group code is generated in a form using an index variable I which

happens to be redWldant in this example. The actual loop indices in this simplest case
are maintained in the CPU B register (moving index) and CPU C register (end index).

E CS Volume 1 No. 5 22 May 197 5

CONCATTER: 8008 Code Equivalent
#1 007\lWO = UUb LA! #8 00·,,270 = OU6 LA!

007\201 = U40 S(Y) 007\271 = 040 S(Y)

007\202 = 075 SYM 007\272 = 075 SYM
007\203 = 317 LBM 007\273 = 327 LCM

#2 007\204 = 006 LA! #8B 001\274 = 006 LA!
001\205 = 036 S(X) 007\215 = 044 S(I)

007\206 = 075 SYM 007\276 = 075 SYM

007\207 = 307 LAM 007\21"1 = 371 LMB

007\210 = 201 ADB #9 001\300 = 040 INE

#3 001'\211 = 140 JTC #13 #10 001'\301 =- 006 LA!

007\212 = 334 L 001\302 = 040 S(Y)
007\213 = 001 H 007\303 I: 075 SYM

#2 001'\214 = 310 LBA 001'\304 .. 106 CAL OFSET

007'\215 1:1 006 LA! 001\305 := 367 L

00-7,\216 I: 042 SV:)
007'\306 a 007 H

007,\217 1:1 015 S M 007'\307 =- 337 LDM
007,\220 = 371 LMB 007'\310 1:1 351 LHB

#4 007'\221 .. 016 LBl 007'\311 = 314 LBE
007\222 • 001 1 007'\312 • 345 LEH

001.'\223 .. 006 LA! 007'\313 • 006 LA!

007\224 I: 036 S(X) 007'\314 • 042 S(Z)

001,\225 • 075 SYM 007'\315 • 075 SYM
007,\226 .. 327 LCM 007'\316 .. 106 CALOFSET

#413 007~227 • 006 LA! 007'\317 .. ·367 L
007,\230 .. 044 S(I) 007'\320 • 007 H
007\231 a075 SYM 007'\321 • 373 LMD

007'232 =- 371 LMB 007\322 a 351 LHB
#5 007\·233 .. 006 LA! 007\323 a 314 LBE

..
007\234 I: 036 S(X) 007\321& a 31&5 LEH

' 00,7\235 I: 075 SYM III 007\325 • 301 LAB

007,\236 1:1 106 CAL OFSET 007\326 .. 272 CPC
007\237 a 367 L #12 007\327 • 053 RTZ
007,\240 I: 007 H #11 007\330 • 010 INB
007'\241 =- 337 LDM 007\331 • 104 JMP fBB

007\242 • 006 LA! 007\332 -= 274 L
001\243 • 042 S(Z) 007\333 • 007 H

007'\244 = 075 SYM #13 007\334 • 006 LA!

007,\245 III 106 CAL OFSET 007\335 • 042 S(Z)

007\21&6 • 367 L 007\336 • 075 SYM
007\247 • 007 H 007\337 • 076 LMI

007\250 • 373 ·LMD 007\31&0 • 000 0

#6 007\251 .. 301 LAB 007\341 • 007 RET

007\252 = 272 CPC
007\253 • 150 JTZ #4E
007\254 I: 262 L
007\255 = 007 H
007\256 1:1 010 INB OFSET:

007\257 = 104 JMP #4B 007\367 • 306 LAL
007\260 a 227 L 007\370 :II 201 ADB
007\261 =- 007 H 007\371 :II 360 LLA

#4E/7 007\262 1:1 006 LA! 007\372 • 003 RFC '
007'\263 1:1 036 S(X) 007\373 • 305 LAH
007\264 1:1 075 SYM 007\374 .. 004 ADI
001'\265 = 347 LEM 007\375 • 001 1

#B 007\266 = 016 LBI 007\376 • 350 LHA
007\267 = 001 1 007\377 • 007 RET

ECS Volume 1 No. 5 23 May 1975

In cases where it is desired to call one or more levels of subroutines within a loop
mechanization such as the two FOR loops of CONCATTER, it will be necessary to
save the content of the B and C registers whenever a conflicting use is encountered.

In the FOR/END loop mechanization, note that there is a "generated" label for
the branch back. The statement number of the for statement itseU does not suffice
since there is some "initialization" (set up B and C) prior to entrance into the first
loop cycle. The assignment into the symbolic loop index "I" implied by the left
operand (target) of the FOR statements is done at the beginning of each cycle and
serves to mark the branch back points. The branch back points are noted in the 8008
code generation by the statement number followed by the letter "B".

In the FOR/END group shown, the test for end of execution is made.!.!'!!! a cycle
is completed and before the calculation of the next value of the index. In the first
case, statements #4/#6 of CONCATTER, a statement number is required for the
exit case - indicated as "#4E" or (in this example) #7 of the original statements. In
the second FOR loop of the example, I moved the return statement (#lZ) ahead to fol
low the comparison, rather than placing a branch forward at that point. In so doing
I was acting as an "optimizing" compiler of the SIRIUS language - using as input the
global knowledge of the program in order to figure out a "special case" allowing the
movement of code. A similar special case was recognized at statements #Z/3 where
the jump on condition of #3 is placed ahead of the data storage portion of #Z in order
to avoid insertion of a mechanism to save the carry flag across the SYM lookup.

On the following page is one additional set of SIRIUS coding and equivalent 8008
generated code. The routine is a "DRIVER" to call the CONCATTER routine with
test data in X and Y (printed separately as two lines), followed by printing of the
results of CONCATTER as a single line. The SIRIUS c ode is extremely simple -
virtually a series of calls. A routine called TSTRlNG is used to do the typing of
byte strings, as found within the "ELDUMPO" program of January 1975 ECS. If
you employ any form of hard copy or CRT output, an equivalent routine would of
course be employed to transfer byte strings to the appropriate external unit. In
the driver, the term "HL" is used to denote the H/L pointer pair of an 8008, which
would be the H/L pair if you generate for an 8080, or the "X" register of
a Motorola 6800. This use of the pointer for argUIllent passage is a workable one
but only a tempor:..ry "kluge" at present.

What good is concatenation you ask? The idea is illustrated by the diagram given
previously. Its use is its justification. The primary application is in the process of
"building" a character string, as often occurs when you want to format the output of
a program. The CONCATTER routine only handles two strings, but by feeding the
output of one concatenation into the next, strings of arbitrary length (to 255 with CON
CATTER) can be built from nUIllerous components. As an example, suppose that a
conversion routine has provided a program with the strings "X" and "Y" as answers
to a problem, and that the text "FIVE GLEEPS AT I?? X? ?I WERE SIGHTED NEXT
TO I?? Y??I GLOOPS." is to be printed. Start with Z="FIVE GLEEPS AT "; concat
enate 111 x1 11 on the right giving a new Z; concatenate" WERE SIGHTED NEXT TO "
on the right giving a new Z; concatenate I?? Y? ?\ on the right giving a new Z; then
concatenate" GLOOPS. " on the right givmg a new Z which is printed.

ECS Volume 1 No.5 24 May 1975

'1'HIS IS ~------ X value }-C) A BI G SIHI NG. _ . . . Output of Driver Program
, . • Y value. . . - .
fHIS IS A BIG SIHll~G. ~ Z = X cat Y

.Y
CONCATTER Test Driver (8008) SIRIUS Code of Driver ...

DRIVER: ,--~------#1 00 '''000 = 106 CAL
001\001 = 354 L 1

2
3

CALL NEWLINE
W(X)
TSTRING
NEWLINE
W(Y)
TSTRING
CONCATTER
NEWLINE
W(Z)
TSTRING

#2

3

#4

#5

#6

#7

#8

#9

#10

#11

NEWLINE:
#1

#2

#3

NLTEXT:

007\002 = 007 H
007\00J = 006 LA!
001\004 = OJb SeX}
007\005 = 075 SYM
007\006 = 106 CAL
007 \00 7 = 166 L
00 7 \0 1 0 = 0 1 1 H
007\011 = 106 CAL
00 ., \0 1 2 = 354 L
00"[\013 = 007 H
007\014 = 006 LA!
001\015 = 040 S(Y)
001\016 = 075 SYM
007\017 = 106 CAL
007\020 = 166 L
00 '''021 = 0 1 1 H
007\022 = 106 CAL
007\023 = 200 L
007\024 = 007 H
007\025 = 106 CAL

~
6
7
8
9
10
11

1
2
3

HL

HL

HL

NEWLINE:
HL

- .. - ..
CALL
CALL
=: :
CALL
CALL
CALL
- .. - ..
CALL
EXIT

=::
CALL
RETURN

W(NLTEXT)
TSTRING

NLTEXT:
fl006,000,012,000,015,000,007"

New SIRIUS-MP 0 erations in DRIVER:

CALL - this translates to the simple sub
routine linkage of the target computer.
(No SIRIUS argument linkage assumed.)

007\026 = 354 L
007\021 = 001 H
007\030 = 006 LA!
001\031 = 042, S(Z)
007\032 = 075 SYM
007\033 = 106 CAL
001 \034 = 1 66 L
001\035 = 011 H this translates to the set of in-
007\036 = 006 LA! structions needed to return to the

"mon't" fl ti fl 001\037 = 002 S(IMPSTATE) l. or or execu ve of your soft-
007\040 = 075 SYM ware systems - if the ECS software is
007\041 = 076 LMI used, the return is to the "IMP"
007\042 = 002 2 or its equivalent code on non-BOOB
007\043 = 025 computers.

056
007
066

007\354 =
001\355 =
007\356 =
007\357
007\360
007\361
007\362
007\363

= 342
= , 106
= 166
= 011
= 007

007\342
007\343
007\344
007\345
007\346
007\347
007\350

= 006
= 000
= 012
= 000
= 015
= 000
= 007

Llll The notation "<series of octal numbers>"
h(NLTEXT) p::eceded by a label ' is used to denote
LLI ll.teral data to be loaded with program.
l(NLTEXT)
CAL
L
H
RET

Length
NULL I

~
)

, IMP Symbol Table EXtensions for Use
With CONCATTER (temporary).

012\316 = 006}
012\317 = 000 "36" is X

012\320 • 006L
012\321 = 011 J "40" is Y LF

NULL
CR
NULL
BELL ~

012\322 = 0061-
012\323 = 100 r "42" is Z

012\324 = OOO}
012\325 = 230 "44" is I

