
HEWLETT-PACKARD

cO@[1JJ~U\D&[s

rh-" HEWLETT
~t:.I PACKARD

AUGUST1S8S

HEWLETT-PACKARD

~@)0dJ~~&[s

Articles

6 An Overview of the HP NewWave Environment, by Ian J. Fuller

August 1989 Volume 40 • Number 4

9 An Object-Based User Interface for the HP NewWave Environment, by Peter S.
Showman

17 The NewWave Object Management Facility, by John A. Dysart

23 The NewWave Office, by Beatrice Lam, Scott A. Hanson, and Anthony J. Day

32 Agents and the HP NewWave Application Program Interface, by Glenn R. Stearns

35 AI Principles in the Design of the NewWave Agent and API

38 An Extensible AgentTask Language, by Barbara B. Packard and Charles H. Whelan

40 A NewWave Task Language Example

43 The HP NewWave Environment Help Facility, by Vicky Spilman and EugeneJ. Wong

48 NewWave Computer-Based Training Development Facility, by Lawrence A. Lynch
Freshner, R. Thomas Watson, Brian B. Egan, and John J. Jencek

57 Encapsulation of Applications in the NewWave Environment, by William M. Crow

EdIlOf. Richard P. Dolan. Associate Edllor. Charles L. Lealh • AssIstant EdItor. Hans A Toepfer. Arl DlfeclClf, Photog/aphar, Arvid A Danielson
Support Supervisor, Susan E Wright. Administrallve services, Typography, Anne S LoPresli • European Production Supervisor, Sonja Wirth

2 HEWLffi-PACKARD JOURNAL AUGUST 1989 C Hewtet!-Packsrd Company 1989 Printed In USA

67 Mechanical
Topham

Design of a New Quarter-Inch Cartridge Tape Drive, by Andrew D.

74 Reliability Assessment of a Quarter-Inch Cartridge Tape Drive, by David Gills

82 Use of Structured Methods for Real-Time Peripheral Firmware,
Paul F. Robinson, Tracey A. Hains, and Mark J. Simms

by Paul F. Bartlett,

87 Product Development Using Object-Oriented Software Technology, by Thomas F.
Kraemer

95 Objective-C Coding Example
98 Object-Oriented Life Cycles

Departments

4 In this Issue

5 Cover
5 What's Ahead

31 Correction
31 Trademark Acknowledgments
64 Authors

Tho Hewlett-Packard Journal is PlJblished bimonthly by the Hewlett-Packard Company to recognize technical contributions made by Hewlett-Packard (HP) personnel. While
the information found in this publication is believed 10 be accurate, the Hewlett-Packard Company makes no warranties, express or implied, as to the accuracy or reliability of
such information. The Hewlett-Packard Company disclaims all warranties of merchantability and fitness for a partiC\Jlar purpose and all obliga~ons and liablliUes for damages,
including but not limited to indirect, special, or consequential damages, attorney's and e.pert's fees, and court costs, arising out of or in connection with this ptJblicatlon.

Subscriptions: The Hewlett-Packard JOIJmal Is distributed free of charge to HP research, design, and manufacturing engineering personnel, as well as to qualified non-HP
individuals, libraries, and educational institutions. Please address subscriptlOfl or change of address requests Ofl printed letterhead (or Include a business card) to the HP address
on the back cover that is closest to you. When submitting a change of address,'please include yOlJr zip or postal code and a copy 01 your old label.

Submissions: Although articles in the Hewlett-Packard Journal are primarily authored by HP employees. articles from non-HP authors dealing wIth HP-related research or
solu!ioos to technical problems made possible by using HP equipment are also considered lor publicalioo. Please contact the Editor belore submitting such articles, Also, the
Hewlett-Packard Journal encourages technical discussions of the topics presented In recent articles and may publish letters expected to be of Interest to readers. Letters should
be briel, and are subject to editing by HP.

Copyright C 1989 Hewlett-Packard Company. All rights reserved. PermissiOfl to copy without lee all or part of this publication Is hereby granted provided that 1) the copies
are not made, used, displayed, or distributed lor commercial advantage; 2) the Hewlett-Packard Company copyright notice and the title of the publication and date appear on
the copies; and 3) a notice stating that the copying is by permission of the Hewlett-Packard Company appears on the copies. Otherwise, no portion of this ptJbllcation may be
produced Of transmitted in any form or by any means, electronic Of mechanical, including photocopying, rewrding, or by any informatiOfl storage retrieval system without written
permission of the Hewlett-Packard Company.

Please address inquiries, submissions, and requests to: Editor, Hewlett-Packard Journal, 3200 Hillview Avenue. Palo Alto. CA 94304. U.S.A.

AUGUST 1989 HEWLETT-PACKARD JQURNAl3

In this Issue
Can the majority of people ever be as comfortable using a personal computer
as they are driving a car? Most people would say that the computer industry
has a long way to go to achieve this goal. However, the subject of the first
nine articles in this issue-the HP NewWave environment-is a truly giant
step in that direction. Instead of seeing the computer as a pile of hardware
supporting multiple application programs that can be used to accomplish
complex tasks if the user is knowledgeable enough, the NewWave user sees
the computer as a single tool able to perform multiple complex tasks. The
NewWave user interface is modeled on an ordinary office, offering a filing

cabinet, a wastebasket, a printer, and other common functions, along with an uncommon staff
member, a software robot called an "agent," which acts as a personal assistant for the user. In
the NewWave Office, icons representing tasks performed by application programs are displayed
along with icons representing basic office functions. Supporting this user interface but unseen by
the user is an advanced architecture that specifies how applications are designed for the NewWave
environment and how they are managed within it. Applications, tasks, and basic functions are
treated as objects, and a transparent but powerful object management facility orchestrates the
objects to accomplish what the user wants, switching between applications as necessary. The
agent acts somewhat like the macro facilities offered by some applications, but it is much more
powerful because it can use many applications and data sources, interacting with the object
management facility through a NewWave architectural component called the application program
interface. Another NewWave component is an advanced help facility. When the user wants help,
it isn't necessary to determine which application to ask; the user simply asks the computer. An
overview of the HP NewWave environment is presented in the article on page 6. For the conceptual
and object models behind the object-based user interface, see page 9. Concepts and features
of the object management facility and the NewWave object-based file system can be found in
the article on page 17. For the design of the NewWave Office, see page 23. The technical details
of the agent, the application program interface, and the agent command language can be found
in the articles on pages 32 and 38, and the help facility is described in the article on page 43.

For the NewWave environment to provide the hoped-for benefits to the user, application pro
grams must be designed to work within it. Existing applications, particularly those written for the
Microsoft Windows environment upon which the NewWave environment is based, can be "encap
sulated" and gain some of the NewWave benefits, but not all. How encapsulation works is detailed
in the article on page 57. NewWave designers have also addressed the question of how the
NewWave architecture can aid in the development and delivery of computer-based training. This
is the subject of the article on page 48.

4 HE'Nlm-PACKARO JOURNAl AUGUST 1989

The NewWave environment is an example of object-oriented software. Object-oriented software
technology, which includes both programming languages and development methods, is becoming
more widely accepted for software development. It has proved to be both productive and powerful,
and it offers useful new approaches to the problems of code reuse and software maintainability.
in the paper on page 87, Tom Kraemer gives us an introduction to object-oriented software
technology and an example of its use in the development of the HP VISTA software for the HP
3565S Signal Processing System.

We first encountered the design story of the HP 9145A Quarter-Inch Cartridge Tape Drive in
a paper presented at the 1988 HP Software Engineering Productivity Conference. The paper
described the use of structured software design methods for the tape drive's real-time firmware.
The article on page 79 is based on that paper. The hardware side of the design story is told in
the article on page 67. Achieving the objectives-<loubling the speed and cartridge capacity of
an existing product-required a new tape cartridge with new media, tighter component and
assembly tolerances, and new manufacturing processes. An extensive reliability assessment
program verified the new design and continues to ensure the drive's reliability (page 74).

R.P. Dolan
Editor

Cover

The cover shows the displays that would appear when a NewWave Office user opens a file
drawer, selects a folder, and chooses a document to edit--<>perations performed in a typical office
environment. The example shows a complex document, that is, it contains text and graphics. The
NewWave user does not have to select an application and then the document, but only the
document. The NewWave environment handles associating the document with the application.

What's Ahead

The October 1989 issue marks the Hewlett-Packard Joumars fortieth anniversary. The first issue
was in September 1949. This is also HP's fiftieth anniversary year. To celebrate this double
anniversary, we'll have a special article recapping some of the highlights of those years for both
the company and the publication. We'll also present six papers from the 1988 HP Technical
Women's Conference, the first conference of its kind at HP. The papers address a variety of
hardware, software, and process management topics. Eight articles will cover the hardware and
firmware design of the Performance Signal Generator family, consisting of the HP 8644A, 8645A,
and 8665A Synthesized Signal Generators. A distinguishing feature of these instruments is a
single phase-locked loop design, in contrast to the multiple-loop designs formerly used.

AUGUST 1989 HEWLETI·PACKARO JOURNAL 5

An Overview of the HP NewWave
Environment
The NewWave environmentallows users to concentrate on
the task and not the computer system. For developers of
new applications, it provides the facilities to integrate
applications into the the NewWave environment.

by Ian J. Fuller

T
HE NEWWAVE ENVIRONMENT is acomprehensive
system developed by HP to provide a new level of
flexibility and ease of use in our business systems.

This article presents the history, the motivation, and an
overview of the features and major components of the New
Wave environment. The other NewWave articles in this
issue discuss the components of the NewWave architecture
in detail.

To understand the NewWave environment it is helpful
to review the background for HP's decision to invest in
this product. HP has been producing office systems soft
ware since the late 1970s. Some early products include the
Design Systems Graphics package (DSG) and the HP Word
word processing package. both of which run on HP 3000
Computers. In personal computer software, the CP/Mill.
based HP 125 Business Assistant, which was released in
1982, had a !lumber of business software solutions, includ~
iog word processing, a spreadsheet application, and a pre
sentation graphics package.

The release of HP DesleManager for HP 3000 Computers
in 1982 marked HP's first product that addressed the need
for integrating these office systems software products. HP
DeskManager was originally designed as a simple elec
tronic mail product,' allowing users to send and receive
messages easily across a network of HP 3000 Computers.
It was very clear that our customers needed more than
electronic mail functions from HP DeskManager. They
needed to be able to compose arbitrary packages of informa
tion into messages and to file those messages for later re
trievaL The introduction of new software on the HP 3000
and on our personal computers meant that we needed to
integrate the products mentioned above with HP DesleMan
ager. At the very least. users should be able to create and
read an HP Word document within the HP Deskmanager
environment without leaving the product. Over the years
HP has invested very heavily in HP DeskManager. evolving
it into a true integrated office system. It has a wide range
of features and acts as the center of our HP 3000-based
office solutions with close links to the personal computer.

To enable users to connect their personal computers to
the HP 3000. HP developed the Personal Productivity
Center range of products. For the HP 3000 Computer these
products include HP DesleManager. HP FilelLibrary, HP
Schedule, and Resource Sharing. For PC users these prod
ucts include software packages for electronic mail, terminal

6 HEWLETT-PACKARD JOURNAL AUGUST 1989

emulation. word processing. data management. spread
sheets. and graphics.

There are a number of architectural limitations in the
current products that prevented us from creating the truly
integrated and powerful system our customers need. The
products that we have available were designed in different
HP divisions and by outside companies to meet the needs
of their particular markets. This resulted in software appli
cations that did not have the same basic architecture.

An investigation of potential solutions to the problem of
integrating our products began with the knowledge that
the solution developed must have the following fundamen~

ta.l characteristics:
• It must be practical. The solution must work well on

existing hardware and add value to existing software so
that customer investments are protected.

• It must be flexible and extendable. The software field is
expanding rapidly and opportunities will exist tomor
row that could not have been dreamed of when the sys
tem was designed. This includes portability across differ~

ent hardware platforms.
• It must allow for the efficient development of systems.

Software components must be available for reuse accord
ing to the maxim that if a function is used several times
in a system it should be provided as a system service
for use by all components.

File DOS Operating
System System

Fig. 1. Microsoft Windows environment. MS Windows enables
users to isolate applications from the details of the hardware
and provides a graphical user interface and multitasking
under the MS-DOS operating system.

• It must have a sufficient advantage over existing systems
that customers and software developers will make the
investment necessary to use the new system.

• It must allow us to build easy-to-learn and easy-to-use
software. Users do not want to spend weeks or months
learning to use software. and once they are proficient
with the soltware, they do not want to be hampered by
an inflexible system.

• It must be an open system. HP could not hope to offer
proprietary solutions in all areas. Customers would want
to take advantage of our architecture. Designing an open
system from the start would allow many more solutions
than we alone could provide.

• It must run on existing hardware such as the HP Vectra
and the IBM PC/AT.
Tbis is a formidable list of objectives. The NewWave

environment is designed to meet these objectives. and ex
ceed them wherever possible.

Open and Extendable Architecture
The NewWave environment was originally designed as

a proprietary environment for the development of better
integrated office systems. However, as prototypes of the
system became available and were demonstrated, it became
clear that the system had great appeal to a wider audience
than the internal HP community. Major accounts and inde
pendent software vendors (ISVs) all wanted to learn how
to write NewWave applications. They wanted to take ad
vantage of our object-based file system and applications,
while addressing areas of the market that were their spe
cialty.

We decided to open up the NewWave architecture. This
entailed:
• Ensuring that our interfaces were made general and

robust
• Providing documentation, training, and support suitable

for software developers
• Doing extensive testing of the programmatic interfaces

in different software and hardware environments.
The NewWave environment will be used by a wide vari

ety of customers. all with different needs. and we know
that our customers developing applications to run in the
NewWave environment will expect us to keep up with new
technologies.

Based on the Microsolt* Windows interface (see Fig. 1),
the NewWave environment is well positioned for IBM's
OS/2 operating system and the Presentation Manager sys
tem from IBM and Microsoft. We are also working on im
plementing the NewWavp. environment under the HP-UX
operating system. Thus, the NewWave environment pro
vides software developers with the advantage of a system
that is portable across a range of platforms.

The NewWave environment is extendable to incorporate
new software techniques. For example. the agent facility,
which is a major component in the NewWave architecture,
is designed to include the functionality and power of arti
ficial intelligence. Future applications. such as natural lan
guage systems, can be integrated with NewWave applica
tions that use the agent facility without any impact on the
application.

The System Approach
From the beginning the NewWave environment has been

designed as an integrated software system. This is in con
trast to previous systems. which were designed piecemeal,
with integration added later. The major components of the
NewWave architecture are shown in Fig. 2. Taken together.
these components offer software developers and users a
number of benefits, including:
• Consistency. NewWave applications have a consistent

user interface, based upon Microsoft Windows. HP pro
vides user interface rules that are an extension of those
provided by Microsoft to ensure that NewWave applica
tions have a common look and feel. Common data for
mats adopted by NewWave applications ensure that in
formation generated in one area can be understood in
another, even if it is on a different machine in another
location.

• Automation and Training. The agent facility provides
task automation across all applications in the NewWave
environment. The agent can be thought of as a personal
assistant that can perform tasks on behalf of the user.
Computer-based training (CBT) is implemented in the
NewWave environment using the facilities provided by
the agent. The NewWave environment provides the tools
for developers to use the agent and to build CBT into

Fig. 2. The NewWave environment. The NewWave environ
ment is built on the industry-standard IBM PC/AT compatible
platform. It uses MS Windows to obtain a graphical user inter
face consistent with the OS/2 operating system and the forth
coming Presentation Manager system from IBM and Micro
soft. The object management facility (OMF) provides the ob
ject-oriented capability of the NewWave environment, and
allows any kind of data to be treated as an object and rep
resented on the screen as an icon (e.g., text, graphics,
spreadsheet, image, voice, etc.). OMF also provides applica
tion and data binding. information links, and instant integra
tion. The application program interface (API) provides a set
of systemwide services for applications in the NewWave en
vironment. These ser-vices include task automation, context
sensitive help. and computer-based training (CBT).

AUGUST 1989 HEWLETI·PACKARO JOURNAL 7

their products. The agent is described in the articles:
"An Extensible Agent Task Language" and "Agents and
the HP NewWave Application Program Interface" on
pages 38 and 32 respectively, and computer-based train
ing is discussed in the article "NewWave Computer
Based Training Development Facility" on page 48.

• Developer Productivity. The NewWave environment
handles many of the tasks that developers would have
to design and implement individually if they were writ
ing applications outside of the NewWave environment.
An example of this is the NewWave help facility. New
Wave help is available to all NewWave applications and
provides a powerful context sensitive help capability in
all areas of the system. The help facility is described in
the article "The HP NewWave Environment Help Facil
ity" on page 43.

• Integration. The NewWave object management facility
(OMF) provides standardized data object management
for all NewWave applications. The OMF includes
facilities to define and install specific classes of objects,
such as text, graphics, image, or voice, and the links
between them. For example, a text object can incorporate
an arbitrary number of other objects to produce a com
pound document. The OMF manages tbe links so tbat
the object can be manipulated as a whole when it is
copied. deleted. or mailed over the network. The OMF
also supports data-passing links so that, for example, a
spreadsheet object can obtain data from a data base and
in turn link that data into a document or a line chart.
These facilities are all supported at the system level and
thus are available to all NewWave applications. The
OMF is described in the article "The NewWave Object
Management Facility" on page 17.

• Ease of Learning. A major objective of the NewWave
environment is to ensure that if users learn a technique
in one area. they will be able to apply the same tech
niques in another area, even if the application is not
supplied by HP. The computer-based training tools are
available to all developers so that they can build these
powerful learning aids into their products.

• Ease of Use. The NewWave environment is designed to
be substantially easier to use than previous systems. We
selected an interface based upon direct manipulation of
icons that represent NewWave objects (e.g.• file drawers.
folders. printers. etc.). From the user's perspective the
NewWave Office window provides an easy-to-use facil
ity for organizing. filing. retrieving. and deleting objects
as necessary. The NewWave Office is the primary inter
face between the user and the NewWave environment,
and it is the first display seen by tbe user when the
environment is loaded. The NewWave Office allows
users to focus on the tasks that they need to perform
rather than the tools they use. See the article "The New
Wave Office" on page 23 for more details.

• Integration with MS-DOS Applications. The NewWave
environment offers a set of facilities that enable MS-DOS
applications to be used within the system. At the
simplest level users can access non-NewWave applica
tions from the NewWave Office window and return to
the NewWave Office when they have completed their
task. The data from non-NewWave programs can also

8 HEWlrn-PACKARO JOURNAl AUGUST 1989

appear as objects in the OMF. HP provides facilities to
encapsulate non-NewWave applications within a shell
that allows them to share some of the NewWave environ
ment advantages such as data linking and background
printing. Integration with MS-DOS applications is de
scribed in the article "Encapsulation of Applications in
the NewWave Environment" on page 57.

Supported Hardware Platforms
The initial release of the HP NewWave environment is

designed to run on any Intel 80286 or 80386-based personal
computer that supports Microsoft Windows. The primary
platform is the HP Vectfa range of personal computers.
However, the NewWave environment is also supported on
the IBM Pc/AT and IBM OS/2 series and HP Vectra PC
compatibles. The NewWave environment supports all
hardware peripherals supported by Microsoft Windows.
including HP Laser)et printers. HP plotters. and the HP
ScanJet image scanner.

HP has developed an expanded memory card' for the
HP Vectra ES Personal Computer that delivers substantial
performance improvements without compromising the in·
dustry-standard compatibility of the software using it. One
of the objectives of this card is to enhance the performance
of applications using Microsoft Windows, such as the New
Wave environment.

The NewWave environment connects to networks using
the HP AdvanceNet data communications software and
hardware. Users have the choice of serial or HP ThinLAN
or StarLAN connections to a local area network that may
include other personal computers and an HP 3000 Com
puter system. Software developers can build distributed
applications using the networking tools that HP provides,
such as NetIPC interprocess communication software, the
Cooperative Services library, and Resource Sharing.

Conclusion
The HP NewWave environment is an important step for

HP in its strategy of giving computer users a powerful soft
ware environment that allows them easier access to infor
mation wherever it is stored on the computer network. For
the first time we are able to produce a system built on a
common architecture, rather than a collection of individual
products. The NewWave environment that is available
today is the beginning of a trend in software system design
that will eventually give the benefits of NewWave to the
entire spectrum of information workers.

Reference
1. I. J. Fuller, "Electronic Mail for the Interactive Office," Hewlett
Packard Journal, Vol. 34, no. 2, February 1983.
2. G.W. Lurn, et ai, "Expanded Memory for the HP Vectra ES
Personal Computer," HewJeU·Packard Journal, December 1988,
pp. 57-63.

An Object-Based User Interface for the
HP NewWave Environment
The NewWave environment is designed to allow users to
focus on their tasks and not the tools. To accomplish this,
the NewWave environment presents users with a
conceptual model based on an office metaphor that is built
on an object-based architecture.

by Peter S. Showman

A
KEY ELEMENT OF THE HP NEWWAVE ENVIRON
MENT is the combination of a system conceptual
model, which defines the user's perception of how

the system works, and an object model, which defines the
architecture of the system. This article describes the New·
Wave conceptual model and object model by presenting
examples based on an office metaphor.

Matching computers to People
As the use of personal computers in business has become

more and more widespread, two conflicting trends have
emerged. The complexity of the systems and applications
has increased dramatically. Computers afe being applied
to mOfe complex and mOfe strongly interrelated tasks, often
requiring the use of several interacting application pro·
grams and data from several sources. At the same time, the
need for simple operation is critical. The typical PC user
is no longer a computer hobbyist. Most users are busy
enough maintaining expertise in their own areas without
having to be computer experts as well. Software must be
easy to learn and easy to use for first-time or occasional
users without sacrificing flexibility and effectiveness for
more experienced users. The conflict between the need for

simple operation and the increasing functional complexity
leads not only to less user satisfaction, but also to decreased
productivity and increased training costs.

A simple and consistent user interface has been a long
standing goal of many HP products, including such com
mercial and office products as the HP Touchscreen Com
puter,l HP DeskManager,' and the HP 250 Computer,' along
with numerous earlier systems (e.g., reference 4). Applica
tion of human factors principles and ever-improving
hardware have allowed designers to build interactive and
responsive application programs. Such software keeps the
user informed about the state of the software and the data,
and reduces the prior knowledge required, to operate it.
Techniques that were once seen only on expensive work
stations are now commonplace in personal computers.
However, in spite of clear progress, a number of obstacles
remain for the users.

Where We Are Today
Today's office automation software is almost exclusively

function-oriented. Most of the user's work is done in terms
of the functions incorporated in the application programs
the system provides. The first decision the user must make

A Compound Document

Fig. 1. A complex object and its
components. Each of the compo
nent objects has associated with
it an application and a data seg
ment containing the data it is cur
rently managing,

}reXI

} Sp,eadsheel

c
44 135
.. 89
30 49
70 130
20 30

AUGUST 1989 HEWLETT·PACKARD JOURNAL 9

is, "Which application should I run?" Only after the appli
cation has been selected can the user indicate which data
should be used, typically by remembering and typing in
rather cryptic file names. If that data is not of the correct
type far the application, the user is given an error message.

Transferring dala between systems or among the applica
tions within each system is a significant and yet difficult
part of many common tasks. Often such data transfers must
be done manually on a trial-and-error basis--even for re
petitive transfers. Where applications allow several data
files to be tied togelber, lbe result still must be maintained
manuaJly (e.g., when copying compound items such as text
and graphics. or sending them via electronic mail), Unless
the user is very careful and understands the system well,
it is easy for a mailed document to lose its figures acciden~

tally, or for a spreadsheet lbat consolidates the results of other
spreadsheets to become separated from its components.

There are other annoyances as well. Many users must
juggle several tasks at once, often changing from one to
another as interruptions occur in the workplace. This is
often difficult because MS-DOS", the most common operat
ing system for personal computer systems, restricts the user
to operating one application program at a time. Exiting one
program to run another is time-consuming, and the problem
of remembering and restoring the context on returning is
typically left to the user. Although many application pro
grams have independently developed workable user inter
faces, until recently there has not been much standardiza
tion across applications within this environment. Thus,
users must learn and remember how to direct each appli·
cation to perform its various functions, and often opera·
tions common to several applications are handled differ·
ently by each.

The net effect is that in the course of accomplishing the
real task at hand, the user must also solve some additional
problems introduced by the system: determining which of
the available programs is appropriate for each step, remem
bering the names of the files that contain the data, and
managing the movement of data between the programs.
These problems have little to do with what lbe user really
wants to accomplish-they are just extra things to worry
about.

Tasks, not Tools
The NewWave environment is designed to address many

of these problems. At the visual and operational level, it
strongly encourages the basics of good software design,
such as a consistent and logical user interface, the use of
WYSIWYG (what you see is what you get) displays, and
direct·manipulation interaction. Many of these characteris
tics are based on the features of Microsoft Windows, on
which the current NewWave environment is built. The
NewWave environment also inherits two very important
features of Microsoft Windows: multitasking to allow more
than one application program to be active simultaneously,
and window management facilities so the user can switch
among applications.

The NewWave environment takes a step beyond lbe fea
tures of Microsoft Windows by providing an architecture
for managing data and applications and a consistent con
ceptual model to help the user understand the system.

10 HEWLffi-PACKARD JOURNAl AUGUST 1989

Whereas most systems today are function-oriented, the
NewWave environment is information-oriented. With the
NewWave environment the user can operate in terms of
the information stored in the system, and instead of decid
ing which application to run, the user's first decision be
comes "Which information do I want to work with?" The
system will automatically pick lbe application lbat is
appropriate for working with that kind of information.

A phrase we have used to capture the overall goal of the
NewWave evironment is "tasks, not tools." By this we mean
lbat users should be able to focus primarily on what lbey
want to accomplish (their tasks], and not have to spend so
much mental energy on the mechanics of how to do it (the
software tools). Put another way, the computer should be
part of lbe solution, not part of lbe problem.

The underlying NewWave architecture provides other
benefits as well. Some of these, such as the task automation
provided by the agent facility and the comprehensive help
facility, are also directly beneficial to lbe user. Other
characteristics, such as the ability of one application to use
features of another, are primarily visible to application de
signers. However, they often benefit the user in the end.
Several of these aspects of the NewWave environment are
the subjects of other articles in this issue. Here, we will
focus on how data and application programs are managed
in the NewWave environment, and how these and other
features of the system are presented to and managed by
the user. In sum, these NewWave characteristics constitute
a significant step forward in reducing the complexity from
the user's viewpoint while simultaneously providing:
• An information-oriented user interface that makes the

Fig. 2. Simple links are parent-child relationships that attach
the child to the parent with minimal obligations on the child.
Visual links are used when a parent object requires the child
object to display itself within the parent's window and print
itself as the parent is printed. Data passing links require data
transfer between the (inked objects. Visual and data passing
links are also called views in OMF terminology.

process of running an application transparent.
• Information storage and retrieval that allow the worksta

tion user to label, store, find, and manage information
conveniently.

• Automated data integration among independent applica
tions, including multimedia compound documents (e.g.,
documents that contain text and olher data types such
as graphics).

• Simple data interchange between systems, including ex
change of integrated data items between work groups
connected by networks and electronic mail.

Conceptual Models
A key consideration throughout the NewWave develop

ment was how to present the system features so they would
be easy to understand and remember. As users explore a
system, they develop mental images or models of how the
system works. As a simple example, a new user will quickly
observe that when the mouse is moved on the table, a
cursor on the screen moves correspondingly. Consistent,
logical behavior helps the user build the correct model and
then reinforces it, making it easy for the user to predict what
will happen in other similar circumstances. However, even
the slightest inconsistent behavior of the system tends to
break down the models the user has constructed, often
leading to frustration and confusion.

To achieve this consistency, there should be a cohesive
conceptual model of how things work. This model must
be understood by the developers and presented clearly and
consistently to the users. If there is a close enough match,
patterning portions of a system's behavior after the real
world by using visual and operational metaphors can help
the behavior seem logical, or at least familiar-and hence
more rememberable.

Also, the apparent complexity of lhe system is directly
related 10 the number of differenl concepls and rules
needed to describe how things work. Thus, consistency is
important not only in doing the same things the same way
within the user interface, but also in treating similar things
similarly in the fundamental behavior of the components
of the system. As will be seen, an object management ar·
chitecture, together with an object-oriented user interface,
was chosen as the best way to provide a consistent approach
to information management.

The Object Model
To show how an object model addresses these problems,

we should first describe a few key characteristics of soft
ware objects. In general, a software object is a set of data,
plus lhe software required to manage the data and provide
access to it. An object can be small, such as a word or a
number, in which case the associated software is relatively
simple, or it can be more complex, such as an entire docu
ment (see Fig. 1). NewWave objects are typically complex,
corresponding to the kinds of data ordinarily associated
with traditional office application programs: complete
documents, spreadsheets, charts, drawings, and so on. In
essence, the software associated with a NewWave object
is an application program corresponding to typical office
applications. However, there are some key differences be
tween the way ordinary application programs and objects

behave.
The most noticeable characteristic of an object is that a

user never needs to know what program actually manages
the object. The user just asks to perform some operation
on an object, such as to see it, edit it, or print it, by using
standard commands. The object management facility
(OMF), which keeps track of all NewWave objects, knows
which application software is appropriate, and runs it auto
matically behind the scenes to do the work. This provides
the information orientation needed to remove the extra
slep of selecting and running the correct application. The
OMF is described in the article "The NewWave Object
Management Facility" on page 17.

Another key characteristic, not visible to the user, is that
processes behind each object are designed to communicate
with each other by sending and receiving messages. A stan
dard message protocol allows one object to negotiate with
another object to find out what operations the other object
supports (e.g., displaying, printing, or user editing), and
also to request the object to perform any of the operations
that it supports. This combination of negotiation plus ac
tion lets objects interact flexibly with each other in mean
ingful ways, providing an underlying mechanism for auto
mated data integration in the NewWave environment. In
particular, it lets one object send information to or perform
services for another object even though the objects may
have been designed without knowledge of each other. For
example, a chart object can get the data to be plotted from
a spreadsheet object, or a document can ask a graphics
object to display or print an illustration on its behalf. As
will be seen, the user does see this communication flexibil
ity indirectly, in that objects can easily be connected in
various combinations.

Linking the Objects
As noted above, the ability of objects to communicate

with each other, requesting and providing services and
information, provides a key form of data integration in the
NewWave environment. But to communicate, the objects
must somehow be connected to each other. To take advan
tage of the flexibility of the object model, the user should
be able to manage these connections easily among objects
that are ordinarily independent. In the NewWave environ
ment, these connections are accomplished by establishing
persistent links between objects. The links are persistent
in that they remain until explicitly broken, and like the
object·to-application linkages, they also are maintained by
the OMF.

NewWave Objects

Tools User Objects

Simple Containers Containers
Data Objects

Compound Simple

Terminal File Drawer Folders Documents Images
Printer Wastebasket Envelopes Spreadsheets Text Notes
Dictionary In Tray Charts Voice Notes

Drawings

Fig. 3. Categories of objects in the NewWave environment,
with examples.

AUGUST 1989 HEWLETI.PACKARD JOURNAL 11

Although there are a number of ways links could be
managed, a hierarchical structure of linked objects is used
as the starting point for the NewWave environment. The
NewWave Office, which is a special application that pro
vides access to the features of the NewWave environment,
forms the top of the hierarchy. with other objects descend
ing from it (see Fig. 2). Within a pair of linked objects. the
one that is closer to the top of the hierarchy is called the
parent and the lower one is the child. In general, the set
of all the objects below a given object might be called its
descendants. The only structural restriction imposed by
the OMF is thal there can be no loops. in the sense that no
object can be its own descendant.

Links between objects may be used simply to keep the
objects together; these are called simple links. Links can
also be used to let the child object provide data or services
to the parent object; these are called data links. Because a
data link in effect allows the parent to view a portion of
the child object, data links are also sometimes called views.
These provide for automatic updating of one object by

another, a facility sometimes referred to as a hot connect.

The Office Metaphor
Rather than requiring users to manipulate links directly,

which would have required us to display hierarchy dia
grams such as that shown in Fig. 2, the NewWave Office
provides an office metaphor for managing and using ob
jects. This metaphor is built around a containment model.
In this model. an object is connected to its parent. and thus
placed in the hierarchy. by putting it inside the parent
object. To exist, an object must be attached to a parent-or
in terms of the containment model, must be inside some
thing. The visual presentation reinforces this containment
model. Forexample, a folder window contains and displays
icons that represent the objects contained in the folder,
and a WYSIWYG document contains visual representations
of the contained figures.

Objects in the NewWave Office fall into two primary
categories: tools and user objects (see Fig. 3), Sometimes
the latter are simply called objects. Note that the tools in

= Het,,\,Iaue Office

Rction Edit Qbjects ~iew ~ettings Iask Help

~oictionalieS

Help

~
In Tray;..-----

!,lie", Iask.l!bjects

[]I
Charts

Edit

L
[]I
SafTlllie'..

(a)

=

(b)

New\,Iaue Office
J;dit Qbjects !,lie", ~ettings Iask Help

~ ~ ~ ~Waste Basket In Tray P,intels Agent

~
Help

[jJ~ ~ ~~ +,
JLI"le Report Ie: JlMle Sales DDS: SUMMARY

D\ ~
May R_I DDS: JUNSALES

Fig. 4. File system in the New
Wave environment. (a) The file
drawer contains the folder "Monthly
Reports." whose contents can be
displayed by opening it. (b) The
folder "Monthly Reports" contains
the report of interest. Note that
icons are used to represent ob
jects within the file system.

12 HEWLETT-PACKARO JOURNAL AUGUST 1989

User's View

Internal OMF Activities

Data File

IBObl

Program

Load JADATA.DOC

Run WOAOPAOC.EXE

Title

Simplified OMF Tables

Monthly Reports (Folder)

re: June Sales (Text Hote)
action Edit ~ettings lask Help

r;;j
~
June Rep<llt

action Edit Qbjects ~i.w lask

This ~onth's sales look great! My
congratulations to you and your team.

Joe,

in the NewWave Office (See Fig. 4).
From any level, the user can manipulate a lower-level

child object as a whole entity by manipulating the icon.
Items can be moved from one folder to another, or out of
the file drawer entirely, by moving the corresponding icon
from one window to another, The user simply points at
the icon using the mouse, presses a mouse button to pick

Examples
Let's consider three examples that illustrate the im

plementation of the hierarchical object model and the con
tainment model in the NewWave environment. The exam
ples illustrate information storage and two kinds of data
integration. Although in other systems these situations
have typically each been handled differently, they all fit
well into the hierarchical object model by using links in
three different ways, This common underlying implemen
tation makes it easy to provide a consistent user interface
and conceptual model.

Fig. 3 are singular because they are permanent parts of lhe
system that cannot be duplicated, mailed, or destroyed by
the user. However, they can be added or removed as part
of system installation and maintenance, and it is sometimes
possible to install two similar tools (e.g., two printers). User
objects, on the other hand, can be freely created, copied,
mailed and destroyed. The subcategories shown in Fig. 3
are less well-defined than the major categories, but still
prove useful for classifying similar objects' characteristics.
Simple Tools and Simple Data Objects. Objects that nom
inally cannot contain other objects fall into these categories.
However, some of the tools shown as simple can in fact
hold objects temporarily while processing them (e.g., the
printer object temporarily holds objects being formatted
for printing).
Container Objects. The primary purpose of containers is
to hold objects without actively using them. Since contain
ers make no demands on their contents, they usually can
contain any sort of user object. For example, the file drawer
can contain folders, and folders can contain documents,
but neither container does anything with its respective con
tents. But again there are exceptions; the in tray can only
contain envelopes, and the wastebasket acts on its contents
by destroying them when the user empties it.
Compound Data Objects. These are user objects that gener
ally have data of their own, but can also contain olher
objects for specific purposes, usually to supply data or
provide display services. Because they do place particular
demands on their contained objects, only certain combina
tions are meaningful and are allowed (e.g., a document
containing a spreadsheet is a valid combination, but a
spreadsheet containing a document is probably invalid).
Because the objects can negotiate with each other, the user
can be told immediately if an improper combination is
proposed.

Example 1
In a single-user workstation a hierarchical filing system

is a direct and natural way for the user to store things: The
obvious metaphor is a file drawer containing several hang
ing folders, each possibly containing other folders and vari
ous data items. This can be represented directly by the
hierarchical object structure. in which data objects are
linked to (contained by) folder objects, which are linked
(possibly through other folders) to the file drawer. Because
no information passes between these objects, they can be
connected by simple links. And because the folder displays
no data from the contained objects, an object within a folder
can be represented simply as an icon or a line of text, as

• • •

re: June Sales WOAOPAOC.EXE JADATA.DOC

---

Fig. 5. The OMFprovides the linkage between the information
the user wants to update (text file JRDATA.DOC in this example)
and the application (WORDPROC.EXE) associated with the
data. Double-clicking on the icon within the folder "Monthly
Reports" would cause the folder application to request the
OMF to open the corresponding object.

AUGUST 1989 HEWLETT-PACKARD JOURNAL 13

up the icon, drags it to the new location, and releases the
mouse button to let go. The OMF maintains the relation
ships between the file drawer, folders, and other objects
contained in them based on changes made by the user. All
the user needs to worry about is where the icons that rep·
resent the objects are displayed.

The user can also choose to open a contained object to
operate on it in detail, by pointing at the icon and double·
clicking (pressing the mouse button twice) as shown in
Fig. 4. The OMF instructs the application program as
sociated with the object to run, and provides the name of
the data file, The application program then creates a new
window and displays the contents of the open object for
the user to manipulate as desired (see Fig. 5). The represen-

tation in the parent object is greyed to show it is open.
When the user has finished, the window is closed, and the
object is once again shown only in its parent folder,

Example 2
A compound document also provides a natural hierarchy

in which the objects corresponding to the illustrations and
tables contained by the document are all attached to it by
a type of data link (view) called a visual link. These con
tained child objects are in fact responsible for displaying
and printing the information contained in the correspond
ing illustrations and tables. Therefore, as in the first exam
ple, because the child object is linked to its own software,
the user can double-click on the illustration to open the

Fig. 6. The process of opening a
figure object within a document
and editing it is ifIustrated using
some sample applications pro
vided to NewWave developers. (a)
Each child object is attached to
the parent (Layout abject catted
Text and Shapes) by a visual link.
(b) The child object's application
(HP Shape) is responsible for dis
playing the object and providing
the user interlace. (c) and (d) See
page 15.

~
Agert

=
~
In Tray

....------
HelJJWaue Office

He"'J'~aueo Office

This is theo Text Sample application which
runs under the Hew Waue Office enuironment.
The application is hooked to the API.
prouiding the ability to record and play back
a sequence of commands.

This is the Text
runs under the H

The application ~~~~~~~~~~~~~~~~..nprouiding the ab~

a sequence of comnands.

rm~2••;~~~.,~s
Qbjects Iask

=

=

(b)

(0)

action Edit Qbjects ~iew ~ettings Iask tlelp

action Edit Qbjects yiew ~ettings Iask Help

14 HEWLffi-PACKARO JOURNAL AUGUST 1989

corresponding child object, thus running the associated
application, and make changes to the illustration using the
application's user interface. This is illustrated in Fig. 6
using two of the sample applications provided to NewWave
developers, Layout and HP Shape. When the user closes
the child object, the application associated with the child
first updates the representation in the parent document
automatically.

Example 3
In addition to being used to provide a service as in exam

ple 2, a data link can also allow data to be passed from
one object to another for further processing. We call this a
data passing link. A typical data passing scenario might

have two spreadsheets linked together and passing data to
a third, the consolidation sheet (see Fig. 7). This third
spreadsheet combines the data, and is in turn linked into
a chart, which displays some values from the consolidation
spreadsheet graphically. Again, this can be described as a
hierarchical set of linked objects. Here, in contrast to the
document situation described in example 2, the child ob
jects actually pass data to the parent objects for further
processing through a data passing link. The parent may
use the data, which consists of numerical values in this
example. in calculations or for plotting the chart. And the
same access benefits apply here as well-the user can open
the child from the parent, make changes to it, and have
the changes reflected automatically back in the parent. Be-

fiction Edit Ubjects ~ie~ ~ettings rask Help

Fig. 6. (a) and (b) See page 14.
(c) The drawing is changed using
the editing facilities provided by
HP Shape. (d) The changed draw
ing back in the parent.

~
PrirtefS

~
lnTr~

ii-----r"!!!"'1

Hewt.Jaue Office

Het'IUaue Office

~ction fdit ~bject5 ra5k Help
This is the Text Sample application which
runs under the Hew Waue Office enuir~nment.

The application is hooked to the API.
prouiding the ability to record and pla~ back
a sequence of conmands.

This is the Text
runs under the H
The application
prouiding the ab~~~..aa~::::::~::""za...JI'
a sequence of conmands.

=

~
Waste Basket

=

=

(e)

(d)

fiction Edit Ubjects Miew ~ettings Iask Help

AUGUST 1989 HEWLETT·PACKARD JOURNAL 15

J..... _

Chart

Data Passing Link

Fig. 8. The spreadsheet is shared between the document
and the chart, ensuring that both show consistent data. All
the objects are also shared into the folder "Project" to aI/ow
direct access to each.

Sharing Objects
In one important respect the NewWave environment ex

tends beyond the capabilities implied by the containment
model. A single object in the real world can only be in one
place at a time. If a user wishes to use the same figure in
two related documents, or to file a document under multi
ple categories in a file drawer, multiple copies of the item
must be used. In the NewWave environment, an object can
be linked to more than one parent object-or in the New
Wave containment model, it can be contained in more than
one place at a time. The user can control this by using the
NewWave share command. On the surface share works like
the Microsoft Windows copy command, in that the user sees
the same data in the new location as in the old. The share
command differs in that there is actually only one copy of
the data. When changes are made to a shared object, the
changes show up in all the locations that share the object.
For example, the user may have a spreadsheet whose data
is used to create a chart, and which is also displayed di
rectly in a document along with the chart (document in
Fig. 8). The user can also share the items into a folder, for
example to allow direct access to the spreadsheet without
going through the chart (folder in Fig. 8). Any change to
the spreadsheet. no matter how it is accessed, will automat
ically be reflected in the chart and the document. This
greatly enhances the user's flexibility in managing the ob
jects and their connections.

Data
Passing
links

Consolidation Spreadsheet

Month East West Total
Jan 100 9S '9S
Feb '50 '00 250
Mar '45 85 230
Ap, 245 '07 352
May 200 200 400

cause the user starts from the initial representation of the
data in the parent, it may not even seem like data transfer
at all, but just the natural consequence of changing some
thing and seeing the result.

In all these cases, objects can activate their applications
automatically and perform standard services. Thus, the ap
plication (object) receiving the information-for example,
the charting application--does not need to know anything
specific about the other application program, or the file
format it uses, or even the name of the file where the data
is stored. Instead, it simply uses the appropriate standard
ized data interchange protocoL The immediate benefit to
the user is that many more combinations of objects can be
linked this way than would he possihle in a traditional file
hased scheme.

Because the links are persistent, the user never needs to
worry about whether the components of the compound
ohjects will he there. The OMF ensures that each one will
continue to exist and be accessible as long as some parent
ohject has a link to it. And because the links are managed
centrally by the OMF, the user can copy the entire structure
or mail it to another workstation simply by copying or
mailing the top-level object, which contains a1l the others.
The OMF, together with the objects themselves, ensures
that each component is copied and placed in its proper
place in the new object.

Spreadsheet 1

Month East Dlsl.1
Jan. 100 19
Feb. 150 26
Mar. 145 33
Apr. 245 40
May 300 33

Fig. 7. Two spreadsheets are passing data to a third, and
the third, a consolidation sheet, is passing data to a charting
program that displays the data graphically. These objects
are linked together by the OMF using data passing links.

User Interface Specifications
As noted earlier, the NewWave environment is designed

to work within the Microsoft Windows environment. In
addition to the architectural support features already men
tioned, Microsoft Windows defines a user interface style,
described in an application designer's style guide. This
style guide sets the standards for using many of Microsoft
Windows' features, such as menus, dialog boxes, and the
data transfer clipboard.

The NewWave user interface specifications, described

16 HE'Nlm·PACKAAO JOURNAl AUGUST 1989

for software developers in the NewWave User Interface
Design Rules document, were developed as consistent ex
tensions to th.is basic definition. The share command de
scribed above is an example because it has many charac
teristics in common with the existing copy command, and
it is presented to the user in the same way. Other areas in
which the Microsoft Windows style guide was extended
include a more fully specified set of editing and cursor
motion commands, a more comprehensive specification
for dialog box use, and the requirement that applications
provide user help in a consistent way.

In a few areas there are conflicts, and the NewWave and
Microsoft Windows standards differ. The use of an object
model rather than the traditional applications and files
model led to most of these differences. But the result is a
standard that recognizes that users may need to use oon
NewWave applications under Microsoft Windows concur
rently with using the NewWave environment. The standard
attempts to minimize the differences.

Conclusion
The NewWaveenvi.ronment's object technology proyides

a powerful, flexible and extensible data integration and
management tool, allowing new applications to become
full participants in the NewWave family without requiring
changes to any other NewWave applications. This informa
tion orientation provided the opportunity to simplify many
aspects of the system's behavior, and to make the user

interface more regular. Together with a consistent set of
user interface design rules, these features truly allow New
Wave users to focus on their own tasks, rather than being
distracted by system-imposed stumbling blocks.

AcknoWledgments
Much of the original work that led to the NewWave en

vironment, including the initial recommendation to use an
object model, came from an earlier project at the Office
Productivity Division in Pinewood, England, and particu
larly from Peter Williams. Many hours were also contrib
uted by members of the various design review committees
at the Personal Software Division in Santa Clara, California,
developing and refining the object model and the specific
design rules. These included Bill Crow, Andy Dysart, Paul
Mernyk, Jeannine Sartori, Lynn Rosener, Ross Roesner,
Wanda Shearer, Doug Smith, Lisa Towell, Bob Vallone,
and Jon Weiner.

References
1. Hewlett-Packard Journal, Vol. 35, no. 8, August 1984, entire
issue.
2. I. J. Fuller. "Electronic Mail for the Interactive Ofrice," Hewlett·
Packard Journal, Vol. 34, no. 2, February 1983.
3. A. P. Hamilton, "A Human-Engineered Small Business Com·
puter," Hewlett-Packard Journal, Vol. 30, no. 4, April 1979.
4. K. A. Fox, M. P. Pasturel, and P. S. Showman, "A Human
Interface for Automatic Measurement Systems," HewJelt-Packard
Journal, Vol. 23, no. B, April 1972.

The NewWave Object Management Facility
An object-based file system is the foundation of the
New Wave environment. This paper describes the concepts
and features of this system.

by John A. Dysart

T
HE NEWWAVE OBJECT MANAGEMENT FACILITY
(OMF) provides the HP NewWave environment with
a sophisticated object-based file system. The objec

tives forOMF can be translated into the following features:
• Focus on tasks. Our initial designs of a user interface for

the NewWave environment clearly indicated that an bb·
ject model could help solve many problems. An object
model allows a user to spend more time thinking about
the task to be done and less about how to get the computer
to do it. The OMF helps by providing a file system for
storing objects.

• Compound multimedia objects. The OMF is needed to
keep track of all the relationships between objects. This
knowledge can be used to manage compound objects as
an integrated whole.

• Data sharing. OMF supports automatic data transfer so

that new data can be entered in one place and then
propagated to all the other places it is used.

• Code sharing. OMF helps the application designer by
making it easier to write and use reusable code. The
NewWave environment uses this ability to provide many
system services that can be plugged into applications.

• Evolution versus revolution. Use of the OMF does not
require developing applications in a completely different
way. Current development languages and tools can be
used. OMF also runs on the current generation of
hardware and software platforms. Most important, the
basic OMF features scale very well into the more sophis
ticated development environments that may exist in the
future.

AUGUST 1989 HEWLETT-PACKARD JOURNAl 17

among a number of internal subdirectories that are created
and maintained for this purpose.

All NewWave files, data and executables, are kept in
MS-DOS directories separate from the user's other files.
This allows the same storage volume to be used for other
purposes, and makes it easier to archive and restore the
NewWave portion of the file system.

Links
A key feature of the OMF is the ability to link objects

together into compound objects. A link is a directional
relationship from one object [called the parent) to another
object [called the child). All objects have at least one parent,
and can have any number of children. The one restriction
is that the OMF will not allow an object to become its own
descendant.

There are two kinds of links: simple and data. Simple
links are usually used to support containment. For exam
ple, a folder object has a simple link to each object that it
contains. Simple links are used to implement a hierarchical
filing system, with the additional capability of supporting
shared objects. Thus a single object can be contained in
any number of folders, and be equally accessible from each.
For example, a spreadsheet named "Western Division Sales
Data" could be filed in a folder named "Western Data" and

Properties
Properties are chunks of data used to store descriptive

information about objects and classes-for instance, the
namB of a class of objects, or the last time an object was
modified. Fig. 2 illustrates some typical object and class
properties.

Each object has a list of properties associated with it. An
application can read or write the data associated with a
property by specifying the object and the name of the prop
erty. There is also a property list associated with each in
stalled class. The properties in a class property list are
common to all objects of that class.

Property names can either be strings, such as MyProperty,

or numbers. Numeric names offer the advantage of being
more efficient to access and store.

A number of properties, such as the object title, have
been standardized so that they can be used by all applica
tions. Some of these standard properties are listed below.
The OMF also allows application developers to define their
own private properties.

PROP_LASTWRITER
PROP-.MODIFIED
PROP_CLASSNAME
PROP_TEXTID

PROP_TITLE
PROP_COMMENTS
PROP_CREATOR
PROP_CREATED

Charting
Class

OMF Concepts

Objects

Objects and Classes
A NewWave user uses objects for the storage of data.

Examples of objects include folders, documents, spread
sheets, and charts. Each object is a set of data files joined
with an application program that is capable of processing
those files. Many different objects with different data files
can be bound to the same application program. Objects
that share an application program in this way afB of the
same class [see Fig. 1).

New classes are installed into the OMF with an installa
tion script that is written by the application developer.
This script contains all the information the OMF need~to

create and use objects of the new class. A user only needs
to know the name of the scri pt file, and the rest of the
process is automatic.

There are two basic kinds of objects: global and user.
Global objects are used to represent fixed entities in the
system, such as a printer or wastebasket. Global objects
are installed with the system and cannot be copied or de
stroyed by the user. Global objects can be referenced by
any object in the system, and are often used to provide
some common service to the other objects. Global objects
that afe visible to the user are called tools. User objects afe
objects created by the user to organize and contain data.
User objects can be copied, moved, and destroyed by the
user.

Some object·based systems allow objects to be used at a
very fine level of granularity-for example, a separate ob
ject for eacb cbaracter of a document. In the OMF design,
we took a more pragmatic approach and decided that ob
jects should be used to represent larger entities, such as
whole charts and reports. This approach allows applica
tions to be programmed more conventionally, and is less
demanding of hardware and software resources. OMF pro
vides a very rich integration between these larger objects.

The data files associated with an object are just ordinary
files in the MS-DOS~ file system. The names of these files
are generated automatically by the OMF and are not entered
by or displayed to the user at any time. To optimize perfor
mance, the OMF automatically distributes the data files

Objects_~I
,,' ,

Spreadsheet
Class

Data

PROP TITLE Sales Dala
PROP SIZE 768 Cells

Application

PROP_CLASSNAME HPSPREAD
PROP_TEXT10 Spreadshnt

)
Object
Properties

)
Class
Properties

Fig. 1. Objects and classes. Fig. 2. Properties.

18HEWLrn-PACKARO JQUANAlAUGUST 1989

also in another folder named "Sales Data."
Data links, which are also called views, are a more sophis

ticated kind of Ii ok. Data links are just like simple links
except that the child object can automatically transfer data
to the parent object each time oew data is available. If a
view is simply displayed as an illustration in the parent
object, the view is a visual view. For example, figures in
a word processing object would be included using visual
views. In a visual view, the parent does not get data from
the child and thea execute its own code to display the
object, but simply tells the child to display the requested
portion of the display. Alternatively, if data values are
passed through the view, it is called a data passing view.
For example, when a spreadsheet object gets data from
another spreadsheet it is using a data passing view. Views
are described in more detail later in this article.

Since the OMF knows about all the links in the system,
it can manipulate a compound object as a whole when it
is copied, mailed, or destroyed. Users do not need to re
member and manipulate each component of the object
separately.

Each link has a reference name that is a number assigned
by the parent object to the link to identify a particular
child. Parent objects use these reference names in their
own data files to refer to their children. The reason for this
is apparent when you consider what happens when a com
pound object is copied. By default, when a parent object
is copied, the descendants of the parent object are copied
as well (see Fig. 3). The copy of the parent object will
expect to use the same reference name to refer to the copy
of the child object that the original parent used to refer to
the original child. Reference names provide the indirection
necessary to make this possible. It is possible to override
this default behavior when parent objects are copied. If a
child object has a property named PROP_PUBLIC, when one
of its parents is copied, the copy of the parent will be given
a link to the public child, rather than to a copy of the child
(see Fig. 4).

Messages and Methods
The OMF allows objects to communicate with each other

using messages. For example, parent objects use messages
to cause their children to display or provide data. Most
messages are defined to work with any kind of object, so
applications are isolated from having to know exactly the
kind of object receiving the message. This allows new kinds
of objects to be integrated into the system without having

to modify any existing applications.
The code that an object executes when it receives a mes

sage is called a method. Sayiog that an object supports the
X method simply means that it has code to process the X
message. Sending a message to an object is similar to di
rectly calling the method code. The distinction is that the
message is generic; it can be sent to any kind of object
without changing the code in the sending application. But
the actual code executed when the message is sent is differ
ent depending on what kind of object receives the message.
For example, when a message to print is sent to a word
processing object the word processor code for printing a
document is executed. And if that very same message is
sent to a spreadsheet object, the spreadsheet application
code for printing a spreadsheet is executed.

Applications send messages by calling the function OMF_
Send. The sender specifies the reference name of the desti
nation object, the message type, and any additional param
eters the message may have. The OMF directs the message
to the appropriate object, which receives the message as a
MicrosoftiAI Windows message. The receiver performs the
requested function and returns a status value. The OMF
then returns this status value as the return value of OMF_
Send. This process makes messages synchronous, meaning
that the sender does not proceed until the destination has
processed the request (see Fig. 5).

Life Cycle of An Object
There are six stages in the life of an object. Fig. 6 shows

how an object moves between these stages in its life cycle.
The stages are: .
• Creation. Objects are often created by copying a template

object of the desired type. Objects are also created when
they are received as data in an electronic mail message,
or when a temporary object is created to perform some
task. The object that calls the OMF to create lhe new
object becomes that object's parent.

• Activation. An object is activated whenever some other
object tells the OMF that it wants to send a message to
it. The OMF starts a new process running the object's
application, and passes to it the names of the object's
data files. While aclive, an object generally is in a loop,
receiving and processing messages sent from Microsoft
Windows, the OMF, other objects, and other sources.

• Opening. Activation of an object is invisible to a user.
However, when a user wants to edit an object, that object
needs to present an interactive interface to the user. This

Reference
Name =17

Parent
Object

link

Child
Object

Before After Copying Object A Before

Parent
Object

Link

Child
Object

After Copying Object A

Fig. 3. Copying a compound object. Fig. 4. Copying a public object.

AUGUST 1989 HEWLETT·PACKARO JOURNAL 19

OMF Views

Destination Specification
The destination specification is a data structure that is

maintained by the parent object to keep track of how it is
using the linked data from the child. For example, for each
figure in a word processing ohject there is a destination
specification that provides information such as where in
the document the figure appears and how large it is. Usu
ally, the parent also keeps the reference name of the view

Perhaps the single most important feature of the OMF is
the support of automatic data transfer through the use of
views. A view is a special kind of link for data transfer
from the child object to the parent. Each time the child is
changed, any parent objects that depend on the linked data
are automatically updated. Each view has associated with
it a destination specification, a source specification, a data
10, a view class, and an optional snapshot object.

•

Source Specification
The source specification is a data structure that is main

tained by the child object to keep track of a part of itself
that is being transferred through a view. Forexample, when
two spreadsheets are linked together, the child maintains
a source specification that tells it what range of its cells
are. linked to a parent. Like destination specifications, the
OMF does nothing to maintain source specifications.

Data 10
The data ID is a number that the child object gives the

OMF to identify a particular range of linked data. The child
object must be able to map from a data 10 to a source
specification, and vice versa. A number of different views
from different parents may all share the same data ID and
source specification if they all use the same range of linked
data.

The OMF keeps track of which data ID is associated with
each view in a data structure called the OMF view specifi
cation. This allows the parent and child object to converse
in the terms that are most natural for them, with the OMF
providing the translation between them. For example,
when any linked data is changed by the user, the child
object tells the OMF the data ID of the changed data. The
OMF then finds all of the parents with views of the child
associated with the data ID of the changed data. The OMF
notifies each of these parents of the change by sending
them a DATA-CHANGE message containing the reference
name of the view as a parameter. Fig. 7 illustrates the re
lationship between destination specifications, source speci
fications, and data IDs.

in the destination specification so that it can map from the
reference name to information about how the view is used.
The OMF does nothing to maintain destination specifica
tions.

Object a

Executes to process
message X, and then
returns value V.

Object A

Executes until it sends message
X to lis child with reference
name of 17

w =OMF _Send (17, X, !H',.m,ter.) []
L' -+ Receives the message as a

... call to its window procedure.

[

OMF "'''mIne. 'hal ,.f"o"o]
name 17 refers to object a, so
it passes control to B.

Object A does not execute until
the message has been processed.

[

OMF returns control to object A,] Relum (V)
WIth V as the return value of -4-41----"
OMf_Send.

is called opening. Generally, a parent object is responsi
ble for providing a command in its user interface to open
each of its children. When the user gives this command,
the parent tells the OMF to activate the child, and then
sends an Open message to it. When the child receives the
Open message it presents its user interface on the display
screen, and becomes interactive with the user.

• Closing. When the user finishes editing an object, the
object's user interface is given a Close command. The
object tells the OMF that it is closing, and then removes
its user interface from the display screen.

• Termination. An object remains active as long as it is
open or is being held active by some other object. The
OMF terminates an object as soon as both of these con
ditions become false. OMF sends the object a Terminate
message which lets the object save to disc any state in
formation it has in RAM. Then the OMF terminates the
process that was started when the object was activated.

• Destruction. When an object only has one parent and
that parent deletes its link to the object, the OMF destroys
the object. Destruction reclaims all the disc space that
was allocated to the object's data files and properties.

Fig. 5. Control flow of OMF_Send. Fig. 6. Life cycle of an object.

20 HEWlrn-PACKARD JOURNAL AUGUST 1989

Snapshots
A snapshot is an object that serves as an intelligent buf

fer that allows the linked data from a child object to be
accessed without activating the child. This results in better
performance and use of resources. When a view is ini
tialized, the child object tells the OMF whether or not to
create a snapshot for the view, and if so, what kind of
snapshot is desired. The child object then sends messages
containing the linked data information to the snapshot.
When the parent object sends a view message to the view,
the OMF routes the message to the snapshot. The child
object remains inactive. Fig. 8 illustrates how a snapshot
is associated with a view.

One reason why snapshots can improve performance is
that they are implemented differently from normal objects.
Normal objects have applications associated with them,
but snapshots have dynamic libraries associated with them.
Like an application, a dynamic library is a separate execut-

View With Snapshot

lIB(b)

View Without Snapshot

la>

able file. It can be loaded and linked to while the system
is running and unloaded when it is no longer needed. When
a dynamic library is used to implement a snapshot, one
procedure in the library is designated the message proce·
dure. Each time a message is sent to the snapshot, the OMF
calls the snapshot's message procedure. The message pro
cedure determines the type of the message and processes
it accordingly.

Unlike an application, there is no process or task as
sociated with a dynamic library; its code only executes
when it is called from an application. Dynamic libraries
do not require that a stack be allocated for them because
they always use the stack of the application calling them.
In addition, since sending a message results in a call to the
message procedure in the library, the overhead of a task
switch through the operating system is avoided.

A second reason why snapshots can improve perfor
mance is that they only need to manage the data that is
linked through the view. This data may be a subset of the
child object's full data set (e.g., a small range of cells from
a large spreadsheet), or it can be in a simpler form (e.g.,
just values instead of formulas).

There is some additional overhead associated with a

OMF View Specification

Destination SpecificatIon

Parent Object: A
Child Object: B
Reference Name: 17
Data 10: 6

View

Parent [
Object

Child [
Object

View Classes, Methods, and Messages
Each view has a view class associated with it which is

specified by the child object when the view is initialized.
The view class determines the kinds of data transfer oper
ations the parent object can request the view to perform.
Each of these operations is called a view method and the
parent requests them by sending a view message to the
view.

If a child object supports the same set of view methods
for all ranges of linked data. it only needs to use a single
view class. An example of an object that needs more than
one view class is a data analysis tool that can show both
tabular and graphical representations of data. When a range
of tabular data in this object is linked, a view class that
supports transfer of data as text strings is used. However
when graphical data is linked, the object uses a view class
that supports transfer of dala as a vector list.

View classes, view methods, and view messages are anal~

agous to the classes, methods, and messages that were de
scribed earlier in this article, but are not exactly the same.
The parent object uses different OMF functions to activate
and send messages to a view than to activate and send
messages to the child object of the view. The messages may
ultimately be routed to the child, but they may instead be
routed to a different object called a snapshot. Snapshots
are described below. The indirection provided by view
messages allows the presence or absence of a snapshot to
be hidden from the parent object.

Fig. 7. Destination, source, and view specifications. Fig. 8. View with and without a Snapshot.

AUGUST 1989 HEWLETI-PACKARD JOURNAL 21

Incoming Message

Fig. 9. How view messages are routed.

Other OMF Functions

Clipboard Support
Microsoft Windows provides a clipboard for data transfer

which can hold any data that is in memory. The OMF
enhances this clipboard by providing an invisible global
object called the OMF clipboard. This global object serves
as a temporary parent for any objects that are placed on
the Windows clipboard. A temporary parent is needed so
the object on the clipboard will have at least one parent
and will not be destroyed while it is on the clipboard.

The OMF also provides a facility for storing large
amounts of data, that is, more than can fit into memory,
in temporary files that are known to belong to the clipboard.
OMF can then take care of deleting these temporary files
when the clipboard is cleared or used for some other pur
pose.

OMF provides functions that applications can call to put
objects on the clipboard, remove them from the clipboard,
and empty the clipboard.

Serialization
The OMF provides the ability to serialize compound ob

jects. Serialization takes an object that may have many data
files, plus its descendents and their data files, and packages
all this data into a monolithic stream of data called a serial
file. This serial file can be easily copied onto a flexible
disc or transmitted through the mail network. On another
NewWave system, the serial file can be deserialized. This
process unpackages all of the objects and data in the file
and produces a compound object that is a copy of the
original object.

In general, the OMF can handle the serialization and
deserialization of objects without any help from the objects
themselves. However, in certain cases, objects may want
to transform their data in some way when it is being copied
to a serial file. If an object being serialized supports a
method called SERIALIZE, tbe OMF will activate the object
and send it a SERIALIZE message. rather than serialize the
object's data files itself. The object then copies its trans
formed data into the serial file using an OMF function.
When the resulting serial file is deserialized, the OMF
creates a new object of the appropriate class, activates it,

Event Notification
Objects can tell the OMF that they wish to be notified

when some specific event occurs. OMF provides this notifi
cation by sending a message to the object. The following
notifications are possible:
• A property change message is sent when an object's own

properties or the properties of one of its children are
changed. For example, it is necessary to notify all open
folders containing a shared object when the title of the
shared object is changed.

• A child opening or closing message is sent when a child
oCan object is opened or closed. It provides visual feed
back concerning which object is being opened or closed.

• A copy or destroy message is used when an object is
copied or destroyed.

• A configuration change message is sent when some sys
tem-wide configuration value is changed.

• A shutdown message is sent whenever the user tries to
exit the NewWave environment.

Send Incoming Message
to Child Object

Yes

No

No

>N..O,,-_. ERROR

Send Incoming Message
to Snapshot

No

The OMF provides a number of other functions to appli
cation developers, including event notification, clipboard
support, serialization, and start-up and shutdown control.

snapshot. Each time the linked data is changed in the child
object, the child must pass the new data to the snapshot
before the snapshot can supply that data to a parent. Snap
shots also take up additional disc space. Each application
designer must carefully consider whether using snapshots
will improve the performance of a particular application.

Routing View Messages
When a message is sent to a view, the OMF considers a

number of factors in determining where the message should
be routed. These include:
• Is there a snapshot?
• Can the snapshot handle this message?
• Is the snapshot's data up-to-date?
• Has the child object elected to process all messages?

The flowchart in Fig. 9 illustrates how the OMF considers
these factors when routing a view message.

22 HEWlETT-PACKARD JOURNAl AUGUST 1989

and sends it a DESERIALIZE message. The object reads the
transformed data from the serial file using an OMF func·
tion, and creates its normal data files.

Start-up and Shutdown
The OMF is the first process started when the user runs

the NewWave environment. The OMF locates and opens
the system files, which are a data base of all the classes,
objects, links, properties, and so on. Once it has initialized
itself, the NewWave environment activates and opens a
special global object called the NewWave Office. The New
Wave Office provides a user interface for much of the
OMF's functionality. See the following article, "The New
Wave Office," for more detail. The OMF itself is never
visible to a user of the NewWave environment.

When the user closes the NewWave Office, a function
in the OMF is called to shut the system down. Any objects
that are active when the system is shut down can request
that the OMF restart them when the system is restarted.
The next time the OMF is started, it will activate and open
those objects after activating and opening the NewWave
Office. The benefit of this to the user is that the NewWave

The NewWave Office

environment can be exited and reentered without losing
track of current status.

Conclusion
The NewWave OMF provides the foundation of the ew

Wave environment. It implements a sophisticated object
based file system that can be accessed by any NewWave
application. The OMF supports a powerful mechanism for
building compound. multimedia objects with automatic
transfer of data when changes are made. Although it does
not have any user interface itself, it is in some ways the
most important part of the NewWave user interface.

Acknowledgments
The first prototype of the OMF was developed at the

Office Productivity Division in Pinewood, England by Brad
Murdoch, John Senior, and Brian McBride. Much of their
initial work stin stands. Chuck Whelan deserves special
acknowledgement for his key role in the design and im
plementation of many parts of the OMF. Thanks also to
Ian Fuller and Bill Crow for their effective management of
the OMF's development.

The NewWave Office is the user interface for the NewWave
environment. It provides the tools and methods to perform
tasks found in a regular office environment.

by Beatrice Lam, Scott A. Hanson, and Anthony J. Day

T
HE NEWWAVE OFFICE IS THE FOCAL POINT for
the user's interaction with the NewWave environ
ment, and it is the first NewWave object the user

sees when the NewWave environment is initialized. It re
mains active throughout the entire session until the user
terminates the NewWave environment. It incorporates
many special features to reinforce the office concept in the
minds of users. These features include iconic representa
tion of tools found in a real office. such as a file drawer, a
wastepaper basket, a printer, and so on (see Fig. 1). The
diagnostic tool shown in Fig. 1 is not a typical tool fqund
in an office. but is a tool that enables NewWave application
developers to interface to the NewWaveobject management
facility (OMF).

It is easy to work with these tools using a mouse to
manipulate the icons that represent the tools. The tools are
NewWave objects, as explained in the article on page 9.
The user can either open the tool and move other NewWave
objects directly into the opened tool window, or drop other
objects on the icon representing the tool. Incoming objects
are handled by each tool according to the function of the
tool. The file drawer and the wastebasket accept the incom-

ing object and display its representation in their windows.
The printer, on the other hand, asks the object to print
itself on the selected printer device. The diagnostic tool
accepts an incoming object into its window and displays
the OMF information pertaining to that object. In addition
to viewing objects as icons, the user has the option to switch
into the list view. In the list view, the title, type, and modi
fied date are displayed, and the objects are sorted by one
of these parameters (see Fig. 2).

This article describes the main features of the NewWave
Office and shows how these features interact with the other
NewWave components shown in Fig. 3.

NewWave Windows
The window that represents the NewWave Office is de

signed to remain as a background window while NewWave
objects are open as pop-up windows over it. Activating an
object window brings it to the top. overlapping other win
dows on the display (see Fig. 4). Since the office tools are
always available, the user can easily manipulate an object
from its window onto a tool at any time (e.g., moving a
document to the wastebasket from a folder's window].

AUGUST 19B5 HEWlETI-PACKARO JOURNAL 23

Fig. 1. NewWave Office window.

Qiew ~ettings Iask Help

[]
Budget Folder

~

Another distinct feature of the Office window is its
maximized window. When the NewWave Office window
is maximized, all object windows remain in the same po·
sWons while the Office window occupies the full screen
in the background. When an object window is maximized,
the object is brought to full screen and all other windows
fall behind. The Office window can also be minimized;
this hides all object windows and turns the whole ew
Wave Office into an icon.

To achieve these special display features, the NewWave
Office uses functions from the library HPNWLlB.EXE. These
functions are:
• NW_CreateWindow. This function creates an object's main

window and binds the object window as a child to the
NewWave Office window.

• NW_Minimize and NW_Maximize. These functions perform
the window maximize and minimize operations de
scribed above.

• NW_Aeslore. This function returns a window from a
maximized or minimized state to its original size.
The delault windows lor the lile drawer, the wastebasket,

and folders are positioned in the NewWave Office window
as shown in Fig. 4. The first window is positioned about
hallway down the screen and partway in lrom the left, and
the rest are staggered down and to the right 01 the other
delault windows. By using a defined pararoeter to the
NW_CreateWindow function. NewWave applications can
create default windows for themselves.

Container Objects
The NewWave Office is used as a temporary work space

to store objects the user is currently working on. The file
drawer and folders provide the NewWave user with a con
venient hierarchical filing and retrieval system to manage
information. The wastebasket is used for discarding objects
the user no longer needs, and a user-defined maximum
number of objects can be set to trigger automatic emptying
of the wastebasket when it opens. These four objects are

called container objects because they are capable of con
taining other objects (e.g., the file drawer contains lolders
and lolders contain documents, and so on). These objects
display and manage their child objects in identical ways.
The menu for each of these object types is customized to
the particular needs of that object. For instance, the waste
basket's Edit menu has the Delete command, whereas all
other object types use the Throw Away command.

The NewWave Olfice, the lile drawer, the wastebasket,
and folders share the same executable code. Every invoca
tion of the same code is an instance, a feature provided by
the Microsoftl!l Windows environment. For efficiency, only
a single copy 01 the code is in memory, even though there
are multiple instances running. The code is made up of
multiple code segments, and only those segments in use
are kept in memory. As other segments are needed, they
are read in from disc. Each instance has its own data seg
ment, which includes global variables, the stack, and a
local heap.

When the first instance of the NewWave Office starts up,
it computes certain environment variables and stores the
results into some global variables. Also, several text lonts,
paintbrushes, cursors, and other items are created and
stored. Each succeeding instance needs to use these same
items, and so copies them to its own data segment at start
up time instead of recomputing and recreating them itself.

When the user runs another instance from the NewWave
Ollice, such as the file drawer or lolder, that object must
open up to the same state it was in when last closed. This
includes the object's window size and position, whether
it was in iconic view or list view, where the window was
scrolled to, and more. To do this, most 01 the needed inlor
mation is kept in a data file associated with the object. The
information is read lrom the data file and placed in lbe
appropriate global variables lor use when creating and dis
playing the instance's window.

The container must also determine the list of children
contained within it (e.g., the list of folders in the file

24 HEWlETT·PACKARO JOURNAl AUGUST 1989

action .Edit Qbjects ,!liew ,S.ettings Iask Help

~ tn ~ ~ .f
Fie Drawer \IIlIste 8lIsket Ago,; Pri1l.en

0_
~tiffi

: " .
action fdit .o.bjects ,!liew Iask Help
Title Tvpe Dale ~
August RepOlI layoul 7/26/89 • 39PX
Conlacll Folde. 9/29/88 10 40AK
Current Projects Foldef 8/31/88 10 40AII
HP Journal Article Folde. 2/06/89 1 52PX
Monthly Reports Folder 6/30/88 • 16AX
Project Stalus HP Te.t 4/26/89 • 13PI!I
Sales Chart HPShape 4/26/89 • 12PI!I
Sales Info Folder 2/13/89 11 OOlll •

Fig. 2. A list view representation
of a folder.

drawer). This information is also kept in the data file and
is read in and placed in data structures in globally allocated
memory. The children information, which is kept in the
data file, is not always up to date. While the container was
closed, new children may have been added, titles may have
changed, children may have been opened or closed, and
so on. The first situation might have occurred as a result
of the OMF..AddChildTo function (discussed on page 30), and
the latter two would have occurred because the container
is shared with other objects. To ensure that the data in the
data file is correct when the child object is opened, the
latest list of children that belong to the container, and in
formation about them, are obtained from the OMF. The
information given by the OMF always overrides the data
file, and when a container is opened a check is made with
the OMF before finalizing the data structure. The OMF
function OMF_EnumChildren is used to enumerate a con
tainer's children and to obtain the information to update
its data structure. During enumeration, the OMF sends the
container ENUM_OBJECT messages for each child belonging
to it. In processing the message, if the child is not in the
data file, it is added to the data structure. For new child
objects, the information obtained from the OMF includes
the object's title, its icon handle, * its active state, and the
date and time when the object was last opened. All of this
information is added to the data structure.

To optimize enumeration, an object property called
PROP_FASTPROPS allows retrieval of numerous pieces of
information about an object in only one reading. PROP_
FASTPROPS includes the last-modified date, the last writer
name, tool display information (PROP_SYSTEM described
below), and the object's title string.

The NewWave Office must also enumerate all of the tools.
This is accomplished through the OMF function OMF_
EnumGlobalObjects. As with the data objects, the tools that

"A handle is a pomter into a table 01 pointers. The pointers in lhe table point 10 data Of

code segments scallered throughout memory that are allocated 10 the object that owns
the handle. Thus. the objecl'S icon handle points to the location in the table (handie table)
that points 10 the memory location where the object's icon is stored.

are visible in the NewWave Office are added into the data
structure using the information in PROP_FASTPROPS. Using
the Manage Tools dialog box, which is available from the
Settings menu item, the user can select which tools to display
in the NewWave Office window and which are to be hid
den. This status is stored in the object's PROP_SYSTEM prop
erty: 0 means never display it (e.g., the OMF clipboard).
1 means don't display it now, and 2 means display it. If
the tool is never to be displayed and is in the data file, it
is removed from the data structure. There is no need to
waste space storing information on an object that is not
displayed.

The data structure that holds all this information is com
posed of two parts. The first part is an array of structures,
one for each child in the container. This child array holds
the OMF object name for each child, its location in the
container, a flags word that indicates whether the object
is selected or opened and other status, the pixel width of
its title on the screen, the handle to the object's icon, the
date and time of its last change, and indexes to its title and
class strings. The second part of the data structure is the
string lists. They hold the title and class strings for each
object. The strings are stored end-ta-end and each is pre
ceded by a length word and terminated by a NULL byte.
This minimizes the overhead needed per string. These
!;tring!; can be accessed quickly because each child's struc
ture in the child array contains offsets into these string
lists for its title and class strings. One optimization per
formed is not to store duplicate strings in the class string
list. If a newly added object's class string is already in the
list, the object's child array structure references the one
already in the list. This works out well because a container
will usually contain many similar objects, that is, objects
of the same class.

Office Functions
The NewWave Office not only provides the central user

interface for object management, but also works in conjunc-

AUGUST 1989 HEWlETI·PACKARO JOURNAL 25

Document
Folder Layout Spreadsheet Other

Template Template Template Templates

•••

Tools
and

Objects Objects Objects Objects

Fig. 3. The architecture of the
NewWave Office and the other
components it uses in the New
Wave environment .

tion with the OMF to provide essential architectural com
ponents for the interaction with NewWave applications,
The close cooperation between the NewWave Office and
the OMF is achieved with the use of various OMF function
calls, and the interaction with NewWave objects is done
using predefined OMF methods. A few examples of these
special interactions will be given in the following sections.

The Create Process
The user will frequently want to create a new object,

which may be in the form of a new document, a new spread
sheet, a new pie chart, a new data base query result table,
or some other typical office object. There were two require
ments for the user interface that displays the object types
available to be created.
• The interface had to allow the user to invoke object cre

ation facilities from the NewWave Office window and
from tools such as the file drawer, from containers such
as folders, and from compound data objects such as a
compound document.

• The interface had to show the user only those objects
that can be created in the domain in which the user is
working, For example, when the create process is in
voked inside a compound document object, a folder ob
ject cannot be created,
The OMF maintains a list of all types of objects in the

user's NewWave environment. This list represents a set of
empty template objects and class information such as
which methods a class of objects supports. Object templates
are objects that are frequently used (e.g., form letters, ex
pense reports, distribution lists, etc.), To manage these
template objects from within the NewWave Office and
other objects, and to provide the features mentioned above,
a tool called the creator was developed. The creator is a
global NewWave object of type tool. Its object creation
facilities are made available to the user by selection of the
Create a New... command in the Objects menu.

The creator has the only reference to all the template
data objects installed in a NewWave environment. The
creator's global OMF reference name is known throughout

26 HEWLm-PACKARD JOURNAL AUGUST 1989

Fig, 4, Object windows overlap
ping one another.

the system and any application can establish communica
tion with it by simply specifying that reference name. De
veloping the creator as a distinct NewWave object provides
all of the benefits of objects in the NewWave environment.
Its protocol is defined and established so that other objects
can communicate with it. The process of creating a new
object is simply a matter of copying the template object
and ensuring that the parent object, from which the user
created the new object, establishes an OMF reference to it.
CREATEJL.NEW Message. Communication with the creator
to create a new object is accomplished with the CREATEA

NEW message. All container type NewWave objects are re
quired to provide the menu item Create a New... , which is
used to set into motion the process of creating a new object
(see Fig. 5). When the user selects Create a New... the object
invokes the creator using the OMF_GelOMFObject call and
sends it a CREATE..A..NEW message. It then terminates con
versation with the creator by calling OMF_FreeQMFObject.
Sometime after terminating conversation with the creator
the object may receive an OMF_NEW_OBJECT message con
taining the newly created object. If the user cancels dialog
with the creator, this message may never be received. To
prevent problems with reentrancy while waiting for the
new object, the creator disables the caller's window. This
prevents the user from doing anything else in that window
until business with the creator is finished.

The CREATE..A..NEW message may be accompanied by a
memory handle to some global shared memory containing
a list of methods the calling object requires its children to
support. When the creator receives the CREATEANEW mes
sage, it displays to the user a dialog box containing the
icons and titles of all template objects that support the list
of methods sent (see Fig. 6). If a methods list is not sent,
it is assumed that all template objects are suitable and they
are all displayed. The user is then able to choose an object
to create and give it a title.

When the user has chosen an object to create, given it a
title, and hit the OK button, the creator calls an OMF routine

to make a copy of the template object. The creator has a
temporary reference to this new object. It uses this tempo
rary reference to write the user-supplied title to the new
object's PROP_TITLE property. It also writes other properties
of the new object such as PROP_CREATED, which is the time
and date of creation, and PROP_CREATOR, which is the
user's logon name. The creator then sends the calling object
(the parent) an OMF_NEW_OBJECT message that has a refer
ence to the new object as a parameter. The calling object
is expected to absorb the new object into its data structure
and establish its own permanent OMF reference name to
it. When control returns to the creator from this message,
the creator deletes its reference to the new object, severing
any further connection with it. If, for some reason, the
calling object does not establish a permanent reference to
the new object, the OMF detects that the new object has
no references to it from any object and destroys it.
Installing Objects. Since the creator is used to create new
objects in the NewWave Office, it is also part of the process
of installing new applications into the NewWave environ
ment. To install an object (i.e., an application) into the
NewWave environment the user must provide the follow
ing files:
• An appropriate .EXE program file
• Default data files
• A help file
• An icon file in standard MS Windows format
• Any other necessary files, such as configuration informa

tion
• An installation file.

The installation file, which normally has the extension
.IN$, is a command file that specifies everything the system
needs to know about the object being installed. Entries
include the class name, which defines the type of object,
paths to the files on the installation disc, instructions de
fining where those files should be placed in the system,
methods supported by the object, and other installation
data. The installation file format is very flexible-for exam-

Fig. 5. Display after selecting the
Creale a New ... menu item.

CMtObject

~

Or Select n ~aster 10 Create

jHote to Bil~ I

~ [Cancel) [HelP)

litle For Hew Object:

..

~elect An Object Type To Create

action [dit Qbjects Qiew Settings Iask

HeuHauE!' OfficE!'

AUGUST 1989 HEWLETT·PACKARD JOURNAL 27

pie, it is possible to install compound objects and provide
updates for installed applications with or without altering
existing objects of that class. It is also possible to install
global tool objects sucb as the wastebasket, the printer, and
the creator itself. Tools cannot be created by the user; there
fore, they can only be added to the system by installation.

The installation process is designed to execute with min
imal participation on the part of the user. It is possible for
a user to install a complete NewWave environment merely
by inserting the NewWave disc and running the NewWave
install utility. The install utility creates a file called HPIN

STAL.lN$ in the NewWave system directory on the hard
disc. This file contains a list of paths to one or more .IN$

files on the installation disc. After copying some system
files onto the NewWave system directory, the instaH utility
starts up the NewWaveenvironment by running theOMF.

The OMF is the first process to run at the start of a
NewWave session. After performing some housekeeping
chores, the OMF starts the NewWave Office. During its
initialization phase. the NewWave Office looks for the
HPINSTAl.INS file. If it finds one, it invokes the creator,
passing the paths of the .INS files to it one at a time. The
creator calls certain OMF routines to instaH the application
and establish a reference to each new template object as it
is built. At the end of this process, the creator, having
successfully added these new children to its list, is termi
nated and the NewWave Office opens and presents its in
terface to the user for the start of the NewWave session.
MS-DOS~ Objecls. A major henefit of the NewWave envi
ronment is its ability to make objects from the data files of
standard MS-DOS applications that were not written to run
under the NewWave environment. This capability is known
as encapsulaqon of MS-DOS applications (see article on
page 57). Once an MS-DOS application is encapsulated, the
user can create NewWave objects that represent data files
pertaining to that application. These objects are known as
MS-DOS objects. They can be displayed in the NewWave
Office window the same as other objects such as the file

-~ -~-

HeuUaue Office
Bction fdit ~bjects Qiew ~ettings Iask Help

~elect An Object Type To Create

Fold«

D\
..

drawer or folders. They appear as icons and can be manipu
lated by the user in the same way as true NewWave ob
jects.When the user opens one of these objects, a shell is
run, which then runs the appropriate MS-DOS application
and associates it with the appropriate encapsulated data
files.

Encapsulated MS-DOS applications are installed in
much the same manner as regular NewWave objects. Be
sides the information provided in a typical NewWave in
stallation file. an MS-DOS installation file contains infor
mation such as keystroke sequences used by an MS-DOS
application to load the encapsulated data files.

MS-DOS objects that support the calling object's required
methods appear in the creator's dialog box along with reg
ular NewWave objects. If the user chooses to create an
MS-DOS object, the MS-DOS filename associated with the
new object must be provided. The MS-DOS object is then
created and special object properties are written to the
object's data files. When the user first opens this MS-DOS
object, the MS-DOS application shell reads these properties
to find out what data files to load with the application.

Maslers
Once the decision was made to make the creator a New

Wave object with the capability of managing other New
Wave objects, a very useful feature quickly presented itself.
This is the ability of the user to create template objects
from existing NewWave objects. These user-created tem
plates, or masters, can easily be sent to the creator which
displays them and allows the user to create a new master
in addition to new empty template objects. For example,
the user can create a master from a form letter or spread
sheet using existing templates of the letter or spreadsheet.
Adding Masters. The Save As Master... command. which is
used to save master templates. is currently implemented
in the NewWave Office, the file drawer, and in folder ob
jects. To save a master I the user selects an object icon in
one of these window's objects and then chooses the Save

'"i"'''
..

Eilena~e for DOS Object:

ISAlES I
OK) [Cancel I [Help I

Or Select A Master To Create

~B~a~r~C~h~a!:r~tl1l"•••••••• ~
Pie Chart

..

28 HEWLrn·PACKARD JOURNAL AUGUST 1989

.... Fig. 6. Create a New ... dialog box
showing a /ist of template objects.

As Master. .. command from the menu. The container object
then makes a copy of the selected object, invokes the
creator, as described above, and sends it an OMF_INSERT
message with a reference to the copied object as a param·
eter. When the creator acknowledges the OMF_INSERT mes
sage, the container deletes its reference to the copied object.
The original selected object is unaffected by this transac
lion. Objects saved as masters can be as complex as the
user wishes.

Upon receiving the OMF_INSERT message, the creator ver
ifies that the inserted object is an installed data object. It
does this by comparing the object's class name with the
class name of each of its empty template children. If the
inserted object does not match any of the creator's children
an error is signaled to the user. This can occur, for example,
if the user tries to save as a master an object that was
received through the mail, but is not currently installed
anywhere on the system.

When the master is accepted by the creator, an OMF
reference name is established for it and it is placed in the
creator's data structure. Whenever the user chooses the
Create a New... command and selects a template object icon
in the creator's dialog box, all masters associated with that
template object are displayed in a Microsoft Windows
listbox within the creator's dialog box. The user can then
choose to create an empty template ora customized master.
Managing the Masters. With the user given the ability to
install template objects and save customized masters num
bering in the thousands, it became apparent that the user
must be provided with a way to manage all of these objects.
For example, the user should be provided with a means to
put the most frequently created template objects at the front
of the creator's display. This would eliminate the need to
scroll the window to find the objects. In addition, having
saved customized masters as templates, the user might de-

cide to remove these masters from the creator's display.
To solve these problems, a menu choice called Manage Mas
ters was added to the NewWave Office window. When this
menu item is selected, the NewWave Office invokes the
creator and sends it a MANAGE-MASTERS message. The
creator then displays the appropriate dialog box and waits
for the user to decide what to do with the template and
masters displayed. This dialog box allows the user to select
a template object and change its position within the dis
play. It also allows the user to select customized masters
in the listbox and press a Delete button which causes the
creator to remove its OMF reference to that object.

Opening an Object
When the user opens an object, the NewWave Office

must first find out whether that object class supports the
open method by calling the OMF function OMF_GetMethod.
If the method is supported, then the object is activated
through an OMF call and the OPEN message is sent. Once
the object is activated, other messages can also be sent.
The telescoping effect is one example of the cooperation
between the NewWave Office and the object. The telescop
ing effect is the drawing of a series of rectangle corners to
simulate the enlargement of an object from a small icon to
a full window. While processing the OPEN message, the
object decides where its window should be opened, and
sends back that coordinate through the OMF function OMF_
Opening. When the NewWave Office receives the informa·
tion from the OMF, it uses the position of the object's icon
in its window as the origin, and performs the telescoping
effect using the OMF's library function call NW_Telescope
Effect.

After the telescoping effect is performed, the object's
iconic representation in the Office window is grayed out
to indicate to the user that the icon is temporarily inactive,

Fig. 7. Attributes dialog box.

OK

Cancel

of.
D~slic

o flutoshared

.links Up/On: 1/5
Bytes: 256

Help

~
Prinlels

Folder
Bill CROW
HP0600/GA

Beatrice LAM
HPD600/EM

4/26/89 6 :11PM
7/31/89 8:32AM
5 Items

~
Agent

This folder contains the material •
required to produce the monthly
bUdget report_

~
W<!lsle Baskel

Type:
Creator:
Hail Address:
Last writer:
Mail Address:

litle:

Created:
Modified:
Size:
t.omments

~
F~e Drawer

.~

AUGUST 1989 HEWLETI-PACKARD JOURNAL 29

and that all interaction with that object should be directed
to its opened window.

Attributes Dialog Box
The attributes dialog box displays the generic properties

of the object selected (see Fig. 7). It provides the user with
more details about the object than are prnvided by the
iconic view or the list view. The contents of the attributes
box may be useful while the user is working within an
object as well. The attributes dialog box is available to
NewWave applications through the functions NW_Display
Attributes and NW_ChangeAttribules in HPNWLlB.EXE.

[f the object's properties are changed while the dialng
box is displayed, the information will be updated in the
dialog box. This is achieved through the OMF message
PROP_CHANGE. If an object has requested that property
change information be sent to it by setting FLAG_PROP
NOTIFICATION with the OMF_ObjectFlag call, it will receive
tbe PROP_CHANGE message from OMF when this happens.
To notify the attributes box, the object must then pass the
PROP_CHANGE information to a library function, which ex
tracts the useful data from the message and updates the
property in the attributes dialog box.

Moving Objects
Objects in the NewWave Office are easily manipulated

with the mouse. The user can move the mouse to the icon
representing the object, and hold the mouse button down
to select the object. By holding the button and moving the
mouse at the same time, the user initiates the dragging of
the object. As the mouse is being moved, the cursor changes
to the shape of a rectangular frame with an arrow in the
middle. The original icon representing the object is now
grayed, giving the user direct feedback that the object is
now in a transient state. Once the user decides where the
object should be placed by lifting the mouse button, a whole
series of operations and messages will be invoked to decide
on the final placement of the object.

Depending on the position where the mouse button goes
up, the object can be placed according to various placement
algorithms. The final destination may be an empty area in
the same window, an area already occupied by an icon, or
a different window. Moving to an empty area in the same
window simply involves updating the data structure with
the new x,y coordinates and drawing the object in the new
position. Two other cases-moving on top of an icon, or
containment as it is sometimes called, and moving to a
different window-are more involved operations.
Containment Move. When the object destination coincides
with an existing icon, the containment move operation is
initiated. Without waking up the icon object, inquiries are
sent to the OMF to find out if the icon object has the appro
priate method to accept a new child. The method can be
either ADD_CHILD or OMF_INSERT. The ADD_CHILD method
allows the insertion of a new object without activating the
object itself, and the OMF_INSERT method involves activat
ing the receiving object and sending it the message.

If ADD_CHILO is supported, then the child can be added
by OMF using the function OMF-AddChildTo. The file drawer,
the wastebasket, and folders are examples of objects that
support the ADD_CHILD method. Wben this method is pres-

30 HEWLEIT-PACKARO JOURNAl AUGUST 1989

ent, the OMF can examine the property PROP-ADDCHILD to
determine if the new child can be added. This property is
a structure consisting of the reference name and the number
of objects that can still be added. After the new child is
added, the structure is updated by the OMF with the appro
priate values and is ready for the next OMF-AddChildTo call.

When the container object is opened again, it will dis
cover all the new children added to it while it was inactive.
As described earlier, during initialization the object enum
erates all of its children through the OMF_EnumChildren call,
and the child objects that were added wRile it was sleeping
will then be discovered and added to the object's data file.
U new children arrive while the object is opened, the ADD_
CHILD message will be sent to the parent directly, and the
updating of PROP-ADDCHILD will be maintained by the ob
ject itself.

if the ADD_CHILD method is not supported the container
object lS activated, and an OMF_INSERT message is sent in
stead. For example, when an object is moved to the printer
icon, the process involves waking up the printer and send
ing it the OMF_INSERT message.

The result of either the OMF-AddChildTo call or the OMF_IN
SERT message is interpreted by the sender in the same
manner. If the return value is TRUE, then the container has
successfully accepted the new child, and the sender can
now delete its OMF reference to the object and erase it
from the screen. If the result is FALSE, then the object is
not deleted from the sender's list, and its icon will be
repainted again in its position before the move. The return
of FALSE does not necessarily indicate a refusal to accept
the child. In some cases, the container may accept the
object being inserted, and return FALSE to the OMF_INSERT
message to restore the object back to the sender. The printer,
after adding the object as its child, uses this method to
return the object to its original position.
Moving to an Opened Window. When the object is moved
outside of its own window, checks are made to ensure that
the destination window is a NewWave object. To check
whether the destination window will accept the object
being moved, the HAS~ETHOD message is sent to determine
if the OMF_INSERT method is supported. If the return is an
OMF value METHOD_PRESENT or NO_METHOD, then the des
tination is indeed a NewWave object. Other values may
indicate that the destination is either a non-NewWave win
dow [e.g., a Microsoft Windows program) or the child win
dow of a NewWave object. The Microsoft Windows func
tion GetParent is used to find the handle of the parent if one
exists. This handle is again used in the HAS_METHOD in
quiry, and the search continues until the GetParent call re
turns a NULL handle indicating that there is no parent.

Once a window handle is found that supports the OMF_IN
SERT method, the object is then sent to the destination
window with the screen coordinates of the destination
point included in the message. When processing the insert,
the receiver of tbe OMF message decides whether the object
should be accepted and then returns a TRUE value if it is
accepted and FALSE otherwise. The receiver may also de
cide that the destination point is occupied by another ob
ject, and in that case, will pass the received object to the
container as described in the above section.
Moving Multiple Ohjects. Multiple objects can be selected

by holding down the Shift key while selecting. Dragging any
one of the selected objects changes the mouse cursor to a
multiple~box frame with an arrow in the middle. The orig
inal icons representing the moved objects are grayed to
indicate that these objects are now in a transient state.
When the cursor has reached the destination, lifting the
mouse button brings the objects to the new location. These
objects are now positioned as a group at the destination
location and staggered down and to the right from each
other.

Once again, the OMF_INSERT message is used when mov
ing a group of objects from Oile window to a different win
dow. Each object from the group is sent to the receiver
window using the OMF_INSERT message. The sender is re
sponsible for setting the x,y coordinates in the data struc
ture that accompanies the message for the very first object
of the group. The receiver calculates the coordinate posi
tion for each succeeding object and writes these values into
the insert data structure. These coordinate values are used
to position each object in the group.

In all of the cases described above, the sender of the
OMF message knows very little about the receiver and vice
versa. These two NewWave objects determine whether cer
tain messages should be sent to each other by consulting
with the OMF first. If the method in question is supported,
then a message is sent to the receiver with the relevant
data stored as predefined parameters or data structures.
Once the message is received, the receiver can interpret
the data or part of it according to its own established pro
tocol. For example, the receiver of an OMF_INSERT message
could be a folder in the list view, and in that case the x,y
coordinates in an OMF_INSERT message are ignored with no

CORRECTION

On page 75 of the April 1989 issue. the equaHon for the cumulative number of defects
found by lime t should be:

m(t) = a(1 - e-1k/alt).

ill effects. The sender, on the other hand, is only interested
in the return value from the message to determine whether
the message was successfully received. The NewWave ob
ject model gives applications a high degree of flexibility
to integrate with different object types without the need to
understand the particular requirements of these data types.

Conclusions
A few examples have been chosen to illustrate the use

of the object model in the implementation of the NewWave
Office. By sharing the common code among a set of tools
such as the file drawer, the wastebasket, and container
objects such as folders, the user is presented with a consis
tent and familiar user interface .. The reusability of some
NewWave Office functions in NewWave applications, such
as the creator and the attributes dialog box, further en
hances the integration of the entire NewWave environment.
The NewWave Office not only plays a central role as the
first NewWave tool the user encounters, but is also a close
collaborator with the OMF to supply essential architectural
support to all NewWave applications.

Acknowledgments
The NewWave Office project was first conceived in the

Office Productivity Division in Pinewood, England. Paul
Fletcher, the project engineer from OPD, laid the founda
tion for many of the ideas that became the final product,
and provided our team with the first prototype of a working
Office. We would like to thank Paul for all his efforts and
his continual support, and to remind him that his "mojo"
is still very much alive and working.

Trademark Acknowledgments
for this Issue

AutoCAD is a U.S. trademark of Autodesk, Inc.
CPIM is a U.S. registered trademark of Digital Research, Inc.
dBase III is a U.S. registered trademark of Ashton-Tate Corp.
Lotus and 1-2-3 are U.S. registered trademarks of Lotus Develop
ment Corporation.
Microsoft is a U.S. registered trademark of Microsoft Corp.
MS-DOS is a U,S. registered trademark of Microsoft Corp.
UNIX is a registered trademark of AT&T in the U.S.A. and other
countries,
The X Window System is a trademark of the Massachusetts Insti
tute of Technology

AUGUST 1989 HEWLETT-PACKARD JOURNAL 31

Agents and the HP NewWave Application
Program Interface
In the NewWave environment, an agent is a software robot
that acts as a personal assistant for the user. The agent
interacts with the applications through the application
program interface.

by Glenn R. Stearns

T
o IMPROVE THE PRODUCTIVITY and ease of use
of workstation applications. products such as macro
processors, script facilities. and integrated intelli

gent front-end processors are being incorporated into appli
cation programs. These allow the machine to do more of
the work in performing a task. If these facilities are inte
grated into each application designed for a software envi
ronment, they can be accessed from the integrating environ
ment and operate across all the applications.

One of these facilities. known as an agent, performs tasks
on behalf of the user within and across applications. The
agent is a software paradigm, like objects (see article, page
9). The agent is added to the system to increase its intel
ligence. Objects provide the capabilities the agent has at its
disposaL The agent uses the objects in an intelligent way
to perform work on behalf of the user.

Categories of Agent-Like Products
When current agent-like products are grouped together,

three categories emerge, along with an overall pattern (see
Fig. 1). The categories range from keystroke processors to

integrated intelligence across applications.
The first category is the macro processors. These store

keystrokes with record, playback, and edit facilities. Within
this category there are macros built into applications, and
there are macros that span applications.

The second category is the script processors. These pro
vide a procedural language with structures and verbs based
on the products they operate on. For example, communica
tion packages have script facilities to allow automatic logon
and data downloading. The script verbs could ioclude Logon
or Connect. Within the second category there are scripts
built into products, and there are also scri pt facilities across
applications.

The third category is the intelligent processors. These
have knowledge about the products they operate on. For
example. a product may provide a natural language inter
face for user interaction with an application such as a data
base. Within the third category there is integrated intelli
gence within applications and there is integrated intelli
gence across applications. For example. the same intelli
gence may be applied to a data base and a graphics package.

Intelligent Features Integrated
Intelligence

Across
Applications

Integrated
Intelligence

Within
Applications

Has Knowledge
about the
Product

~
K•a
E
o
o

Semantic Features

Syntactic Macros
Features across

Applications
Macros
within

Applications

Keystroke
Accessories

Scripts]across
Applications

Scripts
within

Applications

Keystroke Recopy,
Playback, and Edit

Stages

Procedural Language
with Structures and Verbs

Based on the Product

Fig. 1. Stages of complexity in
agent-like products.

32 HEWLEn"·PACKARD JOURNAL AUGUST 1989

The NewWave agent is designed so that features from
all of the above categories can be offered as technology
permits.

NewWave Agent Design Criteria
Within the office, users view the computer as a means

to accomplish a task. Their goal is not "doing data base"
or "doing spreadsheet," but instead, "doing sales analysis"
or "doing cost forecasting." Applications, such as the data
base and the spreadsheet, are the tools the user employs
in the tasks of sales analysis and cost forecasting. A New
Wave object is the combination of an application and the
related data. Thus, the user interacts with objects to carry
out tasks.

The NewWave agent carries out repetitive tasks that the
user would otherwise have to perform. It duplicates the
user's operation of the system in a repeatable way.

What should the agent do? An agent should improve
productivity by being an automated office assistant, and
should provide automated testing, demonstrations, and
training. The agent should perform user-defined tasks,
allow the user to schedule when those tasks get done, do
the tasks unattended, and learn from the user. The agent
technology should support simulation of user actions, com
mands, testing of user responses, and the integration of
intelligent processes.

Users must tell their agents what to do, of course. If users
are to construct automated tasks or modify tasks that are
provided for them, the operations must be presented to
them in an understandable way. Users should not have to
interpret what they have done or what they want their
agents to do with the system in terms different from those
in which they understand the system. In other words, the
agent shouldn't require the user to work with a language
that looks like {IF2}+"mydoc"+{CR} instead of SAVE "mydoc".

To allow the agent to interact with the application at the
command level, the application must participate in the
interaction with the agent. The design requirements to do

this must not restrict the application designers' ability to
design and structure their applications as they wish.

In designing the agent, we wanted not only to develop
the necessary technology, but also to put in place an effec
tive process to bring theoretical work into our design, so
we could build a platform for the future as well as deliver
a product to our customers today. This process needs to
be maintained over an extended period of time to ensure
a smooth evolution of the agent facility. For example, the
design of the agent and the application program interface
needs to support the addition of artificial intelligence (AI)
technologies in the future (see "AI Principles in the Design
of the NewWave Agent and API" on page 35).

Agent Capabilities
The NewWave agent can be thought of as a personal

assistant or software robot. Each workstation has only one
agent.

The agent is autonomous in that it can carry out instruc
tions without user intervention. The agent can also make
decisions based on the criteria a user gives it.

A user does many repetitive things on a workstation that
can be turned over to the agent. These range from sending
out reminder notices for meetings to looking up data and
making decisions. The kinds of things you would have an
agent do are the kinds of things you would expect a personal
assistant to do for you with a workstation. You should not
expect the agent to do things a personal assistant would
not do. For example, the agent is not all-seeing or
everywhere at the same time. The agent will only do one
task at a time or look at one thing at a time.

The Agent Metaphor
The goal of the agent metaphor in the NewWave environ

ment is to draw upon the conceptual model of a personal
assistant that users bring with them when using the system.

Keeping the personal assistant metaphor in mind, the
user locates the agent on the desktop in the NewWave

action [dit Qbjects Qiew ~ettings Iask Help

~
Di&gnoslic

~
Printers

~
A..~

~~
Monthly Task

~
File Dr~wer

Flg.2. The NewWave Office desk·
top display, showing the icons for
the agent and the agent task.

AUGUST 1989 HEWLETI-PACKARD JOURNAL 33

Office by recognizing the iconic face (Fig. 2). By "tapping
the agent on the shoulder" with a double click of the mouse,
the user activates the agent and opens a window revealing
the agent calendar. The agent calendar is used to define
when the agent is to perform a given task.

A task is a series of instructions for the agent to perform
and is represented in the NewWave Office as an icon
labeled Monthly Task (Fig. 2). The task can be opened by
double clicking on it to examine and edit the instructions.

If the user drags the task over to the agent, the agent will
perform the instructions included in the task.

Agent Task Templates
When spreadsheets were first introduced, the user

needed to learn quite a bit to build one. More complex
spreadsheets required sophisticated work and debugging.
When template spreadsheets were introduced, t.he power
available to a first~time user was increased. By using a
template and making some modifications the user got the
desired results with much less work. The template pro
vided the first 80% of the effort and the user worked out
the last 20% according to the specific needs of the job.

Agent tasks can be used in this way. Application develop
ers can provide task templates to users of the NewWave
environment. Users can then customize the template tasks
to fit their specific needs. Users will also be able to make
useful template tasks and distribute them within their or
ganizations,

The Task Automation Spectrum
The agent falls within a spectrum of methods of automat

ing tasks, and there is a point where it may be appropriate
to develop" specific software application dedicated to a
task. For example, if the task is time card entry, the user
can perform it manually by filling out a paper time card,
bundling it with all of the others, and sending the package
via interoffice mail to accounting.

This might be automated with the agent by writing an
agent task that brings up a spreadsheet to collect the time
card information and add it to a local data base. When all
the time cards are entered that agent task would send the
data base to accounting for merging with their dedicated
payroll data processing system. Here the agent functions
as an end-user programming environment, addressing the
problem close to the source, and avoiding a data processing
systems development effort to write low-level code for the
computer.

At some point, however, this solution may not be suffi
cient, and the user or others may deem that a specific
software application needs to be developed.

The Application Program Interlace
The key element in the implementation of the NewWave

agent is the application program interface (API), which is
the interface between the agent and the application. The
API provides the necessary and sufficient facilites to pro
vide task automation. today and allow the addition of intel
ligence in the future. It is through this interface that the
NewWave help, agent, and computer-based training (CBT)
facilities interact with the application.

The API is both an interface and an application architec-

34 HEWLffi-PACKAAO JOURNAL AUGUST 1989

ture. The interface is made up of message definitions, ap
plication modes, code macros, and function calls in the C
language. The application architecture is the organization
of the application to support this interface.

Fig. 2 on page 7 shows where the API fits in the New
Wave architecture.

Applications and the API
To support the API, an applicatioo must support five

categories of interaction with it. These are recording,
playback, interrogation, monitoring, and error handling.

Recording support provides the API with the command
the application just executed for playback at a later time.
The format of the command is binary, is specific to that
application, and is not expected to be viewed by a user,
although like any machine or intermediate language, it can
be examined and understood by the application designer.

Playback support provides the application with com
mands to be executed as part of an agent task. The com
mands come from the agent by way of the API.

Interrogation support provides help, agent, CRT, and
other applications with the information they need about
the application. For example, when the help facility is
being used, the application will be interrogated to provide
the specific help number for the area the user is pointing
to within the application.

During recording and playback, the source application
may need to interrogate the destination application that is
receiving an object from the source. This is because the
source may only know the screen coordinates of the oper
ations, but needs to record or playback a meaningful com
mand. This allows the recording of a command like MOVE.
TO FOLDER "Sam" WITHtN FOLDER "Mary" instead of MOVE.-TO
123,346.' It is the destination application object that knows
that 123,346 is FOLDER "Sam".

Monitor support allows CBT to intercept an application
command before it is executed, and provide correctivetuto-
'123,346 is a screen coordinate pair.

Fig. 3. The main feature of the application architecture is the
splitting of the application code into an action processor and
a command processor.

rials. The CBT lesson can elect either to let the command
go through to the application for execution, or to ignore
the command so the application does not execute it. See
the article on page 48 for more information about CBT.

Error handling support provides the agent, via the API,
with any error conditions that occur during execution of
a command. These error conditions can be trapped within
an agent task so error recovery can be performed.

Application Architecture
To support these interactions, the application must be

designed to do so. This design we call the application ar
chitecture. The major design concept is the splitting of the
application between the portion that interacts with the syn
tactic user actions (keystrokes and mouse moves) and the
portion that interacts with the semantic commands that
result from one or more user actions, The two portions of
code are called the action processor and the command
processor (see Fig. 3). The agent, the help facility, and the
CBT interface with these in a predefined way.

The agent must be able to record commands after they
are generated and play them back to the command proces
sor, as well as monitor the commands before they are exe
cuted. Therefore, the agent interfaces with the application
between the action processor and the command processor.
For support of user action monitoring and playback by
CBT, the agent also interfaces before the action processor
through the application program interface. Help facility
interrogation of the application also occurs before the ac
tion processor, also through the application program inter
face. The agent engine provides the execution of agent tasks
for task automation and CBT.

On a more detailed architectural level [Fig. 4), the appli
cation can be thought of as organized into processors,
which the application writer designs and constructs, and
components, which are supplied as code fragments to the
developer to be placed within the application. It is the
relationship of these processors and components that al
lows the API to interface to the application.

Extensible Task Language
The results of the application architecture can be seen

by looking at an example of recording a command, viewing
it, and playing it back [see Fig. 5). For more information
on the NewWave task language, see the article on page 38.

An agent command takes on several forms as it moves
through this process. There is the form in which the user
sees it-for example, SELECT "XYZ". This is the tosk lon
guoge form. There is the form in which the command is
stored for playback via the agent. This is the P-code form.
There is the form of the command when it is transferred
from the agent to the application. This is the external form.
There is the form the application uses during execution
within the application. This is the internal form.

Assume that the application is in record mode and the
user operates on it with several user actions. These are
analyzed by the action processor and a command is gener
ated.

The command may be the selection of an object on the
screen, Because the objects are kept in a list within the
application's data structure, the command's internal form

AI Principles in the Design of the
NewWave Agent and API

The field of artificial intelligenge, or AI, is made up of many areas
of concentration, including expert systems, natural language,
planning, cognitive psychology, and robotics. In the design of
the agent and the application program interface (API) for the HP
NewWave environment, the area of robotics was drawn upon,
with the agent modeled as a "software robot."

The basic agent architecture as depicted in AI research, is
made up of three components: the agent, the world, and the
knowledge base containing the agent's knowledge about the
world. 1 There are two main relationships: the relationship be
tween the agent and ils knowledge base and the relationship
between the agent and the world. Much work has been done on
the relationship of the agent and its knowledge base, but less
has been done on the relationship of the agent and the world.
In developing the NewWave environment we have concentrated
on the relationship of the agent to the world of NewWave objects.

If the agent is a software robot, then by analogy, it should
interface to the software world much like a hardware robot inter
faces to the physical world. What is necessary and sufficient for
a hardware robot to interface to the physical world? First of all,
a hardware robot needs effectors. These are the arms that cause
change in the physical world. It also needs feedback to determine
what its effectors are doing and to detect that an attempted
movement has encountered an obstruction. Finally, the robot
must have passive sensors to view the physical world and provide
the needed feedback.

The software equivalent of effectors is softwar~ commands to
applications. Feedback is the return of application error condi
tions and status to the agent. For passive sensors, the agent
interrogates the application's data. These are the robotics prin
ciples designed into the NewWave agent and API. Commands,
error conditions, and interrogation are the necessary and suffi
cient faculties for a software robot to interface to its software
world.

By providing the design guidelines and environment to support
these faculties, the NewWave environment facilitates the building
of software to support a software robot. The NewWave environ
ment does not presently supply the robot-the agent-with arti~

ficial intelligence, that is, a knowledge base and inference capa
bility. Hence the agent needs to be programmed just as industrial
robots are. This can be done by leading the robot through the
motions of the task, and in the case of the NewWave agent this
is the record mode. Industrial robots can also be programmed
using an appropriate procedural language, and in the NewWave
environment this is the agent task language.

However, like industrial robots, the NewWave agent can and
undoubtedly will become more intelligent. The design of the agent
and the API makes this straightforward by allowing intelligence
to be added to the agent without changing the interface of the
agent to the applications. Intelligence can be added to the agent
in a plug-compatible way, so that different development organi
zations and companies can add their specific types of intelli
gence to the agent to meet their needs.

Therefore, while the NewWave agent presently has no artificial
intelligence, the use of AI principles in the design of the agent
and the API will make it easy to add intelligence as technology
permits.

Reference
1. M, Geneserelh, Logical Foundations of Artificial Intelligence, Morgan Kaufmann
Publishers, Inc" 1987.

AUGUST 1989 HEWLETT-PACKARD JOURNAL 35

may specify that element 1 be selected from the list. SELECT
would be represented by a number. The command would
read 6, 37, pt~xJ, where the number 6 represents the length
of the command and 37 the command number. Element 1
could be represented by a pointer to an element x. The
command processor executes the command. and because
the application is in record mode, the command is passed
to the processor that translates it to the external form. This
processor is written by the application designer.

The recording of the selection of element 1 would not
be of value to the application, because the object may be
moved around on the screen and become element 7. while
element 1 may be replaced with another object. The internal
form is what best serves the application designer's needs.

Translated to eternal form, 6, 37, pt~x) may become 8, 37,
XYZ. In this form, the command can be preserved for later
playback.

The application transfers the external form of the com
mand to the agent via the API and the agent attaches a
P-code to it, resulting in the command being in the P-code
form. The agent has many P-codes for arithmetic and logical
operations and for flow control that afB executed by the
agent without interaction with the application. Doe of the
P-codes identifies that the parameters of the P-code form
are to be sent to the application in external form.

With the command P-code prefix, the command is sent

•.'.' ..,..
1fI,·..

. . ," .

•I
I
I
I
I
I
I
IL ~

36 HEWlETT·PACKARD JOURNAl AUGUST 1989

to the agent task for recording. The agent task passes it to
the class independent recorder. There are two categories
of commands: class independent commands like IF, WHILE,

and so on, and class dependent commands, which are spe·
cific to an application, like the SELECT command. If this
were a class independent command, the class independent
recorder would produce the user-viewable task language
form. However, in this case it is a class dependent com
mand, and it is passed off to the class dependent recorder
for the specific application the agent is interacting with for
this command. The class dependent recorder produces the
user_viewable command SELECT "XYZ". This command is
stored as a line of ASCII task language within the agent task.

The user could be watching the recording as it is going
on and would see the line of text displayed within the
agent task's open window. The user can modify any task
language that is viewable. When recording is completed
the resulting task is compiled to be performed at a later
time.

If the user modifies the agent task language, the process
is reversed. The task language form is compiled through
the class independent parser for commands like IF, WHILE,

and so on, and through the class dependent parser written
for the application for application-specific commands. The
results of compilation are stored within the agent task in
P-code form .

Fig. 4. De/ailed block diagram of
the architecture of aNewWave ap
plication.

ApplicatIon

N

N

External Form:
LEN CMO PARMS--r

External Form:
LEN CMD PARMS

IDImElJl

Internal Form:
LEN CMD PARMS

IDIml!llll:ll
It::::!:=:::::==--.-/

,~
'. Record
. • Mode Internal Form:

LEN CMO PARMS

IDIml!llll:ll

API
.nd

Application Architecture

Fig. 5. The task language, the application, and the application program interface use various
command forms to support the agent.

During playback the agent reads the P-codes from the
agent task object and passes the external form of the com
mands to the application. P-codes, like IF, WHILE, and so
on, are executed within the agent engine and are not passed
to the application,

When the application receives the command in external
form via the API, the application passes it to the processor
that translates it to internal form. This processor is written
by the application designer and produces the internal form
of the command for execution by the application's com
mand processor.

The cycle is now complete. Combinations of record, mod
ify, edit, and playback can be performed and the agent will
reliably maintain the proper command forms.

Acknowledgments
The agent concept would not have been investigated for

the NewWave environment without the sponsorship of Ian
Fuller and Larry Lorren. Their continuing support contrib-

utes to the ongoing development of the agent concept. I
would also like to recognize John Alburger, Tom Anderson,
Barbara Baill, Mark Barbary, Barbara Packard, Lynn
Rosener, Phil Sakakihara, Pete Showman. Tom Watson,
and Eugene Wong for their support during the time that
the agent concept was being investigated and proposed as
a NewWave project. This was a critical time that required
endorsement of an idea that, at the time, was challenging
the way we built software. The agent concept would not
be part of the delivered product without the the contribu
tions of the agent learn: Martin Chaney, Paula Dieli, Ania
Dilmaghani, David Fogelsong, Brian Harrison, Tony Mar
tin, Bob Mayer, Barbara Packard, Vicky Spilman, Tom Wat
son, Karen Wales, Jonathan Weiner, Chuck Whelan, and
Gary Visser. New architecture ideas are not developed in
a vacuum, and special recognition is due the NewWave
Office team of Bill Crow, Tony Day, Andy Dysart, Scott
Hanson, Bea Lam, and Yitzchak Ehrlich for working with
us on implementing the API in its earliest forms.

AUGUST 1989 HEWLETI-PACKARD JOURNAL 37

An Extensible Agent Task Language
With this language, users ofthe HP NewWave environment
can create scripts to direct their NewWave agent to perform
tasks for them. The language is designed for both novice
and knowledgeable users.

by Barbara B. Packard and Charles H. Whelan

Fig. 1. Binary P,code record format.

System Requirements
The system requirements for automating a task that spans

applications have a somewhat different perspective. A task
language statement is either a control statement (examples
include variable assignment, procedure call, loops) or an
action command [such as CLOSE, CUT, PASTE) to a particular
object. Control statements are independent of the current
active object and can be executed by the agent interpretive
engine, but action commands are sent to an object of a
particular application class and executed by it. Commands
are not identical across applications; many are class-specif
ic. For example, most applications support some form of

tions such as Excel or DBase III Plus.ott!
Our chosen model for the task language is the power

user. The language is appropriate for constructing large
automated tasks involving several applications. We have
provided a conversational window facility, designed by
the task writer and controlled by the task language script,
wbich enables the task to receive user input and display
information. Other features include variables, functions,
task procedures, control statements such as conditionals
and loops, and numeric, string, and logical expressions. A
command parameter defined as a literal may also be an
expression of the same type.

We expect that in time many casual users will move
toward the power user model. Tbe language should be
designed to facilitate this. Toward this end, the agent task
recorder facility has a built-in watch feature. The user can
see the task language command that was recorded as a
result of an action. Recorded tasks do not contain the ad
vanced programming features listed above, but the relation
ship of the user's interactive actions to the task language
commands will be apparent from the syntax of the com
mand. In particular, the syntax of task language commands
is meaningful enough to serve as a learning aid to users
who wish to explore the more advanced features of New
Wave agent tasks. This is another reason for the close map
ping of the command keywords to the interactive user ac
tions.

Optional
P-eode Parameters,

10 Word Variable Length
Length
Word

The parameter of a command may be either a keyword
or a literal Commands are line-oriented, but a continuation
character is available to extend a command across the line
boundary. A primary concern in the language definition
was the mapping of the interactive user interface to the
task language commands. To make the scripts as readable
as possible, we wanted to have the command keywords
rerIect user actions. For example. if an action is ac
complished interactively by clicking on a menu item such
as CUT. the corresponding task language command will
contain that menu item as its command keyword verb. The
parameter type is command dependent, but numeric,
string, and keyword command parameters can be used.

(command keyword) {parameter]...

User Requirements
Agent tasks will be created and executed by users whose

expertise varies widely. The casual NewWave user will
record a few actions within an object and save them as a
task, which is executed to repeat the actions. The power
user will construct complicated automated tasks, fre
quently for other users, that execute for a considerable time
without user intervention.

The novice, using the task language as a macro recorder,
quite possibly may never look at the task laoguage form of
the task. This user will require ease of use and high perfor
mance. The power user will demand a language with at
least the power of command languages in existing applica-

T
HE AGENT TASK LANGUAGE of the HP NewWave
environment is a set of procedural commands that
provide users access to the task automation func

tions of the NewWave environment. Scripts can be written
to create, delete, modify, and otherwise manipulate New
Wave objects. The scripts are processed by an interpretive
engine, which is part of the agent object. More information
on the interaction of the agent, the task language. and the
application can be found in the article on page 32.

In the NewWave environment, each task is a separate
object with associated data files. Tasks function across and
within object classes and are supported by all NewWave
applications. Upon opening a task, the user sees the con
tents of the file containing the task language commands,
available for editing and compilation. When the user drags
a task to tbe agent icon, the associated binary P-code file
is executed. Task language commands have a verb/object
syntax:

38 HEWLrn-PACKARD JOURNAL AUGUST 1989

SELECT. But the object of the selection, which translates to
the parameter of the task language command, will vary
widely depending on the object class. In a document one
would SELECT a range of text, in a spreadsheet a cell or
range of cells. However, in the NewWave Office window
the selection is an icon, that is, another object with a class
and title. The NewWave open architecture specification
mandates the dynamic installation and removal of appliea·
tion classes and leads to a different configuration on each
system. Task language commands for a NewWave applica
tion written by an independent software vendor must also
be supported.

It is impossible for the agent engine to keep track of the
command set and syntax supported by each application
currently active on the system. The agent engine should
not interpret the contents of a command it sends to an
application in playback. It is equally impractical to have
each application class parse its commands at execution
time, returning similar syntax error messages, or handling
variables or expressions as parameters.

The solution is a task language parser module and re
corder template for each application class. The parser con
verts ASCll task language commands to the external com
mand form recognized by tbe application. The recorder
template converts the external command to ASCII task lan
guage commands during the task recording. These are in
stalled into the task automation process when the applica
tion is installed inlo the NewWave environment. As appli
cations are added to and removed from the system, the set
of task language commands accepted by the compiler and
created by the recorder is customized accordingly.

Application Developer Assistance
Because developers of NewWave applications need to

provide parser and recorder modules for task automation,
we supply tools and guidelines to make their job as simple
as possible. We separate out the components that are com
mon to aU applications and provide code for these in li
braries, and we provide source templates for typical seman
tic routines. Since we wish to have the task language com
mands appear as one programming language to the user,
we provide guidelines for commands and examples of
appropriate syntax that are the same or similar across ap
plications.

The Task Language Compiler
Our first design decision was to compile task language

scripts to a binary P-code format for execution rather than
interpreting the Ascn commands at run time. There were
several reasons for this:
• The binary format is more compact, particularly for iong

tasks.
• A standardized binary format is more suitable for execu

tion by applications in the MS Windows environment.
• Syntax and other obvious errors can be flagged and fixed

at compile time.

• Nonsequential instructions such as loops and procedure
calls can be handled efficiently.

• Functions, variables, and expressions can be preprocessed
and bandied in a standard manner.
As a result, the task language compiler is a two-pass

compiler. The first pass follows thegeneraJ compiler model
of scanner, parser, and semantics. It receives as input the
ASCll task language script, parses it, and generates binary
P-code records which are written to a temporary file. The
second pass fixes instructions that reference addresses that
were unknown when the P-code was initially generated.

Object File Format
Successful compilation of a task creates a binary object

file. An object file consists of two main parts: a fixed-length
header record and the binary P-code records which will
be executed by the agent interpretive engine.

The header record contains the version ill of the compiler
as well as information such as the number of variables,
conversational windows, and pages of code in the task.

The code section of the object file consists of the variable
length, binary P-code records which are executed at run
time by the agent engine. Many P-code instructions are
similar to high-level assembly language, Pointers to loca
tions in the code are maintained as addresses. Addresses
consist of a page number and an offset into that page, thus
identifying the start of an instruction. Page size is fixed.
P-code instructions do not cross page boundaries; however,
a continuation P-code is available.

The P-Code Record
The agent interpretive engine performs a task by fetching

and executing the P-code instructions. The generic record
format is shown in Fig. 1. The length field contains the
number of bytes in the record, including the length word.
A record with no parameters will have a length of 4. The
P-code ill is the numeric opcode of the instruction. The
parameters are any parameters the instruction requires. The
type and length are instruction dependent. Parameters of
type string are null-terminated, which is indicated by the
string \ o.

The Command P-Code
As mentioned earlier, most P-code instructions result in

an action command sent to a particular application object.
Fig. 2 illustrates the P-code format for a command. The
parameters of the P-code, except for the integer class III
word, make up the external command form, which is sent
to the application. The class Tn p::tr::tmeter is an integer
indicating the class of object that recognizes this command.
It is task dependent. The command lengtb is an integer
containing the total length of the length word. the command
III word, and the parameters. The command III is set hy
the application. The parameters are of variable length and
type, and are command dependent.

At run time, the agent engine strips the first three words

P..code Command Command Command Parameters
Length Word P..code Class 10 Length Word 10 (Optional)..........-..s- Fig. 2. The P-code format for a

command.

AUGUST 1969 HEWlETT-PACKARO JOURNAL 39

A NewWave Task Language Example

Mary Smith starts the following task every Friday evening as
she leaves work, The task cleans up her NewWave Office window
by tidying up the past week's work. II then makes preparations
for jobs that Mary will begin when she arrives on Monday morning.

TASK
FOCUS ON OFFICE

Start by moving all data objects into a folder for the week and
putting that folder in the file drawer.

CREATE..A.NEW

FOCUS CREATOR

CREATE FOLDER TITLE "Week Ended 5/29"

FOCUS OFFICE
$ElECT....ALL
DISJOINT_SELECT FOLDER "Week Ended 5/29"

MOV~TO FOLDER "Week Ended 5129" 'Moves all selected data
'objects into the folder

SELECT FOLDER "Week Ended 5129"

MOVE..,.TO FILE-DRAWER

Next, the task empties the wasle basket.

SELECT WASTE_BASKET
OPEN

FOCUS ON WASTE-BASKET

EMPTY
CLOSE
FOCUS ON NEWWAVE-OFFICE

Now, the task creates a spreadsheet, which Mary will use on
Monday morning to prepare this month's profit and loss state
ment. The spreadsheet will be a copy of a customized master
complete with prepared formulas and formats.

and sends the remainder, the external command, to the
application. The agent engine requires the length word;
the remainder of the structure is designed by the applica
tion. However, applications are strongly urged to use the
format illustrated.

Run-Time Environment
The agent interpretive engine is implemented as a simple

stack machine. Variable assignments, function and proce
dure calls. and expression evaluations are all stack opera
tions. When a task starts up, the agent initializes its data
structures using information in the task header record. It
then makes an MS Windows intrinsic call to receive an
MS Windows TIMER message at regular intervals. Each
TIMER triggers a P-code fetch and execution. The agent re
linquishes control between instructions. thus allowing
tasks to conform to the same execution guidelines as other
NewWave objects. P-codes are fetched from the current
page. which is retained in memory. Pages are procured as
needed. If the P-code is a command, the agent checks the
class ill to determine if the instruction class matches the
class of the object that currently has the focus. If so, it posts
an APLPLAYBACK...MSG to the object with the command as

40 HEWlm-PACKAADJOURNAl AUGUST 1989

CREATE..A.-NEW
FOCUS CREATOR

CREATE SPREADSHEET FROM MASTER CALLED "Monthly Profit And

Loss" TITLED "May Prolit & Loss"

Next. lhe task will mail some memos that Mary wrote this after
noon. Since it is now lale on Friday evening, the mail system will
be rpore responsive.

SELECT FILE..DRAWER

OPEN

FOCUS ON FILE-DRAWER

SELECT FOLDER "memos"

OPEN
SELECT DOCUMENT "January Sales analysis"

DISJOINT_SELECT TEXT_NOTE "Quick note about meeting Tuesday"

DISJOINT_SELECT DOCUMENT "Next month's IOfecaStS"

MOVE..TO ENVELOPE "outgoing"

SELECT ENVelOPE "outgoing"

SEND_TO--MAILAOOM

CLOSE

FOCUS ON NEWWAVE-OFFICE

Finally, the task will lock Mary's display. Her NewWave system
will be locked until she unlocks it on Monday by giving her pass
word.

LOCK.....DISPLAY

END
ENDTASK

a parameter. No more P-co~e instructions are executed
until the agent receives an APLRETURN_MSG.

The Task Language Parsers
To facilitate the modularization and customization of

the task language. we designed a system of multiple parsers.
The main compiler contains two parsers: the top level or
class independent parser. and the expression parser, which
handles functions and expressions of numeric, string. and
logical type. Each application also has a parser module,
which parses its class dependent task language commands,
This module also includes semantic routines which con
vert the parsed command to the external command form,
The parser modules are in the form of MS Windows
dynamic libraries and are accessed from the class indepen
dent parser through the MS Windows LoadLibrary intrinsic.
The application's installation file identifies the library file,
the application class name, and the names of its parse
routines by adding them to its OMF property list as a prop
erty PROP..AGENTTASKINFO. The task language compiler
enumerates all applications with this property. It is then
aware of all available classes of task language commands.
Again, this can be different for each system configuration,

However, the compiler loads only the libraries of the classes
requested by the task script.

where classname is the name of the class of object (for exam
ple, DOCUMENT or FOLDER) as recognized by the task lan
guage parsers. and title string is the title of the specific object

The FOCUS Command
The compiler directs the source processing to the appro

priate parser through the FOCUS command. This command
needs additional discussion since it results in both com
pile-time and run-time actions. The syntax is

....

referenced. At installation time this classname is added to
the OMF PROP-I\GENTTASKINFO property of the class. When
a task is compiled, the compiler adds the classnames to its
list of keywords recognized by the scanner, and through
the scanner by the class dependent parsers as well.

When a task is executed, the majority of the commands
will result in the agent's sending a message to the object
that currently has the focus. The parameters of this message
make up a command that will direct the object to change
its slate. At run time. the FOCUS command tells the agent
which object is the target of subsequent command mes
sages. At compile time it has another role. It controls selec
tion of the class parser that will parse class dependent
commands and generate the external command. Com
mands are compiled sequentially in the order received.
However. the order in which commands are executed at
run time will seldom, if ever, be completely sequential.
The inclusion of conditional execution (IF, WHILE), jumps
(GOTO), procedure execution (DO), or user variables in a
task virtually guarantees that there is no way to make a
determination at compile time which object will have the
focus at run time. The FOCUS command sets a compile-time
focus. In effect, it determines which class dependent parser
will parse the commands following it. The command

Fig. 3. Parser data flow.

will cause all class dependent commands to be parsed by
the document parser until another FOCUS command is en
countered. If the OFF parameter is used, only class indepen
dent commands will be accepted by the parsers until
another FOCUS statement is encountered. The main effect
of this command is to reduce compilation time, since a
syntax error returned by a class dependent parser will cause
the command to be reprocessed by the class independent
parser.

FOCUS DOCUMENT "Orders Report"

"(title stong)"]FOCUS [[ON I (classname)
[OFFI

Parser Components
The following sections describe briefly the various com

ponents of the parsers. Fig. 3 shows a data flow diagram
of their interaction.
Parser Routines. The current parser modules have heen
created using the yacc parser generator. yacc was developed
at AT&T Bell Laboratories. Tbere is nothing to preclude a
developer's substituting a customized parse routine for a
yacc-generated one.
Keyword File. The recommended class dependent parser
model stores its command keywords in a file which is read
into a table during the initialization process. The token
number of each keyword depends on its position in the
file. This permits a certain amount of command localization
without reconstructing the parser.
Scanner Routine. The scanner was developed in-house at
HP and provides the only access to the task language source
file. All parser modules must call it for token input. The
scanner returns token types and indexes to appropriate
tables where the values are stored. if a parser module uses
a different token representation, it can modify its scanner
to retrieve the value at this point and continue processing.
Expression Parser. The expression parser is available to
the class independent and class dependent parsers. It is
activated by a semantic call during the parsing of a com
mand. It processes tokens until it finds one that is not part
of the expression. The associated semantic routines gener
ate P-codes to evaluate the expression and place the result
on the engine run-time stack. The expression parser then
sets the state of the scanner so that the next token request
(by a command parser) will return a token type expression,
which will satisfy the conditions of the parse. There is no
requirement that class dependent parsers use the expres
sion parser.
Semantic Routines. Since the structure of the external com
mand form is known only to the relevant application, the
semantic routines must be the responsibility of the appli
cation developer. However. we have provided a library of
routines to perform functions such as initialization. buffer
management. and cleanup. Also. there are routines that
handle the semantic processing of expressions when they
occur as command parameters. Use of this library will
greatly simplify the implementation of the semantics. The
output of the semantic routines is returned to the compiler
in a buffer and then written to the object file.

AUGUST 1989 HEWLETI·PACKARD JOURNAL 41

The command definition specifies that when external com-

The Task Language Recorders
Task recording provides the ability to monitor run-time

events and recompose them to produce a reusable task in
the ASClI task language format. The focal point of the re
cording process is the class independent recorder. This
module is an MS Windows dynamic library which is loaded
only during a recording session. It receives all external
commands from the agent while recording is active.

The recorder first determines iJ the received command
is specific toa class.lfit is not, the command is immediately
converted to its ASCII task language form. [f the command
is class-specific, the library will either provide default de
pendent recording or will pass the external command to a
separate class dependent recorder module. In either case,
the completed task language text is used to build a source
file of ASCII task commands.

Default Dependent Recording
The majority of class-specific external commands are

handled wholly within the class independent recorder.
This module uses ASCII recorder template files to provide
the necessary information to do default dependent record
ing. These files provide formatting information so that a
multiplicity of external commands can be recomposed into
task language without the need of invoking class-specific
executable code.

Recorder template formatting strings are patterned after
the C programming language's print control strings. They
describe how a given external command's parameters are
to be interpreted and formatted into compHable task lan
guage text. They can include information on the order of
parameters in the external command, the size of each pa·
rameter, the data type of the parameter, and how the param·
eter is to be formatted in the task language line. Templates
also support arrays of parameters, enumerated parameters,
optional parameters, and optional fields in the task lan
guage form. Comment fields, ignored by the recorder but
useful for documentation, may be included as well.

Template file information for a particular class is read
into memory when a FOCUS command for that class is first
received duringa recording session. As external commands
are passed to the recorder at run time, they are then format
ted into task language.

The example below illustrates a template and a command
definition from the NewWave Office recorder template file.

Template Formatting String:
"%v %ld COPIES TO DEVICE %20"

Command Definition:
103 13 "Llsr'

13th template.

mand 103 is received (and NewWave Office has the focus)
the 13th template in the file is to be used with the verb
LIST. The template definition specifies that the first param
eter in the external command is a decimal integer and the
second parameter is a string.

The external command form of the example is shown in
Fig. 4. From the external command shown, default depen
dent recording will produce

LIST 2 COPIES TO DEVICE "LaserJet"

Class Dependent Recorders
If there are cases that cannot be handled by template

files, an application can provide its own class dependent
recorder. The class independent recorder will pass the ex
ternal commands that it cannot handle by default recording
to the class dependent recorder for the class that currently
has the focus.

Extensibility
All recorders including the class independent recorder

are written as MS Windows dynamic libraries that are
loaded only when needed with the MS Windows intrinsic
loadlibrary. All recorders must also support a common pro
grammatic interface, so that the interactions between the
class independent recorder and any class dependent re
corder are identical.

The developer of a new application can implement re
cording by producing the ASCII recorder template file and,
if necessary, by developing the application's own sepa
rately linked dynamic library. The file names are declared
in the PROP.AGENTTASK..INFO property in the application's
installation file, Recording is activated when the running
application gets the focus during a recording session.

Acknowledgments
The agent task language project is indebted to many in

dividuals. However, some should be specially acknowl
edged. Glenn Stearns was the creator of the agent project
and has been the driving force behind it ever since. His
enthusiasm, persistence, and constant flow of ideas clearly
"made it happen." Tom Watson designed and implemented
the prototype for the class independent parser and wrote
the initial definition of the task language commands. Many
of his ideas found their way into the final product. Tony
Day was a major contributor to the definition of the com
mand set of the NewWave Office class dependent parser.
The success of this first parser helped establish viability.
Many tbanks to the agent team and the task language review
committee for the hours spent reviewing task language
specifications, and to project manager Ian Fuller and sec
tion manager Larry Lorren for their continual support of
this and other NewWave projects.

las e r Jet 0

Length Number-of-Copies
Word Parameter

t t....
com~and "Device Name Parameter

10 Word

Fig. 4. LIST external command format.

42 HE'WLETT·PACKARO JOURNAL AUGUST 1989

The HP NewWave Environment
Help Facility
The NewWave environment provides a common, context
sensitive, intuitive, unobtrusive help facility for NewWave
applications.

by Vicky Spilman and Eugene J. Wong

D
URlNG THE INVESTIGATION AND DESIGN phases
01 the help facility for the HP NewWave environ
ment, the development team followed ohjectives

passed down from the system level. Among these were
ease of use, emphasis on the tasks instead of the tools, and
consistent user interfaces. The decision had already been
made to include a help facility in all components of the
NewWave environment. The decision was easy because
customers expect some form of on-line help and there was
a general desire to reduce the need for users to refer to the
manuals. Other objectives were also added specifically for
the help facility, but all of these objectives can be sum
marized by four descriptors: common facility, context sen
sitive, intuitive user interface, and unobtrusive.

Common Facility
Since every NewWave component has to supply help, it

makes sense for help to be implemented as one facility that
can be called by each component. Help runs as a separate
program in the Microsoft Windows environment, like the
other NewWave architectural components. However, help
does not depend upon the NewWave architecture since it
has to provide services for the NewWave Office, NewWave
formatter, NewWave agents, other architectural compo·
nents, and NewWave applications. Since the help facility
is concentrated in one program, it can afford to provide
additional features that would have been prohibitive to
implement in multiple components. The character display
formals, related topics buttons, window movement, and
other functions are examples of features that would have

HewVavo OffJ.ce

HowWave Off~co (Help)
Select a topio fro" the index or type

topic nil"e: IAbout Folders

~~~ut N.';'\ja~e
About the File Drawer
About the Waste Ba.ket
Aotion Menu cOM"ands

About NewWaue Office
Close
Close NewWaue Offioe
OOS Progra"s
Lock OispJ.;IIy

n is

been duplicated.
The use of a shared program to provide help also guaran

tees that the help user interface is identical for all NewWave
components. All displays look alike and all user interface
features work identically across NewWave applications. A
user can ask for help in the same way, regardless of whether
the request is for a reminder of the purpose of an icon or
for information on how to perform a specific operation on
some data.

A common help facility also gives the NewWave de
veloper several advantages. One obvious advantage is that
the developer of an application does not have to develop
the help facility. Also, maintenance of the application is
simplified, since it uses the existing help facility. The help
text can be written as a separate activity from the applica
tion code development, further reducing the workload on
the developer. Help text maintenance is arso easier since
this text is separated from the other text materials in the
application code.

Context Sensitive Help
For the help facility to be useful, it has to meet the expec

tations of users, which means that it should be context
sensitive. When a user asks for help, the resulting informa
tion applies to the specific situation at that moment, instead
of to a general situation, which might not provide any
meaningful information to a user at all. For example, a user
who needs to know how to use a text input box in the
middle of a screen is not interested in finding out that the
screen is used to communicate information and to get many

..
OK (.c.anoel I

Fig. 1, An example of the help
index.

AUGUST 1989 HEWLETT-PACKARO JOURNAL 43



types of input. The user would rather have-ilnd gets-in
structions on what a correct entry might look like or what
choices are expected.

Intuitive User Interface
In most cases, a user can look at the screen and figure

out how to use the help facility without a lot of training
or searching through the manuals. Thus one can get help
immediately when it is most needed, when a small hint or
short explanation will allow the task to be completed with
out a long delay or distraction. Help can be started from a
menu, from a function key J or from a pushbutton. Index
items can be chosen by mouse scrolling, keyboard scrolling,
or typing. The help user interface allows all common modes
of operation so that its use will seem intuitive to as many
users as possible.

Unobtrusive
Help has to be able to meet the needs of users without

becoming another problem. Therefore, it allows flexibility
and yet remains efficient in execution and use of memory.
The help window is large enough so there is room for
explanations, but users can still see their original tasks. If
it is necessary for them to see mOfe of the previous window.
they can move the help window out of the way or make it
disappear until they want to make it reappear. If they move
the help window aside, they can continue working on the
previous task and refer back to the information given in
the help text window.

Starting Help
To start help. the user can select one of two menu items

from the help pull-down menu. The help pull-down menu
for NewWave objects contains two items: Help Index and
SCreen/Menu Help. The menu items activate the help index
and screen/menu help mode. respectively. The user can
make the selection by using the mouse or by using ac
celerators (keyboard interface). The accelerator for gaining
access to the help index is 11.

The user can also start help by selecting the help pushbut
ton from a dialog box. When the help pushbutton is
selected, the help text window containing information per
tinent to the dialog hox is displayed.

HewWaup Off~ce (Help)
pu!nu o ...... and

Screen/Menu Help
As mentioned above, one of the major objectives for help

is to provide context sensitivity. Context sensitivity is best
illustrated by screen/menu help mode, which is also called
? mode. The user selects screen/menu help from the help
pull-down menu and the cursor changes to a question mark
shape, indicating that the user is in a special help mode.
The user can move the question mark cursor around on
the screen and click the button on the mouse when the
cursor is on an area of interest. The verbal equivalent of
this action is to ask the question "What is this?" while
pointing at the referenced area.

Screen/menu help allows the user to get help on anything
in the application window, which might include pull
down menus, icons, and fields. When? mode is activated.
the Screen/Menu Help item in the help pull-down menu
changes to Cancel Help, which allows the user to exit the
mode without having to select a help topic.

When the user activates screen/menu help and selects
an item, the help window displays information about that
item instead of executing that selection. After the help
window is displayed, the mouse cursor and the help pull
down menu are restored to the previous state. ? mode is
active for one selection at a time.

Index
The index will be displayed when the user selects the

Help Index item from the pull-d.own menu, or activates the
Index pushbutton from the help text window. The main
purpose of the index is to list all available help topics and
allow the user to select a topic. The index facilitates a quick
search for a particular topic or allows the user to read all
topics. An example of the index is shown in Fig. 1.

All topics are listed in a standard listbox with a vertical
scroll bar. With one exception, all topics are listed alphabet
ically. The one exception is the first index entry, which at
the help text writer's discretion, may be a special topic
that should be pointed out to the user. Within the Iistbox,
the user can scroll through the entire index and select a
topic, which is done by double clicking with the mouse
on a topic, or by selecting the topic and then the OK
pushhutton.

Another option for searching for a topic is to use the
editbox, which appears above the Iistbox. This allows quick

The Edit menu conteJns the comm5nds associated
with the Oipboard. You use the Oipboard \0 trMsfer
information Irom one object \0 51lother.

These comm5nds appear In the Edit menu:

...
.L4115t" Top~c ) ( Y-one .. Fig. 2. An example of the help text

window.

44 HEWLrn-PACKAAD JOURNAl AUGUST 1989



access to topics listed in the index. As single characters
are typed into the editbox, a search begins immediately to
find the first string in the listbox that matches the characters
typed in the editbox. Once a topic is highlighted in the listbox
(signifying a match), the user can press Enter to select that
topic.

Help Window
The user can view the help text window and the index

as one window, since the windows appear in the same
place on the screen (on top of each other) and only one
can be viewed at a time. The index and the help text win
dow are separate windows and are programmatically han
dled differently. There is only one instance of help; the
user would never see two help windows.

The help window appears to the user as a modeless dialog
box belonging to an application. The help window can be
moved, and disappears when the application closes or
iconizes. When the help window is initially displayed, it
is placed in the lower right corner of the screen. The user
can move the help window if it is obstructing the applica
tion; this will allow the user to work in the application
and also view the help text.

The help window displays the help topic title just below
the help window caption bar. The help text is in 12-point
Helvetica type, with options for bold, underline, and
pushbutton (related topics) variations. The font variations
are used at the discretion of the help text writer. If the
topic text is longer than one screen (14 lines of text), a
vertical scroll bar will be provided for single-line and page
scrolling through the topic.

The Index pushbutton is available from the help topic
window to let the user select another topic. The Last Topic
pushbutton allows the user to back through previously dis
played topics. A sample of the help text window is shown
in Fig. 2.

Related Topics
Related topics are highlighted words or phrases within

the help text that can be selected. The related topic high
'light is a simulated pushbutton. When the user selects the
related topic pushbutton, the help text pertaining to the
related topic will be displayed.

Help Components
The NewWave help system is made up of three separate

sections or pieces: the user interface, the help files, and

HPNWUB.EXE

Fig. 3. Architecture of the help user interface.

the help file utility.
User Interface. The user interface refers to what the user
sees and interacts with on the screen. The user interface
can be further separated into two parts, which are separate
executable modules.

The first part, or the front end, of the user interface code
is contained within the application and performs indepen
dently of the back end. The front end is a dynamic library
used by all NewWave applications, thereby giving the ap
plications the common help interface. This benefits the
user because access to help information is consistent be
tween applications. The front end portion of the help sys
tem is contained within the NewWave dynamic library
HPNWLlB,EXE, which is used by all NewWave applications.

The front end handles all of the help system functionality
for the application. The front end initializes and maintains
the help pull-down menu, maintains the question mark
cursor, and monitors messages. The front end provides the
routines that allow the application to communicate with
the help system. In the NewWave environment, applica
tions make API function calls, which in turn call help. The
front end loads the back end into memory, begins execution
of the back end, and then communicates with it.

The second part, or the back end of the user interface
code, is a separate executable file, HPHELP.NWE, which is
loaded by the front end. The back end does all of the help
window maintenance (both the help text window and the
index) and reading of the help files. The back end also
maintains the connection to an application, since the con
nection changes when a second application asks for help.
Most of the error handling is processed in the back end.
Fig. 3 shows the pieces of the user interface.
Help Files. The help files are located on the disc in the
same directory as HPHELP.NWE. For consistency, the help
files are named with the application name and the .HLP file
extension. There is one help file for each application and,
with the current help system design, one help file can be
used at a time.

The help file is a binary file that contains the structures,
pointers, and help text required by the user interface. The
format of the help file is shown in Fig. 4. The file header
contains information about the entire file, such as pointers
to the index table and context table and the lengths of the
tables. There is one text block for each help topic in the
file. Each text block has its own header describing the topic
title and the number of related topics. The help text follows
the text header, and the pointers for the related topics are

Fig. 4. Format of the help file,

AUGUST 1989 HEWLETT·PACKARD JOURNAL 45



placed after the text. Following all the text blocks is the
context table containing the context numbers provided for
? mode. Last in the file is the index table which is used to
display the help index.
Help File Utility. The function of the help file utility is to
produce a file that is readable by the user interface code.
The help system requires tables and pointers that are dif
ficult to input manually. Therefore, the help file utility
produces the desired results. The help file utility is basi
cally a file converter, converting the text input by the help
text writer to the desired format.

The utility, HPHELPFL.EXE (help files), is a DOS program
that doesn't require MS Windows to run (however, it can
be run with a PIF* file under MS Windows). HPHELPFL.EXE
is not part of the NewWave environment, but rather a de
velopment tool that is used by NewWave application teams,
help writers, and loealizers.

How Help Works
As mentioned above, the help facility is an independent

program. It is called by the application program interface
(API) whenever the API detects a request for help while a
NewWave program is executing.

The API is the primary interface between an application
program and the rest of the NewWave environment. The
API provides the functions that must be called by the ap
plication program code to start the program, stop the pro
gram, display API menus, and call other system services.
These functions give the API the information to inform the
help facility of the state or location of the application pro
gram whenever a user requests help.

For the NewWave programmer, there is no extra work
involved to get the use of the help facility. If the program
mer follows the standard NewWave guidelines, which in
clude the API functionality, and provides a help file, the
help system will automatically be provided for the applica
tion.

The following is a list of the API functions and the help
facility counterparts. The functions are all part of the
generic API template for NewWave applications and are
included in the HPNWLlB module.
°A PlF file is a program infOfmation file that tells MS Windows how much memory to reserve.
and whether the application is windowing.l'l(lI'lWindowIng. nonSWItchiog. or nontransferring

Itopic = Edit menu commands
Irelated=Copy
Irelated=Cut
Irelated=Paste
Irelated=Select All Objects
Irelated=Share
Irelated=Throw Away

The Edit menu contains the commands associated
with the Clipboard. You use the Clipboard to transfer
information from one item to another.

These commands appear In the Edit menu:

IR CopyfN
IR CutiN
IR Paste/N
IR Select All ObjectsIN
fR Share/N
fR Throw AwaylN

Fig. 50 An excerpt from a help source file.

46 HEWlETT-PACKARD JOURNAl AUGUST 1989

• APllnit calls HELP_Initialise which initializes data structures,
checks for the help file, and does general initialization.

• APllnitMenu calls HELP_lnstaliHelpMenu which attaches the
help menu to the application's menu.

• APIUserActionlnterlace calls HELP_CheckMessage which is a
message filter that executes hel p commands.

• APITerm calls HELP_Done which closes the help window,
frees memory, and handles general termination.
To allow the user to get help from a dialog box, the

programmer must provide a help pushbutton in the dialog
box (in the resource file) and use the NewWave standard
call APIOigUserActionlnterlace, which calls HELP_Topic to dis
play the appropriate help topic.

Internal Functionality
All incoming help messages are processed by the front

end code, The heart of the front end and of the entire help
facility is the message filter, consisting of APIUserActionlnter
face and HELP_CheckMessage. Help requests from the help
pull-down menu come into the latter routine and all sub
sequent help functionality is generated from this routine.
Because the API filters messages, the help facility receives
only the messages that pertain to it. When the user selects
an item from the help pull-down menu, messages are gen
erated and are directed to the help message lilter.

When the user selects? mode, the help facility sends a
message to the application, telling the application to set
the mode flag to intercept on. The mode flag is a variable
that is part of the NewWave architecture and is maintained
by the application. Setting the mode flag causes all mes
sages to be sent through the help message lilter until the
help facility tells the application to set intercept off
(another message is sent). When intercept? mode is in
voked, the help facility maintains the? cursor and inter
prets the hel p selection of the user. Once a selection is
made with? mode, intercept mode is turned off and a help
message is generated to display the help topic.

When the request for a help topic or index is received (or
generated), the front end processes the message by loading
the back end and then sending it the appropriate messages.

The back end receives a message for displaying the hel p
topic or index, then executes accordingly. The back end
manages everything pertaining to the help text window
and the index window, which includes reading the help
file (text and tables), scrolling, window placement, font
and related topics, and the last-topic stack.

For dialog boxes, the APIOlgUserActionlnterlace behaves
similarly to APIUserActionlnterlace in that it is a message filter
routine, checking all messages to see if the help pushbutton
(or other API button) has been pressed. If the help pushbut
ton is selected by the user, then a help topic request is
generated.

Context Numbers for? Mode
The main task for NewWave programmers using the help

system is defining and setting context numbers. A context
number is a value that uniquely identifies a topic in the
help file. All items that can be selected by using? mode
should have a context number in the help file. [f there is
no context number in the help file for an item that the user
wants help on, the help system displays a message "No



help available for this selection," which is not very helpful.
It is to the programmer's advantage to provide a complete
set of context numbers.

In the case of menu commands, the context number is
the command identification number set in the resource file.

When the user selects help in the client area, the front
end code sends a message to the application requesting a
context number. The application responds to the message
APUNTERROGATE.-MSG, case APLRENDEFt-HELP_FN-by re
turning to the help system a context value that pertains to
the cursor position in the client area. The cursor position
is given to the application within the APUNTERROGATE.

MSG message. The application can return a context value
based on the current state or cursor position within fields,
thus producing context sensitivity.

Providing help for system menus and the nonclient area
requires that the context values match those in windows.h
(include file provided for MS Windows development). For
example, to provide help for the caption bar, the value of
HT_CAPTION is used in the help file. Nonclient area values
are the HT_ values.

When the source file has the help text required for the
application, it must be converted with the help file utility.
The input to the help file utility is the source file, and the
resulting file is the file used by the user interface code.

Stand-Alone Help
The help facility was first developed as a stand-alone

facility to be used by MS Windows applications. During
the development of the NewWave environment, several
NewWave architectural component libraries were com·
bined so that the applications only need to use one library
to access these functions, rather than several libraries.

However, there was still a need for an MS Windows help
system for other products that run in the MS Windows
environment, so the help facility is also usable as a stand·
alone version. The difference is that the application makes
help calls directly instead of API calls. Other than the pro
grammatic interface, there is little difference between the
stand-alone and NewWave help systems. They both have
the same user interface and operate in the same way.

Creating Help Flies
There is no help facility if there is no help file. Writing

and developing the help text is a major task in providing
help for an application.

The source files for the help text consist of control state
ments and help text. Control statements identify features
pertaining to a help screen and the help file. Control state
ments are also directives to the help file utility for setting
up structures and tables. Fig. 5 shows an excerpt from a
help source file, and Fig. 2 is the resulting help screen.

Control statements are distinguished from the help text
by the slash as the first character in a line of text. Here is
a list of some basic control statements and their functions:

fcontext=#

ftopic = string

fend
findent::string

Irelated = string

Provides a context sensitive topic
available through? mode.

Declares string as a main topic that
is listed in the index.

End of the help screen.
Lists string in the index indented

under the topic.
Specifies where a related topic

points to-Le., string.

Localizablllty
As in other NewWave and MS Windows applications,

all help text strings are in a resource file. The strings can
be translated into other languages and the resource file
recompiled. There is no need to recompile and link the
entire help system source code. This is a feature of appli
cation development under MS Windows.

For applications using the help facility, the help text is
easily translated by changing the help source and then
producing a new help file with the help file utility.

Acknowledgments
The help project had a lot of inputs from many people,

but special thanks are due to Jonathan Weiner who did the
design and implementation of the help front end and con
tributed much to the whole project. Thanks to Bill Thomp
son for his help during the investigation phase. The tech
nical writers reviewed and commented on many of the fea
tures in the help facility that would be needed by help text
writers. Thanks also to the engineers in the Scanning Gal
lery group for their feedback in the use of the stand-alone
version of the help facility, and to section manager Larry
Lorren for his support for this project.

Any text (not control statements) between the napic and
lend statements is the help text that is shown in the help
window. Text enhancements (bold, underline, and related
topics) are specified within the text by marking the text to
be enhanced. Besides the text enhancements, no other for·
matting is done. The text appears as it was typed within
the source.

AUGUST 1989 HEWlEIT·PACKARO JOURNAL 47



NewWave Computer-Based Training
Development Facility
Computer-based training in the NewWave environment
allows users to learn how to use the system at their own
pace, and provides facilities for users to create their own
computer-based training courseware.

Lawrence A. Lynch-Freshner, R. Thomas Watson, Brian B. Egan, and John J. Jencek

FORMAL TRAINING IS OFTEN ASSOCIATED with
a crowded lecture room. Despite a long and success
ful history, classroom training is becoming increas

ingly expensive without a corresponding increase in effec
tiveness, The growing influence of computers provides a
possibility for improvement: let the computer do all or part
of the instruction.

Computer-based training, or CBT, has been extensively
used by the military for teaching everything from medicine
to flying. Academia has also come to rely heavily on the
patience of the computer, while bright colors, interesting
music, and supplemental video all add appeal for a gener
ation raised on television. Industry has been slower to
adopt CBT. Available courses are limited, equipment and
software are expensive, and people have felt threatened by
the new technologies. Most important, many people are
unconvinced that CBT is effective, often because of bad
experiences with unimaginative or boring C8T.

Properly written C8T can cut costs while raising reten
tion and motivation. Achieving this requires a partnership
between the courseware and the CST authoring software:
• Ideal CBT courseware is flexible enough to handle a

variety of student experience levels, provides task-based
instruction immediately applicable to the job, is avail
able whenever needed, provides chunks of instruction
relevant to the task at hand, and doesn't constrain the
student because of its own limitations.

• Ideal CST authoring software is simple to use with min
imal programming experience, provides a realistic learn
ing environment, costs very little, and allows courseware
to be developed quickly and inexpensively in response
to local needs.

In creating the HP NewWave CBT facility, we set out to
reach these ideals. Earlier experiences with commercially
available CBT authoring and delivery systems showed the
potential of CBT, yet also pointed out the limitations of
conventional technologies. It was time for original thinking.

NewWave CBT Facility Design
Throughout the project, there have been four design goals

for the NewWave CBT facility: it must use the NewWave
architecture, it must provide effective courseware, it must
simplify and speed the development process, and the
courseware must be adaptable to local cultures and lan
guages with minimum effort.

No commercially available CBT authoring or delivery
system was available for either the NewWave environment
or Microsoft Windows. To take advantage of the power of
the NewWave environment, a CST system needs a graphic
display, full mouse and keyboard input capability, the abil
ity to span concurrently open application windows, and
the ability to operate on what the students do and how
they do it. CBT also must be started from within the New
Wave environment, since requiring a return to the MS-DOS

,.. ~ "-' 'p",~••• , -_.__.. _ "-~ "'.. -~•• - - -" .. " ••• - ~

NewWave Off1C~ ~~

~
File Drawer

[] ~
Samples

..

~
Waste Basket

~
Printers

To open a folder:

1. Move the mouse pointer to it

2. Double-click the lett mouse
button

~xt" )

•... Fig. 1 Sample lesson. frame 1.

48 HEWlETT-PACKAAO JOURNAl AUGUST 1989



prompt for training would probably discourage people from
using it. Finally, since the NewWave environment is capa
ble of running existing MS-DOS and Microsoft Windows
applications (without providing many of the NewWave en
vironment features) the eBT must also provide some way
of training on these applications, even if only by simulating
them within the NewWave environment.

The second requirement for the NewWave CBT facility
was that it must provide the capabilities for an unparalleled
level of quality in the CBT courseware. CBT is an integral
part of the learning product strategy for the NewWave en
vironment. When properly designed and executed, CBT
has proven to be successful and inexpensive. Our goal was
to minimize the technical limitations placed on the lesson
author by allowing for multimedia lessons (text, graphics,
etc.), modularized courseware, and easy access from within
the normal work environment.

The third requirement for the NewWave CBT facility was
that it must reduce the long development times tradition
ally associated with CBT courses. A typical hour of CBT
takes between 300 and 500 hours to design, construct, and
test. Much of this time is spent in programming the CST
logic and creating the screen displays, rather than in the
instructional design itself. By providing efficient, easy-to
use tools, and by eliminating as much programming as
possible, the NewWave CST facility can make expense less
of a consideration when deciding whether CBT is an appro
priate medium for a particular course.

Finally, the courseware created with the NewWave CST
facility had to comply with HP's guidelines for localizabil
ity. The primary requirement is that text should be main
tained separately from program logic. This way, nontechni
cal translators can translate the lessons into local languages
without having to delve into the source code of the course.
Since translated text is often 30% larger than the original
English version, the position, size, and proportions of the
NewWave CBT text window had to be easily adjustable,
with automatic text wrap and preservation of formatting,
so that the localizers could ensure the legibility of the les
son without having to recode it. Finally, text within illust
rations had to be accessible separately (Le., no bit-mapped
text) so that the illustrations would not have to be redrawn
to translate them.

During its history, CBT has evolved into two families of
technologies:
• Simulation. The CBT software is fully responsible for

what the student sees, with all screen displays produced
by the training software. Simulations have great flexibil
ity, allowing training on any real or imagined subject,
but require more ~evelopment effort because an entire
environment must be recreated.

• Concurrent. A CST engine resides in memory and runs
in conjunction with a real software application. The ap
plication provides all its screen displays and computa
tions just as if it were being used normally. The CBT
software sequences the lessons, supplies instructional
text, and controls which keystrokes and commands are
allowed to reach the application. Since the application
supplies the bulk of the code, concurrent CBT is usually
easier to produce, but few applications can interact with
the CBT engine in a really meaningful way.

The NewWave CST facility is designed to maximize the
advantages of both methods, providing text, graphics, and
animations for vivid simulations and intimate communica
tion between the CBT lesson and the applications being
taught.

A Sample Lesson
The best introduction to the NewWave CBT facility is a

sample lesson. Fig. 1 shows the first of a series of screens
that might appear during part of a CST course about the
NewWave Office. These screen displays, or frames, se
quence in response to student actions.
Frame 1, The real NewWave Office (not a simulation) is
running, with all of its normal tools and objects visible.
Also showing is a real folder object, placed by the CBT
facility specifically for this lesson. Overlaying the Office
is an instructional window, which contains an explanation
of how to open an object, and a pushbutton control. The
student reads the text in the window and clicks the mouse
pointer on the Next pushbutton to go on to the next frame.
Frame 2. The window now contains an illustration of a
folder, along with an instruction to the student to try open~

ing the real folder. The directions are repeated for reinforce~

menL At this point, there are two options. First, the student
can try to open the folder called "Samples." Second, the
student can click on the Show Me pushbutton, asking for
the CBT to do it once as a demonstration. We'll assume
the latter choice for now.
Frame 3. The instructional window now describes the first
step in the open process. The mouse pointer, by itself,
slowly moves from its previous position to the "folder "Sam
ples" and pauses.
Frame 4. The window now changes to display the second
step. The screen reacts to the double-click performed by
the CBT facility, and the folder begins opening. The mouse
clicks are not simulated; instead, the real message is in
jected into the system by the CBT facility. Beeps are
sounded by the computer's speaker to mimic the sound of
the mouse buttons clicking. When the student clicks on
the Continue pushbutton, the folder is closed automatically
and the next text frame is displayed.
Frames 5-6. The student is now asked to open the folder
unassisted, just as in Frame 1. If the open is unsuccessful,
an appropriate remedial message is given, and the student
is asked to try again, as in Frame 2.
Frame 7. If the open is successful, congratulatory text is
now displayed, and a brief animated reward appears. Then,
using pushbuttons, the student chooses the next step: con
tinue to the next lesson, or return to the main course menu.
In either case, the CBT facility closes the "Samples" folder
and destroys it, so that it won't remain in the NewWave
Office as an artifact of the training.

The NewWave CBT facility is capable of monitoring the
student's actions to a very fine level. The choice of which
conditions to watch is left to the instructional designer,
and will probably vary throughout a lesson. In this lesson,
for diagnosing the cause of the open failure, some pos
sibilities might be:
• An open was attempted, but on the wrong object. In this

case, to save time and distraction, the open operation
can be prevented, with an appropriate message being

AUGUST 1989 HEWLETI·PACKARO JOURNAL 49



substituted.
• The mouse was double-clicked, but off the folder icon.
• The folder was selected (by a single click) but not opened.

Here. a time-out would be used to assume the action had
not been completed.

• And so on. The number of monitored possibilities is
limited mOfe by the designer's imagination and lime
constraints than by technology.

An Overview of CBT Components
The initial vehicles for CST were the NewWave agent

and the NewWave application program interface (API). As
a task automation facility, the agent can sequence through
a series of steps either automatically or in response to in
teractions with the computer user. The API provides a door
into all consenting NewWave data objects and tools. allow
ing the agent to control them or determine their inner states.
Together, the agent and the API can automate anything a
user might do. Thus the basics for a powerful CST toolset
were present in the NewWave environment from the begin
ning.

At its simplest, a CST lesson is just an agent task (see
article on page 38). Generic agent commands can open con
versational windows anywhere, display textual informa
tion, present pushbuttons for user control, monitor certain
events within the system, and make sequencing decisions
in response to user actions.

While these agent tasks are sufficient for some training,
they are not optimal for large-scale, highly visual CST.
They require programming expertise to construct, and be
cause of their size when used for CST, are expensive in
terms of development time and memory use. To construct
superior training, we needed additional visual effects, full
screen graphics, the ability to simulate applications that
didn't lend themselves to concurrent training, a more de
tailed knowledge of what the student was doing to the
system, and a clean and easy method for starting and con
trolling a sequence of lessons. This required that the generic
agent task language be supplemented by:
• Extensions to the generic agent task automation language

that perform training-specific actions such as mouse po
sition sensing and user input simulation.

• A CST display object (with integral development editor),

which displays the sequences of instruction windows,
text, static graphics, and user controls that make up the
student's view of a lesson.

• An animation object (and editor), which displays color
or monochrome animated graphics.

• A CST menu object (and editor), which displays the
course's initial user interface and allows access to all
instructional objects.

• Interrogation hooks coded deep within NewWave data
objects and tools, which send information and perform
actions in response to application-specific agent com
mands.
In its current form, the NewWave CST facility allows

lesson authors to create full-color graphical and textual
objects without writing a single line of code. A short and
straightforward logical structure written in the agent's task
automation language provides flow control for the lesson.

Architecture for Application Training
The NewWave architecture has been designed to support

an integrated application training approach. This approach
has its roots in concurrent training technologies, but has
been taken much farther in the NewWave environment.

To facilitate an integrated approach, NewWave objects
are designed to communicate through the API. A typical
application architecture includes a user action processor
and a command processor (see Fig. 2). The user action
processor collects user input (mouse movement, keyboard
input, etc.). It takes no action until it detects that an input
sequence has conformed to the syntax of a command. At
this point, the user action processor sends the command
through the API to the command processor, which pro
cesses the command and updates the object's state, data,
and/or interface. Hence, the syntactic (element-by-element)
user actions are translated to semantic (meaningful to the
system) commands.

When several objects are open under the NewWave en
vironment, all following this protocol, the agent has
privileged access to monitor and examine commands that
are sent by the objects through the API command interface.
If desired, the agent may also filter a command from a user
action processor, causing it to be ignored by preventing it
from reaching its respective command processor. These

User Input: Text,
Mouse Clicks, etc.

Fig. 2. An architecture for appli
cation training.

Data

Object State

SCreen Displays

•'.. ".,'... ' ..
Filtered

Commands

Syntactically

Correct Commands

50 HEWLETT·PACKARD JOURNAL AUGUST 1969



techniques, called command monitoring and command fil
tering, are employed by training programs that are based
on the agent and can be used to guide the user through
learning and using NewWave applications. The primary
advantages over previous application training technologies
are:
• Training programs do not need to simulate applic~tions,

since the real applications are used.
• Monitoring of application activities is at a semantic level,

so the training program observes a command like OPEN
FOLDER "Samples" instead of a sequence of mouse and
keyboard inputs that must be interpreted.
It is common for a NewWave application to provide al

ternative ways to issue any given command. Typically there
are at least two alternatives, one using the mouse and
another using the keyboard. In either case, the same com
mand is generated. This greatly simp"lifies the effort in
volved in developing training.
The Agent and Agent Tasks, Agents can be thought of as
software robots. The NewWave agent follows instructions
from the user. It can automate tasks by sending commands
to applications and can record tasks by receiving and stor
ing commands from applications. Additionally, the agent
can monitor and filter commands, as previously men
tioned. The sequence of instructions that the agent follows
is called a task, and the language in which tasks are written
is the agent task language.
Command Level Control. The easiest and most common
use of the task language is to control NewWave applica
tions. For example, part of a task might be:

FOCUS ON DOCUMENT "Letter"
TYPE "Dear Chris,"

This tells the agent to direct its commands at (FOCUS ON)
a document object called "Letter," and then to TYPE some
text in the letter. Before it can receive agent commands,
the letter must be open. This would have been done earlier
in the task by:

FOCUS ON OFFICE
SELECT DOCUMENT "Letter"
OPEN

Here, the agent is instructed to direct commands at the
main NewWave Office window, select the document object
called "Letter," and then open it. Notice how the task lan
guage is modeled after the semantic activities of the user.
Since the user would follow an identical sequence to open
an object, this type of agent interaction is called command
level control.

Training tasks will typically control applications this
way to initialize them for a lesson. For example, in a lesson
on enhancing text within a document, a training task can
automatically open the document and conduct other setup
activities, rather than requiring these of the user.

Additionally, training tasks can use command level con
trol to present instruction collected in a separate object.
Consider the CBT display object, which is used by the
training author to design a set of named instructional win
dows that can be randomly accessed. Within the lesson

task, commands can be sent to the CBT display object to
open instructional windows at appropriate times. At the
beginning of such a task, the CBT display object is opened:

FOCUS ON OFFICE
SELECT HP_CST_DISPLAY "Lesson1 Instruction"
OPEN_SHIFTED

Later in the task, commands are used to display specific
instructional windows:

FOCUS ON HP_CST_DISPLAY "Lesson11nstruction"
GOTOJRAME "How To Open"

The command GOTO_FRAME advances the instructional
sequence to the CBT display object's How To Open frame.

This approach offers a significant benefit, in that training
content in the CBT display object is conveniently separated
from the training logic in the task. Hence, lesson content
can be created, modified, and localized by nonprogrammers.
Class Independent and CBT Commands. During the control
of objects from an agent task, most of the commands used
are specific to a class of applications, that is, they are class
dependent. For example, GOTO_FRAME is a command that
is specific to CBT display objects. Such commands are
executed by the object that received the FOCUS command,
and not by the agent, which only delivers the commands.

To provide the rich syntax available in other high-level
languages, the task language also has class indepe'ndent
commands such as IF..ELSE.. ENDIF, PROCEDURE..ENDPROC,
WHILE..ENDWHILE, and an assignment statement for vari
ables. These commands are executed by the agent.

In addition to the generic agent commands used for all
task automation, a set of commands specific to training....
development can be included by placing the CST ON como.
mand at the beginning of a task, Likewise, if these special
commands are not needed, the CST OFF command can be
used to speed the language translation process.
Command Level Monitoring. Many of the decisions made
by the agent during a CBT lesson are based on the particular
commands a student executes. To process the command
activities of NewWave objects, two things are needed: a
trap that recognizes that a command has occurred, and a
procedure that interprets the nature of the command and
acts on it. A typical implementation might be:

ON COMMAND 00 TrapProcedure
SET COMMAND ON
WAIT

The ON COMMAND DO command is used to define which
task procedure contains the interpretation and action steps.
Once a monitoring procedure has been specified, monitor
ing must be turned on with SET COMMAND ON. This arms
the trapping so that when any command is received through
the API, the task jumps to the specified procedure. Typi
cally, the third command in such a sequence is WAIT. The
WAIT command directs the agent to stop processing task
language commands, and to wait for a command to be
generated in a NewWave object. Essentially, the agent is
idle until this condition is met. When a command is de-

AUGUST 1989 HEWLETI-PACKARQ JOURNAL 51



FOCUS ON OFFICE
SAMPLESiI'=REGION_OF_OBJECT ("hpoffice folder","Samples")
POINT TO CENTER (SAMPLESiI')
DOUBLE_CLICK

In these four commands, the office object is interrogated
for the rectangular region occupied by the icon of the folder
"Samples." The answer to the interrogation is assigned to
the variable SAMPLESii'. Finally, the mouse pointer is di
rected to move to the center of the icon, and then the effect
of a left mouse button double click is produced.

The CST Display Object
The CBT display object provides a fast, easy, and flexible

way to create and display training-specific screens ranging
from small and simple text windows to simulations of en
tire applications.

The basic building block of a CBT lesson is the frame,
which contains everything that might appear on the screen
at anyone time. By sequencing between frames, various
textual instructions and graphical illustrations can be pre
sented to the student. Frames may be made up of any of
the following:
• Windows, which can be full or part-screen. These can

be any color, and can have various styles of borders. An
elaborate window might look like a NewWave applica
tion window, with sizing controls, scroll bars, real
menus, and so on. Windows are used as the framework
to hold other elements, or can be used as backgrounds.

• Text, which comes in a variety of sizes, colors, typefaces,
and enhancements.

• Controls, which can be pushbuttons, check boxes, or
other forms.

• Color or monochrome bit maps, which can be input
through the HP ScanJet scanner or MS Windows clip
board, or created using a built-in painter utility.

• NewWave environment icons, MS Windows stock icons,
or icons loaded from a user-created file.

• Graphic primitives, such as lines, arcs, and circles,
which can be drawn in various weights, colors, and fills.

• Animations, which are actually separate animation ob
jects controlled by the frame object.

• "Hot regions," which are invisible areas sensitive to
mouse button clicks.
A CBT display object contains one or more frames that

Frame 3 with
Animation in Front

Frame 2

NewWave Office

Frame 1

/' I
QQ 0 QUO
9 9

D D

tected, the agent executes the monitoring procedure and
then resumes execution of the task, beginning with the first.
command after the WAIT. It is also possible for the agent to
execute other commands in a task while it is waiting for a
command trap, but this scenario is more complex.

The monitoring procedure can contain any class inde
pendent commands. Its roles in a task are to examine com
mands that are trapped and to filter undesired commands.
A monitoring procedure can use four class independent
commands to acquire specific command information: the
class and title of the object in whicb the command occurred,
the type of command that occurred, and the parameters
of the command. From the object's perspective, the
monitoring procedure sits between the user action and the
command processors, acting as a watchdog and a valve.

The agent can simultaneously monitor several objects
for commands. For example, a single trap procedure can
be written to act on a command either from the object being
taught or from the CBT display object.
User Action Level Control. Although command level con
trol and monitoring are quite efficient ways to work with
objects in a task, there are instances where the user action
level is more appropriate. For example, the training task
may need to distinguish between two alternative syntaxes
of the same command to ensure that the user has learned
one of them. The user action level is also inherently part
of all Microsoft Windows-based applications. Thus, train
ing can extend into the domains of non-NewWave applica
tions at the expense of additional task complexity.

One powerful use of user action level control in a training
task is for demonstrations. In a demonstration, commands
like POINT, DRAG, CLICK, DOUBLE-CLICK, and TYPE are used
to manipulate objects with full visual feedback of mouse
pointer movement and individual key entry. Command
level control would not suffice for demonstrations, since
it only shows the display changes that follow changes in
object state, rather than the causes of those changes.

Interrogation functions complement user action control
by locating specific display elements. Class independent
interrogation functions locate elements of the windowing
interface, such as window caption bars and system menu
boxes. These functions also locate elements that are man
aged by specific objects, such as a folder objed icon within
the NewWave Office window. Class dependent interroga
tion functions are used to ask the object questions like:
• Where on the screen is a display element?
• What display element is at a given point on the screen?
• What is the status of some condition within an object?

Each of these questions deals with revealing information
that is known only by the object. The first two questions
map between display elements that are managed by the
object and screen coordinates. For example, REGION_OF_OB
JECT returns a region, which is a data type that specifies
a rectangular screen region by its origin (upper left point),
width, and height.

Together, user action level control and interrogation can
be used to construct demonstrations that will always work,
regardless of where elements of the demonstration have
been moved. For example, to demonstrate how to open a
folder object called "Samples":

Fig. 3 The foreground/background relationship.

52 HEWLm-PACKARD JOURNAL AUGUST 1989



hold all of the displays needed for a complete lesson. Win
dows, menus, and controls are all real, but are connected
to the intelligence of the agent rather than NewWave appli
cation code.

Fig. 3 shows a schematic view of the sample lesson dis·
cussed earlier. The frame sequencing for a lesson is handled
by the agent. Simple statements command the CST display
object to display a particular frame. The student then per
forms an action such as opening an object, selecting from
a menu, or typing in text or numbers. The task reacts to
the action in a predetermined way by advancing to the
next frame. requesting additional text, or presenting an
error message.

Without the CST display object, inpuVoutput and dis
play control would have to be handled by the task language.
With the CST display object, the agent is used solely for
decisions and sequencing. This greatly reduces the size of
the task, minimizes the need for programming expertise,
and speeds the lesson development process.

When the lesson's final animation is played, a full-screen
background window covers the NewWave Office, simplify
ing the display. The agent is responsible for coordinating
the CST display object and animation object.

Sulfuric Acid

Stirring Rod

The frame editor can create very sophisticated screen
displays. This allows the CST to go far beyond simply
displaying text on top of existing NewWave objects. It al
lows virtually any program to be simulated or prototyped,
and allows courses to be developed on subjects far removed
from software applications. Fig. 4 shows two such pos
sibilities.
Program Structure. The CST display object runs in two
modes: development and run-time. The run-time version
displays the frames inside the object, while the develop
ment version adds the editing facilities for text and
graphics. If the object is opened by the agent, it assumes
it is in run-time mode and displays the first frame. [f the
object is opened manually, it assumes it is in development
mode and displays the initial editor interface, along with
the first frame-if there is one yet. Since the CST display
object is hidden inside the CST container object on run
time systems, it can only be opened manually by authors
using a development system. Fig. 5 is a block diagram of
the CST display object. The painter (a bit-map editor) and
the color selector are placed in dynamic libraries to maxi
mize code reuse, since they appear in several places within
both the CST display object and the animation object.

Empt Beaker

In ttus lesson, you lee.rned the corred way to
pour add into another container

Demonstrate your skill by safely pourinQ the
Sul1uric Add into the Empty Beaker.

(oj

6c~ on ~di.r Objecrs ~i.w ~.~rin9S Task

( Hi.n~

( R.uiew rhis lesson

[ Rerurn ro

...
(bj

~
File Drawer

~
Waste Basket

Fig. 4. (a) Nonsoftware simulation.
(b) Simulated NewWave Office.

AUGUST 1989 HEWLETI·PACKARD JOURNAL 53



The CBT display object will usually be used to develop
training that will run concurrently with one or more New
Wave objects. To simplify the synchronization of the CBT
lessons with the applications, the development-mode
frame object is designed to run unobtrusively on top of the
object being taught about. This allows the lesson author to
place windows and other frame elements optimally with
out having to guess what the final lesson will look like.

The primary user interface of the CBT display object
editor consist.s of a small window which contains menus
and a list of frames. A new frame is created by typing a
name in the Title field and clicking the Add button. Any
frame can be selected for editing by double-clicking on its
title. The CBT display object editor window can be moved
around as needed so that the lesson author has access to
the entire screen display without interference.

Once a new frame exists, a window must be created to
form a parent for all other elements in the frame. This
window can be a featureless area used only to contain other
elements, or it can be an integral part of the lesson. The
opaque background or the simulated NewWave Office
shown earlier in Fig. 3 are examples of these two variations.

Recall that a frame can contain windows, text, controls,
hit maps, icons, graphic primitives, animations, and hot
regions. Each of these elements is created through
specialized menus which provide easy and fast selection
of various features. Once created, elements can be locked
to prevent inadvertent movement or editing. They can be
reselected for editing at any time, and can be moved, cut,
or copied within or between frames. Additionally, text and
bit maps can be imported from any NewWave or Microsoft
Windows application using the MS Windows clipboard.
When displ~yed, elements are stacked on top of one
another, and if elements overlap, the highest one shows.
The aulhor can pull a given element to the top or push it
to the bottom to control whether it is obscured by other
elements.

Internally, each type of element in a CBT display object
is maintained in a single file, and when a frame is loaded
into memory, all elements are fetched and readied for dis
play. While the files are essentially invisible in an object
based system, they may be specially accessed for the pur
pose of translating text to a local language.
The CBT Display Object and the Agent. The CBT display
object and all of its elements are designed for a high level
of interactivity with the agent. Class dependent commands
are used at run time to sequence between frames, hide and
show various windows, launch animations. and sense
when elements have been clicked on. All menus, sub
menus, and controls that appear in a displayed frame are

real, but they are not connected to any application code.
Instead, any frame element can be given a unique name.
Class dependent agent commands are used to determine
when a named object has been selected, and then the agent
evaluates the choice and directs the frame object to display
the frame that reflects the action.

An optional "go to frame n" feature can be specified for
any control (pushbutton) in any frame. Clicking on that
element will cause the frame object to display a specific
frame automatically, without any interaction with the agent,
providing a high-performance, self-contained, hypertext
like capability.

The Animation Object
Animated demonstrations and graphics are often more

instructionally valuable than static graphics, and can play
a major role in keeping students motivated. The animation
object is designed to provide high-quality animation with
minimal effort on the part of the lesson author.

The animation object is analogous to an ordinary ani
mated cartoon. It consists of a series of pictures which,
when sequenced rapidly, give the illusion of motion. Fig.
6 shows a typical animation object being created. The upper
filmstrip display gives a low-resolution view of a bouncing
ball in each of the four poses that make up its motion. The
lower display is a detail view of a pose, which can be
edited. When the sequence of poses is played, the ball
appears to bounce in place. Moving the sequencing object
horizontally as it plays makes the ball appear to bounce
across the screen.

Depending on its purpose, an animation may take several
forms. An animation might be a single image, such as an
arrow, which is given a velocity in some particular direc
tion, or it might consist of a sequence of poses that remain
in the same place on the screen. Another form, such as a
barnstorming airplane, might have a complex motion path
and several poses.

Each pose or cell in an animation is a bit map. These bit
maps can be created in several ways:
• The integral bit-map editor can draw them directly, in

either color or monochrome.
• They can be imported from any NewWave object or Mi

crosoft Windows application using the MS Windows
clipboard.

• They can be hand-drawn on paper and scanned in using
the HP ScanJet scanner.

• All or part of an image in one frame can be copied to
another frame, where it can be used as is or modified.
If desired, a combination of these methods can be used,

so that a hand-drawn image can be scanned in and com-

......L_~L
~~

Computer-Based Training
Display Object Code

Dynamic
Library

Fig. 5 Block diagram 01 the CBT
display object.

54 HEWLETT-PACKARD JOURNAL AUGUST 1989



bined with a bit map from another application, and the
composite image colored using the editor. An image can
be created on a black, white, or transparent background.
An image can also have transparent areas painted on it, so
that the actual screen display will show through the anima
tion when it is played. The editor also provides several
alignment features, such as a grid, to allow the images to
be positioned precisely for smooth movement.

The initial position, velocity, and direction of an ani
mated image can be set using a menu in the editor of the
animation object. If a complex path or changes in velocity
are desired, or if the lesson author wishes to freeze or hide
an animation during run time, the animation object's com
prehensive class dependent task language allows full agent
control.
Operation of the Animation Object. Like the CST display
object, the animation object has both development and run
time personalities, the difference being the presence of the
editing facilities. The run-time version is primarily con
trolled by the agent or a CST display object. The develop
ment version opens ready for modification, and provides
only limited play capability for testing the animation.

Animations are sequences of bit-map images, transferred
one at a time to the display screen. Unlike ordinary car
toons, which own the entire screen of a television set, New
Wave animations must coexist with the other objects that
appear on the screen. The animation object contains a pair
of buffers which save areas of the screen that will be over
written by an animated image. Image bit maps are trans
ferred to these buffers, rather than directly to the screen.
Once the buffers contain the correct display, they are trans
ferred to the display screen. When the animated image is
about to move to a new point, the saved area is restored
into the buffer to obliterate any trace of the image in its
former position.

An author will often crop an animated image with an
irregular shape by surrounding it with a transparent back
ground. This allows the image to pass over other objects
without a "halo" surrounding it. Transparent areas can
also be drawn into an image so the screen background
shows through. The technique used for this is analogous

to the matte process used by filmmakers. An animation
frame with transparent areas contains both its normal image
and an automatically created mask, or outline, of the non
transparent part of the image bit map. When an image is
written to the buffers inside the animation object, its mask
is first combined with the buffer, removing all the colors
from the area where the image will go. The mask is also
combined with the image itself, removing the background
and leaving just the picture part. The stripped image is
then placed precisely over the "hole" left in the screen
display. Since the two images are not actually combined,
there is no interference between the screen and the image.
The Animation Object and the Agent. The animation object
has a rich class dependent task language which allows
powerful agent control of a running animation. Animations
can be started, frozen, or hidden, the course and velocity
can be changed at will, or a programmed complex course
can be loaded into the object in one step. Subsets of the
frames in an object can be specified for display so that
several different animations can be performed without hav
ing to load a new object.

CBT Start-up and Menus
A CST lesson consists of an agent task object and a frame

object, and may also contain one or more animation objects.
A full CST course will have many of these objects. If all
had to reside openly in the NewWave environment, they
would clutter the Office and confuse the student. To pre
vent these problems, all of the objects in a CST course are
contained in a special CST global container object. It has
many of the properties of other container objects like fold
ers, but remains invisible in a run-only system.

The CST global container object serves several purposes:
• It contains all of the CST objects, simplifying the ew

Wave Office display.
• It protects the CST objects from accidental deletion or

modification.
A separate CST menu object keeps track of topics and

lessons:
• It provides a start-up capability for the various agent

tasks that drive the lessons.

Fig. 6. The animation object's
editor.

•

J -1
t

•

Fra",...

AUGUST 1989 HEWLrn-PACKARD JOURNAL 55



• It presents a menu that allows the student to choose a
particular lesson within a course, and maintains a record
of which lessons have been completed.

• It accepts additional CBT lessons from newly installed
objects and integrates them into the standard menu.

To start CBT, the student pulls down the NewWave Of
fice's Help menu and chooses Tutorial. This opens the CST
menu object and displays its inilial menu. First·time users
will probably not have acquired the mouse skills needed
to use menus in the ordinary way. To get them going, the
NewWave Office comes wilh an autostarting agent task,
which gives the new student the option of running the CBT
by pressing the Enter key. This autostarting task can be
disabled after the student takes the lesson, removing the
overhead of the question when it is no longer needed. The
CBT menu object also allows a lesson to be specified as
the default, and pressing the Enter key will initiate the de
fault lesson. This provides a backup for those students who
may be working on a system whose autostart training task
has been removed.

C8T menus are nested in outline form. Students choose
a broad topic, and a submenu is then brought up that
specifies the actual lesson titles. After a lesson has been
completed, a check mark is placed on the menu to help
the students track their progress. When a lesson is chosen,
the CBT menu object dispatches the appropriate task to
the agent, which then runs the lesson. When the task is
finished, the agent returns control to the CBT menu object
so the next lesson can be run.

Developers of NewWave applications can write their own
CBT lessons using the CBT development facility. As part
of the installation process for the new application, its CST
is loaded into the CST menu object and its menu structure
is registered. This allows all lessons in the NewWave envi·
ronment to be run from the same place, ensuring easy use
and easy tracking of all lessons.

56 HEWlm-PACKARQ JOURNAL AUGUST 1989

Conclusion
New hardware technologies such as voice, interactive

videodisc, CD-ROM, and pen-and-paper input devices are
all finding places in the training environment. The inherent
flexibility and expandability of the NewWave architecture
make it easy to incorporate new ideas, and the power and
ease of use of the NewWave environment make it a natural
vehicle for exploring new techniques.

The NewWave computer-based training facility is still
in its infancy, yet it contains features not found in other
CBT systems. It embodies the true potential of the entire
HP NewWave environment: to give knowledge workers the
time to let their imaginations work and the means to make
their ideas real.

Acknowledgments
The NewWave Computer-based training facility was the

goal of many people for several years. The continuing sup
port of HP's Personal Software Division's (PSD) former
learning products center manager Barbara Baill has been
critical to the project's success. Tim Gustafson, Karen
Tucker, Lisa Heckenmueller, and Bob North have made
invaluable contributions to the development and refine
ment of the CBT facility tllrough the courseware they have
written for the NewWave environment. Bill Coleman and
Tom Rideout of PSD's human factors group have made
many improvements to the usability of the CBT develop
ment software. Glenn Stearns, Barbara Packard, and the
entire NewWave agent project team have made the CST
possible through their foresight and continued support.
Tony Day and Andy Dysart have been extremely under
standing about enhancement requests and pleas for assis
tance. Finally, the team would like to thank Kim Aglietti,
Joe Ercolani, Mary Page, and Deborah Plumley for their
efforts during the early investigation and design phases.



Encapsulation of Applications in the
NewWave Environment
To allow non-NewWave applications to run in the NewWave
environment, the NewWave encapsulation facilities provide
features for the partial or full integration of these applications
into the NewWave environment.

by William M. Crow

T
HE HP NEWWAVE ENVIRONMENT provides power
ful capabilities for applications that are written to
take full advantage of the object management facility

(OMF), the agent, and other NewWave features. However,
there are thousands of personal computer software applica
tions currently available that were not written for the HP
NewWave environment, or for that matter, were not even
written to operate under Microsoft Windows. In many
cases, these are mission-critical applications that organiza
tions depend on as part of their day-to-day operations.
These applications may ultimately be replaced by better
solutions that take full advantage of the HP NewWave en
vironment. However, if we expect users to begin using the
HP NewWave environment today, users must be able to
continue to use the software currently at their disposaL

For an existing MS-DOS~-based application program to
operate correctly in the HP NewWave environment, either
the application must be modified, the HP NewWave en
vironment must recognize and accommodate the MS-DOS
application, or an additional program must provide an in
terface between the MS-DOS application and the HP New
Wave environment. The HP NewWave encapsulation facil
ity uses a combination of all these techniques to provide
a wide range of support for applications not specifically
written to operate in the HP NewWave environment.

In some cases, the encapsulation facility makes it possi
ble to continue to access applications that were in use
before installing the HP NewWave environment, but offers
no enhancement to their features or operation. In other
cases, encapsulation makes it possible for existing applica
tions to take full advantage of the HP NewWave environ
ment without the need for a complete rewrite. For most
existing applications, the situation lies somewhere be-

tween these two ends of the spectrum. The basic levels of
application program encapsulation in the HP NewWave
environment are shown in Fig. 1.

Microsoft Windows Multitasking and Context Switching
Because the HP NewWave environment is based on the

Microsoft Windows environment and runs on industry
standard workstations that support the MS-DOS operating
system, it is always possible to run other applications by
temporarily leaving the HP NewWave environment and
the Microsoft Windows environment. While workable, this
approach is not always practical, and certainly does not
meet the objective of providing a complete environment
for the HP NewWave user. Microsoft Windows improves
on this by providing the necessary device and memory
management facilities to allow multiple applications to run
simultaneously. These applications mayor may not be writ
ten for Microsoft Windows. A Microsoft Windows applica
tion will appear on the screen in its own window along
with the windows of other Microsoft Windows applica
tions. Multiple Microsoft Windows applications can be
executing simultaneously, depending on available mem
ory. The user interacts with them by using the mouse or
keyboard to select the appropriate on-screen window and
to enter information or select commands.

If the application is not written for the Microsoft Win
dows environment, it can still be accessed and operate in
conjunction with other applications through additional
facilities provided by Microsoft Windows. Such an appli
cation will be given control of the entire screen, presenting
its own display and user interface. The user can switch
contexts between the full-screen application and Microsoft
Windows with a simple keystroke sequence. Multiple full-

DOS Programs

• Program Launch
• Context Switching
• Simple Cut and Paste

Generic Encapsulation

• Program launch
• Context Switching
• Simple Cut and Paste
• Iconic Representation
• Direct Manipulation for Open,

Copy, Move, Mall, and Discard
• Autoreglstratlon for New Files
• Menu Overlays with Macros

Application·Speclflc Encapsulation

• Program Launch
• Context Switching
• Simple Cut and Paste
• Iconic Representation
• Direct Manipulation for Open,

Copy, Move, Mail, and Discard
• Autoregistratlon for New Files
• Direct Manipulation for Print
• Browsing with Agents and Help
• Outgoing Views (Visual, Data)
• Many Additional Application

Special Features
Fig. 1. Basic levels of encapsula
tion.

AUGUST 1989 HEWLEn-PACKARD JOURNAL 57



screen applications can be active simultaneously, depend
ing on the amount of available memory in the system. Full
screen applications are not truly multitasked by Microsoft
Windows because an application's operation is suspended
when it is not displayed on the screen. The complete state
is saved and the application continues operation when the
user once again gives it access to the display.

The encapsulation facilities take advantage of this funda
mental capability of Microsoft Windows, and provide ways
to operate MS-DOS-based applications from within the HP
NewWave environment.

The DOS Programs Service
In its simplest form, the encapsulation facility provides

an easy-to-use method to access and run other applications
from within the HP NewWave environment. A user con
figurable menu of available MS-DOS applications is ac
cessed through the DOS Programs... command in the HP New
Wave Office. Selecting an entry from this menu starts the
application, using the facilities in Microsoft Windows dis
cussed earlier. Fig. 2 shows the DOS programs service
menu.

Adding, removing, or modifying the menu of available
applications requires no special knowledge or program
ming skills. The user can directly access a simple configura
tion command to make the applications chosen available
through the HP NewWave DOS programs service. For many
popular commercial applications, it is as simple as select
ing the desired program from a preconfigured list.

There is virtually no other relationship or integration
between the HP NewWave environment and an application
encapsulated using the DOS programs service other than
the ability to start it up. The application still accesses the
MS-DOS file system to store and retrieve information. The
user must be aware of the proper methods to specify
filenames and navigate MS-DOS directories. Accessing
data from these applications within the HP NewWave en
vironment requires an explicit process to import or convert

the MS-DOS file to a form recognized by the HP NewWave
object management facility (OMF).

Because the DOS programs service is itself an HP New
Wave application, it is fully integrated with the agent facil
ity. HP NewWave agent tasks can access the service and
start the operation of an MS-DOS application. However,
the agent cannot monitor or control the operation of the
application once it is started because that application was
not developed with the necessary agent interfaces. Because
many existing applications offer their own internal facility
to automate a sequence of tasks, it may still be possible to
integrate them into an overall automated solution.

While the DOS programs service does not provide MS
DOS applications any integration with the HP NewWave
environment, it is a useful tool for many users. In many
cases, users need access to stand-alone applications that
are critical to day-to-day business activity, but don't require
integration with other applications or task automation ser
vices. In time, these applications can be replaced with HP
NewWave solutions, but in the interim, the DOS programs
service provides a useful solution.

Generic Encapsulation
The DOS programs service provides a method to begin

encapsulation, but it still requires the user to perform all
the necessary file management using the MS-DOS file sys
tem. An important contribution of the HP NewWave envi·
ronment is the ability of users to access and manage infor
mation easily by using a mouse to manipulate iconic rep
resentations of the data. The HP NewWave environment
provides a facility called generic encapsulation, which al
lows many MS-DOS applications to be easily configured
and accessed in a similar manner.

Using generic encapsulation, an MS-DOS application is
installed as a unique object class. Data files created or ac·
cessed by the application are treated as instances of this
class, and can be represented by individual icons within
the HP NewWave environment. The user can access and

Fig. 2. The DOS programs ser·
vice menu.

~
August Report

[i
Project St~U$

~
SalesCMrt

[i
Tl'W1gslo 00

XTree Professional

HP Executiue Card
Paradox
R:Base for DOS
Spelling Checker

action Settings

~
Waste Basket

~
Fie Orawei'

[]J
Budget Folder

[]J
wrent PJoiect

action fdit Qbjects Qiew Settings Iask Help

58 HEWLrn·PACKARO JOUANAl AUGUST 1989



manipulate these data files like any HP NewWave object.
Through direct manipulation with the mouse, the user can
open an object and the generic encapsulation facility will
start the associated encapsulated application and automat
ically load the data file associated with that instance. Fig.
3 illustrates direct manipulation of an encapsulated object.
Direct manipulation can also be used to store, retrieve,
move, copy, mail, or delete encapsulated application ob
jects, just like other NewWave objects. These encapsulated
objects can be organized and stored with other HP New
Wave objects, allowing the user to manage all information
in a similar fashion, and shielding the user from most de-

tails of the MS-DOS file system. The user can even create
data file sharing at the object level, allowing the same object
to be stored in multiple places at the same time.

Because these object-level features are implemented in
a similar manner for a wide range of applications, the
generic encapsulation facility is implemented as a single
program that can be customized for different applications
with a configuration file. The effort to encapsulate a new
application is reduced from months of development time
to a few minutes to set up the appropriate configuration
information.

Generic encapsulation does not allow the user to estab-

Betion fdit .D.bjeets .!!iew ~ettings Iask Help

~ ~ ~ ~ of
File Dlawef Wasle Basket Agenl; Printers Di3g"lOstic

[] [] ~ [] [iJ ~
Budgel Folder To Be Filed MOI"'Ilhly Task EKamples Things 10 Do S&!es CharI

[] ~ ~ [iJ
Currenl Project DOS: PAESSREl AL9Jst Reporl PJoiecl Slal;us

~

(a)

Betion fdit Qbjeets .!!iew ~ettings Iask Help

Fig. 3. The generic encapsulation
facility allows the user to manipu
late iconic representations of data.
la) An encapsulated MS-Write file
DOS:PRESSREL and other objects
in the NewWave Office. (b) Dou+
ble clicking with the mouse on
DOS:PRESSREL starts the applica
tion MS-Write and automatically
loads the data file associated with
DOS:PRESSREL.

of
Diac.;lnostic

~
Prinlers

fdit kharacter faragraph

~
Agent

MICROSOFT TO INCLUDE HP NE\IlWAVE SUPPORT
IN FUTURE VERSION OF MICROSOFT EXCEl

PALO ALTO. Calif.. June 20, 19B8·· Microsofl COfpofo!llion Md
Hewlell·Packald Company today <YlI"lOUI'ICed an ageemeot to work
logelher 10 develop and mo!llkel the MicfosolllAI EKCel t;preMlsheet
progro!lm IOf the HP New\IJave envronment.

HP New\IJave is an advanced" soflware'appf,cations envifonmenl;
based 0t1 Miclosofl Windows Version 2,0. It enables users 10 work across
multiple appficC'llions and eas~y maniplJate dala from multiple sources.

HP NewWo!Ive o!Ilso improves personal-cornputel inlegration by
providiflQ PC users with a single view into an orgo!lnizo!Ilion's enlire !letwOfk
01 informalion resollces.

'When enhanced wilh lhe sj.lslemwide services provided by HP
NewWave. M~rosoll EKcel takes anolher step forward as lhe mosl
powerful, lIeKible and intuilm spreadsheel Pfoduct available loday." said
William H, Gales, cho!lirman and chief eKeculive off~er 01 Microsolt.

~
Waste Basket

~
File Drawer

[]
Current Project

[]
Budllet Folder

(b)

AUGUST 1989 HEWLETT-PACKARD JOURNAL 59



lish views to or from the application. Views are data links
that establish the parent-child relationship of compound
objects in the NewWave environment. Generic encapsula
tion also offers only limited support for the HP NewWave
agent. These features are not possible without direct partici
pation from the application itself, or a more sophisticated
form of encapsulation that understands the specific data
formats and operation of a particular application.
Objects versus Files. One of the significant contributions
of the HP NewWave OMF is to manage access to the MS
DOS file system. While object data is stored in ordinary
MS-DOS files, filenames are controlled by the OMF, not
by the user. When the OMF starts an application program,
it passes the MS-DOS file specification for the location of
the application's data. Tbe actual filenames are controlled
by the OMF, and while known by the application, are never
displayed to the user. This frees the user from the details
of the MS-DOS file system, and allows the use of meaning
ful titles to identify individual objects. More important, it
allows the user to create, copy, move, and mail compound
objects, which are made up of multiple files, without wor
rying about creating individual names and resolving nam
ing conflicts and collisions among the files.

For many applications it may require multiple files to
store the information that makes up a specific object. For
example, a data base application may require a form specifi
cation file, an index file, and tbe actual data base file to
describe a data base completely. To accommodate this
need, the OMF passes the application a fully qualified root
filename (first eight characters with no extension) to specify
the location of the OMF-managed data. Using the root
filename, the application can create multiple files with
different ext~msions, or even create nested subdirectories.
The OMF will properly recognize all files in the nested
structure when manipulating the object's data.

When encapsulating an unmodified MS-DOS applica
tion, it is often impossible to shield the user from all the
details of the file system. For many applications, important
functions, such as merging data, saving subsets, linking
macros or scripts. translating files, or accessing individual
files that make up the entire data set, depend on the user's
specifying the MS-DOS filename. The encapsulation facil
ity cannot hide these filenames from the user without se
verely limiting the capabilities of the application. Instead,
the encapsulation facility must allow the user to specify
the MS-DOS filenames used for each data instance and
treat them as if they were the data files assigned and man
aged by the OMF. Resolving this dichotomy between the
MS-DOS and OMF environments presents the biggest
single challenge (and limitation) of encapsulation.

Since encapsulated applications rely on the MS-DOS file
system to store and retrieve data, the user must specify a
valid MS-DOS filename when creating a new encapsulated
object. A complete MS-DOS file specification is made up
of several parts (see Fig. 4). To simplify this process for
the user, the encapsulation facility assigns a default sub
directory for each encapsulated application class. The user
need only specify the eight-character root filename and the
encapsulation facility provides default values for the drive
and path of the assigned subdirectory as well as the pre
defined default file extension for the selected encapsulated

60 HEWlETT·PACKARO JOURNAl AUGUST 1969

application class. The appropriate template file (or files)
is copied to the default subdirectory and the newly created
object references this file instead of the file the OMF would
automatically assign for a true ewWave application. An
error will be indicated if the user does not specify a valid,
unique filename.

Fig. 5 shows the directory organization for a typical New
Wave system with encapsulated applications installed.
There are three directories managed by the NewWave envi
ronment as well as other directories for application programs
or user data unrelated to the NewWave environment. The
OMF maintains the HPNWPROG directory for all NewWave
ex'ecutable programs and the HPNWDATA directory contains
all the NewWave object data files as well as the OMF data
base. To improve file access performance, the OMF auto
matically creates multiple subdirectories within HPNWDATA

as required. There is rarely any reason for the user to directly
access the files in the HPNWPROG or HPNWDATA directories.
The encapsulation facility maintains the HPNWDOS direc
tory which contains the data files for encapsulated applica
tions. Each encapsulated application class is assigned its
own subdirectory within the HPNWDOS directory and the
filenames within these subdirectories are those assigned
by the user when the encapsulated objects were created.
By means of this well-defined directory structure, the user
can locate and manipulate encapsulated data files even
when the HP NewWave environment is not active. Since
each encapsulated application may have its own specific
requirements for how its executable program files are or
ganized within a directory, the encapsulation facility does
not attempt to manage these files directly. An encapsulated
application program is installed on the system in its normal
manner and the encapsulated application class definition
provides the necessary information for the encapsulation
facility to locate and access the application. This also al
lows the application to be accessed even if the HP New
Wave environment is not active.

The encapsulation facility also supports references to
files that already exist in the MS-DOS file system, files
outside the default subdirectory, and an entire subdirectory
of encapsulated data. The specific details of these facilities
go beyond the scope of this article and are not necessary
to understand the basic operation of encapsulation.

Once the MS-DOS file is encapsulated the user is free to
move or share the object representation of the file anywhere
within the OMF domain. It can reside in the NewWave
Office, or be placed in any level of nested folders. Even
though the object representation is moved within the OMF,
the same MS-DOS file reference originally assigned by the
user is still maintained. As with OMF data files, this

C:\HPNWOOS\MSWRITE\REPQRT.WRr

~JJ
'----Drive

Fig. 4. An MS-DOS file specification.



filename may represent multiple files with different exten
sions, or a subdirectory structure of arbitrary complexity.
The root filename is always displayed in place of the ob
ject's litle. To minimize clutter on the screen, only the
eight-character base portion of the filename is displayed
by default. However, if the user selects this filename field
for any specific object, the complete, fully qualified MS
DOS file specification is displayed.

Whenever the user copies or imports an object, a new
file must be created. This happens transparently for OMF
objects, since the OMF assigns the new filename. However,
a new file cannot be created for an encapsulated object
until the user provides a valid new filename. In many cases,
this is simply not practical at the time the copy operation
is performed. For example, when new mail arrives via an
electronic mail system, objects and their associated files
must be created to receive the incoming information. But
at that lime the user has no idea exactly what is being
received, and therefore cannot intelligently decide what
the filenames should be. Likewise, when copying a folder
object that contains dozens of encapsulated objects in sev
eral levels of nested folders within it. it is not practical to
expect the user to provide all the needed filenames. It
should be equally obvious that it is simply not acceptable
to prevent the user from copying, importing, or mailing
encapsulated objects. The filename of the source object
cannot be used without fear of collision with existing files.

The encapsulation facility solves this problem by recog
nizing that the data does not actually have to be in an
MS-DOS file known to the user until the user is ready to
open the object. Therefore, whenever an encapsulated ab-

ject is copied, imported, or received via mail, the encapsu
lation facility allows the OMF to assign a filename for the
copy. Rather than display this filename as the title (which
would be meaningless to the user) it displays the string
Copy of: followed by the eight-character root filename of the
original object. The user can move, copy. share, delete, or
mail this copied object, and the OMF will manage the as
sociated data file as it does for any other object. The first
time the user opens the object, the encapsulation facility
will prompt the user for the required filename. Before start
ing the encapsu.lated application, the data is moved from
the OMF-maintained file to the file identified by the user,
and the object title is changed to reflect this new filename.

While this approach does have some limitations, it pro
vides a practical method for encapsulated applications to
behave like other HP NewWave objects, while still being
able to access data using the MS-DOS file system.
Automatic Object Creation. A common feature of many
applications is the ability to save data in a new file while
the application is active. This allows the user to create
multiple files, saving the current data in a new file and
then continuing to make changes. In this case, the applica
lion itself is creating the data file, not the encapsulation
facility or the OMF. But since the user expects the newly
created file to appear as a new encapsulated object, the
encapsulation facility monitors the creation of new files,
and automatically creates an associated object with the
required file reference.

Because of the difficulty of monitoring the internal oper
alians of the MS-DOS file system, the encapsulation facility
performs this automatic registration by comparing the con-

\HPNWOATA

OMF Object Oat.

NewWave OMF
Data Base Files

\HPNWPROG

NewW.ve Code

Other Directories

· .• •• •
NewWave Data Domain

••• Fig. 5. Organization of OMF and
encapsulated file subdirectories.

AUGUST 1989 HEWLETT·PACKARD JOURNAL 61



tents and date stamps of files in the default data directory
before and after the encapsulated application is run. This
search·and-compare operation is limited to the default data
directory for the encapsulated object class, primarily for
performance reasons.

Many applications are also able to create files compatible
with olher applications, for example, a spreadsheet that
can store information in a form compatible with a data
base program. In the case where both applications are en
capsulated in the HP NewWave environinent, the encapsu
lation facility can be configured to allow one application
class to create objects of the other class. referencing the
newly crealed files.

In some cases, applications specifically written for the
HP NewWave environment provide a facility to convert or
import information from MS-DOS files. The encapsulation
facility can be configured to access this feature program
matically, providing a method to create the appropriate HP
NewWave object automatically from information created
by an encapsulated object.
Menus and Macros. While the encapsulation facility sup
ports many automatic procedures, it may often require a
less-than-intuitive sequence of steps within the encapsu
lated application to take advantage of it. For example. in
itiating an automatic conversion to an HP NewWave appli
cation requires saving the file in a predefined location.
allowing the encapsulation facility to locate it easily. To
make this feature easily available to the user, the encapsu
lation facility provides a method to create new pull-down
menus for the encapsulated application. A keystroke macro
is associated with each menu command and executed when
the command is selected by the user. These macros can
contain instance-specific, class-specific. or system-wide
global variables.

For Microsoft Windows applications, these menu com-

mands are added to the existing application menus. Micro
soft Windows provides the programmatic facility to change
menu configurations dynamically. By intercepting and fil
tering all Microsoft Windows messages received by the
encapsulated application. the encapsulation facility can
detect when one of its new menu commands is selected,
and respond by sending a series of messages to the appli
cation that simulate the associated macro being entered via
the keyboard.

For full-screen applications. the encapsulation facility
monitors the interrupt service routines used to manage the
keyboard. When the appropriate activation key is detected,
lhe added menu commands overlay the full-screen applica
tion's display. The keyboard interrupt service routine is
monitored to determine what menu command is selected,
and the appropriate macro is sent to the application through
the interrupt service routine, simulating keyboard input.

Configurable menus and keystroke macros offer a power
ful mechanism for extending the user interface of encapsu
lated applications. and provide an easy way for the user
to access the additional fealures provided by the encapsu
lation facility.
Agent Support. The encapsulation facility provides key~

stroke recording and playback to extend the functions of
the agent facility to support encapsulated applications.
This is implemented using the same windows message or
keyboard service interrupt filtering used for the configura
ble menu and macro feature. While this solution is not
without significant limitations, it does provide the basic
capabilities required to automate system-wide tasks that
also include encapsulated applications.
Configuration Parameters. Generic encapsulation supports
a wide variety of applications, using a sequence of config
uration parameters to provide the detailed information re
lated to each program. Following are some of the parame-

Fig. 6. Application-specific en
capsulation for HP Drawing Gal
lery and Lotus 1-2-3 provides
NewWave browsers. allowing the
application's data to be viewed
and linked with other NewWave
applications.

iJ
Bction fdit .G.allery Iask Help t

'.c.'
Meeting NOles

[@L,",~
O.QS;••J""-"",,,

~~
Weekly SlXl'lmo!lf)l

+

~
FileOldwer

i1
Thr1gs t

fiction fdit ~bjects

=

62 HEWLETT-PACKARD JOURNAl AUGUST 1989



ters that provide the generic encapsulation facility with
the information it needs to know about the application
being encapsulated.
• Application Type. Specifies whether the encapsulated

application is a Microsoft Windows application or a full
screen application.

• File Access Method. Specifies whether data for this ap
plication will be stored in referenced MS-DOS files, or
in OMF-controlled files. The latter are useful when the
encapsulated application can be modified to remove de
pendencies on users to specify the filenames for data
files.

• Application Name. The subdirectory location and name
of the encapsulated application.

• Command Line. The command line parameters to be
passed to the application when it is started. This is the
most common method for providing the instance·spe
cific filename to the application.

• Current Directory. The drive and subdirectory that
should be selected as the current directory before the
application is started. Some applications require that the
directory containing the main program be the current
directory. For others, making the default data directory
the current directory eases access to additional data files.

• Menu File. The name of the optional file that defines
the added menu commands and their associated key·
stroke macros.

• Window Class. For Microsoft Windows applications,
this specifies the indentifier used by Microsoft Windows
to identify the application's window type.

• Window Title. The text identifier maintained by Micro·
soft Windows that identifies a window and is displayed
in the window's title bar. This field and the preceding
one are used by the encapsulation shell to locate the
application's window when it is initiated. The location
is needed to configure menus and macros and filter the
application's messages.

• Key Extension. The three-character filename extension
(e.g., .GAL for Drawing Gallery files] that is searched for
to determine if new files for the application have been
created and need to be automatically registered. The key
extension is also used for error and filename collision
detection when the user provides new filenames.

• Required Extensions. Specifies the extensions of other
files that must be present to make up a valid data in
stance. This is also used [or error and filename collision
detection.

• Data Directory. The default data directory for the appli
cation. This is where all files for this application class
are typically stored.

• Export Classes. Specifies the classnames of other encap
sulated applications that may be created by this applica
tion.

• Conversion Classes. Specifies the classnames of HP New·
Wave applications that support programmatic conver·
sian and can be accessed by this application.
These and other configuration parameters are specified

when the encapsulated application class is installed in the
HP NewWave environment. They are stored as text in the
class properties for the application, and can therefore be
programmatically accessed by any other application that

needs this information. Like the configurable keystroke
macros, the configuration parameters can include a variety
of instance-specific. class-specific, or global system vari
ables, providing a tremendous degree of flexibility. Using
variables, any text property of any other application class
can be accessed. Because the OMF property system is ex·
tensible, developers can specify additional properties and
access this information as configuration information or key
stroke macros from multiple, cooperating applications.

Application-Specific Encapsulation
While generic encapsulation makes it possible for many

applications to operate as part of the HP NewWave environ
ment, it does not support one of the most important capa
bilities: views. For applications to share data cooperatively,
the encapsulation facility must not only know how to com
municate with other applications, but must also under·
stand and be able to modify the application's data structure.
It must also provide additional commands and dialogs to
manage the links that are created. This invariably requires
the development of a specialized encapsulation program
that recognizes the specific features and data formats of
the application it encapsulates. The solutions are as varied
as the applications that can be encapsulated. With enough
effort invested in the encapsulation shell, virtually all HP
NewWave capabilities can be supported. But this process
may entail more effort than simply rewriting the applica
tion for the HP NewWave environment.

To encapsulate Lotus~ 1-2-3~, a spreadsheet program
from Lotus Development Corporation, an HP NewWave
browser application was developed (see Fig. 6). This pro
gram reads the Lotus 1-2-3 spreadsheet data file, displaying
its contents in the Microsoft Windows environment. The
encapsulation browser provides the necessary user com
mands and interfaces to the OMF to allow ranges of the
Lotus 1-2-3 worksheet to be viewed in other HP NewWave
applications. To minimize the browser's complexity, it is
only capable of reading the Lotus 1-2-3 worksheet file; it
cannot make changes to it. Instead, the browser provides
a command to start the Lotus 1-2-3 program, automatically
loading the data file being browsed. When the user exits
from Lotus 1-2-3, the updated file is redisplayed by the
browser. Because the browser does not alter the spreadsheet
data, it will not accept data passing views· from other
applications. A similar browser-type encapsulation shell
was developed for HP Graphics Gallery.

Conclusion
HP ewWave's encapsulation services provide the

bridge from today's MS-DOS-based applications to the next
generation of applications developed for the HP NewWave
environment. The DOS programs service and generic en
capsulation provide the facilities for users to take advantage
of HP NewWave immediately, while continuing to use their
current suite of applications. Application-specific encap·
sulation provides an interim solution to allow developers
to move their existing applications into the HP NewWave
environment and take advantage of its advanced features
without requiring a complete application rewrite. The HP

°A data passing view is a data link between objects that allows the child to pass data to
the parent

AUGUST 1989 HEWLETI-PACKARD JOURNAL 63



NewWave environment clearly defines the applications en
vironment of the future, and the complete range of encap
sulation services provides a clear, well-lighted path for
today's personal computer users.

Acknowledgments
Yitzchak Ehrlich is responsible for much of the design

and implementation for HP NewWave encapsulation tech
nology and the generic encapsulation facility. Tony Day
designed and implemented the DOS programs service.
Scott Hanson designed and implemented the configuration

utility used to install generic encapsulation applications.
Doug Smith implemented a shared library of DOS file man
agement routines used by all encapsulation programs.
Andy Dysart and Chuck Whelan implemented new
facilities in the OMF to support encapsulated applications.
Several enhancements to support encapsulation features
were made to MS Windows by Tom Battle's team at HP's
Sunnyvale Personal Computer Operation. Many more en
gineers at HP's Personal Software Division have contrib
uted to the design and implementation of the encapsulation
services for the HP NewWave environment.

he received his 8S degree in mathematics and
computer science. He joined HP the same year.
Born in Sacramento, California, he lives in Sun
nyvale, California. Scott spends his leisure time
scuba diving, JOgging, or reading science hetion.

NewWave desktop and
creator facilities and OOS
programs have been Tany

....,..""'1..-... Day's focus of responsibil
ity as a development en·
gineer. He joined HP in
1984, shortly afler receiv
ing his SA degree In com
puter science from the Uni
versityof California at Santa

Cruz. Software reliability, reuse, and prolectcontrol
are his professional interests. In a previous career,
he worked tor the U.S. Navy, first as personnel man
ager in London, England, then as budget and ac
counting manager in Monterey, California. Tony
was born in London and lives in San Jose, Califor
nia. He's married and has a child. He spends his
oil-hours with recreational computer programming
and gardening.

The Office facility was Bea
Lam's focal interest in the
development of the New
Wave environment, and
she has since become proj
ect manager for NewWave
architecture components.
In the years since she
joined HP in 1980, she has
.worked as development

engineer on software projects such as HPWord and
Executive MemoMaker for the HP Vectra PC. Bea
earned her BSEE degree at Cornell University
(1973) and her MSEE at Purdue University (1974).
Previous professional experience includes
firmware design at Control Data Corporation and
a position as translator and coordinator for the Na·
tional Council on U.S.-China Trade. Born in Canton,
China, Bea is married and tives in Sunnyvate,
California. Her diverse recreational interests in
clude opera, sophisticated audio equipment.
bridge, Chinese cooking, restaurant sampling and
critique, and learning Japanese.

Beatrice Lam

Anthony J. Day

Scott A. Hanson
ScOIl Hanson worked on
the screen display and
data structures of the New
Wave Office facility. As a
development engineer,
some aspects of the project
continue to be his responsi·
bility.ln the past, hecontri
buted to development of
VisiCalc software for both

HP 150 and HP 3000 Computers. Scoll allended
the University of California at Davis, where in 1983

Andy Dysart came to HP in
1982, alter receiving his
bachelor's degree in com
puter science Irom the New
Mexico Institute of Mining
and Technology. After ini

" tially serving on the New-
Wave user interface design
commillee, he worked on
design of the object man-

agement facility. He continues to contribute to
NewWave design. Andy is a coinventor on two
pending patents for the NewWave OMF. Past re
sponsibilities include design and implementation
of HP ExecuOesk and HP FormsMaster software.
He is a memberof the ACM and considers software
architectures, object-based systems, and produc
tivity his professional specialties. Born in Temple,
Texas, Andy is married and lives in Santa Clara,
California. He likes the outdoors, reading science
riction, and what he calls "recreational computing."

gree is from Cornell University (1965) and his MSEE
degree is from the Massachusells Institute of Tech
nology (1967). He has authored or coauthored two
previous articles for the HP Journal. Pete was born
in Madison, Wisconsin. He. his wile, and his two
teenage sons live in Cupertino, California. Among
his varied hobbies are Woodworking, recreational
computer programming, skiing, and playing old
time music on a fiddle and other instruments. He
has also been studying Chinese for two years.

23== NewWave Office=========

17 == NewWave Object Management~

John A. Dysart

Authors

On the NewWave project,
Ian Fuller served as project
manager for the NewWave
Office, OMF, and DOS ap~

plication suppor\. He has
Since become project man
ager for distributed Object
based systems. Ian joined
HP's Office Productivity Di
vision in his native England

in 1980. Work as an engineer and asa project man
ager on HPDeskManager and AdvanceUnk were
among his early assignments. Before coming to
HP, he was an engineer on message switches and
telephone exchanges for ITT Business Systems.
Ian was born in Gosport, Hampshire, and attended
Oxford Polytechnic, where he received his 8Sc de
gree in 1978. Describing himself as an "adopted
Californian," he now resides in Santa Clara, Califor
nia, and is recently married. As his leisure activities,
he likes travel and photography.

Peter S. Showman

9 = NewWave User Interlace ======

Ian J. Fuller

August 1989

6 = NewWave Overview =======

"ii;:;;;iilii:::--:~With HP since 1967, Pete
Showman managed the
design committees respon
sible for the NewWave envi
ronment's architecture,
user model, and user inter
face specifications. He has
since moved on to projects

~ involving the definition of
luture application environ

ments and architectures. In past assignments, he
has worked as a hardware engineer and project
manager on such HP products as the HP 8542A
Network Analyzer, the HP 8500 Graphics System
console, the HP 2648 and HP 2700 graphics termi
nals, and the HP 150 Touchscreen PC. Pete is a
member of the IEEE and the ACM. His BSEE de-

64 HEWlETT·PACKARD JOURNAl AUGUST 1989



As software development
engineer, Tom Watson was
responsible for the agent
facility lor computer-based

training, and he continues
- to be involved with New

;":r.JI-- Wave developmenl. His
past professional experi

- ence includes positions as
~ computer sales manager

and as computer programmer. He came to HP in
1984. His as degree in computer science is from
Pennsylvania State University. He is a member of
theACM. Tom was born in Upper Darby, Pennsyl
vania, is married, and lives in San Jose, California.
His alter-hours interest is synthesized music.

Brian Egan is product man
ager for interactive learning
systems at HP's Personal
Software Division. His role
in the development of the
NewWave environment
was that of manager and
editor of the computer
based training software
and courseware. His past

positions include publications manager, support
manager, and customer engineer. His professional
inferests focus on computer-based and classroom
instruction, user interfaces, and teaching. Brian's

Brlan B. Egan

The most recent addition to
the NewWave CBT de·
velopment team, John
Jencek joined HP in June
1988 as a software en
gineer. The computer
based training software was
his first assignment. He de

veloped the parsers and the
CST menu object and con

tinues to work on NewWave design obtectives. His
previous experience includes work as computer
programmer at ISM Corporation and as instructor at
Texas Instruments. John was born in Prague,
Czechoslovakia. He attended the California State
University at san Francisco, where he earned his
BS degree in computer science (1988). He lives in
san Francisco, California, and enjoys scuba diving
in his olf-hours.

John J. Jencek

R. Thomas Watson

He is a member of the ACM, SIGPLAN, and SIG
GAAPH, and his professional interests include
computer languages, computer graphics, and win
dowing systems. larry has served in the U.S. Air
Force Aeserve. He was born in salem. Oregon, and
makes his home in Mountain View, California. He

is married and has a son. Among his many avoca
tions are beer brewing, ancient history and an
cients war-gaming, electronics, robotics, science
fiction, and jewelry-making.

Eugene J. Wong

in Los Altos Hills, California. She is married and has
lour children; one of her daughters is an application
engineering manager for HP. Her hobbies include
hiking, birdwatching. and traveling. Aecent trips
took her to the Himalayas in Nepal and on safari
in Kenya and Tanzania.

As a software engineer at
the Personal Software Divi
sion. Vicky Spilman worked
on the help system for the
NewWave environment.
She came to HP in 1982,
soon after graduating from
California State University
at Chico with a BS degree
in computer science. In the

past, Vicky has been involved with graphics sys
tems and independenl-software-vendor products
as a support engineer and has worked on software
for the HP 150 Personal Computer. Vicky lives in
Sunnyvale, California, and enjoys gardening,
aerobics, and bicycling.

43 = NewWave Help Facility======
Vicky Spilman

Eugene Wong was project
manager for the NewWave
help facility, formatter,
builds, and system perlor
manceand installation. He
also served as system
manager for the NewWave
developer system. In past
assignments, he has
served as engineer and as

project manager for automatic test systems and
real-time systems. He also managed the develop
ment of third-party software ports to the HP 150 Per
sonal Computer. Eugene's SA degree in mathema·
tics is from San Francisco State College; he came
10 HP after receiving his degree in 1970. He is a
member of the ACM and the IEEE. The HP 1000
ATE-IVoperahng system is the SUbject of a previ
ous article he has wnllen for the HP Journal.

Eugene was born in Siockton. California, and lives
in Cupertino. California. He is married and has two
daughters. In his off-hours, he likes to play go, read,
and study medieval calligraphy.

48= Computer·Based Training ======
lawrence A. Lync:h-Freshner

I A software engineer as-
A-OClIl. signed to the NewWave

projecl, Larry lynch-Fresh·
ner locused his allention on

design and implementation
of the animalion and com
puter-based training dis
play functions. In projects
before he joined the Per

sonal Software Division, he
supported the operating systems for HP 150 and
HP Vectra PCs, He studied computer science at
Oregon State University and came to HP in 1983.

A development engineer at
the Personal Software Divi
sion, Barbara Packard's
NewWave assignments in
cluded NewWave agents
and task language compil
ers. She came to HP in
1973 and spent seven
years working on the
COBOL compiler and

COBOL toolset lor the HP 3000 Computer. partly
as project manager. She also served as protect
manager for a cross-Pascal compiler and
MemoMaker software developments. Belore com

ing to HP. Barbara was an aeronautical research
engineer for the U.S. National Aeronautics and
Space Administration. Her as degree in mathe
matics is from Stanford University (1954), as are her
two master's degrees, one in mathematics (1955)
and one in computer science/computer engineer
ing (1977). She is a member of the ACM and the
American Association for Artificial Intelligence.
Barbara was born in Orange, California, and lives

Barbara B. Packard

Microcomputer systems
software is Chuck Whelan's
main professional interest,
and his contributions to the

NewWave project focused
on the object management

- facility, agent recorder, and
diagnostic utility. Since
joining HP in 1973, his proj-
ects have included the de

velopmentol ATE-Land ATE-VI operating systems
for the HP 1000 Computer, DS/1000 networking
software lor the HP 1000, and BIOS for the HP 150
PC. Chuck's SA degree in mathematics is from

Oregon State University (1964). Born in New York,
he is married, has lour children, and lives in Placer
ville, California.

Glenn Stearns' profes
sional interests focus on
autonomous systems, soft
ware archilectures, and ar

lificial intelligence. He was
a software engineeron the
NewWave project and be
came a project manager at
the time of its release. Be
fore joining HPin 1984, his

professional actiVities Involved mini- and micropro
cessors, multi-CPU applications, radio data com
munications, and PC environments. Glenn is the
named Inventoron one software patenl and a coin
ventor on two others. Studying computer science,
philosophy, and pSYChology, heanended Califor
nia Stafe University at Hayward for four years. He
is a member of the ACM and the American Associ
ation lor Arhliciallnteltigence. Born in New York, he

is married, has a daughter, and lives in SeoUs Val
ley, California. Motorcycles and philosophy pro
vide his oll-hours recreation.

38 =Agent Task language,=======

Chartes H. Whelan

32=Application Program Interface====

Glenn A. Stearns

AUGUST 1989 HEWLETT-PACKARD JOURNAL 65



Paul F. Robinson

Paul F. Bartlett

Tom Kraemerwasthe proj
ect manager of the HPVista
software development at
HP's Lake Stevens racility.
He has contributed to the
development of many HP
calculator. computer, and
instrument products as an
engineer, project manager,
and section manager. Cur

rently a section manager in HP's Logic Systems
Division. he is responsible lor R&D on HP Team
work SAlSD and HP64700emulator products. Tom
joined HP in 1978, after earning his MSEE degree
from Oregon Slate University, where he also
worked on a U.S. Navy research program. Before
starting college, he was a professional animator
and became interested in applying computer tech
nology 10 animation. He is married and resides in

Sunnyvale, California.

As one of the project man
agers for the HP 9145A
Cartridge Tape Drive, Paul
Robinson was responsible
for firmware development.
In a previous assignment,
he worked as an R&D en
gineer on a cost reduction
project. Belore joining the

,... HP Computer Peripherals
Bristol Division in 1985, he designed CAD software
for a number 01 electronics companies, among
them Phillips and Racal Corporations. Paul studied
computer science at the Loughborough University
of Technology and is a member 01 the British Com
puter Society. His professional interests focus on
software methods, metrics, and R&D processes.

As an R&D software quality
engineer, Paul Bantell was
responsible for the design,
implementation and testing
of the HP-IB interface han
dling process used with the
HP9145A. He is now work
ing on the development of
a process aimed at assur
ing quality and reliability 01

lirmware design. Before coming to HP in 1985. Paul
designed tetephone switching systems software
for C.E.C. Telecommunications and software for
mobile radio applications for Pye Telecommunica
tlonS. He is named inventor in a pending patent de
scribing algorithms used in remote backup soft
ware. Paul received his BSc degree in mathematics
from the Imperial College in 1977, and he is a
member 01 the British Computer Society. He was
born in Aldershotand lives in Bristol, the home of
HP's computer peripherals facility. He's married
and has three children. a boy and twin girls. His
hobbies include bicycling and photography.

87=Object-Oriented Software Technology =
Thomas F. KraemerMark J. Simms

, Design, test, and debug
ging of the buffer manage
ment software for the HP
9145A Cartridge Tape
Drive was Mark Simms' re
sponsibility. A software en
gineer at the Computer
Peripherals Bristol facility,
his cognizance now in-
cludes the overall analysis

and architectural design for other tape drives and
the design 01 buffer management software. In past
assignments, he was responsible for the data
spooling software used in earlier products. Two
patents are based on Mark's ideas, one lor remote
backup software and another for a file system
search meUm. He received his BSc degree in
computer science/mathematics from Bristol Uni
versity in 1984, the same year he joined HP. Born
in Leeds, he is married and lives in Bristol.

74=Tape Drive Reliability =======
David Gills

For over lour years. Dave
Gills has been a reliability
engineer and has worked in
both R&D and quality con
trol departments in HP's
Bristol facility. He was the
proiect reliability engineer
lor the HP 9145A and has
since moved to a new di

gital audio tape Prolect. His
past assignments include the HP_35401 A Canridge
Tape Drive. In his earlier career, Davewasa range
and flight trials engineer working on gUided
weapons for the British aerospace company. Some
years belore graduating from Coventry Polytechnic
with a BSc degree in 1983, he served a four-year
mechanical-engineering apprenticeship with ICI
Fibres ltd. He is an associate member of the Insti
tute of Mechanical Engineers and a member 01 the
Safety and Reliability Society. Dave was born in
Cheltenham, is married, and has an infant son. He
lives in Dursley, Gloucestershire. Golf is his favorite
pastime.

82=Real-Time Peripheral Firmware ====
Tracey A. Hains
.......... ... AsanR&Dengineeronthe

HP 9145A, Tracey Hains'
responsibilities included
analysis, design, and de
velopment of firmware for
the device task and the
operating system. She has
since begun designing the
digital data storage lormat

..."" ....JI..-" for new products. Other as
signments Tracey has worked on include the de
sign of software for a networked backup product.
She came to HP in 1985, after receiving her BSc
degree in mathematics and computer science from
the University of Bristol. A pending patent de
scribes algorithms Tracey originated. She was
born in Dorset, is married, and lives in Bristol.

57= Encapsulation of Applications =====
William M. Crow

BS degree in computer science engineering is Irom
Cahlornia State University at San Jose, earned after
seventeen years 01 altending night school. He
served seven years in the U.S. Air Force, where he
was a technician and instructor in metrology. He
was born in New York City, is married, and has two
children. Brian lives in San Jose, California. Asan
avocation, he leaches writing classes for engineers
at California State University. He also likes hiking
and mountain bicycling, and plays bass guitar in

a rock ban<:t

Tape head and cartridge
technology were Andy
Topham's focal points as
an R&D engineer on the HP
9145A project. He has
been a manufacturing en
gineeron a similar product,
the HP 9144A, and is now
responsible for a new prod
uct involving a tape drive.

Before he joined HP in 1985, he worked for Racal
Research ltd. as an R&D engineer for digital signal
processing and for Research Machines Ltd. on the
design of microcomputers. The tape head mount
ing system described in this issue 01 the HP Journal
is the subject of a pending patent that names Andy
as a coinventor. Heobtained his degree in physics
at the Imperial College in London in 1981 and is an
associate member of the lEE. Bom in Birmingham,
he now resides in Dursley. Gloucestershire. He is
married and has an infant son. His hobbies include
boardsailing, gardening, running, and photo
graphy.

67=Tape Drive Design =======
Andrew D. Topham

As an R&D project man
ager on the NewWave proj
ect, Bill Crow was respon
sible lor OMF and Office

software and the generic
encapsulation. He con·
tinues to serve as project
manager on other New
Wave aSSignments. He at
tended the University 01

Vermont where in 1974 he received his BS degree
in mathematics. He iOined HP's Personal Software
Division in 1984, where his responsibilities in
cluded the development of graphics products for
the HP3000 Computer. Bill's past professional ex
perience includes positions as director of com
puter systems at The Austin Company and as soft
ware designer for an aerospace company. He has
authored numerous papers and articles about data
communications, ollice automation. and personal
computers. He is named coinventor in two patents
relating to navigational systems and three pending
patents on the NewWave environment. Bill was
born in Newark, NewJersey. is married, and lives
in San Jose. California. His maiOr hobby is personal
computers.

66 HEWLm-PACKARO JOURNAL AUGUST 1969



Mechanical Design of a New Quarter-Inch
Cartridge Tape Drive
The design of the HP 9145A Tape Drive required doubling
both the track density and the tape speed of the existing
HP 9144A, thereby doubling the older drive's 67-Mbyte
capacity and 2-Mbyte-per-minute transfer rate.

by Andrew D. Topham

Mirror

Cover

____~~Tape Hub Pin (2)

Drive Roller
Pin

Corner Roller --"7""1
Pin (2)

Fig. 2. Exploded view of the new HP 92245US cartridge.

the new 32·track tapes.

Tape

Technical Challenges
When the development team started the task of designing

the HP 9145A, there were several key areas where major
design changes were required.
Mechanical Design. To achieve the increased capacity, the
number of tracks across the tape width had to be doubled
within the same %·inch tape width. To achieve the in
creased data transfer rate, the tape speed had to be doubled.
The design had to accommodate variations in components,
manufacturing processes, and operating environments and
remain capable of accurately positioning the read/write

Fig. 1. The HP 9145A %-Inch Tape Drive provides a storage
capacity of 133 Mbytes per cartridge and a data transfer rate
of 4 Mbytes per minute for backing up disc memory in entry
level and midrange computer systems.

T
HE EVER-INCREASING VOLUMES OF DATA being
handled by computer systems make it mandatory
for backup tape devices to continue to match the

growing disc capacities being projected. Both data trans
fer rate and tape cartridge capacity must continually be
improved.

The HP 9145A 'I.-Inch Cartridge Tape Drive (Fig. 1) was
developed in response to this need. Before tbe HP 9145A
was developed, HP's entry level and midrange commercial
computer systems and technical workstations were usually
configured with either an HP 9144A Tape Drive or an HP
35401A Autochanger for backup, depending on disc capac
ity. The HP 9144A has a cartridge capacity of 67 Mbytes
and a data transfer rate of 2 Mbytes per minute. The au
tochanger uses the same mechanism and has the same
transfer rate, but achieves a capacity of 536 Mbytes by
changing eight tape cartridges without operator attention.

The HP 9145A provides full compatibility with the HP
9144A and the HP 35401A while also providing twice the
data transfer rate. This is achieved by doubling the tape
speed from 60 to 120 inches per second. As a result, users
can back up their systems in half the time.

The HP 9145A has twice the data capacity per cartridge
of the HP 9144A. This is achieved by doubling the number
of recording tracks from 16 to 32. The HP 9145A can read
the older 16-track tapes, but the older drives cannot read

AUGUST 1989 HEWLETT-PACKARD JOURNAL 67



head witbin the data tracks to guarantee data reliability.
New Cartridge. An improved cartridge design had to be
introduced to support the increased tape speed and capac
ity requirements. This implied complete qualification and
testing as well as the setup of formatting and certification
lines by the cartridge manufacturers. At the same time, to
maintain compatibility, the drive design had to guarantee
that HP 9144A-written tapes could be read. The new car
tridge features an improved mechanical design and new
tape media. The tape offers higher reliability with a new
oxide formulation, which reduces the signal decay that
occurs each lime the cartridge is used. The cartridge has a
new belt and corner rollers to accommodate the increased
tape speed, and an extra tape guide for bettor read/write
accuracy.
Increased Reliability. The HP 9145A had to satisfy the user
needs that had been identified. This required designing to
much tighter tolerances and higher performance. At the
same time. we had to ensure that the new product incorpo
rated the lessons learned from the existing line and product
range with regard to reliability and manufacturability. Re
liability issues are discussed in the article on page 74.
Time to Market. To meet market needs, reliable prototypes
of the HP 9145A had to be ready for testing with the target
computer systems in under 12 months. Thus the design
team had less than a year to design hardware and firmware
from concept to reliable implementation.

HP 9144A Design
The HP 9144A Tape Drive's tape transport mechanism

has design concepts common to all V4-inch cartridge tape
drives. The cartridge itself (Fig. 2) provides a reference
plane in the form of the cartridge baseplate against which

the tape path and servo interface are closely aligned. The
drive takes advantage of this by clamping the baseplate
against accurately defined stops within the mechanism.
This ensures that the tape path aligns precisely with the
tape head magnetic cores used to read data from and write
to the tape, and that the servo motor puck aligns with the
drive roller within the cartridge.

Sixteen tracks of data are written across the quarter inch
of tape width. To read and write each of these tracks inde
pendently, the tape head in the drive is driven vertically
by a stepper motor and leadscrew arrangement.

HP 9145A Improvements
Because the development cycle had to be short and the

HP 9144A design offered a good starting point for many of
the design requirements, it was decided to leverage off this
product as much as possible. This approach was particu
larly pronounced in the mechanism area where, for exam
ple, the casting used to align all the mechanical compo
nents and the cartridge clamping assembly were left totally
unchanged. Fig. 3 shows the HP 9145A drive mechanism
with its associated electronics removed.

The development of an enhanced V4-inch cartridge from
the cartridge manufacturer, dubbed the HP 92245US, made
possible the doubling of the track density. Evaluation of
this cartridge was in itself a major task which was run in
parallel with the drive development.

Tape Speed
The HP 9144A data transfer rate was identified as a prior

ity area to be improved upon. With the HP 9145A providing
double the cartridge capacity, keeping the data transfer rate
constant would have resulted in a doubling of the time for

68 HEWLm-PACKARD JOURNAl AUGUST 1989

Fig. 3. HP 9145A drive mecha
nism.



reading or writing a cartridge.
One approach that could have been taken would have

been to increase the linear transition density of the data
on the media, resulting in a correspondingly higher data
rate for a constant tape speed. However, this was rejected
for two reasons. First, it would have led to complications
in the read channel filtering and data recovery side of the
drive, because of the need to continue to be able to read
HP 9144A data with its lower transition density. Second,
the media had not been proved able to perform sufficiently
well at the higher transition density. The cartridge man
ufacturer was actively evaluating the media for this density,
but there would inevitably have been an increased risk to
the project.

The approach taken to improve the data transfer rate was
to double the tape speed while keeping the transition den
sity the same as in the HP 9144A drive. This led to a twofold
transfer rate improvement, and took the drive from the 60
ips (inches per second) used by the HP 9144A to 120 ips.

Running the tape at this speed raised some technical
concerns about the cartridge. Would the mechanics of the
cartridge be able to handle this speed without either in
stabilities in the tape transport or degradation of cartridge
operating lifetime? Would an air hearing form hetween the
head and the tape, causing signal loss?

Cartridge Mechanics
The new HP 92245US cartridge was developed by the

cartridge manufacturer with one of its major goals being
continuous, reliable operation at a tape speed of 120 ips.
During the testing of the HP 9145A drive the design team
was able to provide valuable feedback to the cartridge man
ufacturer on the performance of the cartridge, with the
result that several design modifications were made to boost
the long-term reliability.

Critical parameters in the cartridge evaluation were the
tape tension, the drive force, and acoustic noise. The tape
tension had to be high enough to prevent the formation of
an air bearing between the head and the tape, and yet lnw
enough to prevent excessive head wear and hence short
drive lifetimes. The drive force (the drag applied by the
cartridge on the servo motor) had to be sufficiently low

that the servo drive motor and associated control elec
tronics that control the tape speed at 120 ips were not
unduly stressed. Doubling the tape speed was found to
have a substantial effect on the audible noise emitted from
the cartridge. The HP 9144A and HP 9145A drives are
bound by the HP specification for office environment oper
ation and so have to satisfy a very low noise requirement.
A joint development program, with the drive design team
supplying test data to the manufacturer concerning the
noise emissions from the cartridge in the HP 9145A drive,
allowed the cartridge manufacturer to modify the cartridge
to bring the noise level down to an acceptable level (Fig. 4).

The overall result of the work that went into solving all
the above problems was that the HP 92245US cartridge
has emerged as a substantial improvement over its pre
decessor. Many of the changes that have been implemented
in the HP 92245L1S cartridge are now being adopted for
the HP 9144A cartridge.

There was concern whether older cartridges used in HP
9144A drives could be read in the HP 9145A drive. These
had only been rated at a maximum tape speed of 90 ips by
the cartridge manufacturer. However, an extensive testing
program during the development of the HP 9145A drive
confirmed initial indications that these cartridges were
very conservatively rated, and the majority performed well
in the test program, In a very small number of cases there
was some cause for concern over the longer-term use of
such cartridges at 120 ips. An unacceptable increase in
drive force could occur after running continuously for sev
eral days at the maximum rated operating temperature.
This problem was avoided by specifying that the new drive
would only be required to offload data from an HP 9144A
cartridge once. This is backed up by instructions to this
effect in the user manual.

Head-to-Tape Contact
Intimate contact between the tape head and the media

is essential in any tape drive to provide maximum read
signal and minimum distortion. Head-to-tape contact is
dependent on three factors:
• Tape speed. A higher speed produces greater spacing.
• Tape tension. Higher tension pulls the tape closer to the

head.

Fig. 4. Noise level of the new HP 92245US cartridge com·
pared with its predecessor.

180

Standard Belt

Textured Belt

120 15090

Tape Speed (Ips)

6030o

4

Fig. 5. Steady-state tape tension of the HP 92245US data
cartridge, comparing the improved textured drive belt with
the standard belt used in older cartridges.

12(1

HP 9145A

60 90

Tape Speed (Ips)

66

64

62

60

'< 58
III
~ 56 Specification LimIt
~ S4 I-'=====,+---~.£= .....------
~ 52

-g 50

~ 48 J...c:.::...----
46

44

42
40 L- -+ I- _

30

AUGUST 1989 HEWlETT·PACKARO JOURNAL 69



Unwritten Area Containing Noise Signals

Misalignment
Error

Track Density
The HP 9144A drive places 16 tracks across a V4-inch

media width. To double the capacity of the drive without
increasing the linear bit density it was necessary to fit 32
tracks across the media. This was achieved by:
• Reduced written track width
• Improved head positioning accuracy
• Improved cartridge tracking specifications
• Improved cartridge media defect specifications
• A new track layout
• Track seeking
• -Improved core alignment
• Improved tape head mounting.
Track Width. The track width of a tape drive is defined
by the width or the magnetic core within the tape head.
Both the HP 9144A and the HP 9145A use a system of wide
write, narrow read, whereby the read core width is less
than the width of the written track. This ensures that the
read core will be over the written track even if there are
positional errors between the core and the center of the
track (Fig. 7). If the read core falls outside the written track,
the signal amplitude from the track will be reduced and
the core may also pick up the remains of previously written
data. This would degrade the drive's signal-to-noise ratio
and compromise its recovery capability.

The track width specified for the HP 9145A drive is, as
far as we know, the narrowest used in the industry on
V.-inch cartridges, and is about half that in the HP 9144A
drive. To achieve this we need to hold the tape head core
width and core alignment tolerances tighter than in any
comparable head. This was achieved by working very
closely with the tape head vendor to refine their existing
HP 9144A head manufacturing process until it was capable
of producing HP 9145A heads with consistently good
yields. In a year the vendor went from doubting that
adequate yields could ever be achieved to producing heads
that fully met the specification with good yields.
Head Positioning Accuracy. Head positioning to select be
tween tracks in the HP 9144A drive is achieved by a stepper
motor driving a lead screw. Riding up and down the lead
screw is the head carrier assembly with the tape head
mounted at one extreme.

This approach was maintained for tbe HP 9145A. How
ever, the resolution of the stepper had to be at least doubled
to place the head accurately over tracks that were half as
far apart. Stepper motors with small angular stepping iDcre·
roents are now fairly common. However, the real challenges

Write
Core

Read
Core

Unwritten Area Containing Noise Signals

Written
Track

• Head profile. The shape of the front face of the head in
contact with the tape has a complex effect on the tape
spacing.
The development program for the HP 92245L1S cartridge

resulted in that cartridge having such an excellent tape
tension characteristic that head-la-media separation is not
a prohlem, even at 120 ips (Fig. 5).

The testing program showed that for the vast majority of
the older HP 9144A cartridges, there was no problem in
running at 120 ips. A very small number of exceptions to
this rule were found. The problem cartridges were from a
few batches that the cartridge manufacturer was able to
trace back to a time when there had been minor problems
in the cartridge production process. These cartridges exhib
ited very low tape tension so that, at 120 ips, there was a
tendency for the tape to lift off the read/write bead slightly.
This led to reduced read signal amplitude (spacing loss)
and so occasionally to read errors.

One attempt to keep the spacing loss to a minimum was
through experimenting with the tape head profile. This
profile must be accurately designed and machined to offer
a surface that does not abrade the media, will withstand a
lifetime's use, and maintains intimate contact with the
media. The wear requirement and the intimate contact re
quirement tend to favor opposing profile shapes, so that
any solution is inevitably a compromise between the two.
Some experimentation with profiles that exhibited radii
both sharper and more gentle than that used on the HP
9144A tape head showed that the existing profile, as shown
in Fig. 6, was a good approximation to the ideal. The adop
tion of this profile removed another risk area in that this
profile is already well-understood and in large-scale pro-
duction. .

The spacing loss problems were overcome by building
into the drive a 90-ips read mode option. Dropping the
speed causes the tape to drop closer to the head, thereby
improving the read signal. This option is automatically
invoked by the drive when it detects that errors are occur
ring because of the above phenomenon. Extensive testing
has proved the capability of this approach.

Fig. 6. HP 9145A tape head profile. Fig. 7. Misalignment error.

70 HEWLrn·PACKARD JOURNAL AUGUST 1989



here proved to be obtaining a leadscrew that maintains a
constant thread pitch along its length and improving the
head carrier movement to minimize the variation in linear
displacement for each step of the stepper motor. This is
essential if the track-to-track spacing is to be constant across
the width of the tape.

After much evaluation of various leadscrews and modifi
cations to the head carrier system, a head positioning sys
tem was developed that exhibits minimal errors that are
highly predictable and repeatable across all mechanisms.
Fig. 8 shows a typical final positioning accuracy plot.
Cartridge Tracking Specifications. The greatest single im
provement of the HP 92245US cartridge over the HP 9144A
cartridge is the replacement of a simple pin at the front of
the cartridge with a guide roller. This part supports the
tape on one side of the read/write head. This has allowed
the cartridge to be respecified by the manufacturer so that
the maximum vertical tape movement (tracking) is cut in
half.

Clearly, vertical tape movement results in the tape head
being slightly off the data track to be read. The improved
cartridge specification is essential to be able to put 32 tracks
on the tape and repeatably recover the data. Testing both
at the cartridge manufacturer's laboratories and at HP
showed that the new cartridge performs well within the
new specification, as shown in Fig. 9.
Cartridge Media Defect Specifications. The HP 9145A
drive is far more prone to data errors arising from media
defects because of its narrow track size. Any drive can
recover a read data signal until it goes below a certain
threshold voltage that is set as a fraction of the peak read
signal amplitude (typically 25 to 50%). The read signal
level is proportional to the effective read track width. This
effective track width is reduced by the presence of any
defect. The drive is sensitive to media defects that occupy
such a large proportion of the track width that the read
signal falls below the threshold voltage (Fig. 10). This
makes the HP 9145A drive, with its smaller track width,
susceptible to smaller defects. In addition, the number of
defects on a given piece of media dramatically increases
as the defect size decreases. Fig. 11 shows the defect charac
teristics for the HP 92245US media.

The HP 9144A and HP 9145A drives have two main
weapons with which to tackle these defects. First, all the
HP-Iabeled cartridges that are supplied to customers are
certified by the cartridge manufacturer. Certification takes
the form of writing to the tape and then reading the signal
back. Any errors are assumed to be because of media de
fects; these positions on the tape are marked and "spared
out" so that they will not be used again. If any cartridge
has an unusually high number of blocks spared it is re
jected. In the case of the HP 92245US cartridges supplied
to HP, this certification is performed by the cartridge man
ufacturer using unmodified HP 9145A drives. This im
mediately removes any concern about the unknown re
lationship between the certifying drive and a customer
drive in reading data from the certified cartridge. Second,
when writing data to a cartridge, both the HP 9144A and
the HP 9145A drives immediately read back the written
signal to verify its integrity using their read-after-write
capability.2 Any errors cause the drive to mark that area
of tape as bad and then rewrite the affected data farther
down the tape.

The HP 9145A drive's narrow track width makes it more
prone to small-scale media errors than the HP 9144A. This
is overcome by the higher-quality media in the HP 92245US
cartridge, which has a lower proportion of defects at the
HP 9145A read core dimension. To cope with the slightly
inferior media in the HP 9144A cartridges, all HP 9144A
written data is read back with the write core of the HP
9145A head. This core is larger than the HP 9145A read
core and so is less affected by the smaller defects. This
write core approaches the size of the HP 9144A drive read
core and so, when coupled with the HP 9145A's track seek
ing capability [discussed later), results in the HP 9145A's
being able to recover a signal from an HP 9144A cartridge
at least as well as an HP 9144A drive can.
Track Layout. The HP 9144A drive lays down data on tape
in a serpentine fashion, that is, one track is written in one
direction from one end of tape to the other, then the next
track is written directly above in the opposite direction,
and so on up the tape (see Fig. 12a).

A problem with this format is that the tape has a natural

600

End
of

Tape

EDT to BOT

300

Feet of Tape

'E BOT to EDT

J001 J,-----------+------

~ 0
{!.
u -0.01 t--=c;;----;=::-c-,.,..------+------
~ limit - 0.127 mm
~
o
<

~
-0.04 +----------t------------i

o
Beginning

of
Tape

0.04

E
.§.

Ideal Mechanism

Typical Mechanism

1000 1500 2000
Cumulative Steps

500o

1.0

0.0 -+d.......--.---------------
c:§: -1.0

~ -2.0

W -3.0

~ -4.0
o
~ -5.0

~ -6.0

~ -7.0
~
'3 -8.0
§ -9.0
(J

-10.0

-11.0 '----1-----+---+----+----'

Fig. 8. Typical head positioning error plot for an HP 9145A
Tape Drive.

Fig. 9. Transverse tape movement plot for an HP 92245US
cartridge shows that vertical tape movement (tracking error)
is well within specifications.

AUGUST 1989 HEWLETI-PACKARD JOURNAL 71



tendency to step up or down as the direction is reversed
because of the reversal of direction of tape pull. This leads
to an error in the relative positions of two adjacent tracks
that is at its maximum since these tracks are in opposite
directions.

In the HP 9145A drive this problem was alleviated by
writing all the tracks in the forward direction in the lower
half of the tape, and all the tracks in the reverse direction
in the upper half of the tape (Fig. 12b). Thus, adjacent
tracks are generally written in the same direction and so
do not suffer from this step error.

There is still a problem in the center of the tape where
tracks 30 and 1 run alongside each other in opposite direc
tions. This is overcome by allowing a slightly increased
track spacing between these two tracks. This increased
spacing does not impact the track density, since the allow
ance only has to be incurred once rather than 32 times.
Track Seeking. Both the HP 9144A and the HP 9145A
drives locate the edge of the tape when each new cartridge
is loaded. This edge is found by moving the tape head
down until the read signal disappears. From this edge-of
tape position, the drive firmware is programmed with the
number of stepper motor steps needed to reach each track.

This dead reckoning approach for locating any track from
the located edge of tape has been perfectly adequate for
the HP 9144A drive. In addition, it offers sufficient accu
racy in positioning the head for the HP 9145A during a
write operation. However, during reads, the HP 9145A may
be attempting to read data that has been written by another

drive. It is possible for the writing drive to have written
the data to one extreme of the allowed tolerances, and then
the reading HP 9145A to have positioned its read head to
the opposite extreme. With the narrower data tracks used
by the HP 9145A, this can lead to such poor alignment of
the head overthe written track that read data errors occur.

The HP 9145A overcomes this track misregistration by
a technique known as track seeking. Initially, the track is
located in the normal way as described above. If read errors
occur, the drive attempts to find the track by stepping the
head alternately above the nominal position and then
below the nominal. The step size is progressively increased
until' the errors disappear. This new position is then con
sidered to be the correct position for subsequent reads of
the cartridge.
Core Alignment. To ensure that both the read and write
cores of the appropriate channel in the tape head are always
centered on the data track, the horizontal alignment be
tween the write core and the read core must be held very
tightly (Fig. 7). Although the write core is made slightly
larger than the read core to minimize this problem, a limit
is imposed by the need to fit 32 tracks across the tape. A
tolerance analysis of the existing HP 9144A head manufac
turing process showed that the write-to-read core alignment
was already at the extremes of the process capability. For

10

Flux Transitions Written
on Tape

Read
Track
Width

J
Effective Defect Diameter
Because of Tent Effect

iii 0.1..
e.
.~•c "• .-.
0 ~

~ %.
0.01

..,
0 'i,

<0<>
'l,

0
%

0.001

1.0

100%

Defect or Asperity

I~
Signal

on the Tape j
Threshold

level

r~
1/ "

(b)

ta)

Effective Defect Diameter (inches)

'DPSI = Dropouts Per Square Inch

0.0160.0080.004
0.0001 .I-----+----+------.,f-__~--

0.001 0.002

Fig. 11. Defect density characteristics for the HP 92245US
cartridge. Defect density is the number of defects per square
inch of readback area. The readback area is calculated from
the read track width, the tape length, and the number of tracks.

Fig. 10. Effect of a media defect on the read signal. (a) The
tent effect is where a defect on the media (effectively a lump)
causes the media to be liftedaway from the tape headsurface.
The resulting shape that the media takes (looking at a cross
section) as it is lifted in the middle and pulled back to the
tape head surface looks like a wigwam, hence the name tent.
(b) An analog display of the output of the read head with a
defect on the media. A defect results in a reduction of the
signal below the threshold level, causing lost read data.

72 HEWLm-PACKARD JOURNAL AUGUST 1989



t
I
I
I

(al

t
I

t,

(b)

Fig. 12. Track layouts. (aJ HP 9144A (b) HP 9145A

the HP 9145A, the tolerances had to be halved, necessitat
ing a radical approach to the manufacturing process.

Several lengthy meetings with the head vendor resulted
in an agreement to adopt a new manufacturing process that
an exhaustive tolerance analysis showed should achieve
the yields required. Subsequent manufacturing runs indi
cate that the original analyses were very accurate.
Tape Head Mounting. As previously mentioned, the tape
head uses a read core that immediately follows a write core
to provide read-after-write capability. To minimize pickup
of the write signal through direct flux linkage into the read
core it is desirable to maximize the separation between the
read and write cores. This separation will cause the read
core to be offset from the written track if the head is not
mounted perfectly perpendicular to the tape motion (zero
azimuth angle, see Fig. 13). This problem is twice as acute
in the HP 9145A mechanism because its written track is
half as wide as that of the HP 9144A drive.

In the manufacturing process for the HP 9144A the
azimuth angle of the tape head is set by running a tape
past the head and measuring the relative times at which
the four cores see patterns prerecorded on the tape. While
this process provides a good method for measuring the
required accuracy, it takes a fairly long time to perform for
each head and the adjustment of the head position to
achieve zero azimuth is extremely difficult.

A design change to the head greatly simplifies this re
quirement while also speeding the head mounting process.
The central section of the head was increased in size so
that it protrudes above and below the outer sections. Since
the interfaces between these sections define the core gaps
and hence the effective positions of the read and write
cores, a tool was designed that references off the exposed
sides of the central head section to set the azimuth angle
of the head accurately. This design change to the head also

Azimuth -"
Angle (01) \

\ Plane
_ Perpendicular

to Tape

++__;.\..\- -+-wrlte
Core

Head

Fig. 13. Azimuth angle. For clarity, only one of the two pairs
of cores is shown.

allows a simple mechanical means of verifying the accuracy
of the azimuth angle of the mounted head.

Conclusion
The HP 9145A drive is now shipping to customers. Strict

quality control measures are being used throughout the
manufacturing process and further stressed-environment
audit testing is being applied to the drives produced. So
far these tests have verified the ability of the HP 9145A
drive to achieve its original performance and reliability
goals.

Acknowledgments
I would like to take this opportunity to recognize the

considerable design achievements of the HP 9145A mech
anism design team, specifically Jack McGinley, Simon Git
tens, Henry Higgins, Alex Clark, and Steve Langford. In
addition, 1would like to thank the transition team of Geoff
Mansbridge and Chris Marlin, who devised the HP 9145A
manufacturing process, which is key to being able to man
ufacture these mechanisms repeatably to the tight toler
ances required.

References
1. W.L. Auyer, et al, "Controlling the Headrrape Interface," Hew
leU-Packard Journal, Vol. 36, no. 3, March 1985, pp. 44-47.
2. K.D. Gennetten, "Cartridge Tape Data Integrity Ensured at Five
Levels," Hewlett-Packard Journal, Vol. 36, no. 3, March 1985,
pp. 39-43.

AUGUST 1989 HEWlETI-PACKARD JOURNAL 73



Reliability Assessment of a Quarter-Inch
Cartridge Tape Drive
Aggressive quality standards were verified by over97,000
test hours before manufacturing release and are audited
continually in production.

by David Gills

0.0 yL--+---i--+--f---+--I--+-+--+-+

Nominal Head
Lite

Unit 2

\1.5

2.0

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Tape Pulling Time (Hours)

variations. This was clearly demonstrated during the test
ing, No permanent damage was seen on any of the data
heads following extensive strife (stress + life) testing.

Fig. 1. Head wear as a function of test hours for production
HP 9145A heads.

Head Wear
Wear of the head is accommodated until the depth of

the wear reaches the throat depth of the core. When this
occurs, the head performance drops off dramatically and
without warning.

Since the speed of the tape over the head has doubled
from the existing HP 9144A, head wear characteristics have
become an issue. As the tape speed increases, the frictional
forces on the interface increase. However, aerodynamic
compression of the air behind the tape at these higher
speeds can have the opposite effect on the wear rate. This
phenomenon is very difficult to describe theoretically, so
the relationship had to be confirmed by a controlled exper
iment.

Testing showed that the rate of wear of the head took on
the standard exponential shape when plotted as a function
of time, as shown in Fig. 1. The measurements were taken
using a Rank Taylor Hobson Talysurf 10 machine. A typical
profile is shown in Fig. 2.

The throat depth of the core is nominally 40 !-,m, so it
can be seen from Fig. 1 that there is considerable margin,
even based on the small sample of drives tested. Therefore,
head wear is unlikely to be the first mode ofwearout failure.
This was confirmed during testing. The capstan motor was
found to be the first mode of wearout failure in the product.

:: 1.0
~..
~

1i 0.5•c

Tape Head
As described in the article on page 67, the tape head had

to be totally redesigned because of the reduction in the
track width and the increase in the tape speed. The effect
of the tape head on the track placement accuracy is gov
erned mostly by the mechanical tolerances of the core sizes
and the positioning of the cores on the head. Shock, vibra
tion, and temperature can lead to inaccuracies in the track
placement. A full test program was carried out to explore
and quantify all these effects on the performance of the
drive.

The temperature margin above the storage specifications
of the HP 9144A tape head before damage is incurred is
well-understood from past test data. The elements of the
manufacturing process that affect this margin are also well
understood.

The first mode of failure of the HP 9144A tape head
when the temperature is increased outside the nonoperat
ing temperature limits is a deformation of the profile of
the head. This is caused by stress relieving of the plates
that make up the structure of the head. It is a permanent
failure, making the head unsuitable for further service. The
manufacturing process has been radically changed to elimi
nate this mode of failure, which is now well-understood.
By eliminating this mode of failure in the design of the
new head, a much wider reliability margin has been
achieved, making the head less sensitive to manufacturing

T
HE QUALITY GOALS FOR THE HP 9145A Tape
Drive included a failure rate that was half that of
the earlier HP 9144A, an error rate performance that

was 10 times better than the HP 9144A's, the same useful
life as the HP 9144A, and full backwards compatibility
with all HP V.-inch data cartridges.

The reliability test plan showed that to be able to halve
the failure rate value within the development time of just
over 1.5 years, then approximately 100 prototype units
would be needed, resulting in an accumulation of 97,000
test hours before manufacturing release. Reliability growth
was monitored using the Duane plot technique,l and there
were interim goals at each of several checkpoints within
the development program.

The reliability of this product is also being continuously
assessed during manufacturing. For this purpose a detailed
manufacturing reliability audit test schedule was de
veloped. This will be discussed in more detail later in this
article.

74 HEWlETT-PACKARD JOURNAl AUGUST 1969



This will be discussed later in more detail.

Positioning Tolerance
Because of the increase in the requirement for track place·

ment accuracy, the tolerances on the design and manufac·
ture of the leadscrew that drives the head up and down
across the tape had to be tightened significantly.

The leadscrew design for the HP 9145A is the same as
for the HP 9144A. However, because of the precision re
quired, the manufacturing tolerances were tightened signif
icantly. On the HP 9144A, the thread pitch dimension has
a ±5-j.Lm tolerance, which is accumulated along the length
of the thread. This will obviously give a large overall toler
ance on the length of the leadscrew. On the HP 9145A, the
thread pitch dimension also has a ±5-J.Lm tolerance, except
that it is not accumulated along the length of the leadscrew.
This gives an overall tolerance for the length of the
leadscrew of ::.5 j.Lm.

The manufacturing processes that influence this preci
sion have to be controlled using statistical process control
techniques to mai.ntain the required accuracy. The data
from the control charts is continually being monitored.

Repeatability of the track placement was critical to the
success of the project, so a rigorous test program was
adopted to assess its impact on the reliability of the drive.
The leadscrew is machined and ground precisely from non
magnetic stainless steel, but the nut that runs along it is
made out of acetyl. The two main problems that arise are
the accuracy of the leadscrew and the long-term accuracy
of the nut. Since the nut is made of a much softer material
than the leadscrew, we needed to ensure that there was no
significant wear or load deformation. A key factor in the
design of the head positioning system is that the head car
rier is preloaded with a spring. This ensures that there is
no mechanical hysteresis or backlash in the system, thereby
driving the nut on one face of the thread only.

Shock and vibration testing was carried out to check for
these issues, and it was found that this design has a very
wide margin of safety over the quoted operating specifica
tions before track placement becomes an issue.

Capstan Motor
Since the tape speed of the HP 9145A is twice that of

the HP 9144A, that is, 120 ips compared with 60 ips, the

Profile of
Wear

Left /TOP of Head

Side

Rigtlt

/Side

I

Tape

Depth of
Wear

tal

Top of Head-
Original Profile before Head Wear

------------------

Tape Head Contact Region (mm)

Shield

\

Shield

Core \B

I I I
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

e- 1.0

.:; 0.8
~• 0.6;:
"0 0.4

"'1i. 0.2•c
0.0

0.0

tb)

Top of Head---

Original Profile Before Head Wear
------------------------------1.0 T---.;:

Tape Head Contact Region (mm)

e
~ 0.8

: 0.6
;:
'0 0.4

a0.2

~
0.0

0.0

tel
1.0

Core
A

I

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

Fig. 2. Profile of HP 9145A head
wear after 2000 hours. (a) Area
being profiled. (b) Left side of
head. (c) Right side of head

AUGUST 1989 HEWLErT-PACKAADJOUANAL 75



acceptable rate.
The drive belt that runs on the tape (wound around the

hubs), was also redesigned from a new material, and is
being manufactured with a new process, giving more stable
belt tension.

An additional tape guide was designed in to provide
beller tape placement accuracy. Since the tracks on the HP
9145A are half the width of the tracks on the HP 9144A,
this was a critical area in the design of the cartridge.

The guide rollers were also redesigned, since the increase
in tape speed caused the rollers to become a source of
unac;ceptable acoustic noise. Resonances were built up
from out-of-balance forces of the rollers running at bigh
speed, and were transmitted lhrough lhe case and baseplate
of the cartridge.

Backwards Compatibility
Since the HP 9145A is intended as a natural upgrade

path from the HP 9144A, it must be able to read existing
tapes that have been written by the HP 9144A and other
HP V.-inch tape drives. Complexity is added by the variety
of revisions of each product and of the %-inch cartridge.
The HP 9145A has to be compatible with the entire V.-inch
tape product family over the operating temperature range,
for any data pattern written by any other compatible drive.
To prove the error rate performance over all possible com
binations, the testing required would takeover five years!

Some of the variables to be considered when concerned
with interchange and backwards compatibility are temper
ature, humidity, data pattern, length of tape, data source,
tape age, tape type, revision of unit, altitude, shock and
vibration, 120V/240V, and age of drive. Using Graeco-Latin
square (statistical design of experiments) techniques,2 we
were able to get this test program down from 260 combina
tions to a program of 16 representative combinations.

On eacb of the 16 runs, 10" bits of data was handled by
each drive (the error rate specification is 1 bit in error for
10" bits of data handled). The tests were designed to find
combinations that did not work at all or any trend or pattern
that could indicate a combination that would potentially
not meet specification.

The program was very extensive, and the testing was not
able to find a combination that indicated that the specifica
tions could not be met. Tbe HP 9145A sbowed that it was
able to read data from any combination that it was tested

capstan motor is required to run faster and have a higher
torque. This allows the tape mechanism to start and stop
more rapidly and accelerate to normal operating tape speed
more quickly. These factors affect the overall life of the
product, and since the goal for the useful life of the HP
9145A is the same as that of the HP 9144A, we needed to
assess these parameters.

Working closely with our vendor, we were able to feed
back test data from the development work being carried
out in the laboratory from failures that were uncovered.
The increase in speed and start-up torque showed that the
current density at the brushes of the motor was too high,
resulting in an unacceptable rate of brush wear. It was also
found that the debris from the brushes was finding its way
into the motor bearings, pointing to a need for shielded
bearings.

The vendor was able to change the brush shape and
material to extend the life to meet the goals. This was
subsequently verified by extensive testing by the motor
manufacturer and HP.

Printed Circuit Assemblies
Both the servo control printed circuit assembly and the

main controller printed circuit assembly are newly de
signed boards, and as such had to be tested by a rigorous
performance and stress test program. Again, working
closely with our vendors, we were able to attack potential
failure modes before the design was put into full produc
tion. An example of a typical component failure that was
uncovered and eliminated is a crystal oscillator that failed
during strife testing. Subsequent analysis showed that the
failure had been caused by thermomechanical expansion
of the terminals that support the crystal plate within the
device. The movement of the terminals had resulted in a
fracturing of the brittle crystal plate, rendering tbe compo
nent unserviceable. Since the vendor was unable to help
in this instance, the component was second-sourced, re
sulting in much belter quality.

Cartridge
Tbe design of the HP 9145A relies very heavily on the

quality of the media that it uses. With the performance of
the drive increased so dramatically, the existing tape was
inadequate. Although the older tape is compatible with the
HP 9145A, its longer-term reliability was questionable. A
reduction in defect size was critical to the reliability goals
that were set for data integrity. The media defect size be
comes far more critical as the width of the track decreases.

The project was discussed with the vendor that supplies
the media, and jointly we agreed that a new tape needed
to be introduced. This was a very extensive development
program, carried out by the media manufacturer in parallel
with the development of the drive at HP. Some of the prob
lems associated with this development work have already
been outlined in the article on page 67.

The cartridge mechanics were also redesigned to give
belter tape handling characteristics, resulting in belter tape
tension and drive force control.

The hubs that support the tape were redesigned from a
new material. so that the cartridge is able to cope with the
additional tape speed without weaJ;'ing the hubs at an un-

76 HEWlETT·PACKARD JOURNAl AUGUST 1989

40

~ 30
2
;f.20
Z
E
i 10

o

_ Total over Nine Months

Start 1 2 3 4 5 6 7 8 9 10 End

Cycle Number

Fig. 3. Typical distribution of faults in burn-in testing.



Fig. 4. Distribution of faults among the various subtests of
the burn-in test.

o ~P~o=w~e:-,---;'L':oa~d;--;;R':e''':d;-;-LO~c~.;:te-;R~e''''d:--;L~oc:'.':cte;-c;;':,'''e.Ln-;U::-n""'o"."d
Cycle Only and Write and

Write Read

cycles (see Fig. 3). This obviously means that there is a
real opportunity for shortening this test after more confi
dence is built up from a bigger test history.
Customer Environment. These tests are designed to simu
late more closely lhe environment seen by the product
during the warranty period. Hence, the failures found are
intended to mirror the failures found in the warranty sys
tem. The duration of this test has been established from
an assumed typical use of the product. The test is not
performed on all units, but on a sample of approximately
5% of production. The testing simulates the time from when
the unit leaves the end of the production line to the end
of the warranty period. Therefore, the shipping of the prod
uct, the end-use handling, and the in-service operation of
the product are simulated. The details of the customer en
vironment are as follows:
• Book out unit from finished goods.
• Drop unit in packaging onto concrete from a height of

1.2 m.
• Make visual and functional inspection for cosmetic dam

age, accessories completeness, failure to power-up and
pass self-test.

• Thermal cycle between the operating limits of the drive
for 40 hours.

• Apply nonoperating vibration at 1.5 times specification
for one hour.

• Compare data at ambient temperature between host and
drive for 100 hours.

• Interchange data between drives in product family for
24 hours.
The lest cycle lasts for one week, after which the units

are returned to the production line for shipment. These
units are considered to be some of the most reliable to leave
the factory, since they have had all the infant mortality
problems removed, and have proved to work reliably for
a significant period of time.
Life. The life testing of the HP 9145A is currenlly being
carried out by the suppliers of the media. This is because
the media suppliers own many HP 9145As and use them
al a very high duty cycle to certify all the tapes that are
manufactured by them. This enables HP to use this infor
mation without cost. Obviously we need to be working
very closely with these suppliers to ensure that the infor
mation that they supply to us is accurate and complete.
The collection of this data will continue into the foreseeable

_ Total over Nine Months

10

~ 20
E,
z

so

40
!l..
: 30

Audit Testing
Although tbe tesls described so far confirmed the relia

bility of a sample of prototype and early production drives,
they in no way reflect the factors that will affect the relia
bility of the product in the long term, that is, factors related
to lhe manufacluring process. Although the HP 9145A has
been highly leveraged from the HP 9144A, with many im
provements to the product and the process based on the
wealth of information available, the reliability of the prod
uct in the long term cannot be measured or quantified
unless real data is at hand. The warranty system, which
records the numbers of failures in the field, provides data
that is obviously too late. What is needed is a means of
conlrolling the reliability of the drives wilh a closed-loop
system that has a response that is almost immediate. The
only way to do this is by continued unit testing on an audit
basis.

An audit lest strategy was devised for lhe HP 9145A that
will enable manufacturing engineering to keep a tight con
trol on process variations that affecl the reliability of the
product. A secondary objective of the audit testing is to
ensure that the data being collected correlates closely with
the data that is being continually collected from the war
ranty claims.

Much data is available from the prototype testing, and
this was used as a basis for determining the general content
and duration of each audit test. Also, a comparison was
made with other divisions of Hewlett-Packard to appreciate
some of the problems encountered in such testing.

The audit testing has three phases: burn-in, customer
envLronment, and life tests.
Burn-ln. This is performed on 100% of all units manufac
tured, and lasts for approximately 14 hours. This test is
solely designed to catch the dead-an-arrival or infant mor
tality failures that somehow escape the manufacturing final
lest. Although the final test is considered to be adequately
thorough in testing the total functionality of the unit, there
are often intermittent faults or failures caused by weak
materials that survive the final test. These intermittent
faults often appear very early in the product's service life.

The format of the burn·in test is based on data from the
prototype testing. It consists of ten cycles of power cycling
and self-tests, loading tapes, performing read/write and
read-only error rate tests, performing locate and read andlor
write operations, comparing data with the host system, and
unloading and unlocking the cartridge.

The results from the initial nine months of testing show
that the faults are being uncovered very early in the test

Mechanism related failures: 70%
Controller relaled failures: 20%
Firmware related failures: 10%

against.

Test Program
Allhe complelion of the lest program, 97 prototype units

had been tesled, accumulating over 97,000 lest hours. Over
500 tapes were used during the performance and inter
change testing, and a total of over 150 failures were found.
These failures can be broken down as follows:

AUGUST 1989 HEWLETT·PACKARO JOURNAL n



future since the data is obtained free and will be needed
to ensure that any changes in the manufacturing process
do not affect the long-term reliability of the drives.

Results of Audit Testing
The first nine months of data has shown some interesting

results. Problems are being uncovered in the burn-in test,
as expected. This justifies its presence and quantifies the
costs saved from warranty claims arising from very early
failures, not to mention the hidden costs of customer dis
satisfaction.

It can be seen from Fig. 3 that the majority of failures
that have been uncovered so far have occurred very early
in the test program. After the fourth cycle, which is 1.3
hours after the start of the test, most of the problems seem
to have been found. This data indicates that a reduction
in the test lime will find the same level of faults, but will
save substantial cost in manufacturing overhead (the cost
of the tapes is probably the biggest factor bere).

Fig. 4 shows the tests that are most effective in producing
the faults. This data agrees with the test data from the
earlier prototype testing, and is useful feedback for reliabil
ity planning on future projects.

The customer environment testing is currently showing
a very similar trend in the results. One year after introduc
tion over 8,000 units have been shipped to customers. The
warranty data shows that the actual failure rate of the HP
9145A is better than the failure rate goal at introduction.
As a result of the audit testing strategy, the warranty failure

78 HEWlETI-PACKARO JOURNAl AUGUST 1989

rate continues to fall to a point where today the warranty
failure rate is half of that measured a year ago.

Acknowledgments
The successful development of lhe 9145A was a result

of substantial contributions from many people in different
functional areas. Recognition should go to the R&D mech
anism design team, led by Jack McGinley. Simon Gitlens,
Andy Topham, Henry Higgins, and Alex Clark designed
the new head, servo control with associated read/write elec
tronics, stepper motor, and front panel. Thanks go to the
controller design team, led by Ben Wilkinson, and the
firmware design team, led by Paul Robinson. In particular,
we would like to acknowledge the efforts of Tracey Hains
and Kevin Jones, whose work in failure diagnosis helped
to make this project run so smoothly. Particular thanks in
the materials department go to Ian Russell for his work on
the development and qualification of the new tape car
tridge, and to Steve Daniels and Robin Longdin, whose
hard work and dedication in running the test program,
ensured that the project was successful. There are many
more people whose contributions were invaluable to this
project, but there are just too many to mention individually.

References
1. P.O. O'Connor, PracHca! Reliability Engineering, 2nd Edition,
John Wiley & Sons, Inc .. 1985. p. 285.
2. G.P. Box, et. al., Stalistics for Experiments, John Wiley & Sons,
Inc., 1978, pp. 253-261.



I
Use of Structured Methods for
Real-Time Peripheral Firmware
HP's Computer Peripherals Bristol Division made some
significant changes in their firmware development process
to ensure that they met a demanding development schedule
and still produced a quality product.

by Paul F. Bartlett, Paul F. Robinson, Tracey A. Hains, and Mark J. Simms

Fig. 1. Modelling control flows and data flows in real-time
structured analysis, The function of a process is to perform
the operation implied by its name. The vertical bar represents
the interface to a state machine.

documentation for the HP 9145A firmware. and assisted
in ensuring analysis and design consistency between the
members of the team. Other software tools that we used
included a code-efficient cross compiler from C to 68000
assembly language and a 68000 emulator.

This paper describes our experiences wilh applying SNSD
techniques and tools to the development of the HP 9145A
firmware.

Real·tlme Structured Analysis
Structured analysis is a method that enables designers

to partition a system into manageable component process
es. It helps to identify the system requirements and func
tionality so that consideration about implementation de
tails, such as system architecture and mod'ule design, is
delayed until necessary. This allows the designer 10 keep
as many design options open as possible. Structured
analysis I has been successfully applied to business and
commercial systems where the emphasis is primarily on
data flows and processes. In real-time systems, in addition
to data flows and processes, control and timing are also
major considerations. For the HP 9145A firmware develop
ment we used some parts of the structured analysis real-

HP·IB Data

Data Store

i-
StatusState

Machine
Interface

HP-IB

------+- Control Flow

----+. Data Flow

Unload Pressed

P
RODUCTIVITY AND CONCERNS about quality may
seem to be opposing concepts when product develop
ment time is short. However, with planning, the

proper tools and a good development method, productivity
and quality objectives can be achieved and still meet the
time-to-market goals. In lhe development of lbe HP 9145A
Cartridge Tape Drive al HP Compuler Peripherals Bristol
Division (CPS) the firmware was always on the critical
path during the entire product development time. We had
to produce reliable prolotypes of the HP 9145A for testing
with the target machines one year after the project start
dale. We realized at the beginning of lhe project that if we
used the firmware development process we had at the time,
we could nol meellhe schedule and slill produce a quality
product. Some of the problems we had in our development
process at the time included:
• Total reliance on text for firmware specifications. There

were very few graphical representations for the system
architecture, data, and module organizations.

• Firmware testing was different for each project and the
effectiveness of testing was not measured. Also, there
was no overall test planning process.

• Except for the number of noncomment source statements
(NCCSJ, no metrics were collected.

• Tool support consisted of emulation, source code con
trol, and editing on HP 64000 Logic Developmenl Sys
tems. There were some tools for text documentation and
structured design which existed on a variety of systems.
Improvements were made to our development process

in the areas of planning, methods (analysis, design, and
testing), and metrics (process measurement). The most sig
nificant changes involved the use of structured analysis,
structured design, and structured testing. Structured design
had been used on past projects for module design and the
technique had worked well.

Each engineer on the project was equipped with an HP
9000 Series 300 workstation which was used for program
development and emulation. A network of workstations
was created with one workstation dedicated as a central data
base for configuration management (Le., keeping track of
all versions of our documentation and code). To enable us
to use the structured analysis and structured design [SNSD)
melhods effectively, HP Teamwork/SA was inslalled on
each workstation. This product allowed us to produce all
of the real-time structured analysis and structured design

AUGUST 1989 HEWLETT-PACKARD JOURNAL 79



Fig. 2. A portion of the state transition diagram for the model
shown in Fig. 1. The number in each bfock is a state identifier.
There are at least 18 states in this stare machine. but for
cfarity, only four essential ones are shown.

municate. The context diagram for the HP 9145A firmware
is shown in Fig. 3. There are three components to a context
diagram: terminators, data and control flows, and a single
process. Terminators represent external entities that can
be either sources or sinks depending on whether they trans
mit or receive data. The data and control flows represent
the communication paths between the terminators and the
single process. The single process defines the central role
of the system being designed. In our case the firmware is
used to control and monitor the HP 9145A tape drive.

From the context diagram we developed a top-level data
flow diagram (OFO) which defines the main firmware tasks
and the interfaces between them (see Fig. 4). The interfaces
between the tasks consist of messages passed via an inter
process communication module in the operating system.
The effort involved in developing the data flow diagram
enabled us to understand how to divide the system into
manageable pieces for development and further analysis.
Our development plan was refined so that the analysis
phase was divided into smaller stages in which functions
within each task could be analyzed. This enabled us to
plan reviews to occur whenever one of these stages was

HP-IBI
ReadCommand

COmmandReadf
Execut8Commlnd

CommandEll8<:utedfSendReport

UnlOldPressed!
TapeUnlOildCommand

UnloadCompletel
Hltl

Context and Data Flow Diagrams
Our first task was to define a context diagram for the HP

9145A firmware. A context diagram enables the designer
to identify all the external entities such as other systems.
users, and peripherals, with which a system must com-

time extensions described in references 2 and 3.
Real-time systems have two features that nonreal-time

structured analysis cannot model. One is the ability to dis
tinguish between the flow of control signals such as inter
rupts. and simple data flow such as flags or values. In
real-time structured analysis, inIormation flow between
processes is represented by control flows for control signals
and events and data flows for plain data (see Fig. 1). The
control flows shown in Fig. 1 send a signal to activate or
deactivate a process. For example. when a user presses the
Unload button on the front panel, the state machine sends
the TapeUnloadCommand signal to activate the process Pre
pareToUnload. The data flows represent information a pro
cess must retrieve from elsewhere in the system (e.g., a
data store or another process) to perform its operation. For
example, in Fig. 1 the process PrepareToUnload retrieves data
about the CartridgeStatus from the Status data store.

The other deficiency of ordinary structured analysis is
in modeling sequences of real-time operations. These are
situations where timing orthe order of responding to events
and actions is very important. Starting a servo motor and
waiting until it is up to speed before proceeding, orenabling
DMA transfer of data to tape, are examples where timing
and sequence are critical. One method used in real-time
structured analysis to model sequence control is the state
transition diagram (STO). State transition diagrams are
used to model state machine behavior and to show how
different system states are influenced by control signals.
Fig. 2 shows the state transition diagram for the model
shown in Fig. 1. This state machine is designed to respond
to events such as Unload button pressed, Self Test button
pressed, cartridge inserted, and so on, and still read com
mands from the HP-IB.

Real-time structured analysis can be used to help parti
tion the hardware and software functionality for a whole
system. In our situation the division between the hardware
and firmware functions had already been decided before
we began using the method. Therefore. we concentrated
on using the methods only on the firmware.

Fig. 3. Context diagram for the
HP 9145A firmware.

Clock

DDCCommandOrStltus

SefvoCommandOrStalusHP·IBlnter1ace I

I
DIIITranslerStltu~

r----
I
IL __

DlspilyConlrols

•

• • . ClrtridgePresentOrProlecled---------

80 HEWLETT-PACKARD JOURNAl AUGUST 1989



Threshold

ODCCommandOrSlatus

5ervoCommandOrStatus

-OataTranslerStlltus

Fig. 4. Data flow diagram for the
HP 9145A firmware.

DataTr.nslerStalus
I
I
I
I
I
I

_..J

DalaTranslerConlrols

HP-IBlntertace

CartridgePresenlOrPrOlected

I
J DeleTrllnslerControls

I
l_

SwitchPressed --

DalaTranslerStalus --

DetaTrenslerControls

completed. We could review a small amount of documen
tation every two or three weeks, instead of waiting for
months to review a vast amount of information.

The tasks shown in Fig. 4 perform the following func
tions:
• Channel Task. The channel task controls the interface

between the operator, the host computer system, and the
HP 9145A firmware.

• Buffer Task. The buffer task controls the flow of data
between the HP-IB interface, an internal data buffer, and
the magnetic medium (tape).

• Device Task. The device task controls the read/write cir
cuitry and the tape mechanism.

• Utility Task. The utility task contains functions used to
perform switch and button debouncing and control the
operation of the lights on the front panel of the drive.
The data and control flows in Fig. 4 represent the inter-

process communication between the tasks. Interprocess
communication in the HP 9145A firmware is implemented
by a number of mailboxes used for holding messages or
commands.

Each of the tasks has its own context diagram and its
own set of external entities. Fig. 5 shows the context dia
gram for the device task. From these context diagrams de
tailed DFDs were generated for each task. Fig. 6 shows a
portion of the DFD for the device task and Fig. 7 shows a
portion of the DFO for the process ReadlWrite Operations which
appears in Fig. 6. When the DFDs were leveled to primitive
processes (processes that cannot be decomposed any
further) process specifications were created like the one

shown in Fig. 8 for the process ExecSingleShotRead which
appears in Fig. 7. The number and complexity of the data
and control flows increased as the design became more
detailed. For example, the data flow diagram in Fig. 6 ac
tually contains 24 control flows and 46 data flows between
the processes. HP Teamwork/SA was used to create and
maintain a central data dictionary data base for the whole
firmware system. A data dictionary is a method for defining
every data flow, control flow, and data store used in a
system. The central data base allowed us to maintain data
consistency between the various tasks. Because we were
pulling a great deal of effort into analysis, the data dic
tionaries became colossal. HP Teamwork/SA was really
helpful here because it provides a checking facility that
makes sure the data and control flows are consistent be
tween levels of the system model. We ran the checking
facility before each review so that the reviewers could can·
centrate on checking for correct functionality instead of
spelling and consistency errors. Fig. 9 shows some of the
data dictionary entries for the context diagram shown in
Fig.5.

A large proportion of the analysis of the firmware for the
project involved the analysis of control. State transition
diagrams served as a major part of this analysis. These
diagrams allowed us to concentrate our control structures
in a small number of places. To ensure manageability and
readability most of our STDs consist of less than 20 states.
An STO with more than 20 stales becomes very confusing
and hard to read. A portion of of an STD for the process
ExecSinglBShotRead from Fig. 7 is shown in Fig. 10.

Devicecommand

Fig. 5. Device task context dia
gram.

Threshold

Overthreshold

ServoCommandOrStatus

DDCCommandOrStatusOrBus'l

CIo<.

Devk:eReport

IPCDevlceFlegs

ReselClock-------------,
I
I

AUGUST 1989 HEWLm-PACKARD JOURNAL 81



Lessons Learned
Five months had been allocated for the structured

analysis portion of the firmware development and we man
aged to finish on time with two weeks to spare. Had we
been more experienced with the methods and tools we
would have finished sooner. Some of the observations and
lessons we learned from using real·time structured analysis
include:
• A lot of effort. maybe too much, was expended at the

very top level of each task. One reason for this is that
we had to do some informal lower level analysis to de
cide whether the top level solution produced was good
enough. Having spent this effort early we found that
when it came time to do formal lower level analysis the
task was much easier.

• In some areas of the analysis we found that it was very
difficult to produce a solution because of the amount of
fan-in * to most processes associated with hardware de
pendent areas. We encountered some difficulty with
using structured analysis for analyzing functionality as
sociated with time-critical control of hardware. There
are some techniques in the SNSD real-time extensions3

that can be used to analyze critical hardware/software
timing situations. However, we did not get a chance to
use these methods. In addition, we were trying to specify
detailed algorithms using data flow diagrams, which is

'Fan-in isdetined as a large number at processes all making calls 10 one common process.

not the intention of the method.
• Too much effort was expended considering the im

plementation aspects of the system instead of defining
the system functionality. This resu !ted in process specifi
cations that tended to be trivial and not very useful.

• By the end of the structured analysis phase all of the
engineers on the team thoroughly understood what their
portion of the firmware was expected to do as well as
what some of the rest of the firmware was doing.

• Because of the thorough analysis that had taken place a
large number of anomalies were discovered and fixed in
the original project specifications (external reference
specifications).

• After structu.red analysis there were very few changes
to the functionality of the product, except in areas where
the characteristics of the mechanism or the tape were
not fully understood.

Structured Design
In this phase of the development the data flow diagrams

developed during the structured analysis phase were used
to design the architecture and hierarchy of functions for
the HP 9145A firmware. [n most cases this process resulted
in structure charts like the one shown in Fig. 11 for the
process ExecSingleShotRead. In one task we found that there
was no need to develop structure charts because the struc
tured analysis produced such a flat structure, all based on

ReselClock ..... - -..,

DevieeCommand

IPCDevlceFlags

DevieeReport

DOCCommandOrStalulOrBusy PhysicalTrackKeyAddress

Sln!illeShotCommand

L.ogCommand

Clock

ServoCommand

ServoStalus

Clock

Threlhold

Overthr.lhold

ServoCommandOrSlatus

Sin!illeShotReport

I
LogCo~andC~Plet~

Sln!illeSholReport

SlngleShotCommand

ErTOrRateTestCommand

ErrorRaleTeslReport

Clock

'---"Global Status .- ---+
.- +lnlormatlon

Clock

Threshold

DeviceCommandQueue.-+-----+

DOCCommandOrStalusOrBusy DOCCommandOrSlltusOrBusy

Fig. 6. A portion of the detailed data flow diagram for the device task, There are actually 24
control flows and 46 data flows associated with this DFD. The number within each process

bubble is used for identification and traceability.

82 HEWlffi·PACKARD JOURNAl AUGUST 1989

...



lobalStatuslnlormation

ReadWrltelnlo

DeviceCommandaueue

SSWrlteTrlggers~
... - - - -- - SSOperatlonComplete

------- I
SSWrlteEvents

------- 54 TriggerSin~~O~~J

Fig. 7. The data flow diagram for two of the processes as·
sociated with the process ReadIWrite Operations shown in Fig. 6.

ule specifications were written for all the procedures. These
module specifications were written so that they could be
used as procedure headers for the code. Fig. 12 shows the
module specification for the state machine SSAeadlnitialize
shown in Fig. 10. In many instances part of the module
specification was extracted directly from the process
specifications written during the structured analysis phase.
At this point of the project module specifications became
the most important documentation. All changes that were
made to the code were documented in the module specifi
cation for the affected function. Keeping the structured
analysis documentation up to date was relatively tedious
and time-consuming. However, towards the end of the test·
ing phase this documentation was updated to match the
final design of the firmware. This showed that even with
an automated tool to enter a design, there must be a mech
anism to update the design documentation automatically
when changes are made during implementation.

Structured Testing
Structured testing encompasses the planning, design,

documentation, and execution of tests. It is a method for
managing the overall testing process and for providing
traceability between the various types of test documenta-

Clocl< (data flo"",, cel) •
-A continuous data flo,,", indicatinq the number of ticl<s of tho

c locI<.

ReSl!tClocl< (control flow) •
• Control from device tell~ the operating ~y~tem

- to zero the millisecond timer.

DeviceCommand (data flo,,",) •
- The DeviceCommand spl its into &Ix qroup$ of commands.
- Each command In each group cont/lins an opcode identifying
- the type of command. a subcode identifying the command

itself and a number (sometimes 0) of paramtters.
DiagnosticCommand : TapeLoadCommand : ReadBlocl<Command :
ResetDevlceCommand : TapeUnloadCommand UtilityCommarld
Writl'Blocl<Command J

ReportSta t u~ Bit J
DDCCommandorStatusororBusy (d,Ha flo,,",) •

[ DDCCommand . Bu~yStatu~Bit : DDCRl'port

DeviceRep0rl (data flow) •
-Report contains 10 16-bit ,,",ords ,,",here the order of the ,,",ords
-is significant. There 15 a seperate report for each class of
-command.

[ DiagnosticReport : TapeLoadReport : ReadWrlteReport
ResetReport : TapeUnloadReport . UtilityReport J

lPCDeviceFlag~ (data f10,,",_ del)
- Flag value True or False.Input/Output:

calls from a state machine, that we felt that the exercise
would not yield any useful extra information.

The production of structure charts was limited only by
the speed with which information could be put into HP
Teamwork/SA. This was because there was so much detail
from the structured analysis phase that the design came
together with very little effort. Also, as in the structured
analysis phase, the data dictionary proved to be invaluable
and the HP Teamwork/SA checking facility helped to en
sure that consistent designs were produced.

In parallel with producing structure charts, detailed mod-

Title: ExecSlnglcShotRNld

Tr iggor 5 I ng 1oShot Read
SSOperat i onCompl et e
Dovl coCommandQueue
Sing 1eShotCommand
Sing 1cShot Roport
C; 1ooa 1Stat us I nf or ma t i on:
GoodB locI< s Requ ired
ReadWritvlnfo

control_out
cOntrol~ln

data_Inout
data_in
data_out
data_lnout
daU._out
d(!lta~lnout

"control flow out"
"control flow in"
"bidirectional d(!lta flow
-data flow in-
-data flow out-

Threshhold (<:lata f10,,",_ pel) •
'Hard,,",are -
-a'bit numl.'ric valus to adjust the efhctive gain of the read
"amplifier.

OverThresholdReset (control flo,,",. del)
-Hard,,",are •
-Control to reset the overthreshold latch

Body:

Translate p",rametcrs into the appropriate comm"'rld queue senlnqs
and other stor"d information.

ServoCommand (data flow) •
[NormalOpl'ratlonCommand : SpecialFunctlonCommand :
ServoTranspar entCommand ' Ut iii t yD I (!lgnos t i cCommand I

Data Dictionary Notation

Triqqer the ~Ingle ~hot read ~tate machine

Walt for compl"tion.

cel Continuous element. An attribute that indicates that the
item Can tal<e on a large number of values.

Compile ~t"'tu5 return value derived from Comfall and abort
conditions.

d<ll : Discrete element. An attribute that Indicates that the Item
Cen tal<e on a finite numb"r of values.

Reset Comfa,l and any other abort conditions qenl'ratl!d durinq the
tllst.

pel Primitive element .....n !tem that cannot tal<l' on any other
values or be bll further decomposed.

Gat more status from ReadWrltelnfo (MaintonanceTracI<Overflo,,", and
TapeNotWr I ttenTo).

[:1

1s -Equivalent ·To.

Either-Or selection.
Gather ~tatu5.

And (sequence sl'll'ction).
Return result.

Comment~ .

Fig. 8. The process specification for the process Exec·

SingleShotRead.
Fig. 9. A portion of the data dictionary definitions for the data
and control flows for the process ExecSingleShotRead_

AUGUST 1989 HEWLEn·PACKARD JOURNAL 83



a specification is incomplete or ambiguous. H the specifi
cation defect is removed before coding takes place the cost
of defect removal is low.

Our test strategy was based on traditional structural and
functional test techniques4 and well-coordinated test plan
ning' A hierarchy of test plans (Fig. 13) was produced for
the whole product. Each sector of the system, mechanical,
electronics, and firmware. had a similar hierarchy of test
plans. These test plans were produced from the top down
so that the overall firmware test plan was produced before
the test plans of any individual tasks. Once the code had
been written, the tests described in the test plans were
e~ecuted starting from the bottom. By writing the test plans
in parallel with designing the firmware we found a lot of
problems that otherwise might have been overlooked.

To minimize the effort required during the testing phase
an automatic test package was developed to run most of
the tests. This test package accepted test scripts, exercised
the product, checked for correct responses, and reported
any anomalies to the test engineer. This enabled us to run
tests during periods when there were no engineers available
to monitor the tests.

All problems were recorded in a defect tracking system.
This system was used to monitor the number of defects
found, their severity, and the reason for each defect. It was
also used to monitor the current status of each defect so
that we could determine how many defects still had to be
resolved. From this information we were able to monitor
the progress of the project, and to tell whether the defect
rate was under control.

Inltializ:edOKf
TriggerReadErrorCheek

FolledTOlnltlsllzefTrlggerS$Shutdown

Abor1Readf
TriggerSSShutdown

TriggerSingleShotReadlTriggerSSReadlnitialize

Fig. 10. A portion of the state transition diagram for Exec

SingleShotRead.

NotEnoughGoodBloekslSSOperatlonComplete

LeaveModef
SSOperationComplete

tion. Structured testing tends to minimize the cost of prod
uct development by finding problems as early as possible
before the cost of rework is high. An example of this might
be when a test designer is writing a test and discovers that

1Flag

!Data Value

Connectors to Other Structure Charts

--- Call from Another Structure Chart

: Error ! Error 1Error

: Error 1Error 1Error1Headset 1StrelmingReed1Aet.....Aead 1Phase21OCsetUpOK 1OOCsetUpOK 1ToUNt 1Ph..etAeedAbort AeldAbor1

1AeadError 1CheekOnly 1NonStreamlngAead : Phlse2
AeadOK

Fig. 11. Aportion of the structure chart for ExecSlngle ShotRead.

84 HEWlETT·PACKARD JOURNAL AUGUST 1989



"EQF gives the reciprocal of the a....erage discrepancy between the estimated and the
actual duration of a phase. An EOF 01 8 is considered to be good 'or soltware estimates
See reference 6 lor more information about EOF.

Analysis 9.0 4.5 5.0 20.0 22.5
Design 7.5 1.7 2.0 6.5 7.5
Coding 9.3 1.1 1.25 6.25 7.0
Functional 11.5 4.2 4.6 21.0 23.0
Testing

System 5.0 4.0 5.0 12.0 15.0
Integration

Total Project 8.1 15.5 17.85 65.75 75.0

Results
As mentioned earlier, the firmware for this project was

on the critical path from the beginning. As it turned out,
our progress was so good that we were able to meet all
major deadlines. Table I shows that OUI original estimates
were very accurate and we achieved very respectable fig
ures for our estimation quality factors (EQFs)* for each
phase of the project.

During the analysis phase we defined over 420 processes
on the data flow diagrams which resulted in about 570
procedures in the final product. The final code consisted
of 24 KNeSS [thousand lines of noncomment source state
ments), and 123 kilobytes of object code.

Defects were tracked and a chart maintained to show the
cumulative number of defects detected as a function of
elapsed time. A code path monitor, which kept a count of
the number of code statements tested, was run while the
regression test package was being run. When the total test
package was run, 85% of the statements were being exer
cised. The code path monitor enabled us to verify that
100% of the most critical areas of the code were being

f···· _..------- --_ .. -_ __ I

exercised. These figures do not take into account the extra
code coverage that individual engineers achieved during
their module testing activities. Our expectation at the outset
of the project was that we would achieve 70% code cover
age. Fig. 14 shows the cumulative number of defects found
and the known code coverage, and compares the actual

I- Module Name d_ss_reolld_lnttlalISf File k_slllc_lnit·1
/. Function Set up th. h.ad conlUlnd tor II slngl. 'hot ·1
/" read Iro.. tape. Ch.ck th.. DOC to .ak. sur.. ·1
/. It 110 worklnq. ./
/ /
I' .,
/. Parametl!rs : None ./
/. ./
I································································1
I· '1
/. Glob"l:; '1
I· • 1
/. Clobal Nallll! 1/0 Statu:; Typo ·1
1-"""'---' ./
I· ./
I· d_report_r.cord wr it I! d.vice_report_typt> -1
/. d_he.adco. ""rite co.m.and_record·1
I' • 1I···· ····1
I· ·1
I· Function Result: ·1
I' ·1
I- 0 • SSRe.adlnitOK ·1
,. I . F.alledTolnitSSRud '1
I· .,I···· ·····1
I· ·1
I' Process ·1
I' ·1
I· UlOe d_~5_inlti.alise to do most of the lnlti.alis.atlon. '1
I' If thIs 6ucceeds. then ·1
I· d_headcom-)command_Sl.tu5.read_flaq " TRUE .,
J. d~he.dco.. · )cOlinand_Slatu, .""r Ite_f lag " FALSE ./
J. Set the lIlade for ddc head select accordlnq to tape type . • J
I- For old He tapels. read' 'hould use the ""rite head,. ·1
J" othl!rwlst' use thl! rl!ad heads. .J
J. RETURN InltialisedOK. .J
I· otherwlS' .J
I· set d_report_record.devlct_5tlltus comfail " TRUE .J
I- return FalledTo Inltlalls.. ·1
I- ·11·······- --_. _ ··········1
I' • J
I· Hotes: ·1
I· ./
J. • JI····· ······1
I' ·1
f· Author Kevin Jones Date S June 1987 ·f
I· • J
f· Modification History .J
Jo ••••••••••• ••••• •••• • J
f· Modifier Version D"te Reason oj
J. • J
J•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• J

Fig. 12. One of the module specifications for the state tran
sition diagram shown in Fig. 10.

Actual
Engineer
Months

Estimated
Engineer
Months

Actual
Elapsed
Months

Estimated
Elapsed
Months

EQF

Table I
Project Estimation Quality Factors (EQFs)

Activity

Acceptance
Test Plan

System Test
Plan

Device Test Plan

__--{f- System~teg,atlO%:I.n

Mechanism Controller

---B--
Firmware

Mechanism Integration
Test Plan

Controller IntegratIon
Test Plan

FIrmware Integration
Test Plan

6~~~:lIed ReadJ Machine Car· Controller MIcrocomputer Device Gate Operating Channel Buffer Device
Head servo Write Assembly trldge Unit Dependent Array System

loop Conlroller

Fig. 13. Hierarchy of test plans.

AUGUST 1989 HEWLETT-PACKARD JOURNAL 85



c 600
Cumulative Defects

100g Code Untested
~ (Target) (Expected) 90
m 500

..,
• 80 ~:€ 70 •· 400

,
• ;;
" 60 '"" Cumulative Detects •• 300 (Actual) 50 0
U 0

~ 40
0.•

0 200 c:
• 30 "" •;;; 100

20
~"5 Code Untested 10E, (Actual

00 0
OCT NOV DEC JAN FEB MAR APR MAY

Fig. 14. Cumulative defect and code coverage.

figures against the expected figures. This data illustrates
the completeness of testing performed.

Conclusion
Structured methods really are appropriate for the de·

velopment of firmware on major projects. The mistakes
that we made were mainly caused by our inexperience
with the methods and tools. Access to an experienced prac
titioner as a consultant or as a member of the team would
have eliminated many of our problems. We carried out
these firmware development process changes to meet the
needs of a particular product development. Our challenge
now is to continue to improve our firmware development
process and extend what we have learned to future projects.

86 HEWLffi-PACKARD JOURNAL AUGUST 1989

Acknowledgments
The authors would like to acknowledge the contributions

made by Kevin Jones, who worked on the development of
the low-level device controller firmware and whose ap
proach to firmware design enabled us to identify the prob
lems involved in using structured methods on real-time
firmware, and Ken O'Neill, who developed the automatic
test package that enabled us to test the firmware com
prehensively and quickly.

References
1. r. DeMarco, ControlJing Software Projects. Yourdon Press,
1982.

2. P.T. Ward and S.}. Mellor, Structured Development for Real
Time Systems, Yourdon Press. 1986.
3. D.J. Hatley and I. A. Pirbhai, Strategies for Real-Time System
Specification, Dorset House Publishing, 1967.
4. G. J. Myers, The Art of Software Tesling, John Wiley & Sons,
1979.

5. W. C. Hetzel, The Complete Guide To Software Tesling, QED
Information Sciences, 1984.
6. R. M. Levitt, "Process Measures to lmprove R&D Scheduling
Accuracy," HewJeu·Packard Journal, Vol. 39, no. 2, April 1988,
pp. 61-65.



Product Development Using
Object-Oriented Software Technology
Object-oriented technology is rapidly becoming an
accepted technology for designing and developing software
systems. This paperprovides a briefhistory, a tutorial, and
a description of HP's Lake Stevens Instrument Division's
experience using the technology for product development.

by Thomas F. Kraemer

O
BJECT-ORIENTED SOFTWARE TECHNOLOGY is
rapidly changing the way software systems are
being designed and developed, and the way we

think about and use computers. Over the last eight years
HP has been active in the research and use of this technol
ogy. HP has completed several products that use an object
oriented approach, and the technology continues to be used
in new product development. The essential idea in the
object-oriented approach is that data and procedures are
represented in a structure called an object, and the data is
only accessible through the procedures contained in the
object. Also, objects are the basic building blocks for any
system designed using an object-oriented approach. The
reason for such interest in this technology is that it provides
a productive and powerful paradigm for software develop
ment, and it addresses such issues as code reuse and soft-

ware maintainability.
Since object-oriented technology requires a new way of

thinking about software development, some questions exist
regarding its origin, its difference from established software
development methodologies, and the advantages it offers
the developer and the end user. This paper addresses these
questions by presenting a brief history and some basics
of object-oriented technology, and a description of the de
sign and development of a product from HP's Lake Stevens
Instrument Division that uses an object-oriented language.

History
Computer science researchers started to look at object

oriented concepts in the late 1960s. The concept of data
hiding, in which data is accessed only through a well-de
fined interface and the data structure is unknown to the

Key: = Non-Object-Oriented Language

lisp
'6' ------_~.I-----.l~.

..
---+~iIC

'76

'-------+ Pascal -----------+

Algol

l=:
r- --. SAll -+---+

1960 1970 1980 1990
Fig. 1. Chronology of object
oriented languages since 1960.

AUGUST 1989 HEWLETI·PACKAAD JOURNAL 87



accessing routines, formed the foundation of the object
concept. This was followed by the development of abstract
data type systems. Abstract data types implement the data
hiding concept and include local procedures, which have
exclusive knowledge of the data structures witbin the data
type, and therefore perform all operations on the local data.
One of the Iirst languages to explore and implement object
oriented concepts was Simula67. Simula67 was developed
in the 1960s in Norway for modeling and simulation pro
grams. Fig. 1 shows a chronology of object·oriented lan
guages since 1960. With the exception of Eiffel all of these
languages had their origins in a non-abject-oriented lan
guage. Also, because tbe technology is still developing
there are several competing object-oriented languages and
no single approach has become a standard.

Object-oriented programming gained popularity with the
introduction of the the Smalltalk language.' Smalltalk was
originally implemented as part of the research work done
at Xerox Corporation's Palo Alto Research Center (PARC)
in the 1970s and early 1980s. The language attempted to
represent everything from individual bits to whole systems
as objects. In 1981 HP Laboratories ported Smalltalk to an
HP research computer as part of an investigation of personal
computer environments. 2 The fine granularity of its im
plementation was adequate for research purposes, but be
cause of poor performance Small talk was impractical on
generally available computers. However, many of the ideas
demonstrated by Smalltalk are still models for today's ob
ject-oriented systems, and Smalltalk is being commercially
developed on today's more powerful workstations.

By 1983 several research and commercial organizations,
including HP, were prototyping practical implementations
of object-oriented languages. Most of these implementa
tions use a preprocessor that translates object-oriented pro
grams into a conventional language such as C or Pascal.
This permits a hybrid approach in which the developer
can choose to program in C, Pascal, or even assembly lan
guage when appropriate. The idea is to provide an evolu
tionary rather than revolutionary path toward object
oriented programming. The designer is able to fall back on
established methods if the object-oriented approach causes
problems.

The artificial intelligence community bas produced sev
eral object-oriented languages. The language Flavors in
spired a series of languages leading to the Common Lisp
Object System (CLOS). CLOS includes object-oriented ex
tensions to the Common Lisp system and is primarily an
evolving platform used by researchers. It is being designed

Object

Data Private
to the Object

Fig.2. Object encapsulation. The object has an internat data
structure, which is private to the object. and methods (proce
dures), which have sale access to the data.

88 HEWLffi-PACKARD JOURNAL AUGUST 1989

as part of the ANSI X3J13 Common Lisp standardization
process. HP played a role in the invention and development
of CLOS. The Stanford Artificial Intelligence Language
(SAtL) was based primarily on Algol and evolved into a
language called Mainsail which was used in the develop
ment of HP's Electronic Design System.

Pascal has been used as a foundation for several object
oriented languages. Additions made to Pascal to implement
an object-oriented concept called classes resulted in the
language Clascal and more recently Object Pascal. Clascal
was used to develop the Lisa computer from Apple Com
puters. Pascal was used for an early implementation of
HP's Softnet which influenced HP's version of Objective-C.
HP's Objective-C modifications provided facilities to de
sign systems in which customers could add new features
without requiring any changes to the original system, in
cluding compiling and linking. HP's use of this modified
version of Objective-C is covered later in this paper when
the development of HP VISTA is described.

The C language has been used as the foundation for sev
eral object-oriented language implementations. The Objec
tive-C language, developed by Stepstone, Inc.3 is a C prepro
cessor that permits intermixing standard C code with state
ments similar to Smalltalk. C+ +4 developed by AT&T
Bell Laboratories is another preprocessor that generates C
code. The latest object-oriented derivative from C is Next
Step which is being codeveloped by Next Computers and
Stepstone using the Objective-C language.

Eiffel is a relatively new language whose goal is to sup
port software engineering more effectively than C-based
languages can. Eiffel is a typed, object-oriented program
ming language from Interactive Software Engineering, Inc..
It is compiled into Cand comes with a class library includ
ing graphics classes based on Xll [the X Window System,'"
Version 11). Eilfel is available on HP 9000 Series 300 HP-UX
workstations.

oblecLa

Data for
objecLa

Table of Pointers

Fig.3. Mapping messages to code in a object. When a mes
sage is sent to an object the method name (selector name
in Objective-C) is mapped to a table of pointers which point
to the code segments for the methods.



Fig. 5. Simple inheritance. obJecLa inherits methocU from at>

jecLb.

~
*Data structures are the same.

~---

objecLb

Pointers

objecL.

Pointers

Pointer to
Inherited
method 1

• The software can be tested more thoroughly because the
data is private to the object and is only modified by the
object's methods. A common source of defects in conven
tional software is a situation in which a shared data
structure is modified by one procedure unknown to a
second procedure. The second procedure then uses the
modified data and generates errors. In contrast the defi
nition of the object's interface can be guaranteed to work
when used by other objects because the data structure
is private to the object.

• Because all data is accessed by methods associated with
the object, the internal representation of the data struc
ture can change without changing any of the software

·This is not the same as NewWave encapsulation described in the article "Encapsulation
0' Applications in the NewWave Environment," on page 57.

Object-Oriented Technology

Object-oriented technology includes object-oriented pro
gramming languages and object-oriented design method
ologies and processes. Because object-oriented concepts
are so very different from conventional procedure-based
design techniques and programming languages like C and
Fortran, developing an object-oriented design is initially
difficult for software designers.

The following sections describe some fundamental con
cepts about object-oriented technology. Because object
oriented technology is rapidly evolving and researchers are
exploring new approaches to object-oriented implementa
tion, there are concepts presented that cannot be fully de
scribed in this article.

Encapsulation and Messaging
In procedure-based systems, software developers are

concerned with creating global data structures and proce
dures and functions that operate on the data. In an object
oriented environment, developers are concerned with
using and creating objects to build a system. Objects contain
local data structures and local procedures to operate on
the data. The technical term for this is encapsulation. * The
current values of an object's internal data define the object's
current state and the object's behavior is dependent on its
current state. The concept of data abstraction makes the
data inside an object private and accessible only through
one of the procedures associated with the object. Proce
dures inside an object are called methods. Fig. 2 shows a
representation of object encapsulation.

Restricting access to data in this manner may appear to
be a serious restriction to programmers accustomed to ac
cessing shared data structures directly from any procedure.
However, there are some advantages to imposing this re
striction:

Messages

(objecLa show]

objecLa Display Representations

(objecLb show)

Fig. 4. Polymorphism allows the
same message to be sent to differ
ent objects regardless of their
internal data types and code
implementations.

AUGUST 1989 HEWLETT-PACKARD JOURNAL 89



statements to include the new type. Then the program must
be recompiled and reloaded.

Inheritance and Ownership
Object definitions can be shared and reused among ob-

(objecLx objecLx

methocl_1:

8, azl

L~...~)
Added Data

Structure

Pointers

'III~
ob]ecLa

Cal

[objecLa
methocL1:

8,8zl

that uses the data. This is another common problem in
conventional software; it can be difficult to modify a
data structure because it requires finding and modifying
all references to the data structure. In an object, the
methods can be improved and become immediately
available everywhere without having to change anything
else.
Objects communicate with other objects by sending mes

sages. An object's interface is defined by the messages that
can be sent to it. The set of messages an object's interface will
respond to is sometimes called an object's protocol. These
messages cause methods to be invoked to perform various
functions or to obtain data. A message typically consists
of the name of the object to which the message is to be
sent, the methods to be invoked, and any arguments re
quired. For example, a print message sent to an output
object would cause the object to invoke the method respon
sible for doing printing. See "Objective-C Coding Exam
ple," on page 95 for an example of sending messages.

This message scheme is one of the fundamental differ
ences between object-oriented programs and procedural
programs. In procedural languages the routine to perform
any function is directly invoked by another, whereas in an
object-oriented language methods are not directly invoked.
Each message to an object is mapped to a table containing
pointers to the code segments for each method. Therefore.
a method in an object consists of its pointer and code. Fig.
3 illustrates this concept. This scheme enables each object
to decide what specific code segment is run to fulfill an
external request. The physical implementation of this con
cept varies between languages.

Fig. 6. Additional approaches to inheritance. (a) object-a in
herits methcKL1 'rom ob;ect.....x. New code and data structures
are added to objecLa but the same interface to the object is

maintained. (b) objecLb inherits all the methods from object....x

and a new method and additional data structures are added
to objecLb.

'---.-
~~)edData

Structure

objecLl

objecLb

(objeeLb
new_method]

Cbl

Polymorphism
Polymorphism in object-oriented methodology means

that the same message can be sent to different objects with
out concern for the method implementations or the type
of data structures in each object. Only the functional
specifications and the message protocol for dealing with
the object are important. The same message may yield a
different response depending on the object receiving the
message. For example, in Fig. 4 a message called show,

which causes an object to display itself on the screen, is
sent to two different objects. In objecLa the data type repre
sents graphic coordinates and the code performs graphics
operations. In objecLb the data type is simply an array of
real numbers and the code performs formatted print oper
ations. Note that the functional specification (Le., cause an
object to display itself) and the message protocol for show
remain the same for both objects. From this example it can
be seen that a good application of polymorphism is an
iconic user interface, where many different objects, deter
mined by the user, can appear on the screen.

To handle different types in a procedural language. the
programmer must anticipate and provide for all the differ
ent types of data structures. For example, in Pascal to con
tend with different data types a programmer might use an
IF·THEN·ELSE construct or CASE statement to execute differ·
ent procedures depending on whether the data structure
contains integers or real numbers. This may work initially,
but it becomes a maintenance problem if a new data type
is added, causing the programmer to modify the program

90 HEWlrn~PACKARDJOURNAL AUGUST 1989



Methods

Modal Model

I
-I

I
3••

.... Mode,

Frequency

1st

Cantilever Beam

~c----> 2nd
........... Mode....

?If--..-;:::::::--- 151
~ -- Mode

Class
Many object-oriented languages allow the definition of

a class of objects. A class is a template that can be used to
create multiple instances. Each instance is an independent
object with its own data and state but it shares identical
methods with all other objects of the same class. Objective
C and Smalltalk support classes.

There is not a universal agreement about the importance
of classes in an object-oriented language. Some object
oriented languages are classless. These include prototypi-

Fig. 8. ModaJ analysis and testing. Every structure. such as
a cantilever beam, naturalfy vibrates at several different fre
quencies. Such a compfex structure can be modeled as an
equivalent group of decoup/ed first-order systems whose
modaf parameters Mj and Kj • which represent the mass and
stiffness of the beam, can be derived from a frequency re
sponse measurement.

There are three typical approaches to inheritance. First,
a method can be inherited from another object and used
as is with no modifications as shown in Fig. 5. Second,
the same method and the same interface to the method can
be inherited and modifications to the method can be made.
These modifications might include code to handle new
data structures as well as the inherited data structure. The
same interface means that the inherited and modified
method will respond to the same messages it did before.
This is illustrated in Fig. 6a where the same message that
invokes metho<:Ll in objecLx can also be used to invoke
melhod_l in objecLa. Finally, all the methods of objecLx can
be inherited and new methods and additional data struc
tures can be added to the inheriting object. This is illus
trated in Fig. 6b.

Inheritance is sometimes confused with ownership. An
object might own another object because the other object
is part of its internal data (see Fig. 7). Owned objects com
municate with the owner with the same messages as before.
However, the owned object is not directly accessible or
visible to objects outside the owner.

Data

objecl_1 Owns objecLb

Fig. 7. Ownership. objecLa owns objecLb.

jects without having to make duplicate copies. Also, the
functionality of an object can be expanded without modify
ing the original object. This capability is referred to as
inheritance-the object inherits functionality from another
object which it can expand and build on by adding data
and new methods. Fig. 5 illustrates inheritance: objecLb
inherits methocLl from objecLa. The data structure in objecLb
that is used by methocLl from objecLa must be in the same
form as in objecLa. However, the data values used by melhod_

1 in objecLb are still private to objecLb. Method_l gains access
to the data structure in objecLb through a pointer that is set
up when objecLb is created or by a pointer that is passed
to it from objecLb.

Inheritance can be implemented easily since messages
are mapped via a table that points to what code should be
executed. This table can just as easily point to another
object's message table, thereby inheriting the other object's
functionality. In some languages, like Smalltalk and Objec
tive-C, a strict hierarchy is imposed. Inheritance is only
allowed from one other class of objects. Other languages
allow objects to inherit functionality from more than one
class of objects. Advantages resulting from being able to
inherit functionality include:
• Inheritance results in a significantly smaller amount of

code for identical functionality. This is because objects
can be defined incrementally in terms of other kinds of
objects.

• Inheritance can provide a convenient way of organizing
and describing the relationships between objects. For
example, a class of objects called "employee record"
contains all of the generic information about an em
ployee such as name, rank, and serial number. if there
are multiple types of employees such as managers, pro
fessionals, and nonprofessionals, a new type of object
could be defined for each of these groups that would
include data and operations specific to each group. For
managers, this might be the department budget, number
of employees, and other data that might not be relevant
to the categories of professionals and nonprofessionals.
Since each new object type inherits from the same em
ployee object definition, the generic employee methods,
such as a request to print out the employee's name, are
executed in the same way. These new objects do not
need to copy or reimplement the "print" employee
method.

Pointers

AUGUST 1989 HEWlETT-PACKARD JOURNAl 91



cal languages which support inheritance, and actor· like
languages which support concurrency but not inheritance.

Desired Characteristics
Regardless of the implementation, there are some charac

teristics that object·oriented languages and methodologies
should have to ensure that they continue to be useful as a
software development technology. These characteristics in
clude:
• Modifiability. It should be possible to "plug" new soft

ware objects into an existing system without having to
change the original system. This allows the customer to
enhance and expand a system just like plugging new
hardware cards into a computer. This has been called a
software card cage or software Ie,S to use a hardware
analogy. In the context of software engineering this
means dynamically linking and loading a software mod·
ule after the program has started running. Today, new
functionality is normally added to software systems by
recompiling and relinking the entire software system.
This is a tedious and time-consuming process and usu·
ally impractical to do by end users. Dynamic linking
allows a user to add a new object to a system more
quickly than relinking and reloading the entire system.
This kind of modularity allows software objects to be
designed in relative isolation and at different times while
remaining compatible.

• Portability. Objects should be able to move from system
to system and be usable in a wide range of software
products. This should be as easy as the user's popping
up a window (possibly connected over the network to
another system], selecting the desired object, and then
selecting what to do with it.

• Reusability. It should be possible for newly created ob
jects to have functionality that represents an incremental
expansion of the functionality of existing objects. This
allows reuse without having 10 wasIe extra time or mem·
ory space to duplicate previous work. There should be
catalogs of these standard software objects available for
general use.

• UsabiliIy. At the user's request most objects should be
viewable. With more familiarity and experience the user
sbould be able to view and manipulate objects that may
not be prominently visible to a novice user. Each object
should be storable and retrievable by the user. The object
environment needs to follow modern user interface con-

ventions and de facto standards. It is widely accepted
that objects are an excellent way to implement modern
human-la-computer interfaces.

• Reliability. Since objects are fundamental system build
ing blocks, each object must be tested as if it were a
complete software unit and all the standard structural
and functional testing methods must be applied to it"
Also, process and defect monitors should be built into
every system.

• Performance. Object-oriented systems should not pre
vent the encapsulation of high-performance or highly
luned software.

• Supportability. Regression test suites must exist to retest
objects whenever they are changed to ensure that no new
defects are introduced and their interaction with other
objects remains the same. This implies that objects must
have hooks included to ensure testability.

• Compatibility. Object-oriented systems should work
with existing conventional software. This is important
to preserve previous investments and allow compatibil.
ity with emerging software standards.
These characteristics have been implemented in some

object-oriented implementations and some are still topics
of research. Together they form a vision of what object
oriented systems are trying to achieve. No system today
implements everything. Formal design methods can be
used to express and communicate an object·oriented de
sign. This is essential for building complex software sys
tems since it allows a design to be analyzed and improved
in a systematic way. Like any other design methodology
the successful use of object-oriented techniques depends
on good project management and tools, such as a defect
tracking system and configuration management.

Recent HP Experience
Several products at Hewlett-Packard have used object

oriented approaches. They include the NewWave environ·
ment'? a chemical data editor, a dynamic signal measure
ment and analysis system, and an electronic engineering
computer-aided design system.

NewWave objects typically correspond to the kinds of
data ordinarily associated with traditional office applica
tion programs: complete documents, spreadsheets, charts,
drawings, and so on. The most noticeable feature of a New
Wave object is thai a user never needs to know what pro·
gram actually manages the object. The user simply asks to

Faceless Instrument Rack

Fig. 9. Hardware block diagram
lor the HP 3565S Signal Process
ing System.

·• Up to
: 63
: Module.·

92 HEWlm-PACKARO JOURNAl AUGUST 1989



Design Example

Selecllon 01 an Object-Oriented Language
The developers of the HP VISTA product had previous

experience with several large instrument firmware projects
written in Pascal. The complexity and size of HP VISTA
required a new software engineering approach. Since the
range of applications for dynamic signal analysis is very
large, the major goals for HP VISTA were to provide a
system that enabled customers to configure their own soft
ware and add new hardware into the system. It was also

HP VISTA
HP VISTA is the software portion of the HP 3565S Signal

Processing System. The system is used for dynamic signal
analysis. Real and imaginary components of electrical sig
nals are measured and digital signal processing techniques,
like the fast Fourier transform, are used to calculate the
frequency-domain components. The measured electrical
signals can come from a wide range of sources and trans
ducers, Knowledge gained from these measurements can
be used to improve a design or detect faulty machinery.

One common application of a dynamic signal processing
system is in the design and testing of mechanical structures
(modal analysis). A mechanical structure, such as an
airplane body, can be drawn on a computer-aided design
system and analyzed with finite element methods. A pro
totype can be built and tested by measuring the outputs of
accelerometers attached to different points on the structure
while shaking the structure with a random input.

The random input has a broad bandwidth and will cause
all of the modes of vibration of the structure to be excited.
The frequency spectrum plot of each transducer will peak
at a frequency associated with the natural vibration of the
structure. A structure can be formally modeled by param
eters that describe each mode of vibration (see Fig. 8). The
resulting modal model is useful for simulating modifica
tions to the structure.

The HP 3565S hardware (see Fig. 9) provides a rack that
can hold up to sixty-three input modules. Each input mod
ule contains analog-to-digital converters for data acquisi
tion, memory buffers for one or more input channels, and
hardware dedicated to digital filtering and zoom analysis.
The master module contains a dedicated 16-bit processor
and additional digital signal processing hardware to fetch
data from each input buffer for windowing, transforming,
and uploading data to a host computer via an HP-IB (IEEE
488, IEC 625) interface.

The HP VISTA software resides on the host computer
and provides the user interface and processes for interac
tive control of the measurement and analysis functions and
stimulus-response testing. It is also responsible for down
loading software to the master module in the signal process
ing hardware. The host computer is an HP 9000 Series 300
Computer running the HP-UX operating system. The multi
tasking capabilities of the HP-UX operating system allow
HP VISTA to perform several measurements simultane·
ously, plot results, write a report, and receive electronic
mail from a local area network. Measurement results can
be used directly by the design and analysis tools. The HP
UX system also provides real-time extensions such as a
preemptive kernel, shared memory, and memory lockable
processes, which are required to handle instrument 110.

OPTIOH

I HPUT SETUP

snVE/RECALl

VIEIl IHPUTS

PRESET

RELORD

CLEAR COUHT m PREVIEIl

., ill "'"",_"

Select : O...crload~

CHAHHEl HntlE COUHT

Sa,npllng Parameters
Block Stu 1021 real
Start Freq (:LOOO Hz
t:ll'l\nt frIll! t.lifltlldh
Span Freq ]. 200klh
Tilne Length 125.000lu
Overl<lp 0 Z
S<lmple Clock: Inurnal
Salnple Rue: 262.1HkH2
Show all fre~ line:!.: orr

Triggel' Hodes
!lode : FreerUll
E'lilble : Each avnra e

Folder: lIea~urements

Type:!. Halne~

FrqR~pllca~: def au I \FRF
P",rSpdlea~: def ilU I \PSI·l

Ci:
D
~...~...------~:cl =============:::JI~

Status
_~I~g for Nleasurements ..... ~

Fig. 10. Typical HP VISTA dispfay showing a virtual instru
ment screen.

There are no cookbook procedures or formal methods
that can be used to generate and analyze an object-oriented
design and this is still an area of active research. The ar
chitecture documented here illustrates one way of applying
object-oriented techniques for product development.

perform some operation on an object and the NewWave
object management facility (OMF) automatically associates
the object with the correct application.

The chemical data editor is part of an HP ChemStation
used to perform chemical analysis. The editor portion is
written in an object-oriented manner by using Pascal rec
ords as objects containing a pointer to a class dispatch
table. Seven classes of objects represent the different data
types corresponding to chemical spectra. The editor allows
the user to manipulate the data. The key benefit of object
oriented programming to this editor is the ability to treat
different styles of spectra (data types) in a similar way.
This makes the manipulation of the test results much easier
for the user.

HP's Electronic Design System is written in the Mainsail
language with object-oriented extensions. This system al
lows software objects to be created incrementally and
linked dynamically to the existing system. Polymorphism
is used to help implement generic routines that handle a
wide variety of computer-aided design data.

Recently, HP's Lake Stevens Instrument Division intro
duced the HP VISTA software product which is a dynamic
signal measurement and analysis system implemented
with the Objective-C programming language. HP VISTA is
described in more detail in the next section.

More HP products are under development using object
oriented technologies. In many cases the use of objects is not
directly observable by the end user. In other cases the user
has explicit control over creating and using new objects.

AUGUST 1989 HEWlETT-PACKARD JOURNAL 93



important to be able to add new features to the product
incrementally.

Object-oriented software was able to satisfy these goals.
The HP VISTA product was initially based on the Softnet
technology developed by a group at HP's Ft. Collins En
gineering Operation. These concepts were ported to C for
compatibility with the HP-UX system. This C-based object
oriented system was enhanced to include encapsulation,
messaging to support polymorphism, and inheritance.

During the early development stages of HP VISTA, a
group at HP's Loveland Measurement System Operation
was using and and extending the Objective-C programming
language. The HP VISTA C code was ported to Objective-C
halfway through the project to permit sharing of code alld
ideas with other HP development groups. Software en
gineering issues such as source code control and configura
tion management were worked out in parallel (see "Objecl
Oriented Life Cycles" on page 98).

Faceless Instruments
The use of a general-purpose HP workstation as the pri

mary interface to instruments is a fairly new concept. In
struments traditionally have been contained in a dedicated
box with a display and buttons on the front panel for control
and observation. The development of the HP-lB interface
permitted these stand-alone instruments to be controlled
from a central computer, but the primary interface re
mained via the front panel.

A "faceless" instrument transfers the primary interface
from the front panel of the instrument to the screen of a
general-purpose computer. This makes it easier to interface
with a group of instruments. and it is a lower-cost solution
since it eliminates the redundant displays and front panels
on each instrument. The HP PC InstrumentsB family was
the first HP product line to build faceless instrument mod
ules with the user interface displayed on a personal com
puter screen. These software displays mimic the buttons
and displays seen on a normal instrument front panel.

HP VISTA software also controls a group of faceless in
struments that can support hundreds of input channels.
Because of the number of input channels, the HP VISTA
computer display cannot duplicate a standard front panel
on its smaller display. A method was devised for control
ling and viewing measurement activity via a windowed

user interface (see Fig. 10). HP VISTA does this by using
the standard HP Windows/9000 system. Each object in HP
VISTA is capable of displaying itself in a window on the
screen. The user can also have other software applications
displayed simultaneously in other windows. For example,
the user can view a drawing of a device while performing
measurements on it. It also allows the user to reconfigure
the display as required since windows can be added, de
leted, and moved to different regions on the screen.

The user interface required several iterations to achieve
the goals of user configurability and ease of use. One ver
sion of the design considered use of the entire display filled
with tiled* information. The display tiles are nonoverlap
ping and adjust in size if additional tiles are added to the
screen. The advantage to this approach is that it provides
the user with a consistent view of the system. The disadvan
tage is that it is difficult to add new objects as they are
developed and the user may not want the exact display
chosen by the program. Another design proposed to display
every object in a directory from where it could be selected
and displayed. The advantage here is total flexibility. The
major disadvantage is confusion by new users on where to
start work. Also, each window creates a new HP-UX pro
cess, and too many processes can reduce system perfor
mance. The final design for the user interface settled on
limiting the display windows to a small number of objects
and tiling objects within these windows in a controlled
manner. Different-sized displays can be accommodated
with this technique and still provide the user with the
advantages of windows.

Object ModelNlew/Controlier
The HP VISTA system is based on three types of objects:

model objects, view objects, and controller objects (see Fig.
11). This organization is similar to that used in the
Smalltalk language.

In HP VISTA, model objects contain data about the
hardware, data coJlected from measurements, and data as
sociated with computations. They also contain the methods
to retrieve and manipulate the data. View objects own
model objects and they contain the methods to draw the
information contained in the model objects on a display.

"TIled inlormalion relers 10 a window syslem in which windows are shaped and siZed to
lit together wilhoul overlapping each other.

Fig. 11. Relationship between
model. view, and controffer ob
jecls in HP VISTA.

Plot of Array
Contained in

Model
View Update
Messages

----------..." .
, ... .

View
Messages

Messages to
Model

Messages to
Controller

Controller
Object

User Input
Device

Interaction

User
Input

(e.g.,Plot)

94 HEWLrn·PACKARO JOURNAl AUGUST 1989



Objective-C Coding Example

The HP VISTA software is written in the Objeclive-C program
ming language, Standard C code can be freely intermixed with
Objeclive-C code because a preprocessor translates Objective
e code into standard C. Message expressions are written as a
pair of balanced square braces surrounding the receiver, selec
tor, and arguments.

[receiver selector:argumentl

The receiver is the name of the object that will receive the
message. The selector is the particular method that should be
performed by the receiver. Arguments are parameters which can
be either simple data or other objects.

Message expressions are allowed anywhere function calls are
allowed in C. For example, a message expression can appear
as arguments in the standard C print function:

printf("The size ollhe sel is %dn", [aSeI sizeJ);

The standard C function, printf, will print out the string, "The
size of the set is N", where N is the number returned from the
object aSeI after the method size is executed.

Other objects can be sent along with the message as argu
ments with the following syntax:

[anObject do:argl wilh:arg2]

This statement says to select the method do:with: from the object
anObject, and use arguments arg1 and arg2. For example, to sum
two coordinate point objects, COOfdx and COOl'dy. they could be
sent to a summation object aSum with the message:

[aSum x: coordx y: COOl'cty]

The Objective-C preprocessor converts this syntax into stan
dard C function calls. The preprocessor also maps these mes
sages into a more efficient form than if the function calls had
been written directly using string values. Also, because the mes
sages are symbolic and do not refer to any specific function,
they can be dynamically bound to any particular function at run
time. This permits the efficient implementation of inheritance,
polymorphism, and the ability to link and load new objects dynam
ically.

View objects send messages to model objects to retrieve
the information to be displayed.

With the model object separated from the view object
each can specialize in what it does best. A single model
object can be viewed in more than one way by creating
multiple view objects that own the same model object. In
Fig. 12 a single model object that contains the current value
of the time of day is owned by two view objects. The view
objects use the time-of-day value from the model to display
two different representations of the time on the display.
Likewise. a single view object can be used to display many
different model objects. Because of the dynamic linking
and loading capability of objects, new objects can be dynami
cally added to a view object, thus eliminating the need to
provide for all combinations of models and views.

The controller object handles all of the user's input de
vices, such as the mouse and keyboard. The controller in
terprets the user inputs and maintains information about
the state of the input devices. The inputs can even come
from a computer-generated source such 8S an automatic
test program. A standard controller object can be used by
many different view objects.

Views and Subvlews
HP VISTA has several general classes of view objects

that are widely reused either through inheritance or simply
by reusing the whole object. These view objects include
text displays, scroll bars, pushbuttons, and so on. A win
dow display can be constructed from several of these view
objects in a hierarchical manner. The subviews of a view
object are owned by and nested within the view when it
is displayed (see Fig. 13). Subviews are usually added to
a view when it is created and are set up to display the
individual objects that make up the model object.

Each view has the ability to calculate its size automati
cally from the positions and sizes of its subviews. This
permits subviews to change in size without requiring any
changes in code. A subview can operate as it would by
itself, or it can transfer responsibility to its superview. Th.is
allows general.purpose subviews to be created which can
be selectively overridden by the superview.

Dependent View Objects
Each view object can automatically update the display

whenever the model object changes. The model object
maintains a list of all objects that want to be informed
whenever a change takes place. This list is called a depen
dency list. An object can request to be added to this list
by sending a message to the model object it wants to be
notified by when something changes. HP VISTA added this
capability to the Objective-C system.

Exception Handling
To prevent the system from crashing because of errors

Model Object

Tlme-of-Cay
Oala

Fig. 12. Two view objects own the same model object. The
model object contains the current time of day. One view object
displays the time in analog format and the other view object
displays the time in digital format.

AUGUST 1989 HEWLffi·PACKARO JOURNAL 95



Display Window

Fig. 13. Display window constructed out of view and subview
objects.

View____...

/ r\;voJ\
sUbv;ews~ __I.....

m:1L.l--~ Subviews

Virtual Instrument Objects and Dependency
All instrument hardware handled by HP VISTA is encap

sulated by virtual instrument objects. The term virtual in
strument was chosen to represent the fact that the software
representation is a virtual image of the instrumentation
hardware. The letters of the word VISTA stand for Virtual
Instrument System for Test and Analysis. The virtual instru
ment objects encapsulate the hardware setup state, the input
module states, and source module states.

Virtual instrument objects read and update the state of
the hardware. HP VISTA's object dependency feature de
scribed in a previous section is used to automate updating
these objects whenever the state of the hardware changes
or new modules are added. The use of dependency elimi
nates the need for each object to poll periodically for any
changes.

Each hardware input module is represented by an input
module object. Input module objects are displayed in the
input setup window. When an input module object changes
for any reason, it informs the appropriate virtual instrument
view object that a change has occurred. The virtual instru
ment view object can then take appropriate action. A com
mon use for this scheme is to indicate when a new block
of data has been acquired. The input module loads its buffer
memory and signals all of its dependent objects that it has
new data. The objects signaled can then choose to use or
ignore the new data.

A standard interface exists between the virtual instrument
objects and measurement objects. The virtual instrument
collects one block of data from each input module and
creates an object containing an array of data block objects.
This general-purpose object contains the data from the input
module object and methods for performing measurement
calculations (e.g., add two blocks of data, complex conjugate
addition, etc.). This object can be used by all measurement
objects. Measurement objects can also make requests to the
virtual instrument objects to activate instrument source
modules through a standard protocol of messages.

Concurrency
The process of collecting data and passing Hon for further

computation is effectively an endless loop. A deferred mes
saging system was created in HP VISTA to allow messages
from the user to be executed while a measurement is taking
place. For example, the user may wish to change the voltage

in user input or measurement computations, Objective-C
was extended to include a try/recover exception handling
capability. Different sections of the code are declared a lry
region, where if anything disrupts the normal sequence of
processing, such as division by zero or a hardware error,
the recover block of code is executed either to patch things
up and continue, or to inform the user that a problem exists.
Every attempt was made to provide the user with helpful
error messages so that any problem can be corrected and
a s11ccessful measurement made.

A try/recover block was also placed around the entire
HP VISTA system. The system is then protected against all
undetected software defects. These defects are trapped and
the user can continue to operate the system. Some of these
undetected defects might cause the system to freeze up and
require the user to restart the program. Despite rigorous
quality assurance testing, it is well known that software
defects can remain undetected for a long time. Object
oriented programming improves this situation but it will
not guarantee zero defects.

HP VISTA Architecture
Between the model and view object categories, HP VISTA

has more than 300 different types of objects. which are
further categorized into three groups: virtual instrument
objects. measurement objects, and result objects. Each
group is made up of model and view objects, that is, there
are virtual instrument model and view objects, measure
ment model and view objects, and result model and view
objects. These categories and the relationship between the
objects and the display windows are shown in Fig. 14.

Virtual instrument objects encapsulate the instrument
hardware, which includes input modules, source modules,
and the hardware configuration setup. All of the software
in HP VISTA interfaces with the hardware via the virtual
instrument objects.

The measurement objects perform generic measurement
functions stich as arm, pause, continue, abort, and averag
ing, as well as fllnctions specific to a particular measure
ment type. Typical measurement types include frequency
response functions and power spectrums.

The result objects store the computed measurement data.
This data is corrected for calibration variances and is avail
able for display by various view objects. The result objects
can also be used for additional computation and processing
by the user.

The measurement folder, which appears in the virtual
instrument display window, lists all of the measurement
objects accepting data from the virtual instrument (see the
bottom window in Fig. 10). The user can request that mul
tiple measurements be computed simultaneously from the
data collected by the virtual instrument objects.

A standard interface is defined between the virtual in
strument objects and measurement objects as well as be
tween the measurement objects and the result objects. These
interfaces permit one category to change its implementation
without affecting the other two categories of objects. For
example, as new instrument hardware is introduced, only
the virtual instrument objects need to change. The measure
ment and result objects can remain the same.

96 HEWLETT·PACKARD JOURNAL AUGUST 1989



setting of a source output while performing some measure
ment process. Instead of forcing each object to waste CPU
time in a software loop that polls for new messages, a
deferred message queue was created. This queue is a list
of messages waiting to be executed.

All messages sent to objects on the dependency list are
sent to this deferred message queue. Also, all messages that
result from the user's pushing a button or selecting a menu
item are sent to this deferred message queue. The main
measurement loop is divided so that a deferred message is
sent frequently enough to objects on the dependency list
to allow a user's message to be executed in a timely fashion.
This creates the illusion of two operations occurring at the
same time even though there is only one program and one
HP-UX process. Users can modify and display instrument
settings interactively while watching on-line updates of
the measurement in progress. The spawning of extra pro
cesses is not required and objects do not need to poll for
input-they just need to respond to messages sent to them.
Significant performance advantages are achieved by reduc
ing the number of processes required.

Measurement Objects
Measurement objects perform specific measurement

functions using the data collected by the virtual instrument
objects. The concept of inheritance is used by all measure
ment objects to provide new measurement functions incre
mentally. All measurement objects inherit key functional
ity from a super class object which implements a state ma-

chine that handles all generic measurement functions, such
as arm, pause, continue, abort, and averaging.

Several different measurement objects can make them
selves dependent on the virtual instrument objects. Each
lime a new set of data has been collected, a virtual instru
ment object informs each object on its dependency list that
new data is available. More than one measurement object
can be on a dependency list to permit the simultaneous
calculation of several measurement. results from the same
data.

One specific measurement performed by HP VISTA is a
multiple-input, multiple-output (MIMO) frequency re
sponse function. There is a significant. increase in measure
ment throughput and measurement accuracy associated
with processing multiple simultaneous inputs. The calcu
lation of this measurement requires a matrix computation
combining data from multiple channels." The MIMO fre
quency response measurement object uses the data col
lected by the virtual instrument objects to do these compu
tations.

Other measurement objects perform 1/3-octave measure
ments, power spectrum measurements, and time-domain
measurements. Depending on the application, one or more
measurement objects might be using the virtual instrument
output simultaneously. These measurement objects are set
up and started in measurement windows on the display.
The measurement windows sometimes contain views of
the measured results.

(continued on page 99)

Model
Objects

Interface to Hardware
(see Fig. 9)

\Measurement Object
Interlace

Display
Windows

)
View

Objects

]
Fig. 14. HP VISTA architecture.

AUGUST 1989 HEWLETT-PACKARD JOURNAL 97



Object-Oriented Life Cycles

An independent metries group was formed early in the HP
VISTA development process 10 help measure and improve the
software development process.' It was not clear whether an
object-oriented development process would fit into a conven
tional software development life cycle. Some of the life cycle
models considered included:
• A code and fix model-write some code and fix the defects

found. Detailed design is not considered at the beginning.
• A stagewise and waterfaU2 model-separate the development

process into a design phase, a coding phase, and a testing
and integration phase.

• An evolutionary development model-incrementally build
rapid prototypes to gain early user feedback for subsequent
improvements and evolution. This approach can easily have
all of the problems of the old code and fix model. This is a
popular approach with fourth-generation languages and spread
sheet applications when the developer does not know what
is required until the solution is shown.

• The transform model-develop a formal specification that is
transformed into an optimized implementation. The objective
is to have an implementation that can be proved correct and
error-Iree. This method is primarily an area of research.
Previous project experience indicated that none of these ap-

proaches was a total solution. A common belief shared by the
design team was that code should be quickly prototyped to gain
operational understanding and experience and then thrown out.
The code can then be rewritten and constructed in a cleaner
and more organized fashion based on the quick prototype experi
ence. The only problem with this approach is that because of
the pressure to release a product quickly the prototypes might
be shipped. resulting in maintenance problems because early
prototypes typically consist of patched and poorly structured
code.

In addition to creating and managing a development life cycle
other goals of the metrics program were to develop methods to:
• Show the progress of a project throughout different phases in

its life cycle.
• Indicate when a project had passed from one phase of the

life cycle to the next.
• Monitor changes to the product's definition, internal design,

and code.
• Improve resource and schedule planning to help coordinate

project staffing, determine development costs, and forecast
future schedules.

• Flag any new process problems that a project might have.
It was made clear to the design team that the metrics program

was designed to measure projects and processes and not indi
vidual performance. The goal was to determine ways in which
the process could be improved rather than find out who was
writing the most code. This noncompetitive approach along with
an independent metrics group was considered essential to ac
quiring good, nonbiased information to improve the software de
velopment process continually.

A waterfall model, modified to take into consideration the needs
of object-oriented development, was used to define our develop
ment life cycle. The major phases included:
• Definition phase, in which the external specifications of the

product functionality are defined.
• Design phase, in which the system design is partitioned into

objects and the internal design and functionality of each object
are defined.

• Coding phase, in which the objects and other modules are
created, tesled, and debugged.

98 HEWlETT·PACKARD JOURNAl AUGUST 1989

• System testing phase, in which independent testing of the
entire product is performed. During this phase the system is
1()()% functional with some bugs and performance problems
remaining.

• Production release phase, in which the product is released
with no remaining known defects and an acceptably low defect
rate.3

For each phase metrics were defined and collected to deter
mine if that phase was completed (see Table I). To encourage
minimum development time, different parts of the project were
allowed to be at different points in the life cycle. Graphs of the
metrics collected were used by management for planning pur
poses and detecting process problems.

Table I
Software Metrics Set by Life Cycle Phase

Definition Phase:

Cumulative Engineering Months

Design Phase:

Above Set, plus
Object Classes Planned. Designed
Methods Planned, Designed
Productivity: Engineering Months/Classes Planned

and Designed
ProductiVity: Engineering Months/Methods Planned

Coding Phase:

Above Set, plus
Object Classes Tested, Released
Methods Coded, Tested
Total KNCSS (Thousand Lines 01 Noncomment

Source Statements)
Link Success Rate
Compile Success Rate
HP-UX make Time
Productivity: Engineering Months/Classes Released
Productivity: Engineering Months/Methods Released
Productivity: Engineering Months/KNeSS

System Testing Phase

Above Set, plus
Defects Found. Resolved
Cumulative Defects versus Cumulative QA Hours
Defect Finding Rate
Estimated QA Hours Remaining
QA Hours Per Week
Unresolved Defects by Severity

Over All Phases:

Cumulative Engineering Months
Productivity: Engineering Months/Classes Released
Productivity: Engineering MonthslMethods Tested
Productivity: Engineering Months/KNCSS

References
1. C. Stanford, HManaging Software Proiecls Through a Metrics Driven Ufecycle," HP

Software Engineering ProductiVIty Conference. May 1967, pp. 4-232 to 4-241.
2. B.w. Boehm, "A Spiral MOdel of Soltware Del/elopmeot and Enhancement," IEEE
Computer, May 1988, pp. 61- 72.
3. G.A. Kruget, HProjecl Managemeol USing Software Reliability Growth Models,"
Hewlen-Packard Journal, Vol. 39, no. 3, June 1988, pp. 30-35.



1

Result Objects
Results computed by the measurement objects are stored

in special result objects that include special information
about the measurement. This information includes data
correction information, units, input range faclors, pointers
to where the measurement is documented, and so on. The
result objects inherit functionality from general-purpose
math objects. These results arB displayed in result and trace
view windows.

Result objects can be saved on disc by using an automatic
110 feature of HP's Objective-C. Every object in HP VISTA
has the ability to save itself on request. The save procedures
are nested so that a single message to an object will save
the object and all of the objects it uses. Therefore, the user
can save just the results, the virtual instrument setup ob
jects. the measurement setup objects, or everything except
the actual hardware.

Each result view object can be a dependent of a result
model object. Separating the view function allows each
measurement result to be displayed in more than one way
by creating a new view object. Also, more than one view
object can be simultaneously displaying the measurement
results. Each time the measurement object computes a new
result, it sends a message to a result model object informing
it that there has been a change. The result model object
then informs all of the result view objects on its dependency
list that it has new results. The result view objects can then
take the new results and update the trace plots in the dis
play windows. For example, a user can be viewing the
same measurement results both as a frequency response
plot and as a Nyquist plot in two different windows.

The user of HP VISTA has a large amount of control over
what measurement objects and results objects are created
and displayed. This makes setting up a custom measure
ment display easy. The user can open the specific measure
ments and results views required and position these on
the screen where desired using standard HP Windows/gOOD
menu commands. For users not requiring this flexibility,
objects can be created that will manage and perform a spe
cific measurement application. These applications require
less knowledge about the windows and object system and
are easier to use.

A user programming language is provided by HP VISTA
to permit users to send messages to any object visible in
the system. With this feature the user can create automatic
scripts to set up and perform measurements without human
interaction. The user can also create a user program to
process the results further if required by the application.

Performance
Since HP VISTA measurements must be performed in

real time and on-line, consideration was given to designing
the system for performance. Common folklore says that
object-oriented systems are slower than conventional sys
tems because data can only be accessed by sending a large
number of messages.

HP VISTA was designed with an object-oriented lan
guage that permits the inclusion of standard C code where
required for performance reasons. Early in the design an
estimate was made concerning what items should be ob
jects and what items should be coded in C to increase

performance. For example, direct pointing into an array of
numbers was allowed in a controlled manner since millions
of array computations are performed.

Most of the anticipated bottlenecks did not become prob
lems. Optimization work on the Objective-C language by
Stepstone Corporation and a group within HP resulted in
message execution times only a fraction slower than a stan
dard procedure call. Several major performance problems
were solved during a tuning phase by modifying the offend
ing algorithms and repartitioning some objects. Perfor
manCe was also improved by measuring and determining
where the bottlenecks were and then rewriting those sec
tions of code. This included eliminating objects in some
places and creating new objects elsewhere.

A common design issue related to object-oriented pro
gramming is the granularity of objects created. A fine-grain
object is one that performs a very small function in the
overall system. A large-grain object is one that encapsulates
a large amount of functionality. A common perception says
that a system with fine-grain objects will have poor perfor
mance because of the large number of messages required.
On the other hand, a system with too many large-grain
objects will not provide the user with many of the advan
tages of objects.

HP VISTA designers discovered that both large-grain and
fine-grain objects must be carefully chosen and designed
to balance system features with performance. Granularity
is an important system design issue that is still not well
understood. For example, a very fine-grain integer object
was created to aid in the display of integer numbers on the
screen. This object turned out to be a good use of an object
since it was able to fit into the standard view object struc
ture and was updated automatically at a fairly low fre
quency. Only a couple of messages are sent to it and so it
is not a performance bottleneck. However, this is a poor
object to use in a numerically intensive application such
as a fast Fourier transform which requires fast and frequent
access to each integer value in an array. A faster design
would create an object with a fast Fourier transform method
coded using an array of integers rather than an array of
integer objects. This array of integers would be classified
as a coarser~grained object.

Additional performance tuning was done with HP
VISTA's interface to the HP Windows/gOOD system and the
HP-UX operating system real-time extensions. An addi
tional memory-locked process was created to store incom
ing blocks of data into an area of memory shared by the
main HP VISTA program. This memory queue buffers the
statistical time variations caused by hardware and operat
ing system response time.

Memory Management
The creation and destruction of objects requires that sys

tem memory be allocated and deallocated. These actions
can result in two problems: memory can be fragmented
into small and unusable pieces, and memory can run out
because memory space occupied by old objects is not re
claimed. The process of cleaning up memory is often referred
to as garbage collection. The program must periodically
reconfigure system memory space to avoid running out of
memory for new objects.

AUGUST 1989 HEWLETI·PACKARD JOURNAL 99



The garbage collection process can take a significant
amount of time and could interfere with a real-time mea
surement process. HP VISTA designers carefully designed
the main real-time measurement loops so that memory
management is not required during operation. This is done
by recycling old objects every time through the measure
ment loop and avoiding the creation or destruction of new
objects. Outside of the measurement loop, a simple memory
garbage collection takes place in the hackground. The user
can also request a more complete garbage collection when
spare time is available.

Summary
Object-oriented technology represents a fundamentally

new way of creating software. It has not yet been quantified
into a textbook procedure. To be successful, object-oriented
approaches must be applied in conjunction with good proj
ect management and tools, such as a defect tracking system
and configuration management. There are no panaceas that
will eliminate software engineering problems, but object
oriented approaches will help produce software that is far
more tolerant of change. HP VISTA and other HP products
are examples demonstrating these advantages.

Acknowledgments
I would like to acknowledge the vision, determination,

and support shown by Howard Hilton to build an object
oriented software product. Howard served initially as sec
tion manager and later as lab manager for the HP VISTA
product development. This product could not have been
done without Howard's insights and understanding of ob
ject-oriented technology. The HP VISTA product was able
to implement only a small portion of Howard's vision of

Hewlett-Packard Company, 3200 Hillview
Avenue, Palo Alto, California 94304

ADDRESS CORRECTION REQUESTED

August 1989 Volume 40. Number 4

Tecttnlc* InlormeUon from the lIibotato"". of
Hewlen-Packard Company

Hewlell-Packard Company, 3200 HillView Avenue

Palo AIIO. California 94304 USA
Hewlen-Packard Marcom OperaliOns Europe

PO Bo)( 529
1180 AM AmSlelveen, The Nelherlands

YQkogawa-Hewletl·Packard Ltd, Suglnaml-Ku Tokyo 168 Japan
HewleU-Packard (Canada) Ltd

6877 Gorewa Dr,ve, Miss,ssauga Onlarlo L4V lM8 Canada

how software should be done. Also, the Instrument System
Laboratory under the leadership of David Palermo helped
to develop and champion these ideas companywide. John
Uebbing and Charles Young of HP Laboratories de
monstrated what could be done with Objective-C and real
time measurement graphics. The HP VISTA design team,
too numerous to list here, invented many innovative solu
tions while pioneering in no less than six major technolo
gies: a new real-time HP-UX operating system, a new HP
9000 Series 300 workstation, new signal processing
hardware, object-oriented programming, faceless instru
ment and windowed user interface, and multiple inpuUout
put frequency response measurements. The design team's
solutions to technological problems in each of these areas
helped in the successful completion of the HP VISTA prod
uct.

References
1. A. Goldberg and D. Robson. SmalJtalk·80: The Language and
ils Implementation, Addison-Wesley, 1983.
2. G. Krasner, Smalltalk-80: Bils of History, Words of Advice,
Addison-Wesley, 1983, pp. 79-112 and pp. 207-237.
3. B. Cox, Object-oriented Programming: An Evolutionary Ap
proach, Addison-Wesley, 1986.
4. B. Slrouslrup, The C+ + Programming Language, Addison
Wesley, 1986.
5. B. Cox and B. Hunt, "Objects, !cons, and Software ICs," Byte,
August 1986, pp. 161-176.
6. S. P. Fiedler, "Object-Oriented Unit Testing," Hewletl-Packard
journal, Vol. 40, no. 2, April 19S9, pp. 69-74.
7. Hewlelt-Packard journal, this issue, pp. 6-64.
8. Hewlett-Packard journal, Vol. 37, no. 5, May 1986, pp. 4-32.
9. T. Kraemer, "Software Architecture for a Multiple Input/Output
Dynamic Signal Analyzer," 4th Inlemational Modal Analysis Con
ference, 1986.

Bulk Rate
US. Postage

Paid
Hewlett-Packard

Company

M

CHANGE OF ADDRESS:

5953·8576

To subscribe, change your address. or delete your name from our mailing lis!. send your request 10 Hewlett-Packard
Journal. 3200 Hillview Avenue. Palo Alto. CA 94304 U.S.A Include your old address label. if any Allow 60 days.


	An Overview of the HP NewWave Environment
	An Object-Based User Interface for theHP NewWave Environment
	The NewWave Object Management Facility
	The NewWave Office
	Agents and the HP NewWave ApplicationProgram Interface
	An Extensible Agent Task Language
	The HP NewWave EnvironmentHelp Facility
	NewWave Computer-Based TrainingDevelopment Facility
	Encapsulation of Applications in theNewWave Environment
	Mechanical Design of a New Quarter-InchCartridge Tape Drive
	Reliability Assessment of a Quarter-InchCartridge Tape Drive
	Use of Structured Methods forReal-Time Peripheral Firmware
	Product Development UsingObject-Oriented Software Technology

