
M.P. Publishing Co. Box 378 Belmont Massachusetts 02178 ECS-l

EXPERIMENTER ' S COMP U TER S Y S TEM

by Carl T. Helmers, Jr.

Part 1 : Design Goals and Introduction

One definition of progress in technology might be the following:
" creation of new technological areas and the reduction in cost of old .
e r technologies." As a re a der of this article, you are undoubtedly
interested in the prospect of acquiring and using a fully programable
general purpose computer ~ystem at a reasonable cost. The recent ad
vances in microcomputer technologies fit the above definition of tech
nological progress by making possible a general purpose bus-oriented
minicomputer CPU (old technology, lower cost) packaged in a relative-
ly small number of integrated circuit packages (new LSI technology.)
This par t icular advance for the first time makes it possible for the
computer enthusiast, educator or hobbyist to consider building and using
a computer system at a reasonable cost. The purpose of this series of
articles is to provide a thorough exploration of the possibilities in
herent in LSI microprocessor technology as a vehicle for building a
c omputer and incidentally teaching computer systems design principles
a nd software design techniques.

The first installment of the Experimenter's Computer System series
is intended to serve as an introduction to the prOject. It outlines
the scope of the project, its design philosophies and what you --- the
computer enthusiast and potential builder of such a system --- will
learn by reading these articles and using them as a source of ideas for
your own work. The results will of course be rewarding in proportion
to the " time and effort you put into the project. The modular nature of
the Experimenter's Computer System allows you to take many options in
customizing a system to your own personal needs. In fact, once the basic
components of the system are assembled, the addition of more memory,
I/O channels, peripherals and other components is effectively limited
only by time and your own budget. This general modularity is a conse
quence of the bus oriented design of the micro-computer selected for
the Experimenter ' s Computer System .

1 . OPTIONS :

Before going into the de tails of the Experimenter ' s Computer System
it is worthwhile to consider the various options which are open to the
individual or organization operating on a limited hardware budget. The
design found in these articles is one of the most economical ways to
acquire a computer in terms of dollar amounts. However its relatively
lower cost must be traded. off against the time required to construct and
tes t the various modules .

1 .1 PURCHASING OR RENTING A COMPUTER SYSTEM

This option is the most expensive of the group considered here . By
purchasing or renting a complete computer system, the time involved in
building and debugging sys t em hardware is avoided, but a higher dollar

(C) 1 q 7 JIM. P . "P 11 h 1 i "q h i n 0' r. () II 1 1 ,.,;,..,. "h + C'O .,.., ~ ~ ~ .,.., y. ~ ~

M. P . Publishing Co . -2- ECS-l

price is the result. Inc~dental to the process of buying a complete
system, little is learned about the hardware design aspects of compu
ter systems. The author is familiar with several systems which may be
rented at prices in the $250 to $400 per month range, or purchased for
prices in the neighborhood of $10,000. Such systems are typically
complete general purpose computers with integrated keyboard, CRT dis
play and mass storage- eminently suitable for use in teaching the
principles of software design and programming while incidentally pro
viding a useful tool in handling personal business, calculation and
record keeping. The rentals and purchase prices of such systems are
however outside the range of most individuals .

1 . 2 PURCHASING A MINICOMPUTER MAINFRAME CPU

The purchase of a minicomputer CPU outright i s one way in which to
bypass much of the effort required for construction of a system from
scratch. The prices are however generally higher than for the micro
computer oriented system described in thi~ series of article s . For ex
ample a typical new 16-bit minicomputer with 4096 words of storage,
hardware multiply/divide and an excellent instruction set costs about
$2000 in a table top package. A used computer can also be acquired, at
a lower cost (eg: about $1200 or so depending 'upon the machine.) In
either case, this particular method of acquiring a computer gives the
purchaser a head start at a, correspondingly higher cost. The engineer
ing of inexpensive peripherals described in this series of articles is
still valid, and can be adapted to the requirements of any minicomputer
without great difficulty.

1.3 THE MICROCOMPUTER OPTION

The method of acquiring a computer system describe d in this series
of articles is to employ a micro-computer LSI integrated circuit as the
CPU and static MOS memory for programs and data. With this main frame
for the machine, a set of inexpensive peripherals completes the system.
By choosing this course, a low basic cost is achieved at a price in the
time required to build a complete s1stem. The cost of the standard
Intel Mcs-8 computer CPU part used in this design is quoted at $120 by
one nationwide electronics distributor's catalog; the judicious selec
tion of components for memory and peripherals can produce a worklng
system with a complete cost in the range of $500-700 using all new
parts.

1.4 THE COMPUTER DESIGN OPTION

On a cost basis equivalent to or s lightly less than the micro-com-
puter option, it is possible to completely design and build a computer
CPU from scratch. For those individuals with an extremel.y limited bud-
get a very simple design for a CPU with correspondingly limited capa
bilities can be built using perhaps $50 to $100 worth of parts total.
However, such a path is probably most appropriate for an engineering course
in computer design where the goal must be limited in scope. It is fre
quent practice to take this option in many engineering schools. This
option suffe~s from the disadvantage of simplicity. To implement a
reasonable instruction set for such a computer would involve sufficient
complexity to make the microcomputer option more attractive due to cost .
As a result, a simple proc e ssor designed and built completely from scratch
does not have the ge nerality and expansion c~pabilities of a microprocessor .

M. P . Publishing Co . -3- ECS -l

2 . SOME DESIRABLE CHARACTERISTICS :

2 . 1 STANDARD PARTS

The Experimenter ' s Computer System should be oriented toward s the
ut ilization of standard electronics parts. By using commonly avail
able parts the problems of a one-of-a-kind a pproach -- scarcity and
uniqueness - are minimiz e d. Such parts are in general the least ex
pensive due to competitive forces and mass production. Due to wide
spread usage the integrity of the parts design can be assumed in gen
eral. This consideration of standarization extends to the choice of
a CPU in this era of LSI - the INTEL Mcs-8 chip which forms the CPU
of this design is a standard distributor catalog item which is well
proven in wide application since its introduction in late 1971 .

2 . 2 · SIMPLICITY

The concept of s implicity come s in two packages when it c ome s to
the design of computer systems . F irst there is the simplicity of the
basic design in terms of the number of physical hardware components
which must be assembled and checked out. Second; there is the sim
plicity of the programming which can be helped or hindered by the de
sign of the computer's instruction set - its "architecture." Both
kinds of simplicity are desirable in order t o obtain a practical c om
puter system.

2 . 3 MODULARITY

The design of a computer system should similarly reflect the prin
ciples of modularity in two areas: first, the hardware should be modu
lar so that it may be built and debugged in stages, with the interac
tion of modules limited to carefully defined interfaces. Secondly,
the software of the system should be modular so that programs and sys
tems of programs may be built and debugged in a similar manner. Both
aspects of modularity are widely used in the computer industry as a re
sult of the great~r efficiency of design, debugging and configuration
possible through this approach. The practical use of this principle
is assumed throughout the articles of this s eries, at early stages in
the hardware design, and in later artic les c oncerning software design
and "structured" programming .

2.4 FULL PROGRAMMABILITY

The design of the Experimenter ' s Computer System should be a fully
programmable general purpose computer with read-write memorie s through
out. One of the main purposes of designing a fully programmable com
puter (as opposed to a series of special purpose devices with limited
generality) is to take advantage of this programmability. If a new
function is desired from the device, merely writing a new program may
be sufficient to achieve the desired performance from the system. For
instance, to change a calculator program's display from fixed decimal
(the easiest to implement) to full floating decimal or even s c ientific
notation is accomplished by the modification of the software involved ,
not by the substitution of new hardware components .

M. P . Publishing Co . -4- ECS-l

The use of read-only-memory (ROM) programs is thu s confined to one
specifically limited area: the cold start program needoo to initialize
the computer and branch to a particular memory address where executive
and service routines are located. While ROM modules could be substi
tuted for general read-write memory anywhere within the computer, it is
assumed in this design that ful l programmability should be retained by
excluding Read-OnlY-Memori es .

2 . 5 PERIPHERALS

A computer by itself is a useless piece of machinery --- it must have
a set of peripheral devices with which to communicate to the " outsid e
world." Peripherals bear the same relationship to the computer proces
sor that sense organs and muscles bear to the human brain. In the course
of this se ries of article s on microcomputer systems for computer e nthus
iasts, a fairly large emphasis is placed upon the design and construc
tion of inexpensive peripheral hardware:

2 . 5.1 Mass Storage: The design must include s ome provi s ion for
a mass storage device so that data can be retained permanently off
line for purposes of keeping programs and data available for fut
ure use. This is one peripheral which can not be omitted . The
ideal form of mass storage in the context of the Experimenter's
Computer System must be inexpensive, reliable and easy to construc t.
As a technology which meets these requirements, the audio tape
recording medium is chosen for this purpose: a battery driven
audio cassette tape recorder can be used to store digital data
at a rate of 100 baud (1 baud = 1 bit/second.) High quality
reel-to-reel and cassette recorders can store the data at a
much higher rate (eg: 300+ baud.) In either case, a simple FSK
(frequency shift keying) method of modulation is used. Output
signals are created by selecting one of two digitally generated
frequencies; input signals are detected by a phase-locked loop
with an assynchronous data-generated clock. The basic I/O cap
ability for mass storage for a minimum configuration of the Ex
perimenter's Computer System is a single,channel; additional
channels may be added in parallel by adding more modems, or on
a shared basis through logic required to select one of several
tape recorders .

2.5.2 Displays : The sub j ect of inexpensive d isplays leads t o a
variety of possibilities . Since the system design is modular,
any and/or all of the suggestions shown below are potentially
u s eful:

a. Binary Lamp Displa:: This form is the most limited
Tn function and convenlence, but is the simplest to im
plement. It will be one of the first display's to be in
corporated in the Experimenter's Computer System.

b. Decimal Numeric Dis~l~: This type of display is the
least expensive form WhlCh offers mor e utility than the
simple binary lamp display. Its leve l of complexity is
not much different from the binary form --- consisting
of the addition of BCD-Seven Segment decoders to the par
allel binary words required for the simpler binary dis-
play . Software can be used to achieve BCD , octal , hexa-

(

M.P. Publishing Co . -5-
,

decimal , floating point BCD or s cientific notation BCD
outputs in such a display .

ECS-l

c. Text Display: There are several possibilities for the
implementation of a textual d isplay. These include building
the refresh memory and ROM dot-matrix character generator
needed to drive a television, and purchasing Burroughs plas
ma displays(32 characters for $168). Any display device
which will accept serial character outputs of 6 to 8 bit s
in width can be potentially interfaced with this syste~.

d. Oscilliscope Graphics Display: A graphics display is
used for drawing "pictures" under computer control. For
those individuals with an X-Y oscilliscope one of the sim
plest forms of graphic display possible is one involving
an oscilliscope and three digital-to-analog output conver
sions driven by the computer. One DAC channel is used
for each of the X and Y input s of the scope; the third DAC
output is used for intensity modulation. This form of dis
play is essential for the programming of a "space war" game ,
the "game of life" or other interesting recreational activ
ities which u se the computer system a s a central theme .

Other d isplay options are as numerous as the number of display tech
nologies available. All are potential outputs of the Experimenter ' s
Computer System.

2 .5.3 Keyboards : The inver se of a display operation is to a c
cept input from the human operator of the system using keyboards
or other arrays of switches. As is the case with d isplays, there
are many options available ranging from a simple switch array
for entering and editing programs to ASCII typewriter keyboards
needed for more advanced software techniques and textual data
entry. Custom keyboard s can be built and integrated on short
notice for special purpos e s. For instance a "Space War" pro
gram will require a special control panel built for each player
with a common oscilliscope screen as the "solar system" map
display. S imilarly, a calculator program interfacing with a BCD
numeric display or text display will in general require a numer
ic keyboard for entry and a function keyboard for selecting the
operations desired. Using the Experimenter's Computer System the
programming of a variety of special purpose calculator functions
of a statistical and mathematical nature can be achieved.

2.5.4 SEecial Purpose Peripherals: In addition to more or le ss
standard peripheral devices the Experimenter's Computer System de
sign supports the concept of special purpose I/O devices. For in
stance it is possible to interface a series of Digital-Analog con
verters to the processor in order to control the timing of voltages
in a scientific experiment. Such DAC outputs can be used to con
trol any fundamentally analog process requiring voltage-level set
tings. Similarly, the inverse of DAC outputs is an input ADC con
version. Fairly simple and inexpensive ADC channels can be con
structed using tracking converters to read voltage levels as binary
numbers . (See M.P. Publication #73-2 for ideas on DAC and ADC
conversions .) Similarly, discrete single-bit digital inputs and
outputs can be created through simple parallel interfaces to the bus .

M. P . Publishing Co . - 6- ECS- l

2 . 6 SOFTWARE AVAILABILITY

The use of a standard computer part for the Experimenter ' s Co~puter
System described in this series of article s is desirable from several
points of view:

a. The manufacturer of the computer part has a wide following of
customers developing programs using the same basic instruction set .
Many of these programs contain interesting and useful techniques
which may be incorporated into customized programs of the individu
als building the system . To the extent that the manufacturer of
the computer part makes such routines contributed by its customer s
available on a general basis, the programming problems fo r indiv
idual experimenters are simplified.

b . Applications program developed explicitly for this computer
project by the author and his associates can be used directly by
any individual building similar equipment. Descriptions of such
programs provide the theme for many of the articles in this series
following an initial concentration on the minimum hardware require
ments in the first few articles .

2 . 7 ACHIEVABILITY

As a final consideration for the Experimenter ' s Computer System, the
criterion of achievability is es sential. The implementation of a digi
tal computer is not a trivial undertaking --- especially when attempted
by the individual experimenter or small group of computer enthusiasts.
A prime purpose of this design and the series of articles based upon it
is to come up with a computer system of useful capacity which is achiev
able at moderate cost by any individual seriously interested in the sub
ject . The use of a standard micro-computer part is a state - of - the - art
short cut which simplifies the project immensely. Even so, full imple
mentation of the design in these articles will require care, diligen'ce
and persistence on the part of the buildsr. With the article s in this
series as a guide, the individual experimenter or small group of compu
ter enthu s iasts now have a means to create a general purpose computer
system and in the process learn a grea t deal about computer hardwar e ,
s oftware design principles and computer technology in ge neral .

3. HARDWARE SYSTEM DESIGN :

The microcomputer chip chosen as the bas i s for the Experimenter ' s
Computer System is a bus oriented central processor designed and manu
factured by the Intel corporation: the 8008 processor first announced
in 1971. This microcomputer chip has attained widespread ac ceptance in
the digital systems industry due to the fact that it is TTL logic com
patible, has an instruction set comparable to many minicomputers, has a
general purpose bus-oriented data architecture which is inherently mod
ular, includes special purpose program control mechanisms designed for
modular programming and --- most important -- is available at a rela
tively low cost. All of these advantages make it a desirable machine
for use by computer e nthu s iasts interested in acquiring an inexpensive
system .

M. P . Publishing Co . -7- ECS-l

The basic block dia~ram ror the Experimenter' s Computer System is
shown below in rigure #1. Central to the design is the 8-bit paral
lel data bus and its related control lines. This bus i s bi-directional
so that transrers both to and rrom the CPU are accomplished on the
same set or 8 lines. Due to the bus orientation of the system there
is an inherent hardware modularity, symbolized by the arrows extending
the bus and control lines off the page. This makes the
system capable or growth and expansion on an incremental basis: the
establishment of a minimum hardware configuration serves as the basis
ror further expansion and improvement as more I/O and memory modules
are added. Figure #1 represents a minimal system which serve s as the
first milestone in the construction or an Experimenter' s Computer Sy s
tem :

Experimenter ' s DATA Su..s Figure #1
Computer MOI'(\TO~ Minimum System

System LAM PS Configuration

-L
CENTRAL CONT~OI... COI...t> SiA~i ~T~~ PR..Q~It&S ''''Gr LO <;,.1: Co cit.

LOG,:t:C. UNIT SUF"~ERS.

t :t.NTE.~~UPT LINE. t
I ,

- DATA 'BUs, --
i~o

MAl I I
MIMORY

~ r./o MA1:N to',m~OL TO
MOOUL,ES MOfl£

PA~~ flA~(\. %./0
DECOI>E Ie. OIS ¥\.AVS ~ODUL£S

I f SOQTSTRAf &OOT5TR,Ap - TAPE
MEMOfN J --

PA <ir'E. CONTttOL CONTRO\. I/O PAGE (ONT~OL · L.INES

-rA~E
LCONT,q,OL. f-

PAN!.\.:. UNI..T

@ 1'14- M. P. PlJ8lISHIt-lG co. (,~'*

3.1 CENTRAL PROCESSING UNIT

The CPU is the microcomputer system's most fundamental component, the
Intel 8008 processor chip. This device is a complete general purpos e
minicomputer type machine with an 8-bit parallel data architecture, 7
internal registers, a 7-level program control stack, 45 instructions and
addressability of 16,384 bytes or memory. The clock rate or tre stan
dard Intel part is 500 Khz, which means that the typical instruction
takes 20 microseconds depending upon the number of clock cycles required
ror completion. This speed is not particularly rast --- it is approxi
mately the same speed of execution found in the onboard computers of the
Apollo spacecrart which were used to navigate to the moon and back.

M. P. Publishing Co . -8- ECS-l

However, a 20 micro-second instruction time is more than adequate speed
for most uses of the Experimenter's ' Computer System, where - as in the
process of navigating a space ship - answers · are more important than
the time it takes to compute them (within l i mits of course !)

3. 2 CONTROL LOGIC AND BUFFERS

This block is incorporated in the design for several purpos e s . First,
it is desirable to isolate the CPU chip itself so that it is protected
from stresses beyond its ratings. Second, the CPU requires an external
clock at 500 Khz in order to operate, provided by an appropriate set of
clock generation logic elements. Third, the control of the entire compu
ting system must be decoded.

The data bus s hown emanating from this block is a tristate TTL bus
employing Signetics 8T09 interface gates . A maximum of 24 modules may
be hung on the bus without resorting to add i tional buffering. The bus
time multiplexes data and address traffic in 8-bit segments under the
control of the CPU's timing signals . .

3 . 3 DATA BUS MONITOR LAMPS

This logic is provided so that the data bus can be monitored for de
bugging and educational purposes . The l ogic included for this purpose
will enable the following forms of monitoring:

a . Selective monitoring of data at specific pro ce ssor state
times in the multiplex scheme, via decoding of the 'processor
state information.

b . Real time monitoring of the bu s independent of the proces
sor state .

The panel readouts for this function consist of a set of 8 LED indicator
lamps and form the first di s play unit to be included- in the system under
computer program control. Panel switches will include a rotary state
selector switch for the fir s t mode, and a two-position switch to s elect
modes.

3 .4 MEMORY ADDRESS SPACE ALLOCATION

The ' memory address space of a digital computer is the se t of binary
integer numbers which are valid addresses for memory oper ations . The
memory address space of the Intel Mcs-8 system is thus the set of numbers
o to 16,383 which are the potential contents of its 14-bit program
counter and stack mechanisms. This space may be conceptually divided
into 64 "pages" of 256 bytes per page by the time-multiplexed division
of a 14-bit address into an 8-bit low order component and a 6-bit high
order component. The 6-bit high order component is the "page address"
and the 8-bit low order component can be termed the "byte address." The
nature of the memory devices connected at each page address of this de
sign can be fairly arbitrary since the CPU cannot distinguish between a
read-write register in an 1;0 device and the ports of a read-write ran
dom access memory. The CPU is completely independent of the particular
timing constraints of memory devices as well, since it can wait indefin
itely i'or the "memory ready" signal to be indicated. For the purposes
of the Experimenter ' s Computer System , the memory address space is give n
the following fixed allocations:

M. P . Publishing Co . . -9- ECS- l

3.4.1 Bootstrap Page : In order to e stablish a basic kernel of
systems software in a system which depends on such software for
its operation, a means is required to "bootstrap" an initial pro
gram load (IPL). The means of doing this in the Experimenter's
Computer System is a special page of memory at addresses 3FOO to
3FFF (hexadecimal notation.) This page is characterized by two
manually selected modes of operation:

a. "Normal" computer-controlled operation in which this
page acts like any other main memory page of the system,
containing either program or data storage .

b. "Bootstrap" manual operations in which the memory i s
controlled by hardware logic of the "Bootstrap Control "
module. In this mode, a special control panel ,and the
tape recorder I/O unit are connected to the bootstrap
memory. Operations include manual "toggling i n" of pro
grams and data, examining and changing data manually,
dumping the IPL program t o tape, and restoring that pro
gram from tape.

Since the bootstrap page is subject to c ontrol by a separate man
ual control panel independent of the CPU, it is possible to manu
ally load and alter its 256 bytes of memory. This page is intended
to be used for systems software: routines used as tools for the
development and debugging of further programs. The following list
represents a minimum s et of such bootstrap systems routines :

a . Memory Dump/Restore Routines.

b . Display, Debug and Edit Routines .

c . Tape Recorder I/O Control & Fil e Management .

Depending upon the particular memory space requirements of thes e
routines, additional programs for functions such as exte nded pre
cision arithmetic, and block data movement might be incorporated in
thi s page .

3.4.2 I/O Page: In order to simplify the hardware and programming
of the Experimenter's Computer System, input/output operations can
be treated conceptually as a special kind of memory connected to the
bus. One page of the memory address space is reserved for use in
I/O operations. This page is allocated addresses 3EOO to 3EFF (hex
adecimal notation) and is thus the next-to-highest page addres s in
the system. Not all of the 256 addresse s will necessarily be given
an actual hardware implication --- unuse d addresses with no attached
device result in a null data configuration (all "1" bits on the bus)
and are treated as "HALT" instructions if the processor should by
chance jump to such a location. In the minimum configuration of
figure #1, only the addresses connected with the main control panel
, control panel displays, and the tape recorder programmed I/O chan
nel are active. As modules are added to the system, new address es
on' this page may be utilized for the new functions ~ sharing the com
mon I/O Page decoding logic, attaching directly to the bus for data
transfers , and employing local logic to decode the byte a dd ress.

M.P . Publishing Co . -10- ECS-l

3 . 5 MAIN CONTROL PANEL/DISPLAYS

The minimum system configuration for the Experimenter' s Computer
System shown in figure #1 includes a control panel and displays driven
by the systems software which is loaded into the bootstrap memory. This
panel consists of the following:

a . 14-bit binary LED display for addresses. This output is al
located 2 byte addresses at hexadecimal 3EOO and 3EOI in the I/O
page.

b. 8-bit binary LED display for data . This output is allocated
one byte address at hexadecimal 3E02 in the I/O page .

c. Hexadecimal data entry keyboard array (16 pushbutton switche s)
and an auxiliary array of 16 function switches. Control logic is
used to encode two 4-bit patterns in a single word allocated at
one byte address of3E03 in the I/O page. Pres s ing a key writes
data into the appropriate memory word; program acknowledgement and
resetting is accomplished by storing a null pattern to reset the
word. The first four bits of the word (high order) are reserved
for the function switch s e lection; the second four bits are used
for the data switch selection coding .

3 . 6 TAPE MASS STORAGE

The mass storage function of the Experime nter ' s Computer System is
performed by us.ing a magnetic tape recording medium. In figure #1 this
function is repre se nted by two blocks:

a. The Tape Unit is a serial modem and control logic used to
write and ~ead serial blocks on an Audio Cassette Mass Store.

b. The Tape Control block of the diagram is designed to pro
vide dual control functions for the Tape Unit: A fixed length
IPL dump/restore mechanism is used in the Bootstrap mode; a
programmed I/O mechanism run by the CPU and its interrupt mechan
ism is used after IPL operations are completed and the bootstrap
memory page is properly set up with basic s ystems routines .

3.7 COLD START LOGIC

The central processor requires a special set of instructions t o be
executed in order to start up the system for the first time or to re
initialize the system at a later time. This is provided by logic which
disables normal bus activity and forces a fixed program load of several
instructions to be executed following the interrupt generated by a re
start switch. The major function of this program i s to jump to the be
ginning of the bootstrap memory page (address 3FOO). A 32x8 ROM is used
for this program --- an 8223 IC or a reprogrammable simulation of this
circuit. In the later stages of this project, the cold-start program
will be improved to include automatic sequencing of bootstrap memory
restoration prior to jumping to the beginning of bootstrap memory .

Thi s concludes part 1 of the Experimenter's Computer System pro-
~ __ ~ m~ _ ___ ~ __ ~ ~ _, ____ ~ ~ ~ ____ ~ ~ __ L~ _

M.P. Publishing Co. Box 378 Belmont Massachusetts 02178 ECS-2

A U DIO CASSETTE MASS STORAGE SYS T E M

by Carl T . Helmers , Jr .

This publication is the second in a series devoted to the proposi
tion that computer technology is within the price range of the serious
experimenter and computer enthusiast. In the first instalment of this
series a discussion of the goals, design tradeoffs and the overall sys
tem design were presented. In the current article, . the first construc
tion project in the series is described: the Audio Cassette Mass Stor
age System which will be used to permanently record and store both pro~
grams a nd data .

This article describes an audio tape cassette interface which isca
pable of reading and writing data at 100 bits per second on an inexpen
sive recording medium. The use of a device of this type is a neces
sity in the Experimenter's Computer System if it is to be conveniently
used and programmed. If two or three of these I/O devices are con
structed for the system, some fairly powerful file-handling applica
tions for the computer will be programmable.

The information presented here describes the basic serial I/O unit
as designed and built by the author. The unit accepts serial TTL data
from a controller in order to write frequency shift keyed (FSK) data
on the tape device. For input of the same data, the unit demodulates
the aud io signal with a Phase Lock Loop to provide a serial data stream
to the controller.

The primary goal of this particular design effort was to duplicate
the functions of a paper tape reader/punch of the type found in the
typical minicomputer installation. As a bare minimum these functional
characteristics are:

~ 100 Baud (bit/sec) data rate
- Permanent storage
- Reasonable reliability

Manual control of the I/O functions with
the exception of start and stop .

This design accomplishe s these goals to provide the first peripheral
device for the Experimenter's Computer System. Some comments on im
proving the performance of the device are included at the end of this
article, however the design as it stands is functional and proven in
operation .

@ 1974 M.P. Publishing Co . All Rights Reserved

M.P. Publishing Co.

1. THEORY OF OPERATION:

1 . 1 SYSTEM CONTEXT:

- Y> BI:T DATA BUS
_ .. .,. -

r./o
P""E

~EC.GDE

TApE ..
CONntOl- 1./0 P.o.<X. --

ByTE AbDR.

AUDIO
CASSe."TT"E

MAss 5TOQ,E

Figure 2. System Context

-2- ECS-2

The Experimenter ' s Computer Sys
tem defines the context in which this
I/O device is used. The full des
cription of the Experimenter's Com
puter s¥.stem was outlined in Part 1 .
Figure #2 at the left is an adapta
tion of part of the System Block
Diagram found in ECS-l on page 7,
concentrating on details of the tap e
interface.

The I/O Page Decode logic is shared
by all the I/O devices which are ac
cessed by memory operations as oppo
sed to 11o instructions. Its pur
pose is to decode the high order page
address provided by the CPU and to
store the low order byte address for
decoding by various devices. The Tape
Control unit contains the logic for
interfacing the Audio Cassette Mass
Storage System to the CPU data bus .
The major part of this interface is
the 8-bit parallel to serial data
format conversion required.

Details of the Tape Control, I/O Page Decode and other components of
the computer main frame are the subject of later articles in this ser
ies. To understand the operation of the Audio Cassette Mass Storage
System device requires no further consideration of the particular com
puter and controller which will utilize it .

1. 2 TAPE DATA CONCEPTS:

The basic method of storing data chosen for this system ' s des ign is
to frequency modulate an audio signal by means of a digital switch. In
order to keep frequency deviations due to "wow and flutter" of the tape
mechanism small compared to the actual encoded signal, and additionally
to provide an ea~ily generated ratio, an octave (2:1) frequency sep
aration was chosen for the information. For the 100 baud data rate used
in this design, the lower frequency, "f", is 3000 cps and the higher
frequency, "2f" , is 6000 cps. There is a 1:1 correspondence between the
frequency on the tape recording and the TTL logic level of a data bit
internally: f is understood to be the logic 0 signal, and 2f is under
stood to be the logic 1 signal. All clock and timing involved in this
system (with the exception of two start up delays) are defined in terms
of f , as can be seen in the notations at various points on the detailed
logic diagrams of figures #6a and 6b.

1.2. 1 DATA FORMAT:

Figure #3 found on the next page gives the details of the se lf-clock
ing data format used in this design. The drawing is a timing diagram

M. P . Publishing Co . - 3- ECS-2

for several of the signals in the system . Time is interpreted as the
1mmon horizontal axis, with digital signal levels represented by ver

uical displacements of the appropriate lines. The diagram of figure
#3 covers two bit periods (tbp) as recorded on the tape or read from
the tape.

1 ------- f 81.1 MAR.K
0---- --1 i-

1 - - - - - -- - - - - -I L I') D A1' f\
0- --- ___J. 50

;~~~=t t t l FREQ. CO~TA.Ol

1- --- --- t------ n n H
0- --- : lL.----~----~-~.----~----~~---. .

bAt A CLO(''< 1-------t------r----n n
0- --- . : ;~. ~---------....J~~-----------

; .. -t s{ ---.1 ~ . . .
• ~..L ,.
; I. DC.

. t ~:.''''~f----- t -.~ 8p 8P iF

T\(P:t.(.~\. • "NPl:C.AL
LO~I.(AL 1.. LO(;,I.tAL ¢

tat., BI:.1

tap: SI.T ~E.RIOt> (10 ~s)

tsc. :: SAtI/\~\'E CLOC.\.{ bE. '-A'f
(~. <O~ 0\5)

t ;: DATA CLOCt(DE:LAY
IX.. (S." MS)

Figure 3. Tape Data Format

The concept of a self-clocking data format i s this : each bit period
of information recorded includes data plus information required to regen
erate timing of the period. In this way the process of reading the data
can be made independent of timing variations in an imperfect recording
medium . In the technology of information transmission, the most wide
spread example of a self-clocking data format is the modulation used for
television video information: the synch information is sent along with
the analog data signal and the receiver locks onto this clock.

The self clocking nature of the data format used in this design is
found in the number of state transitions per bit period. A bit period
is the basic unit of time required to record a single bit of information·
on the tape. For a 100 baud rate there are 100 bit periods per second
with e ach bit period taking 10 millis e conds. The format chosen here

M.P. Publishing Co. ECS- 2

uses two transitions in frequency per bit period , as shown by the arrows
in the "Freq. Control" signal shown in :figure #3 . There is a transi
tion from f to 2:f followed by a second transition from 2f to f for each
bit. By picking the f-to-2f transition as the fixed reference point in
the period it is possible to regenerate input timing information syn
chronized to the actual data s ignal.

The bit period (tBP) of 10 milliseconds is d ivided into thre e parts
to :format each bit of information. These parts are :

- Bit Mark phase: The first part of the period (~l) is the
Bit Mark phase, represented on the tape recording by the
frequency 2f. The beginning of this phase is the f-to-2f
transition which marks the start of a bit.

- Data phase: The second part of the period (I 2) is the
Da~phase. Data is represented on the tape during this
portion of the period by the choice of f (logical 0) or
2f (logical 1). In terms of transitions of frequency, if
the 2f-to-f transition occurs at the end of the Data phase
then the data is a logical 1; if the 2f-to-f transition
occurs at the beginning of the Data phase then the data is
a logical 0 for the bit in question. For purposes of in
putting data, sampling the state of the demodulated signal
during the the Data phase (eg: at tSC) is a timing require
ment of the data format .

- Null phase: In order to provide for the f-to-2f transi
tion which marks the start of the next bit period, there must
be a Null phase at the end of each bit period , during which
the frequency f is always recorded.

The width of all three phases is set identically in this design by divi
ding the bit period into 15 equal parts with a counter and s ome phas e
generation logic.

In addition to the Input Sampling clock (s ee figure #3), there is a
second clock referenced from the beginning of the bit period. This is
the Data Clock which is used during both input and output to indi
cate a request for mor e data (output) or to cause stor age of the data
just read (input.)

1 . 2 . 2 BLOCK FORMATS :

Figure #4 (next page) shows the Tape Block Format used to group a
series of recorded bits of the type just described. The concept of a
"Data Block" is defined as a contiguous series o:f bits written or read
as a logical unit in a single operation. The concept includes the in
formation bits plus any "overhead" information required to physically
define the data. In this system, the overhead consists of the wasted
tape (inter-record gap) between the e nd of one block (while the recor
der slows down) and before the :first bit of the next block (after the
motor has gotten up to speed and stabilized~ One such block is read or
written whenever the Audio Cassette Mass Store receives its I/O Start
cue rrom the controller . Figure #4 is also in the form o:f a timing dia
gram :for several signals with a c ommon horizontal time axis :

M. P. ~ubliBhing Co. -5- ECS-2.

rio START

MOTO~ (TAPE) SrEED

LISTE~ FOR INPUT ~TIl)

OUTPU1 WRI.\£ (DA"TA) ~... TOt)---...

.. :-c ----IY\OTOA. l:.'j "Ot.l"-----. .. ~: .

Figure 4. Tape Block Format

The "I/O s tart" pulse shown at the top of the diagram is a signal de
fined by the Tape Controller and used to initiate an I/O operation. All
subsequent timing is relative to this cue. As shown by the Motor (Tape)
,speed curve, this pulse turns on the Tape Recorder. However, since it
takes a finite amount of time for the tape to get up to speed, no I/O
operations can be performed reliably until after a delay interval. For
output the delay is TOD, as shown. For input operations, the device be
gins to listen for data prior to the time when the first bit is expec
ted. The input delay TID is thus shorter than the output delay TOD.
This strategy guarantees that the unit is always listening to the tape

:before the first actual input data bit comes along --- so that no data
will be lost while reading. Somewhat arbitrarily, the input delay was
set at TID=2 seconds in the prototype and the output delay was set at
TOD=3 seconds. The TID delay is more than sufficient to allow for the
motor start transient.

Note that with this scheme of recording with self-clocking data, the
input operation is always re-synchronized to the tape at each block
boundary, so that any synchronization errors (eg:missed bits) will be
confined to the block in which they occur, and minor differences in
block timing due to motor peculiarities will not be additive over the
entire tape cassette.

1 . 2.3 MANUAL OPERATIONS:

This device requires manual intervention in order to operate in an
orderly and well-defined manner. The need for .manual operator inter
vention is a result of efforts to keep the price down: there is a trade
off between electromechanical controls and price. Thus in order to
per~orm an input or output pass through the tape cassette , the follow
ing serie s of manual preparations must be performed :

M.P. Publishing Co . -6- ECS-2

1. Place the MOTOR DRIVE switch (S2) into its manual position
(~ in figure #6a) to provide power to the recorder.

2 . Mount the desired data cassette in the recorder and rewind
it to the beginning. One advantage of cassette media versus
reel-to-reel is that there is a well defined beginning of tape
position: the stall point in a rewind.

3. Place the MOTOR DRIVE switch (S2) into its computer control
position (~ in figure #6a). In this position the state of the
motor is governed by logic circuitry, and should be initially off
provided the Tape Control module and other elements (hardware and
software) are properly initialized.

4. Pick an input or output mode of operation dep"ending upon the
purpose of the pass through the cassette. Do this by setting the
Input/Output mode switch and by setting the tape recorder con
trols accordingly:

- Set the recorder to RECORD if an output operation is to
be performed, and the I/O Mode is set to output .

- Se t the recorder to PLAYBACK if an input operation is
des ired and the I/O Mode is s et to input.

Note that in either case, the tape recorder power is off so that
"starting" the machine by means of its controls will have no im
mediate effect. Later, the logic circuitry will activate the
recorder at the appropriate time.

5. Prior to the first I/O operation after the above setup, the
cassette must be initialized. This is accomplished by turning on
the recorder for a time period set by a one-shot which is fired by
switch S2 (TAPE INITIALIZE). The nominal 5-second period of this
operation is sufficient to advance the tape beyond its non-magnetic
plastic leader .

After thes"e setup operations are completed an arbitrary number of I/O
operations can be performed on the tape provided that manual interven
tion does not move the tape physically. One block of data is written
or read in each such operation with a length set by the value presented
to the Data Count inputs (socket -24-) at the start of the operation.

With manual information to repeat step 4 it is possible to change from
input to output mode and vice versa for successive blocks on a single
pass of the tape; however the previous I/O operation must have been
completed and care must be taken to avoid moving the tape while chan
ging the mode. If such mod e switching is contemplated appropriate pro
grams can be written to present instructions on data displays and to
recover from errors induced by inadvertently moving the tape. Much will
be said on such topics in future articles of this series .

M. P . Publishing Co . - 7-

1 . 3 SUBSYSTEM BLOCK DIAGRAM :

&WI:TCHaD i'.5" POWER TO T. R.

MANUA
TAPE
ItJI:T.

L

-

TAPE

CoNTRO
- -

L.

.-:tN
SERI.AL 0

OUT
ATA -

MOTOR OATA ..
C.ONTf{Ot.. - C()U~T

~~ ~

,.
COJ.,lTROt TI.MI.~G FS~ .- - --- -- LOGI.C .. MODULAToR '-061.<:

~~ .~

' .
t:~ POl .It..\pur

TR!.c:'COE.R. !)AiA
'-ATO{

It j~

; ~

~ I ~

P L.\.. ~Sk
btMO)uLATOR

Figure 5 . Subsystem Block Diagram

•

---.

.-

ECS- 2

AUO:tO
TO

T. R.

AODl'.O
FROM
T. R.

Figure #5 shows the subsystem block diagram of the Audio Cassette Mass
Storage System. This figure outlines the major functional divisions of
~his I/O dBvice. Details of the entire circuit are found in a later
figure , #6a and #6b, and discussed in section 1.4 below . The major func
tional divisions of the design are:

M. P . Publishing Co . -8- ECS- 2

- TIMING LOGIC : Central to the whole concept of this unit
is the timing logic used to sequence operations. This sec
tion uses a high frequency clock which is divided to get
the frequencies of f and 2f used for data modulation, and
further divided to get the 15-parts of ea ch data bit period
(at a frequency of f/30) .

- DATA COUNT: A 16-bit counter is incorporated in the de
sign to provide a count of the number of bits to be trans
ferred. Up to 65,536 bits can be read or written in one
operation. This count is loaded from a fixed (hardwired)
value or is under control of the Tape Control module, de
pending upon what is plugged into socket position -24-.

- CONTROL LOGIC: This section operates directly from inputs
provided by the Tape Controller, Data Count and the Input
Trigger. The state of the subsystem is determined by various
gate~ and time delay e lements incorporated into this section .

- MOT'OR CONTROLS: This section contains a motor state latch
and the transistor switching circuit which turns on the tape
recorder power supply. The tape initialization timer and ·
a separate floating power supply for the tape recorder are
part of this section.

- FSK MODULATOR: The logic contained in thi s section con
sists of two flip-flops set by timing logic to create the
control signals for the Bit Mark and Data phases, as we ll
the FSK switching logic which generates the output audio
by choosing f or 2f depending upon phase and data.

- PLL FSK DEMODULATOR: This block contains the Phase Lock
Loop (PLL) which converts FSK audio inputs back into a vol
tage proportional to frequency. A comparator generates a
logic signal (raw data) from the PLL output, which is then
inputted to the Trigge r and Data Logic .

- INPUT TRIGGER and DATA LATCH: These blocks have a common
gated Schmidt Trigger input taken from the demodulator. The
Trigger Section, working in conjunction with various control
logic and timing elements, defines a pulse corresponding to
the f-2f transition of the input signal, synchronizing the
system to the tape data. The Data Latch retains the data as
sampled during the input data phase, so that the Tape Con
trol unit can read that data with the Data Clock which oc
curs later during the Null Phase .

1.4 DETAILED DESIGN:

Following a few comments about the conventions used in the logic di
agrams of figures #6a and #6b, this section covers the detailed oper
ation of the circuit. References should be made to both the logic
diagrams and the system concepts presented above in order to understand
the design with the aid of these notes .

M. P. Publishing Co . -9- ECS- 2

1 .4.1 LOGIC DIAGRAM CONVENTIONS :

Figures #6a and #6b show the complete logic and circuit diagrams of
the Audio ~assete Mass Storage System . Due to the size of the circuit
it has been divided into the two parts shown. Internal connections be
tween the two sections of the diagram are indicated by the notation of
a single capital letter and the symbol <:J. External connections
via the interface socket (socket -25-) are denoted by a number next to
a dashed line indicating the pin number. A second socket, -24- is used
to interface the 16-pins of Data Count input, but is not noted explic
itly in the diagrams.

With the exception of logic inverters, all IC package numbering is
found inside the symbol for the component in question, denoted by a
number preceded and followed by a hyphen, eg: -11- stands for IC soc-
ket position number 11. For the MSI functions represented by rectang
ular boxes, internal logic designations of pins are noted within the boxes
and external pinouts are noted outside the box. For gates and inverters
only the external pin numbers are shown since function follows from the
shape of the symbols used. In the text of this article, the notation
"-11.7-" is used to indicate a reference to the pin of an integrated
circuit socket, in this instance pin 7 of socket position 11 .

1 .4. 2 TIMING LOGIC DETAILS :

PHASE STATE: The Phase State is defined by the contents of the
7493 counter -14- at any given time . The position of the output
execution within a bit period is defined by th~ 15-successive states
of this counter. Connected to the counter is a Phase Decode block
consisting of a 74154 selector -15- which defines 15 negative-logic
(low state = logic 1) lines, only one of which is selected at any
given state of the inputs. The outputs of -15- are used as fol
lows:

State 1 (pin -15.2-) defines the beginning of the Bit Mark
phase for output.

State 6 (pin -15.7-) defines the end of Bit Mark and the
beginning of the Data phase during output.

state 9 (pin -15.10-) defines the data sampling clock for in
put operations. When this state is present, the Data Latch
comprised of -16c- and -16d- is reset, after which the cur
rent input data will define the new state of the latch.

state D (pin -15.15-) defines the Data Clock pulse and resets
the Trigger Latch for input operations .

State E (pin -15.16-) defines the Wait State used for input
synchronization to data. This is the last state to occur
in an input bit period, and is not used during output.

s tate F (pin -15.17-) is a null state used to reset the Phase
state counter and achieve a divide-by-15 operation during
output operations; during input this state is never reached .

CLOCK GENERATION: An oscillator formed by -19a-, -19b-,and
-19c- generates the basic timing frequency of 24,000 cycles per
second used for all digital clocking in this device. This frequency
is noted as "Bf" in the diagram. The potentiometer RIO controls
the frequency of oscillation over 'a fairly wide range , and ulti-

M. P . Publishing Co . -10- ECS-2

mately determines the data rate of the device . The 2f, f and
f/2 clock signals required by the system are generated from the
8f signal of the oscillator using a 4-bit divider, a 7493 cir
cuit in socket position -21-. This counter shares a common re
set with the Phase state counter (PHASE RESET inthe drawings)
in order to guarantee that all timing logic will be reset to a
unique and well defined state when necessary (ie: all zeros in
-21- and -14-). The f/2 output of -21.11- is the source of the
PHASE CLOCK signal gated to the Phas e state c ounter by control
logic elements.

1 .4. 3 DATA COUNTER LOGIC DETAILS:

The Data Counter shown in this design is a 16-bit synchronous coun
ter made up of four 74193 circuits mounted in s ocket positions -2- ,
-3-, -4- and -5-. The parallel load inputs of all 16-bit positions
of this counter are shown as open circles in ifigure #6a. Bits a
through 15 are understood t o be connected to pins 1 to 16 respective-
ly of the Data Count input socket -24-. By means of this socket
these input values can be wired up to a DIP header plug with a fixed
number pattern, or they may be connected via that type of plug to
the outputs of registers in the Tape Control unit. In either case, the
information presented at this plu& (-24-) is loaded into the counter
once per I/O operation when the 1/0 Start pulse is received. The counter
is then decremented once for each bit in the transfer by the Data Clock
pulse. When the last stage (higb order counter -2-) underflows the
Motor State Latch is reset and the I/O operation terminate s .

1.4.4 CONTROL LOGIC DETAILS :

The gates and logic blocks in the lower part of Figure #6a compris e
the Control Logic elements of this unit. Identifying by integrated cir
cuit socket position, the following notes describe the logic in some
detail:

-6- is the output start delay timer. Its main purpose is to
inhibit the operation of the modulator until the tape has se ttled
down during an output operation. -12a- forms the logical product
(AND) of the output delay with the state selection data, so that
the OUTPUT-INHIBIT is only active if output has been selected.

-7- is t,he input s tart delay timer. It serves the same purpose
for input operations which -6- performs for output, but has' a shorter
time period so that input "listening'! begins prior to the first
bit on the recorded medium. Its output is inverted and used to
set an input clock-inhibit latch formed by - 8c- and -8d-. The in
verted form of this signal is also used to inhibit PHASE RESET dur
ing setups at the beginning of an input operation. In the output
mode the operation of this logic is ignored.

-130- defines the GATED PHASE CLOCK input to the Phase State
counter -14-. When enabled by a lack of input or output inhibit
signals the PHASE CLOCK is inverted and passed to the Phase State
counter. The inhibiting conditions are :

For output, the output time delay of -6- ~ated by -12a- .
For input, count state E ~15.16-) gated VlB -110- and -12b- .

M.P. Publishing Co . -11- ECS-2

In the input mode whe n the state count reaches state E (binary
"1110") and halts, the next input trigger pulse generated from
the input resets the state and allows the clock to run again.
This is the Wait state mentioned above which is used to syn
chronize the I/O electronics to the actual bit period thereby
immunizing the system against errors of an imprecise tape mech
anism.

-13b- defines the PHASE-RESET signal as a logical sum (or)
of three signals, using a NAND operating on negative logic
sources:

1. State F (-15.17-) is used to cause the Phase State
counter to have a 15-state cycle by resetting after
the fifteenth state (state E, -15.16-) .

2 . IO-START is also used to reset the counters, thus
defining a unique initial state at the start of all I/O .

3. IN-TRIG is a signal generated from the input trigger
pulse by -13a- when in the input mode after the delay at
the start of an operation is over. In the input mode,
the pulse gated via this line causes a transition from
the Wait state to state 0 at the start of a bit period.

-9b- is a NOR used as a negative logic AND function in orde r
to gate the input trigger to the PHASE-RESET logic above, as
well as the input clock inhibit logic. A pulse will be defined
and pass this gate only if the Phase State count is waiting in
state E as described above .

-9d- is used as a positive logic AND function to generate
the Data Clock signal unless inhibited directly by the input
clock inhibit latch (see discussion of -7-). Note that for
output data there is no direct and explicit data clock in
hibit term. The Data Clock is inhibited during output start
up by forcing Phase State counter reset until the output de
lay is completed. In both input and output modes, the Data
Clock is inhibited after the e nd of an 110 operation when the
Motor On s ignal is reset .

1.4. 5 MOTOR CONTROL DETAILS:

The TAPE INITIALIZE CIRCUIT is composed of the time delay cir
cuit -1- and a pushbutton switch Sl. The value of Rl is adjusted
to give a nominal tape-leader length delay of 5 seconds - suffic
ient to space the cassette forward past the plastic leader strip.
The output of this circuit shares control of the tape recorder
power function via the logical sum formed in -9c-.

MOTOR STATE LATCH: two NAND sections, -8a- and -8b- form a
set-reset flipflop which governs the state of the tape recorder
power during normal operation. This latch is set by the I/O Start
pulse (interface pin 10) and is reset by the end of data count
down when an underflow pulse is generated from -2 . 13-. This bit
also controls the modulator flip-flops to inhibit data generation

M. P . Publishing Co . -12-

a nd clocking arter the end or the data block on output . (See
figure #6b, pins -15. 18- and -15.19- for this us age .)

ECS -2

The TAPE RECORDER DRIVE BOX is a separate module built into
a small plastic case which may be kept near the recorder . This
box is separated rrom the rest or the logic diagram by means of
an apropriate dotted line in figure #6a. This section or the di
agram houses the tape recorder drive circuitry, a power indicator
lamp and a separate power supply for the recorder . The control
signal rrom the main subsystem logic consists or two interfac e
plug pins: pin 8 is ground and pin 15 is the logic signal to
drive the redorder. In addition, this box includes the MOTOR
DRIVE mode switch (S2) and the LED indicator Ll which is in par
allel with the tape recorder power supply. The tape recorder is
represented in the drawing as a coil to indicate the inductive
nature of the load it places on the driver. The protection diode
Dl is used to guard against transistor damage due to inductive
back EMF in the motor coils . A two-transistor buffer switches
the tape power supply under logic control. This unit can be built
and debugged separately --- and can incidentally serve as a bat
tery replacement when the recorder i s not used for computer pur
poses .

1.4. 6 MODULATOR DETAILS :

The FSK MODULATOR consists or the logic round in the upper right
corner of figure #6b. Two set-reset flipflops form the Bit Mark and
Data phase signals used to control the FSK switch. In the Bit Mark
phase gate -20a- always has a logical 0 presented to pin -20.1- so
the NAND output -20.3- always has a logical 1 value. This results
in the unconditional choice of the 2f signal at the FSK Switch as is
desired during Bit Mark. In the Data phase, the situation changes
with -18c- acting as an AND gate to enable the data input to pass to
the modulation switch via -20a-. Following the Data Phase, since
neither modulator flip-rlop is set, both inputs of -20a- are logical
1 and the modulator switch is thus unconditionally in the Null state
configuration outputting frequency r. Note that in the beginning of
an output operation, OUTPUT INHIBIT is used to reset both flip-rlops
unconditionally until the time delay is up. This guarantees that a
Null phase leader will be recorded continuously prior to the first
data bit.

1.4.7 DEMODULATOR DETAILS :

The demodulator logic of this system consist s or the Phase Locked
Loop -23-, the comparator circuit -22- and associated discrete compo
nents. The audio signal from the speaker terminals or the tape re
corder is input to the PLL through a resistor and the diode clipping
network of D2 and D3. The clipper protects the 565 PLL against ex
cessive s ignal by limiting signal voltage to the diode rorward vol
tage drop. Potentiometer Rll is used to adjust the free running fre
quency. The output or the PLL is a voltage proportional to the in
put frequency detected. This voltage and a rererence voltage are both
red from the PLL to the comparator via a filter (R12 and C9). The
comparator in turn produces a logic signal which i s then cleaned up

M. P . Publishing Co . - 13- ECS - 2

and made TTL-compatible by the Schmid t trigger input of the first gate
stage it drives. The two Zener diodes Zl and Z2 are used to define the
+6.3 and -6.3 power supplies for the PLL and comparator from the +11 and
-11 inputs shown.

1.4. 8 INPUT TRIGGER & DATA LATCH DETAILS :

The input trigger logic consists of the Schmidt trigger gate -17-
and a set-reset latch formed by -16a- and - 16b- . (The Schmidt trigger
output also drives the Data Latch.) During the end of a bit period,
the f signal is present 'on input and produces a low level logic signal
at the comparator output. This guarantees that during the Null phase
of input the output pin of the Schmidt gate (-17.6-) will be high.
When the Trigger set (State D, -15.15-) is. reached this forces the
Trigger latch output (-16.3-) into the logical 1 state. Tracing through
the control logic of -9b-, -13a- and -13b- shows that the Phase Reset
line will be zero when the input "Wait" state (State E , -15.16-) is
reached, and the system will be quiescent. As soon as the f-2f tran
sition occurs however, the system state will change as follows: the
output of -17.6- will drop to logical 0 and thus reset the Trigger Latch
producing a logical 0 signal at -16.3-. This level will then propagate
through -9b-, -13a- and -13b- to the Phase State counter's PHASE RE-
SET line. This resets the Phase State, which is propagated through the
Phase Decode logic of -15- and removes the State E output (while enab
ling the State 0 output). The Phase Clock is no longer inhibited with
the end of state E, and the trigger signal is cut off when state E is
no longer available to enable the AND logic of -9b-. The output of
-9b- is thus a pulse whose width is set by the sum of the propagation
delays of -13a-, -13b-, -14- (reset to output), -15- and -9b-. Using
nominal figure s from IC specifications this sum is approximately 74
nanoseconds .

2 . CONSTRUCTION AND TESTING:

2 . 1 TABLES:

To aid in assembling and testing your own version of this I /O unit,
several tables are included at the end of this plan in addition to the
complete logic diagram of figures #6a and #6b. These tables are the
following:

Table I: Package Summary. This table contains a summary
of all integrated circuit and other socket positions. i n
the circuit, showing number of pins , power and ground con
nections and other information .

Table II: Other Electronic Parts . This table lists all the
miscellaneous parts used in the design .

Table III: Interface Sockets. Two sockets, -24- and -25- are
used to interface this circuit to the world of the Tape Con
trol module. The complete list of signals wired to these
sockets is summarized in this table.

M. P . Publishing Co . -14- ECS- 2

2 . 2 NOTES ON CONSTRUCTION TECHNI~UES:

Due to the complexity of this circuit it is strongly re c ommended
that the solderless wrapped wire method of interconnection be employed
in the construction of this design and all the plans in the Experimen
ter's Computer System series. For those individuals who are familiar
with the technique, no introduction is necessary; for individuals who
are not familiar with wire wrap interconnection, the publication en
titled "Solderless I.C. Prototyping Techniques" (M.P. Publishing Co.
Number 73-1) is available and provides information needed to utilize
this method of wiring.

The main logic board of the system should be fabricated as a single
module using copper-clad board to provide a good ground plane . The en
tire circuit (excluding the Tape Recorder Drive box) can be laid out
on a single piece of blank P.C. board or Vector stock measuring 4" by
8". S ince the entire Experimenter's Computer System will involve many
boards with interconnections, it is recommended that a card cage system
be employed, in which case the dimensions used for this board will have
to be consistent with the card cage used. The discrete components
of the main logic board for the Audio Cassette Mass Storage System are
mounted on insulated standoff terminals in the prototype. This includes
the timing capacitors and resistors of' the oscillator, demodulator and
delay oneshots. The trimming potentiometers were simply glued to the
circuit board with a small amount of contact sceme nt.

Wiring should begin with the power and ground connections of all th~
dual in line sockets (summarized in Table I.) Following power wiring,
methodically connect all signal wiring as in the diagram of figures #6a
and #6b. One of the best ways to ensure that each connection is covered
is to highlight the circuit diagram line for the connection in red ink
(or other color) after it has been wired a nd inspecte~. It is suggested
that a wire list be mad e as well if more t han one copy of the u nit is
contemplated. Extra copies of the logic diagram page of this publication
may be purchased from the publisher for $.50 in single quantities to
replace your original diagram if you make the suggested markings during
construction.

In laying out the board, make provi s ion for "decoupling" capacitors
at several points in the wiring of the +5 volt power bus for the TTL
circuits. With any TTL circuit noise can and will be propagated along
the power lines due to switching transients --- and can randomly affect
operation. Good construction practice thus includes placing several
sets of decouplingcapacitors around the power bus to store energy for
the TTL switching process. For this circuit,three 10 mfd electro
lytics in parallel with .1 mfd ceramic capacitors will serve this func
tion when wired from three different locations on the power bus to
ground.

2 . 3 TESTING THE CIRCUIT:

2 . 3 . 1 COMPONENT S :

As the builder of thi s design, you are intere s ted in making it work
and correcting your own wiring errors, not in testing out the components
you buy . It is extremely important with a complex system such as this

M. P. Publishing Co . -15- ECS -2

one that you be able to rely upon the quality of the logic components
you buy. Accordingly, never under any circumstances buy "hobby" qual
ity circuits unless you are prepared to become frustrated by circuit
components which must themselves be tested before use. Even with first
line circuits purchased from a distributor or surplus dealer, occas
sionally you will find electrical problems with the IC components. In
the process of testing, by proceeding one step at a time with a healthy
skepticism of component quality, most such bad components can be iso
lated.

2 . 3.2 INTERCONNECTIONS FOR TESTING :

At this stage in the development of the Experimenter ' s Computer
System, the only way to test out the Audio Cassette Mass Storage Sys
tem is manually. Later in the series, articles devoted to diagnostic
programming for this devic e and other devices will be appearing -
techniques which provide for more comprehensive and thorough testing.
For the purpose of manual testing, the DIP header plugs for socket
positions -24- and - 25- mllst be prepared to give access to the system's
interfaces. For indepe ndent testing, thus two dummy plugs are needed:

1. DATA COUNT: The dat a count interface socket ~24- must be
set up with a bit pattern supplying a data count for testing.
Unconnected pins can be assumed to be logical "1" for purposes
of this testing, and pins connected to ground are logical "0".
For purposes of testing, wire pins 1 to 7 together on the plug
and connect them to a clip lead. A maximum length count is
achieved by leaving the clip lead dangling; a count of binary
"0000000111111111" (511) is achieved by connecting the clip lead
to ground. At 100 baud the maximum length count will run for
655.35 seconds and the shorter count will run for 5.11 seconds .
Other count values can be set by wiring this plug differently.

2. INTERFACE SOCKET: The general interface socket -25- must
be provided with a plug connected to wires which are stripped
at one end and connected to socket pins via solder at the other
end. Clip leads can then be attached to the stripped ends of
all 16 wires when needed during testing. In wiring this plug,
all wires should be labelled with tags of masking tape to iden
tify pin number and interface function as found in Table III .
This will help eliminate the probability of confusion during
testing.

2 . 3.3 ORDER OF TESTING :

One way of speeding up the process of testing a circu~t such as this ,
of speedily finding wiring and component errors, and of using your time
to best advantage is to use an .orderly and methodical approach to tes
ting. The following is an outline of the sequence of testing needed to
manually verify the operation of this circuit. The theory of operation
as described above and the logic diagrams of figures #6a and #6b should
both be consulted for detailed information used at each step .

i () 1. POWER WIRING: Verify and check out all power supply wiring
before ever plugging in a single integrated circuit. It is not
an absolute certainty that the circuits will go up i6 .smoke with
bad power connections, but such has been known to happen.

M. P . Publishing Co . -16- ECS- 2

) 2. CLOCK GENERATION: Verify operation of the system clocks as
the first operational test after inserting integrated circuit s .
Without an operating clock, the system is dead. Set the oscilla
tor frequency to 24,000 cps (8f) and verify l2Kc (4f at -21.12-) ,
6Kc (2f at -21.9-), 3Kc (f at -21.8-) and 1 . 5Kc (f/2 at -21.11-) .
Note that the system must be in output mode (interface pin 3 grounded)
for these first few tests.

) 3. TIME DELAYS: Check out
tions -1-, -6- and -7- next.
nominal adjustments:

the time delay circuits, socket loca
The following table summarizes the

Delay Circuit

()
()
()

-1-
-6-
-7-

Trigger

Interface Pin 14
Interface Pin 10
Interface Pin 10

Pulse Width

5 Seconds
3 Seconds
2 Seconds

) 4. MOTOR DRIVE : Check out operation of the Tape Recorder Drive
Box next. First, verify operation in the manual mode: the indicator
LED (Ll) should be on and the Tape Recorder should operate normally
when its various buttons are pushed. Then, verify logic control of
the recorder by placing S2 in the computer mode (~) and pressing
Sl to trigger a tape initialization pulse via interface pin 14. This
should illuminate the lamp Ll for 5 seconds, and --- if the recorder
is in an operating mode --- turn on the motor for 5 seconds.

) 5. OUTPUT MODE: Next verify operation of the circuit in its out
put mode of operation. Ground the wire connected to Interface Pin
3 via the test plug, thus setting the circuit into output mode . To
initialize output operations, momentarily connect interface pin 10
to ground, imitating an I/O Start command . (If this proves unrelia
ble it ma'y be necessary to wire a pullup resistor of lK ohms to the
+5 volt supply to this pin using clip leads.)

The timing diagram of figure #3 can be produced on an oscilliscope
with multiple channels and a chopped mode of operation. The s cope
trigger should be connected to -15.1- via a temporary wrapped 'con
nection or a test connector. Temporary connection of -5.3- (the
low order data count bit) to the TTL Data Input interface, pin 11
will establish the alternate 1 and 0 data shown in figure #3. To
observe i 1 (Bit Mark) connect a scope channel to -18.6-; to obser
ve i2 (Data) connect a scope channel to -18.8-; to observe the Fre
quency control trace, connect a sco~channel to -20.3-; to observe
the Input Sample clock connect a scope channel to -15.9- and to ob
serve the Data Clock, connect a scope channel to interface pin 7.

As a final check look at the actual FSK output (interface pin 4) re
taining the same acope trigger source. The audio signal should be
observed to switch frequencies at each transition of the Frequency
Contr~l signal, -20.3-. '

If it is desired to check the output block format by producing the
timing diagram of figure #4 the use, of a multi-channel storage osc
illiscope is necessary, with a very low sweep rate. This display
is interesting from a tutorial standpoint, but is not necessary for
checkout purposes .

M. P . Publishing Co . -17- ECS-2

) 6. PREPARING A TEST TAPE : In ord e r to t est the operation of the
system with input data, it is neces s ary to create test tapes using
the output mode of operation. Retain the setups of step 5 sothat
an alternating 1/0/1;0/1 . . . etc. sequence will be written onto the
tape. Run through a cycle of several b l ocks beginning with the
manual initialization of the tape (see 1. 2 .3 on page 5) , and pro
ceeding by initiating new write operations after the preceding
operation is done. For initial testing of the demodulator signal
circuitry, use the maximum length block count to record about
five mi nutes worth of test data in each block. A second cassette
can be prepared to test out input control logic using the short
block length suggested in section 2 . 3.2 above .

) 7. DEMODULATOR TESTING : The first step in testing input is to
. test the Phase Lock Loop demodulator and adjust it for best re
sponse. For this portion of the input testing, the maximum-length
block is desirable as prepa r ed above on one cassette. If short
blocks are used , by the time you get around to looking at the PLL
output on the scope you find that the block has finished --- a
rather unproductive situation!

Reinitialize the tape as in section 1 . 2.3 , change the mode to input
by removing the ground connection of interface pin 3, set the maximum
length value into the Data Count by removing the dummy data count
plug ground connection, and give an I/O Start cue by momentarily
grounding interface pin 10 as before. The tape recorder should now
start playing, and after the three seconds of leader delay, data
should start coming into the PLL input via the FSK Data Input of
interface pins 12 and 13. Check this input of audio signal by
probing pin -23.2- with the scope. Note that there will be con
siderable "wow and flutter" audible in the signal if a cheap tape
recorder is used, and that this will also show up on the scope
trace.

Adjust the Phase Lock Loop fre e running frequency setting dynamically
while observing the PLL output on pin -23.7-. Make initial adjust
ments of Rll with the maximum volume setting of the tape recorder out
put, until the "cleanest" output signal is obtained (the closest
approximation of a ~quare-edged logic-like signal.) To avoid finding
false locking points the free-running frequency may be set prior to
this adjustment by removing input and observing the frequency on
pin -23.4- which should be approximately 4-4.5 Kc. After a large
signal lock has been established, decrease the amplitude of the tape
recorder audio until the PLL output begins to break up. Increase
the amplitude again slightly from this point, then readjust the
f'ree running frequency with Rll for the best PLL output "square
wavyness". This procedure establishes the best center f'requency . .

) 8. INPUT OPERATION: With the demodulator producing clean output
signals from the decoded FSK signal, the next step is to test the
logical operation of the entire system in input mode. For this
purpose, the test tape prepared with short blocks should be employed
instead of the long block cassette. Manually initialize the tape
u nit as usual, and cue an input operation with interface pin 10. Ob
serve various logic signals in the system as before, using state
o as the scope trigger . An initial indication of proper operation
i s for the system to operate on one block of data and then quit (as
suming the short data count is presented at socket -24-.)

M. P . Pub l ishing Co . -18- ECS- 2

Using manual operations it is impossibl e to get more than a
heuristic impression of the correctness of the input data . The
circuit shown below as figure #7 uses an 8-bit counter to sum up
the difference in the number of lIs and O's read by the unit.
While this is not a guarantee against compensating errors, the
probability is that for short blocks one type of error will
dominate (eg: zeros interpreted as ones or vice versa.) Using
the interface pins as output from the tape device, prepare the
tester by pressing the Reset button. Then initiate the tape
I/O using the short data block prepared previously. At the
end of the block, providing the alternating data was recorded
and re-read properly with no compensating errors, the value in
the counter display will be binary 01111111. This can be proven
by noting that the initial condition is 10000000 and that there is
one more zero on the tape block than ones, so the last bit read
will shift the result down by one count. (511 alternating bits
outputted with an initial state of 0 in the data count means 256
zeros and 255 ones.) After verifying short blocks, the input of
maximum length blocks can also be tested with the same unit. In
either case, the result in the counter is the difference in the
number of zeros and ones actually read, with the overflow/underflow.
lamp indicating whether a gross inbalance was detected. The part s
shown in this diagram are not included in parts lists. This devi ce
may be put together in short order to perform the indicated tests.

QPE~AilON:' \AP FbR. "1." bl\'TA

DCLDN FO~" eI" bATA.

+5

OATA

'u.

5
2oa.n.-

A t=-TER R£"5 £T:
L El) B I. ,. 0\1 ~ 1 l 3 4 5 ,

COUNT l,),I.SP\.~V : 0 1 f6 g 0 (I 0 0 flJ (l~ cg)
('1.= \.A~P lEb C>~)

Figure 7 . Uniform Data Test Unit

xc C.~b ~5v ----
'1,+,1'3 8 '" 7,,"00 7 , ..

''I' 0" I'"

OVE~t='LO'<)
L..ATC"t

M. P . Publishing Co . -19- ECS- 2

3. EXTENSIONS AND MODIFICATIONS OF THE SYSTEM:

The bas ic circuit as described in this plan was built and complete
ly debugged by the author. As is the cas e with all engineering systems
it should be understood that this not nec essarily the only way in which
to generate and record data, and that the parameters of this particu
lar design can be adjusted further. Within limits it is possible to
increase the performance of the basic design; for use within other sys
tems contexts, portions of the control and data count logic might be
changed . Some comments on the subject of modification are recorded
here:

1. SIMPLE BIT RATE INCREASES: The " sure" way to achieve an in
creased data rate is to up the clock frequency and use as much of
the tape recorder bandwidth as is possible. With a cheap impor
ted cassette recorder, a "2f" signal of 10Kc may be possible in
which case using the same frequency ratios a rate of 166 baud for
data would be obtained. Such a move on a $30 cassette recorder
might be marginal, and should be statistically checked out with
a suitable computer driven bit error checking program. If a reel
to reel recorder, higher bandwidths are possible. A "2f" frequency
of 20Kc may be possible on a quality audio recorder in which case
the data rate could be doubled once more to 333 baud. Whenever a
new frequency is chosen, the following cautions obtain: the PLL
timing components will have to be changed, the oscillator timing
capacitor may be outside the necessary tuning range, and no tape
recordings made at lower data rates will be readable. To reiter
ate, the limiting factors on this sort of data rate increase are
tape recorder bandwidth and the quality of the tape mechanism. The
parameters of the 100 baud specification in this article are "safe"
values which will most likely work on virtually any tape recorder .

2. BIT PERIOD FORMAT MODIFICATIONS : A se cond alternative to in
crease the data rate is possible if the mechanical noise of the
tape drive is not a major source of frequency perturbations on
input signals: the tape format can be altered. The circuit in
figures #6a and #6b measures out precisely 20 cycles of the high
frequency signal in 1/3 bit period, and 10 cycles of the l ow fre
quency signal in 1/3 bit period. Both these amounts exceed the
minimum number of cycles required for the PLL to lock up. By chan
ging the ratio of phase lengths to 2:3:3, with 8 cycles of 2f in
the Bit Mark plus potentially 6 cycles of f in the remaining two
phases, the same data can be potentially packed into 8/15 of the
time required for one bit in the present design. This set of ra
tios can be obtained by using the frequency f as Phase Clock and
rewiring the outputs of -15- for the new ratios: State 1 starts
Bit Mark, State 5 ends Bit Mark and starts Data, and State Bends
Data phase to start the Null phase. By simply rewiring, this will
increase data rate to 188 baud assuming the same clocks. Performing
this modification in combination with that suggested above yields
a potential upper limit of 625 baud on a tape recorder which can
record a 20Kc signal.

3. DATA COUNT: The number of stages in the Data Count of this de
vice is arbitrary and set for convenience in the Tape Controller.
With control logic modification this counter may even be omitted if
some other " end" signal inherent in data is provided by the computer .

M. P . Publishing Co . -20-

Table I: Package Summary

_#- Description Pins +5 Volts Ground

1 u;5.s Tape Initialize

iCi'ft.E- 2 74193 Data Count 4096 ' s

3 74193 Data Count 256's

4 74193 Data Count 16's

5 74193 Data Count Units

6 ~5 Output start Delay~~

7 055 Input Start Delay~~

8

16

16

16

16

8

8

8 vr400

~. 7402

Motor & Input Latches~H~ 14

NOR Gates

8,4

16

16

16

16

8,4

8,4

14

14

1

8,14

8,14

8,14

8,14

1

1

7

7

10 LM309K

11 ~04

12 ~O

Tape Power Regulator 3 Terminals, TO-3

13

c?Y'0- / 14 .5 15

~10

7493

~54

16 «00

or6 / 17 7413
')....-

18 ~b

19t.1-1+64
20 (;(400

o 21 7493

orO 22 710 y

0'(0.; 23 565 y

Inverters

NAND Gates

NAND Gates

Phase State counter

Phase Decode

Trigger & Data latches~H~ 14

Schmidt Trigge r NAND

NAND Gates

Inverters (os cillator)

NAND FSK Switch Gates 14

Clock Freque ncy Division 14

Input Comparator

Phase Lock Loop

24 DATA COUNT INPUT INTERFACE

25 INTERFACE SOCKET

14

14

16

16

14

5

24

14

14

14

14

14

5

Not Ap .

Not Ap .

7

7

7

10

12

7

7

7

7

7

10

2

3

Not Applicable

16 8

3~ -6- and -7- may be combined in one socke t position as two 555 ' s
or as a single 556.

~H~ These packages may be combined as a single 74279 package .

ECS-2

M.P. Publishing Co . -21- ECS- 2

Tab l e II: Other Electronic Parts

Cl 10mfd 10v electrolytic 0 rd. .J!L- Rl 500K trim pot--- o--..JL .5
~ .01 mfd ceramic R2 1000
\Zj .01 mfd ceramic R3 L5"CJOK trim pot
.!C!Jt: .01 mfd ceramic R4 t500K trim pot
c5 10mfd 10v electrolytic R5 1000
C6 10mfd 10v electrolytic R6 1000
C7 1500mfd min, 10v electrolytic R7 100
CB . 015 mfd ___ C!) f'd. 5 RB 100
C9 . 02mfd ___ "rei .5 R9 220
CIO . 02 mfd -- RIO 2000 trim pot
Cll . 001 mfd ceramic - CJ rei- J:, Rll 10K trim pot
C12 1 mfd 10v electrolytic,?- O rd S' R12 12K
C13 1 mfd 10v electrolytic) R13 12K

t..&14 .01 mfd ceramic R14 1000
~~5 10 mfd lOv electrolytic R15 10K

Sl SPST Pushbutton Dl Sl:..J...icon Swt.tchrt:g Diode
D2 Sill .. .s'tiJ"itching Diod e
D3 SiJ,. .i<ron . tching Diod e

S2 SPDT Center off toggle

Ql 2n2222 0 (d
Q2 2n5190 ----

'l'1 6.J-oJ al:. 2a t"ilament trans
former .

C)'rd Zl , Z2 4.7v Zeners (ln750)

Mis ce llaneous: Full wave bridge rectifier, l ine cord ~ plug, case and
housing for Tape Recorder Drive Box, external power supply and auxil
iary-input/speaker plugs for the Tape Recorder .

Table III : I nterface Sockets

S ocket -24- Socket -25-
Pin Count if "1" Wire To Pin Signal Descrirtion ---r 32,768' s -2.9- 1 +11 volts power Max +12v)

2 16,384 ' s -2 . 10- 2 Not used
3 8,192 ' s -2 . 1- 3 Input/Output Mode Select (Panel)
4 4,096 ' s -2 . 15- 4 FSK Audio Signal Out
5 2,048 ' s -3 . 9- 5 Not Used
6 1,024 ' s -3.10- 6 Ser ial Data to C0ntroller
7 5 12 ' s -3 . 1- 7 Ser ial Data Clock
8 256 ' s -3 . 15- 8 Ground (Power & Signal)
9 128 ' s - 4 . 9- 9 -11 volts power (Max -12 magnitude)

10 64 ' s -4 . 10- 10 I/O Start Line (Neg. Logic)
11 32 ' s -4·1- 11 Serial Data from Controller
12 16 ' s -4 . 15- 12 Tape Recorder Signal Ground
13 8 ' s -5 . 9- 13 FSK Audio Signal In
14 4 ' s -5 . 10- 14 Tape Initialize Pushbutton
15 2 ' s -5 . 1- 15 Tape Drive Signal
16 l ' s -5 . 15- 16 +5 volts power .

@

I
0-: ,

.~ , ,.,..s;
%,,%.T%ALlt£

l'IISIIGu,,'To)()

it

+5V
Ill500K

555
.,
:5

?
ez. "S!.!x:'"~1.

. 01 TO 5 . 00 $~C.
,oft TAPE L'AD£1l

IIE.L,.V

.
"0'"

~II

....
• II
• 'I

@, 0: & O~~

13' MAN. 0"1
y= COIM. ON

T ·W, ~.
D1.

,..n"
jt, L1

UO
LltD IliotcAT~

Mil._

II~
Ti.

3: .
""d

""d
t::
0'
t-' ,...,
to
P" ,....
;:::s

OQ

Q

o
~

%./0 v::;J 1 TAPE. It((OllDt:1l DIlIV. 80X

~--- --- -------------~--------------------- -a-41lT' 1 a -v-- i T ::JS:):, J , MOTOR· 0"" 1 Cl J
MO"ToR

&T"'Tt AUDIO CASStTTE MASS

DWGr. 1. OF 2.-

sroUAL
DATA

CO;n.jrDOWN

C--

~-----.

n1e L C~ 0
-z- '7l>l.n

+5V

• 1. ..

115 X"'UT·MOD£
1,.

~<JA

It

.. ,,, • ,

-ucl-,
5 11
--,"'.0 .11 ~~ .3"r

~~ ~ -5
,6.y

~ u it. n at "" is

:SAl~T'·MOIL

OVTP'uT'· MOD!. ,~"'/- ~i J 't>o' O"'~-_. ~
~~ , ~
1,. 111 • -U,-

~ O\JTPuT-.DJHIB ~1"

iJo 0"" ~ I,OU"TPUT S"TAR'T I>ELAI(

~------:J-=5"i -(0 - 1 (A •• R.O X"'.R a..U.RI) GoA~)
C)
.1211

e'l
.11l

5

It

555

-7-
':)'5'5

,

• C'"
1111 A\tct

~

7

'$;, ..

@ 1'7" t.\.~ ;oV~LISHING- CO.

IIiPUT s""'l:T I>ELAV -u.-

J.WN!' CLOCW 1:NOUUr

L4"~

II

-yo-

L..-.<:ll<.

t

Figurr~ 6a .

STORE .- SEk1.AL

COW'TRO\. LOGrIC'

-Ue
ill

F"SK MODEM

...-
: D"TA

------:-1 CLOtA:

11'''@ ''''.

. t !i"".· u · CLO<~ a ~ ~ f\) 1)-, I f\)

PMAse·CLOU(
ClJ'\l\. ~ , J~II ·U.-i.1

K

~"'''VT·DIL~';

15

ann.·D
1~-U

.,,- 8

l'

is

~T
'I"

"

iSof"n-E
lS·\' C -r

OUT'u1·I'~"I • .rT

"ort"

9

iTiTi:"=i" (+ u)

1.5-2. ,

XII,""X&&IIIl
D U.-l

-L

.t.-~

,,,,_sw. -It'SI.T

IS·t··

f t

al..r '7
G

-lL -7
F

O-r k
E'

£, ... '!c cJ:.j
Q
rn
J

f\)

G-
12-.3 OU"P~T- t>JH1BtT

!!..J S.'A,1'l~./)1 1

.... lIl1lE ~ 11-' MOTOR-O,,", 17 A D
z

11-' GoATH- P1\ASE-CLOt)(
-15- ~ I D '1+154 3 •

1~ PIIA~\ •
D'O,C.Ol>E S '

tlOt\t
t~ Zl Q , ~ a.

-i'l-- 1.

'7'+n b z, b
'IIA,t t
~TAT£ C

ZI C , \I

d tL Z0 ci A "
Iit£SETS 1)

Z. 3 l.
C

n U

~ 1~

F
U

E
~

C D STA'TIT

B D~

F D P~AS[- R SE"T l.'}-B

J
D MOTOR-Ot-) 'a-3

K D
IIIJ~uT- tlE:LAV H-4-

D
:tI.I-TRI~~ER ~

LJ,TtH

4

5

~
TO : DATA

..-___ v_a_n_
~ . ..,

z CAT ...
,--SERtAoL
: QU"tPU"

PO"T
Stll~IO

U 74-13

TIU,c;,C.ER

@ 1,'H M.P, PU8L~SII[~G- c.o.

.... .,

Oil'''' 1l".tE
X~

5- / 30

+1lV

'+

3

e.n
MAli.\(
P>-IAo:.E

ct. .. I

-l'- • I ""Ie
,~: ~'i-MA" le_(i)

5 u

, TTl.
I'I\...J'h i ~"-It~,,\. L...-------- I . I CiifATA x'o..lruT

4£ 51t PlUln- CLOt ..
H

gf i.,.
"l4""!>

~ f III ~se-"

t 2,1 :3

-----------------~

. "1.'1

c;.nl<~

I'-'.~

'tB, 1f>1<

~."
A.UN

~REGl.

'J
-'Z. !.-,.

~

II

AU1)IO CAS5ETTE N'\AS,S STOR..E
SERI.Al. FSK MODEM

OWG. 2. Or a - 1/0 LOGIC.

I' hY :II~ ~~w. OAllI
.&.. ~~. : l:~P\AT U!\(.

illS

I' f • eil :
'--:-r-"':T-';";;':;;;':';::':'J (R\.. • + 'If-:--: TAPe Re~, SI:G. -

e,y i ~U 11 ,-,,, P7 to : 111'11.. GRou.ND

.III!.. T ""'151' ~
-' .. ~Y "'..... ~

-uy

r.~r,

Figure 6b .

::s:
I-d

I-cj

C
0'
r-'
1-"
to
::r
1-'-
;:::s

()q

o
o

I
f\)
'v-l

I

t:rJ
o
(j)
I

f\)

M. P . Publishing Co . -24- ECS-2

PREVIE W OF COMING ATTRAC T IO N S

The Audio Cassette Mass Storage System as described here is but one
component of the Experimenter's Computer System ~ the object of this ser
ies of articles. On the occasion of this first printing of #ECS-2 (April
1974) the following additional articles are scheduled for publication in
the near future :

ECS-3: MICROCOMPUTER CPU, BOOTSTRAP & INTERRUPT LOGIC . This
article describes the basic microcomputer CPU, the buffering needed
to interface it to the outside world, the bus control concepts in
volved, bootstrap memory operation, and the design of interrupt lo
gic allowing 8 levels of software-decoded priority.

Ecs-4: 256-BYTE STATIC RAM. This article concerns the first
form of Random Access Memory module to be employed in the Experi
menter's Computer System. For initial programming and testing one
or two pages of memory constructed according to this plan will suf
fice to demonstrate the operation of the computer system, its I/O
capabilities and self-test programming. This form of memory is not
the most economical in large quantities, but it does permit the
incremental addition of memory. Accordingly, a later article in
the series will discuss the more economical use of larger LSI
RAM chips in bigger modules.

Ecs-5: I/O PAGE DECODE LOGIC . One of the simplest forms of I/O
to deal with conceptually is that of a dedicated area of t~ compu
ter's memory address space which maps directly into real-world 1/0
operations: under this scheme all I/O reduces to memory transfer
operation. This facility is provided in the Experimenter's Com
puter System by dedicating one 256-byte page of memory to I/O usage
with a common control and address-decode mechanism. Each individual
byt~ of that page is potentially an I/O device register used for
data transfer or control purposes. A typical device will use two
or three of these addresses groupe d together for programming con
venience .

Ecs-6 : TAPE CONTROLLER : This article describes the Tape Con
troller used to interface the Audio Cassette Mass Store of ECS-2 to
the bus oriented logic of the Experimenter's Computer System main
frame. This subsystem operates under direct control of t~ I/O PAGE
DECODE LOGIC described in Ecs-5 and interfaces with the bufferred
data bus of ECS-3. It has primary responsibility for parallel/serial
conversion of data, and the generation of periodic interrupt signals
for the CPU during the course of tape I/O operations .

M.P. Publishing Co. Box 378 Belmont, Mass. 02178 EcS-4·

The Experimenter's Computer System: Part 4

2 56 - B Y T E R. A. M. P AGE

by Carl T. Helmers, Jr.

INTR ODU CTI ON:

This article is the fourth number in the Experimenter's Com
puter System series. It continues the description of hardware be
gun in earlier articles with information on a standard module
containing 256 bytes of memory, the smallest memory increment which
can be conveniently added to the system. The article contains the
following information:

1. Hardware description.

2 . Summary Tables & Notes on Construction.

3 . Programming Notes: Testing the Module.

The information found in this article must be supplemented by
reference to the third article in the ECS series, #ECS-3: "Micro
Computer CPU & Bootstrap Logic.)

HARDWARE DESCRIPTION: '

The center page of this article contains the detail logic dia
gram of the 256 byte memory page design. There are two primary
divisions of the logic in this design:

1. The Memory Array logic consists of 8 Signetics 2501 IC
packages (or the equivalent 1101) and an associated bus in
terface for data.

2. Control Logic consists of two 7485 binary comparators '
used to generate a page select signal, plus a set of NAND
gates (one 7400 package) used to develop a data bus enable
signal and a memory write pulse - both in terms of the gen
eral "WRITE-CLOCK" and "CPU -INPUT," signals provided by the
ECS system's central processor design.

~ 1974 M.P. Publishing Co. All Rights Reserved.

M.P. P~blishing Co , -2- ECS-4

MEMORY ARRAY:

This -is the first of several alternate designs for memory modules
which will be presented in the course of this series of articles. As
the first, one design criterion was to make the increment sufficiently
inexpensive for experimenters of limited finances .:.. hence the decision

- to limi tthe module to 256 bytes of memory. A logical choice for the
memory circuit is the 2501 static RAM IC of Signetics manufacture, or
the equivalent 1101 circuit produced by several other suppliers. This
memory is presently available from surplus houses for ~rices in the
$2-3 range, so the total cost for the memory portion of the design (8
chips) will be in the $16 to $24 range depending on your supplier's
prices. For the record, a ctirrent distributor price (October 1974) for
these IC's is $6.00 in unit quantities .

The memory array is located in the upper right hand region of the
detail logic diagram, Figure #1. Each of the B integrated circuits in
the array contains a "one bit slice" of the 8-bit words in the page .
The addressing of the 8 chips is identical, and is derived from the low
order 8 bits of the buffered address register maintained in the ECS
CPU design. For clarity in drawing, the address lines are shown going
from one memory chip to the next - where it is understood that a common
connection will be made to identical pins of the 8 IC's for the
array.

One point which should be discussed is the loading of the buffered
address bus caused by common wiring of all 8 chips. The nominal TTL
fanout of the address buffer~ in the CPU design (7437 circuits) is 30.
In order to put -off additional buffering as long as is possible as the
system grows, a good design rule is to keep the loading at a minimum for
each additional module of the system. What is the loading in this case?
It turns out that a 2501 circuit - being MOS - represents a much smaller
load than the ordinary TTL unit load . Using the worst case figures of
the manufacturer's specifications, a 500 nanoamKere input load current
in the low state, eight 2501 inputs wired toget er would represent a
total of 4000 na or 4.0 microamperes •••. in the worst case. Since the
typical TTL low state unit load is 1.6 ma, based on these considerations
wiring the 2501's directly to the address lines represents a unit load
of only .004/1.6= .0025 unit loads. This discussion is fine for DC worst
case - but there remains the consideration of dynamic effects. Each
2501 represents ~h ~ffective capacitance of 10pf (per specs) on the line
plusthe total capacitance of all the extra wiring. As more and more
units are wired to the address busses, a considerable capacitive loading
of the buffer gates will result - a situation which depends in detail
upon specific wiring lengths,layouts and interconnection techniques.
This capacitive loading will tend to slow down the transitions of the
addreffi lines, as can be verified by experimenting with an oscilliscope,
a 7437 gate package, a pulse generator and a capacitance value of per
haps .01 microfarads across the output of the 7437 section to ground.
This .01 mfd (10,000 pf) represents what the 7437 might see when the
number of address loads approaches 10 to 15 boards with both IC input
capacitance and wiring grid capacitance effects totalled. After some
consideration of this issue, it was decided to wire the 2501's directly
and to treat t~e whole memory array as a single TTL unit load - opting
for a conservative approach. This choice also keeps address loading
for the low order bits the same as the single TTL loading represented
by the wiring of the page selection comparators t o the high order bits .

M.P. Publishing Co. -)- Ecs-4

The output data is taken from the 2501 memory circuits via the com
plement pins - the n pin (14) - of each chip. The output data is con
nected to the bus via the 8T09 interface gates which invert the data.
Thus by presenting the complementary form of the information to the in
terface gate inputs, the double inversion will result in the correct
sense of data presented from the memory to the bus.

CONTROL LOGIC:

The control logic of the Ecs-4 design is used to determine when this
page of memory has been selected - and given its selection, to route the
memory write signal and the bus enable signal to the appropriate users.
The determination of page selection is performed by the MSI digital com
parator circuit, the 7485.

The 7485 comparator can be used to perform a magnitude comparison if
desired, however in this application its use is limited to a test for
equality of two bit patterns. One of the two bit patterns is supplied
by the 6 addpess jumper plug inputs used to determine the page address
which is to be associated with this memory module. Two remaining 7485
inputs on the "B" side of the comparators are fixed-wired to a logical
zero and logical "1" respectively. .

The second bit pattern is provided by 6 bits of the high order ("H")
portion of the CPU's demultiplexed address output, plus a single bit.in
put from the "master enable" signal. The e ighth bit of the comparison's

. "A" input is fixed wired to ground corresponding to the ground (logical
"0") input to that bit from the "B" side. If all sevenbits of the address
plus master enable input agree with the module address input and a desired
"1" state for the master enable signal, then the output of the compar
ison, pin 6 of IC 4, will be a logical "1" signal. Otherwise, the
"page select" line will be logical "0".

(The "master enable" signal is created in the CPU design of article
ECS-). It is used to over-ride all normal memory selection logic during
an interrupt PCI cycle so that the interrupt "RST" instruction may be
"jammed" onto the bus instead of the usual memory outputs. The sehse of
"master enable" is as follows: "1" indicates allow page selection;
"0" indicates inhibit page selection.)

The output of the comparison logic is the "page select" line. This
line is used to enable two logical product terms: 1) for PCI and PCR
cycles in which memory output is read from the bus, the bus enable sig
nal is formed by the product "page select" and "cpu-input" where the
"cpu-input" term is a master bus control signal generated in the ECS-)
CPU design. 2) for PCW cycles in which the memory is written using CPU
generated data on the bus as input, the memory write pulse is formed by
a logical product of "page select" and "write-clock" where the "write
clock" signal is genera.ted in the CW-design of ECS-). In the write pulse
logic, two extra inversions are required to transform the signals into
a usable form.

A NOTE ABOUT POWER:

The schematic of a simple zener diode network is shown at the upper
left in the diagram. This network is used to generate a -9.1v bias for
the 2501 chips in a manner similar to that used in the ECS-) design.

M.P. Publishing Co. -4- ECS-4

TABLE I: Package Summary Lis t .••

DIP# Iden. Pins DescriEtion +5v Ground -9v
1 I/O#l 16 Data Bus & Miscellaneous 16 15 * 2 ~(~2 16 Address Inputs - -
3 16 Page AddresslMstr En. Compo 16 8
4 7485 16 Page Address Comparator 16 8
5 7400 14 Qontrol Logic 14 7
6 8T09 14 Tristate Interface Gate 14 7
7 8T09 14 Tristate Interface Gate 14 7
8 Addr. 8 8-pin Address Jumper Plug
9 2501~H!- 16 256xl Memory Circuit, bit 0 5 4,8

10 250HH!- 16 256xl Memory Circuit,bit 1 5 4,8
11 2501~H!- 16 256xl Memory Circuit,bit 2 5 4,8
12 2501~H!- 16 256xl Memory Circuit,bit 3 5 4,8
13 250HH!- 16 256xl Memory Circuit,bit 4 5 4,8
14 2501~H!- 16 256xl Memory Circuit,bit 5 5 4,8
15 2501~H!- 16 256xl Memory Circuit, bit 6 5 4,8
16 250HH!- 16 256xl Memory Circuit, bit 7 5 4,8

~!--12 volts is routed via pin 14 to the zener network which gener
ates the -9 volt bias for the memories.

~H!-The 2501 circuit is functionally equivalent to the 1101 number
manufactured by several companies. As an aside, with due care to
pinout differences and loading factors, any 256xl memory whwh is
TTL compatible can be used with this basic design.

TABLE II: Interconnection Lists ••.

ILO Socket #1 - Bus & Miscellaneous I/O Socket#2 - Addressing
,

Pin 1 - Bus data bit 0 (DO) Pin 1 - Address Bit 0 (AO)
Pin 2 - Bus data bit 1 (Dl) Pin 2 - Address Bit 1 (AI)
Pin 3 - Bus data bit 2 (D2) Pin 3 - Address Bit 2 (A2)
Pin 4 - Bus data bit 3 (D3) Pin 4 - Address Bit 3 (A3)
Pin 5 - Bus data bit 4 (D4) Pin 5 - Address Bit 4 (A4)
Pin 6 Bus data bit 5 (D5) Pin 6 - Address Bit 5 (A5)
Pin 7 - Bus data bit 6 (D6) Pin 7 - Address Bit 6 (A6)
Pin 8 - Bus data bit 7 (D7) Pin 8 - Address Bit 7 (A 7)
Pin 9 - NC Pin 9 - Address Bit 8 (A8)
Pin 10 - CPU-Input Bus Control Pin 10 - Address Bit 9 (A9)
Pin 11 - NC Pin 11 - Address Bit 10 (AIO)
Pin 12 - Master Eneable Input Pln 12 - Address Bit 11 (All)
Pin 13 - Write Clock (inverted) Pin 13 - Address Bit 12 (A12)
Pin 14 - Power, -12 volts Pin 14 - Address Bit 13 (A13)
Pin 15 - Pow~r, ground Pin 15 - NC
Pin 16 - Power, +5 volts Pin 16 - NC

)

)

M.P. Publishing Co. -5- ECS-4

SUMMARY TABLES & NOTES ON CONSTRUCTION:

Two tables are included with this article to summarize some of the
information required to build this desig;n . Table I is the "Package
Summary List" identifying each IC and I/O socket position with its
characteristics, use and power connections. Table II is a summary of
the two interface sockets - position 1 (1/0#1) and position 2 (1/0#2) .
The information in table II identifies the signals associated with
each pin of the interface plugs . The text below contains some crim
ments on construction .

The -prototype of this module was first built using the wrapped wire
method of solderless interconnection . This method is descr ibed in com
plete detail in M.P. Publishing Co . pUblications #73-1 and #74- 5 . At
the present time, October 12, 1974, there are no plans for making a PC
card available for this module . A more advanced memory design which is
in the process of construction at this time is expected to be available
in PC form at a later date .

The process of wiring this module is straightforward and should pre
sent no major problems to those individuals using wire wrap techniques.
The board requires 16 sockets in all, which can be neatly arranged in
a 4x4 pattern of socket positions. The 8 memory chips can be grouped
together in one half of the board . The only long wiring chains to be
created are those which carry the address lines from socket position 2
to the address pins of the 8 memory circuits . It is probably best to
wire these address busses first, then turn to the wiring of the less
structured t1 random" logic of the page selection/control logic.

After the main wiring task has been accomplished for the RAM board,
additional wiring will have to be supplied to connect the RAM to the
CPU of the system . In a typical physical configuration of a card cage
with back plane, this will involve adding connections in the back
plane for the DIP jumper cables which go to the two I/O sockets. Two
back plane socket positions are implied by this design - one for the
address bus, and a second for the data bus plus miscellaneous power,
ground connections and signalsconnections.

The wiring of the address jumper plug (socket position 8) is one of
the last tasks to be performed before testing. This plug is a small
DIP header plug with 8 pins in two rows of 4 each . Pins 7 and 8 have
been wired to logic 1 and logic 0 respectively when you put the system
to~ether according to the logic diagram. This pair of pins supplies the
"lor "0" required for each 6f the page select inputs on pins 1 to 6.
There are 64 possible page locations for the RAM module, with six bit
binary tags from 000000 to 111111 . It is suggested that if this is the
first 256 byte page to be constructed it should be placed at binary page
address 000001 - if it is the second, it should be placed at address
000010 , etc . This way the memory address space of the 8008 CPU will be
filled with active memory from the bottom up without holes .

In testing out this unit, begin by checking out all power voltages
before plugging in the appropriate IC's . Then proceed to check out your
wiring to make sure that all signals are reaching the module from the
CPU. Finally, verify the operation of the memory by expe~imenting with+he
program suggested in the programming notes which follow.

Ilo .i
r--'"
I "~ 1 tAA'TIIt e."'~""LIL , It , ".~ . ~--~------..,

'III\£.' I I
I ,
L __

MC.E !i £Lf l.T

Co t-\ P",. To'"

1/0 .2. AD l)R.ESS bATA BuS

~~--------------------------------, ~- --- - -~ - - - - - - - - - -- - -- - - - -- - -- - - - - - - - - - -- - - - - - - - - - - - - -- - - - -- -- -- - - - - - - ---- ~ ..
i. Z. 3 4- IS CO 'J ~ .,..,.. • ,... \l It. • 10 , II f' , 5" + 3 'l. J. • (

1 1 I
1 ~~"~~UM.M~~M~M, L ______________ ~ ____ 4 ~_ ,, _____ • __ _ ~, ______ .. _'2... _______ _ 1>3 ________ y4-_________ l>S. ________ D' _______ _ J" __ ~ 'OJ ""NL,

11.. 1*

'1 AI
Ie

At ®
L-----... 'oIM

L-_____ ." .. " l
6 5 L..-----... 1rS 0
I L-___________ ... ~ 1.

;
L---------------~~A1

L--------------~~~A'
\

_L-

i 1:. i
~AI

' ...

., IS

~c)TE ~ "'I>WS \,1\6"
W, .. ~. 10 S4tMt, Pl.a~ 0-.
ALL i M' ~ C.HI.S

I'L lot

~M
~M
~A(.

r--:. "1

~ ~t

1'-

t
I
o
I

IS"

It.

.I.

~Ik
~A2..
~4\
~~
~.\S
~~

3
~A1

'-r--..o .\
(S

14

, :'\... /I

--

1
5
o
I

,'I-

IS"

It.! I)

-
~ I"

~ ~,

~~
~~
~ *1
~ .,

1
5
o
•

-
IL ''4

1..
L....! ,...... A\

~~@
~.,

~~ 2

~ Af"

J.

5
o
1

-IL ,..

1.

~A\
~112.®
~ ~J
~/t't
~Af
44(
~1t7

Z
5
e
t

~ At

...
I&. I¥-

THE E'(PER.t.~'NTER.'S C.OMPUTER. S,(f>TEM
12

~~~----------------------------------~ 
Ec..S.-40 '2-5"-6'f'T£. R.A.M. PI\G.E. 

~ c,&. ... \ T. "~\ W\~~s.~ J.,.. ~:~:-~----~- __ :A .. . 
I _",-(LOU( (P\I.~ I So'j ... ... 

, 13 I. ',,~ . _ _ ______________ J 

'Ilo ~1. 

NOTE: 

Sf:E ~""MMI\RI;) \"\!tT ~~ +i" I... P'o~J~ 
6R0\4"'. COf,l,..£c.Tlol\A~ of XC 'S 

~Ct"':~~T ~O~~'b ~""~~.J'~( 1!~~'T"~{E. 



M.P. Publishing Co. - 6- Ecs-4 

PROGRAMMING NOTES - TESTING THE MODULE: 

The best way to test out a memory module given the ract that a CPU 
has been constructed is to use the CPU as a tool ror examining the newly 
constructed module. The purpose or these notes is to discuss the use 
or the ECS-3 CPU design - the 8008 architecture plus the previously con
structed 256-byte RAM Bootstrap memory - to check out additional memory. 
Since the ECS system as constructed up to this point still has not inte
grated peripherals, all system checkout must be done using the bare CPU 
and its indicator lamps - with programming done in absolute binary nota 
tion without any automated programming aids. 

The problem is thus : veriry that all 256 locations or the new page 
"work". To rit the derinit.ion or a working memory location, a given 
address must satisry the rollowing criteria : 

1. It must be possible ror the CPU to write data into the. loca
tiona at some point in time. 

2 . It must be possible ror the CPU to read 'the data - without errors 
- at some later point in time. 

3 . The time interval between steps 1 and 2 should be or arbitrary 
length subject to the constraint that system power is not turned 
orr in the interim. 

One way to accomplish a test or every word in the memory or the new modu, ) 
is to use a program whose broad outlines could be speciried by the rol
lowing verbal commands: 

do rorever; 

end; 

write a test pattern into the module; 
do ror i = 1 to n (n arbitrary); 

check the test pattern & count errors; 
end ; 
generate a new test pattern; 

(Here a notation ror programmi~ has been introduced which is similar 
to the computer language "PL/l in which a loop ;!s indicated by the word 
"do" and extends thru a matching "end". Indentation is used to show 
the' "nesting" and keep track of which"ehd"matches which "do".) 

The idea of the program is to repeatedly write test patterns into 
the memory then check them out "n" times to make sure that no bits are 
lost. The problem is thus completely specified in its general outlines 
an abs~ract program which could theoretically be run on any computer 
with a,metl)ory module to be tested and not necessarily on the ECS-3 
design's 8008 CPU. The problem is not complete - what remains to be 
done is to translate the abstract conceptual program into a specir i c 
set of binary instructions for the 8008 CPU to execute . The process 
of translation for this simple program will be performed by hand just 
as you will have to do with any programming application of the ECS 
series design if you do not have enough memory to run an assembler or 
interpretive computer language. . 



M. P. Publishing Co . - '(- EOS-4 

THE MEMORY TEST PROGRAM - DETAILS : 

STA R.l': 

Loo P: 

NO 

The code of the memory test program is 
found on pages 8 to 10 of this article. A 
flow chart is shown at the left on this 
page, providing a "roadmap" of program exe
cution. Further comments are provided in 
the text on this page • •• 

STARTING: 
The memory test program begins when the 

Interrupt Pushbutton (see article ECS-3) is 
depressed - causing an "RST 0" instruction 
to be executed. The computer begins exe
cution at location 0 following this restart . 
(Location 0 is labelled "START" in the pro
gram listing on page 8 of this article.) 

LOADING MEMORY: 
, The first function performed by the pro
gram is to call the subroutine "LOAD" 10-
catedat addresses 0020 to 002E (see page 
9.) This routine places the 8-bit PATTERN 
(locatfuon 0061) into every word of the 
page being tested. (Loc'ations 0048 and 
0028 are flagged with asterisks to indi
cate that they are subject to change in 
setting up the program - they specify the 
page address of the .page being tested and 
must not be se t to 0.) 

TEST LOOP: 
The test loop consists of executing a 

memory test (CALL TEST) 255 times. The 
TEST routine scans every location of the 
desired page for agreement with PATTERN 
and adds 1 to ECOUNT (32 bits in locations 
0063 to 0066) for each discrepency. The 
subroutine ERROR does themultiple-precis
ion arithmetic required. 

GENERATING NEW PATTERN & RECYCLING: 
Following the te~t loop in the main 

routine, a new pattern is created by adding 
INCREMENT to the old pattern in the rou
tine called GENERATE. Then (as is the us
ual case,)the program branches back to 
START. This enables continued testing over 
night - or for a week if you want - inte
grating the total number of faults found 
over unlimited times. , Whenever it is de
sired to check results of such long period 
testing, simply place the CPU in "single 
step" mode and put the bootstrap memory 
into "bootstrap mode" then look at the 
contents of locations 63 to 66. To con
tinue operation, turn off "bootstrap mode" 
and place the CPU back in its "Run" mode. 



M.P. Publishing Co. -8- Ecs-4 

MEMORY TEST PROGRAM MAIN ROUTINE .•. 

Addr ~ Code Description 

0000 I 
0001 D 
0002 D 

0003 I 
0004 D 
0005 I 
0006 D 
0007 I 
0008 D 

0009 I 
OOOA D 
OOOB D 

OOOC I 
OOOD D 
OOOE I 
OOOF D 
0010 I 
0011 I 
0012 I 

0013 I 
0014 D 
0015 D 

0016 I 
0017 D 
0018 D 

0019 I 
OOlA D 
OOlB D 

106 START: 
20 
00 

066 
60 
056 
00 
076 
FF 

106 LOOP: 
40 
00 

066 
60 
056 
00 
317 
011 DCB 
371 

110 
09 
00 

106 
30 
00 

104 
00 
00 

L(LOAD) load a pattern in memory 
CAL LOAD }-

H(LOADl 

LLI 
L(N MEM) 
LHI
H(N MEM) 
LMI-
255 

N MEM = 255 

L(TEST) count errors in pattern 
CAL TEST } 

H(TEST) 

LLI 
L(N MEM) 
LHI-
H( N MEM) N MEM = N MEM - 1 
LBM-
DCB 
LMB 

JFZ LOOP }-
L(LOOP) repeat test until N MEM=O 
H(LOOP) 

CAL GENERATE} 
L(GENERATE) create a new test pattern 
H(GENERATE) 

JMP START } 
L(START) keep cycling indefinitely 
H(START) 

The following are alternate definitions for the end of program in loca
tions 0019+ ••• 

0019 I 

0019 I 

000 

005 

HLT 

RST 0 

halt after one test cycle 

- using RST as a JMP 0 

MEMORY TEST PROGRAM ~ GENERATE ROUTINE ••• 

0030 I 
0031 D 
0032 I 
0033 D 
0034 I 
0035 I 
0036 I 
0037 I 
0038 I 
0039 I 

056 GENERATE: 
00 
066 
61 
307 
060 
207 
061 
370 
007 

LHI 
H(PATTERN) 
LLI 
L(PATTERN) 
LAM 
INL 
ADM 
DCL 
LMA 
RET 

PATTER N=PATTERN+ I NCREMENT 



MEMORY TEST PROGRAM - LOAD ROUTINE ••. 

Addr ~ Code Description 

0020 
0021 
0022 
0023 
0024 

0025 
0026 
0027 

~!-0028 

I 
D 
I 
D 
I 

I 
D 
I 
D 

0029 I 
002A _ I 
002B I 
002C D 
002D D 
002E I 

066 
61 
056 
00 
307 

066 
00 
056 
01 

LOAD: 

370 LOAD LOOP: 
060 
110 
29 
00 
007 

LLI j L(PATTERN) 
LHI --
H(PATTERN) 
LAM 

LLI 
L(MEMPAGE) 
LHI 
H(MEMPAGE) 

reg-a = PATTERN 

set up memory page start 
addr_ess for test 

LMA ~ write memory word 
INL ~ calculate next address 
JFZ LOAD LOOPS 
L(LOAD LOOP) scan entire page 
H(LOAD-LOOP) 
RET -

------------------------------------------------------------------------
MEMORY TEST PROGRAM - TEST ROUTINE ••• 

0040 I 066 TEST: 
LLI } 0041 D 61 L(PATTERN) 

0042 I 056 LHI - reg-a = PATTERN 
0043 D 00 ~ATTERN) 
0044 I 307 

0045 I 066 
LLI ~ 0046 D 00 L(MEMPAGE) 

0047 I 056 LHI set up memory page start 
~!-0048 D 01 H(MEMPAGE) address for test 

0049 I 277 TEST LOOP: CPM 

} 004A I 112 CFZ ERROR 
004B D 80 L(ERROR) IF MEMPAGEi NOT = PATTERN 
004C D 00 H(ERROR) THEN CALL ERROR 

004D I 060 
INL } 004E I '110 JFZ TEST LOOP 

004F D 49 L(TEST LOOP) Scan entire page 
0050 D 00 H(TEST-LOOP) 
0051 I 007 RET -
------------------------------------------------------------------------
MEMORY TEST PROGRAM - DATA AREAS •.• 

N MEM: 0060 - This location_is an 8-bit variable which holds the 
index for the main program's test loop. 

PATTERN: 0061 - This location is an 8-bit variable which is initial-
ized to a starting test pattern and is modified by 
the generate routine. 

INCREMENT: 0062 - This location is an 8-bit variable which is initial
ized to an ,odd integer value. 

ECOUNT: 0063 - 0066 - 32 bit error count, initialized to zeros. 



1. P. Publishing Co. -10- Ecs-4 

{EMORY TEST PROGRAM - ERROR ROUTINE ••• 

Addr ~ Code 

0080 I 
0081 D 
0082 I 
0083 D 
0084 I 
0085 D 
0086 I 
0087 I 

0088 
0089 
ooBA 
008B 
008c 

008D 
008E 
008F 
0090 
0091 

0092 
0093 
0094 
0095 
0096 

0097 

0098 

I 
D 
I 
D 
I 

I 
D 
I 
D 
I 

I 
D 
I 
D 
I 

I 

I 

066 
66 
056 
00 
006 
01 
207 
370 

066 
65 
006 
00 
217 

066 
64 
006 
00 
217 

066 
63 
006 
00 
217 

003 

000 

ERROR: 

NOTES ON FUTURE ISSUES ••• 

Description 

LLI 
L (ECOUNT+3) 
LHI 
H(ECOUNT) 
LAI 
1 
ADM 
LMA 

add 1 to the least signif
icant byte of the 32 
bit error count and set 
carry for propagation 
to next byte's add. 

LLI }-L(ECOUNT+2 ) 
LAI 
o 
ACM 

add zero to second byte 
with carry input 
from first add. 

LLI 
L(ECOUNT+l) 
LAI 
o 
ACM 

LLI 
L(ECOUNT+O) 
LAI 
o 
ACM 

add zero to third byte 
with carry input from 
second add. 

add zero to fourth byte 
with carry input from 
third add. 

RFC ~ return if less- than 232 
errors ••• 

~ halt if more than 232_1 HLT 
errors ••• 

At the time this article is going to press, the prototype of the fifth 
article's hardware design is being asselllbled. Ecs-5, entitled "I/O Con
troller", contains the details of a general I/O decoding scheme for the 
Experimenter's Computer System. This scheme involves responding to the 
32 possible output ports and 8 possible input ports of the 8008 - with 
provision of an 8-level interrupt system accessed via input port O. To 
provide an example of. input and output hardware, the design originally 
to be described in ECS-7 has been moved ahead and included with Ecs-5. 
In its place, article ECS-7 will be devoted exclusively to the myboard 
driven memory editor software topic. Also included:- with the Ecs-5 arti
cle is the description of a very si~le LED output display register. 

The memory editor program being designed for ECS-7 will be a fairly 
general tool useful in your programming of the Experimenter's Computer 
System. 



M.P. Publishing Co. Box 378 Belmont, Mass. 02178 Ecs-5 

The Experimenter's Computer System: Part 5 

I/O CONTROLLER 

AND SI MPLE I/O DEVICE ~ROTOTYPE S 

by Carl T. Helmers, Jr. 

INTRODUCTION: 

This article is the fifth number in the Experimenter's Computer 
System series. It continues the description of hardware begun in the 
earlier articles by providing information on the following subsystems 
and their use: 

I/O Instruction Decode - logic to detect CPU I/O instruction 
states and create bus enable (input) or data transfer clock 
(output) information for all I/O ports. 

Interrupt Management Logic - an 8-bit interrupt flag register 
with associated interrupt control operations is used by 
programs to determine interrupt sources and to mask inter
rupts during critical operations. 

ASCII Keyboard Input Device - one interrupt device and its as
sociated interrupt are shown connected to an ASCII keyboard 
input encoded via a diode matrix. 

Binary Display Devices - two output ports (without interrupts) 
are implemented as binary display registers - a total of 16 
LED's which can be controlled by a program. 

Simple Interrupt Handler - the article provides the listing of 
a simple interrupt handler program used to decode keyboard 
interrupts, read the keyboard and display the bit pattern 
read in the two display output ports. 

Binary Calculator Program - a s imple calculator program which 
will add and subtract 16 bit numbers entered from the key
board and display results in the LED output ports. 

The information contained in this article assumes a familiarity with 
the Experimenter's Computer System concepts and terminology, partic
ularlythe information contained in article ECS-3 previously published. 

~ 1974 M.P. Publishing Co. All Rights Reserved. 



M.P. Publishing Co . -2- Ecs-5 

CHANGES IN DESIGN CONCEPT : 

The original intention ( see ECS - l) was to us e an addres s decoding 
method of I/O for the Experimenter's Computer System, in which I/O is 
done by memory reference to a selected page of memory as in several 
large scale ~omputing systems. The concept is a beautiful one - but 
unfortunately its implementation on the 8008 CPU ba s ed Experimenter's 
Computer System is inappropriate. Thus the present article describes 
a generalized I/O controller which makes use of the 8008's I/O instruc
tion format and provides the control signals needed to manage all 32 
output ports and 8 input ports. 

INSTRUCTION DECODE AND CLOCKING : 

The Instruction Decode and Clocking logic is shown in drawing #1 
of this article. When the CPU executes an I/O instruction, the Address 
Latch alwa¥s receive s the information needed to decode a PCC cycle and 
the I/O unlt involve d, as well as the old contents of the CPU's accumu
la tor (register "A") . This logic reac ts to the A 9 through A15 bit 
pattern in order to detect an I/O PCC cycle and enable clock or bus 
control information to pass through the decoding network to the indiv
idual device selected by the I/O instruction. 

OPERATION DECODE is provided by the 7442 selector labeled -6- in the 
drawing. This device accepts a 4-bit pattern from A15 through A12, of 
which the states labeled 4,5,6 and 7 are significant for I/O. (Inter
nal logic designations of the 7442 - and other IC's - are on tbe insid e 
of its symbol, with external pins on the outside of the symbol.) The 
output pins for these states (4,5,6 & 7) represent detection of an I/O 
cycle for ports 0,1,2 & 3 respectively. 

INPUT PORT BUS ENABLE:is provided by the 7442 labeled -11-. If an 
input operation is indicated, the state 4 output of pin -6.5- will 
produce a "1" input to -12.13- which i s anded with the CPU-INPUT signal 
of -12.12- produc ing a low input to -11.12- . The "D" input -11.12-
of the bus enable selector s erves as a gate for all outputs - and if 
o enables one of the 8 input ports selected by address lines A9 to All . 
The output of -11- can be used to directly control bus interface gates 
of input units - as for instance is shown by -11.1- which is connected 
to the Interrupt Port (INO) and -11.2- which is connected to the Keyboard 
Port (INl) . The remaining outputs for other devices are brought to 
an I/O connector for wiring to additional dev ice s through the backplane 
of the CPU. 

OUTPUT PORT DATA TRANSFER CLOCK ROUTING is provided by the set of 
four 7442 selectors labeled -7-, -8-, -9- and -10-. Output is acc om 
plished by writing the content of the AO through A7 address latch line s 
into a device register with the CT3 pulse of an I/O cycle . The 32 out
put lines of these four 7442's route the CT3 pulse of I/O to the appro
priate devices - locally for the interrupt control and display register 
output s , and via connectors and the CPU backplane for devices which will 
be added later . . 

For each output port, a NAND gate is u sed to "AND" together the 
CT3 pulse and the appropriate port selection of operation decode IC -6- . 
The result is a "0" enabling pulse on the appropriate device selection 
7442 1 s D line - resulting i n a negative logic pulse on the device ad
dressed by A9 to Al l. 



M.P. Publishing Co. -3- Ecs-5 

INTERRUPT MANAGEMENT LOGIC: 

Drawing #3 contains the logic of the Interrupt Flag Register and 
its associated control logic and bus interface. As wired in ECS-3, the 
CPU has only one possible interrupt and only one possible hardware in
terrupt operation - a restart at location 0 of the memory. (This is 
not the only scheme possible, but has attractions in that only one 
possible program can be directly invoked by hardware - the instructions 
starting at location 0 and its logical successors. The disadvantage of 
this scheme is that there is a time and memory penalty to be paid in the 
software interrupt decode which will be used.) This original inter
rupt scheme is retained and augmented by. the interrupt management logic 
of the I/O Controller. 

In order to find out what device has assynchronously (with respect 
to program operation) called the CPU for some interrupt action, a set 
of interrupt flags - the "Interrupt Flag Register" - is provided. These 
flags are implemented as sections of 7473 dual flip-flops. The inter
rupt pulse of the device in question sets the corresponding flag "on" . 
At any time, under program control, the Interrupt Flag Register can 
be read to find out the status of pending interrupts, using the INO 
(input port zero) instruction. In the present article, only the key
board device has an interrupt connected - and as a result, all the un
used interrupt inputs (I/O socket pins 1.10 to 1.16) must be grounded 
to avoid setting the associated flags with transient noise. When the 
Interrupt Flag Register has any flag on, at least one of the inputs to 
the 7430 -31- will be zero. Since the negative logic "or" functionis 
pI'ovided by this 8-input NAND, its output is logical "1"- if any inter
rupt is pending. 

If the Interrupt Enable Flip Flop formed by section -13b- and -30c
of NAND integrated circuits is logical "1", the NAND gate section 
-13c- enables the fact that an interrupt is pending to reach the CPU 
via I/O socket pins 1.1 and 1.2, which must be connected via the back
plane to the CPU's interrupt jumper plug, drawing 8 of article ECS-3. 
The interrupt service routine at location 0 of the computer's memory 
must do the following: 

1. Output a command to disable further interrupts, simul
taneous with the input of the current interrupt flag register 
content. (INO command preceded by loading accumulator with "10" 
in bits 1 and 0 respectively.) 

2. Use the interrupt flag register information just read to 
decode the pending device or devices - the interrupt service 
routine proper. 

3. Output a command to enable further interrupts, followed 
by a return to the interrupted program. (INO instruction prece
ded by loading accumulator with "11" in bits 1 and 0 respectively, 
followed by a RET instruction.) 

INTERRUPT CONTROL OPERATIONS: 

The status of the interrupt operation is controlled by the Interrupt 
Enable Flipflop in drawing #3 as mentioned above. Output port 0 (which 
corresponds to input port 0) is used to set and reset this flag bit un
der program control. If the "INO" instruction is executed with the bit 
pattern "11" in the accumulator' s low order bits, then output port 0 



M~P. Publishing Co . -4- Ecs -5 

logic of drawing #3 will present a pulse on the "I-ENABLE " line to 
set the control flipflop. If the " INO" instruction is executed with 
the bit pattern "10" in the accumulator' s low order bits, then output 
port 0 logic will present a pulse on the "I-DISABLE" line to reset 
the flipf l op and cut-off further CPU inter rupts until it is se t . 

Since this interrupt operation require s intimate program involvement 
for its control, a third input on the " se t" side of the cont ro l flip 
flop is provided. This third input is a time delay network which ac
complishes two ends: 

1 . It allows manual intervention to e nable interrupts in the 
event of a software bug which "locks up" the system. 

2. By virtue of the fact that the time delay does not allow 
a logic "1" input to the Interrupt Enable Flip Flop's manual 
reset until several milliseconds after power turn on (with all 
other inputs defined "instantaneously"), this guarantees that 
when turning the system on interrupts will be enabled initially . 

Switch Sl can be a pushbutton switch on your CPU panel - and can be the 
same switch which was formerly used for the manual interrupt to the 
CPU when you built and tested ECS-3 without I/O devices. Since the 
interrupt jumper used previously no longer is connected tothe manual 
interrupt Swithc in ECS-3, this substitution is possible. 

Note that the output port 0 (INO) logic of this diagram tre ats the 
content of bits 2 through 7 as "don't care" states . Further, since 
only the bit patterns "11" and "10" in bits 1 and 0 are recognized 
as described above, it is possible to output arbitrary information in 
bits 2 through 7 so long as bits 0 and 1 are left " 0" - without affecting 
the interrupt status . 

Finally, note that the "I-ENABLE" pulse used to set the Interrupt 
Enable FlipFlop after an interrupt is serviced will also clear the 
Interrupt Flag Register. This sets up the register for future inter
rupt events - and makes the additional requirement on the interrupt 
service routine that it service all pending interrupts. In 
servicing pending interrupts, the concept of "priority" is a useful 
one. "Priori tyTt is the order in which simultaneously read interrupts 
are serviced - a "high priority" device should be serviced ahead of 
a "low prior'ity" one . Priority with this scheme of operation is de 
termined by the order in which the interrupt service routine checks 
the individual bits it has read from the interrupt flag register. 
A high priority (ie: time critical, such as the tape recorder devic e ) 
I/O operation is checked and serviced first, while a lower priority 
device such as the keyboard can wait for ages - many milliseconds -
without losing information, so it is the last (or nearly the last) 
interrupting device to be checked by the interrupt service routine 
when multiple devices make use of this facility. The programs which 
are included with this article have only one inte rrup t possible, the 
keyboard interrupt . 



M.P. Publishing Co . -5- Ecs-5 

BINARY DI SPLAY OUTPUT DEVICE: 

Drawing #2 shows the logic needed to implement the two s imple 8-bit 
LED display devices tied to output ports 30 and 31. The design shown, 
uses 74100 devices to store data during an output operation and to 
directly drive the LED displays . An alternative is to use 7475 devices 
(four would be required instead of two 74100's) - with appropriate 
changes in wiring and sockets. 

When the appropriate OUT30 or OUT31 instruction is executed by a 
program running in the CPU, the clock line input to the register re
ceives a pulse at CT3 time, transferring ' the content of AO to A7 into 
the "device register" of the 74100 - and displaying the result on 
the LED's. Note that the sense of the outputs will be inverted when 
data is written in this hardware - a "1" will turn off the light, and 
a "0" will turn on the light in a given bit position. There are sev
eral ways to achieve a pattern with "on" indicating a 111" bit ••• 

- when you wire your controller, add inverters on the inputs to 
the output device registers as indicated in drawing #2 by the 
dotted line and its note. 

- use a set of 7475 devices instead of two 74100's and drive 
the lamps with the complement outputs of the 7475. 

- or - as is always the case - you can correct for hardware 
foibles with programming. When ready to display, invert the 
data in the accumulator first, for example: 

LAM 
XRI 
"FFll 
OUT30 

get the data into A from memory 
exclusive or with all 1I1'Sl1 

inverts the data 
write the data to the device . 

The diagrams indicate the LED's as a binary display device. There 
are other display format choices which may be used instead of the simple 
binary lamps. For instance, if you use MAN-4 hexadecimal readouts with 
an appropriate decoder network hex digits can be displayed. As another 
example, if groups of three bits are fed through 7447 decoders, octal 
display is possible. Similarly, there is no need to use , a lamp display 
at all if you want to do something else - for ins tance another copy of 
this I/O device could be used to control 8 relays through appropriate 
drivers, or as inputs to an 8-bit digital to analog conversion in 
situations where a voltage level output is desired . 

ASCII KEYBOARD INPUT DEVICE : 

Drawings #2, #4 and #5 de tail a simple II diode matrix ll keyboard de-
vice and its input to the computer via device 11111 of the input 
port. The actual matrix is shown with a full set of 63 codes and cor
responding keyswitches - however in actuality, only those keys which 
have a teletypewriter keyboard position will be wired. In addition to 
the 6-bit ASCII used for data keys, the llCTRL lI and IISHIFT ll keys are used 
to provide the two additional bit lines required for a full 8-bit input. 



M. P . Publishing Co . - 6- Ecs -5 

The output of the keyboard matrix is in p ositive logic ASCII form, 
but with a default (no key pressed) state of "1" on all input lines to 
the keyboard logic of drawing #2. Thus direct input of ASCII code 63 
is not possible - since detection of keystrokes is accomplished by 
finding changes from the al l "l" s state. The "1" state is present when 
no key is depressed due to the "pulling up" action of resistors 
R29 to R34. When any key is depressed, the bit pattern is selected 
by the diodes in the matrix pulling down the normal level to approxi
mately 0 volts, through the diode junctions. Contact bounce would 
be expected to cause problems through the receiving 7404 inverters on 
drawing #2 - however an RC time constant provided by a lOOK r e sistors 
and .1 mfd condenser in each case smooths the key bounce assoeia ted 
with a keystroke. The output of the inverters is a "negative logic" 
ASCII code which is normally all "O"'s and has at least one non-zero 
bit if codes o through 62 are selected. The 6 bits are "orred" toget
her with the combination of NOR a nd NAND functions shown in drawing 
#2, producing a "key on" signal. This signal is delayed by the RC 
network between inverters -16f- and -16e- to produce an interrupt puls e 
out of the oneshot -21- several lOIs of milliseconds after the key was 
depressed. This assures that stable data will be present at the bus 
interface when the CPU responds to the interrupt, since it allows for 
"slop" in the debounce networks due to component tolerances. The. CPU 
must respond to the interrupt by performing an "INl" operation to read 
the key. Since the one-shot which generates the interrupt will only 
respond to the single rising edge of the "key on" output of -16e-" 
only one interrupt will be generated - even if two or more keys are 
depressed in an overlapping fashion. 

For this simple input keyboard design, an archaic kluge is used for 
the encoding function - the diode matrix. This is one way of getting 
keyboard input, one of the first ever used in computers. It has sev
era l d isadvantages which might be noted: 

Mult iple keys can be depressed simultaneously, with the 
result being a l ogical ~ O~~ of their bit patterns . 

There is no rollover feature to interpret multiple over
lapping keystrokes . 

It requires a large number of components - 192 diodes for 
a full matrix as shown . 

In spite of the technical disadvantages, thi s form of a keyboard is 
described at the prese nt time due to the fact that it requires no 
special LSI component s to build and can be wired directly with surplus 
diodes. 

A better technical solution of the keyboard input problem is to 
use one of several forms of keyboard encoding chips available on the 
new equipment markets, or the surplus assemblies often sold. If you 
buy a surplus keyboard there are two possibilities: if you are lucky, 
the keyboard wi 11 work as. is and can be figured out . If you are un
lucky, you will have purchased an array of key switches - and will have 
to build the diode encoder or its equivalent anyway. Assuming you have 
such a keyboard, the interface is simple - it will have parallel bit 
lines output. These are routed to the bus interface 8T09 ' s. The inter
rupt oneshot should be triggered off a "key on" output of the board, 
or logic similar to drawing #2 ' s key-on logic can be used instead. 



M. P . Publishing Co. - 7- Ecs-5 

Note that most keyboard s do not have a full set of 63 ASCII codes 
possible - a typical typewriter has only 44 to 48 separate keys. The 
diagrams have noted along the bottom the lower case characters of a 
typical Teletype keyboard arrangement - with a "check" indicating that 
the character in question is present on the TTY type keyboard layout. 
as a separate key switch. To generate true ASCII from the keyboard, 
some software modification will be required for upper case and lower 
case characters, as well as "CTRL" characters. Table I shows the cor
respondence between input codes from the keyboard shown and data in a 
true 6-bit ASCII format, for all 63 of the possible codes in the diode 
matrix. 

Also, note that there i s no " carriage return" cod e indicated in draw
ings #4 and #5. The same applies as well for "line feed" and "escape". 
This leads to the general topic of special purpose keyboards and addi
tional keys. Basically, anyone of the unused codes of a Teletype 
style keyboard can be used for the implementation of additional input 
key possibilities. In table I, the "CR", "LF" and "ESC" keys are 
also indicated with no 6-bit ASCII correspondences. Any number of 
additional key arrays can be wired into the matrix either in parallel 
with keyboard switches or to the unused codes of the matrix's TTY 
format ninputs. This feature will be used in future articles to imple
ment special purpose keyboards for u se in calculator applications and 
in computer game applications. 

CONSTRUCTION: 

The best way to put together the I/O controller is to use the wire 
wrap technique of construction as described in publication #73-1 and 
its supplement #74-5. At the present time (November 16 1974) there 
are no plans to make this particular design available in PC form, since 
it is a "one of a kind" item in any implementati on of this computer . 

The article contains five complete drawings of the logic for this 
d esign on the pages which follow, supplemented by the following tables : 

Table I: Character codes 
Table II: IC Package & I/O Socket Summary List 
Table II~: Parts List 
Table IV: I/O Pin Assignment Lists 

The te s ting of this circuit can be accomplished using the s imple inter
rupt service program" KE.'leoAtlD-ECHO" described following the table s and 
drawings. Then, once you have the basic circuit in operation, you may 
wish to try the simple "BINARY-CALCULATOR" program shown at the end of 
the article - a program which will enable you to enter binary digits, 
add your entries to an accumulator of 16 bit s (displaying the result), 
subtract entrie s , clear e ntries or clear the accumulator . 



.. S-IS • 1/0 -'+ 

4.'" A15 11 
4-

\) _,_ 5 

I/0-,5 -Jj-UU-l.NPUT ~IJ ____ ~~~~ ____________ ~ )()( = I2J (3 -""'lr c: , XX~01.-"-

S\Jo:. 
EWI\~l!) 
-U 

II.IS 1 A1.'+ \l " xx::: 1.0---..r-C b 
4-.\~' Ai"!) lot B "1' X)(=-i1 
4.1)' A1.2 15 A T 

, ~ '''''1~ -Iq-liD 1 

I/O IF O?E R. ... 
OCBA:(IU.XX t>'tC.Ot>E 1 

1. o 
It.lf'Ui i LL--,-_ 

PO'tl "2 3 ,1.1 
~US 3 L\ 1-'1 
-S , 
t.N A . 4- 5 , 1.5 

74LJ.' r. '1-' 
5 , 

-H- b 7 11.,·; 

- '74.0I4-'S-
--1L 

, 't.i 
DCBA7 I It-

12 13 1'1 15 1/0.1. -
-I~-

1 A' ~OTE·. 'I,)\\PwT 
4.10, I} f 11 PORi A~O ou r-

I rUT ~ORi l2S 
4.1\ AI0 .. 1 ARt. c.oI~C.I-

, ~ 15 be~T ••• 
, i' - -

4"1 1 AU J ~::------~~;-E-------+~K-------~~:-E-+------"" 
, 'It ~'f 

I10-4 7q.12I't'S 

* SEE: TAe\,'C, J: 
~~ A(c..OV.fA"l~l~(:, 
TIn FoR. l:~TER-
l=ACE LI.STS ... 

it 
l1.tIUjl'1ts rlo-3 
DeB A i. -y- '3.' 

o 2 1 
OUTPUT i 3-19> 

3 I, 
PO~T 2. 3-11 

If- ' '3"3 '3·1~ 
~ PlJl~E:5 (-V-) SEL If- 5 '3-n 

TO OUTPUT~ ~ '" 13-1 l ..... ___ ~~ '144'2. 5 I It 

, ' 3~s 
-7- ?' '3-'4 

1 

Jl1l1l11,,1'1.~ 'l.1C>3~ 
DC SA 1. -r ! .. ta .. ·1 

OUTPUT i 2 '1·2 

PORT ,3 '~'3 
'Z. 3 .. IH 

7"'<=' 5 ' ~£L. '\- ""!l·S 
" 1 ?-4~? 5 H 

6 7 11_jI 

-8- It 1 ? 3" 
1 

'I/O-'2,oiI 11tI1l111j11.~ 

\) C B A" i -r 1'2,., 
1 

(lUTPUT i '2. ?·I~ 
PORT 2 3 'a-II 

II- I i , , 3 2J~ 

It 11S11~1 is 'I/o.1. *' 
A 

1 -r 1 o ( B 0 1.·1 
z , 

OUTP\JT 1. . '2.·1 
PORT '2. 3 12•3 

o 3 If ''Z-¥ 
- 5 1 
5 t. L. + 'l-,S 

c. I 

7 +4-'l. 5 12.-' 
6 'I a'4 

SEl. 

14-4-2 

-~- 10- 1 ' I t .a 
~: i~::: 
7 ' : 2,. II. L...._--' 

EX PE.RltJiENTE.'R'S tOMPuTER .sYSTEM - £CS·S: I/O (ONiROLLER 
bRAW ~NC; * 1. :tN5TR\I C Tl70'-l t>~C.ODE. " C.LOe.\(' l~G ~ c.c..,.\ 1. "1t\"",e~;J :r ... 

::s: 
I-d 

I-d 
s:: 
cr' 
r-' 
1-" 
Ul 

::Y 
1-" 
;:1 

()q 

o 
o 

, 
co , 

trJ 
o 
(j) , 
\.n 



\( E't 80 A 1t. D \.0 ~ \ C. ••• KLy SOAR-II To ."S? 
~-~----;:~ 

a INAI.Y Dl.SPLAVS 
I K'7 

i I)JI S-s 
2S-\ I c'TIH. _ U _ , .... 't 

I -= ~---1:::a 
I ,<" It!. .. :! • p...---- "'."< 

=-=--.......-.... - " ~-1 
Z5-7 I SHIFT tOOI(.I;t ~"""'~~"""------~l=;C~ b..,,, 1 ' - , I - 10 

,. '<5 .J : 
0u'T3i 

2H OK ~5-5 
II 

• \(J,J 2.5 -, ...-.=-
I 

1/0-' 
+5v 

3 
, .. 0t-. 

2 'I 15 9 It 

0uT31 
C.LOC.K 

'7-t 
h)(oi. 

1(~'i.Uk. 

%NT'ltUPT 
O~UIIOT 

to I~ 1- ",,!. I.!.IJil81,.E. 

FRoO'" - i.1.-t- 010)(. .1. 
q 5 

c, 
.0111 

11 
R., 

1001( 

IZ 

-I{t-

EX P ER.1MENTEP.', 
e.OMPUTt:R S'ISYEH\ - EC.5·S 

X/o c..O~~O\.\. E~ 

~5V 

~R10 ~. Ri.1 
nO.1\. 

!>\.~ ~ \,1-

,~ ,-r J. " , •• ~"". ,tD l-'l)'S 
i 1\"- Aft "', '-'to.. x~ ~ A,_.I'!to .... , (,I.'v 10_) 

r/o-If 
1 

. A,I 
'---f ~-~ 
~ I 
:A"II+_'1 
: . 
~ A5 14_, 
: 1 
: All. If-S 

I 

ttl 1 ~:l:~: 
. ~4-~ 
: A.I 
~Q.-i 

) 1 

: ••• . OPTION-

4\.L~ PUT 
SltJCil.e. IN
"1:. fl Tt Q,S 

I .. , ~" ~<.... !if Q' "GooHI I~ EAc.14 
i_ .. - I. ..9 ._ •. - 1&0 L.1~i(S.U 

nXT.) 

+-t1l~, h 
US 
noll 

1.,s PULSE ·XIIJT~J'-L bR-~W1Nc. .1 K~YBoAa.~ :t~'uT LOGrIC. &. bl~"LA~ OUTPuTS 
TO owe, ~3 b~ c-.,.\ T. He'"",.",., ;r~. 

~ . 
'"d 

'"d 
c: 
0' 
I-' 
1-" 
CJ:l 
p-' 
1-" 
o 

(J'q 

o 
o 

1 

--0 

t":l 
() 
(j) 

1 
\.n. 



--------
o""'U'T'i'0 CLOLk I)I,JC;Z 

1..0-\ blAlc:. 1- Z1-' :l:WTI) ~Il 
<'~I'S'D) ~ ..... o. r ~ 

,.. '>. 

I 1:/0 -0\. . I 

4-2 
Ai. i.-I/I 

I Aca .... OT~~ A\,\, 4-1 
I UNIUED :r~T- I · 

I!O-4 e.UUPUOI'UT.S :1-11 
MO$T ~E. 

lO(.\(. S5 (lioN!)) 1 

"-. I d 
. , 

J JJ _ i,-\11 ~rr-:l8 

1 
I 

1-13 
itT3 

OUTPUT rDRT " 

+SV 

Rtb 
lUll( 

~A"'\I"L RUn 
& '1oI.·O~ _E$ET 

~I 

0 I 

BITS 0-1. Hit 

( OUT tzJ 0 /I.~1J 
IJUT~U.<. T\of.l) 1 

'I... b\S~,>U. 1·\5 
I- E"AS\.i. I -r- I ,..-

I 
1:U 

I 

EIIIA&l~ 

SET U'IIIE'R "~Oc.. C.Ot.lTROl~ 

OUTl!I(Il I)ATM xxxxxx1J3 = DISA8\,1 
(:t: I.l 0) ~xxxxu_1 " E.t.lA8\,.£ 

CIIJ. '1 7 EX P£ft%MENTER.'S COIi'\'UTER. S'ISlIM 
.. 't11Z> I· ...... 4i EC.S .. 5: rIO tO~T«'O\.\.~a. 

D~AWINc;. $3: :t~TERRuPT "'AI-IAGEME~T LOC,I:.r. 

IwPUi 

8 

PO~T f6 

~3 \)~I 
I 5-1. ~32.o. 
I 

" 1>1. I 5-2 
I 
I 

\)1.. 1 9 
'i-'l 

1 J 13_ 11 b6 1 

1 5-'t 

)~I 3 
5-S 

1 
I -

" b§1 

5-' 
I 
I 

<& 1)10 I 
5-1-

I 
I 

11 Dr'S_, 
1 

1/0-5 

Sus &.lo.IAI\.~ 

11-1 DIo)c;l ~ 

a , "~\0 fIll t 1.-1. 
-'tlf- TO ~ .. u rlo&T. "'1"''1 ~"""I.. P\.Uc. • ~ __________ ~N~W~: ~l 

I..:s (A .. \ "T. \\t.\"II\I\e~ J ";fl'. 

::s: 
f-d 

'""d 
c: 
0' 
r-' 
1-" 
[J1 

P" 
1-" 
~ 

(Jq 

o 
o 

I 

I-' 
o 

tr:l 
o 
(f) 

1 
\..n. 



EXPERIMEN1Ett '5 C.OMPUTEtl S.YSTEM - EC.S-5 : X/O COt-.)T~O L L E R 
DR.AWl.N(, *4- ~ A5C.1I ~EYBOAR:D ENCODER. MATRIX - PAR, i 

'<.5 I 1 I 
I 1 ,,"'S 
I 1 
1 1 

I 1 
Kit I I I 1 I 1 I I I 1 I 1 1 I I 

••••••••• •••• ••• 1 "I(~ 
1 I I I I I 1 I I I I 1 I 1 I 1 

I I I I I I I I I I I I I 
I I 1 1 I 1 I I I 

I I 1 I I I I I I 1 I 1 I I 1 I I 1 1 1 • •• •• • ..1 1 I •••••••• I .. '<.1 
I 1 I 1 1 I I 1 I I 1 I 1 I I 

\(3 

I I 1 I 1 .1 1 I I I 1 
I I I I 1 1 

Kt I I I I I I I 1 I I 1 I 1 I I 1 
• • • • I • • • • • • • • I ••• • I • 1(1. 
I I I I I I I I 1 1 I 
I I I I I 1 I I 
I 1 I I I I 1 I 

1(1 I I I I I I I 1 I I I I I 1 1 I I 
• • • • I •• I •• • • • • I • • • • I .. ~1 

I I I I 1 I I I I I I 1 1 I I I I 
I I I 1 I 1 I I 1 I 1 I I I I 

I I I I I I I I I I I 1 1 
leD' I I I I I 1 1 I I I I I I 1 I I 1 I 

.....• • • • • • • I. • I. • • • • •• .. \(.0 
F'O ~ .. ,. .... to" l 1 I I I I I I I 1 I I I I 1 I 

lu..,,,.-S .....•.. #p~ ... I I I I 1 I 1 I I 1 I I 

. ~ .... " ./ I 1 I I I 1 I I 
:' I 1 1 1 1 I I I 

TO b~C. 

*'Z. "'5 
V 

~ t, 
r-4 

R.t, 
? i 110C 

ASt1l4 ~ ! • ~ $ ~. .. • ( i ,. ; ; · · ; ; ~ ~ ~ ~ ; : ; ; ; ; ~ ~ : ; ? ~ 1 :; 
,"oWER. CAs E TT~ 1 " -I " I" ~.,. 0/ 0/ " tI .,. ~ .,. " .; tI . 

b~ Co.¥'\ T. "".l"",..,·, I :tW'o 

::s: 
'"tJ 

'"d 
C 
0-
r-' 
t-'o 
UJ 

P' 
fool· 
;:::s 

(Jq 

o 
o 

I 
r-' 
r-' 
I 

tr:J 
o 
(j) 
I 

\.n. 



::s: 
'lJ 

EX PERI tJ\EN't:~'S COMP" TER SY~"EM : EtSa-S I/O C.ON"~Ol\.ER. 
>-cJ 

t)RAW'tN~ ~5 A5C'II KE.,(BOARD E.Nc.oDER tJ\ATR,\X- PART e. s= 
0' 

+sv t---' 
1-" 
La U, P' 
1-" 

- .. .- - T - K5 ;::::s 
U( f 1 f 1 T .- 1 1 1 I 1 ()tl 

.I 0 
0 Rlo I 

I I .. Kit 
1.1< , I 

I 
I I 'to 

~~I I I , I I 1 1 , 
I 1 I I I I , I .,. •••••••• • ••••••• I .. \(3 

1\( I I I I I I I I I I . I I I 
. , 

1110\. , 
R3t. 1 , I I , , , I I I , I 

YV' •••• •••• •••• • ••• .. IU. 
il( I , , I , 

I I I I 
1 • I 

1 1 t---' 
233 I , , , , I 

I\) 

11< •• , I .. , ... Ki. 

1 
R3't , I I I 

i.l< ,,/, I I I • • • .1 • .. I(IlI 
I I I 

.. ,./ ...... /1 I I , 
I I 

,.... \.:' I , I , I I .......... -A.'~./ I I 1 I, I' 'I, I I , I 

@/\\\\\\\ \ \ \\ \\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -,::~:~.S 
AS(:I.I.~ @ A e c D E F GWIJ'KLMNO PQR,';.Tu..VW'XY'l.(,\Jt 
LO lJ Ect CASi. 

>/ " " " " 
.J 

.J " " ., " " " " " 0/ " " ~ " " " " " TTY ~ " " 
trj 

b'l\ c.~'4'\ T. \-le\Wle~S, J"r. 0 
UJ 
I 

\.Jl. 



M.P. Publishing Co . - 13- Ecs-5 

TAB LEI : 

Keyboard Character Codes 

ASCII 
Symbol Binary Input Hex Code Symbol 

b1nk 

Binary Input Hex Code 

@ 

A 
B 
C 
D 
E 
F 
G 

H 
I 
J 
K 
L 
M 
N 
o 
p 

Q. 
R 
S 
T 
U 
V 
W 

X 
Y 
Z 
C , 
J 
t 

11000000~~ 
11000001 
11000010 
11000011 
11000100 
11000101 
11000110 
11000111 

11001000 
11001001 
11001010 
11001011 
11001100 
11001101 
11001110 
11001111 

11010000 
11010001 
11010010 
11010011 
11010100 
11010101 
11010110 
11010111 

11011000 
11011001 
11011010 
11011011 
11011100 
11011101 
11011110 
11011111 

CO 
Cl 
C2 
C3 
C4 
c5 
c6 
C7 
c8 
C9 
CA 
CB 
CC 
CD 
CE 
CF 

DO 
D1 
D2 
D3 
D4 
D5 
D6 
D7 
D8 
D9 
DA 
DB 
DC 
DD 
DE 
DF 

I . 
" 
# 

~ 
& 

+ ' 

i 
¢ 
1 
2 
3 
4 
5 
6 
7 
8 
9 

. , 
<. (u:) 

> (c(t) 
? 

11100000 
11100001 
11100010 
11100011 
11100100 
11100101 
11100110 
11100111 

11101000 
11101001 
11101010 
11101011 
11101100 
11101101 
11101110 
11101111 

11110000 
11110001 
11110010 
11110011 
11110100 
11110101 
11110110 
11110111 

11111000 
11111001 
11111010 
11111011 
11111100 
11111101 
11111110 
11111111 

EO 
El 
E2 
E3 
E4 
E5 
E6 
.E7 
E8 
E9 
EA 
EB 
EC 
ED 
EE 
EF 
FO 
Fl 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
FA 
FB 
FC 
FD 
FE 

Notes: 
~n. With "shift" key and "ctrl"key not depressed, the codes 
will be as shown. Shift turns off bit 6 and ctrl turns off 
bit 7. 

'H~2. The question mark code has no direct input since it is 
the null position for the keyboard's output. 

3. In programming, true six-bit ASCII is obtained for all codes 
directly wired to keys by masking off bits 6 and 7 of the input 
with an "and" CPU instruction. For translation of shifted and 
control form s of characters, one method is to look up the desired 
6-bit code in a table addressed by the a ctual low order pattern 
read. The shift and c ontrol keys must be held s imultaneously 
with depressio~ of the shifted character so that the cod e i s 
present when read. 



M. P . Publishing Co . - 14-

1 
2 
3 

~ 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

TAB L E I I : 

IC Pa ckage & I/O Socket Summary Li s t 

Description of Socket Position 

1/0-1 
1/0-2 
1/0-3 
1/0-4 
1/0-5 

7442 
7442 
7442 
7442 
7442 

7442 
7400 
7400 
7404 
7404 

7404 
7402 
7420 
8T09 
8T09 

74121 
74100 
74100 
7404 
1/0-6 

7473 
7473 
7473 
7473 
7410 

7430 
8T09 
BT09 

Bus Enables & Interrupts 
Ports 0 & 1 Write Clocks 
Ports 2 & 3 Write Clocks 
Address Inputs 
Data Bus, Power, Misc . CPU 

Operation Decod e 
Port 3 Clock Routing(Output) 
Port 2 Clock Routing(Output) 
Port 1 Clock Routing(Output) 
Port 0 Clock Routing(Output) 

Input Port Bus Enable Source 
Operation Decode Logic 
Misc. NAND Logic 
Operation Decode Logic Inverts . 
Ope Decode & Misc. Logic Inverts . 

Misc. Inverts (Kbd. Input) 
Key On Detection Logic 
Key On Detection Logic 
Keyboard Bus Interface Gate 4-7 
Keyboard Bus Interface Gate 0-3 

Keyboard Interrupt Oneshot 
Output Port 30 Latch (see text ) 
Output Port 31 Latch (see text ) 
Misc. Inverters 
Keyboard Interface Plug 

Interrupt Flags 0-1 
I nterrupt Flags 2-3 
Interrupt Flags 4-5 
Interrupt Flags 6-7 
Output Port 0 Logic 

Interrupt Detection Logic 
Interrupt Flag Reg Bus Int. 0-3 
Interrupt Flag Reg Bus Int. 4-7 
Discretes on Carrier: Rl to R8 
Discretes on Carrier: Cl to c8 

Discretes on Carrier: RIO to R17 
Discretes on Carrier: R18 to R25 
Discretes on Carrier: Ll to L8 
Discretes on Carrier: L9 to LIb 
Discretes on Carrier: Miscellany 

Pins 

16 
16 
16 
16 
16 

16 
16 
16 
16 
16 

16 
14 
14 
14 
14 

14 
14 
14 
14 
14 

14 
24 
24 
14 
16 

14 
14 
14 
14 
14 

14 
14 

i~ 
16 

16 
16 
16 
16 
16 

Note: See table IV for list of I/O socket pins & us e. 

ECS- 5 

+5 V Gnd. 

16 
16 
16 
16 
16 

16 
14 
14 
14 
14 

14 
14 
14 
14 
14 

14 
24 
24 
14 
16 

4 
4 
4 
4 
14 

14 
14 
14 

1 to ' S 
1 to 8 

8 
8 
8 
8 
8 

8 
7 
7 
7 
7 

7 
7 
7 
7 
7 

7 
7 
7 
7 
tt 

11 
11 
11 
11 
7 

7 
7 
7 



M.P. Pub l ishing Co . - 15- Ecs-5 

TAB L E I I I : 

Parts List 

Rl to R9 lOOK @~w 
@lw 

Miscellaneous : 
RIO t o R25 
R2b 
R27 to R34 

Cl to c8, 
CIO & Cll 
C9 

Ll to Llb 

81 

220 
lOOK @lw 
1000 @!w 

.1 mf'd 50v 
ceram. 20% 

.001 mfd 

LED, lOrna @ 1. bv 

SPST Button(NO) 

Full Diode Matrix requires 192 
switching diodes (eg: In914 ) or 
any handy surplus diodes.) 

Vector "p" pattern board can be 
used as basis for diode matrix 
(requires about 4" by Ib") 

Keyboar d required is magnetic reed 
or e qu ivalent, TTY layout. 

40 S ockets are shown in table I . 

In addition, you will need plugs and cables to carry I/O to the back
plane, plus an appropriate addition to backplane wiring to receive 
these cables . In making the device, don't forget to make the LED 
display bvisible - one handy way of mounting is to make a smoked glass 
cover (with cutout) for the keyboard, with the LED ' s in a line visible 
behind it . 

TAB L E I V : 

I/O Pin Assignment Lists 

I/O-I: Bus Enables & Interrupts 

1 . Interrupt! Norm. HL1~w to CPU 
2 . Interrupt! Norm. 
3 . to 8. - respectively Input 

Ports 2 t07 bus enables. 
9 . NC 
10. to Ib - respectively Inter

rupt 1 to 7 sources (0 is key 
board. ) 

1/0-2: Ports 0 ahd 1 Clocks 

1. to 8. - respectively Output 
Ports 00 to 07 clocks. 

9. to lb. - respectively, Output 
Ports 10 to 17 ulocKs. 

I/0~3: Ports 2 and 3 ClOCkS 
1 . to 8. - respectively, Output 

Ports 20 to 27 elocKs. 
9 . to lb. - respectively, Out put 

Ports 30 to 37 cloCKs . 

1/0-4: Address Lines. 
1 . to lb. - Lines AO to A15 , respeC t 

1/0-5: BUS/Power/Mis c . 

1. to 8. - respectively, Data Bus 
line s DO to D7. 

9. Ground - power 
10 . to 13. - no connection 
14. mj SIGNAL from CPU-::-
15. CPU-INPUT from CPU 
lb. +5 volt power. 

~:-Note: Thru overs ight, this 
signal was not mentioned as 
output from CPU in ECS-3. 
Use an extra 1/0-1 pin (see 
ECS-3, page 14) for this 

line . 

1/0-6: Keyboard 
1. to 8. - respectively KO to K7 . 
9. Ground 
10 . to 15 . No Connection 
l b . Power - +5 volts 



M. P . Publishing Co . -16- Ecs-5 

KEYBOARD-ECHO Program: This program will respond to interrupts from the 
keyboard input device by reading the bit code presented (over and over ( 
again as long as the key first pressed or any other key is held down) and 
displaying t he code in both halves of the 16 bit display device . Use the 
program when initially checking out the I/O hardwar e . 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOB 
OOOC 
OOOD 
OOOE 

0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
002A 
002B 
002C 

002D 
002E 

I 
D 
I 
I 
I 
D 
D 
I 
D 
I 
I 
I 
D 
I 
I 

I 
I 
D 
I 
D 
D 
I 
D 
I 
I 
I 
D 
D 

I 
I 

006 
02 
1 01 
012 
140 
2 0 
00 
006 
00 
1 61 
163 
006 
03 
101 
377 

103 
074 
FF 
150 
2D 
00 
054 
FF 
161 
163 
1 04 
20 
00 

101 
377 

INTERRUPT: 
LAI 
'00000010 ' 
INO 
RRC 
J"lTC 
L(KEYSERV) 
H(KEYSERV) 
LAI 
00 
OUT30 
OUT31 
LAI 
'00000011 ' 
INO 
HALT 

KEYSERV : 
INl 
CPI 
'11111111' 

J"lTZ 
L(ENDKEY) 
H(ENDKEY) 
XRI 
'11111111 ' 
OUT30 
OUT31 
JMP 
L(KEYSERV) 
H(KEYSERV) 

ENDKEY: 
INO 
HALT 

Set up disable code for 
output to interrupt logic . 

Read IFR & disable interrupts 
Set Carry from AO (INTO flag ) 

Got to Keyboard Routine if 
keyboard interrupt. 

Turn on a l l LED's for error 
indication (se e p. 5) 

r Se t up enable code for 
output to interrupt logic . 

Clear IFR & enable interrupts . 
Error halts here. 

Read Keyboard (AGAIN even l) 
Is it null (ie: you let go of ~t 

••• finallyl!l) ? 

~If so skip out . 

Invert code for display, s ee 
page 5 for comment . 

Into Right Display~:
Into Left Display* 

Keep reading until you let go 
the fool keyboard! !! 

(A-reg has desired e nable cod e 
in bits 0-1, so don't bother 
to us e a literal.) 

Further Notes & Comments: When ENDKEY is r ea ched, it is because the 
accumulator was found to have "FF" (hex) - thus the two bits 0 and 1 
in particular are "on" and will set the Interrupt Enable. Flip Flop 
as well as clear the Interrupt Flag Register (IFR) setting things up for 
the next iteration of the whole program. Similar processing is used in 
the se cond sample program. . 

~:- The notes at addres s es 0028 and 0029 refer to phys ica 1 placement of 
the output displays . This program as sumes (as do succeding programs) 
that OUTPUT DEVICE 31 constitutes the left half of a line of 16 LED' s 
and that OUTPUT DEVICE 30 is the right half. Together, a 16-bit di s
play in the conventional sense (high order at left) is possible. 

The form '11111111' is used here to indicate binary literal pa tterns. 
Refer to article ECS-3 for definitions of other conventions. 



M. P . Publishing Co . -17- Ecs-5 

BINARY-CALCULATOR Program: With the c ompletion of the keybard and sim
ple displays, it is now pos s ible for the builder of an Experimenter ' s 
Computer System to consider potentially useful applications program s . As 
a further example of I/O handling and to give the outlines of a whole 
generic class of programs, a simple "binary calculator" of 16 bit precis
ion is illustrated in this article. The program interprets the following 
commands, maintaining an ENTRY register and a SUM register in the program 
operation: 

"E" key: Clear the ENTRY register, display SUM. 
"c" key: Clear the SUM register, clear display . 
"s" key: Subtract ENTRY from SUM, display sum. 
"A" key: Add ENTRY to SUM, display sum. 
"1" key: Enter Binary "1" digit ( into l ow order, shift 

previous entry. ) 
"0" key : Enter Binary "0" digit (also into low order 

shifting previous entry. ) 

The program a s listed assume s the hardware keyboard definitions as found 
in this article - if you use a different keyboard, with different input 
coding, you will have to change constants at locations 22, 27, 2C, 31, 
36, and 3B. Furthermore, if you do not like my choice of keyboard keys , 
feel free to pick your own and change the corresponding locations. In 
this listing, the notation C"X" means the character X's code. To operate 
the program with present hardware, enter it in bootstrap mode then place 
the computer in "run". Hitting anyone of the 6 defined keys will then 
cause the program's corresponding routine to be executed with appropriate 
consequences for ENTRY, SUM a nd the display outputs. Now, the listing ••• 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOE 
oooe 
OOOD 
OOOE 
OOOF 
0010 

I 
D 
I 
I 
D 
I 
I 
D 
D 
I 
D 
I 
I 
I 
D 
I 
I 

006 
02 
1 01 
056 
00 
012 
140 
20 
00 
006 
00 
161 
163 
006 
03 
101 
377 

INTERRUPt: 
LAI 
02 
INO 
LHI 
H(PAGE - O) 
RRC 
ITC 
L(BINCALC ) 
H(BINCALC ) 
LAI 
00 
OUT30 
OUT31 
LAI 
'00000011' 
INO 
HALT (HLT) 

The program wakes up when you 
hit a key. Disable Interrupts 
and read the IFR. 

Entire program runs in page 0 
so set H and forget it! ! 

Shift keyboard flag to carry. 

Test keyboard flag and branch 
to calculator if it is it! 

Otherwise, error similar to that 
handled by KEYBOARD-ECHO. 

All "l"s to display 30 (compl.) 
All "l"s to display 31 (compl.) 

Re set Int . Enable FlipFlop . 
with output from INO 

#1 Halt in list . 

Data Definitions For BINARY-CALCULATOR: 

OOlC 
OOlD 

OOlE 
OOlF 

= ENTRY-LO ~ _ = ENTRY-HO ~ ___ Cur re nt ENTRY ( 16 bi t s ) 

= SUM-LO '-- ~ = SUM-HO) -- Curr ent SUM (16 bit s ) 



M. P . Publishing Co . -18- Ecs-5 

BINARY-CALCULATOR, continued ... 

Here is the command interpreter routine , to continue the li s ting . It is 
a very simple-minded approach useful when a small number of commands is 
involved - it simply checks on each possible combination, only executing 
the routines if it finds the right code. 

-
0020 I 
0021 I 
0022 D 
0023 I 
0024 D 
0025 D 
0026 I 
0027 D 
0028 I 
0029 D 
002A D 
002B I 
002C D 
002D I 
002E D 
002F D 
0030 I 
0031 D 
0032 I 
0033 D 
0034 D 
0035 I 
0036 D 
0037 I 
0038 D 
0039 D 
003A I 
003B D 
003C I 
003D D 
003E D 
003F I 
0040 D 
0041 I 
0042 I 

103 
074 
D3 
150 
50 
00 
074 
Cl 
150 
70 
00 
074 
C3 
150 
96 
00 
074 
c5 
150 
90 
00 
074 
Fl 
150 
AO 
00 
074 
FO 
150 
A5 
00 
006 
03 
101 
377 

BINCALC: 
INI 
CPI 
c"s" 
JTZ 
L(SUBTRACT) 
H(SUBTRACT) 

Read the character . 

Should I subtract?? 

JTZ Or should I ad d ?? gr,~" J 
L(ADDER) 
H(ADDER) 
CPI 

C"C" } JTZ Or maybe clear the SUM? 
L (CLEAR-SUM) 
H ( CLEAR ':"SUM ) 

gr,~" 0 JTZ Or just clear the ENTRY? 
L(CLEAR-ENTRY) 
H( CLEAR-ENTRY) 

g~i" J JTZ Can't calculate without data ! 
L(ONE) 
H(ONE) 

CPI J-C"O" 
JTZ who cares what data ! 
L(ZERO) e ither will d o • •• 
H(ZERO) 
LAI lrOK dummy! why'd you press that 
'00000011' ~ undefined key? Set interrupt 
INO J enable and quit. 
HLT(HALT) #2 Halt in the list. 

After the interrupt, you go to BINCALC - if the key pressed was "s" you 
in turn pass on to ... 

0050 I 
0051 D 
0052 . I 
0053 I 
0054 D 
0055 I 
0056 I 
0057 D 
0058 I 

066 
IE 
307 
066 
lC 
227 
066 
IE 
370 

SUBTRACT: 
LLI 
L(SUM-LO) 
LAM 
LLI 
L(ENTRY-LO) 
SUM 

LLI 3 L(SUM-LO) 
LMA 

Subtract low order of ENTRY 
from SUM, mindful of borrqw 
result ... 

And of cour se save it ! 



M. P. Publishing Co , - 19- Ecs-5 

BINARY-CALCULATOR, continued . •• 

0059 I 060 

m ~ 005A I 307 LAM . 
005B I 066 LLI Subtract high ord er ENTRY from SUM 
005c D ID L(ENTRY -HO) . with borrow input from previous . 
005D I 237 SBM 
005E I 066 LLI J 005F D IF L(SUM-HO) And - as always - save it ! 
0060 I 370 LMA 

Now after any opera tion, whe.ther addition or subtraction, it is des ire
able to show some results. The following routine is reached after the 
subtraction, or by branching from other routines ••• 

DISPLAY-SUM: 
0061 I 054 

XRI } 0062 D FF '11111111' See note on page 5 . •• must send 
0063 I 163 OUT31 inverted data to H.O. display . 
0064 I 061 

~~ i 0065 I 307 
0066 I 054 XRI Fetch L.O. display from SUM-LO 
0067 D FF '11111111' and invert and output it ••• 
0068 I 161 OUT30 
0069 I 006 LAI 
006A D 03 ' 00000011' } Interrupt Enable Code 
006B I 101 INO Bent out with INO • • • 
006c I 377 HLT #3 Halt in the list ••• 

Another command option was addition. The fo llowing routine shows a 16 
bit add operation in many ways similar to the subtraction above, but a 
bit more compact in principle (not actual due to jump at e nd) due to 
taking advantage of commutivity of addition operations ••. 

0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
007A 
007B 
007C 
007D 
007E 
007F 
0080 

I 
D 
I 
I 
D 
I 
I 
I 
D 
I 
I 
D 
I 
I 
I 
D 
D 

066 
lC 
307 
066 
IE. 
207 
370 
066 
ID 
307 
066 
IF 
217 
370 
104 
61 
00 

ADDER: 
LLI 
L(ENTRY-LO) 
LAM 
LLI 
L(SUM-LO) 
ADM 
LMA --, 
INL . ~ 
L (ENTRY -HO)) 

mUM-1I0) 7. 
ACM J 

Add the low order first 

With ENTRY in a ccum , address now 
points to SUM for save ••. 

But not for long ..• 

Add high order last 
with carry from previous. 

LMA 1 Save - again with fortuitous 
JMP 3 lack of address definition . 
L(DISPLAY-SUM) 
H(DISPLAY-SUMl 

The program continues on the top of page 20 with definition of the 
two routines CLEAR-ENTRY and CLEAR-SUM - written in an interlocking 
manner to share some common code, "CLEAR-EITHER" . The separate routines 
set the address to be claered - after which ge neral purpose cod e is 
used. 



M. P . Publishing Co . 

0090 
0091 

0092 
0093 
0094 
0095 
0096 
0097 
0098 
0099 
009A 

009B 
009C 
009D 
009E 
009F 

I 
D 

I 
D 
I 
I 
D 
I 
D 
I 
I 

I 
D 
I 
D 
D 

066 
lC 

076 
00 
060 
076 
00 
006 
03 
101 
377 

066 
lE 
104 
92 
00 

CLEAR-ENTRY: 
LLI 
L(ENTRY) 

CLEAR-EITHER: 
LMI 
00 
INL 
LMI 
00 

~~OOOOll'Y 
INO 
HLT 

CLEAR-SUM: 
LLI 
L(SUM) 
JMP 
L(CLEAR-EITHER) 
H(CLEAR-EITHER) 

- 2 0 -

Se t addressability of ENTRY 

Clear wipes out two 
bytes at address in 
L-register on entry •.. 

Then in a simple-minded M~~~e~ 
resets interrupts 
with output of INO 
and goes to sleep. 
#4 halt in list . 

Se t addressability of SUM 

And go clear it 

Ecs -5 

And finally, the la s t set of routines in the program is the data in
put methodology. Basically, since this is a binary calculator, it wa s 
decided to input data on a bit serial basis - shifting each "1" or "0" 
key stroke into the ENTRY register as it comes. The high order bit is 
thus entered first for a number, followed by as many binary digits as 
required for it s precision. 

OOAO 
OOA l 
00A 2 
00A3 
OOA4 

00A5 
00A6 

OOA 7 
00A8 
00A9 
OOAA 
OOAB 
OOAC 
OOAD 
OOAE 
OOAF 
OOBO 
OOBl 
00B2 

I 
D 
I 
D 
D 

I 
D 

I 
I 
D 
I 
I 
I 
D 
I 
D 
D 
I 
D 

046 
01 
104 
A7 
00 

046 
00 

250 
066 
lC 
307 
022 
036 
00 
140 
B3 
00 
036 
01 

ONE: 

'00000001' Firs t set the digit "1" if you LEI 3 
JMP come here •.. 
L(SHIFTIN) 
H (SHIFrIN) 

ZERO: 
LEI 
'00000000' 

SHIFTIN: 
JCRA 
LLI 
L(ENTRY-LO) 
LAM 
RAL 
LDI 
'00000000' 
JTC 
L(NOT-ONE) 
H(NOT-ONE) 
LDI 
'00000001' 

r-
}-

Then jump to either rou ti ne . •. 

Set the digit "0" if you come 
come h ere instead •.• 

Clear carry ( vy important!) 

Fetch low order ENTRY 
to accumulator . .. 

Make room for new bit ... 

Save bit for high or"der input ... 



M. P . Publishing Co. -21 - Ec s -5 

BINARY-CALCULATOR, continued . • . 

NOT-ONE: 
OOB3 I 264 ORE Add in new Low order bit 
OOB4 I 370 LMA Save low order ENTRY 
OOB5 I 250 XRA Clear carry • •. 
00B6 I 060 INL Fetch the high order 
00B7 I 307 LAM portion of old ENTRY 
00B8 I 022 RAL Make room for new bit 
00B9 I 263 ORD Add in shift out of ENTRY-LO 
OOBA I 370 LMA And save - always save! 
OOBB I 054 XRI ] OOBc D FF '11111111' .. Invert and send to display. 
OOBD I 163 OUT31 defines left half (H.O.) 
OOBE I 061 DCL Point to ENTRY-LO. 
OOBF I 307 

~~ }-- Fetch L.O. 
OOCO I 054 Invert and send to 
OOCI D FF '11111111' to display 
00C2 I 161 OUT30 low order thi s time 
00C3 I 006 LAI 
00c4 D 03 '00000011' As usual, se t interrupt enable 
00c5 I 101 INO and clear IFR then go to sleep . 
00c6 I 377 HLT #5 in list. 

This completes the listing of the BINARY-CALCULATOR program . The program 
can be "toggled in" to the system as it stands once you have completed 
the I/O devices of Ecs-5 - but don't be afraid to try it out even before 
you get the I/O stuff going, for except for the detailed interactive oper
ation, the program will run - missing pieces of your c omput~will give 
default states. 

This program is written and listed in "absolute" machine code - there 
is no prov1s1on 1n the program for loading it at arbitrary addresses in 
memory. As a result, all those who plan to load it at different addresses 
in memory will have to adjust the various constants which reference addres 
ses within the program. 

As an exercise, you might try altering the program in several differ-
ent ways : 

1. Add new functions to the c ommand interpreter on page 18 of 
this article. The addition of new interpreter code is straight 
forward - but you will have to supply the detailed functions of 
your extensions. An easy command to add would be that of ex
changing the contents of SUM and ENTRY. Another might be to c om 
plement the ENTRY . 

2. Look at the code from the standpoint of "optimization" ••• the 
minimization of memory and time of execution. I wrote this example 
with no large measure of thought on the subject of minimizing the 
size of c ode - as a result you should be able to find several ways 
of "impr oving" the memory and time efficiency of the program. For 
instanc e , keeping addresses around in unused regis ters might be a 
way of minimizing the number 0 f "LLI" instructions - but you must 
be c arefu l to guarantee that a CPU register is truly available. 

3. Build yourself another output display register, for exair:ple, 
OUT 32 . Then re-write this program for a 24-bit calculation precis
ion. 



M.P. Publishing Co . - 22- Ecs-5 

DEPARTMENT OF PROGRAM PATCHING: 

Murplhy ' s Law reigns! The description of the memory test program 
given the last issue (ECS-4, pages B-IO ) had an unfortuneate error in 
the (of all places) ERROR routine ! If you inspect the code in de
tail you will find the following: 

1. The high order bytes are never s tored back into memory . 

2 . Register usage is mismanaged in that the TEST routine assumes 
that register L will not be touched by ERROR • • • ditto H 

In order to set the record straight, the following is a corrected 
copy of ERROR which supercedes the listing on page -10- of Ecs -4. 

ooBo I 336 
0081 I 345 
00B2 I 066 
0083 D 63 
0084 I 056 
0085 D 00 
0086 I 006 
0087 D 01 
0088 I 207 
0089 I 370 
008A I 066 
OOBB D 64 
008c I 006 
OOBD D 00 
008E I 217 
OOBF I 370 
0090 I 066 
0091 D 65 
0092 I 006 
0093 D 00 
0094 I 217 
0095 I 370 
0096 I 066 
0097 D 66 
0098 I 006 
0099 D 00 
009A I 217 
009B I 370 
009C I 363 
009D I 354 
009E I 003 
009F I 377 

ERROR: 
LDL 
LEH 
LLI 
L(ECOUNT ) 
LHI 
H(ECOUNT ) 
LAI 
1 
ADM 
LMA 
LLI 
L(ECOUNT+ 1) 
LAI 
0 
ACM 
LMA 
LLI 
L(ECOUNT+2 ) 
LAI 
0 
ACM 
LMA 
LLI 
L(ECOUNT+3) 
LAI 
0 
ACM 
LMA 
LLD 
LHE 
RFC 
HLT 

Save L addressability 
Save H addressability 

Add 1 to first ECOUNT byte 

New address without zapping 

Add second byte with carry . 
AND SAVE SAVE SAVE!!! 

New address, save C-flag 

. Add . third byte with carry 
AND SAVE SAVE SAVE!!! 

New address without zapping 

Add fourth byte with carry. 
AND SAVE SAVE SAVE!!! 

C flag . 

C flag . 

Restore L addressability of TEST 
Restore H addressability of TEST 
Return if not too many errors (?) 

Quit if more t~an 232 

As is usually the case in programming, there are alternatives. Ther e 
is in particular, an alternative to this error incrementing routine which 
can be performed using the increment instruction, with returns executed 
as soon as no carry is indicated. As an exercise in programming, see if 
you can figur~ out such a routine. The answer will be found in the test 
program accompanying the Ecs-B design. 



M.P. Publishing Co. - 23 - ECS-.5 

SOME PROGRAMMING NOTES - BITS AND PIECES: 

How can you conveniently program a computer without an assembler or 
other automated program development tools? This is a problem of utmost 
concern to the individuals who assemble (note double meaning) their own 
computers along the lines of this series of articles - or based on other 
design concepts of a similar nature. One idea which is most useful in 
this area is the concept of a "symbol table" - a list of addresses at a 
known absolute location which is accessed by a "symbol" using appropriate 
subroutines. 

First, what is the problem involved? Suppose that you have spent an 
hour or two "toggling in" a complicated program - only to discover that 
you made a mistake in writing your program on paper prior to entering 
it into memory - symbol X, a widely used variable in the program, is 
at the wrong location! Now, since X is used throughout the program, there 
is one obvious but tedious solution to the error - find every reference 
to "X" and change the addres s at that point in the program where "X" 
is referenced. In the Intel 8008 architecture, this is complicated by 
the fact that both the Land H portions of the address might appear -
or one or the other if not both. 

Now under these circumstances, you might be tempted to give up in 
frustration, pull the plug, power on again and re-enter the program. 
But suppose instead, that you had a bit of forsight and programmed sym
bollically using a symbol table and the following set of "service sub
routines:" 

LOADA: Loads the address of the symbol passed in register 
Output is in the content of Hand L registers. 

LOADAI: Loads the address of the symbol passed in register A, 
with the current value of register B added as an index. 
Output is in the content of Hand L registers. 

SETA: Allows changes to the symbol's address by returning 
the place in the symbol table where the symbol' s a ddress is 
located. 

Suppose then, that you wished to store a result of an operation in 
symbolic location X. You would reference X as follows: 

LLI "x" point to X 
CAL LOADA defineL,H from X's table e ntry 
LMA (A had result to be stored.) 

Because the code of thi s little stretch of program is completely inde
pendent of the particular location of X - it depends only on the symbol 
table entry - to change the location of X involves only changing ~ 
item and not a myriad of references throughout code. The SETA operation 
would probably be performed once at initialization time for a large pro
gram - once the symbol is defined it probably will stay in the same place 
for most programs. The LOADAI - indexed address load - is useful as an 
extension to the concept by enabling a more powerful method of referencing 
with an index. 

The same symbol table concept can be used t o define symboli c JMP a nd 
CAL routines in much the same way. 



M. P . Publishing Co . -24- Ecs-5 

OF INTEREST TO READERS: 

At the time this article is being written (November 17 1974) a proto
type for the design of article ECS-B is up and running - in printed cir
cuit board form. This design is a lK by 8 bit memory page which can be 
placed at anyone of 16 address locations in your Experimenter's Compu
ter System. Since memory is used repeatedly, I have taken the time to 
make this design in PC form for ease of reproduction ...• and all ECS
series subscribers can take advantage of the production PC boards, the 
second product being offerred in support of these articles. At this 
time, I have no firm pricing information on production versions, but 
watch the next issue for more details . 

At the time this issue goes to press, a new catalog, Catalog 3, is 
at the printers - with copies in the first lot expected any day . As 
new catalogs are printed they will be sent to subscribers along with 
regular issues. So if the catalog does not make it with the mailing 
of Ecs-5, look for it in your Ecs-6 issue. 

A thought which has occurred in recent weeks regarding programming 
the ECS system, especially the more useful systems programs, is the 
following: Such programs could be distributed as sets of fully programmed 
ROM modules which can plug into the bus structure of the system. The 
price of such a product, including documentation and the chips mounted 
on a P.C. board would be in the $50 to $100 range. The next question is 
this: is there subscriber interest in such a product? I'll extend the 
subscription of the first reader to give me a note with thoughts on the 
subject,by one issue - with a drawing to determine who gets the extension 
in the event of identical postmark dates. A prime candidate for this 
treatment is the "IMP" (Interactive Manipulator Program) software which 
is being written now for ECS-7. 

~~:1f:J~r·. 
Publisher 



M. P. Publishing Co. Box 378 Behnont, Mass. 02178 

The Experimenter's Computer System: Part 6 

SERIAL I/O INTERFACE INTRODUCTION & ERRATA FOR 
PREVIOUSLY PUBLISHED AR. TICLES 

by. Carl T. Helmers, Jr. 

INTRODUCTION: 

ECS-6 

This article is the sixth number in the Experimenter's Computer System ser .-· 
ies. It continues the description of hardware and software begun in the earlier 
articles by providing information on the following topic s : 

Introduction to the ECS- 6 Serial I/O Interface - the information found 
in this article includes the beginning of the technical description of 
the ECS-6 serial I/O interface design, with a discussion of the over-
all system description and definitions of interface signals • . The design pre
sentation will be continued in the next issue with detailed logic diagrams 
and related informationo 

Technical Updates and Errata. - a portion of this article is devoted to the cor 
rection of several technical and editorial errors in articles ECS- 3 and ECS- 5 
previously published. Also included are several technical improvements on 
t he original designs. 

A Bit of Fun - The CAT E R PI L L E R is a simple demonstration program 
which uses the _ECS-5 binary output display lamps to illustrate the opera
tion of shifting bits - to the amazement of friend and family. 

Reader's Reactions - a portion of this article is dedicated to notes and com
ments regarding the ROM software idea and other inputs from subscribers . 
The winner of the informal contest announced in ECS- 5 is included in this 

section's inforInation. 

ANNOUNCEMENT OF A CHANGE OF FORMAT & TIMING: 

Effective with the next issue of an article, the Experimenter's Computer 
SysteIn will becoIne a monthly Inagazine. It is my intention to retain a format 
of one major technical topic per issue, with minor topics and departments in
cluded on a discretionary basis. Complex technical systems such as the ECS-6 
design will in general be spread over one or two issues. All present subscribers 
will bemailedVoluInel.No. I under the new arrangement in January - with sub
sequent is sues on a monthly basis for the term of the subscription. Hardware de -

signs will continue to be numbered as in t3e past. & 
La-J- ') .1~/ . 
Carl T. Helmers, r . 
Publisher Dec. 15 1974 



M. P. Publishing Co. ,.. 2 - ECS-6 

CHANGE OF ,DESIGN CONCEPT: 

fis originally conceived, the ~CS- 6 design was to be a "tape c ontroller" for. the 
conversion of parallel CPU data into a serial format and vice versa. This conver
sion proces s is fairly general - especially if an "as synchronous " data format is 
used, generated by a "UAR/ T" chip (Universal As synchronous Receiver/Transmitter. ) 
The d~sign incorporates the UAR/T function for the serial/par'allel and parallel/~er
ial conversions. It also includes selection logic for four "chaMels" assumed to be 
one telefype 'device at no baud, plus from one to three serial tape recorder data in
terfaces of the ECS-2 design or equivalent. A binary counter is used to select data 
rates for the conversion from 110 baud to 176Q .baud, programmable with informa-
tion defined by the CPU and software. The low end of the frequency range wa,s selec 
ted as 110 baud in order to achieve teletype compatibility, thus extending the device 
concept beyond the original idea of a serial tape interface. A teletype current loop 
output interface and brush contact input switch ar e assumed, as used in the Model 
33 Teletypewriter. 

BLOCK DIAGRAM OF THE SERIAL INTERFACE: 
On page 3 of this issue (opposite) is a block diagram of the Serial Data Interface 

design E CS-6. ,This diagram outlines the major functional sections of the device 
and provides a referencepoint for the discussion which follows below. The detailed 
logic diagram of this hardware will be published in the next is sue. 

UAR/T DEVICE:, 
The heart of the serial/parallel/ serial conversion technique used in this design 

is an LSI UAR/T chip. The basic circuit definition and pinouts of this 40-pin pack
age IC are fairly universal, with several different manufacturers making pin-com
patible devices. The prototype was built using a Standard Microsystems COM2502 
devic~ whi~'h cost approximately $13. 50 new in quantitie s of one. Other manufac
turers of this type of chip include: 

Signetics (2536), T 010 (TMS-601O) 
The Signetics documentation lists several other number s as pin-compatible and 
presumably electri'cally compatible including "AY -5-1012", "TR-l402A" and 
"517 57" - with identification of manufacturers left unspecified. 

The UAR/ T devic e is itself divided into two functional sections. In the block dia
g ram, these are labelled "R" for "receiver" and "T" for "transmitter." These 
s ections are independent in operation, although parity and 
word length settings are in common. The receiver c an analyze one data stream at 
one clock rate while the transmitter is sending out a second data stream at a Sec
ond clock rate. 

Internally~ each section of the UAR/ T has buffering via a register of 8 bits, with 
a second 8 bit shift register used for the serial/parallel (receive) or parallel/serial 
(transmit) conversions. On output in the , ECS-6 design, the first write operation of 
a series places data into the Iltransmitter buffer register ll - and the UAR/T immedi 
at~ly transfers this to the Iltransmitter shift register ll to begin the first character 
output. The CPU then writes a second character to fill the buffer again, and enters 
an interrupt response mode character by character until all data is transferred. 
After the last character is sent, one final interrupt occur s to indicate that the last 
character was completed and the tape can be turned off. 



E)(PERIMENTE~'S COMPUTER. SYSTEM - SER.l.~l. DATA lNTt1\FACE. (E.c.~ -G.) 

BLOC~ DIAG-RAM 

~ATA 
BUS 

OATA 
,US 

A1)1)Q. 

GUS 

OUT02. 

UA~/T '" " , 
~ '" 

'\ STATU~ 
R T 

" ·SEa. ,A\, ~ 
DATA 

READV 
!»ELEC.T , . . 

01. l.,'3 

•• ' OAT" 
~E\'EC. T 

i * 

o l z. 3 

© 1q74 M. P. l'ueUS~I~6 to. 

Of\TA OUT 

SEl.EC.T , . 

o 1. 1. 3 

~ c.ca..,.\ T. ""&\",u~"' •• 31". 

A\)1> A.. 
&US 

OUTfII3l 

91T 
CO~lROL. 

WOR,ll 

i • ~ ,. t I 1 ~:lE 
~ 
'T" 

C.,",A~NEL 
:1 

ENA&\..E 
i · , 

-11-1 • 

(011( un.· \:OM.!lATl· e ~ -,-m-
t. 81o , t7' z.,., A UO 

:I 4'+0 • ,.-, 

.. 1St (US 
S n1 • U, 
"loU £ U'J 
., 2.1.0 , UO 

It 'AWl. .ru, / St.,. 

ALL 

.. SG..lt 
\(.Ml 

o 1. 1.:5 ALL 
1M/OUT 1,j C.LOC.K 

~ • 
:0 

~ 
'"""' .... 
CIl 
~ .... 
~ 
(') 
o . 

I 

W 

M 
(') 
en 
I 
0" 



M. P~ Publishing Co. -4- ECS .. 6 

For Input, the start bit of the data received begins UAR/T operation for a 
character of information. Once the tape motion has begun and the tapestart up 
transients have completed, the UAR/T wiUbegin analyzing the input bit stream 
looking for the "1" to "0" transition marking the start of a character's informa
tion. The UAR/T includes within it the logic needed to discriminate against short 
noise spikes and other spurious start pulse conditions - it simply checks to make 
sure that the data is still low exactly one half of a bit tiIne later. The reason for 
putting in a clock frequency 16 times the data frequency (see below) is so that the ' 
UAR/T can digitally count down the time between the leading edge and the center 
(B clock pulses) of the start bit. After the start bit, information is shifted into the 
"receiver shift register" generating the received parity information as it goes along. 
At the end of the lin" bit (7 for TTY, B for normal tape data) string, the parity 
found is check ed against the parity bit incoming - and aparHy error is detecte!f 
upon -mismatch. The CPU: interrupt for receivi~g data is generated by the "rece
iver dataay:aii'ablei, 'status flag's rising edge triggering a one-shot; The CPU must 
responclby reading the data (which also clears the buffer in the ECS~6 design and 
turns off the data available flag. ' ) If - due to a software bug or other flaw in the . 
program - the CPU has not responded to the character within the time it takes to 
read another wdrd frqm the input stream, a "receiver over run" error tondition 
is indicated _- and the appropriate error flag is set. 

The UAR{T data format is a generalized assynchronous serial format in which 
a "start" bit transition from logical "1" to logical ItO" for one bit period cues the 
start of a character.;.. fqllowed by several data bits, an optional parity bit and one 
or two stop bits. The stop bits transmitted on output simply represent the mini .. 
rn.um inter-ch~racter spacing for valid data - there is no need to transmit agaIn ' 
immediately·. In the sp;ecific design 'of ECS..;6~ the general programmability of 
the device was intentionally limited to two data formats. These are the standard 
Teletype format used for channel 0 output and input, 

.~ , , . 

And an B-hit serial data fonnat used for cha~els 1 2 and 3 of the output device, 
intended to interface with serial tape recorders: 

l'y •• ,l t> J t) .I ~ z) D ~I )J ~ ,I D ,I D, I pi>, i 'T,,. \ 

'l:::::::- ONE eon PERIO!> AT BAul> R,AT'E 

In the block diagram of page 3, a circle labelled "C" to the right of the UAR/T 
symbol ~epresents control logic used to cho ose the length of the data bit field 
as "7" or "B" depending upon channel. The high order bit of data is unused for 

teletype output and input. 



M. P. Publishing Co. -5- ECS-6 

CONTROL WffiD / STATUS WORD: 

A basic tool for controlling the Serial Data Interfac e module is provided by the 
"IN3" instruction of the Intel 8008 CPU used in ECS-3. This instruction is used 
to output a "control word" and read a "status word" during I/O operations. The 
function of this operation is to send out the current accumulator content to the 
Control Word and replace it by the current condition of the Status Word. The 
basic interactive programming sequence for control and .status checking is thus 
the following: 

n 

n+l 
LA! 
"? ? " 

load the accumulator 
with control word data 

n+2 IN3 output control, read status 
n+3 beginning of routine to analyze status 

This sequence is used whenever the control word is to be changed and/ or the 
status is to be checked. The basic data definitions for the control word are 
as follows: 

Bit 0 - SELECT. This bit ha s two purposes in the system: 
a. In its "0" state, it presents a "Master Reset" 
to the UAR/T chip to initialize I/O operations. 
b. In its "1" state, it acts to enable logic in the 
device being addressed by the CHANNEL code -
serving as a "motor on" signal for tape recorder 
I/O for example. 

Bit 1 - IN/OUT. This bit has the function of selecting the 
direction of data transfer. It is used to control 
whether a UAR/T buffer read (input) or buffer write 
operation is performed by IN2(OUT03). It is routed 
to all devices of the system. For the tape devices 
this bit selects the source of the CPU interrupt used 
with this hardware, since only input ~ output but 
not both simultaneously is supported for these de
vices. "1" Indicates input and "0" indicates output 
in this bit position. 

Bits 2 and 3 - CHANNEL. These two bits select the "Channel" 
being used for an I/O operation. The following as
signments are assumed by this hardware design: 

Channel 0 ("00") is the Teletype (TTY) 
Channell ("01") is tape 
Channel 2 ("10") is tape 
Channel 3 (t'll") is tape 

Bits 4 to 7 - BAUD RATE CODE. These four bits are used to 
form a single hexadecimal digit, used to program the 
binary divider which sets data transmis sion rate. These 
codes are listed with corresponding frequencies 
in the block diagram on page 3. 



M. P. Publishing Co. - 6- ECS - 6 

The basi c data definitions of the status word input are as follows: 

Bit 0 - PARITY ERROR. This status bit 1S set to logic "1" by the 
UAR!T receiver section to indicate that the received par -
ity bit. does not agree with the parity information regener
ated by the receiver using the data bits as received. Par-
ity is generated by the UAR!T transmitter section in this 
design and as a result the parity error condition indicates 
an error between transmission and reception. A basic as 
sumption in this error detection technique is that the prob
ability of one error is low - and that therefore the proba
bility of two simultaneous errors is miniscule due to the 
multiplicative properties of probability measures. It turns 
out that parity will detect any odd number (eg: 1, 3, 5, etc. ) 
of simultaneous errors - but will completely miss an even 
number of errors. More sophisticated error correction 
and detection techniques involving multiple bit codes provide 
additional " redundancy" in the information and the ability to 
correct single and even multiple bit error conditions. In the 
ECS-type of system, a "brute force" technique of using mul
tiple copies of the data involved could be implemented in 
software if an "air tight" guarantee against errors is required 
to alleviate data loss worries. 

Bit 1 - OVERRUN ERROR. It is possible to consider the pos sibility 
that a software bug or other intervention might cause the 
CPU response to an input interrupt to exceed the maximum 
time allowed by the data transmission rate. This bit of 
the UAR! T status output is provided to indicate such an 
"overrun error ll condition. In the bit rates available in the 
specific design shown in this publication series, the CPU 
response must range from a 100 millisecond maximum for 
the 110 baud TTY format, to a maximum delay of 6. 82 mil
liseconds for 1760 baud information in the general 12-bit 
s erial format - useful in hi gh speed magnetic recording 
media. The 6.82 ms delay gives the CPU an equivalent 
of 340 five-state (20 microsecond) 8008 instructions to 
execute without threat of overrun. 

Bit 2 - FRAMING ERROR. This status bit is set to logical Ilpl by the 
UAR!T receiver section to indicate an error in the format 
of received characters. Such format errors are defined as 
an invalid stop bit following the parity bit in the serial data. 

Bit 3 - END OF CHARACTER. · This status bit is used to indicate 
that the transmitter section has finished transmission of a 
character. It is tested after the last character has been 

written, so that software can determine when it is safe to 
turn off the unit. During transmission it also serves as the 

source of interrupt pulses. 



( 

M. P . Publishing Co . - 7 - ECS-6 

Bit 4 - TRANSMITTER BUFFER EMPTY. This status bit is a 
state level which indicates to the CPU software 

that the output buffer can be written into. This status 
bit is used during the beginning of output of a block of 
data to tape - and prior to each character transmission 
to the Teletype device. 

Bit 5 - RECEIVER DATA AVAILABLE. This bit is set when an 
input character has been completed and transferred to 
the receiver buffer register. The rising edge of this 
signal is used to cue the interrupt which drives charac
ter input software, and it is reset when the CPU responds 
with the IN2 operation code in this design. 

NOTES CONCERNING UAR/T STATUS OUTPUTS: 
1. The error condition bits are reset by the "Master Reset " signal, and in 
this design, this corresponds to the "unselected" state of the system (bit 
o of the Control Word being zero. See page 5. ) 
2. When the teletype channel is selected, bits 4 and 5 must be tested after 
an interrupt to determine the source. When other channels are selected, the 
IN/OUT bit masks one or the other of the possible sources for an interrupt. 
This rules out a direct interleaved I/O from one tape to another using the 
receiver and transmitter sections simultaneously, with the CPU monitoring. 
It is intended that this hardware be used with blocked information transferred 
to and from CPU buffers of arbitrary length. 

Bit 6 - READY. This status bit is provided in this design so that 
software can test a "ready" line associated with the devices 
connected to the system. For the tape units, this line 
is to indicate the end of motor turn-on transients and the 
beginning of data transfers. For the teletype, this line 
wil initially be unused - but may eventually be wired to 
the IIlocal/on line" switch on the front panel of a model 33 
Teletype. ("14.. ~.I.l+CLI,.Ie. ~~f'\f). 

Bit 7 - Unassigned at present. 

DATA WORDS: 

The interface design uses the IIIN2" instruction of the 8008 CPU as decoded by 
the ECS-5 hardware to act as the data transfer mechanism. The potential of this 
instruction is to exchange the current content of the accumulator ("A" register) 
with the content of an I/O device's data. The effect of the IN2 operation in this de
sign depends upon the state of the control word defined above on page 5, as 
follows: 

1. If the Output s~\ection is made (Control word bit 1 is " 011) then the cur-

rent accumulator content is written into the Transmitter Buffer Register. 



M. P. Publishing Co. -8- ECS- 6 

2. If the Input selec;:tion is made (Control Word bit 1 is " 1") then the 
Recei ver Buffer Register is read into the accumulator, and the UAR/ T 
is acknowledged to prevent an over-run error condition. 

In the software for data transfers, the direction of transfer must always be init 
ialized in the Control Word (using the "IN3 II instruction as described on page 
5) before the actual data transfer takes place with "IN2". For the software which 
drives the tape devices, this can effectively be done prior to the beginning of I/O 
transfer s for a large block of data. For the software interfacing the teletype, this 
must be done for each character after decoding the source of the interrupt (receiver 
or transmitter) using the status bits read by an "IN3". Also, since the status bits 
can only be read at the sam~ time as .a control word is written, it is as sumed in this 
design that an RAM location ~ill be reserved in software for the "current" internal 
ly maintained value of the Control Word bits, for pre-loading the accumulator prior 
to the IN3 operation. The illustration on page 5 shows an" LAlli instruction -
which is fine if the "current" value of Control Word bits is always maintained in 
the location "n+!" and no where else. Other instruction sequences could be used 
however to define the accunulator depending upon programming strategies . 

DEVICE CONNECTIONS: 

The bottom edge of the block diagram on page 3 shows the general interface sig 
nals to the individual output units which may be selected by the Control Word 
"CHANNEL" field. These signals are as follows: 

READY - Each device is as signed a ready line input to indicate 
its s tatus to software, as described above in the description of 
the status word format. 

nAT A IN - This signal is the serial data input in the UAR/T data 
format as received from the Tape Interface's de modulator. 
In this design, it is assumed to be in the 12-bit format shown 
on page 4 for channels I to 3, and inthe ll -bit teletype format 
for channel O. 

DAT A OUT - This signal is the serial data output of the UAR/T 
in either the Teletype or tape medium format as selected by 
the Channel coding. A multiplexor is u sed for routing so that 
serial bits are not sent to unused channels - a teletype listening 
to high speed bits would get confused t o say the least. 

CHANNEL ENABLE - This signal is sent to 
channel is selected by the control word 
control word select bit is "1". 

each device when its 
bits 2- 3 and the 

I N/OUT - The Control Word bit is sent to all th e devices, in 
order to select the logical direction of transfer in the moderns 
used. (For TTY, this bit can be ignored. ) 



M. P. Publishing Co. - 9- ECS-6 

16-F CLOCK - Thi s signal is a square wave clock at 16 times the 
bit rate for data, used by the UAR/T chip for its timing, and sent 
out to modems of the ECS-2 design to replace the local pha se gen
eration clocks. For serial I/O designs which do not need clock 

synchronism, this signal can be ignored. 

CONTINUATION OF THIS DESIGN DESCRIPTION IN THE NEXT ISSUE: This 
discussion has covered the general outline of the ECS-6 design concept. The 
specific details will be covered as the major subject of the next article's content, 
the first in the monthly format of this series. Included in the next issue will 
be details of both the hardware logic for this design and its control using Intel 
8008 software. The IMP program which will be described subsequently will 
assume the ECS-6 Tape Interface is available, since it will be used for bootstrap 
IPL of IMP and all subsequent software generated for the systern.(For those 
unfamiliar with the term, "IPL" means "initial program load" - the process of 
automatically (as much as possible) entering software from offline storage de
vices. In the ECS- series type of computer based on an 8008 with manual mem
oryaccess, a short program is entered to read the first block of data, followed 
by execution of the program just read into the machine - which in turn completes 
the definition and may even "zap" the hand built routine with portions of the 
final program load. ) 

CONTROL WORD FORMAT 

"I 5, . . . .•.•..•. ....... . .. .. . . . 
· · 
· · · 

. .. .. . .. . 
: : .......... SELECT 

:.··············INfoUT 

· •...................... CHANNEL 
....... ... ... ........... ....... .... ... RATE CODE 



M o P c Publishing Co. - 10 - ECS- 6 

TECHNICAL UPDATES AND ERRATA: 

ECS- 3 Timing Error: 

The information on instruction execution time given in section 20f the man
ual is off by a factor of 2 systematically. The times listed are exactly one half 
of the correct values. The following table shows the necessary conversions for 
each pos sible instruction time: 

3 state instructions take 12 microseconds @500 Khz. 
5 state instructions take 20 microseconds @500 Khz D 
7 state instructions take 28. microseconds @500 Khz. 
8 state instructions take 32 microseconds @500 Khz. 
9 state instructions take 36 microseconds @500 Khz. 

11 state instructions take 44 microseconds @500 Khz. 
In order to provide an explicitly noted correct value for the instruction timings 
of all 8008 instructions and a quick reference listing of all operation codes 
(functional duplications omitted) this article's outside back cover is printed with 
an alphabetical (by mnemonic) listing of all instructions except the INx and OUTxx 
codes. The listing includes mnemonic designation, operation code, the number 
of bytes required, the number of execution states, and the time iIi microseconds 
required for execution. The inside back cover completes the listing providing 
notation of all the I/O operation codes with space for comments regarding your 
own system's use of the codes. 

ECS-3 Clock Design Improvement: 

Page 11 of this article contains a revised version of the ECS-3 drawing #4, 
clock generation logic. The improvement in design is the use of a 74192 counter 
in place of the 7490 used in the original version. This change obtains completely 
synchronous (within gate propagation delay tolerances) operation. With the prev
ious design, it was pos sible - given random starting conditions - to lock up the 
clock into an erroneous counting /waveform state due to glitches in the 7442' s 
output while the 7490' s state change propagates as synchronously. The sever -
ity of the problem depends upon the particular 7490 and 7442 IC's used due 
to variations in propagation delays with individual circuits. By replacing the 
assynchronous counter with the synchronous 74192 and using the "borrow" out
.put to toggle the flipflop the problem is eliminated. . Other aspects of the clock 
design are unchanged with this improvement (see the diagram enclosed. ) 

ECS- 3 Bus Control Logic Correction: 

The bus control logic of the ECS-3 
design, drawing 3, 'was found to be in 
error during the checkout of ECS-S . 
The state in which the CPU has been 
interrupted and normal bus c ontrol 

s hould be overridden by the interrupt 

'7'+00 

d,31 

T3A 

tlo S()(I(U 

:IH 
r-'" 

UO-----i H. I 
cPu-out' I 

?~3? I 
I 

I I 
CPI.l- '1J I 

~--'---I i~ 
--~~ t~'l. L _ .J 



C8 
50,i 

10 M~~ 
OSC.lllATOR 

'740tr 

NOTE. USE OF 714-1.;/.' 
1"-1 PLACE OF !7't~~ & 
LUIII.\t.lc,. CIiAfIlC.ES ~5v 

q. 

D"1l 
!'l-Iel~ " 

3 

711-1'2. a z 
i JlOll, e " 
5 UP J) .,. 

~ 

13 

PHASE. GEN. 

0 

t 2. 

2 
15 A 

If. :3 
I 

6 4-4-
13 C 4- 5 
12 t) 2. 

" 7-
q 

8 
10 

~ 
I 

A 

c 

CLOC.K' LATC~ ES 

74n 
4>i 

10. ez.91 
'TO 

b.)c. 
~.3 

T ?~0't-
~ Cl>i9 

.----L - P f b: 
~u 

i.\( 
...L ILS 

I "D--1 ..1- ~~ .. LIo4RON~TATl 
1<oI1T>l ~'1tn 

CIII\OJCoES 

(3'11 II. • ." 
.1 [j 

LOfolCAl "t". ... }
3 

eL.I( QI sam CUI Yl E 
7Hl 

I(. Q s~\.~c,. 

£XPE~lMEN.,..e:R'S COMPUTE R 
SYSTE'-M 

b'j Ca.rl T. \1~\meV's, Jr, O".~E ," I lil. , 3, + I S I ' I ;r 1 8, '11,e111112' nl H 115 11'1 HI Uti' I 
EC5-3 OWG, 4-: CLOt.\.( LOG.I;C. -.1 I I 

DECEM8E.~ 1. i,q 'jlq. ---1 - ." .. s ..... 

1.,3 

R.~"'SEb : 

(REPL.AC£S PAG.t 2' at: EC~' 3) 

SE\.ECT 

~1 

q,2. 
. r _________________________ l'~~·~~~~~s~--:J' . • '" \01.':. - l .... ~ .. !> ,.oo.llltT4>i.-

C L 0 .<. K T 1: M "I. N Gr 

© 1."7+ M.P. PUSLI: 5 .. 41:N6 CO. 
(NOtII. t.0.,. 5. f'fUOll) 

~ . 
:0 
1:1 
~ 
0" ...... ...... 
en 
=r ...... 
::s 

IJCl 

(") 
o . 

....... ...... 
I 

M 
(") 
C/l 
I 

C' 



M. P. Publishing Co. -12- ECS - 6 

condition incorrectly allowed a bus enable during the interrupt "jatn" cycle. 
This probletn did not tnanifest itself until the bus loading had been expanded 
with the ECS- 5 hardware and it was found that the CPU would occasionally 
lock in an erroneous state (for instance, during the course of an overnight 
memory test program. run.) The logic in the upper right hand corner of 
drawing 3 on page 28 should be changed as shown in the inset on the prev
ious page. of this article. The new logic added is a functional "ANDII of 
the normal CPU bus enable signal with the interrupt override signal, the 
MSTR-ENAB signal. A single 7408 gate section could be used here, but the 
NAND form is shown to take advantage of spare 7400 sections. 

ECS- 3 RST Instruction Omis sion: 

The principles of operation section of ECS-3 omitted reference to the single 
byte call instruction, RSTn- (for "restart. 'I) The following information is an 
additional section which would be inserted in ECS-3 on page 55. 

2.2.4.3.2 . RESTART INSTRUCTION (RSTn) 
The RSTn instruction is used to call a subroutine addressed at locations 

0,8,16,24,32,40,48 or 56 depending upon the value of "n" (0,1,2,3,4,5,6 or 7 
respectively.) Its operation is identical to a CAL instruction - the current 
program counter is pushed into the stack and execution continues at the 
target address picked by the code. It takes only one byte however. 

Mnetnonic: "RSTn" (1 byte) 
th 

where: "n" picks the n 8 -byte subroutine starting at location O. 

Operation Code: " On5 " 
where: "n" is the subroutine addres s code 0 to 7 from the following 

table: 
Code Address Code Address 

0 0000 4 0020 
1 0008 5 0028 

2 0010 6 0030 
3 0018 7 0038 

Binary Format: "00 nnn 101" 
where: lin" indicates bits of the subroutine addr ess code. 

Timing: 
5 states, 1 cycle (20 ps @500Khz) 

Condition Flags: Unaffected. 

NOTE: See comment below r e error on page 3 of ECS- 3 in the statetnent 
of the po ss ible branch targets of an RST instruction. 



M. P. Publishing Co. - l3 - ECS-6 

Mise ellaneous ECS- 3 Errata: 

1. The Greek' symbol. "<p" used to represent the dock phases was omitted in 
textual references ,to¢l and ¢ 2' This error is extensive in pages 4.to H of 
the theoretical discussion of operation, and is also found on pages 10 and 21 of 
the ECS-3 manual. A similar error occurs once on page 5 wher e the symbols 
" CX O" and "~/' should have been noted in the last paragraph. 

2. On page 3, the correct decimal addre sses for the RST instruction ar,e Qi 8 , 
16,24,32,40, 48 and 56 corresponding to the RSTO through RST7 c odes. 

3 . On page 6, section 1. 3 .1.3, "TIT" should read " TlA". 

4. On page 6, section 1. 3.1. 4~ " - 911 volts" should read " _9 volts. " 

5. On page 14, CT3 should be added to the output of I/O socket #1 for use in 
the I/O controller, as noted in ECS -5. 

6. On page 36, second paragraph, "is defined the" should read "is defined by 
the." In the fourth paragraph, same page " state s add their" should read "states 
and their . " 

7. On page 37, table 4: The PCW and PCC cycle codes were switched by the 
typist. PCW's code should read "11" and PCC's cycle code is " 01". 

8. On page 38, section 2. 1. 6, "CPyll should read "CPU. " 

9. On page 40 at the top, "Arthitecture " should read "Architecture. " 

10. On page 43, first paragraph, "confied" should read "confined." On the 
same page at the bottom, item 3, "The In" should read "The INx". 

11. On page 45, table 6, mnemonic XRexplanation should read "Exclusive 
OR (XOR). " 

12. Page 46, the Carry Flags heading, first line following should read "True 
implies operand greater than accumulator. " 

13. On page 53, a general comment: The dis c us s ion of the stack mechanism 
should have included mention of the maximum size available for calling nested 
levels of subroutines. The stack mechanism of the 8008 is 7 levels deep (ie: 
7 program counte.r states can be saved) thus a maximum of 7 CAL or RST in.,. 
structions (or conditional variants which are executed) can be performed in 
a series without any intervening RET instructions without losing information. 

NOTE: This completes the er rata and technical update information on ECS- 3 
as of the time of publication of this article . In future article s, as additional 
corrections are identified, information will be published in a similar format. 



M. P. Publishing Co. - 14-

ECS-5 Manual Reset/Power On Logic: 

The logic of ECS-5 drawing 
3 (page 10) fails to allow for the 
state of the interrupt flip flop 
register bits at start up (see the 
discussion on page 4.) This can 
be corrected by using spare sec 
tions of the ICls numbered 17 & 
18, using the logic shown at the 
right. 

The NAND (7420) followed by 
inversion (7402) logic shown here 
acts as a negative-logic "or II of 
the CPU generated reset and the 
manual/power on resets which 
clear the Interrupt Flag Register 
in the logic shown. 

Without this change, the start
up state of the flipflops leaves the 
interrupt one shot fired - with out 
the corresponding CPU response 
needed to turn off the IFR bit in 
question. One cannot output an 
"INO" with the interrupt enable 
code if there is no software be-
cause power was just turned on. 

"OR" 

+5v 

Ioo\AIoIUIII. IltSE"T 
Be. ~1l-0N RE5'C:T 

~ 

"1 ". 

i2. 

- 74j-i.0-

il0 
L- i i ~ E'l1\8lE 

, " 
" I 

iQ ~ ~'SA61.E."""1.. --,,-

7'tflll. 
-1'1ci-

i'S 

ECS-6 

Xll--.-....II\.------. TO X:t.lT. 

eii 
.liM! 

e\.lA~G£.S To 
[)~u- #3 

'1".1'" .... 
~LEA~ 

£(S-5 
PAG~ 1.0 

With the change to the wiring shown, the late-rising power on/manual clear sig 
nal will also clear the IFR - and if a software deadlock should later ensue, the 
manual version of the function will enable you to restart operations. 

ECS-5 Keyboard Debounce Timing: 

The values of resistors Rl to R9 in ECS-5 ' s drawing 2, page 9, should be changed 
to 1000 ohms instead of the lOOK shown. The capacitor values should be increased, 
from I to 10 mfd for Cl to C8 will achieve the desired debounce time constant with 
the smaller resistance values. 

ECS-5 Device Select Numbering: 

The buffering inverters labelled l4f and l5a and 15b in ECS-5 drawing #1 were 
inserted without considering the effect on pinouts in the diagram. To achieve a 
logical mapping of device code to select line invert the order of 
pin numbering for each group of 8 7442-generated bus enable or select signals. 
Thus pin I of IC 7 should be thought of as "7" not "0", and pin 9 should be thought 
of as "0" not 7 - with corresponding changes throughout. The reason for inserting 
the inverters in the published version is to normalize loading of the address lines -
without inverters, there would be 5 TTL loads on those three lines in this subsection 
of the system, with only I load each on the other high-order addres s lines . 



M. P . Publishing Co. - 15 - ECS-6 

THE " C A T ER PI L LER" - AN APPllCATION PROGRAM : 

The following program was written to demonstrate an extended pr ec ision shift 
operation using the "rotate" instructions - which shows the result dynamically on 
the 16-bits of the binary display devices described by ECS-5. The result of 
this program is a moving pattern of lights in the displayo The program is a simple 
one which first defines the initial data in registers D and E, then enters a loop which 
includes the shift operation, output of the result, and a time delay •.• 

0000 
0001 
0002 
0003 
0004 

0005 
0006 
0007 
0008 
0009 
OOOA 
OOOE 
OOOC 
OOOD 
OOOE 
OOOF 

0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
OOlA 
OOlE 
OOlC 
OOlD 
OOlE 
OOlF 
0020 

I 
I 
D 
I 
D 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
D 

I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
D 
D 
I 
D 
D 

250 
036 
FF 
046 
C3 

304 
022 
340 
303 
022 
330 
lb3 
304 
lbl 
026 
CO 

307 
307 
307 
307 
307 
307 
307 
307 
307 
307 
021 
110 
10 
00 
104 
05 
00 

START: 
XRA Clear initial carry. 
LDI Define the first WJ rd. 
"11111111" - all lights out. 
LEI The caterpiller is a set 
"11 000011 " of four lion" lights. 

WALKLOOP : 
LAE 
RAL 
LEA 
LAD 
RAL 
LDA 
OUT31 
LAE 
OUT30 
LCI 
19210 

DELAY: 
LAM 
LAM 
LAM 
LAM 
LAM 
LAM 
LAM 
LAM 
LAM 
LAM 
DCC 

Fetch right byte 
Rotate left into carry, sa ve 

and save the bits. 
Fetch left byte. 
Rotate it left too, 

and save it. 
Write the left lamps. 
Get the right value. 
Write the right lamps. 
Define delay time constant . 
A typica l value. 

Use 
several 
longish 
delay 
instructions 
to 
stretch ( s t re t c h) 

out 
the 
loop. 

Decrement the counte r . 
and keep l ooping 

Until 
JFZ 
L(DELAY) 
H(DELAY) 
JMP 
L(WALKLOOP) 
H(WALK="OOP) 

all 
do ne 
Hith 

realtime Hait. 

Once the program has been loaded using the bootstrap mode of the CPU its oper 
ation is begun by pres sing any key on the keyboard to generate an interrupt which 

starts operation" The "on" bits will then march like a caterpiller through the dis 

play. Adjust the speed by changing the value of location OOOF. 



M. P. Publishing Co . -16 - ECS-o 

READERS' REAC TIONS: 

In the last issue an offer w as rrlade to extend the subscription of the first indiv
idual to write concerning a proposal to rrlake software available in ROM [orrrl to 
subscribers. The winner' - the only individual with a Noverrlber 28 1974 postmark 
received - was Jarrles Fry of Toledo Ohio, whose subscription is now extended by 
one issue. The essence of his comment on the subject is this: standardize an au
dio tape data format and epxress prograrrls using that forrrlat with cassettes for 
handling c onvenience. 

Georg e Fisher of Staten Island N D Y D sent along a copy of an article recently 
published in .. PCC" ( Peoples COrrlputer Company; Box 310, Menlo Park Ca. 94025 ) 
concerning horne-oriented rrlicrocorrlputer systems. The essence of the article's 
rrles sage is the desirability of cheap swappable ROM modules as the software cus 
tomization medium for mass produced cOrrlputers. 

Marshall Horwitz, of La Mirada California sent along the following COrrlrrlents: 
"I feel the price of $50 to $100 is way out of line. Have you ever given any 
thought to writing a cOrrlpiler program for ECS-3? " To the price comment, I can 
only reply that ROM's cost a fair amount in srrlall quantities at present, with the 
Intel PROM's (eg: 1702) storing 256 bytes for approximately $70 in srrlall quantities 
for example (unprograrrlrrled.) I think that if the re-prograrn.m.ability feature is 
sacrificed (as would be possible in a production prograrrl product for hOrrle cOrrlputer 
builders) the fusible link type ROM's could be offered sOrrlewhat less expensively. 
The price of programming - whether with your own code or standards - would be 
an added arrlount to the basic hardware cost. As to cOrrlpilers, the 8008 CPU has 
been around for some tirrle now, with Intel itself pushing "PL/M" for large users. 
An obvious starting point for c Orrlpilers is a sirrlple interpretive language design. 
No hOrrlebuilt rrlicrocorrlputer constructed on a rrlinirrlal budget will be able to 
handle rrluch rrlore . . There is rrluch instructional value re prograrrlrrling of the 
machine in a compiler project, and I arrl thinking now of devoting several issue s in 
1975 to such an interpretive cOrrlpiler software system. 

Donald Senzig of Union Grove, Wj s.. points out that a firrrl called "SCELBI 
Computer Consulting Inc. II offers an ROM product whose price and description 
suggest the Intel 1702. I have seen a copy of their brochure and note that they 
do offer an 8008 kit product as well~ which rrlay be of interest to subs c ribers. 

Gary Ko Berkheiser of Bristol, Pa. sent along a thoughtful letter of consider 
able length, essentially endorsing the ROM idea as a useful one. He expressed 
considerable interest in the logical candidates for use of ROM's - the systems 
software needed to run the computer. Given a reasonable design for a tape inter 
face, keyboard, etc. it is only necessary to program certain low level utility 
subroutines once - feeding i t general and specifi c parameters whenever a pro
gram must do such I/O. Thes e routines are used over and over, and their in-

clusion as ROM's will be useful. Mr. Berkheiser c ontinues with several addi

tional cOInrrlents, including the following: 



M. P. Publishing Co. -17 - ECS-6 

" Your documentation of the Keyboard Echo and Binary Calculator 
programs is done qui te well. " ltmade them both much easier to read 
and a lot more enjoyable. But why jump from Hexadecimal to Octal and 
back again. I'in conversant in both,counting systems but there may be 
some subscribers who are not and could become confused. Why not pick 
one system and stick with it. Hex seeInS to lend itself quite well as two 
digits represent eight bits of data instead of two and a half digits for 
octal •.•. " ' 

Mr. Berkheiser has raised a point which has been somewhat of a bone of conten
tion between myself and my brother Peter for some time - since I began looking 
around for a means of expressing programs for the 8008 architecture and came 
up with the system used to date. Peter's argument is to use octal for everything, 
claiming with some truth that octal is an easier system to calculate mentally. 
AFTER ALL - the octal addition/subtraction tables (I doubt many people regularly 
multiply or divide in hex or octal! ) are subsets of the usual decimal tables every 
civilized person learns to use early in life. But fora m ,achine wih the 8008 ,archi
tecture, this runs directly into a major problem: the quantum of data is not divis
ible into three bit groups. The result, if 8- bit quantities which respect the H/ L 
address division are used, is a crazy rlpseudo octal" which counts up the low order 
three digits to 377, then carries over to 1000. The problems of converting mentally 
the pure octal output of a modified PDP-8 assembler for the Intel caused my asso
ciate Chris Bancroft to coin the word "Intelese" for this form of notation and to 
write an HP-65 program (which barely fit like a chinese puzzle into 100 keystrokes) 
to do the conversion for him in his work on intel-controlled industrial equipment. 
To contrast the notation systems for addresses, here is what happens as the pro
gram location goes from page 0 to page 1 in three systems: 

Intelese Octal (pure) ' Hex 
000000 00000 0000 

000376 
000377 
001000 

00376 
00377 
00400 

OOFE 
OOFF 
0100 

Note the impact of page boundary (after octal 377, hex FF) on the adressing sequence 
expressed in 8 -bit Intelese quanta - the page boundary shows, at the price of losing 
a natural octal sequence. In octal, the page boundary is in the middle of a digit, so 
manually programming 8-bit words is difficult. But in hex, both the natural arith
metic sequence and a page bound significance between digits are achieved. 
It has never ceased to amaze me why manufacturers of machines with 8-bit (or 16) 
bit data quanta insist upon using octal. This is the case for instance in both the 
Data General NOVA and the Intel products. For some perverse reason many manu
facturers insist on octal - maybe they are just trying to be "different" from IBM, 
which invented the use of hexadecimal notation in computing applications with the 
360 series of machi~es. I am interested in providing readers with a method of 
"on paper" program expression which best fits the interests of convenient program
ming. If I take Mr. Berkheiser' s suggestion (to use hex ex~lusively) the impact 

will be as follows: 



M . P. Publishing Co. -18 -

1. All data expres sions will be consistent with program operation 
code representations - at the price of eliminating the relation whi ch 
which odal digits have to the internal format of 8008 instructions. 

2. Anew set of operation codes must be' generated and used, ex
pr ess ing the -same information as two hex digits instead of three 
numbers (two true octal, one high order quartal digit.) This elim 
inates certain mnemonic tricks useful for remembering instructions 
- for instance remembering the "3ds" (d is destination, s is source) 
form of the load instruction is easy and can be based on a mental 
algorithm rather than rote memorization needed with the hex form. 

3. A problem disappear s (which has not been mentioned previously 
in these pages) in the design of the IMP (Interactive Manipulator 
Program) now in progress. The interactive sequence required b e
comes much simpler if effectively only one base is used - there is 
no need to distinguish between liD" and "I" formats in entereing 
or manipulating memory data with the program. 

ECS-6 

If you are interested in adding your views to this forum, on the program rep
resentation topic or other items of concern, drop me a line. I will not promise 
to include every comment made, but a selected few will appear in subsequent 
issues. To summarize the program representation question, the following 
courses are possible ... 

1. All octal notation,consistent with machine op code structure, 
but awkward with 8-bit byte machines such as the 8008. 
2. The notation which has been used in thes e articles to date, hex 
for addres ses and data, numerical (effectjv~ly octal) strings for 
op codes which reflect the internal divisions of instruction bytes. 
3. Pure hexadecimal as described above. 

If you have comments, the deadline for inclusion in the next issue (due January 
31 in the mail) is January 10 (plus or minus several days. ) 

A NOTE CONCERNING MEMOR Y BOARDS: 

The price of the IK memory array design, ECS-8, in PC board form will 
be $19. 00 fully drilled and $14.00 undrilled plus postage. I have several boards 
on order at the time this article goes to press, and expect to contract production 
of additional boards according to demand. Advance orders can now be accepted 
_ the boards use eight 2602 chips, two bus interface 8T09's, two 7404' s, one 74154 
and one 7400 - with two socket positions for data and address interfacing via DIP 
headerp lugs. If you order in advance I will ship the boards as soon as manu
factured (once my small supply is gone) - with minimal documentation. The article 
to be published in early february will provide the detailed information. 



M '. P. Publishing CO n -19- ECS-6 

OP CODE REFERENCE TABLES: 

On this page are listed the 32 possible input and output op codes for the 8008 
computer, in an "instruction" format of three digit s , as described in ECS-3. All 
these instructions take 24 microseconds (OUTxx) or 32 microseconds, (INx) at a 
500 Khz clock rate. 

On the last page (outside cover, page 20) is a complete listing of all the non 
output/input instructions with mnemonic, op code, numoer of bytes of 
:memory required, nUIllber of CPU states, and time in microseconds with a 5QOKhz 

clock. 

Mnem. Code Description* Mnem. Code Description 

INO 101 Interrupt control OUT20 141 

INl 103 Keyboard OUT21 143 
------------------------------------

IN2 105 Tape data in/out OUT22 145 

IN3 107 Tape control in/out, OUT23 147 
---------------------------------~--

IN4 111 OUT24 151 

113 OUT25 153 
: . . ---------------------------------- ---------~--------------------------

IN6 115 OUT26 155 

IN7 117 OUT27 157 

OUT10 121 OUT30 161 Right binary display 

OUTll 123 OUT31 163 Left binary d i splay 

OUT12 125 OUT32 165 

OUT13 127 OUT33 167 
---------------------------------- -------------------------~~---------
OUT14 131 OUT34 171 

OUTi5 133 OUT35 173 

OUT16 135 OUT 36' 175 

OUT17 137 OUT 37 177 
----------------- ----------------- ~---------------------------------~-

-::-The description co lumn contains information on the current assignments 
mentioned in the course of this series. If you make your own hardware , 
this sheet can be used as a central reference point by filling in your 
own definitions as notes in the description column. Future articles 
will add further definitions oriented to ECS series software and hard-
ware designs . 



1_- ____ 
_ ____ '1-_ 

M OP L S T M Op L S .T M Op L S T M Op L S T 

ACA 210 1 5 20 JFC 100 3 9/11 36/41+ LHA 350 1 5 20 nr.c 002 1 5 20 
~ 

ACB 211 1 5 20 JFP 130 3 9/11 36 41+ 1HB 351 1 5 20 RRC 012 1 5 20 ACC 212 1 5 20 JFS 120 3 9/11 36/44 LHC 352 1 .5 20 RSTO 005 1 5 20 ACD 213 1 5 20 JFZ 110 3 9/11 36/41~ LHD 353 1 .5 20 RS'l' 1 015 1 5 20 ~ ACE 21/~ 1 5 20 ,rnp 104-::- 3 11 M LHE 3516 1 g 20 HST2 025 1 5 20 ACll 215 1 5 20 J'l'C 1110 3 9/11 36/44 LHl 05 2 32 RS'!' 3 035 ] 5 20 1:1 ACl 0]4- 2 8 32 JTP 170 3 9/11 36/44 LHI, 3S6 1 5 20 RS'l'4 045 1 5 20 
~ AC]' 2] t, 1 5 20 J'l'S 160 3 9/11 36/44 LHM 357 1 8 32 RST5 05;; 1 .5 20 r:f' ACM 217 1 8 32 JTZ 150 3 9/1.1 36/44 HST6 065 1 .5 20 -..... LLA 360 1 .5 20 RST7 075 1 5 20 00 ADA 200 1 5 20 LAB 301 1 5 20 L1,8 36] 1 5 20 RTC 043 1 3/5 12/20 ::r' ADB 201 1 5 20 LAC 302 1 .5 20 LLC 3.62 1 5 20 RTP 073 1 3/5 12/20 ..... 
~ ADC 202 1 .5 20 LAD 303 1 5 20 LLD 363 1 5 20 RTS 063 1 3~ 12/20 (JQ ADD 203 1 5 20 LAE 304 1 5 20 ,LLE 364 1 5 20 RTZ 053 1 3 5 12/20 ADI!: 204 1 5 20 LAH 305 1 .5 20 LLH 365 1 .5 20 () ADH 205 1 .5 20 LAl 006 2 8 32 LLI 066 2 8 32 SBA 230 1 .5 20 0 AD! OO~ 2 8 32 LAL 306 1 5 20 LLM 367 1 8 32 SBB 231 1 5 20 . 

ADt 20 1 .5 20 LAM 30"( 1 8 32 SBC 232 1 .5 20 ADM 20"r 1 8 32 LMA 370 1 7 28 SBD 233 1 5 20 LBA 3]0 1 .5 20 LMB 371 1 7 28 SBE 234 1 5 20 CAL;:- 106 3 11 41+ LBC 312 1 5 20 LMC 372 1 7 28 SBII 235 1 5 20 cr~c 102 3 9/11 36/4h LBD 31.3 1 .5 20 LMD 373 1 7 28 SBI 03~ 2 8 32 C~'P 132 3 9/11 36/114 loBE 314 1 5 20 LME 37!~ 1 7 28 SBL 230 1 5 20 CFS 122 3 9/11 36/44 LBH 315 1 5 20 LMH . 375 1 7 28 SBM 237 1 8 32 CP7. 112 3 9/11 36/44 LBI 016 2 8 32 1MI 076 2 9 36 CPA 270 1 5 20 LBL 316 1 § 20 LML 376 1 7 28 SUA 220 1 5 20 CPR 271 1 5 20 LBM 317 1 32 SUB 221 1 5 20 CPC 272 1 5 20 NDA 240 1 .5 20 SUC 222 1 .5 20 CPD 273 1 5 20 LCA 320 1 5 20 NDB 241 1 5 20 SUD 223 1 5 20 CPE 2-r4 1 5 20 LCB 321 1 .5 20 NDC 242 1 5 20 SUE 224 1 .5 20 CPH 275 1 5 20 LCD 323 1 5 20 NDD 243 1 .5 20 SUH 225 1 .5 20 CPI Olt 2 8 32 LCE 324 1 5 20 NDE 244 1 .5 20 Sl)'I 021t 2 8 32 CPL 27 1 5 20 LCH 325 1 5 20 NDH 245 1 '5 20 SUL 22 1 5 20 CPM 277 1 8 32 LCI 026 2 8 32 NDI ~Jt1t 2 8 32 SUM! 227 1 8 32 CTC 142 3 9/11 36/44 LCL 326 1 5 20 NDL 1 5 20 CTP 172 3 9/11 36/44 LCM 327 1 8 32 NDM 247 1 8 32 XRA 250 1 5 20 I CTS 162 3 9/11 36/44 XRB 251 1 5 20 N 
0 CTZ 152 3 9/11 36/44 LDA 330 1 5 20 NOP* 300 1 5 20 XRC 252 1 5 20 I LDB 331 1 5 20 XRD 253 1 5 20 DCB 011 1 5 20 LDC 332 1 5 20 ORA 260 1 5 20 XRE 254 1 5 20 DCC 021 1 5 20 LDE 334 1 .5 20 ORB 261 1 5 20 XRH 255 1 5 20 DCD 031 1 5 20 LDH 335 ' 1 5 20 ORC 262 1 5 20 XRI 05~ :t 5 20 DCE 041 1 5 20 LDI 036 2 8 32 ORD 263 1 .5 20 XRL 25 1 5 20 DCR 051 1 .5 20 LDL 336 1 5 20 ORE 264 1 .5 20 XRM 257 1 5 20 DCL 061 1 .5 20 1DM 337 1 8 32 ORH 265 1 5 20 

ORI 06~ 1 .5 20 lILT 000 1 x x LEA 340 1 .5 20 ORt 26 1 .5 20 001 1 x x LEB 341 1 5 20 ORM 267 1 8 32 l}Instr~ctions marked vrith aster-377 1 x x LEC 342 1 .5 20 isk are typical or several aI-LED 343 1 5 20 Output - see separate list •• • ternate op c;odes, same runctio-n. INn 010 1 5 20 LEH 345 1 5 20 
INC 020 1 .5 20 LEI 046 2 8 32 RAL 022 1 5 20 Arithmetic/Logical Mnemonics: IND 030 1 5 20 LEL 346 1 g 20 RAR 032 1 5 20 AC = add with carry input lNE 040 1 5 20 LEM 347 l 32 RET-:, 007 1 5 20 AD = add,no carry inp~t INII 050 1 5 20 RFC 003 1 3~ 12/20 38 = subtract, borrow input INL 060 1 5 20 Alternatives ror condttional RFP 033 1 12/20 SU = subtract, no borrow input 

instructions: short time if RFS 023 1 ~~ 12/20 ND = logical product(AiID) Input - ~ee separate list ••• false branch, long time if RFZ 013 1 3 5 12/20 OR = 10cical sum (OR) 
true branch. XR = exclusive or (XOR) 

CP '" compare 
tr:I 
() 
CJl 
I Key: IIMII-mnemonic "OP" • op code II L" - length "S" - states IITII - time @500Khz (us) '0', 


	ECS
	ECS-4_insert



