
H E W L E T T - P A C K A R D

J U N E 1 9 8 7

© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D

June 1987 Volume 38 â€¢ Number 8

Articles

4 P e r m u t e d T r a c e O r d e r i n g A l l o w s L o w - C o s t , H i g h - R e s o l u t i o n G r a p h i c s I n p u t , b y
Thomas tab le t ' s T race d r i ve rs a ren ' t needed , so cos t s a re l owe r . The t ab le t ' s m i c ro

processor dr ives the p laten t races d i rect ly .

8 The Hew le t t -Packa rd Human In te r face L ink , by Rober t R . S ta r r Th i s l i nk a l l ows easy
conf igurat ion of a var ie ty of personal computer human input dev ices.

9 H P - H I L I n p u t D e v i c e s

1O Sof tware Ver i f i ca t ion Us ing Branch Ana lys is , by Dan ie l E . Her ing ton , Pau l A . N icho ls ,
O and Roger D . L ipp Use o f t he b ranch cove rage me t r i c has i t s p i t f a l l s , bu t t hey can be

avoided by go ing about i t systemat ica l ly .

2 1 A d v a n t a g e s o f C o d e I n s p e c t i o n s

24 V i e w p o i n t s â € ” D i r e c t i o n o f V L S I C M O S T e c h n o l o g y , b y Y o s h i o N i s h i W i l l C M O S I C s
be the technology dr iver of the future?

S o f t w a r e A r c h i t e c t u r e a n d t h e U N I X O p e r a t i n g S y s t e m : A n I n t r o d u c t i o n t o I n t e r -
process Commun ica t i on , by Marv in L Watk ins Some o f t he th roughpu t da ta ga the red

appears to defy the convent ional wisdom about IPC fac i l i ty use.

31 Benchmark ing UNIX IPC Fac i l i t i es

Departments

3 I n t h i s I s s u e
3 W h a t ' s A h e a d

2 2 R e a d e r F o r u m
2 3 A u t h o r s

Editor, Richard P. Doian â€¢ Associate Editor, Business Manager, Kenneth A. Shaw â€¢ Assistant Editor, Nancy R. Teater â€¢ Art Director, Photographer, Arvid A- Danielson
Support European Susan E. Wright â€¢ Administ rat ive Services, Typography, Anne S. LoPrest i â€¢ European Product ion Supervisor, Michael Zandwi jken

2 HEWLETT-PACKARD JOURNAL JUNE 1987 Â© Hewlett-Packard Company 1987 Printed in U.S.A.

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
Our cover story this month is one of those classic engineering tales. Once

upon be t ime, two HP eng ineers were d iscuss ing how n ice i t wou ld be to
have graphics tablets for thei r home computers. Wasn' t i t too bad that the
tablets â€” even HP's â€” were so expensive? In their free time, they began to
design scheme tablets, and they eventual ly hi t on a simple, elegant scheme
that reduced the number o f par ts needed, and there fore the cost , w i thout
reducing resolut ion. The idea is to use just a few conduct ive t races under
the tab le t sur face ins tead o f hundreds , bu t to use them over and over in
di f ferent orders at d i f ferent locat ions. They cal l i t permuted trace order ing.

Our cover photo i l lust rates i t us ing a d i f ferent color for each t race. The graphics tablet , the HP
4591 1 resolution. full less than a quarter of what previous tablets cost for the same resolution. The full
s tory is to ld by Tom Malzbender in the ar t ic le on page 4.

A graphics tablet is a device that a human uses to communicate graphical data to a computer
by point ing with a stylus. You can use i t for sketching, drawing, computer-aided design, or menu
picking. On the other hand, you might choose some other device, such as a mouse, a touchscreen,
the keyboard, a digi t izer, or a knob. Al l of these computer input devices, and others too, operate
a t human speed, which by computer s tandards is pre t ty s low. Hewlet t -Packard has a low-cost
s tandard in ter face for connect ing devices of th is k ind to personal computers and workstat ions.
Cal led the HP Human Inter face L ink, or HP-HIL (not to be confused wi th the HP Inter face Bus,
HP-IB, single the HP Interface Loop, HP-IL), it allows you to connect up to seven devices to a single
port page 8. computer. To f ind out how i t works, read the art ic le on page 8.

I f you're interested in AT&T's UNIXÂ» operat ing system or in HP's version of i t , HP-UX, you've
probably already read a lot of the extensive l i terature on the subject. Even so, you may f ind some
new ins ights in the paper on page 26, which compares the use and per formance of the var ious
interprocess communication faci l i t ies avai lable in this mult iprocessing operating system. Signals,
p ipes , and memory , semaphores , and message queues are ranked fo r var ious uses and da ta
is presented to support the ranking.

Branches are decision points in computer programs. Branch analysis is a method of assessing
the thoroughness of software testing by keeping track of how many branches have been executed
by the enough, procedure and how many have not. Although it sounds simple enough, the f irst HP
so f twa re f ound tha t imposed b ranch cove rage requ i remen ts on the i r t es t i ng p ro jec t s f ound
that coverage are many pitfalls, such as attempting to meet the coverage goal by testing all the easy
branches instead of the cri t ical ones. In the paper on page 13, three HP software engineers warn
o f t he and and l ay ou t a comprehens i ve me thodo logy fo r avo id ing them and reap ing a l l t he
benefi ts of branch analysis.

Yoshio dynamic gained notoriety as the developer of the first commercial 1 M-byte dynamic read/
write memory chip. That work was done when he headed Toshiba Semiconductor Group's semicon
ductor dev ice engineer ing laboratory. Brought to HP by an exchange program between the two
companies, Dr. Nishi now directs HP Laborator ies' s i l icon VLSI research laboratory. On page 24,
he gives us his view of the current status of CMOS technology and l ists some of the engineering
challenges facing this technology as we approach the era of ultra-large-scale integration (ULSI).

-R. P. Do/an

What's Ahead
The July issue tel ls the design story of two instruments for evaluating digital radio performance:

the HP 3708A Noise and In ter ference Test Set and the HP 3709A Conste l la t ion Disp lay.

T h e H P J o u r n a l L e t t e r s t e c h n i c a l d i s c u s s i o n o f t h e t o p i c s p r e s e n t e d i n r e c e n t a r t i c l e s a n d w i l l p u b l i s h l e t t e r s e x p e c t e d t o b e o f i n t e r e s t t o o u r r e a d e r s L e t t e r s m u s t b e b r i e f a n d a r e s u b j e c t
t o e d i t i n g 9 4 3 0 4 , s h o u l d b e a d d r e s s e d t o E d i t o r . H e w l e t t - P a c k a r d J o u r n a l , 3 2 0 0 H i l l v i e w A v e n u e , P a l o A l t o . C A 9 4 3 0 4 , U S A

J U N E 1 9 8 7 H E W L E T T - P A C K A R D J O U R N A L 3

© Copr. 1949-1998 Hewlett-Packard Co.

Permuted Trace Order ing Al lows
Low-Cost, High-Resolution Graphics Input
A scheme that substant ia l ly reduces the number o f t race
dr ivers requi red prov ides an inexpensive, but h igh-
per formance graphics tab let for HP's HP-HIL fami ly .

by Thomas Malzbender

THE TASK OF ANY GRAPHICS TABLET is to provide
the host computer with information corresponding
to the position of a pen-like stylus relative to the top

surface of the tablet, commonly referred to as the platen.
This capability allows the user to input graphical data in
a more natural manner for applications such as menu pick
ing, CAD (computer-aided design), sketching, and drawing.

Based on a new input technology, the HP 45911A
Graphics Tablet (Fig. 1) represents a significant contribu
tion in price/performance for this class of graphics input
devices. Less than a quarter of the cost of earlier HP graphics
tablets, the HP 45911A offers a resolution of 1200 lines per
inch (0.02 mm) with essentially no jitter at this high reso
lution. Its active area was chosen to be 11 inches per side
to accommodate standard overlays produced by third-party
software vendors. Ergonomically, the HP 45911A features
a minimal footprint, low-profile package designed to be
used in front of large workstations like HP's Vectra Com
puter without restricting easy access to the system's disc

drives. In addition, its standard width of 325 mm allows
it to be stacked on top of the system when not in use.

The development history of the HP 45911A is reminis
cent of HP's early development style in which projects
were initiated by lab engineers with a need for a new prod
uct and who believed they had a good idea on how to
construct it. Early in 1984, Mike Berke and I were griping
about the high price of the HP 9111A (HP's only tablet
back then) and how useful a good inexpensive tablet would
be for our home computer systems. So when time would
allow it, we started experimenting with various tablet de
signs. After prototyping several technologies (electrostatic,
magnetic, optical, and ultrasonic), it became clear that an
electrostatic approach was our only choice. Magnetic tech
nology also promised high resolution, but required higher
current consumption and had a significant problem with
sensitivity being highly dependent on the angle of the pen
to the tablet surface.

In an electrostatic design, traces underneath the active

Fig . 1 . The HP 45911 A Graph ics
Tab le t fea tures a h igh reso lu t ion
o f 1 2 0 0 l i n e s p e r i n c h o v e r a n
11 x 11 - inch act ive area for a low
p r i ce . A member o f HP ' s Human
In te r face L ink (HP-HIL) fami ly o f
input devices, i t can be used wi th
a v a r i e t y o f H P c o m p u t e r s a n d
workstations.

4 HEWLETT-PACKARD JOURNAL JUNE 1987

© Copr. 1949-1998 Hewlett-Packard Co.

area are sequentially pulsed and these pulses are capaci-
tively coupled to the tip of a stylus. The amount of coupling
is a function of the local dielectric coefficients (which are
normally constant) and the spatial separation between the
stylus and any specific trace. Hence, the stylus position
can be accurately determined by the relative strength of
the signals coupled back from the traces as they are pulsed.

The HP 45911 A offers greatly reduced hardware com
plexity over comparable tablets by using a technique (pat
ent applied for) that reduces the number of trace drive lines
from over 110 down to 16. This scheme, called permuted
trace ordering (PTO), allows us to drive the traces directly
from the on-board microprocessor, eliminating the need
for any separate driver ICs, which usually represent a large
fraction of the cost of a graphics tablet. To accomplish this
reduction, the same drive lines are used over and over
again on the 112 vertical and horizontal traces on the tablet
by varying the sequential ordering of the traces along the
tablet surface. In this way, a unique signature is coupled
into the stylus at all points on the platen. Fig. 2 demon
strates this for a section of the tablet platen board. It shows,
for both axes, the drivers associated with each of the traces
shown. The tablet operates by activating the trace drivers
singly, in sequence, and reading the stylus response for
each trace driver.

For example, if the stylus is located as shown, the out
come might resemble the list of values shown in Table I.

The units in the response column are merely relative values
and could be viewed as results from an 8-bit analog-to-dig-
ital (A-to-D) conversion.

Table I
X-axis trace driver responses

Observe how the stylus response is a function of stylus-
to-trace distance. Driver 3 is the closest and gives the high
est response, followed by driver 0, then driver 4. These top
three responses can be formed into a code, say 304, which,
by design, is unique to that coarse position on the tablet
surface. The magnified section of Fig. 2 shows coarse posi
tion codes for both X and Y in a small region of the tablet.
Note that two different code values occur within a trace
spacing. Each of the drivers is pulsed one at a time, the

X T r a c e # : 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 Â « Â « Â «
X D r i v e r * : 0 1 2 3 4 5 6 7 2 1 4 3 6 5 2 7 4 3 0 1 6 7 4 5 â € ¢ â € ¢ â € ¢

X : 3 0 4
Y : 1 4 2

â€” Ã
X : 3 0 4
Y : 4 1 3

X : 0 3 1
Y : 1 4 2

X : 0 3 1
Y : 4 1 3

X
D r i v e r

3

X
D r i v e r

0

Y
D r i v e r

1

Y
D r i v e r

4

Fig. view coarse section (left) of the HP 45911 A platen with an expanded view (right) showing coarse
pos i t ion codes for X and Y coord inates. The f i rs t d ig i t o f the code corresponds to the c losest
t race dr iver, the second digi t corresponds to the second closest, and the third digi t to the third

c losest . The dr iver sequence is chosen to assure unique codes for a l l coarse posi t ions.

JUNE 1987 HEWLETT-PACKARD JOURNAL 5

© Copr. 1949-1998 Hewlett-Packard Co.

C o a r s e P o s i t i o n

X D r i v e r 3 X D r i v e r 2 X D r i v e r 1 X D r i v e r 4

Fig . 3 . At s ty lus pos i t ion A, the f ine o f fse t va lue is 0 and a t
pos i t ion B the va lue is 1 . Cont inuous values between 0 and
1 ex is t between posi t ions A and B.

responses are measured and sorted, and then the driver
numbers for the three strongest responses are combined
into a code word. This code word then becomes an address
for accessing a coarse-position lookup table.

These algorithms determine coarse position with a reso
lution of 2.7 mm. To achieve a resolution of 0.02 mm (1200
lines per inch), each coarse position must be resolved into
128 distinct regions. The fine-position routines that ac
complish this are based on the equation:

Fine Offset = (V2-V3)/(V-i-V3)

where Vj is the magnitude of the strongest response, V2 is
the secondary response, and V3 is the tertiary response.
This relationship was chosen because it represents a com
putationally minimal relationship with well-defined bound
ary conditions.

Fig. 3 demonstrates the boundary conditions between
coarse position blocks. This fine offset approaches 1 when
the stylus is exactly between two traces since the highest
response Vt will have roughly the same magnitude as the
second highest response V2. At the other extreme, V2 be
comes equal to V3 when the stylus is directly over a trace,
since this configuration will yield equal spacing to the
adjacent second and third traces. In this condition, the

numerator and the fine offset itself approach zero. Between
these two extremes, the values are continuous but not
necessarily linear. Linearization is achieved through the
use of a lookup table within the HP 4591lA's micropro
cessor, and we are left with a flat position response at high
resolution.

There is a fundamental relationship between computa
tion speed and noise/jitter performance. Fast position deter
minations make it possible to use averaging to reduce any
noise in the system. For this reason, the fine offset equation
is computed in hardware rather than firmware. Referring
to the configuration shown in Fig. 4, the subtractor stage
is used to generate both the terms Vj - V3 and V2 - V3. The
first term is applied to the reference input of the analog-to-
digital converter (ADC) and the other term is applied to
the ADC's signal input. The effect of this is a division of
the two terms. Since the speed of this process is limited
only by the signal propagation and A-to-D conversion times
(dominant here), data can be collected quickly and aver
aged often. In addition, multiple samples can be taken on
the input sample-and-hold circuits, which causes very
quick analog averaging to take place there. The result is
excellent noise performance.

Noise performance is further improved by two firmware
routines, dynamic averaging and antijitter. Dynamic av
eraging is a technique that offers all the benefits of large
amounts of position determination averaging without the
drawbacks. Averaging reduces the amount of noise (inher
ent with the large amounts of amplification necessary to
process the minute stylus signal) by the square root of the
number of averages. However, conventional averaging
causes a perceivable lag when the user moves the stylus
rapidly. To overcome this, the dynamic averaging routines
change the amount of averaging performed as a function
of stylus tracking speed. When the user is moving the stylus
quickly over the platen surface, little or no averaging is
done to ensure a quick response. With slow stylus move
ments, large amounts of averaging are performed, which
provides excellent noise performance when it is most
needed.

Dynamic averaging successfully reduces any jitter down
to a single pixel, but no further since the stylus can always
sit on the boundary between two pixels. To eliminate this
last amount of jitter, changes of only one pixel are not
reported.

Sample and Hold Subtractor
Sample and Hold

(V , - V 3) .

Fig . 4 . Hardware sys tem for com
put ing f ine offset posit ion.

6 HEWLETT-PACKARD JOURNAL JUNE 1987

© Copr. 1949-1998 Hewlett-Packard Co.

Sty lus Des ign
The conventional electrostatic graphics tablet stylus can

be thought of as merely a shielded wire that brings the
capacitively coupled trace signals back to the main system
electronics for amplification and processing. The stylus for
the HP 45911A, on the other hand, is active and the trace
signals are amplified at the stylus tip before they are sent
back to the main electronic system.

The use of surface mount components (see Fig. 5) let us
put the first stages of amplification in the stylus. Although
this approach requires power and ground wires to be con
nected to the stylus, it improves noise performance by
roughly an order of magnitude.

Signals seen by the tip are greatly reduced by a parasitic
voltage divider formed by any existing tip-to-ground
capacitance. In a conventional stylus, the tip and attached
wiring running through both the body of the stylus and
the cable shield form a considerable parasitic divider.

That is (Fig. 6, left):

Y Stylus
(-"Tra

+ -â€¢Shield j
V Platen

Given typical values of 1 pF for CTrace and 100 pF for CBody
+ Cshield, the stylus voltage is approximately (l/101)VPlaten.

The HP 45911A stylus tip sees only the parasitic tip-to-
body capacitance, yielding a signal about ten times stronger
at the input to the first stage of amplification.

That is (Fig. 6, right):

V Stylus
[CTrace

C f i o d y + C T r a c e \

x Amplifier Gain

In this case, CBody = 10 pF and the stylus voltage is approx
imately (1/11) VPlaten multiplied by the amplifier gain.

After buffering by the low-output-impedance amplifier,
any shield or body capacitance has no effect. In addition,
since the signals entering the first stage of amplification
are stronger, the noise level introduced by this stage has
less effect, which yields a greatly improved signal-to-noise
ratio.

A c k n o w l e d g m e n t s
Mike Berke's technical expertise, insight, energy, and

encouragement were involved in nearly all of the functional
details of the tablet design. Brainstorming with Mike is
what caused the project to happen in the first place. A
supportive management environment created by Mark

- A m p l i f i e r

P la ten Traces

Vpla ten

Platen Traces

F ig . 6 . Compar ison o f conven t iona l e lec t ros ta t i c s ty lus de
sign (lef t) wi th HP 45911 A stylus design (r ight) .

Delia Bona and Lorenzo Dunn allowed the project to be
come a reality. Peter Guckenheimer made contributions
early in the development and is essentially responsible for
the industrial and mechanical aspects of the stylus. Tom
Neal can be congratulated on the industrial design of the
tablet itself, and Jun Kato and Dick Bergquam executed a
tricky mechanical design. The project was transferred to
Singapore in its later phases and Han Tian Phua, Yeow
Seng Then, Hock Sin Yeoh, Danny Ng, and others there
have made and are still making valuable contributions to
the HP 45911A. Also, Rob Starr needs to be thanked for
his electrical support near the end of the project.

' H i l l

F ig . 5 . Assemb led (t op) and d i s
a s s e m b l e d (b o t t o m) s t y l u s a s
s e m b l y s h o w i n g a m p l i f i e r b o a r d
using surface mount components.

JUNE 1987 HEWLETT-PACKARD JOURNAL 7

© Copr. 1949-1998 Hewlett-Packard Co.

The Hewlett-Packard Human Interface Link
Connect ing human- input dev ices to personal computers
and workstat ions is s impl i f ied by the def in i t ion of an
in ter face l ink that adapts to the devices on the l ink and
al lows them to be added or disconnected during operation.

b y R o b e r t R . S t a r r

THE HEWLETT-PACKARD Human Interface Link
(HP-HIL) is an intelligent, low-cost interface for con
necting human-speed input devices (e.g., keyboards,

mice, and digitizing tablets) to personal computers and
workstations. HP-HIL can support up to seven such devices
at one time by daisy-chaining them together through a
single port on the computer. There are no restrictions on
the type and order of the devices connected. Users can
easily expand their system by simply plugging in additional
input devices.

HP-HIL has become the standard input device interface
for HP's personal computers but should not be confused
with other types of interfaces such as the Hewlett-Packard
Interface Bus (HP -IB, IEEE 488/IEC 625) and Hewlett-Pack
ard Interface Loop (HP-IL),1 which have distinct and differ
ent applications. HP-HIL was designed as an efficient, low-
cost method of data collection from human-operated input
devices.

Features of HP-HIL
Many PC users find that they need a variety of input

devices to handle different data input needs. For example,
a mouse is good for many applications, but sometimes the
greater precision of a graphics tablet is necessary. HP-HIL
allows input devices to be intermixed easily and changed
by the user. The HP-HIL protocol identifies and configures
devices connected to the computer. This frees the user from
the need to change switch settings or configuration menus
whenever a device is removed or added to the link. Since
HP-HIL will support up to seven devices through a single
port, the user does not need a separate interface card for
each input device. This can save valuable accessory slots.
The input devices receive their power from the computer,
thereby eliminating power cords, simplifying the input de
vices, and lowering costs.

Physical Connection
HP-HIL devices are connected to a personal computer or

workstation and to each other in a daisy-chain link. The
first device is connected directly to the computer's HP-HIL
port. The second device connects to the first device. Each
additional device connects to the previous (upstream) de
vice. Up to seven devices can be chained or linked together
in this way.

Each input device has two female connectors or ports
(except in special cases) while the computer has a single
female connector or port. The input devices are connected
together by removable cables (usually coiled) having a male
plug on each end. Each end of an HP-HIL cable has a dif
ferently keyed connector to assure correct connection be
tween the computer and a device or between consecutive
devices. The cables and device connectors are marked with
one dot or two dots for polarity identification. One dot
indicates the upstream connector of a device or the down
stream end of a cable. Two dots indicate the downstream
connector of a device or the upstream end of a cable. An
example of how devices can be interconnected is shown
in Fig. 1. Some input devices have only one HP-HIL port
because of size limitations. An example is the HP 46060A
Mouse. Devices having a single port must be the last device
on the link.

HP-HIL Architecture
The HP-HIL architecture is an extendable serial interface

consisting of a personal computer or workstation (master)
and from one to seven input devices (slaves). The master
provides power, ground, data-out, and data-in signals to
the devices through a shielded four-conductor cable. The
master contains an integrated circuit, the master link con
troller (MLC), that provides the hardware interface between
the system processor and the devices connected to the link
as shown in Fig. 2. Similarly, each device contains an 1C,
the slave link controller (SLC), that provides the hardware
interface between the link and the input device's microcon
troller as shown in Fig. 3.

In the PC, the MLC functions much the same as a UART

System Keyboard Graphics Tablet Mouse

Fig . 1 . Typ ica l HP-HIL dev ice in
te rconnec t ion . The do ts ind ica te
ups t ream and downs t ream po la r
i t y as shown and a re marked on
the dev ice connectors and cab le
ends.

8 HEWLETT-PACKARD JOURNAL JUNE 1987

© Copr. 1949-1998 Hewlett-Packard Co.

(universal asynchronous receiver-transmitter). The MLC
accepts commands directly from the master's processor
over a bidirectional eight-bit data bus and transmits the
messages (called frames) in serial form onto the link in the
proper format. The MLC also accepts serial data from the
link and places the data in its 16-frame FIFO (first-in. first-
out) buffer for retrieval by the master's processor. The FIFO
buffer queues incoming frames to reduce the number of
interruptions to the host processor. Error checking and
loopback modes for local testing are also supported by the
MLC. The MLC requires an 8-MHz clock, which can be
supplied by the master's processor clock or generated lo
cally b\' adding a ceramic resonator to the MLC. Two inter
rupt lines, nonmaskable and maskable, are available from
the MLC. The nonmaskable interrupt can be used for hard
resets to the master's processor generated by keyboards
(e.g., ctrl-shift-reset keys depressed to generate a system hard
reset). The two signal lines, SO and SI, are protected against
electrostatic discharge (BSD) damage by clamp diodes be
tween the + 5V supply and ground, and by resistors in
series with the signal lines.

Each HP-HIL device contains the SLC and a microcon
troller. The SLC provides the interface between the link
controller and the device's microcontroller. The SLC re
ceives commands from the device microcontroller, trans
mits data, retransmits commands, and detects communica
tion use The SLC also provides self-test capabilities use
ful during power-up. The clock is provided by the SLC
using an external 8-MHz ceramic resonator, and is divided
to 4 MHz for the microcontroller's use. Communication
with the device processor is serial and is designed for use
with National Semiconductor's COPs family or similar mi
crocontrollers. Link protocol is handled by the device mi
crocontroller, which also handles data collection from the
input device (key array, optical encoders, etc.). Like the
MLC, the signal lines of the SLC (SI, SO, Rl, and RO) are
protected against BSD damage.

An integral part of HP-HIL is the ability to supply power
to the input devices from the personal computer or work
station. 12Vdc is supplied to the link from the master's
power supply for use by the input devices. Devices locally
regulate the 12Vdc to 5Vdc so that any voltage losses in
the cables do not affect the devices. Most input devices
require less than 100 m A.

HP-HIL Input Devices

HP-HIL Touch Accessory , HP 35723A. A 12- inch user - ins ta l l
able touchscreen bezel which provides touch interact ion wi th
the hos t compute r . The HP 35723A fea tu res a reso lu t ion o f
43x57 po in ts max imum.
HP-HIL Graphics Tablet. HP 4591 1 A. An 1 1 x 1 1-inch graphics
tablet with 1200-l ines-per- inch resolut ion.
HP-HIL Keyboards, HP 46021A and HP 46030A. The HP-HIL
keyboards are general ly suppl ied with the computer for which
they were designed (e.g. . HP Touchscreen I I , Vectra, and HP
9000 Ser ies 300) . These keyboards a re ava i lab le in a w ide
var iety of languages.
HP-HIL Mouse, HP 46060A. This mouse s impl i f ies the task of
pos i t ion ing the cursor on the screen. I t has 200-counts-per -
inch resolut ion and two buttons.
HP-H IL Ro ta ry Con t ro l Knob . HP 46083A. Th i s modu le p ro
vides two-axis relat ive cursor posit ioning via a rotary knob and
atoggle key. It has a resolution of 480 counts per revolution.
HP-HIL Securi ty ID Module, HP 46084A. The ID Module al lows
users to run secured appl icat ion sof tware. I t re turns an iden
t i f icat ion number for identi fying the computer user and is used
i n app l i ca t i on p rog rams to con t ro l access t o p rog ram func
t ions, data bases, and networks.
HP-HIL Control Dial Module, HP 46085A. This module has nine
graphics posi t ioning dia ls. I t is used in graphics display appl i
cations to provide three-axis rotate, translate, scale, and other
a t t r ibute funct ions. Each d ia l has a reso lu t ion o f 480 counts
per revolution.
HP-HIL 32-Button Box, HP 46086A. This box provides 32 user-
de f inab le bu t tons fo r menu se lec t ion and one user -p rogram
mable LED. I t is used in CAD/CAE appl icat ions.
HP-HIL Digit izers, HP 46087A and HP 46088A. These digit izers
are for use in in teract ive graphics, graphics entry , and menu
se lec t ion app l ica t ions. Two act ive area s izes (A or B) are o f
fered. They each have a resolut ion of 1000 l ines per inch. An
opt ional cursor wi th crosshair is avai lable.
HP-HIL Quadra ture Por t , HP 46094A. Th is p roduct p rov ides
a n ine-p in submin iature connector for in ter fac ing quadrature
s ignals to HP-HIL. Three keyswi tches are supported.
HP-HIL Bar-Code Reader , HP 92916A. Th is module prov ides
an a l te rnat ive to the keyboard for data ent ry app l ica t ions. I t
reads UPC/EAN/JAN, in te r leaved 2 -ou t -o f -5 , Codabar (MHI
and USD-1) , 3-of -9, and extended 3-of -9 codes.

From
S y s t e m i

Processor

Nonmaskable Interrupt

+ 12V to Link

F i g . 2 . H a r d w a r e i n t e r f a c e b e
tween personal computer or work
s t a t i o n (m a s t e r) p r o c e s s o r a n d
HP-H IL

JUNE 1987 HEWLETT-PACKARD JOURNAL 9

© Copr. 1949-1998 Hewlett-Packard Co.

Data and Data Paths
Data moves around the link in packets called frames. A

frame consists of fifteen bits including one start bit, one
stop bit, one data/command bit, three address bits, eight
data bits, and one parity bit (see Fig. 4). Frames are trans
mitted around the link at the rate of ten microseconds per
bit, or 150 microseconds per frame. Frames are transmitted
at a maximum of one frame per 154 microseconds, or about
6,500 frames per second. Four microseconds are left be
tween frames to avoid collisions. When the link is being
used for data collection from input devices, devices are
polled (asked if they have data to report) about sixty times
each second. This is an acceptable data collection rate in
that there is not a perceived delay between user input and
the personal computer's response. A maximum of fifteen
bytes of data can be collected with each poll.

The idle state of the link is a logic one, with the first bit
in a frame (the start bit) at logic zero and the last bit (the
stop bit) at logic one. The parity bit is computed so that
the total number of logic-one bits in the 15-bit frame (in
cluding start, stop, command, parity, address, and data
bits) is odd.

Frames can represent either data or commands. The com
mand/data bit indicates whether the eight-bit data field
contains data or the opcode of an HP-HIL command. All
frames have a 3-bit device address so that commands and
data can be associated with a particular device. Command
frames generally have a universal address which directs a
command to all the devices on the link. When a frame is
received by a device, the device always checks for an ad
dress match (a universal address or device address match
ing its own). Frames received that have a matching address
or a universal address are acted upon by the device. Frames
received that do not have a matching address are retrans
mitted by the device's SLC.

Command frames always originate from the master, with
two exceptions. If a device detects an error (e.g., a frame
received by the device is corrupted), then the device origi
nates a command frame indicating an error has occurred.
The second exception is when a system hard reset com

mand frame is generated by a keyboard.
When communicating with devices, the master transmits

a single command frame or data frame(s) plus a command
frame onto the link. HP-HIL protocol allows only a single
command frame to exist on the link at any given time.
However, multiple data frames can exist on the link. There
are five scenarios that can occur when the master transmits
on the link.

In the first case the master transmits a single command
frame onto the link. The master waits until that command
frame passes through all devices and returns before taking
further action. The returning command frame is generally
identical to the command frame originally transmitted by
the master. For some commands, the frame may return to
the master modified to indicate some specific information
about the link.

The second case is a subset of case one. Here, the master
transmits a single command frame onto the link, but the
command frame is not expected to return. The master waits
a predetermined time, and then proceeds with further
transmissions onto the link. The waiting period is called
a "time-out" and occurs when no frames return after a
command is transmitted. If a time-out also occurs when a
frame is expected to return to the master, then the master
interprets the lack of response as an error condition and
takes the appropriate action.

In the third case, a single command is transmitted by
the master, but data frames are returned before the com
mand frame returns. The number of data frames returned
depends upon the command transmitted, and whether the
device(s) have data to return to the master. Some commands
collect data from a specific device while other commands
collect data from several devices. Up to 15 data frames can
be returned in response to a single command. As always,
the data frames contain the device address so the master
can identify the originator of each data frame.

In the fourth and fifth cases, the master transmits one or
more data frames and a command frame. In the fourth case,
a single data frame is transmitted followed by a command
frame. The data frame contains register address information

G N D

* - SHIELD

Connec ted to Case On ly

G N D

+ 5V

Upst ream
Port

8-MHz
Resonator

Serial
Inter face

Device
Microprocessor

Device
Hardware F i g . 3 . H a r d w a r e i n t e r f a c e b e

tween HP-HIL and input dev ice 's
microcontrol ler.

10 HEWLETT-PACKARD JOURNAL JUNE 1987

© Copr. 1949-1998 Hewlett-Packard Co.

for a particular device. The device responds by transmitting
the contents of the addressed register followed by the orig
inal command frame. The master waits until the data frame
and command frame are received before transmitting addi
tional commands onto the link. The fifth case is similar to
case four, but here the master transmits several data frames
followed by a command frame. The addressed device re
turns only the command frame back to the master in case
five.

Consider a system with two devices attached as shown
in Fig. 5. When the master's MLC transmits a frame, it does
it on the serial data-out (SO) line. The frame is received on
the serial data-in (SI) line of the first device's SLC. The
first device checks for an address match. If no match is
found, the frame is retransmitted on the first device's SO
line. Assume that the transmitted frame is a command with
an address for device one. Device one finds an address
match and then proceeds to act on the command. After the
command is processed, device one retransmits the data
frames (if any) followed by the command on its SO line.
Device two then receives the frames on its SI line and checks
for an address match. Any data frames originated from
device one would have device one's address, and thus
would have no address match with device two. The com
mand frame also has device one's address and thus no
address match occurs there either. The frames are then
retransmitted on device two's return data-out (RO) line
rather than on its SO line. This is because device two is
the last device on the link for this example. The last device
is set to return data on RO rather than SO during the config
uration process that occurs upon link startup. The frames
are received on the return data-in (Rl) line of device one
which then passes the frames directly (buffered only) out
on its RO line back to the master. The master receives the
frames on its SI line to complete the process. This entire
process takes about 8 ms or less, depending on the number
of devices connected and the amount of data returned.

HP-HIL Protocol
Automatic polling (data collection from the devices) is

also possible by the MLC and requires processor interven
tion only when data is received. The master's processor
can also be hard reset by the HP-HIL devices through the
MLC.

Each input device on the link is assigned a unique ad
dress so that devices can be distinguished from one another.

Frames have three address bits, which allows for eight
unique addresses. Addresses one through seven are used
for devices on the link. Address zero is reserved as a uni
versal address which is used when a command is to be
acted upon by every device.

HP-HIL has a command set through which all necessary
functions to set up and maintain the link are performed.
The commands can be grouped into five categories: config
uration, error recovery, data retrieval, identification, and
special functions.

Configuration is the process by which the link is set up
so that the master can collect data from input devices in
an orderly manner. Since the master does not know what
devices and how many devices are connected to the link
upon power-up, the configuration process must occur be
fore the link can be used. Configuration typically occurs
when the master is first powered up. The configuration
process is handled by the master's firmware and requires
no user intervention. The goal of the configuration process
is to assign a unique address to each device on the link,
and to set the device modes so that data will be looped
back by the last device on the link. (The SLC in a device
can internally loop data back to upstream devices or pass
data on to downstream devices.) In the process, each device
is requested to identify itself (report an ID code) so that
the master will have the necessary parameters for scaling
the device data. Also, the master can determine if any de
vice supports advanced features.

HP-HIL provides several levels of error recovery. If an
error occurs, the error recovery process will preserve the
maximum amount of data and minimize the master's in
teraction with the link. Although recovery is performed by
the master's firmware, errors can be detected either by de
vices or by the master. For example, an error might occur
when a user disconnects a device while it is reporting data.
The disrupted frame(s) would be detected by the master,
causing error recovery to begin. Although a part of error
recovery, disconnecting devices is considered a normal
part of link operation. If data is lost from devices still re
maining on the link, the data can be recovered. Devices
save the data that was last transmitted so that if an error
occurs, the master can request the data again.

Data retrieval or polling is the process by which the
master gathers information from the input devices con
nected to the link. Keyswitch transition data, character
data, position data, and a limited amount of status informa-

S t o p
Bit

L o g i c 1

Logic 0

Fig. 4 . HP-HIL f rame format .

JUNE 1987 HEWLETT-PACKARD JOURNAL 1 1

© Copr. 1949-1998 Hewlett-Packard Co.

System

R O 4 - R l

D e v i c e 1 D e v i c e 2
A d d r e s s 1 A d d r e s s 2

P a s s e s D a t a L o o p s D a t a B a c k
T h r o u g h (L a s t D e v i c e o n L i n k)

F ig . 5 . B lock d iag ram o f sys tem w i th two i npu t dev i ces a t
tached via the HP-HIL.

tion can be communicated back to the master using the
data retrieval commands. When used with information ob
tained by the identification commands, input device data
can be completely processed. The master can request data
from a specific device or all devices. A maximum of 15
bytes of data can be returned in response to a single poll
command. Devices determine if there is sufficient room to
add their data to a passing poll command. Since the com
mand always trails the data, the device inserts its data and
then retransmits the command. Because there is always an
address associated with the data, the master can easily
determine where the data originated.

Identification commands are used to determine the type
of the attached devices and their characteristics. Device
types could be keyboards, relative positioning devices (e.g.,
mice), absolute positioning devices (e.g., digitizers), or
other devices. Characteristics of devices are typically reso
lutions (counts per centimeter), maximum counts, direc
tional information, and information on how the device re
ports byte Devices also carry an internal identification byte
called the device ID byte. This ID byte is assigned to the
device during its development and is placed in the device's
microcontroller code. The ID byte is used to identify the
type of device (keyboard, relative positioning, etc.) and
nationality (native language) in the case of keyboards or
keypads.

HP-HIL can be used in other ways than efficient collec
tion of data from input devices. Special functions include
commands designed to take advantage of advanced features
supported by some input devices. These features are related
to register reads/writes, keyswitch autorepeat, output, and
system reset. These capabilities are not required for basic
HP-HIL operation, but they are available for devices with
special requirements. For higher-speed data transfers (up
to 6,500 bytes per second), register-oriented commands
from this category would be used.

System and Device Control
Controlling the link through the MLC consists of four

basic activities: configuration, error recovery, polling (data
collection), and adding devices to the link. Upon system
startup (usually part of the power-on routines), the master's
processor performs a self-test on the MLC. Then the config
uration process begins. The processor issues the appro
priate commands to identify and configure any devices on
the link. Once the link is configured, polling begins and
is the main activity of the MLC. Occasionally (perhaps once
a second), the processor will have the MLC issue commands
that will detect if a device has been added to the link. If
so, the new device is configured into the link and polling
resumes.

Device control consists of three activities: initialization,
servicing interrupts, and collecting data. Initialization oc
curs at power-up and causes the SLC to perform a self-test.
The device microcontroller also performs a self-test. When
the self-tests are complete, the microcontroller places the
device's SLC in its appropriate power-up mode, concluding
the initialization process. The microcontroller then spends
the rest of the time checking for interrupts from the SLC
and collecting new data. An interrupt is generated by the
SLC whenever a frame is received. The device's microcon
troller then begins an interrupt service routine which may
be simple or involved depending on the frame contents.
When not servicing interrupts, the microcontroller looks
for any new data from the device's input mechanisms. This
could be sensing a key depressed, or checking for a trans
ition on an optical receiver, etc. When data is available,
the microcontroller formats the data so that it will be ready
for transmission to the master.

Acknowledgments
The author would like to thank the key contributors to

HP-HIL: Mark Brown for his efforts in hardware and pro
tocol development, Carol Bassett who designed the MLC
and SLC, and Greg Woods for his contributions to the HP-
HIL protocol.

Reference
1. R.D. Quick and S.L. Harper, "HP-IL: A Low-Cost Digital Interface
for Portable Applications," Hewlett-Packard Journal, Vol. 34, no.
1, January 1983, pp. 3-10.

12 HEWLETT-PACKARD JOURNAL JUNE 1987

© Copr. 1949-1998 Hewlett-Packard Co.

Software Veri f icat ion Using Branch
Analysis
Impos ing branch coverage requ i rements on a sof tware
test ing pro ject can be counterproduct ive unless a
comprehensive branch analys is methodology is fo l lowed.

by Daniel E. Herington, Paul A. Nichols, and Roger D. Lipp

BRANCH ANALYSIS IS A METHOD of assessing the
thoroughness of software testing. The method con
sists of inserting procedure calls, called probes, into

the code at all of the decision points. These probes make
it possible to monitor the execution of specific portions of
the software.

This paper addresses the problems and issues of using
branch analysis during software testing. We begin by dis
cussing common software testing metrics, including the
branch coverage metric. We then discuss software testing,
both functional and structural, using branch analysis.

When we first began using branch analysis as a require
ment for the release of systems software, many problems
occurred because we started without a clear understanding
of this coverage metric and there was no known testing
methodology using this metric. The final sections of this
paper discuss what we have learned from the use of branch
analysis and the testing methodology we have developed
to provide for an efficient, cost-effective, and quality-
conscious software verification process using branch
analysis.

Verifying Software Quali ty
Software quality can be, and is, measured by a number

of different elements, including functionality, usability, re
liability, and others. Often, the most visible aspect of soft
ware quality is conformance to specifications, or more
realistically, nonconformance to specifications â€” that is,
errors. Because software is conceived, specified, designed,
and built by humans, there are usually plenty of these
nonconformances in any large software system. Software
quality can be improved by avoiding these errors using
software engineering techniques, or by finding and remov
ing them using software verification techniques â€” usually
both. This paper addresses a special type of software ver
ification.

Software can be verified in two ways: statically, using
desk checks, walkthroughs, inspections, static code evalu
ation tools, and the like, or dynamically, using any of a
number of software testing techniques.

For managers to be able to control the software verifica
tion process, they need to be able to quantify this process.
To this end, a variety of software metrics are collected. The
most important of these for the purposes of this paper is
branch coverage. Branch coverage is a metric that identifies
how much of the software, at the source code level, has
been executed by the test suite.

We started collecting and using the branch coverage met
ric in 1981. At the time, there was no known testing
methodology using this metric. As a result, a number of
interesting and often frustrating problems occurred. We
have been focusing considerable attention on clearly under
standing these problems and the solutions that various proj
ect teams have proposed and tried.

We have identified a complex set of reasons for the prob
lems. One is that our expectations of testing were raised
markedly because we now had detailed information on
testing coverage. We also had a difficult time trying to
identify and develop tools that would help our engineers
test specific sections of code.

We have found some positive process improvements that
have helped our engineers conduct branch analysis testing
in a much more cost-effective and quality-conscious man
ner. We have also developed a methodology that combines
all of these new techniques to provide a structural software
verification process that is free of many of the problems
we encountered.

Software Test ing Metr ics
Thorough and effective testing is paramount to the suc

cess of a software product. Proving the software reliable is
an important part of the testing. To accomplish this, the
software must be fully exercised, and any defects detected
along the way must be removed. This is an extremely dif
ficult, tedious, and complex activity, frequently taking 40
to 60 percent of the total project effort. It can also be a time
of frustration. Questions such as "How much testing is
enough?" and "What are the testing results to date?" are
frequently asked. The information needed to answer these
questions is often not available.

Many of these problems can be overcome or controlled,
at least to some extent, by using good metrics. These help
to assess progress, report status, and assist in decision mak
ing. No one metric is sufficient; rather, a number of differ
ent, well-defined metrics are required. Each provides infor
mation about a different aspect of the process, and they
combine to form a complete and accurate picture of the
testing process.

The metrics of interest to this discussion fall into two
general categories. First, there are those that quantify the
testing coverage, and second, there are those that quantify
the software's reliability.

Testing coverage must be quantified and assessed from
both an external, or functional, and an internal, or struc-

JUNE 1987 HEWLETT-PACKARD JOURNAL 13

© Copr. 1949-1998 Hewlett-Packard Co.

tural, point of view. For the former, assurance needs to be
given that all system functionality has been exercised. Tests
to validate external features are identified from the specifi
cation. They are then created, and their execution progress
is tracked using a function matrix. This matrix provides a
quantification of functional testing coverage.

Testing the software from only an external point of view
is insufficient. Many conditional branches or decisions
made by a piece of software are there to support internally
implemented functions. This is especially true in system
software. Testing from only an external point of view will
rarely exercise all of this logic. An internal view of the
software is required. Additional tests can be derived by
using the internal software specifications. To assure com
plete structural coverage, however, the tester must be able
to determine not only that the software functions have all
been exercised, but also that all software logic has been
exercised. Hence the tester must be able to monitor what
is being executed inside the software. This can be achieved
by using a tool to collect the branch coverage metric. This
branch analysis tool tells the tester which branches in the
code have been executed and which ones have not. Using
this data, additional test cases can be derived to exercise
untested software logic.

Quantifying software reliability means tracking problems
detected and evaluating product stability. All detected
problems must be classified and analyzed. Problems are
divided into those affecting reliability and those affecting
other aspects of quality, such as ease of use or documenta
tion clarity. Reliability problems, or errors, are analyzed
to assess severity, to determine their true causes, and to
identify where in the software they were found and how
they were discovered. Corrective action to resolve them is
also tracked. Software stability is assessed by determining
how long between failures the software will run under a
defined load. This is typically known in the hardware
world as mean time between failures (MTBF), and it is just
as important for software as it is for hardware. Progress is
determined by observing a decrease in the frequency of the
detection of errors and an increase in MTBF.

A complete set of testing metrics must contain those
pertaining to coverage and those pertaining to reliability.
Coverage metrics include test case matrices and branch
analysis. The matrices quantify the testing of external fea

tures, while branch analysis quantifies the testing of the
internal logic that implements these features. Reliability
metrics include discovered defects and mean time between
failures. All of this information helps quantify and improve
the effectiveness of the testing process. Over the past sev
eral years, use of these metrics has been increasing and
their value has become clearer and better understood. At
the same time, the understanding of how testing metrics
affect the testing process has also improved. For instance,
we have found that knowing which tests exercise which
portions of the logic improves the testers' understanding
of the software. We have also found that more defects are
likely to occur in a module with high decision (branch)
density (see Fig. 1) . However, we have also found that using
an incomplete set of metrics can have a detrimental effect
on the testing process.

The Software Test ing Process
The two major classifications of software testing are func

tional testing and structural testing. Functional testing is
also referred to as black-box testing because it is conducted
by viewing the software as a black box. In other words, the
tests are written with no knowledge of the internal structure
of the program. In fact, functional tests are most often writ
ten from the software specifications before the code has
even been written. Structural testing, or white-box testing,
takes the opposite point of view. The major concern of
structural testing is to ensure that all of the code of the
program has been executed during testing. This is ac
complished by monitoring the program's execution during
testing.
Functional Testing. The two most widely accepted tech
niques for functional testing are equivalence class parti
tioning and boundary value analysis.1"6

Equivalence class partitioning is a technique designed
to partition the input domain into classes such that if one
test case from a class is executed and fails to find an error
then any other test case in that class would fail to find an
error. This technique is essentially designed to reduce the
number of tests necessary to verify that the code meets its
specifications.

Boundary value analysis is actually a spin-off of equiva
lence class partitioning. Since most errors are found at or
near the boundaries of the equivalence classes, boundary

N e t w o r k i n g P r o d u c t

P r e r e l e a s e B r a n c h a n d E r r o r D e n s i t y D a t a

2 4 C o m p o n e n t s

5 C o m p . w i t h A v g . B R / K N C S S < 1 1 1 . 2 4

6 C o m p . w i t h A v g . B R / K N C S S > 1 7 1 . 2 4

A v g . B R / K N C S S

1 4 1 . 2 4

9 1 . 8 3

198 .91

K P / K N C S S

2 . 3 9

2 . 2 9

3.81

L e g e n d

A v g . s t a t e m e n t s A v e r a g e b r a n c h e s p e r 1 0 0 0 n o n c o m m e n t s o u r c e s t a t e m e n t s

K P / K N C S S : K n o w n p r o b l e m s p e r 1 0 0 0 n o n c o m m e n t s o u r c e s t a t e m e n t s

F i g . 1 . D a t a c o m p i l e d f o r t h e
components o f a ne twork ing so f t
ware product shows that more de
fects are l ike ly to occur in a mod
ule that has higher branch density.

14 HEWLETT-PACKARD JOURNAL JUNE 1987

© Copr. 1949-1998 Hewlett-Packard Co.

value analysis is used to assure thorough testing of bound
ary conditions. This is done by writing additional test cases
immediately before, at. and immediately beyond the bound
aries of each of the equivalence classes. This also tests for
detection of erroneous inputs beyond legal boundaries.
Structural Testing. A major weakness of functional testing
is that there is no way to be sure that testing is complete.
Structural testing is used to help alleviate this weakness.
Structural testing is conducted using a special, in
strumented version of the software which contains trans
parent procedure calls (called probes) which are inserted
into the code by the compiler. When the program is tested,
the probes log which sections of code are executed by the
tests.

The most obvious benefit of structural testing is the iden
tification of untested code. All of the code in the system
was included to provide some type of functionality. Some
of this code may be the implementation of internal features
that would not be apparent from the specification. Func
tional test cases are written to test the external functional
ity. If some of the code goes unexecuted after this testing
then part of the implementation of the functionality has
not been tested and there is a potential for errors to go
undetected. Structural testing can help alleviate this prob
lem by identifying untested code. Typically, the automated
functional test suite is run with an instrumented version
of the software to evaluate the completeness of the test
suite. We have found that for system level software, these
automated tests leave 40% to 60% of the branches unexe
cuted. Some of the missing tests are functional tests that
were overlooked during the development of the test suite,
but most of them are actually structural tests of function
alities that are transparent to the user-level functionality
of the system. These include error recovery processing and
housekeeping processing that must be done before the sys
tem can do its specialized function. The key point here is
that without structural testing these holes in test suites
cannot be exposed.

Another benefit of structural testing is the quantification
of the testing effort. The first line of Tom DeMarco's book
Controlling Software Projects7 is: "You can't control what
you can't measure." Structural testing is completely quan
tifiable, giving us much greater control of the testing pro
cess.
Conducting Branch Analysis. Fig. 2 shows the typical flow
of activities when conducting branch analysis on a software
component. First, functional testing is conducted using the
traditional functional testing techniques. These tests are
rerun with the instrumented program to measure the test
suite. The data is compared with the coverage criteria to
see if the current level of coverage is sufficient for release
of the system. If the coverage is not sufficient (the normal
case), the branch analysis data and the source code are
analyzed to identify untested functionalities. New test
cases are created to test these functionalities. These tests
are implemented and run using the instrumented program.
If errors are found by the new test cases, the errors are
fixed and the regression package is augmented and rerun
to make sure no new errors have been introduced by the
fixes. At this time the new coverage number is compared
with the release criteria again. This loop is followed itera-

tively until the release criteria for branch coverage are met .

Branch Analysis Problems

Branch analysis is not the perfect testing aid. Some in
teresting problems occurred when branch analysis require
ments were set on projects throughout the computer sector
of HP.

Branch Analysis Doesn' t Prove Correctness
The first problem we ran into was a misunderstanding

of the branch coverage metric. It is very important to realize
at the outset that there is not necessarily any correlation
between high branch coverage and low defect rates. The
branch coverage metric is a meaningless number if the
testing is not conducted properly. High branch coverage
alone will not expose errors. Branch analysis has all of the
weaknesses of structural testing in general. For instance,
there is no way branch analysis can expose missing-code
errors. These occur when part of the functionality of the
system described in the specification is overlooked and
doesn't exist in the code. Since branch analysis just mea
sures what is present in the code, no tests will be shown
to be missing from the test suite for the missing code, even
though there is functionality in the specification that hasn't
been tested. Another weakness of structural testing shows

Functional
Testing

Branch
Analysis

No

Identify Untested
Functionality

Create and Implement
New Tests

Fig. 2. F low chan for a typical sof tware project using branch
analysis.

JUNE 1987 HEWLETT-PACKARD JOURNAL 15

© Copr. 1949-1998 Hewlett-Packard Co.

up in systems software that must run concurrently. Because
the branch analysis metric has no conception of timing,
code that has timing errors in it may be logged as tested
without exposing these errors. In other words, some of the
code may exhibit errors only when another specific event
occurs at a specific moment. Branch analysis also suffers
from many of the weaknesses of software testing in general.
This can be illustrated by one of the most noted weaknesses
of software testing: coincidental correctness. Consider the
following Pascal code:

r e a d l n (N U M) ;
X : = N U M * 2 ;
w r i t e l n f r e s u l t = ' , X) ;

If the input to the readln is a 2, the output of the writeln would
be:

r e s u l t = 4

Now suppose the second statement above was supposed
to be:

X : = N U M + 2 ;

or

X : = N U M * 2 ;

In all these cases the output would be the same for the
input given. However, the program logic may still be wrong.
Branch analysis compounds this problem by giving a report
that proves that this code has been executed. Since the
output was correct, this report gives the tester a false sense
of security with respect to this code.

The main point here is that, by itself, neither functional
testing nor structural testing is satisfactory. They must be
combined in a systematic method to make sure they are
both used to their best advantage.

Scheduling Confl icts
It turned out that increasing testing coverage to meet our

coverage requirements was considerably more difficult
than we had anticipated. Since we were setting these re
quirements on projects that were already under way, and
in some cases the code was already completely integrated,
we immediately ran into scheduling conflicts. This put a
great deal of pressure on the test engineers to reach the
coverage requirements as quickly as possible. This gave
them an incentive to raise the coverage using whatever
tools and techniques were available. Since there were no
proper tools available at the time, and no techniques spe
cifically for this type of testing, our engineers were conduct
ing testing in a relatively ad hoc fashion. This caused an
intensification of the rest of the problems discussed in this
section. In other words, in this case, the concept of learn

by doing turned out to be very costly indeed.
There was no real solution to this problem. The hard

fact was that we were raising the expectations of our testing
and therefore had to extend the expectations of our sched
ules for that testing commensurately. It should also be
noted that the additional testing that was being conducted
was also finding more errors. This made it more difficult
to keep up with removing them as well.

Increasing Difficulty
Another problem worth noting is caused by the fact that

branch coverage becomes increasingly more difficult to im
prove. This increase in difficulty is nonlinear; the higher
the current branch coverage, the more difficult it is to im
prove the branch coverage (see Fig. 3). The reasons for this
are fairly simple. First, we have found that roughly two
thirds of the untested branches are in error detection and
recovery code. This is understandable, because systems
software must protect its own logic from the actions of
many other processes. These errors must often be checked
at many points in the system. Since the offending processes
may or may not be under the control of the software under
test, it can be very difficult to cause these errors to occur
at the precise time required for particular error checks.

Another reason for increased difficulty is that as the
branch coverage increases, the untested branches tend to
become widely dispersed in the software. This often means
that fairly elaborate tests must be created to test one or two
previously unexecuted branches.

Ineffect ive Test ing Tendencies
The results of the problems described above, com

pounded by the lack of proper tool support, are several
tendencies that represent attempts to circumvent the prob
lems, but have the effect of cheating the testing process.
Testing Easy Branches. The first tendency is to test all of
the easy branches instead of the branches that really should
be tested. An easy branch is a branch that requires very
little effort to execute. Unfortunately, the easy branches
are not necessarily where the errors are! Hence, if testing

Ext ra Cos t to r H igher
Qua l i t y Assu rance

(Time)

Ef for t (T ime)

F ig . 3 . When b ranch cove rage i s h ighe r , more e f f o r t i s r e
quired to improve i t .

16 HEWLETT-PACKARD JOURNAL JUNE 1987

© Copr. 1949-1998 Hewlett-Packard Co.

is done with the sole intention of testing as many of the
easy branches as possible, leaving the more difficult
branches unexecuted, then the value of the testing process
has been degraded.
Ignoring Possible Decision Errors. Another ineffective
tendency in branch analysis testing is to resort to tech
niques such as using predicate algebra to map out the re
quired decision values along a path to untested code, or
using a debugger to manipulate the decision variables to
reach the untested code. These techniques make the as
sumption that the decision predicates are all correct. This
is an invalid assumption. In fact, in many cases the majority
of code errors are in the decisions themselves, not the
straight-line code between them.

This is borne out in data that was compiled for the com
ponents of a networking product developed at HP (Fig. 1).
There was a 66% increase in error density from the five
components with the lowest branch density to the six com
ponents with the highest branch density. This shows that
the techniques described above have only limited degrees
of usefulness. Since mapping out decisions is actually a
way of manually executing the code, some of the decision
errors may still be found. In fact, this is a degenerate form
of a walkthrough. However, in this form it is a highly error-
prone technique. In the case of using a debugger to force
the decisions, there is no way to ensure that artificially
changing decision variables won't hide or even cause er
rors. The main problem is that test data obtained by these
techniques has a significantly lower chance of exposing
errors than traditional functional testing techniques. Since
the objective of testing is to expose any errors that may
exist, these techniques should be avoided whenever possi
ble.

New HP Methods

This section describes some new techniques that have
been used at HP to help alleviate the problems described
above. A comprehensive branch analysis methodology
based on these techniques is then described.

Sett ing Requirements for Branch Analysis
Many of the problems we ran into when we first started

using branch analysis were caused by setting high coverage
requirements on testing that was being conducted on sys
tems software that was fully integrated. It turned out that
this was the wrong place for these requirements to be set.
This section describes the issues related to branch analysis
through the prerelease testing life cycle. In this section, a
procedure is a single subroutine, procedure, or function in
the sense that a compiler would see it. A component is a
cluster of these procedures that together form a significant
functionality of the system. A system represents all of the
functionalities that would be delivered to the end user.
Procedure Level Testing. There are few methodologies de
signed for this phase of testing. This is understandable
because this type of testing is almost always conducted by
the engineer who wrote the code and it is usually conducted
shortly after the code is written. As a result, the tester
knows the code very well and can use ad hoc techniques
to ensure that it adheres to its specifications. This is nor

mally done by creating a driver and stubs around the pro
cedure to be tested. The driver orchestrates the testing
while the stubs simulate any outside functionality needed
for the procedure to perform its assigned function.

It would be a relatively simple task to conduct branch
analysis on software of this type. The tester knows the
functionality of all of the code and there are very few
branches. Also, error conditions can be forced or simulated
by using stubs and global variables.

Unfortunately, testing at this level has such a limited
scope that any branch analysis data that is obtained would
be suspect. The reasons for this are fairly simple. The test
ing is being conducted in an unreaÃ¼bÃœL environment in
which no interfaces are tested. As a result, none of the
invalid assumptions that each engineer has about these
interfaces will be exposed by the testing. Also, since we
are dealing with a very small piece of code, it would be
trivial to attain 100% branch coverage at this level. This
leads to a false sense of security that there are no errors in
the procedure. Therefore, we do not recommend imposing
branch analysis requirements on testing at this level. Please
note that we are not recommending skipping procedure
level testing, rather we are recommending conducting pro
cedure level testing without requirements for branch
analysis.
Component Level Testing. Testing at the component level
is conducted in much the same way as at the procedure
level. The driver and stubs are used in a similar way. The
driver will necessarily be more complex because there is
more functionality being tested. Also, there will be fewer
stubs but some of them will also have to be more complex.

Branch analysis will still be fairly simple at this level.
The code should be compact enough to allow the tester to
understand, to some degree, all of its functionality. Also,
the driver and stubs can still be used to force or simulate
most error conditions.

Although testing at the component level is conducted in
a similar fashion to that at the procedure level, the value
of the tests is significantly increased. This is because many
of the interfaces that were simulated at the procedure level
are replaced with the actual code. There are still some
missing dependencies, but they can be minimized by a
careful partitioning of components. In addition, this is the
first level at which meaningful functional testing can be
performed. This is because some user-level functionality
now exists. A tester can now use the documentation of that
functionality to create functional tests. These points add a
good measure of test validity to any branch analysis data
obtained during testing and make this level a prime candi
date for imposing high branch analysis requirements.
System Level Testing. Testing at the system level requires
a different strategy. The driver and stubs are eliminated,
creating a need to write tests that run the system in the
same ways that the end user is expected to run it. Normally
the system is built up slowly by adding new functionalities
gradually and running tests to make sure the new function
alities work as expected with the rest of the system. As the
system is built up, so is the test suite. When the system is
complete the entire test suite is run again to make sure noth
ing was missed.

Branch analysis at this level can be slow, tedious, and

JUNE 1987 HEWLETT-PACKARD JOURNAL 17

© Copr. 1949-1998 Hewlett-Packard Co.

frustrating. The main reason for this is obvious; there are
more levels of program structure that must be executed to
reach branches at the lower levels of each component.
Naturally, it is much easier to write a test to execute
branches two or three levels deep in a component than it
is to execute those same branches when they are now six
or seven levels deep in the system. Also, since the driver
and the stubs have been eliminated, it can be very difficult
to test error detection and recovery code. This becomes
even more difficult when testing systems software, in
which some of the errors are hardware or timing related.
One other serious problem at this level is that this testing
occurs immediately before the product is released. There
is usually a great deal of pressure on the testers to get the
product ready to ship. While the branch analysis require
ment does not allow the testers to forego quality objectives
in deference to schedule pressure, it does put added pres
sure on these engineers because there is a branch coverage
requirement that now must be met.

Test validity is highest at this level of testing. There are
two main reasons for this. The first is that the code is all
there. There are no longer any artificial interfaces that can
hide errors. The second is that, at this level, tests are being
run that execute the system the way the end user is expected
to execute it. Therefore, the tests can find documentation
and usability problems as well as coding errors. In any
event, branch coverage at this level should be expected to
drop from that achieved at the component level. Emphasis
should be placed on testing intercomponent functionalities
and interfaces. The intracomponent functionalities have
already been thoroughly exercised during component level
testing.

These recommendations are designed to provide a
guideline for the cost-effective use of branch analysis. It is
crucial that the ultimate goal of testing remain the detection
of errors. We have seen that imposing high branch analysis
requirements on system level testing can alter the priorities
of the testers because the product is about to be released
and the branch analysis requirements have not yet been
met. When this happens, branch analysis testing is no
longer cost-effective and other methods of software verifi
cation should be employed.

has not been tested by the initial test suite. The expert then
recommends additional functional tests to the tester, along
with an estimate of the expected improvement of branch
coverage. The tester then takes the functional specification
of the test and uses traditional functional testing techniques
to create a series of tests that will thoroughly test that
functionality. This process is repeated until testing is com
plete.

The choice of the expert for the team testing technique
is very important. It is the expert who is responsible for
determining the functionality of individual sections of the
code. The expert must therefore be very familiar with both
the product being tested and the code being tested. The
difference between the product and the code is that the
former implies general knowledge about the product's
functionality and the latter implies specific knowledge
about how the programmers have implemented certain fea
tures. The best choice of expert is one of the original authors
of the code.

Since the tester will be responsible for designing and
implementing functional tests, he or she must be familiar,
and preferably experienced, with the functional testing
techniques described earlier in this paper. The tester must
also be familiar with the functionality of the product being
tested and with the operation of the hardware on which
the product is implemented. An understanding of the ulti
mate user of the product is also needed. The quality assur
ance engineer usually fits into this role quite well.

Proper communication between the expert and the tester
is essential for this team testing process to work. The expert
must have a way of easily and efficiently communicating
the necessary information about the functional testing that
must yet be done on the software. If the communication
medium is too cumbersome or too inefficient then it simply
won't be used and the full benefits of team testing will not
be achieved. Fig. 4 shows the information flow for this
process. The tester gives the expert a detailed report indi
cating the branch coverage of the tests so far. The expert
examines the data and gives the tester a set of forms that
indicate the additional functionalities that need to be tested
and the expected increase in branch coverage. The latter

Team Test ing
A way to avoid the problem of misinterpretation of the

branch coverage metric is to try to use only functional
testing techniques to augment the test suite. However,
branch analysis tends to give the tester an understanding
of very low-level code, and it is difficult to ignore this
knowledge when creating functional tests. A technique
known as team testing, which is being used for testing the
MPE XL operating system, has been very effective at resolv
ing this problem. This technique uses two engineers in a
way that separates the low-level knowledge of the system
from the design of the functional tests.

The engineer who is familiar with the code under test
is referred to as the expert. The other engineer is referred
to as the tester. Initially, the tester designs functional tests
for the software. After the tests have been run, the branch
coverage data is examined by the expert. The expert is then
in a position to determine what functionality of the system

E x t e r n a l
S p e c i f i c a t i o n

E x t e r n a l
S p e c i f i c a t i o n

T e s t
S p e c i f i c a t i o n s

Fig. 4. In format ion f low in team test ing.

18 HEWLETT-PACKARD JOURNAL JUNE 1987

© Copr. 1949-1998 Hewlett-Packard Co.

piece of information is used by both engineers as a check
point for proper communication.

The expert has the branch coverage information obtained
from the tester and the source code for the software being
tested. Using this information, the expert can determine
which physical portions of the code have not been tested
by the test suite so far. By examining the untested portions
of the code, and understanding the functional specification
of the software, the expert determines what new functional
tests need to be added to the test suite. While doing this,
the expert should write down a list of previously unexe
cuted branches that these tests will execute. The expert is
not concerned with the details ui Â«riling or executing the
tests or any other details of testing. The expert then passes
the branch "hit list" along with the functional test descrip
tions to the tester.

The tester receives the functional test descriptions from
the expert and proceeds to write functional tests that fully
test the specified functionality. This is the critical part. If
the tester does not test the functionality using all of the
standard functional testing techniques, then all of the effort
going into the testing will be of limited value. This is be
cause these functional testing techniques are designed to
find errors, whereas branch analysis is designed to ensure
that all of the code is executed. If the tests can be fully
automated, the tester adds them to the automated test suite.
If the tests cannot be fully automated, a careful log is kept
indicating the steps necessary for the test to be replicated.
In any event, the tester then creates the necessary environ
ment for the functional test to take place and executes the
tests. If any of the branches on the hit list are not executed,
the tester must notify the expert of this discrepancy. This
could be either an error or simply a miscommunication
between the expert and the tester. Either case must be re
solved. The new branch coverage data is then given back
to the expert and the process is repeated.

As already mentioned, there are several areas that need
special attention for team testing to be successful. First,
the members of the team must be chosen carefully. A weak
link in this chain could destroy any benefits the methodol
ogy has to offer. Next, the lines of communication between
the tester and the expert must be clear and efficient. Both
engineers can be excellent, but if they don't communicate
properly, neither will be effective. Finally, the tester must
test the software using functional testing techniques, inde
pendent of branch analysis. It's not enough just to execute
a branch. The branch must be tested in a way that will
expose errors.

Branch Analysis Walkthroughs
Now we introduce a technique known as a branch

analysis walkthrough. The goals of the branch analysis
walkthrough are vastly different from those of traditional
walkthroughs and inspections. In fact, branch analysis
walkthroughs may be more aptly termed risk analysis
walkthroughs. Branch analysis walkthroughs are used to
identify critical, complex, and error-prone code that should
be targeted for later verification. This makes it possible to
direct the remaining resources of the project toward the
verification of critical code or code that has a reasonable
possibility of containing an error. This provides a much

more cost-effective software verification process.
Walkthroughs and code inspections offer many benefits

(see box, page 21). Since there are plenty of references on
traditional structured walkthroughs and inspections1'3'4'3'8
we will only discuss the key differences between a branch
analysis walkthrough and the more traditional approach
discussed in the literature.

Two prominent features of the branch analysis walk
through are that the code being inspected is sparsely dis
persed throughout a software component, and that there
is usually a lot more code needing inspection. Fortunately.
since the goal is simply to perform a risk analysis on the
coHe the walkthrough team is capable of inspecting the
code at a high rate. However, this is not true of the prepa
ration stage. For the branch analysis walkthrough to be
successful, it is critical that all members of the team be
well prepared.
Preparation. There are four steps in the proper preparation
for a branch analysis walkthrough:
1. Test the code as much as possible. Since you will have

to walk through all of the untested code, it is very impor
tant that the volume of code be minimized.

2. Have the moderator annotate a listing. The moderator
should take a current listing of the code and mark all
branches that have not been executed during testing.
While doing this, any interfaces into or out of this code
should be cross-referenced unless they are already easy
to find.

3. Hold a preview meeting. A preview meeting should be
held at least one week before the walkthroughs are to
commence. The team should handle the following items
during this meeting:
â€¢ Pass out copies of the annotated listing to all of the

team members
â€¢ Organize the walkthrough process
â€¢ Determine the logical order in which the branches

will be inspected
â€¢ Develop a schedule for completing the walkthroughs
â€¢ Clarify each engineer's role in the walkthroughs.

4. Analyze the code. Each member of the team must be
come very familiar with the code to be inspected before
the walkthroughs begin. This is critic al because during
the walkthroughs themselves the team will be moving
fairly quickly.

The Walkthroughs. To make the branch analysis walk
through move quickly and smoothly, each branch is simply
categorized, and only a small portion of the branches are
actually verified during the walkthrough. The categories
that branches can be put into are:
1. Testable. A test case can be created to execute this

branch without an unreasonable amount of effort.
2. Signed off. The branch is relatively trivial, correct, and

not critical to the overall function of the system.
3. Not signed off. An error was found in the decision logic

or the code for the branch.
4. Unreachable. Previous logic has eliminated the possibil

ity of executing this branch.
5. Verification necessary. The branch is too critical or too

complex to be signed off without more thorough verifi
cation.

Testable branches are typically functional tests that were

JUNE 1987 HEWLETT-PACKARD JOURNAL 19

© Copr. 1949-1998 Hewlett-Packard Co.

overlooked. These branches can usually be identified very
easily and classified quickly. For a branch to be signed off,
the walkthrough team must feel very confident that the
code is correct. The branches in this category are typically
simple error-exit code that cannot be tested easily because
the error must occur during a very small time interval. These
are the only branches that are completely verified by the
branch analysis walkthrough. Virtually all unreachable
branches fall into one of two categories. They are either
redundant error checking or hooks inserted into the code
to facilitate the addition of scheduled enhancements. In
the case of a redundant error check, if the error being tested
cannot possibly occur between the two error checks then
the redundant one should be removed. The rest of the
branches should be left in the code but deducted from the
calculation of the coverage. The last category is used to
speed up the branch analysis walkthroughs. Any time a
branch would require considerable effort for the team to
be confident that the branch is correct, or if an error in this
branch could seriously degrade the reliability of the entire
system, this branch needs to be investigated more
thoroughly at a later date.

As you can see, these categories are designed to allow
the walkthrough team to move quickly. Most time is spent
verifying branches that are relatively trivial (those in
categories 2 and 3). The rest of the categories are to be dealt
with later, and therefore each branch can be scanned
quickly to determine the proper category.

It is important that the members of the team have a high
level of concentration during walkthroughs. This is even
more important for branch analysis walkthroughs because
of the speed at which the code is being inspected. To achieve
this, the walkthroughs should be held in a quiet place with
no outside distractions and limited to one two-hour session
per day. Research shows that continuing beyond two hours
can seriously degrade the quality and efficiency of the
walkthroughs.8 It is the responsibility of the moderator to
ensure that these guidelines are adhered to.
Follow-Up. During the branch analysis walkthrough, a fol
low-up form must be opened for each branch not put into
the signed-off category. All of these branches must eventu
ally be signed off before the product is released. The follow-
up form contains the following information:

The branch number and location
The category the branch is put into
Comments on why the branch was put into that category
Follow-up recommendations
Follow-up comments
Signature and date of sign-off.
The first three of these are filled out by the moderator

during the branch analysis walkthrough. The fourth is filled
out by the team before follow-up commences. The last two
are filled out by the quality assurance engineer assigned
to sign off these branches. It is important that the branch
number and location be precise enough so that if the code
changes between the time of the walkthrough and the fol
low-up, the branch in question can still be identified. The
comments on the category decision should at least include:
a description of the error for not-signed-off branches, a
functional test description for testable branches, and any
other information that will help the follow-up engineer to

verify whether or not the branch is correct.
Follow-up recommendations are essentially a suggestion

by the team on how the branch should be verified. This is
explained further in the next section. The follow-up should
include:
â€¢ Verification of fixes for errors found. Special care should

be taken on follow-up of errors found. Studies show that
one out of every six code fixes is either incorrect or
introduces other errors.8

â€¢ Verification that tests were run to execute testable
branches.

â€¢ There are two possible resolutions for each of the un
reachable branches. If it is a hook, remove it from the
calculation of branch coverage. If it is unreachable, re
move it from the code.

â€¢ Obviously, branches in the verification-necessary cate
gory must be verified by whatever formal means are
deemed appropriate and then signed off.

Resources Needed. Table I shows the recommended

Functional
Testing

Branch
Analysis

Team Test ing and
Branch Analysis

Branch Analysis
Walkthroughs

Divide Remaining Branches
into Groups by Verif ication

â€¢*Â£*

Team Testing and â€¢ Other Testing â€¢â€¢ Structured Walkthroughs
B r a n c h A n a l y s i s I [T e c h n i q u e s | o r I n s p e c t i o n s

Rerun Tests and
Branch Analysis

Fig. 5. Flow chart for a comprehensive ver i f icat ion methodol
ogy based on branch analys is .

20 HEWLETT-PACKARD JOURNAL JUNE 1987

© Copr. 1949-1998 Hewlett-Packard Co.

Advantages of Code Inspections

I n t h e p a s t , t h e r e w a s a g r e a t d e b a t e o n t h e u s e o f c o d e
inspect ions as a sof tware ver i f icat ion tool . I t was fa i r ly obvious
that the techn ique cou ld be e f fec t ive but there were concerns.
They included:
â€¢ Cost . Because code inspect ions are h ighly labor- in tensive,

they are except ional ly cost ly .
â€¢ Benefit is long-term. It is difficult to determine the effectiveness

o f t he i nspec t i ons un t i l l ong a f t e r t he p roduc t i s r e l eased .
Human nature is to avo id a shor t - term cost i f there is on ly a
long-term benefi t .

â€¢ Reproducibility. There is no way to automate a code inspection
and therefore i t is extremely di f f icul t and cost ly to try to repro
duce the code inspect ion for regression ver i f icat ion.

â€¢ Consistency. It is very difficult to ensure consistent error detec
tion efficiency over time and especially from person to person.
More recen t l y t he deba te s l owed . Mos t peop le unde rs tood

and be l ieved in the e f fec t i veness o f code inspec t ions bu t s t i l l
had reservat ions because o f the cost -e f fec t iveness issue. The
common excuse was " I be l ieve that code inspect ions are good,
but they take so much of my engineers' t ime and are so expensive
that I can only af ford to use them spar ing ly . " This was common
because there was l i t t le or no s ta t is t ica l data that showed jus t
how cost-effective code inspections real ly were. This is no longer
t he case . Re fe rences 1 and 3 show c l ea r l y t ha t t he re i s now
p lenty o f exper ience and s ta t is t i ca l da ta ver i fy ing tha t code in
spect ions are highly cost-ef fect ive.

One reason tha t code inspec t ions have been proven cos t -e f
fect ive is that they have many benef ic ia l s ide ef fects other than
increased qual i ty.1"5 These include:
â€¢ Improved readabi l i ty o f code. S ince the code must be read

by severa l eng ineers o the r than the imp lemento r , t he code
must be very readable before the inspection can commence.

â€¢ Training. Because several engineers are conducting a crit ical
eva luat ion o f the code, there is usua l ly a pos i t i ve exchange
o f t echn i ca l i n f o rma t i on and i n te res t i ng p rog ramming t ech
n iques and a lgor i thms dur ing the inspect ion.

â€¢ Insurance. Understanding of the code is disseminated during
the inspec t ion . Th is i s va luab le i f t he deve loper leaves the
pro ject before i t is f in ished. Someone e lse on the inspect ion
team can pick up where the developer left off relatively quickly.

â€¢ Morale. Morale can be improved in two ways. First, inspections
break up the engineers' rout ine with an opportunity to interact
with and learn from the rest of the team. Second, no one l ikes
to f ind errors dur ing test ing. The sooner errors are found the
easier they are to f ix.

â€¢ Errors are found, rather than symptoms. When a test fai ls, al l
an engineer has to go on is the symptoms of the fa i lure. The
engineer must then debug the system to f ind the error. During
an inspect ion, the error i tsel f is found, making the repair that
much easier.

â€¢ Many errors are found at once. Dur ing an inspect ion, many
errors may be found in the code before the inspect ion is over.
A l l o f these er rors can then be f i xed a t once a f te rward . I t i s
very rare for a test to expose mult ip le errors.

â€¢ Errors can be prevented. Inspect ions g ive the engineers in
vo l ved an awareness o f how e r ro rs a re i n t roduced in to the
code . Th i s can he lp r educe t he numbe r o f e r r o r s t hese en
g ineers in t roduce in to subsequent coding ef for ts .

Most this these benefits can be real ized immediately, making this
technique very cost-ef fect ive even in the short term.

References
1 . M Fagan . "Advances i n So f twa re Inspec t i ons , " IEEE T ransac t i ons on So f twa re
Engineering, Vol SE-12, no. 7, July 1986.
2 R Fa i r ley , Sof tware Eng ineer ing Concepts , McGraw-Hi l l . New York , 1985
3 . G . New The Ar t o l So f tware Tes t ing , Wi ley - ln te rsc ience , New York . 1979 .
4. R. Pressman, Software Engineering: A Practi t ioner's Approach, McGraw-Hil l , 1982.
5. E Yourdon, St ructured Walkthroughs, Prent ice-Hal l , Englewood Cl i f fs , N.J . , 1979

Dan Her ington
Software Engineer

Information Networks Division

amount of time to perform each of the steps in the branch
analysis walkthrough process. Recommendations found in
the literature are typically designed for full-scale walk
throughs and are expressed in lines of code per hour.
Branches per hour is a better measure because it takes into
consideration the branch density of the code. Code that
has high branch density tends to be more difficult to under
stand and more error-prone (see Fig. 1). Therefore, this
code should be inspected at a slower rate. Based on our
branch density data, the numbers in Table I are roughly
equivalent to those in the literature for the preview and
preparation rates.

Preview Meeting
Preparation
Walkthrough

Table I

Vahour + 100-150branches/hour
15-20 branches/hour
30-40 branches/hour

The branch analysis walkthroughs themselves are de

signed to move quickly and therefore can move at roughly
twice the rate of a structured walkthrough or inspection.
We have found that the majority of the branches that make
it to the branch analysis walkthroughs are very short and
simple, making these numbers relatively conservative.

A Comprehensive Ver i f icat ion Methodology
Fig. 5 shows a revised structural testing process that

represents how all of the techniques described above fit
together to form a coordinated software verification pro
cess. This process will maximize the cost/benefit ratio for
conducting structural software verification.

Team testing should be conducted before the branch
analysis walkthroughs for two important reasons. The first
reason is that walkthroughs are a labor-intensive activity.
This means that they will be more expensive and more
error-prone than testing. Therefore, it is important to make
sure that the volume of code that must be inspected in the
walkthroughs is minimized. The second reason is that team
testing creates an automatable verification of the function
ality of the software. This becomes very important when

JUNE 1987 HEWLETT-PACKARD JOURNAL 21

© Copr. 1949-1998 Hewlett-Packard Co.

the time comes to conduct regression verification. Since
the walkthroughs can't be automated, it is not likely that
they will be redone during regression verification.

After the branch analysis walkthroughs, any branches
not put into the signed-off category must be verified by
some formalized means. The decision on whether to use a
team testing approach or to conduct traditional structured
code walkthroughs should be made on a per-branch basis.
The team that conducted the branch analysis walkthroughs
is probably the best judge of which of these techniques is
most appropriate for each branch.

Once it is decided how to verify the remaining branches,
the teams can then go on to the formal verification. Since
these are the branches that were deemed important enough
to warrant formal verification, the verification should be
thorough and as reproducible as possible. If any errors are
found during this verification, they should be fixed and
the regression package augmented and rerun using branch
analysis. The release criteria are then checked and the loop
is repeated until they are met.

Acknowledgments
The authors would like to thank Todd Whitmer for his

insights in the creation and development of the branch

analysis walkthrough methodology. We would also like to
mention Dan Coats for his work in the development of the
team testing approach for branch analysis.

References
1. R. New Software Engineering Concepts, McGraw-Hill, New
York, 1985.
2. W. Howden, "Functional Program Testing," IEEE Transactions
on Software Engineering, Vol. SE-6, no. 2, March 1980.
3. G. New The Art of Software Testing, Wiley-Interscience, New
York, 1979.
4. R. Pressman, Software Engineering: A Practitioner's Approach,
McGraw-Hill, 1982.
5. D. Richardson and L. Clarke, "Partition Analysis: A Method
Combining Testing and Verification," IEEE Transactions on Soft
ware Engineering, Vol. SE-11, no. 12, December 1985.
6. E. Weyuker and T. Ostrand, "Theories of Program Testing and
the Application of Revealing Subdomains," IEEE Transactions on
Software Engineering, Vol. SE-6, no. 3, May 1980.
7. T. New ControJJing Software Projects, Yourdon Press, New
York, 1982.
8. M. Fagan, "Advances in Software Inspections," IEEE Transac
tions on Software Engineering, Vol. SE-12, no. 7, July 1986.
9. E. Yourdon, Structured Walkthroughs, Prentice-Hall, En-
glewood Cliffs, N. J., 1979.

Reader Forum
The HP Journal encourages technica l d iscuss ion of the top ics presented
in recent ar t ic les and wi f l publ ish let ters expected
to be of interest to our readers
Let ters must be br ief and are subject to edi t ing.
Let ters should be addressed to:

Edi tor , Hewlet t -Packard Journal , 3200 Hi i lv iew Avenue,
Palo Alto, CA 94304, U.S.A.

Editor:

The viewpoint expressed by Zvonko Fazarinc in the March
issue of the HP Journal is quite unorthodox and, in that respect,
quite stimulating ("A Viewpoint on Calculus," p. 38). Of course
Professor Fazarinc is right when he claims that "we live in a
computer era" and "we can solve only a handful of differential
equations."

But is it really what we want? On more than one occasion
what we need is a qualitative discussion of the system
dynamics: is the asymptotic solution periodic, divergent, or
punctual? Moreover, it is very often useful to discuss how the
parameters affect the solution. For instance, in fluid dynamics
the coupling of gravity and diffusion leads to nontrivial effects.
These effects would be completely blurred by a brute force
calculation, even though the student would gain skills by de
veloping the algorithm.

As a conclusion, while I totally agree that a numerical solu
tion is certainly a solution, I claim that the development of
numerical techniques should reinforce rather than weaken the
teaching of system dynamics (or differential geometry).

Alain Maruar i
Professor

Ã‰cole Nationale SupÃ©rieure des
Te lecommunicat ions

I have no doubt that study of quaiitative system dynamics
provides a good stepping stone toward an understanding of
associated phenomena. At the same time I must state that the
evolutionary discrete mathematical formufation coupled with
a good graphics interface in an interactive environment pro
vides by far the best medium for such studies.

I have spent two years among students and faculty at Stan
ford University exploring the potential of computers for build
ing intuitive understanding of new concepts. This research has
strengthened my belief that discrete mathematics offers consid
erably more than just "brute force calculations." If it is used
to express first principies it has the potential to mimic nature.
If it is given an appropriate visual presentation and associa
tions with some familiar phenomena, it can shorten the time
normally needed for acquisition of intuitive understanding of
new concepts. Given a chance to evolve in time, it can provide
us with an insight into quantitative or qualitative dynamics
that has no equal anywhere.

It is so to illustrate these points in a general way, so
allow me to use your example of gravity and diffusion as a
vehicle. I have developed a teaching module at Stanford that
addresses these phenomena in a purely qualitative way but
uses discrete mathematics behind the scenes. Instead of pre
senting the student with the equation

3C(x,t) a C (x . t) F (x , t)
5x C[x't]

which separates the average mortal from those who have mas
tered the partial differential calculus, the module first makes
an association with the mechanical world. It does so by present
ing a number of colliding particles moving away from the
"crowd," where the collisions are more frequent but result in
a less impaired motion in the direction away from the high
density. The number of particles in a given position is plotted
dynamically in the form of a graph directly above them. This
provides an almost instantaneous intuitive understanding of
the process and helps visualization later when more complex
problems are addressed without showing the particles.

22 HEWLETT-PACKARD JOURNAL JUNE 1987

© Copr. 1949-1998 Hewlett-Packard Co.

Dynamic displays of concentration C(x,t) as a function of
space and time evolving under the influence of gradients and
externa] forces F(x,tJ may be observed. The student can enter
arbitrary diffusivity D(xj, force profile Ffxj. and initial concen
tration C(x,OJ via graphic inputs. Simultaneous display of
fluxes provides another aid for visualizing nontrivial cases.

Students have been generating the earth's atmosphere by
entering inverse-square force profiles. They have produced
nonspreading concentration packets by shaping diffusivity
profiles appropriately. But they have definitely gained a strong
intuitive understanding of asymptotic behavior without miss
ing the transient behavior, which contains powerful clues to
understanding the phenomena.

A number of other modules have been developed that cover
fields such as semiconductor physics, short-range and Jong-
range forces, transmission lines, wave interference phenom
ena, and random processes. All of them have proven to provide
insight into qualitative behavior without the simplifications
required when infinitesimal formulations are used.

My paper, "Computers in Support of Conceptual Learning,"
presents a short description of motivations, results, and conclu
sions derived from the Stanford study.

Zvonko Fazar inc
Senior Scient i f ic Advisor for Europe

â€¢Available from Zvonko Fazarinc, Hewlett-Packard Company
1501 Page Mi l l Road, 3U, Palo Al to, Cal i fornia 94304, U S.A

Authors
June 1987

4 " G r a p h i c s T a b l e t '

Thomas Malzbender
T o m M a l z b e n d e r j o i n e d H P
in 1982 upon get t ing h is

4 f ^ ^ ^ ^ ^ ^ B S E E d e g r e e f r o m C o r n e l l
" U n i v e r s i t y H i s H P c o n t r i b u -

t ions inc lude the design of
an opt ical mouse and sev
eral re lated ICs. He also

^1 â€¢* con t r ibu ted to the ana log
design and firmware for the
HP 4591 1 A Graphics Tab

let . His work in these areas has led to two patent
applications. He's currently working on neural net
works at HP Laborator ies. His profess ional in
terests inc lude cybernet ics, neural computat ion,
and fractal geometry and he has written two papers
on the latter topic Before coming to HP he worked
for Nat ional Semiconductor Corporat ion and for
Teradyne. Born in Munich, Federa l Republ ic o f
Germany, Tom now lives in Sunnyvale, California.
He en joys rock c l imbing and e lect ron ic music
synthesis.

8ZZHP-HIL ;
Robert R. Starr

Rob Starr started at HP in
1979 as a p roduc t ion en
g ineer fo r HP 262X Termi
nals and later moved to an
R&D posi t ion, where he
contr ibuted to the develop
ment ol the H P 2627A Color
Graphics Terminal , the HP
Mouse, and HP-HIL acces
sory cards for HP 1 50 Com

puters. He's currently working on 3.5 inch flexible
disc dr ive qual i f icat ion. Rob is a Cal i fornia nat ive
wi th a 1979 BSEE degree (rom Cal i forn ia
Polytechnic State University at San Luis Obispo. He

was born in Oakland and now lives in San Jose. His
outside interests include photography, ski ing, avia
t ion, woodwork ing, and real estate. He says he 'd
l ike to bu i ld h is own home someday.

1 3 ~ Branch Ana lys is

Paul A. Nichols
With HP since 1972. Paul
Nichols is product iv i ty
manager fo r the In fo rma
t ion Networks Division. Ear
lier he was software quality

^ ^ m a n a g e r f o r t h e H P 3 0 0
< ^ m f C o m p u t e r . A n a t i v e o f

I A S a n t a C r u z , C a l i f o r n i a , h e
I earned an AA degree in
I business administrat ion

from Cabrillo College in 1 969. Before coming to HP
he worked for eight years as a systems analyst in
the electronic banking field. Paul still lives in Santa
Cruz, is married, and has two sons. His leisure in
terests inc lude photography and sai l ing.

Daniel E. Herington
Born in Brooklyn, New York,
Dan Her ington completed
work for h is BS degree in
computer sc ience f rom
Arizona State Universi ty in
1985. Afterjoining HP's In-

BÂ£ format ion Networks Div i
s ion the same year , he
wo rked on t he deve lop
ment and appl icat ion of

new software test ing techniques and tools, includ
ing branch analys is . He 's a member of IEEE and
ACM. Dan lives in Santa Clara, California and en
joys basketbal l and gol f .

Roger D. Lipp
Born in Sarasota, Florida,
Roger Lipp is a graduate of
Purdue Universi ty (BS com
puter sc ience 1985) . He
has been wi th HP s ince
1 985 and is a software tools
and product iv i ty engineer
for the In format ion Net
works D iv is ion . H is pro fes
sional interests include

computer-aided software engineering, art i f ic ial in
tell igence, and software reuse. Roger and his wife
live in Sunnyvale, California and are expecting their
f i rs t ch i ld in September. He's act ive in h is church
and en joys photography, mus ic , and ast ronomy.

2 4 ~ V i e w p o i n t s ^ ^ Z ^ ^ ^ ^ ^ Z ^ ^ ^ U Z Z

Y o s h i o N i s h i
With HP Laboratories since
1986, Yoshio Nishi is a
special ist in semiconductor
dev i ce and p rocess t ech
no logy . He d i rec ts the s i l i
con VLSI research labora
tory for the Circuit Technol
ogy Group and prev ious ly
headed the Semiconductor
Dev ice Eng inee r ing Labo

ratory for Toshiba Semiconductor Group in Japan.
He was also a visit ing professor at Hokkaido Uni
vers i ty and is a consul t ing professor at Stanford
University. He is named inventor for about 50 pa
tents related to semiconductor processes and de
v ice st ructures in the Uni ted States, Japan, and
Europe. In addit ion, he has authored approximately
50 papers and is contributing to four books. Born
in Yokohama, Japan, Yosh io rece ived h is BS de
gree in metallurgy in 1 962 from Waseda University
and his PhD in electronic engineering in 1 973 from
the Univers i ty o f Tokyo. He and h is wi fe and two
chi ldren current ly l ive in Palo Alto, Cal i fornia. His
le isure-t ime act iv i t ies include playing viol in and
piano, l is tening to music, ski ing, and vis i t ing
museums.

2 6 = U N I X I P C i

M a r v i n L W a t k i n s
I A Cal i fornia nat ive, Marv

Watkins holds a BA degree
in psycho logy and an MS
degree in mathemat ics
from San Jose State Univer
s i ty (1975 and 1978). He
a lso studied computer sc i
ence a t Oh io S ta te Un iver
sity and received his MS in
1979. With HP since 1986,

h is major contr ibut ion has been a UNIX-system-
based workcel l control ler for a surface-mount man
ufacturing l ine. His professional experience before
coming to HP was va r i ed . Among o the r accom
p l ishments , he deve loped data base managers
and a graphics spooler and verif ied real-t ime soft
ware and f i rmware for an e lect ron ic f l ight ins t ru
ments system. He a lso served in the U.S. Army.
He's author or coauthor of two articles on software
test ing and computer displays. Born in Santa Bar
bara, Marv is now a resident of Los Gatos. In ad
dition to his interest in software engineering, he en
joys jazz, science f ict ion, house plants, and explor
ing the backcountry .

JUNE 1987 HEWLETT-PACKARD JOURNAL 23

© Copr. 1949-1998 Hewlett-Packard Co.

Viewpoints

Direct ion of VLSI CMOS Technology

by Yoshio Nishi

SINCE STOCHASTIC FLUCTUATION of device and process
parameters becomes more significant with increasing
numbers of transistors on a chip, there is a strong require

ment for increased noise immunity and decreased power con
sumption in higher density circuits. Although low-power CMOS
circuits were invented in the 1960s, they did not increase in
importance until integration density exceeded 100,000 devices/
chip. as then, CMOS has penetrated into static memories as
well current microprocessors. This article will briefly review the current
status of CMOS technology and discuss engineering challenges
for future microcircuit technology.

CMOS Integrated Circuits
The earlier CMOS integrated circuits started with calculator

chips, watch and clock circuit chips, etc., which required lower
power consumption because of the limited capacity of the battery
cells also for these applications. CMOS circuits are also
widely used for logic gates, analog-to-digital converters, and phase-
locked loop synthesizers, which require either large driving
capability, wide operating voltage, or noise immunity. Now the
application of CMOS has been expanded to cover memories and
microprocessors for computing engines.

The first CMOS VLSI circuit ever made was a 16K-bit static
memory which certainly enjoyed all of the features of CMOS men
tioned above. Since then, each generation of memory device ICs
has increasingly used a higher percentage of CMOS devices. About
half of the 64K-bit static memory chips were made using CMOS
technology and all 256K-bit static memory has been built in CMOS.
Even in the case of dynamic memory, which has been implemented
using the technology because of its strong requirement for the
highest density, CMOS is used for more than 40% of the current
IM-bit memory chips. The 4M-bit and IBM-bit memory chips
described at the 1987 International Solid-State Circuits Conference
have verified again the strong thrust toward CMOS technology. A
similar change has occurred in the logic VLSI area in that most
of the newer chips have been implemented as CMOS circuits for
the same reasons described above.

Recent progress in application-specific ICs has been made based
upon CMOS technology. These ICs are considered as one of the
most important device technology application areas for a company
that has captive VLSI capability for internal use only.

Active Devices
A CMOS circuit cell consists of a pair of MOSFETs, one n-channel

and one p-channel. Traditionally, n-channel MOSFETs have been
made starting in a p well in an n substrate. Later, the use of p-channel
MOSFETs, formed in n wells in a p substrate, became common,
especially for EPROMs, microprocessors, and dynamic RAMs.
Since the scaling down of device geometry for higher performance
requires high substrate density even with structured-in-depth im
purity profiles, the twin-well structure, a p well for NMOS and
an n well for PMOS, was introduced because of its larger degree
of freedom for channel impurity doping and lower junction capaci
tance design. An n-channel MOSFET needs special consideration
to avoid hot-electron-induced degradation when channel length
becomes smaller, so that the increased electric field strength near

the drain does not cause impact ionization of electron-hole pairs.
The lightly doped drain (LDD) FET structure has been introduced
to lower the drain electric field.

On the other hand, fabricating higher-density p-channel MOS
FETs becomes more difficult because acceptor impurity diffusion
in silicon is much faster than donor impurity diffusion, which
makes of of shallow p junctions more difficult. The use of
boron-fluoride (BF) implantation and rapid thermal annealing pro
cess steps has become quite common for this reason.

Oxide integrity is another major concern for both NMOS and
PMOS devices. A recent 4M-bit dynamic memory uses 10-nm-
thick oxide for the memory cell capacitor and 15-nm-thick oxide
for the active gate insulator. To increase performance and circuit
density, these values should decrease further, which will cause
interesting physical problems and technical difficulties. Threshold
voltage control would be one of the most difficult issues because
widely used channel doping techniques might not provide accept
able with performance. The increase in source resistance with
decreasing junction depth almost forces us to apply some kind of
more-conductive layer on source and drain regions. The most com
monly investigated material for this purpose is titanium suicide.
Other materials such as platinum suicide, cobalt suicide, and
titanium nitride have also been investigated.

The downward scaling of device feature sizes to less than a
0.5-micrometer channel length has led to the serious consideration
of operating CMOS devices at lower temperatures. The associated
benefits of lower subthreshold leakage currents, steeper loga
rithmic current-voltage characteristics, and higher mobility prom
ise higher-speed performance. Lower temperature operation even
tually offers a chance to obtain radically improved total VLSI
system performance by combining it with "high-temperature"
superconductive interconnections as discussed later.

Interconnections
As the speed performance of active devices has been improved,

the influence of interconnection technology on chip performance
has become significant. Aluminum doped with silicon and/or cop
per is the most popular material for both signal and power supply
lines. The key parameters in this area are density, signal propaga
tion delay, and current-carrying capability. Density refers to the
number of interconnection layers and the metal line widths and
spacing. Propagation delay is mostly determined by RC constants.
Current-carrying capability is a strong function of electromigration
endurance along the interconnection lines and at contact/via regions.

The basic feature of CMOS, low dc power consumption, gener
ally represents the superiority of CMOS over other technologies,
but for high-frequency operation most of the power dissipated on
a chip is ac power, which even CMOS cannot do anything to
reduce. Once we take a careful look at a VLSI chip, 70% of the ac
power dissipation occurs at the circuits that drive larger capacitive
loads at switch simultaneously, which most likely happens at
output driver and buffer circuits. Temperature increases because
of higher current density in interconnections and this results in
increased electromigration effects. Thus, the choice of intercon
nection material must be carefully made to meet several conflicting
requirements. Several circuit tricks, which can effectively decrease

24 HEWLETT-PACKARD JOURNAL JUNE 1987

© Copr. 1949-1998 Hewlett-Packard Co.

the power dissipation at driver circuits, have substantial impor
tance, and bipolar-CMOS circuits could be one of the possible
solutions.

When one tries to think of an ideal interconnection, its properties
have to capa zero resistance with infinite current-carrying capa
bility. Recent significant progress in developing materials that are
superconductive at relatively high temperatures (77K) might open
a new may in this area. Superconductive interconnections may
add another value, such as automatically solving some inductance
problems because of superconductivity's natural diamagnetism.

Although there will be many important and essential improve
ments in VLSI circuits using this new technology, we have to look
carefully at the potential issues that may arise. Among them are
how closely the thermal expansion coefficients of the new mate
rials match that of silicon, what will be the critical current density
where superconductivity collapses, how to control compositional
uniformity of the new materials, etc.

Isolation
To isolate one active device adequately from other devices in

monolithic integrated circuits has been the largest concern for
higher-density integration. MOS designs took advantage of not
needing any substrate isolations like bipolar integrated circuits.
CMOS, however, has two different active devices in a circuit cell
so that there must be substrate isolation. Even in NMOS integrated
circuits, how to minimize the distance between one FET and ad
jacent FETs has been and continues to be a major engineering
challenge. The local oxidation of silicon (LOCOS) in selected re
gions as an isolation process had been the solution for a long time.
However, the bird's beak (an undesired intrusion of the oxidized
silicon into adjacent device regions) characteristic of the LOCOS
process is not allowable any longer for VLSI dimensions of a mi
crometer or less. There have been a large number of approaches
to minimize the interdevice distance. Most of them try to etch a
trench or moat around the active devices and then backfill it with
insulating materials.

Another approach is to use an insulating substrate instead of
silicon, a technology known as silicon on insulator (SOI). One
example in the past that falls into this category was the silicon-on-
sapphire (SOS) structure. Several experiments to realize a mul
tilayer silicon/insulator structure have been tested for three-dimen
sional integration, and such studies are one of the most interesting
research areas for the ULSI era.

Technology Dr iver
Technology progress in integrated circuits has not been done

with like smooth continuous trajectory. Rather, it has been more like
climbing up a stairway. Every two to three years, a new technology
generation has been introduced, and this most likely will continue
until silicon VLSI/ULSI hits the ultimate barrier at which one will
have progress. switch to other active device materials for further progress.

Each technology advance has required that a variety of tech
nologies be integrated into one set of processes by which we can

build desired circuits. There must be some vehicle that can con
tinuously stimulate and finance advances toward higher density,
higher performance, and lower cost. This vehicle, called a technol
ogy driver, has been dynamic memory for a long time. Sometimes
static memory has served this purpose, predominantly for CMOS
technology evolution.

The question may arise, "What will be the technology driver in
the future?" There is a strong potential that future microprocessors
and their associated families of chips will include more memory
capacity on each chip, and that memory chips will include more
logic functions. Thus, since dynamic memory tends to have quite
a unique structure for a cell, which is clearly apart from other
chip technology, it is somewhat unlikely that dynamic memory
development will continue to drive 1C technology evolution. The
fact remains that both dynamic memory and static memory will
require higher FET density per chip in the future and that VLSI
logic an will require higher interconnection density and an
increased number of metal layers.

A significant aspect of the previous technology driver, dynamic
memory, is that each generation's production and sales have pro
vided the R&D funds essential for the evolution of 1C technology
itself. The R&D period for one technology generation used to be
three years, but is now increasing. Yet, every new technology
generation still appears every two to three years. This is made
possible by overlapping the R&D schedules for successive technol
ogy generations and puts an increased emphasis on selecting tech
nology drivers that will provide the funds to support further R&D.

Hence, there will not be any unique choice for a technology
driver under diverging system requirements. However, it seems
natural that a more system-oriented company will choose static
memory as a technology driver with the expectation that such
technology will migrate in a more flexible way into micropro
cessors and application-specific ICs, which can make highly value-
added products through which essential R&D funds will be gener
ated.

At this time, CMOS is apparently the most rapidly progressing
technology with static memory and microprocessors becoming its
technology drivers. Although there is great potential for CMOS to
meet most system requirements â€” speed, performance, integration
density, power consumption, and noise immunity â€” one can easily
foresee continuing engineering challenges as well as device
physics problems.

An exciting decade for semiconductor technology is ahead, par
ticularly for CMOS VLSI/ULSI. From the viewpoint of the Hewlett-
Packard Company, how HP drives its own technology to be in a
worldwide leading-edge position will certainly affect most of the
company's products. The key is how HP can successfully leverage
system tech by integrating state-of-the-art VLSI/ULSI tech
nology. The importance of putting the right combination of unit
technologies together to maximize performance and optimize sys
tem positioning will be increasing as silicon devices get closer
and closer to their ultimate performance barrier.

JUNE 1987 HEWLETT-PACKARD JOURNAL 25

© Copr. 1949-1998 Hewlett-Packard Co.

Software Architecture and the UNIX
Operating System: An Introduction to
Interprocess Communication
Signals, pipes, shared memory, and message queues are
some of the faci l i t ies provided by the UNIXÂ® operat ing
system for communicat ion among sof tware modules. The
st rengths and weaknesses of each fac i l i ty are d iscussed.

by Marvin L. Watkins

SOFTWARE COMMUNICATIONS, the exchange or
sharing of information by computer programs, is
related to several central software architectural con

cepts. Fig. 1 shows these relationships and provides a road
map of the ideas this paper will touch upon. The discussion
is organized into three major sections. The first section
deals with some fundamental ideas and concepts of soft
ware engineering that arise in multiprocessing systems.
Here, the important concepts of complexity, modularity,
concurrency, and synchronization are presented. The sec
ond section deals with use and performance issues that
arise with the UNIX operating system's interprocess com
munication (IPC) facilities. In this section, the UNIX IPC
facilities are ranked for various uses and data is presented
to support the ranking. The third section discusses each
IPC facility in detail.

Fundamentals

We like to think of an activity that a computer is intended
to model as a problem the computer's program(s) must
solve. The problems that computers are called on to help
solve range from the very simple, for example keeping a
list of telephone numbers, to the very complex such as
fully automating and integrating the diverse machines of
a large manufacturing facility.

In general, simple activities generate simple problem
statements. These, in turn, generate simple, self-contained
programs. Conversely, the more complex the activity a pro
gram is intended to model, the more complex will be the
program or programs required. Of course, complexity in
creases costs and jeopardizes success.

Complexity
There are two notions of complexity used throughout

this paper. The first is that of problem complexity. Problem
statements determine the minimum complexity possible
for a software solution. For example, automating a man
ufacturing facility requires a more complex software solu
tion than a computerized phone list. The second notion is

UNIX is a t rademark of AT&T Bel l Laborator ies.

that of program complexity. Some programs are more com
plex than others, even though they may solve exactly the
same problem. For example, "spaghetti code" is almost al
ways more complex than an equivalent structured program.

In an ideal world, problem complexity would be the sole
linear determinant of cost for computer programs. A prob
lem statement would be generated, software designed and
implemented, and the prograrnfs) delivered. In fact, pro
gram complexity affects cost in a nonlinear manner. Many,
if not most, software development projects consume more
resources (i.e., cost more] than the problem statement de
mands. The culprit is often unnecessarily complex pro
grams caused by poor, inappropriate, or rushed design.

Fig. 1 . Some re lat ions among sof tware concepts. Arrows in
dicate direct ion of inf luence.

26 HEWLETT-PACKARD JOURNAL JUNE 1987

© Copr. 1949-1998 Hewlett-Packard Co.

Coup l i ng
Coupling is probably the single greatest contributor to

program complexity. In general, the greater the degree of
coupling, the greater the complexity of the design and the
worse its structure. A change in a module that is coupled
to others can have unavoidable effects on them. Even a
minor change in a coupled module can have nasty conse
quences: it can cascade through coupled modules forcing
significant changes in many unpredictable ways.

Coupling occurs primarily when the same data or control
characteristics or assumptions are embedded in the code
of two or more modules. For example, suppose module A
performs a series of calculations cl, c2,c3 Now suppose
module B needs a calculation similar to, say, c2. If A is
modified so that B can call A with a new parameter that
causes A to execute c2, then A and B have been coupled.
Another form of coupling occurs when code has assump
tions about external objects embedded within it. For exam
ple, a module might assume that a terminal connected to
it always displays 24 lines by 80 columns.

When considering trade-offs in program complexity, it
is important to consider that tight coupling introduces three
major problems: difficulty in finding and correcting design
flaws, difficulty in adding new features to a system, and
difficulty in migrating functionality to enhance system per
formance. Loose coupling simplifies maintenance, addi
tion of new features, and upgrades to more computing
power.

Modularity
Modularity is among the most powerful methods for

limiting a program's complexity to manageable bounds.
Modules can exhibit at least three major kinds of relation
ships or structure: arbitrary, hierarchical, and independent.
Arbitrary designs are usually easier and quicker to develop
than structured designs. The latter are usually easier to
understand, debug, enhance, and maintain. However, addi
tional work must go into the design process to create sim
ple , near unders tandable sof tware . That is , near
the end of the design phase an unnecessarily complex soft
ware architecture is usually produced, which, nonetheless,
satisfies the problem statement. More time and resources
must be allocated to simplify and organize this design if
understandability, flexibility, adaptability, maintainabil

ity, etc. are also required. Schedule pressures and. perhaps,
inexperience frequently prevent development teams from
doing this additional complexity-reducing design work.

Arbitrary designs tend to have enormous amounts of cou
pling among their modules. Hierarchies and or indepen
dent program structures tend to have much less coupling.
However, even they are rarely pure. Even good, structured
designs usually have some degree of coupling among their
modules.

Top-down design methodologies typically create hierar
chical organizations. Such structures model a problem as
a hierarchy of functions. Program modules are then created
for each of these functions. Hierarchical organizations tend
to incorporate program control directly into the problem
model (i.e., functional decomposition). This is one of the
principal reasons that programs exhibiting such organiza
tions are easier to understand than arbitrary designs.

Some problems do not decompose into hierarchies well.
These problems are often characterized by having multiple,
asynchronous, concurrent events or processing (e.g., input/
output or user query formation and data base search). Such
problems can often be modeled as independent functions.
These functions can then be implemented as independent
programs, provided there are useful communications
mechanisms to mediate data exchange.

Modularity is both a recursive and a scalable notion,
recursive because modules can contain modules of the
same kind and scalable because lower-level modules are
usually contained in higher-level ones. For example, in
structions can contain instructions, blocks can contain
blocks, and procedures can contain procedures, etc. while
procedures contain blocks that contain instructions. Fig. 2
compares a scale of software modules with increasingly
complex problems that might be solved by software com
posed of modules at and below each level. The module
scale's levels are:
â € ¢ I n s t r u c t i o n s . F o r e x a m p l e , w h i l e (* p) p + + a n d

IF(A.GT.B) 10,20,30.
â€¢ B locks . For example , beg in . . . end and { . . . } .
â€¢ Procedures. For example, C procedures and Fortran sub

routines.
â€¢ Programs. For example, several programs that together

satisfy one problem statement or make up one applica
tion.

â€¢ Networks. For example, several programs, each running

0 s f t
J 3

Metane tworks
I

| N e t w o r k s

Programs

Procedures

, B locks

Ins t ruc t ions

Phone
List

Spreadsheet A i r l ine
Reserva t ions

Au toma ted
Manu fac tu r i ng

P rob lem Comp lex i t y

Fig. 2 . An in tu i t ive compar ison of
p r o g r a m c o m p l e x i t y , a s s c a l e d
by modu la r i t y , w i th p rob lem com
plexity.

JUNE 1987 HEWLETT-PACKARD JOURNAL 27

© Copr. 1949-1998 Hewlett-Packard Co.

on a different computer, that together satisfy one problem
statement.
In general, at each higher level on this scale new capabil

ities emerge. These permit richer relations and more pow
erful organizing principles to be designed into the soft
ware's architecture. Thus, a program can often be signifi
cantly simplified by modularizing at a higher level as
shown in Fig. 3. The black curves in Fig. 3 intuitively
describe how program complexity would grow as the
number of modules grows. The curve in color shows how
program complexity can be contained by using succes
sively higher levels of modularization together with their
emergent capabilities. It is exactly this effect that enables
programmers to create ever larger programs that solve more
and more complex problems.

Communicat ions
A necessary companion of modularity is data exchange.

To do useful work, modules must be able to share or ex
change information. For each method of organizing mod
ules into modules there exists one or more communication
mechanisms among modules structured with the method.
With the UNIX operating system and the C programming
language, new communications capabilities emerge at
every level of Fig. 2's scale.

Table I shows some major communication mechanisms
associated with our module scale's modules. For example,
a simple program shares data among its procedures, but
not with other programs. Procedures use global variables,
parameters, local variables and pointers, etc. to pass data.
More complex problems can require coordinating the work
of many computers at many sites. Networks, together with
their communications protocols, connect programs run
ning in separate computers. Between these examples are
problems whose complexity exceeds what is appropriate
for a single program, but that can be well-modeled by a
few programs running on a single computer. Interprocess
communication mechanisms allow data to be exchanged
or shared and messages to be sent and received by such
programs. IPC extends our ability to organize and structure
programs.

IPC enables isolated simple programs to be integrated
into multiprogram organizations. For example, a program
that must respond to multiple asynchronous inputs will

Table I

M o d u l e C o m m u n i c a t i o n M e c h a n i s m

m e t a n e t w o r k s ?
ne tworks ne twork p ro toco l s , cus tom ga teways
p r o g r a m s i n t e r p r o c e s s c o m m u n i c a t i o n ,

(processes) call ing arguments, s ignals, f i les
procedures g lobal and external var iables ,

parameters, common
b l o c k s a r r a y s , s t r u c t u r e s , v a r i a b l e s , a r r a y

items, pointers, structure members
instructions variables, array i tems, pointers,

structure members

almost certainly be much simpler if modeled as several
concurrent communicating programs. Each asynchronous
input could have its own input handler program that trans
fers the input's data to a main program using IPC. The
simplification derives from the ability to use UNIX re
sources (e.g., scheduler, interrupt handler, buffers, buffer
manager, etc.) rather than recreate them in the application.

A final important point to note about communications
mechanisms in general and IPC in particular: the mecha
nism is just that, a capability that makes communications
possible. For useful communication to occur, the sender
and receiver must also agree on rules and conventions for
interpreting the data to be exchanged. These rules manifest
themselves, in part, as a need for type agreement for within-
program communication, format agreement for IPC, and
protocol agreement for networks.

Concurrency
The UNIX system is a multitasking operating system.

This means that the UNIX system can simultaneously exe
cute many programs. To do so, it must keep information
about a running program as well as the program's internal
data. A process is what a program is called when it is
actually running. A process is composed of a program's
code and internal data plus the kernel-allocated resources
needed to support the program at run time. For example,
the kernel must remember where in main memory the pro-

Number o f Modu les

Fig. 3. An in tu i t ive compar ison of
program complex i ty wi th modular
i t y . T h e c o l o r c u r v e s h o w s h o w
p r o g r a m c o m p l e x i t y c a n b e r e
duced by modular iz ing a t succes
sively higher levels.

28 HEWLETT-PACKARD JOURNAL JUNE 1987

© Copr. 1949-1998 Hewlett-Packard Co.

gram is located, whether any buffers are being used, the
current priority, permissions, etc.

Two or more processes running at the same time can be
working in consort to solve a single problem. Usually, such
multiprocess applications need to exchange data and infor
mation. The UNIX operating system provides IPC facilities
for exactly this kind of information exchange. The UNIX
kernel keeps track of any IPC resources used by such pro
cesses.

Every new process is created by the UNIX system in the
same way: an existing process spawns an almost identical
child process. Unless the original process makes special
arrangements, the child process will have no knowledge
of the parent or any other sibling processes that may exist.
Some IPC mechanisms, notably pipes, require that the par
ent process set up the communications channel. This re
striction causes some software systems to become exces
sively complex. Newer UNIX IPC mechanisms do not have
this restriction. We will use the term process, rather than
program, when we wish to emphasize the run-time nature
of a program.

Synchronization
Concurrency introduces multiple execution threads that

must be synchronized. For example, deadlock is a control
problem that can occur when processes simultaneously
reserve shared resources. Two processes can be waiting for
an event â€” the other process to unlock the shared resource â€”
that cannot occur because both processes are blocked wait
ing for the resource.

Concurrency aggravates problems with synchronizing
data production and consumption. For example, suppose
process pi is sending messages (i.e., data) to process p2.
They must agree to some convention that ensures that p2
starts reading only after pi has sent a new message and
that pi begins writing only after p2 has read the old mes
sage. If p2 gets out of sync with pi, three situations can
occur. One, p2 can read the same message twice; this is
sometimes referred to as stale data. Two, p2 can miss read
ing a message; this is sometimes referred to as missed data.
Three, p2 can read a partial or mixed message (i.e., pi is
preempted while writing a message, then p2 reads a mes
sage containing both new and old data); this is sometimes

referred to as trashed data.
The potential for stale, missed, and trashed data exists

even in simple programs. However, a single program's single
execution thread implicitly imposes a strict sequentially
on data accesses. This usually guarantees correct data ac
cess synchronization. Data exchanges among concurrent
processes must be carefully designed to avoid synchroniza
tion problems and achieve the benefits of multitasking.

It is interesting to note that here we have come full circle,
as shown in Fig. 1. Synchronization problems are a new
form of program complexity that must now be dealt with.
It seems reasonable to ask why facilities that introduce
complexity, such as IPC, are useful. Fundamentally, IPC
exists because it can be used to trade a little more complex
ity in handling data for much less complexity in structuring
programs. This trade-off arises, in large part, because asyn
chronous events can be much more easily incorporated
into a multiprogram design than into a single monolithic
program. That is, synchronizing data exchange is easier
and less problematic than synchronizing control events.

UNIX IPC and Software Architecture

One aspect of developing concurrent programs is iden
tifying communication mechanisms that match the struc
tural relationships of the software architecture.

The UNIX operating system provides several IPC
facilities. Unfortunately, no one UNIX IPC facility is best
for every possible application. The best IPC method for a
given application depends on the structure of the com
municating programs, the amount and kind of data that
must be passed, the performance that the application de
mands, and the capabilities of the underlying hardware.
Since each mechanism can be used, or adapted, for many
purposes, evaluating each IPC facility against specific re
quirements is usually necessary.

IPC Use Taxonomy and Ranking
A simple taxonomy for comparing the UNIX IPC facilities

according to the uses for which they seem best suited is
shown in Fig. 4. In this scheme, IPC uses are classified
'Some UNIX vers ions , fo r examp le . Berke ley 4 .2 BSD, con ta in IPC fac i l i t i es tha t UNIX
System references does not. These are not discussed in this paper, but are described in references
1 and 2.

Data
Transfer

I n t e r r u p t S t a r t S t o p

4 S h a r e d
F u n c t i o n W o r k i n g

C o m p o s i t i o n S e t

Sig S e m S i g
M s g S e m
S i g M s g

P i p e P i p e
F i l e F i l e

Sem Sem
F i l e F i l e

Msg
Pipe
Shm
File

Shm
File

Shm
File

Pipe
Shm
Msg
File

Shm
Msg
Pipe
File

F i g . 4 . I P C u s e t a x o n o m y a n d
f a c i l i t y r a n k i n g . M s g s t a n d s f o r
message queues, P ipe for p ipes,
S e m f o r s e m a p h o r e s , S h m f o r
s h a r e d m e m o r y , a n d S i g f o r s i g
na ls . The use fo r wh ich a fac i l i t y
s e e m s t o h a v e b e e n d e s i g n e d
or iginal ly is shown in color.

JUNE 1987 HEWLETT-PACKARD JOURNAL 29

© Copr. 1949-1998 Hewlett-Packard Co.

into four broad classes, each containing two or three sub-
categories. The UNIX IPC mechanisms are then ranked
under these subcategories from top to bottom, from best
suited to worst suited, respectively. These rankings and
taxonomy should be interpreted as suggestions. No claim
is made for their universal applicability. Indeed, they in
clude at least one seeming paradox. Namely, even though
shared memory is theoretically the fastest possible IPC
facility, it is suggested that it not be used for those purposes
demanding quick delivery. Hopefully, the material pre
sented below will make the reasons clear.

Briefly, the uses the taxonomy's classes are trying to
capture are as follows. The class of event triggers initiates
some action, usually starting or stopping processing. The
interrupt event trigger (i.e., the UNIX signal facility) forces
the communication receiver to branch to a specified loca
tion or terminate. State indicators announce a condition,
usually the accessibility or state of some resource. Message
exchanges convey information, usually between two pro
cesses but occasionally from one process to many process
es. Exchanges can be sent in rapid succession to specific
receivers or posted and picked up by arbitrary receivers
on an as-needed basis. Data transfers move results for suc
cessive operations; usually each function operates on the
data just once but occasionally functions may alternate
working with the data.

There are many different dimensions to the taxonomy's
use categories. They can be characterized by the nature of
their requirements. Fig. 5 compares each use's important
requirements with the properties of the UNIX IPC facilities.
The goodness of the match, together with each facility's

throughput (discussed below), form the basis for the rank
ings in Fig. 4. The properties of Fig. 5 are:
â€¢ Quick delivery â€” the elapsed time between posting a

communication and its availability is small.
â€¢ Atomic operation â€” partially completed results of an in

terrupted or preempted operation cannot be accessed by
another process.

â€¢ Multiple readability â€” a communication can be read re
peatedly until it is purposely changed.

â€¢ Universal readability â€” any process with the proper per
missions can access a communication.

â€¢ Fair capacity â€” a given communication can pass a reason
able amount of data, say a few thousand bytes.

â€¢ High capacity â€” a given communication can pass sub
stantial amounts of data, say many tens of thousands of
bytes.

â€¢ No content constraints â€” a communication can have arbi
trary content and/or any user-defined format.
The following properties listed in Fig. 5 are particularly

useful in comparing IPC facilities (other, less important
properties, are left to each facility's discussion later):
â€¢ Simplicity of use â€” one does not need to refer to manuals

or take extreme care in design to use the facility success
fully.

â€¢ Generality of connection â€” a communication's receiver's
actions on the communication do not directly affect its
sender.

â€¢ Multiple setup calls â€” more than one system call is re
quired to create a communication link.

â€¢ Minimum CPU resources â€” a given communication con
sumes virtually zero central processing unit (CPU) cycles

P r o p e r t y

U s e :
I n t e r r u p t

S t a r t , S t o p

L o c k

F l a g
P r i v a t e

B r o a d c a s t
B u l l e t i n B o a r d

F u n c t i o n C o m p o s i t i o n

S h a r e d W o r k i n g S e t

I P C
Fac i l i t y :

K i l l S i g n a l
S e m a p h o r e

M e s s a g e Q u e u e

S h a r e d M e m o r y
P i p e
F i le

I P C F a c i l i t y P r o p e r t i e s O n l y U s e a n d I P C F a c i l i t y P r o p e r t i e s

N o t e s :
X P r o p e r t i e s t h i s u s e r e q u i r e s .
o P r o p e r t i e s t h i s I P C f a c i l i t y e x h i b i t s .
1 . S e m a p h o r e s u s e d a s r e s o u r c e l o c k s u s u a l l y r e q u i r e v a l u e i n i t i a l i z a t i o n .
2 . T h e o r e t i c a l l y t h e q u i c k e s t : i n p r a c t i c e , t w o s e m a p h o r e o p e r a t i o n s a r e n e e d e d .
3 . M i n i m u m a c h i e v e d i f a n d o n l y i f u s e r s a l w a y s k e e p a t t a c h e d .
4 . A c h i e v e d i f a n d o n l y i f d a t a i s f o u n d i n b u f f e r .

Fig. 5 . Use requi rements and IPC fac i l i ty proper t ies.

30 HEWLETT-PACKARD JOURNAL JUNE 1987

© Copr. 1949-1998 Hewlett-Packard Co.

Benchmarking UNIX IPC Facilities

The usual purpose of benchmarks is to quant i fy d i f ferent com
pu te rs ' pe r fo rmance i n a way tha t pe rm i t s va l i d compar i sons
among them. Typical ly, the goal is to discover pr ice/performance
ra t ios that permi t near -opt imal purchase dec is ions. Our bench
mark serves a s imi lar purpose. Al though i t a t tempts to quant i fy
UNIX IPC performance in a way that permits val id comparisons,
the goa l is to c reate per formance/capac i ty curves that prov ide
ins ight in to the re lat ive ef fect iveness of the UNIX system's IPC
fac i l i t ies . We hope that th is w i l l permi t be t te r sys tem/sof tware
design decis ions.

The good news i s t ha t s ince the measuremen ts were made
on the same computer , most s tandard benchmark ing per i ls are
avo ided. The bad news is tha t the IPC fac i l i t ies have fea tures
tha t a re incomparab le . Th is benchmark i s by no means a com
plete character izat ion of an IPC faci l i ty 's capabi l i t ies. In part icu
la r , i t benchmark uses a message-pass ing parad igm. Thus , i t
accurate ly measures IPC mechanisms wi th respect to message
exchange. Other uses, however, require some care in interpreting
the results.

We be l i eve t ha t even t t r i gge rs and s ta te i nd i ca to rs can be
fa i r l y t rea ted as pass ing a s ing le da ta e lement . So the per fo r
mance of semaphores, s ignals, and messages can be fair ly com
pared for the special case of a message size equal to one. Data
t ransfers, however, are not so easi ly handled.

There are two important considerat ions not addressed in th is
benchmark. One, shared memory can pass data without copying
i t . For organizat ions in which processes alternately work direct ly
in shared memory (e.g. , a data base and i ts query processes or
a w indowing su i te) , the per fo rmance o f shared memory cou ld
g rea t l y surpass any o ther IPC a l te rna t i ve . Two, p ipes use the
UNIX operat ing system's f i le buffers. On a system where buffers
are a scarce resource (e .g . , a heav i ly loaded l /O- ln tens ive sys
tem) , the per fo rmance o f p ipes wou ld probab ly decrease. Con
sequent ly , th is benchmark under ra tes shared memory 's per fo r
mance and overrates that of p ipes.

Benchmark System
All tests were run on an HP 9000 Series 320 Workstat ion with

4M bytes of main memory. (This system is based on a 16.6-MHz
MC68020 CPU with a 1 6K-byte cache, 1 2.5-MHz MC68881 f loat
i n g - p o i n t c o p r o c e s s o r , a n d m e m o r y m a n a g e m e n t u n i t .) T h e
operat ing system was HP-UX Mul t iuser Revis ion 5.1. (HP-UX is
composed primari ly of AT&T Bell Laboratories' UNIX System V.2,
but with Hewlett-Packard's own extensions and features from the
4.1 and 4.2 BSD vers ions of the UNIX operat ing system by the
Universi ty of Cal i fornia at Berkeley.) Al l benchmarks were run in
s ing le-user mode. (Processes 0 (swapper) , 1 (/e tc / in i t) , and 2

(pagedaemon) were the only processes running besides the two
benchmark processes.)

Benchmark Programs
A l l b e n c h m a r k p r o g r a m s h a d t h e s a m e g e n e r a l s t r u c t u r e .

Pseudocode fo r the shared memory benchmark wou ld look as
follows:

obtain number of messages to send and the length of a message
fork chi ld process to read messages

get and attach shared memory segment for chi ld
get memory-f i l led and memory-empty semaphores
loop forever

acquire memory-fi l led semaphore, block if no data
copy data from shared memory into buffer
release memory-empty semaphore

fi l l parent's buffer with message
get and attach shared memory segment for parent
get memory-f i l led and memory-empty semaphores
start timer
loop N t imes, where N = number of messages to send

acquire memory-empty semaphore, block i f data unread
copy data from buffer into shared memory
release memory-fi l led semaphore

stop timer
return memory and semaphores to system
print results

The semaphore benchmark di f fered from the above in that the
p r o c e s s e s o n l y a c q u i r e d a n d r e l e a s e d s e m a p h o r e s . N o d a t a
was passed. In the message queue benchmark, the parent and
ch i l d a l t e rna ted send ing a message and read ing a rep l y w i t h
blocking.

The pipe benchmark was s imi lar to the message queue bench
mark excep t tha t two p ipes were used . The s igna l benchmark
was s im i l a r t o t he semaphore benchmark excep t t ha t s i gna l s
and handlers were used to escape pauses a l ternate ly .

Cop ies o f these benchmark programs are ava i lab le f rom the
au tho r . The resu l t s a re p rov ided i n t he accompany ing a r t i c l e
(Fig. 6).

Caveat
N o u s e f u l w o r k w a s d o n e w h e n a b e n c h m a r k p r o g r a m w a s

running. One hundred percent of CPU time was spent in handling
messages. Thus, th is benchmark g ives absolute upper l imi ts on
this system's IPC capabi l i t ies. The pract ical l imits are somewhat
lower.

to complete.
â€¢ Needs other IPC facility â€” the normal use of the facility

requires other IPC facilities.
â€¢ Directly affects control â€” the receiving processes' execu

tion path is interrupted by the communication.

Performance
Capacity. The use of a facility dictates its communications'
range of sizes, that is, the number of bytes that a communi
cation needs. The classes in Fig. 4 require greater capacity
as one moves from left to right. For example, data transfers

usually require an IPC mechanism with significantly
greater capacity than do event triggers.

The capacity of a particular UNIX facility is usually set
when the system is configured. It will vary from installation
to installation. However, Table II presents some typical
data for the capacities of UNIX IPC facilities. This data is
for the same system described in the box above.
Throughput. The UNIX operating system makes no guaran
tee on the length of time it takes to deliver a communica
tion â€” forever is not impossible, although somewhat un
likely. Indeed, one has to work very hard to delay a message

JUNE 1987 HEWLETT-PACKARD JOURNAL 31

© Copr. 1949-1998 Hewlett-Packard Co.

IPC Facility

file

pipe
FIFO
message queue
shared memory

signal
semaphore

T a b l e I I

Maximum Capacity

size of file system

48K bytes (blocks at 4K bytes)
same as pipe
8K bytes
4M bytes

1 signal from set of 23
lvalue from Â±32K

more than a few hundred milliseconds. This is true for all
IPC mechanisms. On the average, though, some are capable
of delivering more messages per unit time than are others.
Of course, a communication's size interacts with a facility's
capacity to affect its performance. Fig. 6 presents some
comparative data on UNIX IPC performance. A portion of
the data shown in Fig. 6 appears to defy the conventional
wisdom. In particular, shared memory is not found to be
the best performer.

The surprising results of Fig. 6 appear to be an artifact
of using semaphores and shared memory for purposes for
which they are not well-suited. Our taxonomy, Fig. 4,
suggests that semaphores are best used as state indicators
and shared memory is best used for data transfer. However,
the bencnmark program combines these two facilities into
a message exchange medium. The box on page 31 explains

how the data for Fig. 6 was obtained.
Blocking. It is possible to block on most IPC service calls.
That is, the kernel suspends the process â€” halts its con
sumption of CPU cycles â€” until the desired external event
occurs. Thus polling or busy waiting, which consume CPU
cycles, are unnecessary. If more than one process is blocked
on a particular IPC facility, the UNIX system makes no
guarantee as to which process will obtain the facility when
it unblocks. For example, the UNIX system guarantees that
message queue communications will be delivered in a first-
in-first-out (FIFO) order, but does not guarantee that pro
cesses will get them on a first-come-first-served basis. It is
also possible to continue without delaying on most IPC
service calls.

UNIX IPC Facilities

The traditional UNIX IPC facilities are files, pipes, FIFOs
(named pipes), and signals. Pipes, FIFOs, and, of course,
files all use the file system to pass data. They pass informa
tion as byte streams, the natural interpretation of all infor
mation in the UNIX file system.

Files
Files are not truly IPC facilities, but they can be and

often are used for IPC. Two or more programs that use a
file for IPC must agree on conventions for data format and
synchronization. Typically, the presence or absence of a
second lock file is used to signal when the data file is being
accessed.

The UNIX system buffers file input/output and uses de-

400 -â€¢

(a)

1 0 2 4 2 0 4 8 4 0 9 6

Message Length (bytes)

450 -

400 -â€¢

350 --

300 --

250

200

Legend:

D Semaphore

â€¢ Message Queue
A Shared Memory Semaphore
â€¢ Pipe
O S i g n a l

8192
150

(b)

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

Message Length (bytes)

Fig. (a) performance relative performance of UNIX System V IPC facilities, (a) The relative performance
for long messages, (b) The re lat ive per formance for shor t messages.

32 HEWLETT-PACKARD JOURNAL JUNE 1987

© Copr. 1949-1998 Hewlett-Packard Co.

laved writes during output. So. for short communications
sent during periods of light loading, file IPC can be fairly
efficient (since the data will often be found by the receiver
in the buffer). However, for long messages and or heavily
loaded systems, file IPC will be the least efficient mecha
nism possible. The advantages of file IPC are unlimited
capacity and multiple delivery. A single message can con
tain as many bytes as the largest legal file. A single message
can be read by more than one process.

Pipes
The classic UNIX IPC mechanism is the pipe. Fig. 7

shows how pipes work. Fig. 7a depicts a pipe in complete
generality while Fig. 7b shows the preferred arrangement
for two communicating processes. Pipes enforce a rigid
first-in-first-out order to messages. One or more processes
can write into a pipe and one or more can read from it.
However, each message can be read only once. These pro
cesses must have a common ancestor (who sets up the
pipe). Normally, writes to a full pipe block the writing
process until a reader removes some data while reads from
an empty pipe block the reading process until there is data
to read.

The performance of pipe IPC will be the same as file IPC,
up to a point. Pipes are restricted to use only a small part
of a file's potential capacity; this prevents some expensive
disc accesses. This is more efficient from a systems view
point, although it might force a longer delay in delivering
a message.

Synchronization of communications is automatic and
reliable if a pipe has exactly one writer and one reader.
Since writes and reads to or from a pipe are not atomic
(i.e., guaranteed to finish before preemption), reliability

remains an issue if there are more than two writers or
readers.

Pipes are a very general mechanism. They can be used
for many purposes. However, they seem best suited to per
form function composition, successively passing unstruc
tured data from one process to another.

FIFOs
Named pipes, or FIFOs, are identical to pipes in opera

tion. FIFOs, unlike pipes, are not constrained to have the
channel set up by a common ancestor. A process need only
know a FIFO's name and have permission to access its
contents.

Signals
Another classic UNIX IPC mechanism is the signal. Sig

nals are usually used to trigger events. Signals are usually
constrained to use a single value from a small set (about
20) of predefined values. This seriously limits their ability
to pass information. Signals are not queued and there is
no indication of who the sender is. Signals, despite their
simplicity, are not very efficient IPC mechanisms.

Historically, signals were created as a mechanism to ter
minate processes. There are two problems with using sig
nals for IPC: it is possible for signals to be lost and it is
possible to terminate a receiving process prematurely. Both
problems occur if signals of the same type are received at
too high a frequency.

Unlike other IPC facilities, signals affect control directly
rather than simply exchanging data. They should be used
carefully, if at all.

W r i t e R e a d W r i t e R e a d

M. M2 â€¢â€¢â€¢ "â€¢ MI*,

W r i t e R e a d

W r i t e R e a d W r i t e R e a c *

P i p e l â € ¢ â € ¢ â € ¢ M k + , M ,

(b)

F i g . 7 . T h e s t r u c t u r e o f p i p e s ,
(a) G e n e r a l s t r u c t u r e , (b) P r e
f e r r ed p i pe s t r uc tu re f o r b i d i r ec
t i o n a l c o m m u n i c a t i o n b e t w e e n
two processes.

JUNE 1987 HEWLETT-PACKARD JOURNAL 33

© Copr. 1949-1998 Hewlett-Packard Co.

System V IPC Mechanisms
Pipes and signals permitted software solutions not prac

tical with single monolithic programs. The new IPC mech
anisms in UNIX System V permit, in turn, more sophisti
cated solutions than was reasonably possible with pipes
and signals. UNIX System V adds three very powerful IPC
facilities: message queues, shared memory, and semaphores.
These facilities do not use the file system or require com
mon ancestry. Thus, program design constraints are much
reduced. All are accessed in the same way: a process that
knows the right key and has the right permissions requests
the kernel to connect it.
Semaphores. Semaphores are used to control access to
shared resources, to synchronize events, and/or to an
nounce the state of some object. They are generally used
as indicators, rather than to pass information. Fig. 8 shows
how semaphores might be used to protect a resource. Con
ceptually, they use a single machine word. In fact, however,
they are somewhat more complicated and UNIX System V
does considerable processing to effect a semaphore transac
tion.

Semaphores must often be used in pairs: once to protect
or lock a resource and once to release or unlock it. For
example, consider the use of semaphores with shared mem
ory to create a message-passing medium as described earlier
and in the box on page 31.

A single semaphore system call is the UNIX system's
fastest IPC facility.
Message Queues. Message queues are most frequently used
to exchange messages. They behave similarly to pipes in
that messages are passed on a first-in-first-out basis. How
ever, associated with each message is a type number and
an argument. The type number enables more flexible pro
gram designs. Successive messages with the same type form
queues, but a receiver can choose which type(s) to read.
The argument is an array of characters, but not quite a C
string (there is no guarantee of a null terminator).

A message can be read only once. Each access of a mes
sage queue is atomic. This eliminates one source of unre
liability using pipes. It is possible to read a queue without

blocking if it happens to be empty. Any number of pro
cesses can access a queue, and they need not be related.
A process can access a queue if it has the correct permission
and has the queue's key. Fig. 9 shows how message queues
work.

There are three primary strategies for using type num
bers: as mailbox IDs as shown in Fig. 9a, as priorities as
shown in Fig. 9c, or as op codes. If all messages sent via
a particular message queue have the same type number,
then If queue is a strict first-in-first-out byte stream. If
messages have different type numbers associated with
them, then each type acts as a first-in-first-out byte stream.
Consequently, messages can be read in an order different
from their write order.

Message queues are a very general mechanism, and can
be used for many purposes. They seem best suited to con
veying small, private communications from one process to
another. Message queues are probably the fastest practical
IPC mechanism for this purpose.
Shared Memory. Shared memory is most frequently used
to transfer data from one process to another. Shared mem
ory uses coordinated writing and reading to and from the
same physical memory locations to share working data
among separate processes. That is, two or more distinct
programs can arrange to have the same set of buffers and/or
variables, much like global common variables or buffers
for a single program. To pass data reliably using shared
memory requires synchronizing data writes and reads. This
is often accomplished with semaphores. Fig. 10 shows how
shared memory works.

Shared memory can pass arbitrarily complex informa
tion. Capacity is limited only by the amount of main mem
ory available. It and semaphores are special in that more
than one process can read the same communication. Shared
memory is theoretically the fastest possible IPC mecha
nism. In practice, shared memory is sensitive to the use to
which it is put.

Although data is sent at the instant it is written in mem
ory, receiving the data is somewhat more problematic. If
many processes are competing for the same memory, then

A c c e s s S e m o p ^ ^ L A c c e s s S e m o p A c c e s s S e m o p

Semaphore

F ig . 8 . The use o f a semapho re
t o p r o t e c t a s y s t e m r e s o u r c e .
Semop is a semaphore operat ion.
D e c r e m e n t i n g a s e m a p h o r e a c
quires it i f i t was free, and thereby
locks the resource. Increment ing
a semaphore re leases i t i f i t was
acquired, and thereby unlocks the
resource. While one process uses
(l o c k s) t h e r e s o u r c e , t h e s e m a
phore blocks the other processes.
W h e n t h e p r o c e s s u s i n g t h e r e
source completes, i t re leases (un
l o c k s) t h e r e s o u r c e f o r u s e b y
other processes.

34 HEWLETT-PACKARD JOURNAL JUNE 1987

© Copr. 1949-1998 Hewlett-Packard Co.

they may be forced to copy the shared memory contents
to prevent blocking each other. Since shared memory ac
cesses are not atomic, processes must signal both when
new data has been written and when old data has been
read. In general, this implies either two semaphores or two
lock states for the same semaphore and bracketing
semaphore operations in both the sending and receiving

processes.
Shared memory is a general mechanism. It can be used

for many purposes. It seems best suited to sharing large
working sets of data between alternately executing process
es. However, shared memory tends to reintroduce exactly
the kinds of program coupling that historically have created
problems. Shared memory should be used with some care.

M s g s n d M s g r c v ^ & M s g s n d M s g r c v M s g s n d M s g r c v

(a)

M s g s n d M s g r c v

(b)

High Priority
Fig . 9 . The s t ruc ture o f message
queues, (a) General structure, (b)
Typica l s t ructure for b id i rect ional
commun ica t i on be tween two p ro
cesses , (c) Typ i ca l s t ruc tu re f o r
b i d i r e c t i o n a l c o m m u n i c a t i o n b e
t w e e n t w o p r o c e s s e s w i t h t w o
p r i o r i t i es , h i gh and l ow . Msgsnd
i s a message send (t ransmi t) op
e ra t i on wh ich p laces a message
in to the message queue. Msgrcv
i s a m e s s a g e r e c e i v e o p e r a t i o n
which retr ieves the speci f ied mes
sage , usua l l y t he nex t , f r om the
message queue.

JUNE 1987 HEWLETT-PACKARD JOURNAL 35

© Copr. 1949-1998 Hewlett-Packard Co.

Semaphore 1 Semaphore 2

Shared
Memory

F ig . 10 . Typ i ca l sha red memory
structure (or bidirectional communi
c a t i o n b e t w e e n t w o p r o c e s s e s .
S e m a p h o r e s a r e u s e d t o c o o r d i
n a t e m e s s a g e t r a n s f e r . S e m a
p h o r e 1 b l o c k s p r o c e s s 1 w h i l e
p r o c e s s 2 e m p t i e s s h a r e d m e m
o r y . W h e n s h a r e d m e m o r y i s
empty , p rocess 2 re leases sema
p h o r e 1 , u n b l o c k i n g p r o c e s s 1
a n d u n l o c k i n g s h a r e d m e m o r y .
Process 1 then sets semaphore 2
to lock shared memory and b lock
p r o c e s s 2 w h i l e p r o c e s s 7 f i l l s
s h a r e d m e m o r y . W h e n s h a r e d
memory is ful l , process 1 releases
semaphore 2.

Acknowledgments
The author would like to thank Kyle Polychronis and

Irwin Sobel for their valuable comments and the generous
contibution of their time in reviewing this paper.

References
1. M. Rochkind, Advanced UNIX Programming, Prentice-Hall,
1985.
2. R. Thomas, et al, Advanced Programmer's Guide to UNIX Sys
tem V, McGraw-Hill, 1986.
3. M.J. Bach, The Design of the UNIX Operating System, Prentice-
Hall, 1986.
4. HP-UX Reference, Vol. 2: Sections 1M and 2, Hewlett-Packard
Company, 1985.

Hewlet t -Packard Company, 3200 Hi l lv iew
Avenue, Palo Al to, Cal i fornia 94304

H E W L E T T - P A C K A R D J O U R N A L

J u n e 1 9 8 7 V o l u m e 3 8 â € ¢ N u m b e r 6

Technical Information from the Laborator ies of
Hewlett -Packard Company

Hewlet t -Packard Company, 3200 Hi l lv iew Avenue
Palo Alto, Cal i fornia 94304 U.S.A.

Hewlet t -Packard Centra l Mai l ing Department
P.O. Box 529, Star tbaan 16

1 180 AM Amstelveen, The Nether lands
Yokogawa-Hewlet i -Packard L td . , Suginami-Ku Tokyo 168 Japan

Hewlet t -Packard (Canada) Ltd.
6877 Goreway Dr ive, Miss issauga, Ontar io L4V 1M8 Canada

Bulk Rate
U.S. Postage

Paid
Hewlett-Packard

Company

CHANG E OF ADDRESS: To subscribe, change your address, or delete your name from our mail ing l ist, send your request to Hewlett-Packard
Journal , 3200 Hi l lv iew Avenue, Palo Al to , CA 94304 U.S.A. Inc lude your o ld address label , i f any Al low 60 days

5953-8561

© Copr. 1949-1998 Hewlett-Packard Co.

	Permuted Trace Ordering Allows Low-Cost, High-Resolution Graphics Input
	The Hewlett-Packard Human Interface Link
	HP-HIL Input Devices
	Software Verification Using Branch Analysis
	Advantages of Code Inspections
	Reader Forum
	Viewpoints: Direction of VLSI CMOS Technology
	Software Architecture and the UNIX Operating System: An Introduction to Interprocess Communication
	Benchmarking UNIX IPC Facilities
	Benchmarking UNIX IPC Facilities

