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In this Issue 
Our cover story this month is one of those classic engineering tales. Once 

upon be t ime,  two HP eng ineers  were  d iscuss ing  how n ice  i t  wou ld  be  to  
have graphics tablets for  thei r  home computers.  Wasn' t  i t  too bad that  the 
tablets â€” even HP's â€” were so expensive? In their free time, they began to 
design scheme tablets, and they eventual ly hi t  on a simple, elegant scheme 
that  reduced the number  o f  par ts  needed,  and there fore  the cost ,  w i thout  
reducing resolut ion.  The idea is  to  use just  a  few conduct ive t races under  
the  tab le t  sur face  ins tead o f  hundreds ,  bu t  to  use  them over  and over  in  
di f ferent orders at  d i f ferent locat ions.  They cal l  i t  permuted trace order ing.  

Our cover photo i l lust rates i t  us ing a d i f ferent  color  for  each t race.  The graphics tablet ,  the HP 
4591 1 resolution. full less than a quarter of what previous tablets cost for the same resolution. The full 
s tory is  to ld by Tom Malzbender in the ar t ic le on page 4.  

A graphics tablet  is  a device that  a human uses to communicate graphical  data to a computer 
by point ing with a stylus. You can use i t  for sketching, drawing, computer-aided design, or menu 
picking. On the other hand, you might choose some other device, such as a mouse, a touchscreen, 
the keyboard, a digi t izer,  or a knob. Al l  of  these computer input devices, and others too, operate 
a t  human speed,  which by computer  s tandards is  pre t ty  s low.  Hewlet t -Packard has a  low-cost  
s tandard in ter face for  connect ing devices of  th is  k ind to personal  computers and workstat ions.  
Cal led the HP Human Inter face L ink,  or  HP-HIL (not  to  be confused wi th the HP Inter face Bus,  
HP-IB, single the HP Interface Loop, HP-IL), it allows you to connect up to seven devices to a single 
port  page 8. computer.  To f ind out how i t  works, read the art ic le on page 8. 

I f  you're interested in AT&T's UNIXÂ» operat ing system or in HP's version of i t ,  HP-UX, you've 
probably already read a lot of the extensive l i terature on the subject. Even so, you may f ind some 
new ins ights in  the paper on page 26,  which compares the use and per formance of  the var ious 
interprocess communication faci l i t ies avai lable in this mult iprocessing operating system. Signals, 
p ipes ,  and  memory ,  semaphores ,  and  message queues  are  ranked fo r  var ious  uses  and da ta  
is presented to support the ranking. 

Branches are decision points in computer programs. Branch analysis is a method of assessing 
the thoroughness of software testing by keeping track of how many branches have been executed 
by the enough, procedure and how many have not. Although it  sounds simple enough, the f irst HP 
so f twa re  f ound  tha t  imposed  b ranch  cove rage  requ i remen ts  on  the i r  t es t i ng  p ro jec t s  f ound  
that coverage are many pitfalls, such as attempting to meet the coverage goal by testing all the easy 
branches instead of the cri t ical ones. In the paper on page 13, three HP software engineers warn 
o f  t he  and  and  l ay  ou t  a  comprehens i ve  me thodo logy  fo r  avo id ing  them and  reap ing  a l l  t he  
benefi ts of branch analysis. 

Yoshio dynamic gained notoriety as the developer of the first commercial 1 M-byte dynamic read/ 
write memory chip. That work was done when he headed Toshiba Semiconductor Group's semicon 
ductor  dev ice engineer ing laboratory.  Brought  to  HP by an exchange program between the two 
companies, Dr. Nishi now directs HP Laborator ies'  s i l icon VLSI research laboratory. On page 24, 
he gives us his view of the current status of CMOS technology and l ists some of the engineering 
challenges facing this technology as we approach the era of ultra-large-scale integration (ULSI). 

-R.  P.  Do/an 

What's Ahead 
The July issue tel ls the design story of two instruments for evaluating digital radio performance: 

the HP 3708A Noise and In ter ference Test  Set  and the HP 3709A Conste l la t ion Disp lay.  

T h e  H P  J o u r n a l  L e t t e r s  t e c h n i c a l  d i s c u s s i o n  o f  t h e  t o p i c s  p r e s e n t e d  i n  r e c e n t  a r t i c l e s  a n d  w i l l  p u b l i s h  l e t t e r s  e x p e c t e d  t o  b e  o f  i n t e r e s t  t o  o u r  r e a d e r s  L e t t e r s  m u s t  b e  b r i e f  a n d  a r e  s u b j e c t  
t o  e d i t i n g  9 4 3 0 4 ,  s h o u l d  b e  a d d r e s s e d  t o  E d i t o r .  H e w l e t t - P a c k a r d  J o u r n a l ,  3 2 0 0  H i l l v i e w  A v e n u e ,  P a l o  A l t o .  C A  9 4 3 0 4 ,  U S A  
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Permuted Trace Order ing Al lows 
Low-Cost, High-Resolution Graphics Input 
A scheme that  substant ia l ly  reduces the number  o f  t race 
dr ivers  requi red prov ides an inexpensive,  but  h igh-  
per formance graphics tab let  for  HP's  HP-HIL fami ly .  

by Thomas Malzbender  

THE TASK OF ANY GRAPHICS TABLET is to provide 
the host computer with information corresponding 
to the position of a pen-like stylus relative to the top 

surface of the tablet, commonly referred to as the platen. 
This capability allows the user to input graphical data in 
a more natural manner for applications such as menu pick 
ing, CAD (computer-aided design), sketching, and drawing. 

Based on a new input technology, the HP 45911A 
Graphics Tablet (Fig. 1) represents a significant contribu 
tion in price/performance for this class of graphics input 
devices. Less than a quarter of the cost of earlier HP graphics 
tablets, the HP 45911A offers a resolution of 1200 lines per 
inch (0.02 mm) with essentially no jitter at this high reso 
lution. Its active area was chosen to be 11 inches per side 
to accommodate standard overlays produced by third-party 
software vendors. Ergonomically, the HP 45911A features 
a minimal footprint, low-profile package designed to be 
used in front of large workstations like HP's Vectra Com 
puter without restricting easy access to the system's disc 

drives. In addition, its standard width of 325 mm allows 
it to be stacked on top of the system when not in use. 

The development history of the HP 45911A is reminis 
cent of HP's early development style in which projects 
were initiated by lab engineers with a need for a new prod 
uct and who believed they had a good idea on how to 
construct it. Early in 1984, Mike Berke and I were griping 
about the high price of the HP 9111A (HP's only tablet 
back then) and how useful a good inexpensive tablet would 
be for our home computer systems. So when time would 
allow it, we started experimenting with various tablet de 
signs. After prototyping several technologies (electrostatic, 
magnetic, optical, and ultrasonic), it became clear that an 
electrostatic approach was our only choice. Magnetic tech 
nology also promised high resolution, but required higher 
current consumption and had a significant problem with 
sensitivity being highly dependent on the angle of the pen 
to the tablet surface. 

In an electrostatic design, traces underneath the active 

Fig .  1 .  The HP 45911 A Graph ics  
Tab le t  fea tures  a  h igh  reso lu t ion  
o f  1 2 0 0  l i n e s  p e r  i n c h  o v e r  a n  
11 x 11 - inch act ive area for a low 
p r i ce .  A  member  o f  HP ' s  Human  
In te r face  L ink  (HP-HIL)  fami ly  o f  
input devices,  i t  can be used wi th 
a  v a r i e t y  o f  H P  c o m p u t e r s  a n d  
workstations. 
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area are sequentially pulsed and these pulses are capaci- 
tively coupled to the tip of a stylus. The amount of coupling 
is a function of the local dielectric coefficients (which are 
normally constant) and the spatial separation between the 
stylus and any specific trace. Hence, the stylus position 
can be accurately determined by the relative strength of 
the signals coupled back from the traces as they are pulsed. 

The HP 45911 A offers greatly reduced hardware com 
plexity over comparable tablets by using a technique (pat 
ent applied for) that reduces the number of trace drive lines 
from over 110 down to 16. This scheme, called permuted 
trace ordering (PTO), allows us to drive the traces directly 
from the on-board microprocessor, eliminating the need 
for any separate driver ICs, which usually represent a large 
fraction of the cost of a graphics tablet. To accomplish this 
reduction, the same drive lines are used over and over 
again on the 112 vertical and horizontal traces on the tablet 
by varying the sequential ordering of the traces along the 
tablet surface. In this way, a unique signature is coupled 
into the stylus at all points on the platen. Fig. 2 demon 
strates this for a section of the tablet platen board. It shows, 
for both axes, the drivers associated with each of the traces 
shown. The tablet operates by activating the trace drivers 
singly, in sequence, and reading the stylus response for 
each trace driver. 

For example, if the stylus is located as shown, the out 
come might resemble the list of values shown in Table I. 

The units in the response column are merely relative values 
and could be viewed as results from an 8-bit analog-to-dig- 
ital (A-to-D) conversion. 

Table I  
X-axis trace driver responses 

Observe how the stylus response is a function of stylus- 
to-trace distance. Driver 3 is the closest and gives the high 
est response, followed by driver 0, then driver 4. These top 
three responses can be formed into a code, say 304, which, 
by design, is unique to that coarse position on the tablet 
surface. The magnified section of Fig. 2 shows coarse posi 
tion codes for both X and Y in a small region of the tablet. 
Note that two different code values occur within a trace 
spacing. Each of the drivers is pulsed one at a time, the 

X  T r a c e  # :  1  2  3  4  5  6  7  8  9  1 0  1 1  1 2  1 3  1 4  1 5  1 6  1 7  1 8  1 9  2 0  2 1  2 2  2 3  2 4 Â « Â « Â «  
X  D r i v e r * :  0 1  2 3 4 5 6 7 2 1  4 3 6 5 2 7 4 3 0 1  6 7 4 5  â € ¢ â € ¢ â € ¢  

X : 3 0 4  
Y : 1 4 2  

â€” Ã 
X : 3 0 4  
Y : 4 1 3  

X : 0 3 1  
Y : 1 4 2  

X : 0 3 1  
Y : 4 1 3  

X 
D r i v e r  

3  

X 
D r i v e r  

0  

Y  
D r i v e r  

1 

Y  
D r i v e r  

4  

Fig. view coarse section (left) of the HP 45911 A platen with an expanded view (right) showing coarse 
pos i t ion codes for  X and Y coord inates.  The f i rs t  d ig i t  o f  the code corresponds to  the c losest  
t race dr iver,  the second digi t  corresponds to the second closest,  and the third digi t  to the third 

c losest .  The dr iver  sequence is  chosen to assure unique codes for  a l l  coarse posi t ions.  
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C o a r s e  P o s i t i o n  

X  D r i v e r  3  X  D r i v e r  2  X  D r i v e r  1  X  D r i v e r  4  

Fig .  3 .  At  s ty lus  pos i t ion  A,  the f ine  o f fse t  va lue is  0  and a t  
pos i t ion B the va lue is  1 .  Cont inuous values between 0 and 
1 ex is t  between posi t ions A and B.  

responses are measured and sorted, and then the driver 
numbers for the three strongest responses are combined 
into a code word. This code word then becomes an address 
for accessing a coarse-position lookup table. 

These algorithms determine coarse position with a reso 
lution of 2.7 mm. To achieve a resolution of 0.02 mm (1200 
lines per inch), each coarse position must be resolved into 
128 distinct regions. The fine-position routines that ac 
complish this are based on the equation: 

Fine Offset = (V2-V3)/(V-i-V3) 

where Vj is the magnitude of the strongest response, V2 is 
the secondary response, and V3 is the tertiary response. 
This relationship was chosen because it represents a com 
putationally minimal relationship with well-defined bound 
ary conditions. 

Fig. 3 demonstrates the boundary conditions between 
coarse position blocks. This fine offset approaches 1 when 
the stylus is exactly between two traces since the highest 
response Vt will have roughly the same magnitude as the 
second highest response V2. At the other extreme, V2 be 
comes equal to V3 when the stylus is directly over a trace, 
since this configuration will yield equal spacing to the 
adjacent second and third traces. In this condition, the 

numerator and the fine offset itself approach zero. Between 
these two extremes, the values are continuous but not 
necessarily linear. Linearization is achieved through the 
use of a lookup table within the HP 4591lA's micropro 
cessor, and we are left with a flat position response at high 
resolution. 

There is a fundamental relationship between computa 
tion speed and noise/jitter performance. Fast position deter 
minations make it possible to use averaging to reduce any 
noise in the system. For this reason, the fine offset equation 
is computed in hardware rather than firmware. Referring 
to the configuration shown in Fig. 4, the subtractor stage 
is used to generate both the terms Vj - V3 and V2 - V3. The 
first term is applied to the reference input of the analog-to- 
digital converter (ADC) and the other term is applied to 
the ADC's signal input. The effect of this is a division of 
the two terms. Since the speed of this process is limited 
only by the signal propagation and A-to-D conversion times 
(dominant here), data can be collected quickly and aver 
aged often. In addition, multiple samples can be taken on 
the input sample-and-hold circuits, which causes very 
quick analog averaging to take place there. The result is 
excellent noise performance. 

Noise performance is further improved by two firmware 
routines, dynamic averaging and antijitter. Dynamic av 
eraging is a technique that offers all the benefits of large 
amounts of position determination averaging without the 
drawbacks. Averaging reduces the amount of noise (inher 
ent with the large amounts of amplification necessary to 
process the minute stylus signal) by the square root of the 
number of averages. However, conventional averaging 
causes a perceivable lag when the user moves the stylus 
rapidly. To overcome this, the dynamic averaging routines 
change the amount of averaging performed as a function 
of stylus tracking speed. When the user is moving the stylus 
quickly over the platen surface, little or no averaging is 
done to ensure a quick response. With slow stylus move 
ments, large amounts of averaging are performed, which 
provides excellent noise performance when it is most 
needed. 

Dynamic averaging successfully reduces any jitter down 
to a single pixel, but no further since the stylus can always 
sit on the boundary between two pixels. To eliminate this 
last amount of jitter, changes of only one pixel are not 
reported. 

Sample and Hold Subtractor 
Sample and Hold 

( V , - V 3 ) .  

Fig .  4 .  Hardware sys tem for  com 
put ing f ine offset posit ion. 
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Sty lus  Des ign  
The conventional electrostatic graphics tablet stylus can 

be thought of as merely a shielded wire that brings the 
capacitively coupled trace signals back to the main system 
electronics for amplification and processing. The stylus for 
the HP 45911A, on the other hand, is active and the trace 
signals are amplified at the stylus tip before they are sent 
back to the main electronic system. 

The use of surface mount components (see Fig. 5) let us 
put the first stages of amplification in the stylus. Although 
this approach requires power and ground wires to be con 
nected to the stylus, it improves noise performance by 
roughly an order of magnitude. 

Signals seen by the tip are greatly reduced by a parasitic 
voltage divider formed by any existing tip-to-ground 
capacitance. In a conventional stylus, the tip and attached 
wiring running through both the body of the stylus and 
the cable shield form a considerable parasitic divider. 

That is (Fig. 6, left): 

Y  Stylus 
(-"Tra 

+  -â€¢Shield j 
V Platen 

Given typical values of 1 pF for CTrace and 100 pF for CBody 
+ Cshield, the stylus voltage is approximately (l/101)VPlaten. 

The HP 45911A stylus tip sees only the parasitic tip-to- 
body capacitance, yielding a signal about ten times stronger 
at the input to the first stage of amplification. 

That is (Fig. 6, right): 

V Stylus 
[CTrace 

C f i o d y  +  C T r a c e  \  

x Amplifier Gain 

In this case, CBody = 10 pF and the stylus voltage is approx 
imately (1/11) VPlaten multiplied by the amplifier gain. 

After buffering by the low-output-impedance amplifier, 
any shield or body capacitance has no effect. In addition, 
since the signals entering the first stage of amplification 
are stronger, the noise level introduced by this stage has 
less effect, which yields a greatly improved signal-to-noise 
ratio. 

A c k n o w l e d g m e n t s  
Mike Berke's technical expertise, insight, energy, and 

encouragement were involved in nearly all of the functional 
details of the tablet design. Brainstorming with Mike is 
what caused the project to happen in the first place. A 
supportive management environment created by Mark 

- A m p l i f i e r  

P la ten Traces 

Vpla ten  

Platen Traces 

F ig .  6 .  Compar ison  o f  conven t iona l  e lec t ros ta t i c  s ty lus  de  
sign ( lef t)  wi th HP 45911 A stylus design (r ight) .  

Delia Bona and Lorenzo Dunn allowed the project to be 
come a reality. Peter Guckenheimer made contributions 
early in the development and is essentially responsible for 
the industrial and mechanical aspects of the stylus. Tom 
Neal can be congratulated on the industrial design of the 
tablet itself, and Jun Kato and Dick Bergquam executed a 
tricky mechanical design. The project was transferred to 
Singapore in its later phases and Han Tian Phua, Yeow 
Seng Then, Hock Sin Yeoh, Danny Ng, and others there 
have made and are still making valuable contributions to 
the HP 45911A. Also, Rob Starr needs to be thanked for 
his electrical support near the end of the project. 

' H i l l  

F ig .  5 .  Assemb led  ( t op )  and  d i s  
a s s e m b l e d  ( b o t t o m )  s t y l u s  a s  
s e m b l y  s h o w i n g  a m p l i f i e r  b o a r d  
using surface mount components. 

JUNE 1987  HEWLETT-PACKARD JOURNAL 7  

© Copr. 1949-1998 Hewlett-Packard Co.



The Hewlett-Packard Human Interface Link 
Connect ing human- input  dev ices to  personal  computers  
and workstat ions is  s impl i f ied by the def in i t ion of  an 
in ter face l ink that  adapts to  the devices on the l ink and 
al lows them to be added or disconnected during operation. 

b y  R o b e r t  R .  S t a r r  

THE HEWLETT-PACKARD Human Interface Link 
(HP-HIL) is an intelligent, low-cost interface for con 
necting human-speed input devices (e.g., keyboards, 

mice, and digitizing tablets) to personal computers and 
workstations. HP-HIL can support up to seven such devices 
at one time by daisy-chaining them together through a 
single port on the computer. There are no restrictions on 
the type and order of the devices connected. Users can 
easily expand their system by simply plugging in additional 
input devices. 

HP-HIL has become the standard input device interface 
for HP's personal computers but should not be confused 
with other types of interfaces such as the Hewlett-Packard 
Interface Bus (HP -IB, IEEE 488/IEC 625) and Hewlett-Pack 
ard Interface Loop (HP-IL),1 which have distinct and differ 
ent applications. HP-HIL was designed as an efficient, low- 
cost method of data collection from human-operated input 
devices. 

Features of  HP-HIL 
Many PC users find that they need a variety of input 

devices to handle different data input needs. For example, 
a mouse is good for many applications, but sometimes the 
greater precision of a graphics tablet is necessary. HP-HIL 
allows input devices to be intermixed easily and changed 
by the user. The HP-HIL protocol identifies and configures 
devices connected to the computer. This frees the user from 
the need to change switch settings or configuration menus 
whenever a device is removed or added to the link. Since 
HP-HIL will support up to seven devices through a single 
port, the user does not need a separate interface card for 
each input device. This can save valuable accessory slots. 
The input devices receive their power from the computer, 
thereby eliminating power cords, simplifying the input de 
vices, and lowering costs. 

Physical  Connection 
HP-HIL devices are connected to a personal computer or 

workstation and to each other in a daisy-chain link. The 
first device is connected directly to the computer's HP-HIL 
port. The second device connects to the first device. Each 
additional device connects to the previous (upstream) de 
vice. Up to seven devices can be chained or linked together 
in this way. 

Each input device has two female connectors or ports 
(except in special cases) while the computer has a single 
female connector or port. The input devices are connected 
together by removable cables (usually coiled) having a male 
plug on each end. Each end of an HP-HIL cable has a dif 
ferently keyed connector to assure correct connection be 
tween the computer and a device or between consecutive 
devices. The cables and device connectors are marked with 
one dot or two dots for polarity identification. One dot 
indicates the upstream connector of a device or the down 
stream end of a cable. Two dots indicate the downstream 
connector of a device or the upstream end of a cable. An 
example of how devices can be interconnected is shown 
in Fig. 1. Some input devices have only one HP-HIL port 
because of size limitations. An example is the HP 46060A 
Mouse. Devices having a single port must be the last device 
on the link. 

HP-HIL Architecture 
The HP-HIL architecture is an extendable serial interface 

consisting of a personal computer or workstation (master) 
and from one to seven input devices (slaves). The master 
provides power, ground, data-out, and data-in signals to 
the devices through a shielded four-conductor cable. The 
master contains an integrated circuit, the master link con 
troller (MLC), that provides the hardware interface between 
the system processor and the devices connected to the link 
as shown in Fig. 2. Similarly, each device contains an 1C, 
the slave link controller (SLC), that provides the hardware 
interface between the link and the input device's microcon 
troller as shown in Fig. 3. 

In the PC, the MLC functions much the same as a UART 

System Keyboard Graphics Tablet Mouse 

Fig .  1  .  Typ ica l  HP-HIL  dev ice  in  
te rconnec t ion .  The  do ts  ind ica te  
ups t ream and  downs t ream po la r  
i t y  as  shown and  a re  marked  on  
the  dev ice  connectors  and cab le  
ends. 
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(universal asynchronous receiver-transmitter). The MLC 
accepts commands directly from the master's processor 
over a bidirectional eight-bit data bus and transmits the 
messages (called frames) in serial form onto the link in the 
proper format. The MLC also accepts serial data from the 
link and places the data in its 16-frame FIFO (first-in. first- 
out) buffer for retrieval by the master's processor. The FIFO 
buffer queues incoming frames to reduce the number of 
interruptions to the host processor. Error checking and 
loopback modes for local testing are also supported by the 
MLC. The MLC requires an 8-MHz clock, which can be 
supplied by the master's processor clock or generated lo 
cally b\' adding a ceramic resonator to the MLC. Two inter 
rupt lines, nonmaskable and maskable, are available from 
the MLC. The nonmaskable interrupt can be used for hard 
resets to the master's processor generated by keyboards 
(e.g., ctrl-shift-reset keys depressed to generate a system hard 
reset). The two signal lines, SO and SI, are protected against 
electrostatic discharge (BSD) damage by clamp diodes be 
tween the + 5V supply and ground, and by resistors in 
series with the signal lines. 

Each HP-HIL device contains the SLC and a microcon 
troller. The SLC provides the interface between the link 
controller and the device's microcontroller. The SLC re 
ceives commands from the device microcontroller, trans 
mits data, retransmits commands, and detects communica 
tion use The SLC also provides self-test capabilities use 
ful during power-up. The clock is provided by the SLC 
using an external 8-MHz ceramic resonator, and is divided 
to 4 MHz for the microcontroller's use. Communication 
with the device processor is serial and is designed for use 
with National Semiconductor's COPs family or similar mi 
crocontrollers. Link protocol is handled by the device mi 
crocontroller, which also handles data collection from the 
input device (key array, optical encoders, etc.). Like the 
MLC, the signal lines of the SLC (SI, SO, Rl, and RO) are 
protected against BSD damage. 

An integral part of HP-HIL is the ability to supply power 
to the input devices from the personal computer or work 
station. 12Vdc is supplied to the link from the master's 
power supply for use by the input devices. Devices locally 
regulate the 12Vdc to 5Vdc so that any voltage losses in 
the cables do not affect the devices. Most input devices 
require less than 100 m A. 

HP-HIL Input Devices 

HP-HIL  Touch Accessory ,  HP 35723A.  A 12- inch user - ins ta l l  
able touchscreen bezel  which provides touch interact ion wi th 
the  hos t  compute r .  The  HP 35723A fea tu res  a  reso lu t ion  o f  
43x57  po in ts  max imum.  
HP-HIL Graphics Tablet. HP 4591 1 A. An 1 1 x 1 1-inch graphics 
tablet with 1200-l ines-per- inch resolut ion. 
HP-HIL Keyboards,  HP 46021A and HP 46030A.  The HP-HIL 
keyboards are general ly suppl ied with the computer for  which 
they were designed (e.g. .  HP Touchscreen I I ,  Vectra,  and HP 
9000  Ser ies  300) .  These  keyboards  a re  ava i lab le  in  a  w ide  
var iety of  languages. 
HP-HIL Mouse, HP 46060A. This mouse s impl i f ies the task of  
pos i t ion ing the cursor  on the screen.  I t  has 200-counts-per -  
inch resolut ion and two buttons.  
HP-H IL  Ro ta ry  Con t ro l  Knob .  HP  46083A.  Th i s  modu le  p ro  
vides two-axis relat ive cursor posit ioning via a rotary knob and 
atoggle key. It has a resolution of 480 counts per revolution. 
HP-HIL Securi ty ID Module, HP 46084A. The ID Module al lows 
users  to  run secured appl icat ion sof tware.  I t  re turns an iden 
t i f icat ion number for identi fying the computer user and is used 
i n  app l i ca t i on  p rog rams  to  con t ro l  access  t o  p rog ram func  
t ions,  data bases,  and networks.  
HP-HIL Control Dial Module, HP 46085A. This module has nine 
graphics posi t ioning dia ls.  I t  is  used in graphics display appl i  
cations to provide three-axis rotate, translate, scale, and other 
a t t r ibute  funct ions.  Each d ia l  has a  reso lu t ion o f  480 counts  
per revolution. 
HP-HIL 32-Button Box, HP 46086A. This box provides 32 user- 
de f inab le  bu t tons  fo r  menu se lec t ion  and one user -p rogram 
mable LED. I t  is  used in  CAD/CAE appl icat ions.  
HP-HIL Digit izers, HP 46087A and HP 46088A. These digit izers 
are for  use in  in teract ive graphics,  graphics entry ,  and menu 
se lec t ion app l ica t ions.  Two act ive  area s izes (A or  B)  are  o f  
fered.  They each have a resolut ion of  1000 l ines per inch.  An 
opt ional  cursor wi th crosshair  is avai lable.  
HP-HIL  Quadra ture  Por t ,  HP 46094A.  Th is  p roduct  p rov ides  
a n ine-p in  submin iature connector  for  in ter fac ing quadrature 
s ignals to HP-HIL.  Three keyswi tches are supported.  
HP-HIL Bar-Code Reader ,  HP 92916A.  Th is  module prov ides 
an a l te rnat ive  to  the keyboard for  data  ent ry  app l ica t ions.  I t  
reads  UPC/EAN/JAN,  in te r leaved  2 -ou t -o f -5 ,  Codabar  (MHI  
and USD-1) ,  3-of -9,  and extended 3-of -9 codes.  
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Nonmaskable Interrupt 
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Data and Data Paths 
Data moves around the link in packets called frames. A 

frame consists of fifteen bits including one start bit, one 
stop bit, one data/command bit, three address bits, eight 
data bits, and one parity bit (see Fig. 4). Frames are trans 
mitted around the link at the rate of ten microseconds per 
bit, or 150 microseconds per frame. Frames are transmitted 
at a maximum of one frame per 154 microseconds, or about 
6,500 frames per second. Four microseconds are left be 
tween frames to avoid collisions. When the link is being 
used for data collection from input devices, devices are 
polled (asked if they have data to report) about sixty times 
each second. This is an acceptable data collection rate in 
that there is not a perceived delay between user input and 
the personal computer's response. A maximum of fifteen 
bytes of data can be collected with each poll. 

The idle state of the link is a logic one, with the first bit 
in a frame (the start bit) at logic zero and the last bit (the 
stop bit) at logic one. The parity bit is computed so that 
the total number of logic-one bits in the 15-bit frame (in 
cluding start, stop, command, parity, address, and data 
bits) is odd. 

Frames can represent either data or commands. The com 
mand/data bit indicates whether the eight-bit data field 
contains data or the opcode of an HP-HIL command. All 
frames have a 3-bit device address so that commands and 
data can be associated with a particular device. Command 
frames generally have a universal address which directs a 
command to all the devices on the link. When a frame is 
received by a device, the device always checks for an ad 
dress match (a universal address or device address match 
ing its own). Frames received that have a matching address 
or a universal address are acted upon by the device. Frames 
received that do not have a matching address are retrans 
mitted by the device's SLC. 

Command frames always originate from the master, with 
two exceptions. If a device detects an error (e.g., a frame 
received by the device is corrupted), then the device origi 
nates a command frame indicating an error has occurred. 
The second exception is when a system hard reset com 

mand frame is generated by a keyboard. 
When communicating with devices, the master transmits 

a single command frame or data frame(s) plus a command 
frame onto the link. HP-HIL protocol allows only a single 
command frame to exist on the link at any given time. 
However, multiple data frames can exist on the link. There 
are five scenarios that can occur when the master transmits 
on the link. 

In the first case the master transmits a single command 
frame onto the link. The master waits until that command 
frame passes through all devices and returns before taking 
further action. The returning command frame is generally 
identical to the command frame originally transmitted by 
the master. For some commands, the frame may return to 
the master modified to indicate some specific information 
about the link. 

The second case is a subset of case one. Here, the master 
transmits a single command frame onto the link, but the 
command frame is not expected to return. The master waits 
a predetermined time, and then proceeds with further 
transmissions onto the link. The waiting period is called 
a "time-out" and occurs when no frames return after a 
command is transmitted. If a time-out also occurs when a 
frame is expected to return to the master, then the master 
interprets the lack of response as an error condition and 
takes the appropriate action. 

In the third case, a single command is transmitted by 
the master, but data frames are returned before the com 
mand frame returns. The number of data frames returned 
depends upon the command transmitted, and whether the 
device(s) have data to return to the master. Some commands 
collect data from a specific device while other commands 
collect data from several devices. Up to 15 data frames can 
be returned in response to a single command. As always, 
the data frames contain the device address so the master 
can identify the originator of each data frame. 

In the fourth and fifth cases, the master transmits one or 
more data frames and a command frame. In the fourth case, 
a single data frame is transmitted followed by a command 
frame. The data frame contains register address information 
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for a particular device. The device responds by transmitting 
the contents of the addressed register followed by the orig 
inal command frame. The master waits until the data frame 
and command frame are received before transmitting addi 
tional commands onto the link. The fifth case is similar to 
case four, but here the master transmits several data frames 
followed by a command frame. The addressed device re 
turns only the command frame back to the master in case 
five. 

Consider a system with two devices attached as shown 
in Fig. 5. When the master's MLC transmits a frame, it does 
it on the serial data-out (SO) line. The frame is received on 
the serial data-in (SI) line of the first device's SLC. The 
first device checks for an address match. If no match is 
found, the frame is retransmitted on the first device's SO 
line. Assume that the transmitted frame is a command with 
an address for device one. Device one finds an address 
match and then proceeds to act on the command. After the 
command is processed, device one retransmits the data 
frames (if any) followed by the command on its SO line. 
Device two then receives the frames on its SI line and checks 
for an address match. Any data frames originated from 
device one would have device one's address, and thus 
would have no address match with device two. The com 
mand frame also has device one's address and thus no 
address match occurs there either. The frames are then 
retransmitted on device two's return data-out (RO) line 
rather than on its SO line. This is because device two is 
the last device on the link for this example. The last device 
is set to return data on RO rather than SO during the config 
uration process that occurs upon link startup. The frames 
are received on the return data-in (Rl) line of device one 
which then passes the frames directly (buffered only) out 
on its RO line back to the master. The master receives the 
frames on its SI line to complete the process. This entire 
process takes about 8 ms or less, depending on the number 
of devices connected and the amount of data returned. 

HP-HIL Protocol 
Automatic polling (data collection from the devices) is 

also possible by the MLC and requires processor interven 
tion only when data is received. The master's processor 
can also be hard reset by the HP-HIL devices through the 
MLC. 

Each input device on the link is assigned a unique ad 
dress so that devices can be distinguished from one another. 

Frames have three address bits, which allows for eight 
unique addresses. Addresses one through seven are used 
for devices on the link. Address zero is reserved as a uni 
versal address which is used when a command is to be 
acted upon by every device. 

HP-HIL has a command set through which all necessary 
functions to set up and maintain the link are performed. 
The commands can be grouped into five categories: config 
uration, error recovery, data retrieval, identification, and 
special functions. 

Configuration is the process by which the link is set up 
so that the master can collect data from input devices in 
an orderly manner. Since the master does not know what 
devices and how many devices are connected to the link 
upon power-up, the configuration process must occur be 
fore the link can be used. Configuration typically occurs 
when the master is first powered up. The configuration 
process is handled by the master's firmware and requires 
no user intervention. The goal of the configuration process 
is to assign a unique address to each device on the link, 
and to set the device modes so that data will be looped 
back by the last device on the link. (The SLC in a device 
can internally loop data back to upstream devices or pass 
data on to downstream devices.) In the process, each device 
is requested to identify itself (report an ID code) so that 
the master will have the necessary parameters for scaling 
the device data. Also, the master can determine if any de 
vice supports advanced features. 

HP-HIL provides several levels of error recovery. If an 
error occurs, the error recovery process will preserve the 
maximum amount of data and minimize the master's in 
teraction with the link. Although recovery is performed by 
the master's firmware, errors can be detected either by de 
vices or by the master. For example, an error might occur 
when a user disconnects a device while it is reporting data. 
The disrupted frame(s) would be detected by the master, 
causing error recovery to begin. Although a part of error 
recovery, disconnecting devices is considered a normal 
part of link operation. If data is lost from devices still re 
maining on the link, the data can be recovered. Devices 
save the data that was last transmitted so that if an error 
occurs, the master can request the data again. 

Data retrieval or polling is the process by which the 
master gathers information from the input devices con 
nected to the link. Keyswitch transition data, character 
data, position data, and a limited amount of status informa- 
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tion can be communicated back to the master using the 
data retrieval commands. When used with information ob 
tained by the identification commands, input device data 
can be completely processed. The master can request data 
from a specific device or all devices. A maximum of 15 
bytes of data can be returned in response to a single poll 
command. Devices determine if there is sufficient room to 
add their data to a passing poll command. Since the com 
mand always trails the data, the device inserts its data and 
then retransmits the command. Because there is always an 
address associated with the data, the master can easily 
determine where the data originated. 

Identification commands are used to determine the type 
of the attached devices and their characteristics. Device 
types could be keyboards, relative positioning devices (e.g., 
mice), absolute positioning devices (e.g., digitizers), or 
other devices. Characteristics of devices are typically reso 
lutions (counts per centimeter), maximum counts, direc 
tional information, and information on how the device re 
ports byte Devices also carry an internal identification byte 
called the device ID byte. This ID byte is assigned to the 
device during its development and is placed in the device's 
microcontroller code. The ID byte is used to identify the 
type of device (keyboard, relative positioning, etc.) and 
nationality (native language) in the case of keyboards or 
keypads. 

HP-HIL can be used in other ways than efficient collec 
tion of data from input devices. Special functions include 
commands designed to take advantage of advanced features 
supported by some input devices. These features are related 
to register reads/writes, keyswitch autorepeat, output, and 
system reset. These capabilities are not required for basic 
HP-HIL operation, but they are available for devices with 
special requirements. For higher-speed data transfers (up 
to 6,500 bytes per second), register-oriented commands 
from this category would be used. 

System and Device Control  
Controlling the link through the MLC consists of four 

basic activities: configuration, error recovery, polling (data 
collection), and adding devices to the link. Upon system 
startup (usually part of the power-on routines), the master's 
processor performs a self-test on the MLC. Then the config 
uration process begins. The processor issues the appro 
priate commands to identify and configure any devices on 
the link. Once the link is configured, polling begins and 
is the main activity of the MLC. Occasionally (perhaps once 
a second), the processor will have the MLC issue commands 
that will detect if a device has been added to the link. If 
so, the new device is configured into the link and polling 
resumes. 

Device control consists of three activities: initialization, 
servicing interrupts, and collecting data. Initialization oc 
curs at power-up and causes the SLC to perform a self-test. 
The device microcontroller also performs a self-test. When 
the self-tests are complete, the microcontroller places the 
device's SLC in its appropriate power-up mode, concluding 
the initialization process. The microcontroller then spends 
the rest of the time checking for interrupts from the SLC 
and collecting new data. An interrupt is generated by the 
SLC whenever a frame is received. The device's microcon 
troller then begins an interrupt service routine which may 
be simple or involved depending on the frame contents. 
When not servicing interrupts, the microcontroller looks 
for any new data from the device's input mechanisms. This 
could be sensing a key depressed, or checking for a trans 
ition on an optical receiver, etc. When data is available, 
the microcontroller formats the data so that it will be ready 
for transmission to the master. 
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Software Veri f icat ion Using Branch 
Analysis 
Impos ing branch coverage requ i rements  on a  sof tware 
test ing pro ject  can be counterproduct ive unless a 
comprehensive branch analys is  methodology is  fo l lowed.  

by Daniel  E.  Herington,  Paul  A.  Nichols,  and Roger D.  Lipp 

BRANCH ANALYSIS IS A METHOD of assessing the 
thoroughness of software testing. The method con 
sists of inserting procedure calls, called probes, into 

the code at all of the decision points. These probes make 
it possible to monitor the execution of specific portions of 
the software. 

This paper addresses the problems and issues of using 
branch analysis during software testing. We begin by dis 
cussing common software testing metrics, including the 
branch coverage metric. We then discuss software testing, 
both functional and structural, using branch analysis. 

When we first began using branch analysis as a require 
ment for the release of systems software, many problems 
occurred because we started without a clear understanding 
of this coverage metric and there was no known testing 
methodology using this metric. The final sections of this 
paper discuss what we have learned from the use of branch 
analysis and the testing methodology we have developed 
to provide for an efficient, cost-effective, and quality- 
conscious software verification process using branch 
analysis. 

Verifying Software Quali ty 
Software quality can be, and is, measured by a number 

of different elements, including functionality, usability, re 
liability, and others. Often, the most visible aspect of soft 
ware quality is conformance to specifications, or more 
realistically, nonconformance to specifications â€” that is, 
errors. Because software is conceived, specified, designed, 
and built by humans, there are usually plenty of these 
nonconformances in any large software system. Software 
quality can be improved by avoiding these errors using 
software engineering techniques, or by finding and remov 
ing them using software verification techniques â€” usually 
both. This paper addresses a special type of software ver 
ification. 

Software can be verified in two ways: statically, using 
desk checks, walkthroughs, inspections, static code evalu 
ation tools, and the like, or dynamically, using any of a 
number of software testing techniques. 

For managers to be able to control the software verifica 
tion process, they need to be able to quantify this process. 
To this end, a variety of software metrics are collected. The 
most important of these for the purposes of this paper is 
branch coverage. Branch coverage is a metric that identifies 
how much of the software, at the source code level, has 
been executed by the test suite. 

We started collecting and using the branch coverage met 
ric in 1981. At the time, there was no known testing 
methodology using this metric. As a result, a number of 
interesting and often frustrating problems occurred. We 
have been focusing considerable attention on clearly under 
standing these problems and the solutions that various proj 
ect teams have proposed and tried. 

We have identified a complex set of reasons for the prob 
lems. One is that our expectations of testing were raised 
markedly because we now had detailed information on 
testing coverage. We also had a difficult time trying to 
identify and develop tools that would help our engineers 
test specific sections of code. 

We have found some positive process improvements that 
have helped our engineers conduct branch analysis testing 
in a much more cost-effective and quality-conscious man 
ner. We have also developed a methodology that combines 
all of these new techniques to provide a structural software 
verification process that is free of many of the problems 
we encountered. 

Software Test ing Metr ics 
Thorough and effective testing is paramount to the suc 

cess of a software product. Proving the software reliable is 
an important part of the testing. To accomplish this, the 
software must be fully exercised, and any defects detected 
along the way must be removed. This is an extremely dif 
ficult, tedious, and complex activity, frequently taking 40 
to 60 percent of the total project effort. It can also be a time 
of frustration. Questions such as "How much testing is 
enough?" and "What are the testing results to date?" are 
frequently asked. The information needed to answer these 
questions is often not available. 

Many of these problems can be overcome or controlled, 
at least to some extent, by using good metrics. These help 
to assess progress, report status, and assist in decision mak 
ing. No one metric is sufficient; rather, a number of differ 
ent, well-defined metrics are required. Each provides infor 
mation about a different aspect of the process, and they 
combine to form a complete and accurate picture of the 
testing process. 

The metrics of interest to this discussion fall into two 
general categories. First, there are those that quantify the 
testing coverage, and second, there are those that quantify 
the software's reliability. 

Testing coverage must be quantified and assessed from 
both an external, or functional, and an internal, or struc- 
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tural, point of view. For the former, assurance needs to be 
given that all system functionality has been exercised. Tests 
to validate external features are identified from the specifi 
cation. They are then created, and their execution progress 
is tracked using a function matrix. This matrix provides a 
quantification of functional testing coverage. 

Testing the software from only an external point of view 
is insufficient. Many conditional branches or decisions 
made by a piece of software are there to support internally 
implemented functions. This is especially true in system 
software. Testing from only an external point of view will 
rarely exercise all of this logic. An internal view of the 
software is required. Additional tests can be derived by 
using the internal software specifications. To assure com 
plete structural coverage, however, the tester must be able 
to determine not only that the software functions have all 
been exercised, but also that all software logic has been 
exercised. Hence the tester must be able to monitor what 
is being executed inside the software. This can be achieved 
by using a tool to collect the branch coverage metric. This 
branch analysis tool tells the tester which branches in the 
code have been executed and which ones have not. Using 
this data, additional test cases can be derived to exercise 
untested software logic. 

Quantifying software reliability means tracking problems 
detected and evaluating product stability. All detected 
problems must be classified and analyzed. Problems are 
divided into those affecting reliability and those affecting 
other aspects of quality, such as ease of use or documenta 
tion clarity. Reliability problems, or errors, are analyzed 
to assess severity, to determine their true causes, and to 
identify where in the software they were found and how 
they were discovered. Corrective action to resolve them is 
also tracked. Software stability is assessed by determining 
how long between failures the software will run under a 
defined load. This is typically known in the hardware 
world as mean time between failures (MTBF), and it is just 
as important for software as it is for hardware. Progress is 
determined by observing a decrease in the frequency of the 
detection of errors and an increase in MTBF. 

A complete set of testing metrics must contain those 
pertaining to coverage and those pertaining to reliability. 
Coverage metrics include test case matrices and branch 
analysis. The matrices quantify the testing of external fea 

tures, while branch analysis quantifies the testing of the 
internal logic that implements these features. Reliability 
metrics include discovered defects and mean time between 
failures. All of this information helps quantify and improve 
the effectiveness of the testing process. Over the past sev 
eral years, use of these metrics has been increasing and 
their value has become clearer and better understood. At 
the same time, the understanding of how testing metrics 
affect the testing process has also improved. For instance, 
we have found that knowing which tests exercise which 
portions of the logic improves the testers' understanding 
of the software. We have also found that more defects are 
likely to occur in a module with high decision (branch) 
density (see Fig. 1 ) . However, we have also found that using 
an incomplete set of metrics can have a detrimental effect 
on the testing process. 

The Software Test ing Process 
The two major classifications of software testing are func 

tional testing and structural testing. Functional testing is 
also referred to as black-box testing because it is conducted 
by viewing the software as a black box. In other words, the 
tests are written with no knowledge of the internal structure 
of the program. In fact, functional tests are most often writ 
ten from the software specifications before the code has 
even been written. Structural testing, or white-box testing, 
takes the opposite point of view. The major concern of 
structural testing is to ensure that all of the code of the 
program has been executed during testing. This is ac 
complished by monitoring the program's execution during 
testing. 
Functional Testing. The two most widely accepted tech 
niques for functional testing are equivalence class parti 
tioning and boundary value analysis.1"6 

Equivalence class partitioning is a technique designed 
to partition the input domain into classes such that if one 
test case from a class is executed and fails to find an error 
then any other test case in that class would fail to find an 
error. This technique is essentially designed to reduce the 
number of tests necessary to verify that the code meets its 
specifications. 

Boundary value analysis is actually a spin-off of equiva 
lence class partitioning. Since most errors are found at or 
near the boundaries of the equivalence classes, boundary 

N e t w o r k i n g  P r o d u c t  

P r e r e l e a s e  B r a n c h  a n d  E r r o r  D e n s i t y  D a t a  

2 4  C o m p o n e n t s  

5  C o m p .  w i t h  A v g .  B R / K N C S S  <  1 1 1 . 2 4  

6  C o m p .  w i t h  A v g .  B R / K N C S S  >  1 7 1 . 2 4  

A v g .  B R / K N C S S  

1 4 1 . 2 4  

9 1 . 8 3  

198 .91  

K P / K N C S S  

2 . 3 9  

2 . 2 9  

3.81 

L e g e n d  

A v g .  s t a t e m e n t s  A v e r a g e  b r a n c h e s  p e r  1 0 0 0  n o n c o m m e n t  s o u r c e  s t a t e m e n t s  

K P / K N C S S :  K n o w n  p r o b l e m s  p e r  1 0 0 0  n o n c o m m e n t  s o u r c e  s t a t e m e n t s  

F i g .  1 .  D a t a  c o m p i l e d  f o r  t h e  
components  o f  a  ne twork ing  so f t  
ware product  shows that  more de 
fects  are l ike ly  to  occur  in  a  mod 
ule that has higher branch density. 
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value analysis is used to assure thorough testing of bound 
ary conditions. This is done by writing additional test cases 
immediately before, at. and immediately beyond the bound 
aries of each of the equivalence classes. This also tests for 
detection of erroneous inputs beyond legal boundaries. 
Structural Testing. A major weakness of functional testing 
is that there is no way to be sure that testing is complete. 
Structural testing is used to help alleviate this weakness. 
Structural testing is conducted using a special,  in 
strumented version of the software which contains trans 
parent procedure calls (called probes) which are inserted 
into the code by the compiler. When the program is tested, 
the probes log which sections of code are executed by the 
tests. 

The most obvious benefit of structural testing is the iden 
tification of untested code. All of the code in the system 
was included to provide some type of functionality. Some 
of this code may be the implementation of internal features 
that would not be apparent from the specification. Func 
tional test cases are written to test the external functional 
ity. If some of the code goes unexecuted after this testing 
then part of the implementation of the functionality has 
not been tested and there is a potential for errors to go 
undetected. Structural testing can help alleviate this prob 
lem by identifying untested code. Typically, the automated 
functional test suite is run with an instrumented version 
of the software to evaluate the completeness of the test 
suite. We have found that for system level software, these 
automated tests leave 40% to 60% of the branches unexe 
cuted. Some of the missing tests are functional tests that 
were overlooked during the development of the test suite, 
but most of them are actually structural tests of function 
alities that are transparent to the user-level functionality 
of the system. These include error recovery processing and 
housekeeping processing that must be done before the sys 
tem can do its specialized function. The key point here is 
that without structural testing these holes in test suites 
cannot be exposed. 

Another benefit of structural testing is the quantification 
of the testing effort. The first line of Tom DeMarco's book 
Controlling Software Projects7 is: "You can't control what 
you can't measure." Structural testing is completely quan 
tifiable, giving us much greater control of the testing pro 
cess. 
Conducting Branch Analysis. Fig. 2 shows the typical flow 
of activities when conducting branch analysis on a software 
component. First, functional testing is conducted using the 
traditional functional testing techniques. These tests are 
rerun with the instrumented program to measure the test 
suite. The data is compared with the coverage criteria to 
see if the current level of coverage is sufficient for release 
of the system. If the coverage is not sufficient (the normal 
case), the branch analysis data and the source code are 
analyzed to identify untested functionalities. New test 
cases are created to test these functionalities. These tests 
are implemented and run using the instrumented program. 
If errors are found by the new test cases, the errors are 
fixed and the regression package is augmented and rerun 
to make sure no new errors have been introduced by the 
fixes. At this time the new coverage number is compared 
with the release criteria again. This loop is followed itera- 

tively until the release criteria for branch coverage are met . 

Branch Analysis Problems 

Branch analysis is not the perfect testing aid. Some in 
teresting problems occurred when branch analysis require 
ments were set on projects throughout the computer sector 
of HP. 

Branch Analysis  Doesn' t  Prove Correctness 
The first problem we ran into was a misunderstanding 

of the branch coverage metric. It is very important to realize 
at the outset that there is not necessarily any correlation 
between high branch coverage and low defect rates. The 
branch coverage metric is a meaningless number if the 
testing is not conducted properly. High branch coverage 
alone will not expose errors. Branch analysis has all of the 
weaknesses of structural testing in general. For instance, 
there is no way branch analysis can expose missing-code 
errors. These occur when part of the functionality of the 
system described in the specification is overlooked and 
doesn't exist in the code. Since branch analysis just mea 
sures what is present in the code, no tests will be shown 
to be missing from the test suite for the missing code, even 
though there is functionality in the specification that hasn't 
been tested. Another weakness of structural testing shows 

Functional 
Testing 

Branch 
Analysis 

No 

Identify Untested 
Functionality 

Create and Implement 
New Tests 

Fig.  2.  F low chan for  a typical  sof tware project  using branch 
analysis. 

JUNE 1987  HEWLETT-PACKARD JOURNAL 15  

© Copr. 1949-1998 Hewlett-Packard Co.



up in systems software that must run concurrently. Because 
the branch analysis metric has no conception of timing, 
code that has timing errors in it may be logged as tested 
without exposing these errors. In other words, some of the 
code may exhibit errors only when another specific event 
occurs at a specific moment. Branch analysis also suffers 
from many of the weaknesses of software testing in general. 
This can be illustrated by one of the most noted weaknesses 
of software testing: coincidental correctness. Consider the 
following Pascal code: 

r e a d l n ( N U M ) ;  
X  : =  N U M  * 2 ;  
w r i t e l n f r e s u l t  =  ' , X ) ;  

If the input to the readln is a 2, the output of the writeln would 
be: 

r e s u l t  =  4  

Now suppose the second statement above was supposed 
to be: 

X  : =  N U M  +  2 ;  

or 

X  : =  N U M  *  2 ;  

In all these cases the output would be the same for the 
input given. However, the program logic may still be wrong. 
Branch analysis compounds this problem by giving a report 
that proves that this code has been executed. Since the 
output was correct, this report gives the tester a false sense 
of security with respect to this code. 

The main point here is that, by itself, neither functional 
testing nor structural testing is satisfactory. They must be 
combined in a systematic method to make sure they are 
both used to their best advantage. 

Scheduling Confl icts 
It turned out that increasing testing coverage to meet our 

coverage requirements was considerably more difficult 
than we had anticipated. Since we were setting these re 
quirements on projects that were already under way, and 
in some cases the code was already completely integrated, 
we immediately ran into scheduling conflicts. This put a 
great deal of pressure on the test engineers to reach the 
coverage requirements as quickly as possible. This gave 
them an incentive to raise the coverage using whatever 
tools and techniques were available. Since there were no 
proper tools available at the time, and no techniques spe 
cifically for this type of testing, our engineers were conduct 
ing testing in a relatively ad hoc fashion. This caused an 
intensification of the rest of the problems discussed in this 
section. In other words, in this case, the concept of learn 

by doing turned out to be very costly indeed. 
There was no real solution to this problem. The hard 

fact was that we were raising the expectations of our testing 
and therefore had to extend the expectations of our sched 
ules for that testing commensurately. It should also be 
noted that the additional testing that was being conducted 
was also finding more errors. This made it more difficult 
to keep up with removing them as well. 

Increasing Difficulty 
Another problem worth noting is caused by the fact that 

branch coverage becomes increasingly more difficult to im 
prove. This increase in difficulty is nonlinear; the higher 
the current branch coverage, the more difficult it is to im 
prove the branch coverage (see Fig. 3). The reasons for this 
are fairly simple. First, we have found that roughly two 
thirds of the untested branches are in error detection and 
recovery code. This is understandable, because systems 
software must protect its own logic from the actions of 
many other processes. These errors must often be checked 
at many points in the system. Since the offending processes 
may or may not be under the control of the software under 
test, it can be very difficult to cause these errors to occur 
at the precise time required for particular error checks. 

Another reason for increased difficulty is that as the 
branch coverage increases, the untested branches tend to 
become widely dispersed in the software. This often means 
that fairly elaborate tests must be created to test one or two 
previously unexecuted branches. 

Ineffect ive Test ing Tendencies 
The results of the problems described above, com 

pounded by the lack of proper tool support, are several 
tendencies that represent attempts to circumvent the prob 
lems, but have the effect of cheating the testing process. 
Testing Easy Branches. The first tendency is to test all of 
the easy branches instead of the branches that really should 
be tested. An easy branch is a branch that requires very 
little effort to execute. Unfortunately, the easy branches 
are not necessarily where the errors are! Hence, if testing 

Ext ra  Cos t  to r  H igher  
Qua l i t y  Assu rance  

(Time) 

Ef for t  (T ime)  

F ig .  3 .  When  b ranch  cove rage  i s  h ighe r ,  more  e f f o r t  i s  r e  
quired to improve i t .  
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is done with the sole intention of testing as many of the 
easy branches as possible, leaving the more difficult 
branches unexecuted, then the value of the testing process 
has been degraded. 
Ignoring Possible Decision Errors. Another ineffective 
tendency in branch analysis testing is to resort to tech 
niques such as using predicate algebra to map out the re 
quired decision values along a path to untested code, or 
using a debugger to manipulate the decision variables to 
reach the untested code. These techniques make the as 
sumption that the decision predicates are all correct. This 
is an invalid assumption. In fact, in many cases the majority 
of code errors are in the decisions themselves, not the 
straight-line code between them. 

This is borne out in data that was compiled for the com 
ponents of a networking product developed at HP (Fig. 1). 
There was a 66% increase in error density from the five 
components with the lowest branch density to the six com 
ponents with the highest branch density. This shows that 
the techniques described above have only limited degrees 
of usefulness. Since mapping out decisions is actually a 
way of manually executing the code, some of the decision 
errors may still be found. In fact, this is a degenerate form 
of a walkthrough. However, in this form it is a highly error- 
prone technique. In the case of using a debugger to force 
the decisions, there is no way to ensure that artificially 
changing decision variables won't hide or even cause er 
rors. The main problem is that test data obtained by these 
techniques has a significantly lower chance of exposing 
errors than traditional functional testing techniques. Since 
the objective of testing is to expose any errors that may 
exist, these techniques should be avoided whenever possi 
ble. 

New HP Methods 

This section describes some new techniques that have 
been used at HP to help alleviate the problems described 
above. A comprehensive branch analysis methodology 
based on these techniques is then described. 

Sett ing Requirements for  Branch Analysis 
Many of the problems we ran into when we first started 

using branch analysis were caused by setting high coverage 
requirements on testing that was being conducted on sys 
tems software that was fully integrated. It turned out that 
this was the wrong place for these requirements to be set. 
This section describes the issues related to branch analysis 
through the prerelease testing life cycle. In this section, a 
procedure is a single subroutine, procedure, or function in 
the sense that a compiler would see it. A component is a 
cluster of these procedures that together form a significant 
functionality of the system. A system represents all of the 
functionalities that would be delivered to the end user. 
Procedure Level Testing. There are few methodologies de 
signed for this phase of testing. This is understandable 
because this type of testing is almost always conducted by 
the engineer who wrote the code and it is usually conducted 
shortly after the code is written. As a result, the tester 
knows the code very well and can use ad hoc techniques 
to ensure that it adheres to its specifications. This is nor 

mally done by creating a driver and stubs around the pro 
cedure to be tested. The driver orchestrates the testing 
while the stubs simulate any outside functionality needed 
for the procedure to perform its assigned function. 

It would be a relatively simple task to conduct branch 
analysis on software of this type. The tester knows the 
functionality of all of the code and there are very few 
branches. Also, error conditions can be forced or simulated 
by using stubs and global variables. 

Unfortunately, testing at this level has such a limited 
scope that any branch analysis data that is obtained would 
be suspect. The reasons for this are fairly simple. The test 
ing is being conducted in an unreaÃ¼bÃœL environment in 
which no interfaces are tested. As a result, none of the 
invalid assumptions that each engineer has about these 
interfaces will be exposed by the testing. Also, since we 
are dealing with a very small piece of code, it would be 
trivial to attain 100% branch coverage at this level. This 
leads to a false sense of security that there are no errors in 
the procedure. Therefore, we do not recommend imposing 
branch analysis requirements on testing at this level. Please 
note that we are not recommending skipping procedure 
level testing, rather we are recommending conducting pro 
cedure level testing without requirements for branch 
analysis. 
Component Level Testing. Testing at the component level 
is conducted in much the same way as at the procedure 
level. The driver and stubs are used in a similar way. The 
driver will necessarily be more complex because there is 
more functionality being tested. Also, there will be fewer 
stubs but some of them will also have to be more complex. 

Branch analysis will still be fairly simple at this level. 
The code should be compact enough to allow the tester to 
understand, to some degree, all of its functionality. Also, 
the driver and stubs can still be used to force or simulate 
most error conditions. 

Although testing at the component level is conducted in 
a similar fashion to that at the procedure level, the value 
of the tests is significantly increased. This is because many 
of the interfaces that were simulated at the procedure level 
are replaced with the actual code. There are still some 
missing dependencies, but they can be minimized by a 
careful partitioning of components. In addition, this is the 
first level at which meaningful functional testing can be 
performed. This is because some user-level functionality 
now exists. A tester can now use the documentation of that 
functionality to create functional tests. These points add a 
good measure of test validity to any branch analysis data 
obtained during testing and make this level a prime candi 
date for imposing high branch analysis requirements. 
System Level Testing. Testing at the system level requires 
a different strategy. The driver and stubs are eliminated, 
creating a need to write tests that run the system in the 
same ways that the end user is expected to run it. Normally 
the system is built up slowly by adding new functionalities 
gradually and running tests to make sure the new function 
alities work as expected with the rest of the system. As the 
system is built up, so is the test suite. When the system is 
complete the entire test suite is run again to make sure noth 
ing was missed. 

Branch analysis at this level can be slow, tedious, and 
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frustrating. The main reason for this is obvious; there are 
more levels of program structure that must be executed to 
reach branches at the lower levels of each component. 
Naturally, it is much easier to write a test to execute 
branches two or three levels deep in a component than it 
is to execute those same branches when they are now six 
or seven levels deep in the system. Also, since the driver 
and the stubs have been eliminated, it can be very difficult 
to test error detection and recovery code. This becomes 
even more difficult when testing systems software, in 
which some of the errors are hardware or timing related. 
One other serious problem at this level is that this testing 
occurs immediately before the product is released. There 
is usually a great deal of pressure on the testers to get the 
product ready to ship. While the branch analysis require 
ment does not allow the testers to forego quality objectives 
in deference to schedule pressure, it does put added pres 
sure on these engineers because there is a branch coverage 
requirement that now must be met. 

Test validity is highest at this level of testing. There are 
two main reasons for this. The first is that the code is all 
there. There are no longer any artificial interfaces that can 
hide errors. The second is that, at this level, tests are being 
run that execute the system the way the end user is expected 
to execute it. Therefore, the tests can find documentation 
and usability problems as well as coding errors. In any 
event, branch coverage at this level should be expected to 
drop from that achieved at the component level. Emphasis 
should be placed on testing intercomponent functionalities 
and interfaces. The intracomponent functionalities have 
already been thoroughly exercised during component level 
testing. 

These recommendations are designed to provide a 
guideline for the cost-effective use of branch analysis. It is 
crucial that the ultimate goal of testing remain the detection 
of errors. We have seen that imposing high branch analysis 
requirements on system level testing can alter the priorities 
of the testers because the product is about to be released 
and the branch analysis requirements have not yet been 
met. When this happens, branch analysis testing is no 
longer cost-effective and other methods of software verifi 
cation should be employed. 

has not been tested by the initial test suite. The expert then 
recommends additional functional tests to the tester, along 
with an estimate of the expected improvement of branch 
coverage. The tester then takes the functional specification 
of the test and uses traditional functional testing techniques 
to create a series of tests that will thoroughly test that 
functionality. This process is repeated until testing is com 
plete. 

The choice of the expert for the team testing technique 
is very important. It is the expert who is responsible for 
determining the functionality of individual sections of the 
code. The expert must therefore be very familiar with both 
the product being tested and the code being tested. The 
difference between the product and the code is that the 
former implies general knowledge about the product's 
functionality and the latter implies specific knowledge 
about how the programmers have implemented certain fea 
tures. The best choice of expert is one of the original authors 
of the code. 

Since the tester will be responsible for designing and 
implementing functional tests, he or she must be familiar, 
and preferably experienced, with the functional testing 
techniques described earlier in this paper. The tester must 
also be familiar with the functionality of the product being 
tested and with the operation of the hardware on which 
the product is implemented. An understanding of the ulti 
mate user of the product is also needed. The quality assur 
ance engineer usually fits into this role quite well. 

Proper communication between the expert and the tester 
is essential for this team testing process to work. The expert 
must have a way of easily and efficiently communicating 
the necessary information about the functional testing that 
must yet be done on the software. If the communication 
medium is too cumbersome or too inefficient then it simply 
won't be used and the full benefits of team testing will not 
be achieved. Fig. 4 shows the information flow for this 
process. The tester gives the expert a detailed report indi 
cating the branch coverage of the tests so far. The expert 
examines the data and gives the tester a set of forms that 
indicate the additional functionalities that need to be tested 
and the expected increase in branch coverage. The latter 

Team Test ing  
A way to avoid the problem of misinterpretation of the 

branch coverage metric is to try to use only functional 
testing techniques to augment the test suite. However, 
branch analysis tends to give the tester an understanding 
of very low-level code, and it is difficult to ignore this 
knowledge when creating functional tests. A technique 
known as team testing, which is being used for testing the 
MPE XL operating system, has been very effective at resolv 
ing this problem. This technique uses two engineers in a 
way that separates the low-level knowledge of the system 
from the design of the functional tests. 

The engineer who is familiar with the code under test 
is referred to as the expert. The other engineer is referred 
to as the tester. Initially, the tester designs functional tests 
for the software. After the tests have been run, the branch 
coverage data is examined by the expert. The expert is then 
in a position to determine what functionality of the system 

E x t e r n a l  
S p e c i f i c a t i o n  

E x t e r n a l  
S p e c i f i c a t i o n  

T e s t  
S p e c i f i c a t i o n s  

Fig.  4.  In format ion f low in team test ing.  
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piece of information is used by both engineers as a check 
point for proper communication. 

The expert has the branch coverage information obtained 
from the tester and the source code for the software being 
tested. Using this information, the expert can determine 
which physical portions of the code have not been tested 
by the test suite so far. By examining the untested portions 
of the code, and understanding the functional specification 
of the software, the expert determines what new functional 
tests need to be added to the test suite. While doing this, 
the expert should write down a list of previously unexe 
cuted branches that these tests will execute. The expert is 
not concerned with the details ui Â«riling or executing the 
tests or any other details of testing. The expert then passes 
the branch "hit list" along with the functional test descrip 
tions to the tester. 

The tester receives the functional test descriptions from 
the expert and proceeds to write functional tests that fully 
test the specified functionality. This is the critical part. If 
the tester does not test the functionality using all of the 
standard functional testing techniques, then all of the effort 
going into the testing will be of limited value. This is be 
cause these functional testing techniques are designed to 
find errors, whereas branch analysis is designed to ensure 
that all of the code is executed. If the tests can be fully 
automated, the tester adds them to the automated test suite. 
If the tests cannot be fully automated, a careful log is kept 
indicating the steps necessary for the test to be replicated. 
In any event, the tester then creates the necessary environ 
ment for the functional test to take place and executes the 
tests. If any of the branches on the hit list are not executed, 
the tester must notify the expert of this discrepancy. This 
could be either an error or simply a miscommunication 
between the expert and the tester. Either case must be re 
solved. The new branch coverage data is then given back 
to the expert and the process is repeated. 

As already mentioned, there are several areas that need 
special attention for team testing to be successful. First, 
the members of the team must be chosen carefully. A weak 
link in this chain could destroy any benefits the methodol 
ogy has to offer. Next, the lines of communication between 
the tester and the expert must be clear and efficient. Both 
engineers can be excellent, but if they don't communicate 
properly, neither will be effective. Finally, the tester must 
test the software using functional testing techniques, inde 
pendent of branch analysis. It's not enough just to execute 
a branch. The branch must be tested in a way that will 
expose errors. 

Branch Analysis Walkthroughs 
Now we introduce a technique known as a branch 

analysis walkthrough. The goals of the branch analysis 
walkthrough are vastly different from those of traditional 
walkthroughs and inspections. In fact, branch analysis 
walkthroughs may be more aptly termed risk analysis 
walkthroughs. Branch analysis walkthroughs are used to 
identify critical, complex, and error-prone code that should 
be targeted for later verification. This makes it possible to 
direct the remaining resources of the project toward the 
verification of critical code or code that has a reasonable 
possibility of containing an error. This provides a much 

more cost-effective software verification process. 
Walkthroughs and code inspections offer many benefits 

(see box, page 21). Since there are plenty of references on 
traditional structured walkthroughs and inspections1'3'4'3'8 
we will only discuss the key differences between a branch 
analysis walkthrough and the more traditional approach 
discussed in the literature. 

Two prominent features of the branch analysis walk 
through are that the code being inspected is sparsely dis 
persed throughout a software component, and that there 
is usually a lot more code needing inspection. Fortunately. 
since the goal is simply to perform a risk analysis on the 
coHe the walkthrough team is capable of inspecting the 
code at a high rate. However, this is not true of the prepa 
ration stage. For the branch analysis walkthrough to be 
successful, it is critical that all members of the team be 
well prepared. 
Preparation. There are four steps in the proper preparation 
for a branch analysis walkthrough: 
1. Test the code as much as possible. Since you will have 

to walk through all of the untested code, it is very impor 
tant that the volume of code be minimized. 

2. Have the moderator annotate a listing. The moderator 
should take a current listing of the code and mark all 
branches that have not been executed during testing. 
While doing this, any interfaces into or out of this code 
should be cross-referenced unless they are already easy 
to find. 

3. Hold a preview meeting. A preview meeting should be 
held at least one week before the walkthroughs are to 
commence. The team should handle the following items 
during this meeting: 
â€¢ Pass out copies of the annotated listing to all of the 

team members 
â€¢ Organize the walkthrough process 
â€¢ Determine the logical order in which the branches 

will be inspected 
â€¢ Develop a schedule for completing the walkthroughs 
â€¢ Clarify each engineer's role in the walkthroughs. 

4. Analyze the code. Each member of the team must be 
come very familiar with the code to be inspected before 
the walkthroughs begin. This is critic al because during 
the walkthroughs themselves the team will be moving 
fairly quickly. 

The Walkthroughs. To make the branch analysis walk 
through move quickly and smoothly, each branch is simply 
categorized, and only a small portion of the branches are 
actually verified during the walkthrough. The categories 
that branches can be put into are: 
1. Testable. A test case can be created to execute this 

branch without an unreasonable amount of effort. 
2. Signed off. The branch is relatively trivial, correct, and 

not critical to the overall function of the system. 
3. Not signed off. An error was found in the decision logic 

or the code for the branch. 
4. Unreachable. Previous logic has eliminated the possibil 

ity of executing this branch. 
5. Verification necessary. The branch is too critical or too 

complex to be signed off without more thorough verifi 
cation. 

Testable branches are typically functional tests that were 
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overlooked. These branches can usually be identified very 
easily and classified quickly. For a branch to be signed off, 
the walkthrough team must feel very confident that the 
code is correct. The branches in this category are typically 
simple error-exit code that cannot be tested easily because 
the error must occur during a very small time interval. These 
are the only branches that are completely verified by the 
branch analysis walkthrough. Virtually all unreachable 
branches fall into one of two categories. They are either 
redundant error checking or hooks inserted into the code 
to facilitate the addition of scheduled enhancements. In 
the case of a redundant error check, if the error being tested 
cannot possibly occur between the two error checks then 
the redundant one should be removed. The rest of the 
branches should be left in the code but deducted from the 
calculation of the coverage. The last category is used to 
speed up the branch analysis walkthroughs. Any time a 
branch would require considerable effort for the team to 
be confident that the branch is correct, or if an error in this 
branch could seriously degrade the reliability of the entire 
system, this branch needs to be investigated more 
thoroughly at a later date. 

As you can see, these categories are designed to allow 
the walkthrough team to move quickly. Most time is spent 
verifying branches that are relatively trivial (those in 
categories 2 and 3). The rest of the categories are to be dealt 
with later, and therefore each branch can be scanned 
quickly to determine the proper category. 

It is important that the members of the team have a high 
level of concentration during walkthroughs. This is even 
more important for branch analysis walkthroughs because 
of the speed at which the code is being inspected. To achieve 
this, the walkthroughs should be held in a quiet place with 
no outside distractions and limited to one two-hour session 
per day. Research shows that continuing beyond two hours 
can seriously degrade the quality and efficiency of the 
walkthroughs.8 It is the responsibility of the moderator to 
ensure that these guidelines are adhered to. 
Follow-Up. During the branch analysis walkthrough, a fol 
low-up form must be opened for each branch not put into 
the signed-off category. All of these branches must eventu 
ally be signed off before the product is released. The follow- 
up form contains the following information: 

The branch number and location 
The category the branch is put into 
Comments on why the branch was put into that category 
Follow-up recommendations 
Follow-up comments 
Signature and date of sign-off. 
The first three of these are filled out by the moderator 

during the branch analysis walkthrough. The fourth is filled 
out by the team before follow-up commences. The last two 
are filled out by the quality assurance engineer assigned 
to sign off these branches. It is important that the branch 
number and location be precise enough so that if the code 
changes between the time of the walkthrough and the fol 
low-up, the branch in question can still be identified. The 
comments on the category decision should at least include: 
a description of the error for not-signed-off branches, a 
functional test description for testable branches, and any 
other information that will help the follow-up engineer to 

verify whether or not the branch is correct. 
Follow-up recommendations are essentially a suggestion 

by the team on how the branch should be verified. This is 
explained further in the next section. The follow-up should 
include: 
â€¢ Verification of fixes for errors found. Special care should 

be taken on follow-up of errors found. Studies show that 
one out of every six code fixes is either incorrect or 
introduces other errors.8 

â€¢ Verification that tests were run to execute testable 
branches. 

â€¢ There are two possible resolutions for each of the un 
reachable branches. If it is a hook, remove it from the 
calculation of branch coverage. If it is unreachable, re 
move it from the code. 

â€¢ Obviously, branches in the verification-necessary cate 
gory must be verified by whatever formal means are 
deemed appropriate and then signed off. 

Resources Needed. Table I shows the recommended 

Functional 
Testing 

Branch 
Analysis 

Team Test ing and 
Branch Analysis 

Branch Analysis 
Walkthroughs 

Divide Remaining Branches 
into Groups by Verif ication 

â€¢*Â£* 

Team Testing and â€¢ Other Testing â€¢â€¢ Structured Walkthroughs 
B r a n c h  A n a l y s i s  I  [  T e c h n i q u e s  |  o r  I n s p e c t i o n s  

Rerun Tests and 
Branch Analysis 

Fig.  5.  Flow chart  for  a comprehensive ver i f icat ion methodol  
ogy based on branch analys is .  
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Advantages of Code Inspections 

I n  t h e  p a s t ,  t h e r e  w a s  a  g r e a t  d e b a t e  o n  t h e  u s e  o f  c o d e  
inspect ions as a sof tware ver i f icat ion tool .  I t  was fa i r ly  obvious 
that  the  techn ique cou ld  be e f fec t ive  but  there  were concerns.  
They included: 
â€¢ Cost .  Because code inspect ions are h ighly  labor- in tensive,  

they are except ional ly  cost ly .  
â€¢ Benefit is long-term. It is difficult to determine the effectiveness 

o f  t he  i nspec t i ons  un t i l  l ong  a f t e r  t he  p roduc t  i s  r e l eased .  
Human nature  is  to  avo id  a  shor t - term cost  i f  there  is  on ly  a  
long-term benefi t .  

â€¢ Reproducibility. There is no way to automate a code inspection 
and therefore i t  is extremely di f f icul t  and cost ly to try to repro 
duce the code inspect ion for  regression ver i f icat ion.  

â€¢ Consistency. It is very difficult to ensure consistent error detec 
tion efficiency over time and especially from person to person. 
More  recen t l y  t he  deba te  s l owed .  Mos t  peop le  unde rs tood  

and be l ieved  in  the  e f fec t i veness  o f  code inspec t ions  bu t  s t i l l  
had reservat ions  because o f  the  cost -e f fec t iveness issue.  The 
common excuse was " I  be l ieve that  code inspect ions are good,  
but they take so much of my engineers' t ime and are so expensive 
that  I  can only  af ford to  use them spar ing ly . "  This  was common 
because there was l i t t le  or  no s ta t is t ica l  data  that  showed jus t  
how cost-effective code inspections real ly were. This is no longer 
t he  case .  Re fe rences  1  and  3  show  c l ea r l y  t ha t  t he re  i s  now  
p lenty  o f  exper ience and s ta t is t i ca l  da ta  ver i fy ing  tha t  code in  
spect ions are highly cost-ef fect ive.  

One reason tha t  code inspec t ions  have been proven cos t -e f  
fect ive is  that  they have many benef ic ia l  s ide ef fects other than 
increased qual i ty.1"5 These include: 
â€¢ Improved readabi l i ty  o f  code.  S ince the code must  be read 

by  severa l  eng ineers  o the r  than  the  imp lemento r ,  t he  code  
must be very readable before the inspection can commence. 

â€¢ Training. Because several engineers are conducting a crit ical 
eva luat ion  o f  the  code,  there  is  usua l ly  a  pos i t i ve  exchange 
o f  t echn i ca l  i n f o rma t i on  and  i n te res t i ng  p rog ramming  t ech  
n iques and a lgor i thms dur ing the inspect ion.  

â€¢ Insurance. Understanding of the code is disseminated during 
the  inspec t ion .  Th is  i s  va luab le  i f  t he  deve loper  leaves  the  
pro ject  before i t  is  f in ished.  Someone e lse on the inspect ion 
team can pick up where the developer left off relatively quickly. 

â€¢ Morale. Morale can be improved in two ways. First, inspections 
break up the engineers'  rout ine with an opportunity to interact 
with and learn from the rest of the team. Second, no one l ikes 
to f ind errors dur ing test ing.  The sooner errors are found the 
easier they are to f ix. 

â€¢ Errors are found, rather than symptoms. When a test fai ls, al l  
an engineer  has to go on is  the symptoms of  the fa i lure.  The 
engineer must then debug the system to f ind the error.  During 
an inspect ion,  the error  i tsel f  is  found, making the repair  that  
much easier.  

â€¢ Many errors are found at  once.  Dur ing an inspect ion,  many 
errors may be found in the code before the inspect ion is over.  
A l l  o f  these er rors  can then be f i xed a t  once a f te rward .  I t  i s  
very rare for a test  to expose mult ip le errors.  

â€¢ Errors  can be prevented.  Inspect ions g ive the engineers in  
vo l ved  an  awareness  o f  how e r ro rs  a re  i n t roduced  in to  the  
code .  Th i s  can  he lp  r educe  t he  numbe r  o f  e r r o r s  t hese  en  
g ineers in t roduce in to subsequent  coding ef for ts .  

Most this these benefits can be real ized immediately, making this 
technique very cost-ef fect ive even in the short  term. 
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amount of time to perform each of the steps in the branch 
analysis walkthrough process. Recommendations found in 
the literature are typically designed for full-scale walk 
throughs and are expressed in lines of code per hour. 
Branches per hour is a better measure because it takes into 
consideration the branch density of the code. Code that 
has high branch density tends to be more difficult to under 
stand and more error-prone (see Fig. 1). Therefore, this 
code should be inspected at a slower rate. Based on our 
branch density data, the numbers in Table I are roughly 
equivalent to those in the literature for the preview and 
preparation rates. 

Preview Meeting 
Preparation 
Walkthrough 

Table I  

Vahour + 100-150branches/hour 
15-20 branches/hour 
30-40 branches/hour 

The branch analysis walkthroughs themselves are de 

signed to move quickly and therefore can move at roughly 
twice the rate of a structured walkthrough or inspection. 
We have found that the majority of the branches that make 
it to the branch analysis walkthroughs are very short and 
simple, making these numbers relatively conservative. 

A Comprehensive Ver i f icat ion Methodology 
Fig. 5 shows a revised structural testing process that 

represents how all of the techniques described above fit 
together to form a coordinated software verification pro 
cess. This process will maximize the cost/benefit ratio for 
conducting structural software verification. 

Team testing should be conducted before the branch 
analysis walkthroughs for two important reasons. The first 
reason is that walkthroughs are a labor-intensive activity. 
This means that they will be more expensive and more 
error-prone than testing. Therefore, it is important to make 
sure that the volume of code that must be inspected in the 
walkthroughs is minimized. The second reason is that team 
testing creates an automatable verification of the function 
ality of the software. This becomes very important when 
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the time comes to conduct regression verification. Since 
the walkthroughs can't be automated, it is not likely that 
they will be redone during regression verification. 

After the branch analysis walkthroughs, any branches 
not put into the signed-off category must be verified by 
some formalized means. The decision on whether to use a 
team testing approach or to conduct traditional structured 
code walkthroughs should be made on a per-branch basis. 
The team that conducted the branch analysis walkthroughs 
is probably the best judge of which of these techniques is 
most appropriate for each branch. 

Once it is decided how to verify the remaining branches, 
the teams can then go on to the formal verification. Since 
these are the branches that were deemed important enough 
to warrant formal verification, the verification should be 
thorough and as reproducible as possible. If any errors are 
found during this verification, they should be fixed and 
the regression package augmented and rerun using branch 
analysis. The release criteria are then checked and the loop 
is repeated until they are met. 
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Reader Forum 
The HP Journal  encourages technica l  d iscuss ion of  the top ics presented 
in recent  ar t ic les and wi f l  publ ish let ters expected 
to be of  interest  to our readers 
Let ters must  be br ief  and are subject  to edi t ing.  
Let ters should be addressed to:  

Edi tor ,  Hewlet t -Packard Journal ,  3200 Hi i lv iew Avenue, 
Palo Alto,  CA 94304, U.S.A. 

Editor: 

The viewpoint expressed by Zvonko Fazarinc in the March 
issue of the HP Journal is quite unorthodox and, in that respect, 
quite stimulating ("A Viewpoint on Calculus," p. 38). Of course 
Professor Fazarinc is right when he claims that "we live in a 
computer era" and "we can solve only a handful of differential 
equations." 

But is it really what we want? On more than one occasion 
what we need is a qualitative discussion of the system 
dynamics: is the asymptotic solution periodic, divergent, or 
punctual? Moreover, it is very often useful to discuss how the 
parameters affect the solution. For instance, in fluid dynamics 
the coupling of gravity and diffusion leads to nontrivial effects. 
These effects would be completely blurred by a brute force 
calculation, even though the student would gain skills by de 
veloping the algorithm. 

As a conclusion, while I totally agree that a numerical solu 
tion is certainly a solution, I claim that the development of 
numerical techniques should reinforce rather than weaken the 
teaching of system dynamics (or differential geometry). 

Alain Maruar i  
Professor 

Ã‰cole Nationale SupÃ©rieure des 
Te lecommunicat ions 

I have no doubt that study of quaiitative system dynamics 
provides a good stepping stone toward an understanding of 
associated phenomena. At the same time I must state that the 
evolutionary discrete mathematical formufation coupled with 
a good graphics interface in an interactive environment pro 
vides by far the best medium for such studies. 

I have spent two years among students and faculty at Stan 
ford University exploring the potential of computers for build 
ing intuitive understanding of new concepts. This research has 
strengthened my belief that discrete mathematics offers consid 
erably more than just "brute force calculations." If it is used 
to express first principies it has the potential to mimic nature. 
If it is given an appropriate visual presentation and associa 
tions with some familiar phenomena, it can shorten the time 
normally needed for acquisition of intuitive understanding of 
new concepts. Given a chance to evolve in time, it can provide 
us with an insight into quantitative or qualitative dynamics 
that has no equal anywhere. 

It is so to illustrate these points in a general way, so 
allow me to use your example of gravity and diffusion as a 
vehicle. I have developed a teaching module at Stanford that 
addresses these phenomena in a purely qualitative way but 
uses discrete mathematics behind the scenes. Instead of pre 
senting the student with the equation 

3C(x,t) a C ( x . t )  F ( x , t )  
5x C[x't] 

which separates the average mortal from those who have mas 
tered the partial differential calculus, the module first makes 
an association with the mechanical world. It does so by present 
ing a number of colliding particles moving away from the 
"crowd," where the collisions are more frequent but result in 
a less impaired motion in the direction away from the high 
density. The number of particles in a given position is plotted 
dynamically in the form of a graph directly above them. This 
provides an almost instantaneous intuitive understanding of 
the process and helps visualization later when more complex 
problems are addressed without showing the particles. 
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Dynamic displays of concentration C(x,t) as a function of 
space and time evolving under the influence of gradients and 
externa] forces F(x,tJ may be observed. The student can enter 
arbitrary diffusivity D(xj, force profile Ffxj. and initial concen 
tration C(x,OJ via graphic inputs. Simultaneous display of 
fluxes provides another aid for visualizing nontrivial cases. 

Students have been generating the earth's atmosphere by 
entering inverse-square force profiles. They have produced 
nonspreading concentration packets by shaping diffusivity 
profiles appropriately. But they have definitely gained a strong 
intuitive understanding of asymptotic behavior without miss 
ing the transient behavior, which contains powerful clues to 
understanding the phenomena. 

A number of other modules have been developed that cover 
fields such as semiconductor physics, short-range and Jong- 
range forces, transmission lines, wave interference phenom 
ena, and random processes. All of them have proven to provide 
insight into qualitative behavior without the simplifications 
required when infinitesimal formulations are used. 

My paper, "Computers in Support of Conceptual Learning," 
presents a short description of motivations, results, and conclu 
sions derived from the Stanford study. 

Zvonko Fazar inc 
Senior Scient i f ic  Advisor for  Europe 
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Viewpoints 

Direct ion of  VLSI  CMOS Technology 

by Yoshio Nishi  

SINCE STOCHASTIC FLUCTUATION of device and process 
parameters becomes more significant with increasing 
numbers of transistors on a chip, there is a strong require 

ment for increased noise immunity and decreased power con 
sumption in higher density circuits. Although low-power CMOS 
circuits were invented in the 1960s, they did not increase in 
importance until integration density exceeded 100,000 devices/ 
chip. as then, CMOS has penetrated into static memories as 
well current microprocessors. This article will briefly review the current 
status of CMOS technology and discuss engineering challenges 
for future microcircuit technology. 

CMOS Integrated Circuits 
The earlier CMOS integrated circuits started with calculator 

chips, watch and clock circuit chips, etc., which required lower 
power consumption because of the limited capacity of the battery 
cells also for these applications. CMOS circuits are also 
widely used for logic gates, analog-to-digital converters, and phase- 
locked loop synthesizers, which require either large driving 
capability, wide operating voltage, or noise immunity. Now the 
application of CMOS has been expanded to cover memories and 
microprocessors for computing engines. 

The first CMOS VLSI circuit ever made was a 16K-bit static 
memory which certainly enjoyed all of the features of CMOS men 
tioned above. Since then, each generation of memory device ICs 
has increasingly used a higher percentage of CMOS devices. About 
half of the 64K-bit static memory chips were made using CMOS 
technology and all 256K-bit static memory has been built in CMOS. 
Even in the case of dynamic memory, which has been implemented 
using the technology because of its strong requirement for the 
highest density, CMOS is used for more than 40% of the current 
IM-bit memory chips. The 4M-bit and IBM-bit memory chips 
described at the 1987 International Solid-State Circuits Conference 
have verified again the strong thrust toward CMOS technology. A 
similar change has occurred in the logic VLSI area in that most 
of the newer chips have been implemented as CMOS circuits for 
the same reasons described above. 

Recent progress in application-specific ICs has been made based 
upon CMOS technology. These ICs are considered as one of the 
most important device technology application areas for a company 
that has captive VLSI capability for internal use only. 

Active Devices 
A CMOS circuit cell consists of a pair of MOSFETs, one n-channel 

and one p-channel. Traditionally, n-channel MOSFETs have been 
made starting in a p well in an n substrate. Later, the use of p-channel 
MOSFETs, formed in n wells in a p substrate, became common, 
especially for EPROMs, microprocessors, and dynamic RAMs. 
Since the scaling down of device geometry for higher performance 
requires high substrate density even with structured-in-depth im 
purity profiles, the twin-well structure, a p well for NMOS and 
an n well for PMOS, was introduced because of its larger degree 
of freedom for channel impurity doping and lower junction capaci 
tance design. An n-channel MOSFET needs special consideration 
to avoid hot-electron-induced degradation when channel length 
becomes smaller, so that the increased electric field strength near 

the drain does not cause impact ionization of electron-hole pairs. 
The lightly doped drain (LDD) FET structure has been introduced 
to lower the drain electric field. 

On the other hand, fabricating higher-density p-channel MOS 
FETs becomes more difficult because acceptor impurity diffusion 
in silicon is much faster than donor impurity diffusion, which 
makes of of shallow p junctions more difficult. The use of 
boron-fluoride (BF) implantation and rapid thermal annealing pro 
cess steps has become quite common for this reason. 

Oxide integrity is another major concern for both NMOS and 
PMOS devices. A recent 4M-bit dynamic memory uses 10-nm- 
thick oxide for the memory cell capacitor and 15-nm-thick oxide 
for the active gate insulator. To increase performance and circuit 
density, these values should decrease further, which will cause 
interesting physical problems and technical difficulties. Threshold 
voltage control would be one of the most difficult issues because 
widely used channel doping techniques might not provide accept 
able with performance. The increase in source resistance with 
decreasing junction depth almost forces us to apply some kind of 
more-conductive layer on source and drain regions. The most com 
monly investigated material for this purpose is titanium suicide. 
Other materials such as platinum suicide, cobalt suicide, and 
titanium nitride have also been investigated. 

The downward scaling of device feature sizes to less than a 
0.5-micrometer channel length has led to the serious consideration 
of operating CMOS devices at lower temperatures. The associated 
benefits of lower subthreshold leakage currents, steeper loga 
rithmic current-voltage characteristics, and higher mobility prom 
ise higher-speed performance. Lower temperature operation even 
tually offers a chance to obtain radically improved total VLSI 
system performance by combining it with "high-temperature" 
superconductive interconnections as discussed later. 

Interconnections 
As the speed performance of active devices has been improved, 

the influence of interconnection technology on chip performance 
has become significant. Aluminum doped with silicon and/or cop 
per is the most popular material for both signal and power supply 
lines. The key parameters in this area are density, signal propaga 
tion delay, and current-carrying capability. Density refers to the 
number of interconnection layers and the metal line widths and 
spacing. Propagation delay is mostly determined by RC constants. 
Current-carrying capability is a strong function of electromigration 
endurance along the interconnection lines and at contact/via regions. 

The basic feature of CMOS, low dc power consumption, gener 
ally represents the superiority of CMOS over other technologies, 
but for high-frequency operation most of the power dissipated on 
a chip is ac power, which even CMOS cannot do anything to 
reduce. Once we take a careful look at a VLSI chip, 70% of the ac 
power dissipation occurs at the circuits that drive larger capacitive 
loads at switch simultaneously, which most likely happens at 
output driver and buffer circuits. Temperature increases because 
of higher current density in interconnections and this results in 
increased electromigration effects. Thus, the choice of intercon 
nection material must be carefully made to meet several conflicting 
requirements. Several circuit tricks, which can effectively decrease 
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the power dissipation at driver circuits, have substantial impor 
tance, and bipolar-CMOS circuits could be one of the possible 
solutions. 

When one tries to think of an ideal interconnection, its properties 
have to capa zero resistance with infinite current-carrying capa 
bility. Recent significant progress in developing materials that are 
superconductive at relatively high temperatures (77K) might open 
a new may in this area. Superconductive interconnections may 
add another value, such as automatically solving some inductance 
problems because of superconductivity's natural diamagnetism. 

Although there will be many important and essential improve 
ments in VLSI circuits using this new technology, we have to look 
carefully at the potential issues that may arise. Among them are 
how closely the thermal expansion coefficients of the new mate 
rials match that of silicon, what will be the critical current density 
where superconductivity collapses, how to control compositional 
uniformity of the new materials, etc. 

Isolation 
To isolate one active device adequately from other devices in 

monolithic integrated circuits has been the largest concern for 
higher-density integration. MOS designs took advantage of not 
needing any substrate isolations like bipolar integrated circuits. 
CMOS, however, has two different active devices in a circuit cell 
so that there must be substrate isolation. Even in NMOS integrated 
circuits, how to minimize the distance between one FET and ad 
jacent FETs has been and continues to be a major engineering 
challenge. The local oxidation of silicon (LOCOS) in selected re 
gions as an isolation process had been the solution for a long time. 
However, the bird's beak (an undesired intrusion of the oxidized 
silicon into adjacent device regions) characteristic of the LOCOS 
process is not allowable any longer for VLSI dimensions of a mi 
crometer or less. There have been a large number of approaches 
to minimize the interdevice distance. Most of them try to etch a 
trench or moat around the active devices and then backfill it with 
insulating materials. 

Another approach is to use an insulating substrate instead of 
silicon, a technology known as silicon on insulator (SOI). One 
example in the past that falls into this category was the silicon-on- 
sapphire (SOS) structure. Several experiments to realize a mul 
tilayer silicon/insulator structure have been tested for three-dimen 
sional integration, and such studies are one of the most interesting 
research areas for the ULSI era. 

Technology Dr iver  
Technology progress in integrated circuits has not been done 

with like smooth continuous trajectory. Rather, it has been more like 
climbing up a stairway. Every two to three years, a new technology 
generation has been introduced, and this most likely will continue 
until silicon VLSI/ULSI hits the ultimate barrier at which one will 
have progress. switch to other active device materials for further progress. 

Each technology advance has required that a variety of tech 
nologies be integrated into one set of processes by which we can 

build desired circuits. There must be some vehicle that can con 
tinuously stimulate and finance advances toward higher density, 
higher performance, and lower cost. This vehicle, called a technol 
ogy driver, has been dynamic memory for a long time. Sometimes 
static memory has served this purpose, predominantly for CMOS 
technology evolution. 

The question may arise, "What will be the technology driver in 
the future?" There is a strong potential that future microprocessors 
and their associated families of chips will include more memory 
capacity on each chip, and that memory chips will include more 
logic functions. Thus, since dynamic memory tends to have quite 
a unique structure for a cell, which is clearly apart from other 
chip technology, it is somewhat unlikely that dynamic memory 
development will continue to drive 1C technology evolution. The 
fact remains that both dynamic memory and static memory will 
require higher FET density per chip in the future and that VLSI 
logic an will require higher interconnection density and an 
increased number of metal layers. 

A significant aspect of the previous technology driver, dynamic 
memory, is that each generation's production and sales have pro 
vided the R&D funds essential for the evolution of 1C technology 
itself. The R&D period for one technology generation used to be 
three years, but is now increasing. Yet, every new technology 
generation still appears every two to three years. This is made 
possible by overlapping the R&D schedules for successive technol 
ogy generations and puts an increased emphasis on selecting tech 
nology drivers that will provide the funds to support further R&D. 

Hence, there will not be any unique choice for a technology 
driver under diverging system requirements. However, it seems 
natural that a more system-oriented company will choose static 
memory as a technology driver with the expectation that such 
technology will migrate in a more flexible way into micropro 
cessors and application-specific ICs, which can make highly value- 
added products through which essential R&D funds will be gener 
ated. 

At this time, CMOS is apparently the most rapidly progressing 
technology with static memory and microprocessors becoming its 
technology drivers. Although there is great potential for CMOS to 
meet most system requirements â€” speed, performance, integration 
density, power consumption, and noise immunity â€” one can easily 
foresee continuing engineering challenges as well as device 
physics problems. 

An exciting decade for semiconductor technology is ahead, par 
ticularly for CMOS VLSI/ULSI. From the viewpoint of the Hewlett- 
Packard Company, how HP drives its own technology to be in a 
worldwide leading-edge position will certainly affect most of the 
company's products. The key is how HP can successfully leverage 
system tech by integrating state-of-the-art VLSI/ULSI tech 
nology. The importance of putting the right combination of unit 
technologies together to maximize performance and optimize sys 
tem positioning will be increasing as silicon devices get closer 
and closer to their ultimate performance barrier. 
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Software Architecture and the UNIX 
Operating System: An Introduction to 
Interprocess Communication 
Signals, pipes, shared memory, and message queues are 
some of the faci l i t ies provided by the UNIXÂ® operat ing 
system for  communicat ion among sof tware modules.  The 
st rengths and weaknesses of  each fac i l i ty  are d iscussed.  

by Marvin L.  Watkins 

SOFTWARE COMMUNICATIONS, the exchange or 
sharing of information by computer programs, is 
related to several central software architectural con 

cepts. Fig. 1 shows these relationships and provides a road 
map of the ideas this paper will touch upon. The discussion 
is organized into three major sections. The first section 
deals with some fundamental ideas and concepts of soft 
ware engineering that arise in multiprocessing systems. 
Here, the important concepts of complexity, modularity, 
concurrency, and synchronization are presented. The sec 
ond section deals with use and performance issues that 
arise with the UNIX operating system's interprocess com 
munication (IPC) facilities. In this section, the UNIX IPC 
facilities are ranked for various uses and data is presented 
to support the ranking. The third section discusses each 
IPC facility in detail. 

Fundamentals 

We like to think of an activity that a computer is intended 
to model as a problem the computer's program(s) must 
solve. The problems that computers are called on to help 
solve range from the very simple, for example keeping a 
list of telephone numbers, to the very complex such as 
fully automating and integrating the diverse machines of 
a large manufacturing facility. 

In general, simple activities generate simple problem 
statements. These, in turn, generate simple, self-contained 
programs. Conversely, the more complex the activity a pro 
gram is intended to model, the more complex will be the 
program or programs required. Of course, complexity in 
creases costs and jeopardizes success. 

Complexity 
There are two notions of complexity used throughout 

this paper. The first is that of problem complexity. Problem 
statements determine the minimum complexity possible 
for a software solution. For example, automating a man 
ufacturing facility requires a more complex software solu 
tion than a computerized phone list. The second notion is 

UNIX is  a t rademark of  AT&T Bel l  Laborator ies.  

that of program complexity. Some programs are more com 
plex than others, even though they may solve exactly the 
same problem. For example, "spaghetti code" is almost al 
ways more complex than an equivalent structured program. 

In an ideal world, problem complexity would be the sole 
linear determinant of cost for computer programs. A prob 
lem statement would be generated, software designed and 
implemented, and the prograrnfs) delivered. In fact, pro 
gram complexity affects cost in a nonlinear manner. Many, 
if not most, software development projects consume more 
resources (i.e., cost more] than the problem statement de 
mands. The culprit is often unnecessarily complex pro 
grams caused by poor, inappropriate, or rushed design. 

Fig.  1 .  Some re lat ions among sof tware concepts.  Arrows in  
dicate direct ion of inf luence. 
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Coup l i ng  
Coupling is probably the single greatest contributor to 

program complexity. In general, the greater the degree of 
coupling, the greater the complexity of the design and the 
worse its structure. A change in a module that is coupled 
to others can have unavoidable effects on them. Even a 
minor change in a coupled module can have nasty conse 
quences: it can cascade through coupled modules forcing 
significant changes in many unpredictable ways. 

Coupling occurs primarily when the same data or control 
characteristics or assumptions are embedded in the code 
of two or more modules. For example, suppose module A 
performs a series of calculations cl, c2,c3   Now suppose 
module B needs a calculation similar to, say, c2. If A is 
modified so that B can call A with a new parameter that 
causes A to execute c2, then A and B have been coupled. 
Another form of coupling occurs when code has assump 
tions about external objects embedded within it. For exam 
ple, a module might assume that a terminal connected to 
it always displays 24 lines by 80 columns. 

When considering trade-offs in program complexity, it 
is important to consider that tight coupling introduces three 
major problems: difficulty in finding and correcting design 
flaws, difficulty in adding new features to a system, and 
difficulty in migrating functionality to enhance system per 
formance. Loose coupling simplifies maintenance, addi 
tion of new features, and upgrades to more computing 
power. 

Modularity 
Modularity is among the most powerful methods for 

limiting a program's complexity to manageable bounds. 
Modules can exhibit at least three major kinds of relation 
ships or structure: arbitrary, hierarchical, and independent. 
Arbitrary designs are usually easier and quicker to develop 
than structured designs. The latter are usually easier to 
understand, debug, enhance, and maintain. However, addi 
tional work must go into the design process to create sim 
ple ,  near  unders tandable  sof tware .  That  is ,  near  
the end of the design phase an unnecessarily complex soft 
ware architecture is usually produced, which, nonetheless, 
satisfies the problem statement. More time and resources 
must be allocated to simplify and organize this design if 
understandability, flexibility, adaptability, maintainabil 

ity, etc. are also required. Schedule pressures and. perhaps, 
inexperience frequently prevent development teams from 
doing this additional complexity-reducing design work. 

Arbitrary designs tend to have enormous amounts of cou 
pling among their modules. Hierarchies and or indepen 
dent program structures tend to have much less coupling. 
However, even they are rarely pure. Even good, structured 
designs usually have some degree of coupling among their 
modules. 

Top-down design methodologies typically create hierar 
chical organizations. Such structures model a problem as 
a hierarchy of functions. Program modules are then created 
for each of these functions. Hierarchical organizations tend 
to incorporate program control directly into the problem 
model (i.e., functional decomposition). This is one of the 
principal reasons that programs exhibiting such organiza 
tions are easier to understand than arbitrary designs. 

Some problems do not decompose into hierarchies well. 
These problems are often characterized by having multiple, 
asynchronous, concurrent events or processing (e.g., input/ 
output or user query formation and data base search). Such 
problems can often be modeled as independent functions. 
These functions can then be implemented as independent 
programs, provided there are useful communications 
mechanisms to mediate data exchange. 

Modularity is both a recursive and a scalable notion, 
recursive because modules can contain modules of the 
same kind and scalable because lower-level modules are 
usually contained in higher-level ones. For example, in 
structions can contain instructions, blocks can contain 
blocks, and procedures can contain procedures, etc. while 
procedures contain blocks that contain instructions. Fig. 2 
compares a scale of software modules with increasingly 
complex problems that might be solved by software com 
posed of modules at and below each level. The module 
scale's levels are: 
â € ¢  I n s t r u c t i o n s .  F o r  e x a m p l e ,  w h i l e  ( * p )  p +  +  a n d  

IF(A.GT.B) 10,20,30. 
â€¢  B locks .  For  example ,  beg in  . . .  end  and  { . . . } .  
â€¢ Procedures. For example, C procedures and Fortran sub 

routines. 
â€¢ Programs. For example, several programs that together 

satisfy one problem statement or make up one applica 
tion. 

â€¢ Networks. For example, several programs, each running 

0 s f t  
J 3  

Metane tworks  
I 

|  N e t w o r k s  

Programs 

Procedures  

,  B locks  

Ins t ruc t ions  

Phone 
List  

Spreadsheet  A i r l ine  
Reserva t ions  

Au toma ted  
Manu fac tu r i ng  

P rob lem Comp lex i t y  

Fig.  2 .  An in tu i t ive compar ison of  
p r o g r a m  c o m p l e x i t y ,  a s  s c a l e d  
by  modu la r i t y ,  w i th  p rob lem com 
plexity. 
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on a different computer, that together satisfy one problem 
statement. 
In general, at each higher level on this scale new capabil 

ities emerge. These permit richer relations and more pow 
erful organizing principles to be designed into the soft 
ware's architecture. Thus, a program can often be signifi 
cantly simplified by modularizing at a higher level as 
shown in Fig. 3. The black curves in Fig. 3 intuitively 
describe how program complexity would grow as the 
number of modules grows. The curve in color shows how 
program complexity can be contained by using succes 
sively higher levels of modularization together with their 
emergent capabilities. It is exactly this effect that enables 
programmers to create ever larger programs that solve more 
and more complex problems. 

Communicat ions 
A necessary companion of modularity is data exchange. 

To do useful work, modules must be able to share or ex 
change information. For each method of organizing mod 
ules into modules there exists one or more communication 
mechanisms among modules structured with the method. 
With the UNIX operating system and the C programming 
language, new communications capabilities emerge at 
every level of Fig. 2's scale. 

Table I shows some major communication mechanisms 
associated with our module scale's modules. For example, 
a simple program shares data among its procedures, but 
not with other programs. Procedures use global variables, 
parameters, local variables and pointers, etc. to pass data. 
More complex problems can require coordinating the work 
of many computers at many sites. Networks, together with 
their communications protocols, connect programs run 
ning in separate computers. Between these examples are 
problems whose complexity exceeds what is appropriate 
for a single program, but that can be well-modeled by a 
few programs running on a single computer. Interprocess 
communication mechanisms allow data to be exchanged 
or shared and messages to be sent and received by such 
programs. IPC extends our ability to organize and structure 
programs. 

IPC enables isolated simple programs to be integrated 
into multiprogram organizations. For example, a program 
that must respond to multiple asynchronous inputs will 

Table I  

M o d u l e  C o m m u n i c a t i o n  M e c h a n i s m  

m e t a n e t w o r k s  ?  
ne tworks  ne twork  p ro toco l s ,  cus tom ga teways  
p r o g r a m s  i n t e r p r o c e s s  c o m m u n i c a t i o n ,  

(processes)  call ing arguments,  s ignals,  f i les 
procedures  g lobal  and external  var iables ,  

parameters, common 
b l o c k s  a r r a y s ,  s t r u c t u r e s ,  v a r i a b l e s ,  a r r a y  

items, pointers, structure members 
instructions variables,  array i tems, pointers,  

structure members 

almost certainly be much simpler if modeled as several 
concurrent communicating programs. Each asynchronous 
input could have its own input handler program that trans 
fers the input's data to a main program using IPC. The 
simplification derives from the ability to use UNIX re 
sources (e.g., scheduler, interrupt handler, buffers, buffer 
manager, etc.) rather than recreate them in the application. 

A final important point to note about communications 
mechanisms in general and IPC in particular: the mecha 
nism is just that, a capability that makes communications 
possible. For useful communication to occur, the sender 
and receiver must also agree on rules and conventions for 
interpreting the data to be exchanged. These rules manifest 
themselves, in part, as a need for type agreement for within- 
program communication, format agreement for IPC, and 
protocol agreement for networks. 

Concurrency 
The UNIX system is a multitasking operating system. 

This means that the UNIX system can simultaneously exe 
cute many programs. To do so, it must keep information 
about a running program as well as the program's internal 
data. A process is what a program is called when it is 
actually running. A process is composed of a program's 
code and internal data plus the kernel-allocated resources 
needed to support the program at run time. For example, 
the kernel must remember where in main memory the pro- 

Number  o f  Modu les  

Fig.  3.  An in tu i t ive compar ison of  
program complex i ty  wi th  modular  
i t y .  T h e  c o l o r  c u r v e  s h o w s  h o w  
p r o g r a m  c o m p l e x i t y  c a n  b e  r e  
duced by modular iz ing a t  succes 
sively higher levels. 
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gram is located, whether any buffers are being used, the 
current priority, permissions, etc. 

Two or more processes running at the same time can be 
working in consort to solve a single problem. Usually, such 
multiprocess applications need to exchange data and infor 
mation. The UNIX operating system provides IPC facilities 
for exactly this kind of information exchange. The UNIX 
kernel keeps track of any IPC resources used by such pro 
cesses. 

Every new process is created by the UNIX system in the 
same way: an existing process spawns an almost identical 
child process. Unless the original process makes special 
arrangements, the child process will have no knowledge 
of the parent or any other sibling processes that may exist. 
Some IPC mechanisms, notably pipes, require that the par 
ent process set up the communications channel. This re 
striction causes some software systems to become exces 
sively complex. Newer UNIX IPC mechanisms do not have 
this restriction. We will use the term process, rather than 
program, when we wish to emphasize the run-time nature 
of a program. 

Synchronization 
Concurrency introduces multiple execution threads that 

must be synchronized. For example, deadlock is a control 
problem that can occur when processes simultaneously 
reserve shared resources. Two processes can be waiting for 
an event â€” the other process to unlock the shared resource â€” 
that cannot occur because both processes are blocked wait 
ing for the resource. 

Concurrency aggravates problems with synchronizing 
data production and consumption. For example, suppose 
process pi is sending messages (i.e., data) to process p2. 
They must agree to some convention that ensures that p2 
starts reading only after pi has sent a new message and 
that pi begins writing only after p2 has read the old mes 
sage. If p2 gets out of sync with pi, three situations can 
occur. One, p2 can read the same message twice; this is 
sometimes referred to as stale data. Two, p2 can miss read 
ing a message; this is sometimes referred to as missed data. 
Three, p2 can read a partial or mixed message (i.e., pi is 
preempted while writing a message, then p2 reads a mes 
sage containing both new and old data); this is sometimes 

referred to as trashed data. 
The potential for stale, missed, and trashed data exists 

even in simple programs. However, a single program's single 
execution thread implicitly imposes a strict sequentially 
on data accesses. This usually guarantees correct data ac 
cess synchronization. Data exchanges among concurrent 
processes must be carefully designed to avoid synchroniza 
tion problems and achieve the benefits of multitasking. 

It is interesting to note that here we have come full circle, 
as shown in Fig. 1. Synchronization problems are a new 
form of program complexity that must now be dealt with. 
It seems reasonable to ask why facilities that introduce 
complexity, such as IPC, are useful. Fundamentally, IPC 
exists because it can be used to trade a little more complex 
ity in handling data for much less complexity in structuring 
programs. This trade-off arises, in large part, because asyn 
chronous events can be much more easily incorporated 
into a multiprogram design than into a single monolithic 
program. That is, synchronizing data exchange is easier 
and less problematic than synchronizing control events. 

UNIX IPC and Software Architecture 

One aspect of developing concurrent programs is iden 
tifying communication mechanisms that match the struc 
tural relationships of the software architecture. 

The UNIX operating system provides several IPC 
facilities. Unfortunately, no one UNIX IPC facility is best 
for every possible application. The best IPC method for a 
given application depends on the structure of the com 
municating programs, the amount and kind of data that 
must be passed, the performance that the application de 
mands, and the capabilities of the underlying hardware. 
Since each mechanism can be used, or adapted, for many 
purposes, evaluating each IPC facility against specific re 
quirements is usually necessary. 

IPC Use Taxonomy and Ranking 
A simple taxonomy for comparing the UNIX IPC facilities 

according to the uses for which they seem best suited is 
shown in Fig. 4. In this scheme, IPC uses are classified 
'Some UNIX vers ions ,  fo r  examp le .  Berke ley  4 .2  BSD,  con ta in  IPC fac i l i t i es  tha t  UNIX  
System references does not. These are not discussed in this paper, but are described in references 
1 and 2. 

Data 
Transfer 

I n t e r r u p t  S t a r t  S t o p  
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F i g .  4 .  I P C  u s e  t a x o n o m y  a n d  
f a c i l i t y  r a n k i n g .  M s g  s t a n d s  f o r  
message queues,  P ipe for  p ipes,  
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or iginal ly is shown in color.  
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into four broad classes, each containing two or three sub- 
categories. The UNIX IPC mechanisms are then ranked 
under these subcategories from top to bottom, from best 
suited to worst suited, respectively. These rankings and 
taxonomy should be interpreted as suggestions. No claim 
is made for their universal applicability. Indeed, they in 
clude at least one seeming paradox. Namely, even though 
shared memory is theoretically the fastest possible IPC 
facility, it is suggested that it not be used for those purposes 
demanding quick delivery. Hopefully, the material pre 
sented below will make the reasons clear. 

Briefly, the uses the taxonomy's classes are trying to 
capture are as follows. The class of event triggers initiates 
some action, usually starting or stopping processing. The 
interrupt event trigger (i.e., the UNIX signal facility) forces 
the communication receiver to branch to a specified loca 
tion or terminate. State indicators announce a condition, 
usually the accessibility or state of some resource. Message 
exchanges convey information, usually between two pro 
cesses but occasionally from one process to many process 
es. Exchanges can be sent in rapid succession to specific 
receivers or posted and picked up by arbitrary receivers 
on an as-needed basis. Data transfers move results for suc 
cessive operations; usually each function operates on the 
data just once but occasionally functions may alternate 
working with the data. 

There are many different dimensions to the taxonomy's 
use categories. They can be characterized by the nature of 
their requirements. Fig. 5 compares each use's important 
requirements with the properties of the UNIX IPC facilities. 
The goodness of the match, together with each facility's 

throughput (discussed below), form the basis for the rank 
ings in Fig. 4. The properties of Fig. 5 are: 
â€¢ Quick delivery â€” the elapsed time between posting a 

communication and its availability is small. 
â€¢ Atomic operation â€” partially completed results of an in 

terrupted or preempted operation cannot be accessed by 
another process. 

â€¢ Multiple readability â€” a communication can be read re 
peatedly until it is purposely changed. 

â€¢ Universal readability â€” any process with the proper per 
missions can access a communication. 

â€¢ Fair capacity â€” a given communication can pass a reason 
able amount of data, say a few thousand bytes. 

â€¢ High capacity â€” a given communication can pass sub 
stantial amounts of data, say many tens of thousands of 
bytes. 

â€¢ No content constraints â€” a communication can have arbi 
trary content and/or any user-defined format. 
The following properties listed in Fig. 5 are particularly 

useful in comparing IPC facilities (other, less important 
properties, are left to each facility's discussion later): 
â€¢ Simplicity of use â€” one does not need to refer to manuals 

or take extreme care in design to use the facility success 
fully. 

â€¢ Generality of connection â€” a communication's receiver's 
actions on the communication do not directly affect its 
sender. 

â€¢ Multiple setup calls â€” more than one system call is re 
quired to create a communication link. 

â€¢ Minimum CPU resources â€” a given communication con 
sumes virtually zero central processing unit (CPU) cycles 

P r o p e r t y  
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I n t e r r u p t  

S t a r t ,  S t o p  
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N o t e s :  
X  P r o p e r t i e s  t h i s  u s e  r e q u i r e s .  
o  P r o p e r t i e s  t h i s  I P C  f a c i l i t y  e x h i b i t s .  
1 .  S e m a p h o r e s  u s e d  a s  r e s o u r c e  l o c k s  u s u a l l y  r e q u i r e  v a l u e  i n i t i a l i z a t i o n .  
2 .  T h e o r e t i c a l l y  t h e  q u i c k e s t :  i n  p r a c t i c e ,  t w o  s e m a p h o r e  o p e r a t i o n s  a r e  n e e d e d .  
3 .  M i n i m u m  a c h i e v e d  i f  a n d  o n l y  i f  u s e r s  a l w a y s  k e e p  a t t a c h e d .  
4 .  A c h i e v e d  i f  a n d  o n l y  i f  d a t a  i s  f o u n d  i n  b u f f e r .  

Fig.  5 .  Use requi rements and IPC fac i l i ty  proper t ies.  
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Benchmarking UNIX IPC Facilities 

The usual  purpose of  benchmarks is  to quant i fy  d i f ferent  com 
pu te rs '  pe r fo rmance  i n  a  way  tha t  pe rm i t s  va l i d  compar i sons  
among them. Typical ly,  the goal is to discover pr ice/performance 
ra t ios  that  permi t  near -opt imal  purchase dec is ions.  Our  bench 
mark serves a s imi lar  purpose.  Al though i t  a t tempts to  quant i fy  
UNIX IPC performance in a way that permits val id comparisons, 
the goa l  is  to  c reate  per formance/capac i ty  curves that  prov ide 
ins ight  in to the re lat ive ef fect iveness of  the UNIX system's IPC 
fac i l i t ies .  We hope that  th is  w i l l  permi t  be t te r  sys tem/sof tware  
design decis ions. 

The  good  news  i s  t ha t  s ince  the  measuremen ts  were  made  
on the same computer ,  most  s tandard benchmark ing per i ls  are  
avo ided.  The bad news is  tha t  the  IPC fac i l i t ies  have fea tures  
tha t  a re  incomparab le .  Th is  benchmark  i s  by  no  means  a  com 
plete character izat ion of  an IPC faci l i ty 's capabi l i t ies.  In part icu 
la r ,  i t  benchmark  uses  a  message-pass ing  parad igm.  Thus ,  i t  
accurate ly  measures IPC mechanisms wi th respect  to  message 
exchange. Other uses, however, require some care in interpreting 
the results. 

We  be l i eve  t ha t  even t  t r i gge rs  and  s ta te  i nd i ca to rs  can  be  
fa i r l y  t rea ted  as  pass ing  a  s ing le  da ta  e lement .  So  the  per fo r  
mance of semaphores, s ignals,  and messages can be fair ly com 
pared for the special  case of a message size equal to one. Data 
t ransfers,  however,  are not  so easi ly handled.  

There are two important  considerat ions not  addressed in th is  
benchmark. One, shared memory can pass data without copying 
i t .  For organizat ions in which processes alternately work direct ly 
in shared memory (e.g. ,  a data base and i ts  query processes or 
a  w indowing  su i te ) ,  the  per fo rmance  o f  shared  memory  cou ld  
g rea t l y  surpass  any  o ther  IPC a l te rna t i ve .  Two,  p ipes  use  the  
UNIX operat ing system's f i le buffers. On a system where buffers 
are a scarce resource (e .g . ,  a  heav i ly  loaded l /O- ln tens ive sys 
tem) ,  the  per fo rmance o f  p ipes  wou ld  probab ly  decrease.  Con 
sequent ly ,  th is  benchmark  under ra tes  shared memory 's  per fo r  
mance and overrates that  of  p ipes.  

Benchmark System 
All  tests were run on an HP 9000 Series 320 Workstat ion with 

4M bytes of  main memory. (This system is based on a 16.6-MHz 
MC68020 CPU with a 1 6K-byte cache, 1 2.5-MHz MC68881 f loat 
i n g - p o i n t  c o p r o c e s s o r ,  a n d  m e m o r y  m a n a g e m e n t  u n i t . )  T h e  
operat ing system was HP-UX Mul t iuser Revis ion 5.1.  (HP-UX is 
composed primari ly of AT&T Bell  Laboratories' UNIX System V.2, 
but with Hewlett-Packard's own extensions and features from the 
4.1  and 4.2  BSD vers ions of  the UNIX operat ing system by the 
Universi ty of Cal i fornia at Berkeley.)  Al l  benchmarks were run in 
s ing le-user  mode.  (Processes 0  (swapper ) ,  1  ( /e tc / in i t ) ,  and 2  

(pagedaemon) were the only processes running besides the two 
benchmark  processes. )  

Benchmark Programs 
A l l  b e n c h m a r k  p r o g r a m s  h a d  t h e  s a m e  g e n e r a l  s t r u c t u r e .  

Pseudocode  fo r  the  shared  memory  benchmark  wou ld  look  as  
follows: 

obtain number of messages to send and the length of a message 
fork chi ld process to read messages 

get and attach shared memory segment for chi ld 
get memory-f i l led and memory-empty semaphores 
loop forever 

acquire memory-fi l led semaphore, block if no data 
copy data from shared memory into buffer 
release memory-empty semaphore 

fi l l  parent's buffer with message 
get and attach shared memory segment for parent 
get memory-f i l led and memory-empty semaphores 
start timer 
loop N t imes, where N = number of  messages to send 

acquire memory-empty semaphore, block i f  data unread 
copy data from buffer into shared memory 
release memory-fi l led semaphore 

stop timer 
return memory and semaphores to system 
print results 

The semaphore benchmark di f fered from the above in that the 
p r o c e s s e s  o n l y  a c q u i r e d  a n d  r e l e a s e d  s e m a p h o r e s .  N o  d a t a  
was passed.  In  the message queue benchmark,  the parent  and 
ch i l d  a l t e rna ted  send ing  a  message  and  read ing  a  rep l y  w i t h  
blocking. 

The pipe benchmark was s imi lar  to the message queue bench 
mark  excep t  tha t  two  p ipes  were  used .  The  s igna l  benchmark  
was  s im i l a r  t o  t he  semaphore  benchmark  excep t  t ha t  s i gna l s  
and handlers  were used to  escape pauses a l ternate ly .  

Cop ies  o f  these benchmark  programs are  ava i lab le  f rom the 
au tho r .  The  resu l t s  a re  p rov ided  i n  t he  accompany ing  a r t i c l e  
(Fig. 6). 

Caveat 
N o  u s e f u l  w o r k  w a s  d o n e  w h e n  a  b e n c h m a r k  p r o g r a m  w a s  

running. One hundred percent of CPU time was spent in handling 
messages.  Thus,  th is  benchmark g ives absolute upper l imi ts  on 
this system's IPC capabi l i t ies.  The pract ical  l imits are somewhat 
lower. 

to complete. 
â€¢ Needs other IPC facility â€” the normal use of the facility 

requires other IPC facilities. 
â€¢ Directly affects control â€” the receiving processes' execu 

tion path is interrupted by the communication. 

Performance 
Capacity. The use of a facility dictates its communications' 
range of sizes, that is, the number of bytes that a communi 
cation needs. The classes in Fig. 4 require greater capacity 
as one moves from left to right. For example, data transfers 

usually require an IPC mechanism with significantly 
greater capacity than do event triggers. 

The capacity of a particular UNIX facility is usually set 
when the system is configured. It will vary from installation 
to installation. However, Table II presents some typical 
data for the capacities of UNIX IPC facilities. This data is 
for the same system described in the box above. 
Throughput. The UNIX operating system makes no guaran 
tee on the length of time it takes to deliver a communica 
tion â€” forever is not impossible, although somewhat un 
likely. Indeed, one has to work very hard to delay a message 

JUNE 1987 HEWLETT-PACKARD JOURNAL 31  

© Copr. 1949-1998 Hewlett-Packard Co.



IPC Facility 

file 

pipe 
FIFO 
message queue 
shared memory 

signal 
semaphore 

T a b l e  I I  

Maximum Capacity 

size of file system 

48K bytes (blocks at 4K bytes) 
same as pipe 
8K bytes 
4M bytes 

1 signal from set of 23 
lvalue from Â±32K 

more than a few hundred milliseconds. This is true for all 
IPC mechanisms. On the average, though, some are capable 
of delivering more messages per unit time than are others. 
Of course, a communication's size interacts with a facility's 
capacity to affect its performance. Fig. 6 presents some 
comparative data on UNIX IPC performance. A portion of 
the data shown in Fig. 6 appears to defy the conventional 
wisdom. In particular, shared memory is not found to be 
the best performer. 

The surprising results of Fig. 6 appear to be an artifact 
of using semaphores and shared memory for purposes for 
which they are not well-suited. Our taxonomy, Fig. 4, 
suggests that semaphores are best used as state indicators 
and shared memory is best used for data transfer. However, 
the bencnmark program combines these two facilities into 
a message exchange medium. The box on page 31 explains 

how the data for Fig. 6 was obtained. 
Blocking. It is possible to block on most IPC service calls. 
That is, the kernel suspends the process â€” halts its con 
sumption of CPU cycles â€” until the desired external event 
occurs. Thus polling or busy waiting, which consume CPU 
cycles, are unnecessary. If more than one process is blocked 
on a particular IPC facility, the UNIX system makes no 
guarantee as to which process will obtain the facility when 
it unblocks. For example, the UNIX system guarantees that 
message queue communications will be delivered in a first- 
in-first-out (FIFO) order, but does not guarantee that pro 
cesses will get them on a first-come-first-served basis. It is 
also possible to continue without delaying on most IPC 
service calls. 

UNIX IPC Facilities 

The traditional UNIX IPC facilities are files, pipes, FIFOs 
(named pipes), and signals. Pipes, FIFOs, and, of course, 
files all use the file system to pass data. They pass informa 
tion as byte streams, the natural interpretation of all infor 
mation in the UNIX file system. 

Files 
Files are not truly IPC facilities, but they can be and 

often are used for IPC. Two or more programs that use a 
file for IPC must agree on conventions for data format and 
synchronization. Typically, the presence or absence of a 
second lock file is used to signal when the data file is being 
accessed. 

The UNIX system buffers file input/output and uses de- 

400 -â€¢ 

(a) 

1 0 2 4  2 0 4 8  4 0 9 6  

Message Length (bytes) 

450 - 

400 -â€¢ 

350 -- 

300 -- 

250 

200 

Legend: 

D Semaphore 

â€¢ Message Queue 
A  Shared  Memory  Semaphore  
â€¢ Pipe 
O  S i g n a l  

8192 
150 

(b) 

1 0  2 0  3 0  4 0  5 0  6 0  7 0  8 0  9 0  1 0 0  

Message Length (bytes) 

Fig. (a) performance relative performance of UNIX System V IPC facilities, (a) The relative performance 
for  long messages,  (b)  The re lat ive per formance for  shor t  messages.  
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laved writes during output. So. for short communications 
sent during periods of light loading, file IPC can be fairly 
efficient (since the data will often be found by the receiver 
in the buffer). However, for long messages and or heavily 
loaded systems, file IPC will be the least efficient mecha 
nism possible. The advantages of file IPC are unlimited 
capacity and multiple delivery. A single message can con 
tain as many bytes as the largest legal file. A single message 
can be read by more than one process. 

Pipes 
The classic UNIX IPC mechanism is the pipe. Fig. 7 

shows how pipes work. Fig. 7a depicts a pipe in complete 
generality while Fig. 7b shows the preferred arrangement 
for two communicating processes. Pipes enforce a rigid 
first-in-first-out order to messages. One or more processes 
can write into a pipe and one or more can read from it. 
However, each message can be read only once. These pro 
cesses must have a common ancestor (who sets up the 
pipe). Normally, writes to a full pipe block the writing 
process until a reader removes some data while reads from 
an empty pipe block the reading process until there is data 
to read. 

The performance of pipe IPC will be the same as file IPC, 
up to a point. Pipes are restricted to use only a small part 
of a file's potential capacity; this prevents some expensive 
disc accesses. This is more efficient from a systems view 
point, although it might force a longer delay in delivering 
a message. 

Synchronization of communications is automatic and 
reliable if a pipe has exactly one writer and one reader. 
Since writes and reads to or from a pipe are not atomic 
(i.e., guaranteed to finish before preemption), reliability 

remains an issue if there are more than two writers or 
readers. 

Pipes are a very general mechanism. They can be used 
for many purposes. However, they seem best suited to per 
form function composition, successively passing unstruc 
tured data from one process to another. 

FIFOs 
Named pipes, or FIFOs, are identical to pipes in opera 

tion. FIFOs, unlike pipes, are not constrained to have the 
channel set up by a common ancestor. A process need only 
know a FIFO's name and have permission to access its 
contents. 

Signals 
Another classic UNIX IPC mechanism is the signal. Sig 

nals are usually used to trigger events. Signals are usually 
constrained to use a single value from a small set (about 
20) of predefined values. This seriously limits their ability 
to pass information. Signals are not queued and there is 
no indication of who the sender is. Signals, despite their 
simplicity, are not very efficient IPC mechanisms. 

Historically, signals were created as a mechanism to ter 
minate processes. There are two problems with using sig 
nals for IPC: it is possible for signals to be lost and it is 
possible to terminate a receiving process prematurely. Both 
problems occur if signals of the same type are received at 
too high a frequency. 

Unlike other IPC facilities, signals affect control directly 
rather than simply exchanging data. They should be used 
carefully, if at all. 

W r i t e  R e a d  W r i t e  R e a d  

M. M2 â€¢â€¢â€¢ "â€¢ MI*, 

W r i t e  R e a d  

W r i t e  R e a d  W r i t e  R e a c *  

P i p e l  â € ¢ â € ¢ â € ¢  M k + ,  M ,  

(b) 

F i g .  7 .  T h e  s t r u c t u r e  o f  p i p e s ,  
( a )  G e n e r a l  s t r u c t u r e ,  ( b )  P r e  
f e r r ed  p i pe  s t r uc tu re  f o r  b i d i r ec  
t i o n a l  c o m m u n i c a t i o n  b e t w e e n  
two processes.  
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System V IPC Mechanisms 
Pipes and signals permitted software solutions not prac 

tical with single monolithic programs. The new IPC mech 
anisms in UNIX System V permit, in turn, more sophisti 
cated solutions than was reasonably possible with pipes 
and signals. UNIX System V adds three very powerful IPC 
facilities: message queues, shared memory, and semaphores. 
These facilities do not use the file system or require com 
mon ancestry. Thus, program design constraints are much 
reduced. All are accessed in the same way: a process that 
knows the right key and has the right permissions requests 
the kernel to connect it. 
Semaphores. Semaphores are used to control access to 
shared resources, to synchronize events, and/or to an 
nounce the state of some object. They are generally used 
as indicators, rather than to pass information. Fig. 8 shows 
how semaphores might be used to protect a resource. Con 
ceptually, they use a single machine word. In fact, however, 
they are somewhat more complicated and UNIX System V 
does considerable processing to effect a semaphore transac 
tion. 

Semaphores must often be used in pairs: once to protect 
or lock a resource and once to release or unlock it. For 
example, consider the use of semaphores with shared mem 
ory to create a message-passing medium as described earlier 
and in the box on page 31. 

A single semaphore system call is the UNIX system's 
fastest IPC facility. 
Message Queues. Message queues are most frequently used 
to exchange messages. They behave similarly to pipes in 
that messages are passed on a first-in-first-out basis. How 
ever, associated with each message is a type number and 
an argument. The type number enables more flexible pro 
gram designs. Successive messages with the same type form 
queues, but a receiver can choose which type(s) to read. 
The argument is an array of characters, but not quite a C 
string (there is no guarantee of a null terminator). 

A message can be read only once. Each access of a mes 
sage queue is atomic. This eliminates one source of unre 
liability using pipes. It is possible to read a queue without 

blocking if it happens to be empty. Any number of pro 
cesses can access a queue, and they need not be related. 
A process can access a queue if it has the correct permission 
and has the queue's key. Fig. 9 shows how message queues 
work. 

There are three primary strategies for using type num 
bers: as mailbox IDs as shown in Fig. 9a, as priorities as 
shown in Fig. 9c, or as op codes. If all messages sent via 
a particular message queue have the same type number, 
then If queue is a strict first-in-first-out byte stream. If 
messages have different type numbers associated with 
them, then each type acts as a first-in-first-out byte stream. 
Consequently, messages can be read in an order different 
from their write order. 

Message queues are a very general mechanism, and can 
be used for many purposes. They seem best suited to con 
veying small, private communications from one process to 
another. Message queues are probably the fastest practical 
IPC mechanism for this purpose. 
Shared Memory. Shared memory is most frequently used 
to transfer data from one process to another. Shared mem 
ory uses coordinated writing and reading to and from the 
same physical memory locations to share working data 
among separate processes. That is, two or more distinct 
programs can arrange to have the same set of buffers and/or 
variables, much like global common variables or buffers 
for a single program. To pass data reliably using shared 
memory requires synchronizing data writes and reads. This 
is often accomplished with semaphores. Fig. 10 shows how 
shared memory works. 

Shared memory can pass arbitrarily complex informa 
tion. Capacity is limited only by the amount of main mem 
ory available. It and semaphores are special in that more 
than one process can read the same communication. Shared 
memory is theoretically the fastest possible IPC mecha 
nism. In practice, shared memory is sensitive to the use to 
which it is put. 

Although data is sent at the instant it is written in mem 
ory, receiving the data is somewhat more problematic. If 
many processes are competing for the same memory, then 

A c c e s s  S e m o p  ^ ^ L  A c c e s s  S e m o p  A c c e s s  S e m o p  

Semaphore 

F ig .  8 .  The  use  o f  a  semapho re  
t o  p r o t e c t  a  s y s t e m  r e s o u r c e .  
Semop is a semaphore operat ion. 
D e c r e m e n t i n g  a  s e m a p h o r e  a c  
quires it i f  i t  was free, and thereby 
locks the resource.  Increment ing 
a  semaphore re leases i t  i f  i t  was 
acquired, and thereby unlocks the 
resource. While one process uses 
( l o c k s )  t h e  r e s o u r c e ,  t h e  s e m a  
phore blocks the other processes. 
W h e n  t h e  p r o c e s s  u s i n g  t h e  r e  
source completes,  i t  re leases (un 
l o c k s )  t h e  r e s o u r c e  f o r  u s e  b y  
other processes. 
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they may be forced to copy the shared memory contents 
to prevent blocking each other. Since shared memory ac 
cesses are not atomic, processes must signal both when 
new data has been written and when old data has been 
read. In general, this implies either two semaphores or two 
lock states for the same semaphore and bracketing 
semaphore operations in both the sending and receiving 

processes. 
Shared memory is a general mechanism. It can be used 

for many purposes. It seems best suited to sharing large 
working sets of data between alternately executing process 
es. However, shared memory tends to reintroduce exactly 
the kinds of program coupling that historically have created 
problems. Shared memory should be used with some care. 

M s g s n d  M s g r c v  ^ &  M s g s n d  M s g r c v  M s g s n d  M s g r c v  

(a) 

M s g s n d  M s g r c v  

(b )  

High Priority 
Fig .  9 .  The s t ruc ture  o f  message 
queues, (a) General structure, (b) 
Typica l  s t ructure for  b id i rect ional  
commun ica t i on  be tween  two  p ro  
cesses ,  ( c )  Typ i ca l  s t ruc tu re  f o r  
b i d i r e c t i o n a l  c o m m u n i c a t i o n  b e  
t w e e n  t w o  p r o c e s s e s  w i t h  t w o  
p r i o r i t i es ,  h i gh  and  l ow .  Msgsnd  
i s  a  message  send  ( t ransmi t )  op  
e ra t i on  wh ich  p laces  a  message  
in to  the  message queue.  Msgrcv  
i s  a  m e s s a g e  r e c e i v e  o p e r a t i o n  
which retr ieves the speci f ied mes 
sage ,  usua l l y  t he  nex t ,  f r om the  
message queue.  
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Semaphore 1 Semaphore 2 

Shared 
Memory 

F ig .  10 .  Typ i ca l  sha red  memory  
structure (or bidirectional communi 
c a t i o n  b e t w e e n  t w o  p r o c e s s e s .  
S e m a p h o r e s  a r e  u s e d  t o  c o o r d i  
n a t e  m e s s a g e  t r a n s f e r .  S e m a  
p h o r e  1  b l o c k s  p r o c e s s  1  w h i l e  
p r o c e s s  2  e m p t i e s  s h a r e d  m e m  
o r y .  W h e n  s h a r e d  m e m o r y  i s  
empty ,  p rocess  2  re leases  sema 
p h o r e  1 ,  u n b l o c k i n g  p r o c e s s  1  
a n d  u n l o c k i n g  s h a r e d  m e m o r y .  
Process 1 then sets semaphore 2 
to  lock shared memory and b lock 
p r o c e s s  2  w h i l e  p r o c e s s  7  f i l l s  
s h a r e d  m e m o r y .  W h e n  s h a r e d  
memory is ful l ,  process 1 releases 
semaphore 2.  
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