
H E W L E T T - P A C K A R D n
A U G U S T 1 9 3 0

H E W L E T T
P A C K A R D © Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D

August 1990 Volume 41 â€¢ Number 4

Articles

HP Manufac tur ing Automat ion Pro toco l 3 .0 , byCol l inY. W. Park and Bruce J . Ta l ley

8 Overv iew o f the OS I Re fe rence Mode l

11
U p p e r B . A r c h i t e c t u r e f o r H P M A P 3 . 0 O S I S e r v i c e s , b y S a n j a y B . C h i k a r m a n e

I f - D i r e c t o r y S e r v i c e s i n t h e H P M A P 3 . 0 E n v i r o n m e n t , b y B e t h E . C o o k e , C o l l e e n S .
O Fe t t i g , Pau l B , Kosk i , Dar re l l O . Swope , and Roy M. Vandoorn

24 HP MAP 3 .0 F i l e T rans fe r , Access , and Managemen t / 800 , by S teven W. Manwe i l l e r

Q H H P A . 3 . 0 M a n u f a c t u r i n g M e s s a g e S p e c i f i c a t i o n / 8 0 0 , b y P e t e r A . L a g o n i , C h r i s -
O I t o p h e r C r a l l , a n d T h o m a s G . B a r t z

3 8 H P M M S / 8 0 0 S e r v i c e s

4 0 H P - U X K e r n e l C o m m u n i c a t i o n s M o d u l e s f o r a C a r d - B a s e d O S I P r o t o c o l S t a c k , b y
Er ic C. Scoredos, K imber ly K . Scot t , and R ichard H. Van Gaasbeck

5 0 I n t e rope rab i l i t y Tes t i ng f o r HP MAP 3 .0 , by Je f f r ey D . Meye r

54 The HP MAP 3 .0 So f twa re I n t eg ra t i on L i f ecyc l e , by Doug las R . G rego ry

59 The In tegra ted Persona l Deve lopment Env i ronment

Editor, Richard P. Dolan â€¢ Associate Editor, Charles L. Leath â€¢ Assistant Editor, Gene M. Sadotf â€¢ Art Director, Photographer, An/id A. Danielson
Suppor t Anne Susan E. Wr ight â€¢ Admin is t ra t ive Serv ices, D iane W, Woodwor th â€¢ Typography, Anne S. LoPrest i â€¢ European Product ion Superv isor , Son ja Wir th

2 HEWLETT-PACKARD JOURNAL AUGUST 1990 Â© Hewlett-Packard Company 1990 Printed in U.S.A.

© Copr. 1949-1998 Hewlett-Packard Co.

64 5 0 0 - M H z a n d 3 0 0 - M H z P r o g r a m m a b l e P u l s e G e n e r a t o r s , b y W e r n e r B e r k e l , G e r d
Koffmane, Frederick L Eatock, Patrick Schmid, Heino HÃ³pke and Hans- JÃ¼rgen Snackers

7 6 H y b r i d A s s e m b l y

7 9

85

A 5 0 0 - M H z P u l s e G e n e r a t o r O u t p u t S e c t i o n , b y S t e f a n G . K l e i n a n d H a n s - J Ã ¼ r g e n
Wagner

A 3 0 0 - M H z , V a r i a b l e - T r a n s i t i o n - T i m e P u l s e G e n e r a t o r O u t p u t S e c t i o n , b y P e t e r
Schinzel, Volker Eberle, and GÃ¼nter Steinbach

Departments

4 I n t h i s I s s u e
5 Cover
5 W h a t ' s A h e a d

6 0 A u t h o r s

The Hewlet t -Packard Journal is publ ished b imonth ly by the Hewlet t -Packard Company to recognize technical contr ibut ions made by Hewlet t -Packard (HP) personnel . Whi le
the in format ion o f in th is pub l ica t ion is be l ieved to be accura te , the Hewle t t -Packard Company makes no warrant ies , express or impl ied , as to the accuracy or re l iab i l i t y o f
such informat ion. The Hewlet t -Packard Company disc la ims ai l warrant ies of merchantabi l i ty and f i tness for a part icular purpose and al l obl igat ions and l iabi l i t ies for damages,
including but not l imited to indirect, special , or consequent ial damages, at torney's and expert 's fees, and court costs, ar is ing out of or in connect ion with this publ icat ion.

Subscr ipt ions: non-HP Hewlett-Packard Journal is distr ibuted free of charge to HP research, design, and manufactur ing engineer ing personnel, as wel l as to qual i f ied non-HP
individuals, business and educational inst i tut ions. Please address subscript ion or change of address requests on printed letterhead (or include a business card) to the HP address
on the please cover that is c losest to you. When submitt ing a change of address, please include your zip or postal code and a copy of your old label.

Submiss ions: research ar t ic les in the Hewlet t -Packard Journa l are pr imar i ly authored by HP employees, ar t ic les f rom non-HP authors deal ing wi th HP-re la ted research or
solut ions contact technical problems made possible by using HP equipment are also considered for publication. Please contact the Editor before submitt ing such art icles. Also, the
Hewlett-Packard should encourages technical discussions of the topics presented in recent art ic les and may publ ish let ters expected to be of interest to readers. Letters should
be br ie i , and are subject to edi t ing by HP.

Copyright publication granted Hewlett-Packard Company. All rights reserved. Permission to copy without fee all or part of this publication is hereby granted provided that 1) the copies
are not Hewlett-Packard used, displayed, or distributed for commercial advantage; 2) the Hewlett-Packard Company copyright notice and the tit le of the publication and date appear on
the copies; Otherwise, be a notice stating that the copying is by permission of the Hewlett-Packard Company appears on the copies. Otherwise, no portion of this publication may be
produced recording, information in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage retrieval system without written
permission of the Hewlet t -Packard Company.

Please Journal , inquir ies, submissions, and requests to: Edi tor , Hewlet t -Packard Journal , 3200 Hi l lv iew Avenue, Palo Al to, CA 94304, U.S.A.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 3

© Copr. 1949-1998 Hewlett-Packard Co.

In this ISSUE
Computer in tegra ted manufac tur ing , o r CIM, is the v is ion and the goa l o f
manufactur ing companies today. In this vision, corporate mainframe comput
ers and engineer ing workstat ions t ransmit order and design data automat i
cally robots the factory floor, where workcell controllers pass it on to robots and
numerical ly contro l led machines. Product ion, qual i ty , and shipping informa
tion is management automatically by the corporate mainframes for management
reports and bil l ing. In reality, as the authors of the article on page 6 describe
i t , CIM in t rad i t ional ly meant equipment f rom d i f ferent vendors res id ing in
iso lated " is lands of automat ion" because, in most cases, no s ingle vendor

can supply a l l o f a factory 's requi rements, and the propr ietary components used by the var ious
vendors de commun ica te w i th o the r vendors ' equ ipment . In th i s env i ronment , app l i ca t ion de
velopment and t ra in ing are d i f f icu l t , and a centra l ly managed and contro l led network is v i r tual ly
imposs ib le . About ten years ago, Genera l Motors Corpora t ion fo rmed a task fo rce to address
these problems. Many large and smal l manufacturers and leading equipment vendors, inc luding
Hewlet t - Packard, have been involved in th is ef for t . The resul t is the Manufactur ing Automat ion
Protocol (MAP). MAP is based on the Reference Model for Open Systems Interconnect ion (OSI)
of the Internat ional Organizat ion for Standardizat ion (ISO), which in th is age of network ing has
been speci f ies with some regular i ty in this publ icat ion. MAP specif ies a set of standard communi
cat ion serv ices for factory automat ion, and has been accepted as an in ternat ional s tandard by
the ISO. HP's implementat ion o f the la tes t vers ion, MAP 3.0 , is descr ibed on pages 6 to 60 o f
th is Access, I t has three main components: the Fi le Transfer, Access, and Management services
(FTAM, 31) , 24) , the Manufac tur ing Message Spec i f i ca t ion serv ices (MMS, page 31) , and the
X .500 se rv i ces se rv i ces (page 15) . A s tandard in te r face be tween these se rv i ces and fac to ry
automat ion appl icat ions is prov ided by the HP MAP 3.0 upper layer arch i tecture (page 11) . HP
MAP 3.0 computers under the HP-UX operating system on HP 9000 Series 800 PA-RISC computers
and connects to a network by means of the HP OSI Express card (see the February 1990 issue).
Three transfer software modules in the HP-UX kernel provide reliable data transfer between the host
HP 9000 Manufac and the HP OSI Express card (page 40). Because the purpose of the Manufac
tur ing communicate, Protocol is to al low equipment f rom di f ferent vendors to communicate, inter
operab i l i ty tes t ing is necessary to ensure that HP MAP 3.0 serv ices are compat ib le w i th o ther
vendors ' serv ices and to expose errors in HP's and other vendors ' implementat ions. The ar t ic le
on page software describes the results to date. The development of HP MAP 3.0 was a major software
project involving ten project teams at three HP divisions in dif ferent parts of the U.S.A. To ensure
the success fu l in tegra t ion o f a l l o f the so f tware , f i rmware , and hardware e lements , a gener ic
so f tware in teg ra t ion l i f ecyc le was deve loped . Desc r ibed in the a r t i c le on page 54 , i t may be
appl icable to other large, mult idivisional projects.

4 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

The h igh-speed computat ion, communicat ions, and s ignal process ing that we have avai lab le
today are made poss ib le by advanced in tegra ted c i rcu i t techno log ies w i th names l i ke CMOS,
BiCMOS, high-perfor and GaAs. Testing devices built using these technologies requires high-perfor
mance advanced that often depend for their performance on the same advanced 1C technologies.
The HP 8130A and HP 81 31 A pu lse generators are good examples of th is boots t rap process.
The HP 81 500 A genera tes pu lses w i th 200-p icosecond r ise and fa l l t imes a t ra tes up to 500
megahertz. The HP 8130A offers var iable r ise and fal l t imes at pulse rates up to 300 megahertz.
The two a r t i c l e sha re t he same a rch i t ec tu re and t im ing c i r cu i t s , as desc r i bed i n t he a r t i c l e
on page generates but use different output systems. A custom high-speed bipolar 1C generates all of
t h e t i m i n g p a r a m e t e r s i n c l u d i n g p u l s e r a t e s t o 5 0 0 m e g a h e r t z a n d p u l s e w i d t h s f r o m 5 0 0
picoseconds to 99.9 mill iseconds. The HP 81 31 A's output amplif ier (page 79) is a thick-fi lm hybrid
c i rcu i t conta in ing a custom gal l ium arsenide in tegrated ampl i f ie r c i rcu i t . The HP 8130A's fas t ,
va r i ab le ou tpu t a re p roduced by a cus tom ga l l i um a rsen ide s l ope gene ra to r , and i t s ou tpu t
ampl i f ier , which requires high l inear i ty because of the var iable output ampl i tude and slopes, is a
custom high-speed bipolar c i rcui t (page 85).

R. P. Dolan
Editor

Cover
The p ic ture shows an automated workce l l w i th robots and cont ro l le rs a t the Genera l Motors

Corporat ion fac i l i ty in Oshawa, Canada. Provid ing the communicat ion l inks between the compo
nents Automation (MAP workcell is a typical application of the Manufacturing Automation Protocol 3.0 (MAP
3.0).

What's Ahead
The cover subject of the October issue wil l be the HP 1 1974 Series of mil l imeter-wave spectrum

ana lyzer RF sec t ions , wh ich have magnet ica l ly tunab le bar ium fer r i te p rese lec t ion f i l te rs and
operate Interface, the 26.5-to-75-GHz range. Other articles will describe the HP Interactive Visual Interface,
a toolki t for developing graphical user interfaces, and the HP Device Interface System, a tool for
developing inter faces between computers and factory- f loor devices such as robots and program
mab le con t ro l le rs . We ' l l a l so have research repor ts on measurements o f R , L , and C in VLSI
packages, s imulat ion of a i r f low in computer cabinets, and stat ist ical s imulat ion of c i rcui t perfor
mance distr ibut ions in production.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 5

© Copr. 1949-1998 Hewlett-Packard Co.

HP Manufacturing Automation Protocol 3.0
The Manufactur ing Automat ion Protocol (MAP) is an
intervendor program that addresses the problems that have
p lagued factory automat ion in the past . HP's MAP 3.0
product prov ides in ternat ional s tandard network serv ices
and pro toco ls and a mul t i vendor MAP programmat ic
interface.

by Col l in Y. W. Park and Bruce J. Tal ley

COMPUTER INTEGRATED MANUFACTURING
(CIM) has traditionally meant equipment from dif
ferent vendors residing in isolated "islands of auto

mation" because the proprietary components used by the
various vendors could not communicate with each other.
In many cases, they could not even share the same cable.
As a result, cabling was a nightmare, as was the effort of
porting applications across different vendors' equipment.
Training for these different networks was difficult to pro
vide for users and support staff, and the cost of the various
kinds of test equipment to keep it all running was also
high. Data throughput was typically low, and centralized
management and control of the network became virtually
impossible.

The alternative to this collection of incompatible tech
nology was to use only equipment from a single vendor,
thus locking the user into a future dominated by that ven
dor, regardless of price-performance or functionality bene
fits provided by other equipment vendors. This was really
no alternative at all, since no single vendor could meet all
the equipment requirements on the factory floor.

The Manufacturing Automation Protocol (MAP) specifi
cation was written to address these problems. Started by
General Motors Corporation and involving many other
large and small manufacturers as well as leading equipment
vendors in the industry, MAP is the product of years of
networking and manufacturing experience.

MAP specifies a set of standard communication services
for factory automation. The specifications provide compati
bility from the application layer (vendor X's computer can
download to vendor Y's robot) to the physical layer (all
MAP devices connect to the same high-speed cable, using
the same standard connector). MAP's application program
interface (API) allows users to port their applications across
vendors, and the standardized communication technology
and protocols cut training and maintenance costs.

The MAP services, and the data communication pro
tocols that provide them, are derived from the Open Sys
tems Interconnection (OSI) model as defined by the Inter
national Organization for Standardization (ISO) (see box
on page 8).

HP and MAP
HP's involvement with the MAP program began in 1984

with MAP 1.0. An implementation of MAP 1.0 was done

on the HP 1000 computer system and demonstrated at the
National Computer Conference of 1984. The MAP Users
Group was created that same year and HP was a founding
member. In 1985, HP demonstrated MAP 2.1 at Autofact,
a factory automation forum. Also in that year, HP joined
the European MAP Users Group and completed the first
functional installation of a MAP system at General Motors
Corporation in Detroit, Michigan. In 1987 HP introduced
MAP 2.1 on the HP 9000 Series 800 computer system. And
in 1989 HP released the current version of MAP 3.0 for
volume shipments on the HP 9000 Series 800 computers.

The HP MAP 3.0 products provide the MAP-specified
services on HP 9000 Series 800 computers. The MAP API
is included in the product, so that customers can write
CIM applications, such as factory device monitoring and
control programs. Efficient user interfaces are provided for
configuration, verification, and troubleshooting.

OSI Services Provided in HP MAP 3.0
Three OSI services are currently provided in HP MAP

3.0: the ISO File Transfer, Access, and Management
(FT AM) services, the ISO Manufacturing Message Specifi
cation (MMS), and the ISO/CCITT X.500 directory services.
The HP FT AM and MMS products are called HP MAP 3.0
FT AM/800 and MMS/800 respectively. Only the services
provided by FT AM and MMS can be directly accessed by
the user. The X.500 directory services are accessed in
directly through FT AM and MMS.

FT AM provides users with the ability to manipulate files
on remote systems in an internationally standardized way.
The programmatic interface includes subroutines that read
and write individual records in files and subroutines to
delete files and copy files between systems or on the same
system. FT AM is described in more detail in the article on
page 24.

MMS is designed for use with manufacturing devices
such as robots. Various control and monitoring operations
are provided. For example, there are subroutines for read
ing and setting variables such as counters and alarm con
dition thresholds. A bulk data transfer facility (e.g., for
downloading a program) is also provided. MMS is de
scribed in more detail in the article on page 31.

Both HP FTAM/800 and HP MMS/800 use the OSI direc
tory service X.500 to find the address of an application or
resources on another system or device. The HP X.500 direc-

6 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

tonÂ»' services are described on page 15.

Architectural Overview
In HP's MAP 3.0 product, the application services are

implemented in software residing on the HP 9000 Series
800 computer system. The Application Control Service Ele
ment (ACSE) protocol and most of the OSI lower layer
functions (from the presentation layer to the IEEE 802.4
physical layer protocols) are implemented on the HP OSI
Express card,1 which is a microprocessor-based I/O card
that plugs into the backplane of the host computer. Fig. 1
shows the overall architecture of HP's MAP 3.0 product.
User Application Programs. These are programs written
by end users or independent software vendors that may
use FTAM for file access and/or MMS for monitoring fac
tory floor devices. These applications use the MAP appli
cation program interfaces to access the HP MAP 3.0 ser
vices. The application program interfaces are libraries that
are linked into the user's program to enable communication
with the various service provider processes.
Service Provider Process (SPP). The service provider pro
cesses contain the modules that provide the MAP services
(FTAM and MMS) and the asynchronous operation capabil
ities specified by the MAP protocol.

"The performed layer's syntax transformation function is performed on the host system.

FTAM Responder. The FTAM responder is an FTAM pro
cess that handles requests for file manipulation activities
on the local machine. Typically these requests are initiated
by remote users. If a local user wants to access some remote
file, first the local FTAM SPP is used. When the request
reaches the remote machine, the FTAM responder on that
machine handles the request.
Upper Layer Architecture Modules. The upper layer ar
chitecture modules provide connection management and
syntax transformation services to the SPPs and the FTAM
responder. The upper layer architecture modules also pro
vide a platform for the development of OSI services. The
article on page 11 describes the upper layer architecture
in more detail.
MAP Kernel Modules. The MAP kernel modules, which
are software modules embedded in the HP-UX kernel, are
responsible for communicating with the HP OSI Express
card and hence to other systems or devices on the network.
Configuration Data Base. This data base contains informa
tion that is pertinent to the local system, such as the default
levels of tracing and logging and the addresses of the appli
cations on the local host.
Configuration User Interface. This user interface allows
users to enter data into the local configuration data base.
It can also be used to update information on a (possibly

MMS User
Process

FTAM User
Process

Appl icat ion Programs
Wri t ten by End User
or an Independent
Sof tware Vendor

MMS
Service
Provider
Process

F T A M
Service
Provider
Process

F T A M
Responder

Configuration
User Interface

Directory
Information
Base (DIB) i

S o f t w a r e a n d H a r d w a r e
P r o v i d e d b y H P

Start/Stop/
Control User

Interface

Directory
Services
(X.500)

Upper Layer Archi tecture Modules

Connect ion Management

Host Presentat ion Services

MAP
Kernel Modules

Configuration
Data Base

^ ^ M *

Tracing/
Logging

Subsystem

I t '
From Other

Modules in the
System

Card Management
Software

Host-to-Card Interface

OSI Express Card
Backplane H
Backplane Message
Interface (BMI)
C O N E
A C S E

IEEE 802.4 MAC
A P I = A p p l i c a t i o n P r o g r a m I n t e r f a c e
C M = C o n n e c t i o n M a n a g e m e n t

F i g . 1 . T h e m a i n c o m p o n e n t s o f
the HP MAP 3.0 arch i tec ture . HP
suppl ies the sof tware modules in
t he m idd le sec t i on and t he ha rd
ware module in the bottom section.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 7

© Copr. 1949-1998 Hewlett-Packard Co.

Overview of the OSI Reference Model

Fig. 1 shows the seven layers of the OSI reference model. The
appl icat ion layer prov ides the communicat ion serv ices requi red
by the end user . Each OSI appl icat ion conta ins the Associat ion
Control Service Element (ACSE)1 and at least one other appl ica
t ion and e lement (ASE) . ACSE cont ro ls the es tab l i shment and
destruct ion of the associat ion (i .e. , the cooperat ive relat ionship)
be tween the app l i ca t ion and i t s peer . The o ther ASEs p rov ide
the communicat ion funct ions to support the speci f ic OSI appl ica
t ion. For example, the FTAM ASE conta ins a module ca l led the
FTAM pro toco l mach ine , wh ich c rea tes the p roper sequences
of operat ions to manage the communicat ion and the t ransfer o f
f i le names and f i le data between systems. The appl icat ion, not
the ASE, is respons ib le for request ing the opening o f f i les and
reading from or wri t ing to f i les.

The presentation layer performs negotiation and transformation
of syntax. For example, i f one system uses EBCDIC and another
uses ASCII, then a character set understandable by both systems
must be chosen i f they are to communicate . The sys tems must
agree to the character set to be used for communicat ion (syntax
negot ia t ion) , and at least one system wi l l need to do character
set translat ion (syntax transformation).

The sess ion layer prov ides d ia logue cont ro l and synchroniza
t i on . Some app l i ca t i ons need fac i l i t i es to keep t rack o f who 's
going signal talk next, like a radio operator saying, "Over," to signal
the person at the other end to star t ta lk ing.

The t ranspor t l ayer ensures tha t da ta sen t f rom one user i s
communicated to the other user in order, wi thout loss or dupl ica
t ion. Th is may invo lve er ror recovery . For example, i f t rans ient
er rors cause one data packet to be garb led, the t ranspor t layer

Layer

7

6

5

4

3

2

1

End System 1

Application

A C S E ! O t h e r A S E s

Messages

may re t ransmi t tha t packe t . Mu l t i p lex ing may a lso be done to
a l low severa l conversa t ions to be he ld us ing the same wi re o r
the same connect ion.

Rou t ing i s t he p r imary func t i on o f t he ne twork l aye r . I f two
systems are not on the same physical medium, then data packets
m a y h a v e t o b e f o r w a r d e d t h r o u g h a g a t e w a y , w h i c h i s r e p
resented in F ig. 1 by the box labeled in termediate system. The
gateway or in termedia te sys tem may in fac t have i ts own app l i
cat ions running at the same t ime, but the f igure shows only the
par t o f the in termediate system that is used for communicat ing
between the two end systems. The network ent i ty in the source
end sys tem is respons ib le fo r p i ck ing an in te rmed ia te sys tem
tha t w i l l even tua l l y be ab le to de l i ve r the da ta packe ts to the
dest inat ion. The network ent i ty in each intermediate system that
i s pa r t o f t he rou te i s respons ib le fo r se lec t i ng the nex t i n te r
med ia te sys tem in the rou te . The las t i n te rmed ia te sys tem i s
responsib le for sending the packet to the dest inat ion.

The funct ion o f the data l ink layer is to ensure data in tegr i ty
between two phys ica l ly connected systems. Funct ions such as
f r am ing and checksumming a re f ound i n da ta l i n k p ro toco l s .
F low contro l and error recovery procedures are a lso somet imes
used.

The phys ica l layer ensures the phys ica l (e .g . , e lec t r ica l and
mechanical) compatibi l i ty between end systems, and the integrity
of physical media used for data t ransmiss ion.

References
1 . Information Processing Systems - Open Systems Interconnection - Service Definit ion
for the Associat ion Control Service Element, ISO 8649: 1987 (E).

End System 2

Application

A C S E ! O t h e r A S E s

Physical Medium Fig. 1 . The OSI reference model .

remote) directory system.
Directory Services. The directory services in MAP are
based on the OSI X.500 standard. This software provides
facilities for determining the locations of applications and
resources in a network.
Directory Information Base (DIB). The DIB is the data base
that implements the structure of the X.500 directory. It
conta ins the names, addresses , and other informat ion
required to find the locations of remote systems and/or
applications. The DIB may reside on the local system or a
remote system.
Start/Stop/Control User Interface. This interface allows

users to start and stop MAP networking, and to monitor
and control the level of tracing and logging. Tracing and
logging information is used to facilitate troubleshooting
the network.
Card Management Software. This software is invoked by
the start/stop/control user interface to download the HP
OSI Express card's software, and to control the card's op
erations.
Tracing/Logging Subsystem. This subsystem is responsible
for taking the traces and event logs from all of the other
HP MAP 3.0 software modules. Each module in the system
has a connection to the tracing/logging subsystem. This

8 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

uniform tracing and logging scheme was designed into HP's
MAP product from the beginning to ensure consistent trac
ing and logging policies and consistent formatting of the
tracing and logging information.2

Scenarios
The following scenarios illustrate how the components

of the HP MAP 3.0 architecture work together.
Configuration and Startup. Once the software and hard
ware are installed, the system administrator, with the assis
tance of HP field personnel, typically invokes the command
mapconf to configure and start HP MAP 3.0. The system
administrator or user can use other commands besides map
conf for configuring and administering the MAP subsystem.
Procedures are provided for updating the configuration of
a system already running MAP 3.0. There is also a fast
startup and shutdown facility.

Mapconf invokes the screen-based configuration user in
terface, and the system administrator updates the config
uration data base with the name of the card and the network
layer address to be used. The level of tracing and logging
can also be configured at this time. Next, mapconf invokes
the start/stop/control user interface and, playing the part
of the user, instructs the card management software to
download the card-resident software to the HP OSI Express
card. Once this is accomplished, the tracing/logging subsys
tem is started based on information stored in the configura
tion data base.

Mapconf's next step is to invoke the configuration user
interface to allow applications to be configured. First, ac
cess to the OSI directory service must be ensured. If the
directory information base (DIB) is located on the system,
the system is configured as a directory system agent (DSA).
The directory system agent is an X.500 process that handles
communication with a user requesting access to the DIB.
If the DIB is not located on the system, the system is con
figured as a directory user agent (DUA). A directory user
agent is an X.500 process that communicates with the DSA
on behalf of the user. The system administrator will also
configure the name and address of the FTAM responder.
Configuration limits, such as maximum number of simul
taneous remotely initiated file transfers, may also be con
figured at this time.

At this point, the system administrator can enter the
FTAM responder's name-to-address mapping into the DIB
using the X.500 directory services. If the local system is a
DUA, then this mapping must be recorded in the DIB via
a remote DSA. The directory services software is invoked
and uses the connection management module to establish
a connection to the remote directory system agent. The
host presentation services module performs the syntax
transformations that allow this DUA-to-DSA communica
tion. Other applications are configured similarly.

Once the configuration process is complete, mapconf starts
the FTAM responder and then invokes a screen-based ver
ification program that allows the system administrator to
see whether the system can indeed communicate with
others on the network. The startup process is then com
plete.
File Transfer. To see how the architecture carries out a
user's requests, consider a remotely initiated file transfer.

Suppose application A on a remote system (not necessarily
an HP system) wants to transfer a file to the local system.
Application A will first determine the address of the local
FTAM responder, perhaps by using the OSI directory ser
vice. Application A then sends a connect request on the
IEEE 802.4 token bus, and the request is received by the
local HP OSI Express card. This event is passed through
the MAP kernel modules to the FTAM responder, which
has been waiting for just such an event. The local FTAM
responder calls the connection management module in the
upper layer architecture modules to ensure that no config
ured limits are about to be exceeded. If everything is satis
factory, the FTAM responder continues processing.

The FTAM responder on the local system must process
the connect indication (it was called a request on the initiat
ing side but it's an indication on the receiving side), and
the presentation services module is invoked to perform the
required syntax transformations. Subsequent data ex
changes tell the FTAM responder that the remote system
wants to send a file, and, if security checks pass, the FTAM
responder will write the data into the appropriate file.
Programmatic Interface. The HP MAP 3.0 application pro
gram interface allows the user to write FTAM and MMS
applications that automatically use the parameters in the
configuration data base. The application programmer con
figures the user application before running the program.
When it is run, the user's program calls the connection
management module in the user process, which checks to
make sure that all conditions are within configured limits
(e.g., maximum number of simultaneous connections) so
that a user application can have access to MAP resources.

Once the API is satisfied that the program has the right
to use MAP resources, the program can make high-level
calls (e.g., transfer file A from system B to device C) or
low-level calls (e.g., read next record). Calls can also be
synchronous (e.g., return when the operation is complete)
or asynchronous (e.g., read a record or transfer a file in the
background).

To provide the asynchronous operations offered by MAP,
the HP MAP 3.0 product causes a service provider process
to be spawned whenever a user program calls the connec
tion manager's activate function. Communication is estab
lished between the user's process and the SPP using a local
interprocess communication mechanism. Asynchronous
requests can thus be handled, and high-level calls like file
transfer can be executed with almost no performance pen
alty because the process switching overhead is amortized
over the entire high-level operation.

Conclusion
The result of many years of manufacturing and network

ing experience, MAP is an intervendor program that address
es the problems that have plagued factory automation in
the past. HP's MAP 3.0 product combines international
standard services and protocols with the multivendor MAP
programmatic interface. Screen-based utilities simplify
configuration and verification. A uniform tracing/logging
policy and uniformly formatted output facilitate diagnostic
and troubleshooting tasks. The MAP programmatic inter
face provides enforcement of configured limits, and allows
asynchronous and high-level operations.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 9

© Copr. 1949-1998 Hewlett-Packard Co.

Acknowledgments
HP's MAP 3.0 products are the results of a cooperative

joint development effort among HP's Colorado Networks
Division, Information Networks Division, and Roseville
Networks Division. Over the course of the hardware and
software development, many managers and engineers
worked on the project at these three divisions. A special
thanks goes to the engineers responsible for the HP MAP
3.0 support and configuration tools, and for system testing.
The supportability team consisted of Peter Chang, Kwang-
Wei Yao, Don Goodnature, Mike Ganley, Jinn Su, Kathryn
Vandiver, Randy Stille, Chye-Guan Chew, Doug Chan, Dave
Woods, Pradeep Verma, Greg Gilliom, and Joan Lawler.
The configuration team consisted of Brad Wilson, Eric Hen
derson, Ellen Chu, and Greg Buchanan. System testing of
the products in IND was performed by Andy Lai's team of
Rajiv Batra, Murali Subbarao, Paul Melmon, and Abraham
Lui. Final testing was done in HP's HP-UX test technology
center by Anita Mundkur's team of Joe Algieri, Silesh Bijj,
Janice Gee, and Yori Huynh. Also deserving a special
thanks are Doug Boliere, Todd Reece, Atul Bhatnagar, and
Don Tiller for the vision and leadership they supplied to
this challenging program.

References
1. Hewlett-Packard Journal, Vol. 41, no. 1, February 1990, pp. 6-77.
2. J.K. Shah and C.L. Hamer, "Support Features of the HP OSI
Express Card," Hewlett-Packard Journal, Vol. 41, no. 1, February
1990, pp. 67-72.

10 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Upper Layer Archi tecture for HP MAP 3.0
OSI Services
Based on the OSI s tandard for the appl icat ion layer , the
HP MAP 3.0 upper layer arch i tecture prov ides a
standardized st ructure that a l lows network appl icat ion
developers to focus on the serv ices prov ided by the i r
appl icat ions rather than the archi tecture necessary to
interface to network protocols.

by Sanjay B. Chikarmane

TO FACILITATE THE DEVELOPMENT of the OSI
(Open Systems Interconnection) application layer
networking services, ISO (International Organiza

tion for Standardization) architects developed a framework
consisting of terminology, concepts, and a structure for
developing these services. Within this framework, called
the Application Layer Structure (ALS),1 the architectural
model for all OSI application layer services is specified.
In defining this model, the ISO architects refrained from
using real implementation terms such as processes and
libraries to avoid biasing the model toward a system offered
by a specific vendor.

This article describes the HP MAP 3.0 upper layer ar
chitecture, which is an implementation of the OSI applica
tion layer specification.

Applicat ion Layer Structure
In ALS terminology, an application using the OSI ser

vices is called an application process. Note that the word
process in this context is not necessarily the same as in an
operating system context. In ALS, an application process

A p p l i c a t i o n
P rocess

User
Application

A p p l i c a t i o n
En t i t i es

Lower OSI Protocol Stack

F ig . 1 . An examp le o f t he re l a t i onsh ip be tween t he uppe r
l a y e r n e t w o r k i n g s e r v i c e s c o m p o n e n t s a n d t h e O S I A p p l i
ca t ion Layer S t ruc ture te rmino logy app l ied to these compo
nents.

is simply an abstraction of a real application. The ALS
specification defines a structure for an application process
that promotes a toolkit approach in which components of
the application process perform well-defined functions.
These components can be employed in different combina
tions to provide different services.

An application process is composed of one or more com
ponents called application entities (see Fig. 1). An applica
tion entity can be looked upon as a networking service
such as a file transfer facility that employs one or more
networking protocols. The networking protocols are called
application service elements (ASEs). A factory-floor status
monitoring application is an example of an application
process. It may use the services provided by the application
entities MMS (Manufacturing Message Specification) and
X.500. MMS is used for reading status variables from fac
tory-floor machines and X.500 is used for accessing a direc
tory data base containing information about various fac
tory-floor applications. The ASEs, or networking protocols,
are represented by MMS and ACSE (Application Control
Service Element) for the manufacturing messaging service,
and by X.500, ACSE, and ROSE (Remote Operation Service
Entity) for the X.500 directory service. ACSE is an applica
tion layer protocol that is used to establish and terminate
an association between applications which can be on the
same system or different systems. ROSE is a generic OSI
service that allows applications to invoke request/reply
interactions with applications on remote systems. MMS
and X.500 are discussed in detail on pages 31 and 15.

The toolkit approach now becomes apparent. Once well-
defined ASEs with consistent interfaces are available, they
can be combined to produce an application entity that pro
vides a specific network service. And one or more such
application entities can be used to build an application
process.

Implementat ion Architecture
The HP MAP 3.0 upper layer architecture is based on

the ALS specification. In this architecture an application
process is implemented as one or more HP-UX processes
working together. The upper layer architecture distin
guishes between two types of processes: the service pro
vider process and the user process. The service provider

AUGUST 1990 HEWLETT-PACKARD JOURNAL 11

© Copr. 1949-1998 Hewlett-Packard Co.

process is a process that represents an application entity.
It is composed of modules representing ASEs and other
protocols and functions. The user process is a process that
contains an application program that uses the services pro
vided by one or more service provider processes. The upper
layer architecture is shown in Fig. 2.

The user starts a user process that issues primitives to
activate one or more service provider processes. Each
primitive call results in the HP-UX fork and exec operations
on a service provider process.
User Process. The five modules in the user process provide
the end user with a transparent interface to the network
services.
â€¢ Application Program. This is the program that the end

user uses to access the underlying networking services.
For MAP 3.0, application programs are MAP applica
tions used for factory automation.

â€¢ Application Program Interface. This is the interface
through which the application program obtains access
to specific networking services, such as file transfer
(FT AM), manufacturing messaging (MMS), and the X.500
directory services. For MAP 3.0, these interfaces are
specified by the MAP 3.0 subcommittees.2

â€¢ Event Manager. This module tracks pending requests
made by the application program to the application pro
gram interface. The application program uses the event
manager to synchronize the completion of requests.

â€¢ Connection Manager. This module is responsible for
managing the establishment and termination of all con
nections for the application program.

â€¢ Messaging Routines. Interactions between the applica
tion program and the service provider processes are in
the form of messages over HP-UX domain sockets. The

Appl icat ion Program

Appl icat ion Program
Interface

Event Manager
Connect ion

Manager

User
Process

Messaging Rout ines

User Socket

Messaging Rout ines

Appl icat ion Enti ty
Coordinator

Connect ion
Manager

Service
Provider
Process

(SPP)

Presentat ion Services

Networking Sockets '
Lower OSI Protocol Stack

ASE = Appl ica t ion Serv ice E lement

Fig. 2. The upper layer archi tecture for HP MAP 3.0 network
ing services.

messaging routines implement these messaging services,
hiding the specific mechanisms used from the applica
tion program.
When an application program activates one or more ser

vice provider processes, it can make a request through the
application program interface to establish a connection
with an application on a remote machine. Each request is
passed as a message to the appropriate service provider
process via the messaging routines. It is then processed by
the service provider process in accordance with the pro
tocol elements for that request. Within the service provider
process, connections to remote applications and the con
nection to the application program are handled by sockets.
The socket concept is identical to that used in the Berkeley
UNIX 4.2BSD operating system. We will refer to the socket
used for a connection to the application program as the
user socket, and the sockets used for connections to remote
applications as networking sockets.
Service Provider Process. The service provider process, or
SPP as it will also be referred to from here on, is an appli
cation entity in OSI terminology. The modules in an SPP
implement a particular network service.
â€¢ Control. This is the main controlling module in an SPP.

Its function is to wait in a loop and use the HP-UX select
call to query for events on the SPP's sockets. When an
event is detected on the user socket, the control module
invokes the application entity coordinator. When an
event is detected on a networking socket, the control
module invokes the presentation services. Based on
where an event occurs, the application entity coordinator
or the presentation services will process the event, and
if necessary, invoke other SPP modules.

m Messaging Routines. Like its counterpart in the user pro
cess, this module implements services for message based
communication between the application program and
the SPP.

p Connection Management. This module performs core
functions associated with SPP initialization and connec
tion setup and termination. For connection setup, the
connection manager performs a directory lookup to ob
tain the address of the remote application. Once this is
done, it coordinates with the ASEs to obtain their pro
tocol data unit information, and then invokes the presen
tation services to send the connection request. Should
the connection request fail, the connection manager al
lows the application program to retry the connection
setup periodically. The connection manager also allows
the application program to listen for connection requests
initiated by a remote application The connection man
ager also coordinates with the ASEs to terminate the
connection, obtaining protocol data unit information
from each ASE for the purpose.

f- Application Service Element (ASE). The SPP uses one
or more network protocols, or ASEs, to implement a
particular network service. The service provided by an
ASE and the interface used to access this service are
specified by the OSI standards. For example, MMS,
X.500, FTAM, ROSE, and ACSE are ASEs with corre
sponding OSI specifications.
Application Entity Coordinator. This module contains

UNIX countries a registered trademark of AT&T in the U.S.A. and other countries

12 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

the value added functions that go beyond the functions
specified by the OSI standard. For example, the HP MAP
3.0 FT AM application interface specifies a primitive to
copy a file. The application entity coordinator provides
this high-level service by using several lower-level
primitives specified by the OSI FT AM service specifica
tion. The application entity coordinator also manages
the operation of the ASEs.

â€¢ Presentation Services. The presentation services provide
the services specified for the OSI presentation layer 3>
and some additional features, such as negotiating and
handling presentation contexts, PDU (protocol data unit]
encoding and decoding, and PDU dispatching and data
streaming.

â€¢ Utilities. This module (not shown in Fig. 2) provides
services to other SPP modules such as tracking memory
use, managing shared memory, and signal handling.

Connect ion and PDU Transmission
When a connection is set up, each ASE defines the pos

sible types of data that it might send. A set of such types
is called the presentation context. The presentation ser
vices negotiate these contexts with the remote application
on behalf of the ASEs. Once the negotiation is complete,
the presentation services ensure that any data sent or re
ceived is within the set of contexts negotiated.

When an ASE sends data to a remote application, the
data needs to be encoded into PDUs. Similarly, when a
PDU arrives from a remote application, it must be decoded
and then dispatched to the ASE to whose context the data
belongs. These functions constitute the encoding, decod
ing, and PDU dispatching functions. If a PDU that is to be
sent or received is very large, it may not be possible to
send or receive it all at once and it will have to be streamed.
The presentation services fragment such PDUs before they
are sent and reassemble the fragments as they are received.

Example Scenario
The following example shows how the upper layer ar

chitectural components interact with each other. In this
example only one ASE is used. We assume that before this
scenario begins, the end user has started the user process,
which in turn has forked a service provider process. At the
point where this scenario begins, the user's application
program wants to request a connection to a remote applica
tion. Fig. 3 shows the sequence of events that takes place
with this request.
1. The application requests a connection at the application
program interface with application-specific parameters.
2. An application program interface primitive calls the
event manager to register an event.
3. The application program interface calls the user process
connection manager to initiate the connection.
4. The connection manager sends a message to the SPP to
initiate the connection.
5. A select call posted by the control module returns. Re
member that the control module is a continuous loop until
it detects an event.
6. Having detected an event at a user socket, the control
module invokes the application entity coordinator to han
dle it.

7. The application entity coordinator uses the messaging
interface to read the message sent by the user process.
8. Seeing that the message is a connection request, the
application entity requests the SPP connection manager to
set up a connection.
9. The connection manager calls each ASE (only one is
shown) to obtain the PDUs that need to be sent on the
connection request.
10. The ASE defines its presentation contexts and then
encodes its PDU by invoking the presentation services.
When these activities are done the ASE returns to the con
nection manager.
11. Having obtained each ASE's protocol data unit, the
connection manager requests the presentation services to
send the connect request.
12. The presentation services send the connection request
by using the socket connect primitives to send the protocol
data unit. This results in a new socket being created corre
sponding to the new connection.
13. The presentation services inform the control module
about the new socket, which must be added to the sockets
that the control module is already monitoring. When this
is done, return is made to the connection manager, then
to the application entity coordinator, and finally back to
the control module.
14. Back in its continuous loop, the control module again
issues a select call, waiting for the connect confirmation
to arrive from the remote application.

Encoding and Decoding
Protocol data units for ASEs and the presentation layer

are specified in the OSI standards in a format called
Abstract Syntax Notation One (or ASN.l).5-6'7 It is a BNF-
like notation for specifying the structure and contents of

Appl icat ion Program

Appl icat ion Program
In te r face (3)

Connect ion
(4) M a n a g e r

Event Manager User
Process

Messaging Rout ines

HP-UX Domain Sockets

Service
Provider
Process

(SPP)

Lower OSI Protocol Stack

Fig. 3. The steps involved and the interact ion between upper
layer arch i tecture components when an appl icat ion in i t ia tes
a connect ion to a remote appl icat ion.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 13

© Copr. 1949-1998 Hewlett-Packard Co.

PDUs. Included in the notation are several primitive types,
such as Boolean, integer, octet string, and so on. Also
defined are the constructed types, which are composed of
primitive and other constructed types. This process can be
applied recursively to define arbitrarily complex types. For
instance, a PDU using the constructed type Sequence can
be defined as:

A s s o c i a t e P D U : : =
ca l l edAET i t l e
ca l l i ngAET i t l e
p r o t o c o l V e r s i o n
u s e r D a l a

S E Q U E N C E {
App l i ca t ionT i t l e ,
App l i ca t ionT i t l e ,
I N T E G E R ,
[U N I V E R S A L 6]
I M P L I C I T O C T E T S T R I N G)

A p p l i c a t i o n T i t l e : : = O C T E T S T R I N G

ASEs need to manipulate the PDUs they send or receive.
The PDUs can be complex, and writing code to manipulate
an ASN.l-encoded PDU can be a formidable task. Locating
a particular field within a PDU involves scanning the PDU
to find the desired field, the precise position of which
depends on the length and the number of previous fields.
For our implementation, this task is aided by the use of an
ASN.l compiler. This approach takes advantage of the fact
that the ASN.l notation is a formal language and is well-
suited for automated processing.

The ASN.l specification for an ASE is input directly to
a compiler that generates a set of C data structures and
encoding and decoding routines (C functions). The C data
structures are included in the ASE code. PDU data is stored
in these data structures before encoding or after decoding.
Encoded PDUs are placed in a chain of data buffers. The
encoding and decoding routines are linked into the ASE
by the presentation services. Also linked in are some
generic functions called the run-time library, which are
used to manipulate the primitive types. When the ASEs
invoke the presentation services to encode and decode their
PDUs, the presentation services determine the correct
routine to use based on the presentation context. Fig. 4
illustrates this facility.

Data Handling
We can now take a closer look at how data exchange

between two connected application programs is handled.

*A mult ip le of eight bi ts.

C Data
S t r u c t u r e s

ASN.1
Syn tax

ASN.1
Compi ler

C F u n c t i o n s

Presentat ion Services

Encode/Decode
Rout ines

Run-Time Library

Fig . 4 . The ASN. 1 encod ing and decod ing fac i l i t y .

For outbound data the user sends the data to the SPP in a
message that is read by the application entity and handed
to the ASE. At this point the data is in C data structures
and not yet encoded. The ASE then invokes the presenta
tion services to encode the data. This results in a buffer
chain containing the application PDU. The ASE hands this
buffer chain to the presentation services to be sent to the
remote application. Just before sending the PDU, the pres
entation services encode this data once more, this time to
add their own protocol control information. They then in
voke the socket primitives to send the PDU.

For the inbound case, the scenario is reversed. When an
encoded PDU is received, the presentation services do a
first-level decode to remove presentation protocol control
information. Since each PDU can contain data with differ
ent presentation contexts, this process also identifies the
presentation contexts of the PDU. This involves establish
ing references (pointers) to the locations in the PDU buffer
chain for each different presentation context, and keeping
a reference count of the number of contexts. Once this is
done, the presentation services send the PDU to the appro
priate ASEs. Each ASE decodes its portion of the PDU into
C structures and processes the data. As each ASE finishes
processing its data, the reference count is decremented,
and when the count reaches zero, the presentation services
release the entire PDU buffer chain.

Conclusion
The upper layer architecture has been used to develop

three OSI networking services in the HP-UX 7.0 release of
the HP MAP 3.0 productâ€” FTAM, MMS, and X.500. By
identifying architectural components and internally stan
dardizing their interfaces, developers can use this as the
platform for OSI development. The core components can
be leveraged for future services development, allowing de
velopers to focus on the specific ASEs and their application
interfaces.

Acknowledgments
Many people contributed to the development of the

upper layer architecture for the HP MAP 3.0 product. Wan-
Yen Hsu, Doug Gregory, Suhas Badve, and Jeff Mendonca
contributed to it during the early specification stages. Wan-
Yen and Doug also went on to develop portions of the code.
Brian O'Keefe made several useful enhancements and Jeff
Kunz did a comprehensive performance characterization
of the architecture. Thanks are also due the then project
managers Jean Yao and Atul Bhatnagar for providing the
environment and support for the successful completion of
this project.

References
1. Information Processing Systems - Open Systems Interconnec
tion - Application Layer Structure, ISO/DP 9545, ISO/TC97/SC21/
N1743. July, 1987. Revised November 1987.
2. MAP 3.0 Application Interface Specification, MAP Technical
Subcommittee, 1988.
3. Information Processing Systems - Open Systems Interconnec
tion - Connection Oriented Presentation Service Specification,
ISO 8822: 1988 (ISO/IEC JTC1/SC21 N2335).
4. Information Processing Systems - Open Systems Interconnec
tion - Connection Oriented Presentation Protocol Specification,

14 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

ISO 8822: 1988 (ISO/IEC JTC1/SC21 N2336).
5. Information Processing Systems - Open Systems Interconnec
tion - Specification of Abstract Syntax Notation One (ASN.l), ISO
8824: 1987 (E).
6. Information Processing Systems - Open Systems Interconnec
tion - Specification of Basic Encoding RuJes for Abstract Syntax
Notation One (ASN.1J, ISO 8825: 1987 (E).
7. K. K. Banker and M. A. Ellis, "The Upper Layers of the HP OSI
Express Card Stack," Hewlett-Packard Journal, Vol. 41, no. 1, Feb
ruary 1990, pp. 28-36.

Directory Services in the HP MAP 3.0
Environment
To prov ide a s tandard ized implementat ion of a d i rectory
serv ice for locat ing resources in the HP MAP 3.0
envi ronment, the ISO X.500 di rectory standard is used.

by Beth Vandoorn Cooke, Colleen S. Fettig, Paul B. Koski, Darrell O. Swope, and Roy M. Vandoorn

AS COMPUTER NETWORKS BECOME larger and
more complex, applications are being distributed
throughout a network for maximum efficiency in

the use of the computer resources. Determining the location
of these applications is critical to the success of the network
from the user's perspective. A facility called a directory
service can be used to determine the location of applica
tions and other resources in a network.

This article describes the general characteristics of a di
rectory service and gives an overview of the ISO/CCITT
X.500 model, the directory service in HP MAP 3.0.

Directories
Directories have been around for many years, from the

telephone directory in the home to the card catalog at the
local library. With the size and complexity of the modern
computer network, automated directories are being intro
duced to perform a function in the network that is similar
to the role a telephone directory plays in the home.

Let's consider the world of manufacturing, where the typ
ical operation uses a number of different and isolated com
puter systems. There is a mainframe application that man
ages the facility's entire inventory data base, a group of
engineering workstations for product design, robots for
controlling systems on the manufacturing floor, and per
sonal computers that are used as terminals or low-level
workstations. The workstations, controllers, and personal
computers can be connected to other computers of the same
type, but they are usually isolated from the other systems.
For instance, the robot cell controllers may not communi
cate with each other, the CAD workstations only talk to

each other, and personal computers are often completely
isolated. These systems are classic examples of islands of
information.

To implement just-in-time manufacturing, which is
aimed at dramatically increasing manufacturing productiv
ity and flexibility, these islands have to be coalesced into
a unified system. More specifically, floor cell controllers
should be able to update the inventory data base as they
use parts to build the products, and the design engineers
at the CAD workstations should be able to access the inven
tory data base to determine the immediate availability of
components that they may want to specify in their designs.
In fact, it may be necessary for them to be able to access
their supplier's inventory data base, which may be remote
and controlled by a different company.

In forming this complete system, there are many techni
cal problems that arise, only some of which a directory
service can address. One of the fundamental difficulties is
that the new system will be very large and complex, and
therefore difficult for anyone to understand completely.
Another attribute of such a large system is that it will be
dynamic â€” new components will be added to it and taken
away almost daily. Applications and subnetworks will
enter and leave the network. Paths between portions of the
network will also change frequently. Additionally, the ad
dresses, availability, and physical locations of individual
applications and network resources may change. Thus, the
changes to the state of the network can be viewed as asyn
chronous events and applications cannot be required to
have prior knowledge of them. Finally, the expected useful
lifetime of an individual application can be relatively long,

AUGUST 1990 HEWLETT-PACKARD JOURNAL 15

© Copr. 1949-1998 Hewlett-Packard Co.

and it will interact and communicate with other applica
tions more often than it will change its availability, address,
or other associated information.

Directory Service Characterist ics
A directory service can help isolate applications from

changes in the network by providing a globally accessible
repository of information about the different objects in the
network. In directory service terminology objects are items
such as printers, servers, workstations, files, directories,
gateways, users, and processes (applications). As new ap
plications enter the system they can be registered in the
directory so that other applications can retrieve informa
tion about them, such as their current address and/or a
description of the services that they provide.

For the user's and application's benefit this large com
plex system should be as transparent as possible. One of
the primary goals in designing a transparent network is to
provide users with a simple and intuitive view of the net
work. The directory service can help with this problem by
providing a facility through which network objects can be
named in an abstract and consistent manner. In general, it
is much easier for users to use abstract names than descrip
tions. For instance, individuals are addressed by a name
like "Joe," rather than a description like, "tall 12-year-old
with dark hair that lives across the street." This naming
facility also helps with the second general problem â€”
changes. If Joe moves, or gets older, he is still going to be Joe.

Although users and hence applications generally prefer
to identify objects with relatively simple, English-like
names, processes on a network might need to have more
information about an object. If the object is a file, they may
need to know which machine it resides on, the directory
it resides in, what type of file it is, and the filename. This
conflicts with the type of simple naming that users would
prefer. One goal of a directory service is to provide a naming
mechanism for users that does not require them to provide
system dependent knowledge about objects.

Directory Service Functions
As mentioned earlier, a version of a directory service

that has been used for years is the telephone directory.
Humans are not particularly fond of having to memorize
phone numbers to use the system. However, humans are
fairly good at remembering names or places of business.
In the United States a telephone directory is divided into
two sections: the white pages and the yellow pages. The
white pages are used to retrieve information, such as a
person's phone number, address, and middle initial. In
terms of the directory service, this is known as name-to-
property binding. A user-friendly name can be used as a
key to retrieve information associated with an object or
properties of an object, such as its network address.

The yellow pages section is used to find the information
needed to communicate with some set of people, normally
businesses. When the process is examined a little closer,
what actually happens is that a property, say Hewlett-Pack
ard dealership, is used to restrict retrieval to only those
businesses that are Hewlett-Packard dealers. In directory
service nomenclature this is property-to-name binding. In
a network environment, a client may wish to see a list of

all printers in the building that support a particular font,
or all of the workstations that have a certain memory con
figuration.

Unlike the common phone directory the directory service
allows clients to use aliases or nicknames to identify an
object. This is classified as providing name-to-name bind
ing. All of the names in a particular set or equivalence
class map to the same object. For example, the mail address
/USA/HP/IND/Cupertino/Fred, could simply be addressed as Fred
and the directory service would take care of mapping Fred
to the full mail address.

Similarly, the directory service provides a name-to-list-
of-names binding service that returns a list of objects given
a single object name. This is a facility that can be used for
mailing to groups of users (distribution list), or in defining
levels of access to network resources.

Inherent in the requirements for the four types of binding
(name-to-pointer, pointer-to-name, name-to-name, and
name-to-list) is the responsibility for storing information.
The data store contains a set of names and a set of properties
that are associated with these names. The combination of
a name and a set of properties defines an object in the data
store. The directory service also contains the ability to dif
ferentiate, in a simple form, between different classes of
data. For instance, it can distinguish between the logon
name "foo" and the presentation level address "foo." It
can also tell that the printer named "Tom" is different from
the person with the same first name. In a very fundamental
sense, the directory service uses some semantic informa
tion as well as syntactical data.

Named objects must be organized in a hierarchical tree
structure that enables unambiguous, and possibly context
sensitive naming. The purpose of this tree is to provide
network administrators and users with logical groupings
of the objects they are likely to reference. This tree, or
directory, may be organized along some logical grouping
such as an organizational structure or geographical loca
tions.

The directory service acts as a globally available register
of system information about the objects that are in the

Directory
User

Directory
U s e r X

Directory1
User

Agent

Directory'
User

Agent 4 A c c e s s P o i n t s

T h e
Directory

Directory
U s e r I

A g e n t /
â€¢^Directory

User A

Fig. 1 . The funct ion of the d i rectory user agent (DUA).

16 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

network. When requested, it retrieves specific portions of
this data for clients. This implies that the directory service
provides a dynamic binding capability for its clients. For
the clients to rely upon the directory service, it must con
tain current and accurate information about the state of the
system. If it does, it will serve to increase the network's
overall reliability because information about network re
sources can be registered with one service that is respon
sible for sharing this information with processes on a
dynamic basis. This feature gives the system a self-configur
ing capability that would not be feasible if the information
had to be statically given to each client that might need
the data. This way, changes to the network have a minimal
impact on network operations and applications can view
the network as a relatively stable and abstract system.

Specifically, a directory service is an administrative
name management facility for a transparent, distributed
processing system. It provides a global naming service and
manages information associated with each named network
object. With a directory service, users and applications can
refer to objects in an intuitive manner. Administrators can
limit access to and manage information on these objects
through facilities provided in the directory service.

A Directory Service Standard

It is possible to conceive of different ways to implement
a directory service, and with multiple vendors implement
ing directory services it is unlikely that these implementa
tions will be able to communicate or interoperate unless
there is a directory standard. Therefore, to ensure in
teroperability between the different implementations of a
directory service, two international standards organiza
tions â€” ISO (International Organization for Standardiza
tion) and CCITT (International Telegraph and Telephone
Consultative Committee) â€” began a collaborative effort to
standardize directory services. This work resulted in the
CCITT 1988 X.500 standard and ISO IS 9594. These two
standards are identical. For simplicity, the directory stan
dard will be referred to as X.500 throughout the remainder
of this article.

What is X.500?
To provide a standardized directory, three areas must

be defined: the architecture, the information, and the op
erations. X.500 defines all three. The architecture, called
the directory model, defines two agents: the directory user
agent and the directory system agent. The directory itself
is defined as a repository of information about objects. The
information, called the informational model, defines the
storage of the different types of data and the rules to which
it must conform. The operations, or directory services, are
the operations that can be performed on the directory. To
gether, these two models and the operations form the model
for the X.500 directory standard.

X.500 Directory Model
There are four objects in the directory model: the direc

tory user, the directory, the directory user agent (DUA) and
the directory system agent (DSA). The directory user can
be either a user or an application. For a directory user to

Access Points

Fig . 2 . The func t ion o f the d i rec tory sys tem agent (DSA) in
the directory model .

operate on directory information, a connection must be
established with the directory (see Fig. 1). This is the job
of the DUA. The DUA represents the user to the directory.
Interaction between the DUA and the directory occurs at
an access point. The access point is the conceptual point
at which an abstract service is obtained.

The directory is made up of one or more DSAs (see Fig.
2). The role of a DSA is to communicate with the DUA
representing the user, either directly or indirectly via other
DSAs, and to provide access to the directory information
it is responsible for storing. When the directory consists
of a single directory system agent, all directory information
is contained within it. When the directory consists of mul
tiple DSAs, directory information is distributed between
the DSAs, which must share the information through a
network. This is referred to as a distributed directory. The
data contained within the directory is collectively known
as the directory information base.

The overall X.500 model is shown in Fig. 3. Here, mul
tiple directory users can access the directory through their
own DUA. Users can reside on the same system, or across
multiple systems. The DUA does not have to reside on the
same system as the DSA with which it communicates. The
directory itself may be spread across multiple systems and
information is shared through interfaces between the DSAs.
Each DUA communicates user requests to and receives
results from the directory through a DSA's access point.
The information received may reside in the DSA that the
DUA is accessing, or in another DSA.

X.500 Informational Model
The informational model defines four areas: directory

information base, directory entries, names, and directory
schema.
Directory Information Base. The directory information
base is the collection of information stored in the directory.
This information represents objects. An object is something
that is identifiable (can be named) and is of interest. When
an object is stored in the directory it is known as a directory
entry. For entries to be found after they are stored in the

AUGUST 1990 HEWLETT-PACKARD JOURNAL 17

© Copr. 1949-1998 Hewlett-Packard Co.

System A

System B

Directory
User

Directory
User

Agent

directory, the entries are logically arranged in a tree struc
ture with each entry representing a vertex (see Fig. 4). This
structure shows the parent/child relationship between ob
jects in the directory.
Directory Entries. The information stored in an individual
entry is divided into attributes. Examples of attributes are
phone number, surname, and country. Many of the direc
tory entries represent similar objects that are grouped into
an object class (e.g., software applications, devices, coun
tries). The entry's object class determines the attributes an
entry may and must contain. Each attribute consists of an
attribute type and an attribute value. The attribute type
identifies the attribute as a predefined type, such as organi
zation name, locality, or presentation address.
Names. To identify a particular entry, the entry requires a
name. This name is referred to as either a distinguished
name or a directory distinguished name. Each distin
guished name is unambiguous and represents just one entry
in the directory. In the X.500 standard, the distinguished
name is a path down the tree to the entry. Therefore, a
particular distinguished name consists of the parent's name
plus the information on how to proceed down to the last
branch. To identify the path to the last branch in the direc
tory tree, each entry has one or more naming attributes.
Each naming attribute has exactly one attribute value called
the distinguished attribute value, which is used for naming
(see Fig. 5). Each child is uniquely identifiable and distin
guishable from its siblings by its naming attributes.
Directory Schema. The directory schema is the set of rules,
definitions, and constraints that define the conformance

Directory
User

Agent

Directory
User

Fig. 3. The overa l l X.500 model .

requirements for all directory entries and their related in
formation. These requirements govern four areas: the tree
structure of the directory information base, the entries, the
attributes, and the attribute values.

The rules governing the tree structure of the directory
information base define which entry can be the child of
another entry, as well as which attributes can be used to
distinguish one entry from another (naming attributes). The
rules governing the parent/child relationship are based on
object classes and are necessary for maintaining a level of
organization in the directory information base. For exam
ple, it would make no sense for an entry defining a person
to be the child of an entry defining an application. It does
make sense, however, for the person's entry to be the child
of an entry defining an organization.

Root

Fig. 4. The directory information base structure.

18 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

O b j e c t C l a s s

Country

Organization

Naming
A t t r i b u t e s V a l u e s R e p r e s e n t a t i o n o f a D i s t i n g u i s h e d N a m e

Country Name
= U S

Organization
N a m e = H P

C = U S

{ C = U S , 0 = H P ,

Organization
Unit

People

O r g a n i z a t i o n Â ¡ C = U S , O = H P , (O U = I N D . l _ = C u p e r t i n o) !
Uni t Name
= I N D
Local i ty Name
= Cuper t ino
C o m m o n N a m e (C = U S , O = H P , (O U = I N D , L = C u p e r t i n o) ,
= S m i t h C N = S m i t h (

At t r ibute Va lues = US, HP, IND, Cuper t ino , and Smi th
F i g . 5 . T h e s t r u c t u r e o f a d i s t i n
guished name.

The rules governing the naming attributes are necessary
to allow a directory user to estimate easily the name of an
entry. For example, the naming attribute for an entry of
the object class organization would be the organization
name. Using an attribute such as a locality name would
make naming ambiguous.

Each entry must conform to rules inherited from its object
class. As discussed above, the object class dictates when
attributes may and must be part of the entry. Other than
those dictated, no additional attributes can be included in
the entry.

Each attribute must conform to a set of rules defining its
identifier, the syntax of its value, and whether the attribute
can contain one or more values. These rules allow the
directory user to interpret the data retrieved from the direc
tory. For example, the value of a presentation address attri
bute is defined as a single occurrence of a specialized struc
ture, whereas the value of an organization name is defined
as one or more occurrences of a character string.

The final set of rules governs the syntax of attribute val
ues. An attribute value's syntax identifies the rules used
for matching a value of a particular type. For example, it
is necessary to use a matching rule during a search, when
the user has specified some properties to be matched.

X.500 Directory Services
Three types of operations are defined in the X.500 stan

dard:
â€¢ User authorization: bind, unbind
â€¢ Data retrieval: read, compare, list, and search
â€¢ Data maintenance: add, modify, rename, and remove

The user authorization operations can be thought of as
logging into and logging out of the directory. The bind
operation is used to initiate a directory session when the
user provides identification. The unbind operation is used
to terminate the directory session.

The data retrieval operations are used to obtain informa
tion from the directory. The most common operation is
read. The read operation is used to perform name-to-prop
erty, name-to-name, and name-to-list bindings, and returns
the information stored in the entry. The compare operation

is used to verify the value of an attribute. The list and
search operations are used for property-to-name bindings,
and returns entries that meet certain criteria.

The data maintenance operations are used to add, mod
ify, rename, and delete the information in the directory.

HP MAP 3.0 Directory Service

The directory's name-to-property binding operation is
used in HP MAP 3.0 by two application level services called
File Transfer, Access, and Management (FTAM) and Man
ufacturing Message Specification (MMS). These two appli
cations are described in more detail in the articles on pages
24 and 31.

The FTAM standard specifies a virtual file store, a set
of services to manipulate that file store, and the protocols
that define how to use the services. If a user program wishes
to use any FTAM service, it sends a request to the FTAM
initiator. The FTAM initiator then sends the user program's
request to an FTAM responder that will service it. Fig. 6
shows how this process works.

Directory services are used by the FTAM initiator when
it needs to find the network address of the FTAM responder
that will service the request. The FTAM initiator sends a
distinguished name to the directory via a DUA. The DUA
will return the corresponding network address of the FTAM
responder to the FTAM initiator. After the initiator has the
address, it can establish a connection with the responder.

The Manufacturing Message Specification (MMS), which
is the other HP MAP 3.0 application that uses directory
services, provides data handling between a variety of
machines in a manufacturing environment. The services
of MMS are provided to a client by an MMS service provider
process (see Fig. 7). When a client issues a request, MMS
takes the request and sends it to the appropriate machine
to service the request. When the client MMS service pro
vider needs to establish a connection to the machine
(server) that will service the request, the directory service
is used to get the network address of the server. Once the
client has the network address, it can then establish a con
nection to the desired server.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 19

© Copr. 1949-1998 Hewlett-Packard Co.

Client

User
Program

F T A M
Initiator

Directory
User

i A g e n t

Fig . 6 . Process o f communicat ion in FTAM.

The architecture for the directory service for HP MAP
3.0 is an X.500 implementation. Within the flexibility of
the X.500 standard, certain liberties were taken for perfor
mance reasons and ease of implementation.

Design Decisions
A centralized directory information base was selected

for HP MAP 3.0 because it was easier to implement and it
satisfied our schedule constraints. With all the directory
information centralized, it is only necessary to have a single
DSA. This eliminated the need for communication between
DSAs and the need to implement the X.500 directory sys
tem protocol, which defines the protocol between DSAs.

The DUA represents the user to the directory. There are

HPPDUs = HP Pro toco l Da ta Un i ts
APDUs = Appl ica t ion Protoco l Data Un i ts

System A System B

Server
Response

M M S
Provider

Network

Fig. 7 . Process o f communicat ion in MMS.

two ways to implement the DUA. One way is to have one
DUA per user and the other is to have one DUA per system.
The latter alternative was chosen because of the typical
use of X.500 in the HP MAP 3.0 environment. Each process
would normally obtain a single address from the directory
and then perform its task. It was determined that creating
(forking) a process each time an address was needed would
be too expensive in terms of performance. Linking the en
tire directory user agent into the user process was not done
either because of process size concerns.

The final decision was to combine the DUA and the DSA
into one process on the machine containing the directory
information base. There needed to be a DSA daemon pro
cess to service directory requests from DUAs on other sys
tems. At a minimum, the DSA daemon needs the ability
to receive local interprocess messages for administration
operations. It was not a large extension to fold the DUA
agent functionality into the DSA process.

Architecture
An overview of the architecture for the directory service

in HP MAP 3.0 is shown Fig. 8. There are three processes
that make up the directory services: the user process, the
DUA, and the coresident directory user agent/directory sys-

APDUs APDUs

Network

Fig . 8 . X .500 h igh- leve l a rch i tec
ture in HP MAP 3.0.

20 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

tem agent (DUA/DSA). The user process is the process that
needs to use directory data. This process links in the DUA
librar}1 (DUALIB) to gain access to functions that allow a
user process to access the directory. The DUA resides on
the machines that do not contain the directory information
base. The DUA receives the requested directory operation
from the user process and forwards the request to the
machine that contains the directory information base. The
DUA/DSA process is located on this machine. This process
services the directory operations and receives requests from
DUAs on other machines and from user processes on the
local machine.
User Process. The architecture of a user process is shown
in Fig. 9. The modules that make up the user process are
the user code, DUALIB, and messaging. The user code is the
application that operates on data stored in the directory.
This application accesses the directory through an applica
tion program interface. The functions called through the
application program interface are all located in DUALIB.
DUALIB performs input parameter checking, encoding of the
requested directory operation, sending the directory oper
ation to the DUA, receiving the results from the DUA, de
coding the results, and returning them to the user code.
The final module in the user process is messaging. Messag
ing is an interprocess communications module that is built
on top of sockets, which are identical to the sockets used
in the Berkeley UNIX 4.2BSD operating system. Communi
cation between the user process and the directory user
agent (or DUA/DSA process) is accomplished by using pro
prietary protocol data units known as HP protocol data
units (HPPDUs).

There are three different types of HPPDUs: initiator, re
sult, and error. A request for a directory operation is sent
from the user process to the DUA as an initiator HPPDU.
The DUA decodes this HPPDU and takes the appropriate
actions. Once the directory operation has completed, either
a result or an error HPPDU is returned to the user process.
DUALIB decodes this HPPDU and returns the result or error
to the user code. The decoding of the HPPDU is done with
a lex/yacc-generated parser.

The interface between the user process and the DUA is
not an X.500 defined interface. Therefore, it was decided
to use a proprietary PDU (protocol data unit) at this inter
face rather than leveraging one of the X.500 standard de
fined PDUs for initial troubleshooting and supportability.

U s e r P r o c e s s

Messaging

HPPDUs

Directory
User Agent

Fig. 9 . User process s t ructure.

The HPPDUs are human readable, which aided in the orig
inal troubleshooting of the product and is expected to be
a benefit during the support cycle of the product. In addi
tion to communicating the directory operations, the
HPPDUs are also used for administration operations. For
example, during initialization an HPPDU is sent to the
DUA with configuration information. When the DUA
daemon is to be shut down, a shutdown HPPDU is sent.
This provides consistent access to the DUA daemon pro
cesses.
Directory User Agent Process. The structure of the DUA
process is shown in Fig. 10. The DUA process is divided
into seven modules: messaging, control, client coordinator,
connection management, ROSE (Remote Operations Ser
vice Entity), ASEs (application service elements), and pres
entation services.
â€¢ Messaging Module. This is the same module that exists

in the user process and is used for communication be
tween the directory user agent and the user process.

â€¢ Control Module. This is the main module that reacts to
messages being received either by the messaging or pres
entation services modules.

â€¢ Client Coordinator Module. This is the controlling and
coordinating module for X.SOO-specific tasks. When a
message is received from the user process, the control
module calls the client coordinator. It is the client coor
dinator that determines what action the user process
wishes to perform. The directory operation comes in as
an HPPDU, which the client coordinator parses using
an analogous lex/yacc-generated parser. Depending on the
operation, the appropriate modules are called. The client
coordinator maintains all the connection information.
Since the DUA communicates asynchronously with the
DS A, the client coordinator needs to remember the oper
ation requested by each process. When an operation com
pletes, the client coordinator encodes the result and
sends it back to the appropriate user process.

User
Process

HPPDUs

Messaging

Client
Coordinator

C o n n e c t i o n s \
M a n a g e m e n t E n t i t y

(ROSE)

Presentation

APDUs

Directory
Applicat ion

Service
Elements

(ASEs)

Di rec to r y
U s e r A g e n t

Fig. 10. D i rec tory user agent process.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 21

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ Connection Management Module. This is the HP MAP
3.0 implementation of the Association Control Service
Element (ACSE).1 This module handles the setting up
and breaking down of remote connections between ap
plication entities.

â€¢ Application Service Elements (ASEs). The DUA ASEs
take operation arguments stored in C data structures and
create an octet stream called an application protocol data
unit (APDU). Likewise, the ASEs convert returning
APDUs into C data structures that contain result or error
information related to the requested operation. There are
two ASEs in the HP MAP 3.0 implementation of the
DUA, one for read operations and one for add and remove
operations. In addition, a portion of the ASEs handles
directory bind operations.

The process of creating APDUs from C data structures
and the reverse is accomplished with ASN.l encoding.2
ASN.l (Abstract Syntax Notation One) is an OSI standard
notation for arbitrary data structures. This notation is
used like a programming language in the X.500 standard
to specify all of the arguments , results , and error informa
tion used by any X.500 implementation. An accompany
ing set of encoding rules called BER (Basic Encoding
Rules) determines how data structures described in
ASN.l map into a flat stream of octets. See the article
on page 11 for more information about ASN.l in HP MAP
3.0.

â€¢ Remote Operations Service Entity (ROSE). ROSE is a
generic OSI service that allows applications to make re
mote procedure calls to applications on other systems.
ROSE also allows the remote applications to return result
or error information in response to the requested opera
tion. The X.500 DUA uses ROSE to execute all operations
on a remote DSA. Essentially, the ASEs tell ROSE which
X.500 operation to invoke on the remote DSA, and gives
arguments in the form of an ASN.l-encoded APDU.
ROSE then asynchronously invokes the operation on the
remote server. When results or error information are re
turned from the DSA, ROSE calls the appropriate ASE
and gives it the response APDU.

â€¢ Presentation Services Module. This module is an inter
face to the presentation layer of the OSI stack. This is
the module that the ASEs and ROSE use to encode their
APDUs. At initialization, both the ASEs and ROSE regis
ter with the presentation services their ASN.l encoding
and decoding routines. When the ASEs or ROSE are
ready to access these routines, they provide a symbolic
name for the entry point and pass the presentation ser
vices module the application data to be encoded or de
coded. Encoded data is kept in the presentation services
data structures to facilitate its transmission.

DUA/DSA Process. As mentioned earlier, the decision was
made to combine the DUA and DSA into a single process
for the HP MAP 3.0 implementation. This eliminated the
overhead of communicating between processes. The struc
ture of this process is shown in Fig. 11.

The modules that make up the DUA/DSA process in
clude: messaging, control, local coordinator, remote coor
dinator, data base access module, connection management,
ROSE, ASEs, and presentation services. A number of these
modules are exactly the same as in the DUA process. They

are messaging, control, connection management, ROSE,
and presentation services. The ASEs decode the APDUs
using the same ASN.l mechanism described earlier. In ad
dition, any results or errors that are sent to remote DUAs
in response to operations are encoded by the ASEs in the
DSA process and decoded by the ASEs in the DUA. Note
that user requests made on the DSA's machine will not
reach the ASEs. Only remote operations that make use of
the OSI stack require the interaction of the ASEs and ROSE.
â€¢ Local Coordinator Module. The local coordinator mod

ule is very similar to the client coordinator module in
the DUA process. However, instead of interfacing to the
ASEs, the local coordinator interfaces directly with the
data base access module. Remember that in this im
plementation the directory information tree is cen
tralized, making it unnecessary to go to the network to
perform the directory operation. The local coordinator
is called by the control module when the messaging module
receives an HPPDU from one of the local user processes.

" Remote Coordinator Module. The remote coordinator
module controls and coordinates remote directory oper
ations. These are operations requested by a user process
on a remote machine. The remote coordinator receives
the operation from one of the ASEs and then calls the
data base access module to operate on the information
stored in the directory information base.

â€¢ Data Base Access Module. The data base access module
interfaces with the physical data base that is used to
store the directory information base. All the data base
operations have been localized in this module of the
DUA/DSA process. This module is responsible for locat
ing the entry of interest, accessing and manipulating
entries, ensuring that the schema rules are met, and
checking the input parameters of the requested directory
operations.

User
Process

HPPDUs

Messaging

Local Coordinator

Data Base Access Module

Remote Coordinator

Connection
Management

Remote
Operation

Service
Entity

(ROSE)

A P D U s

Directory
User

Agent

Directory
Application

Service
Elements

(ASEs)

Directory
Information

Base

Fig . 11. D i rec tory user agent /d i rec tory sys tem agent (DUA/
DSA) process.

22 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

The Data Base
As can be seen from the role of the data base access

module, the data base stores more than just the directory
information base. Recall that the directory information base
is defined as the complete set of information to which the
directory provides access. In addition to data for the direc
tory information base, the data base also contains the
schema rules and proprietary information such as user
capability levels.

The data base is implemented as a relational data base
with an SQL (Structured Query Language] interface. Data
stored in a relational data base is organized into tables.
The directory information base is divided between three
tables. The first table stores the directory information tree.
This is done by representing the parent-child relationships
of the entries. The other two tables store the data. The data
is divided between two tables to separate the naming and
the nonnaming attributes. This was done to optimize the
speed of name resolution.

Retrieving information from an entry involves two steps.
First, the distinguished name of the entry is used to navigate
through the tree to the entry desired. The table storing the
directory information tree, that is, the table that stores the
parent-child relationships, is the table used for this naviga
tion. These relationships are used to step through each
level of the tree until the specific entry is located. The table
storing the naming attributes is used to verify the relation
ship at each level of the tree.

Since traversing the tree to locate the entry specified by
the distinguished name is time-consuming, two techniques
are used to optimize this task. The first is the use of a key
to limit the searches performed at each level of the tree.
At each entry in the path, which is represented by the
distinguished name, a search is made for all children of
that entry until the child that matches the given naming
attributes is located. This has been simplified by creating
a key from these naming attributes. This key is stored in
the table with other directory information tree information.
Rather than searching all the children of a given entry, this
scheme limits the search to only those children whose key
matches the key derived from the given naming attributes.
With this optimization, the searches required at each level

of the tree are limited to a subset of the children, which is
quite often a single child.

The second optimization actually bypasses the tree trav
ersal by using a cache of commonly used distinguished
names. Each distinguished name has a unique identifier
associated with it. This identifier is assigned by the data
base and is used for internal searches. The result of locating
an entry through tree traversal is this identifier. The cache
simply maps the distinguished name to this identifier with
out the overhead required by traversing the tree. In addi
tion, the attribute that contains the network address is also
stored in the cache. This optimizes the most commonly
used function, the retrieval of an address for a given entry.

Once the entry specified by an operation is located, the
operation is then performed on the entry. In the case of a
read operation, the requested attributes are retrieved from
another table that holds all entry information. The data
base access module then returns the requested attributes
to the coordinator module and these attributes are ulti
mately returned to the user process that made the original
request.

Conclusion
As applications become more distributed, directory ser

vices are going to play an ever increasing role. In HP MAP
3.0, the directory is used to determine the network ad
dresses of applications. HP MAP 3.0 is the first user of this
implementation of the X.500 directory.

Acknowledgments
The authors would like the recognize the efforts of the

other members of the X.500 product team and thank them
for their contributions in making directory services for HP
MAP 3.0 a reality. We especially wish to thank Kevin
Montgomery, not only for his ROSE efforts, but for his
overall contribution to the product.

References
1. K. K. Kimball and M.A. Ellis, "The Upper Layers of the HP OSI
Express Card Stack," Hewlett-Packard Journal, Vol. 41, no. 1, Feb
ruary 1990, pp. 28-36.
2. ibid, pp. 32-34.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 23

© Copr. 1949-1998 Hewlett-Packard Co.

HP MAP 3.0 F i le Transfer , Access, and
Management /800
File Transfer, Access, and Management, or FT AM, is an OSI
standard that defines the framework upon which layer seven
f i le t ransfer serv ices can be bui l t for access ing and
managing f i les across open systems.

b y S t e v e n W . M a n w e i l e r

THE BASIC DISTRIBUTED file system capability for
OSI communication is defined by the file service
standard called File Transfer, Access, and Manage

ment (FTAM). FTAM defines facilities for the transfer of
files between open systems and provides a framework for
accessing and managing files across open systems.

While FTAM provides functionality similar to conven
tional file transfer services, FTAM is not strictly a file trans
fer service. It also provides the ability to perform functions
such as reading and writing parts of remote files, and ob
taining or modifying attribute information associated with
a remote file. FTAM should not be thought of only as a file
transfer service, but rather as a framework on which ser
vices such as file transfer can be built. In fact, a service
such as a distributed file system could be built using
a suitable FTAM implementation. However, the main
strength of FTAM is that it is a system independent file
service. Any two vendors with FTAM implementations can
communicate with each other using FTAM regardless of
the types of file systems supported by those vendors.

FTAM is defined in the International Standards Organi
zation (ISO) document ISO 8571. 1 This document defines
the file service, the file protocol, and a common model of
a file system. However, it does not define a user interface.
Various committees are currently working on defining in
terfaces for FTAM, or have already done so. One example
of an existing programmatic interface for FTAM was de
fined by the North American MAP/TOP (Manufacturing
Automation Protocol/Technical Office Protocol) Users
Group.2

Another standards organization involved with FTAM is
the U.S.A. National Institute of Standards and Technology
(NIST).3 Four times a year NIST hosts a workshop in which
vendors meet to develop implementation agreements for
existing OSI standards.

This article describes the basic concepts of FTAM, the
functionality of FTAM in HP MAP 3.0, and some aspects
of HP's design and development of FTAM.

Overview of FTAM

The FTAM standard (ISO 8571) defines FTAM in three
parts: the virtual file store (VFS), the services, and the
protocol. The virtual file store defines how to handle differ
ent files structures, the services define the functionality

that can be requested by the user, and the protocol defines
the order in which the services can be used.

Virtual Fi le Store
The virtual file store, or VFS, is the most important aspect

of FTAM. Because of the wide variety of file systems and
file structures available on different systems, a common
representation of a file system is needed to facilitate the
transfer and access of files between dissimilar systems. The
VFS is this common (virtual) file system. It defines a set
of actions (operations) that can be performed on virtual
files, a set of attributes associated with virtual files, and
the structure (model) of virtual files. Each FTAM im
plementation is responsible for mapping the features of the
VFS onto the mechanisms provided by its file system.
VFS File Actions. The actions that can be performed on
VFS files are similar to those provided by most file systems.
Users can create and delete a file, open and close a file,
read or change the attributes of a file, read or write all or
parts of a file, and erase or move to various locations in a
file.
VFS File Attributes. A set of attributes is defined for each
file in the VFS. These attributes are properties that, aside
from the data in the file, completely describe the file. A
file has basic attributes such as its name, its type, and the
actions that may be applied to that file, along with attributes
that specify accounting information, history, user access
restrictions, security restrictions (e.g. , passwords) , and con
current access restrictions.

The set of attributes supported by the VFS is large enough
to have a logical mapping to any file system. In fact, most
real file systems support a much smaller set of attributes
than that defined by the VFS. This set of attributes contains
mandatory and optional attributes. All FTAM implementa
tions must support the set of mandatory attributes, and
may choose to support an optional attribute if, for example,
that attribute has a natural mapping onto that implementa
tion's file system.

An example of a mandatory attribute is the permitted
actions attribute. FTAM defines a set of actions that can
be performed on an existing file. These actions include
read, insert, replace, extend, erase, read attributes, change
attributes, and delete file. The permitted actions attribute
for a file defines a subset of these actions that can be applied
to that file. Any FTAM user is capable of performing this

24 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

subset of actions on the file. FTAM defines an optional
attribute called access control that is used when a finer
granularity of access restriction is needed for a file. For
example, it allows the creator of a file to designate the users
that can access the file, and by setting the permitted actions
for each user, designate how each user can access the file.
If this attribute is not used, any user can access the file.

Another attribute of the virtual file store worth mention
ing is its file locking mechanism, which is called concur
rency control. When accessing a file, an FTAM user can
specify a separate lock for each file access action. For exam
ple, a user can specify a shared lock for the read action
and exclusive locks for the write actions such as insert,
replace, extend, and erase.

Virtual Fi le Store Fi le Model
The most important feature of the virtual file store is its

file model. This file model specifies the file data types, the
file structure, the file access operations, and the encoding
of file data for transfer.

The VFS uses a very general hierarchical model to de
scribe the structure of all files (future addenda to ISO 8571
may include the definitions of other file models such as a
network model or relational data bases). In this model, a
virtual file is an ordered tree of any depth. Associated with
each node in the tree is an access point in the file called
a file access data unit (FADU). These access points may or
may not have user data associated with them. The user
data is structured into groups called data units. Fig. 1 shows
this file model.

It is possible to access all or part of the information stored
in the tree. When accessing a specific node in the tree, all
data contained in the subtree of a node is available to the
user. Thus, to read a complete file, the user can either
traverse the entire tree (preorder traversal is used), or the
user can read all data associated with the root node of the
tree in one operation.

Abstract Syntax Notation One (ASN.l) is used for
specifying the types of information in a file and how this
information is encoded for transfer. ASN.l provides a com
mon way to specify the format of the data that is to be
transferred by FTAM. See the article on page 11 for more
about ASN.l.

Most of the file structures of existing file systems are
more restricted than that specified by the VFS file model.
For this reason the VFS defines the notion of a document
type. A document type defines practical file types by im
posing restrictions on:
â€¢ The structure of the file
â€¢ The types of the data in the file and the amount of struc

turing information present in the file
â€¢ The actions that may be performed and when they may

be performed
â€¢ The mechanism of encoding data for transfer.

Fig. 2 shows the structure of a document type that is
called FTAM-1 in the FTAM standard. FTAM-1 models
simple text files such as an HP-UX text file, which is simply
a sequence of bytes without any structure. This type of file
consists of one FADU that contains one data unit. The data
unit contains the contents of the entire file. The FTAM-1
document type restricts the file's contents to text (i.e., the
file may not contain integers or floating-point numbers).
The document type definition also places restrictions on
how files may be transferred and accessed. For example,
data in FTAM-1 files can only be written at the end of the
file, and it is not possible to read parts of an FTAM-1 file,
that is, the entire file must be read.

Fig. 3 shows another document type called FTAM-2.
This document type models record-oriented files. In this
model, each record is represented by a FADU and each
FADU contains one data unit that represents the contents
of the record. In addition, a root node without an associated
data unit is included in the structure. This gives the user
the ability to address the entire file in one operation. This
is useful for situations in which the user wishes to read
the entire file. If there were no root node, the user would
have to read the file one record at a time in separate oper
ations. Again, the contents of data units for files of this
document type are restricted to text.

The FTAM-2 document type definition also places re
strictions on how various operations can be applied to files.
For example, the erase operation can only be applied to
the root FADU (i.e., only the whole file may be erased).
Furthermore, new records can only be added to the end of
the file and existing records cannot be changed or updated
(i.e., only read access is allowed on existing records).

Fi le Access Data Uni t (FADU)

Fig. 1 . General FTAM f i le model .

AUGUST 1990 HEWLETT-PACKARD JOURNAL 25

© Copr. 1949-1998 Hewlett-Packard Co.

Fi le Access Data Uni t

R o o t N o d e D a t a U n i t

(Contents of Fi le)

Fig. 2. St ructure of an FTAM-1 f i le .

Each FTAM implementation supports a certain set of
document types. Developers will usually choose to support
document types that closely model the file types supported
by their operating systems plus document types that model
files of other vendors for interoperability purposes. For
example, the document types FTAM-1 and FTAM-3 map
naturally onto HP-UX file systems, while the document
type FTAM-2 maps naturally onto record-oriented file sys
tems. FTAM-3 is identical to FTAM-1 except that FTAM-3
files contain only binary data. HP's MAP 3.0 FTAM/800
supports all three of these document types.

Services and the Protocol
FTAM defines a set of services that can be requested by

the user. The services available in FTAM allow users to
establish, release, and abort connections, create and delete
files, open and close files, read and change the attributes
of a file, read, write, and erase a file, and move to different
locations in a file. The order in which these services can
be used is also defined and represents the FTAM protocol.
The protocol is strictly connection-oriented and follows
the requestor/server model (see Fig. 4). In this model, a
requestor (initiator) makes requests to a specific server (re
sponder). The responder can handle requests simultane
ously from more than one initiator. In FTAM, the initiator
is the user and the responder acts as the entity manipulating
the (possibly remote) virtual file store.

During protocol exchanges, the initiator and responder
build a series of nested stages or regimes. There are four
such regimes that can be constructed during the course of
an FTAM dialogue. These regimes are:

The FTAM regime (a connection is made between in
itiator and responder)

The file selection regime (a specific file is selected or
created)
The file open regime (the selected file is opened)
The data transfer regime (data is transferred between the
initiator and responder).

FTAM Regime. The FTAM regime is entered when an in
itiator establishes a connection with a responder. When
establishing a connection, the initiator and responder
negotiate what can be done on the connection. This negoti
ation is necessary because implementations are not re
quired to support all of the FTAM functionality. This
negotiation takes place in two steps. First, the initiator
sends a connect request that contains information concern
ing what operations the initiator wishes to perform on the
connection. Next, the responder issues a connect response
back to the initiator indicating which of the requested op
erations the responder supports.

The initiator may terminate the FTAM regime (i.e., close
the connection) using the FTAM terminate request. A con
nection may be terminated at any time using the FTAM
abort service. This is an unorderly method of terminating
a connection. For example, if a connection is aborted during
a data transfer, the file being accessed may be left in an
undefined state.
File Selection Regime. Once the FTAM regime has been
established, the next step is to select or create a file. All
operations in subsequent regimes are applied implicitly to
this file. When the initiator is finished with this file, a new
file can be specified by exiting and reentering the file selec
tion regime. Once the file selection regime is established,
the initiator can request file management operations with
out entering any other regimes. For instance, the initiator
may read the attributes or modify the attributes of the cur
rently selected file. The file selection regime can be termi
nated by the initiator by deselecting or deleting the file
using the FTAM deselect or FTAM delete service. The
FTAM protocol then reenters the FTAM regime.
File Open Regime. Before any data transfer can take place,
the selected file must first be opened. This is the purpose
of the file open regime. When a file is being opened, the
initiator specifies the data transfer operations to be per
formed on the file. Once the file open regime is established,
two data access operations may be performed prior to the
establishment of the data transfer regime. The initiator may
either erase all or part of the file or move to a specific
location in the file. When all data access and data transfer
operations are completed for the currently opened file, the
file open regime can be terminated by the initiator using

F i l e A c c e s s D a t a U n i t (F A D U) Fig. 3. Structure of an FTAM-2 f i le .

26 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

the FT AM file close service. The FT AM protocol then reen-
ters the file selection regime.
Data Transfer Regime. The innermost regime of the FT AM
protocol is the data transfer regime. In this regime, all or
part of a file is transferred unidirectionally between the
initiator and responder. There are three steps involved in
this of First, the initiator specifies the direction of
the data transfer (i.e., reading or writing) and the parts of
the file to be transferred. Next, the specified data is trans
ferred. Finally, an orderly end-of-data transfer is per
formed. This entire process may be performed more than
once without having to close the file. Once the data transfer
regime is completed, the FTAM protocol reenters the file
open regime.

FTAM defines an optional error recovery protocol that
facilitates recovery from errors such as a broken connection
or the failure and restart of a remote host.

HP MAP 3.0 and FTAM

HP's MAP 3.0 FTAM/800 product is completely com
pliant with the FTAM standard ISO 8571 and the NIST
Phase II Implemention Agreements.3 HP's virtual file store
supports a complete implementation of three document
types: FTAM-1 (unstructured text files), FTAM-3 (unstruc
tured binary files), and FTAM-2 (record-oriented text files).
The VFS also supports the full functionality of concurrency
control, the majority of the access control functionality,
and many other attributes. The protocol implementation
is also relatively complete. All major components of the
protocol are implemented with the exception of restart and
recovery.

HP MAP 3.0 FTAM/800 consists of three different pro
cesses: a user process, a service provider process, and a
responder process (see Fig. 5). This implementation follows

User (Requestor)
System

Network

Fig. 4. FT AM requestor /server model .

the HP MAP 3.0 upper layer architecture described on page
11.

User Process
The user process contains the user's application program

along with the MAP FTAM library. The MAP FTAM library
is a set of C functions callable by a user's C program. The
functions in the library provide the MAP FTAM application
program interface for user applications. The library vali
dates parameters passed in calls to its functions and trans
lates these calls into requests to the service provider pro
cess. The service provider process and the user process
communicate using HP-UX domain sockets.

The MAP FTAM interface provides two types of calls:
low-level calls and high-level calls. Low-level calls perform
one FTAM service request while high-level calls perform
a sequence of FTAM service requests. An example of a
low-level call is ft_creaie(), which creates an FTAM file, and
an example of a high-level call is ft_fcopy(), which performs
all of the FTAM service requests necessary to copy a file
from one location to another.

To establish a connection to a remote responder using

Machine A
User's
Program

M A P F T A M
Library

- User Process Machine B

HP-UX
File

System

Service
Provider
Process

HP-UX
Domain
Sockets

AP Interface
Proivider

Init iator Protocol
Machine
VFS Module

ULA Modules

Local Fi le
Store

HP-UX
File

System

HP-UX
System

Calls
OSI
Interprocess
Communicat ion

Protocol
Stack

ULA = Upper Layer Arch i tec ture

Responder
Process

HP-UX
System

Calls

OSI
Interprocess
Communicat ion

Network F ig . 5 . FTAM imp lemen ta t i on fo r
HP MAP 3.0.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 27

© Copr. 1949-1998 Hewlett-Packard Co.

the MAP FTAM interface, the user must specify the address
of that responder. The MAP FTAM interface supports two
forms of addressing: directory distinguished names and
presentation addresses. If the user supplies a directory dis
tinguished name, the MAP FTAM library issues a request
to the X.500 directory service, which resolves the name,
and returns the appropriate presentation address. The MAP
FTAM library can then issue the connect request to the
lower layers of the OSI stack. If the user provides a presen
tation address, the X.500 service is not used. See the article
on page 15 for more information about X.500.

Each call has two modes of operation: synchronous and
asynchronous. In synchronous mode, the request com
pletes entirely before control is returned back to the caller.
In asynchronous mode, the call returns once the request
is sent to the initiator protocol machine. Another call is
provided so the user can check the status of outstanding
requests and receive the results of requests when they com
plete.

Service Provider Process
The service provider process, which is forked by the user

process, contains three modules: the MAP interface pro
vider, the initiator protocol machine, and the VFS module.
The function of the MAP interface provider is to translate
MAP FTAM requests into requests to the initiator protocol
machine. For low-level MAP requests, this translation is
trivial since the low-level MAP FTAM requests are mod
eled after the initiator protocol machine services. However,
the high-level MAP FTAM requests like ftjcopy must be
issued in a series of calls to the initiator protocol machine.

The initiator protocol machine accepts FTAM service
requests from the MAP interface provider and validates
the requests to ensure that they are made in valid protocol
sequence and that the parameters are compliant with ISO
8571 and the NIST Phase II implemention Agreements.
After validation, one of two actions takes place. If the re
quest involves a file on a remote system, the request is
encoded using ASN.l and sent to the responder operating
on the remote system. If the request involves a local file,
a request is issued to the VFS module, which accesses the
file from the local file store. Note that requests for local
files could have been handled in the same manner as re
quests for remote files. This different method of local file
access was added as a performance enhancement.

Responder Process
The responder process, which runs as a daemon (server)

process, contains the responder protocol machine and the
VFS modules. It waits for connect requests from an initiator
and when one is received, it forks the child process that
handles all operations on that connection. When the con
nection is terminated, the child process exits.

The VFS modules are a library of functions that are linked
with both the service provider process and the responder
process. The implementation is straightforward with a few
exceptions. The exceptions occur in the areas of concur
rency control and attribute support. Since HP-UX does not
provide a file locking mechanism sufficient to handle
FTAM's concurrency control features, shared memory was
used to implement concurrency control. Because FTAM

requires the support of attributes that do not map naturally
to HP-UX file systems, shadow files are used to store vari
ous FTAM file attributes. One shadow file exists for each
file accessible with FTAM. A shadow file resides in the
same directory as the file it describes and makes use of a
"._" prefix on the filename to make it transparent on an
HP-UX Is (list contents of a directory) command.

File Copy Scenarios
Three different scenarios exist when copying a file using

FTAM. The first and most common scenario occurs when
a file is copied from a remote node to the local node. In
this scenario, one user process, one service provider pro
cess, and one responder process exist. The VFS in the ser
vice provider process handles all access to the local HP-UX
file system while the VFS in the responder process on the
remote node handles all access to the remote HP-UX file
system. The data is transferred between the service pro
vider process and the responder process using the lower
layers of the OSI protocol stack.

The second scenario occurs when a file is copied from
one location in the local file store to another location in
that same local file store. In this case, there is one user
process and one service provider process, but no responder
process. The VFS in the service provider process handles
all access to the local file system.

The third and final scenario is the situation in which a
file is copied from one remote file store to another (or the
same) remote file store. In this case, there is one user pro
cess, one service provider, and two responder processes.
The responder on the source node transfers the contents
of the source file to the service provider process. The ser
vice provider process receives the data from the responder
process on the source node and sends the data to the respond
er process on the destination node. The responder process
on the destination node receives the data from the service
provider process and writes the data to the destination file.

A more efficient method of transferring the data would
be to have the two remote responder processes communi
cate directly with each other. This method of communica
tion is not possible with the FTAM protocol.

FTAM Design and Development

The development of the FTAM product involved project
teams from HP's Colorado Networks Division (CND) in Fort
Collins, Colorado and Information Networks Division (IND)
in Cupertino, California. There was also coordination with
HP's Roseville Networks Division (RND) in Roseville,
California, where the HP OSI Express card was developed.
The FTAM initiator and responder protocol machines and
the VFS module were developed at IND at the same time
the MAP FTAM interface was being developed at CND.
Since some of the interface code resides in the same phys
ical process as the protocol machines, a great deal of com
munication was necessary to ensure the compatibility of
the module interfaces. The need for close communication
between geographically separate divisions, coupled with
the large code size of FTAM (75 KNCSS), created a complex
engineering problem that forced the project teams to follow
several "best practices" and to create a few of their own.

28 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

MAP FTAM Inter face Development
Because the design effort and FTAM expertise were dis

tributed over two organizations, the design of the MAP
FTAM interface for FTAM was difficult. At the time, the
protocol machines and the VFS modules were already in
the coding phase. Working from the MAP FTAM interface
specification and the external specifications of the FTAM
protocol machine modules, the interface designers used
structured design methods for the initial design. Structure
charts were used to document the high-level design, and
proved to be a valuable tool for communicating the design
to IND FTAM engineers at a high-level design review. This
review and the tools helped to uncover many design issues
that would have gone unnoticed until the integration and
testing phase, which might have jeopardized the timely
release of the product.

The next step was the low-level design. In this step,
pseudocode for the interface modules was developed that
contained the major logic in the design. Again, a design
review was held to review this pseudocode and more de
fects were uncovered.

Next, the code was developed using a technique called
sliced implementation. In this approach, complete vertical
slices of functionality are implemented in several stages.
This approach worked well with the MAP FTAM interface
since this interface contains about thirty calls. These calls
were grouped into four disjoint sets and implemented in
four slices. The first slice contained the connection man
agement related calls, the second slice contained the low-
level file management calls (e.g., create, open, close), the
third slice contained the low-level data transfer calls, and
the last slice contained the high-level calls.

The development and module testing of each slice were
performed in an efficient, pipeline fashion. When the de
velopers finished a slice, the code was handed to another
engineer who was in charge of module testing each slice.
While this slice was being module tested, the developers
worked on the next slice.

Module Test ing
The testing of the interface modules also posed an in

teresting problem for several reasons. First, as the slices
were completed, they could not be integrated with the pro
tocol and VFS modules since those modules were not
finished with their early testing phases. Second, the inter
face modules reside in two different processes (user process
and service provider process), and when the initial slices
were being completed the utility routines for such func
tions as interprocess communication (messaging) and man
aging connections with remote machines (connection man
agement) were not finished. Finally, the amount of code
in the MAP FTAM interface modules alone is about 26
KNCSS and their interfaces with other modules are numer
ous and complex.

Given these problems, we had to develop a special
method of testing these modules. Writing C code to simu
late the nonexistent modules would have been too time-
consuming because each stub routine would have been too
general, or numerous sets of stubs would have been written
generating numerous executable files. Also, because of the
amount and complexity of the parameters at each module

interface, validation of results would have been difficult.
To aid in this testing effort, a general module testing tool

was developed. This tool facilitates the rapid development
of module tests by alleviating some of the problems men
tioned above. Testing using this tool involves two steps.
First, the tester describes the relevant interfaces between
the module being tested and the nonexistent modules.
Given this interface description, the tool generates an
executable file that contains the code of the module to be
tested, the code for an interpreter for executing module
test scripts, and code for transferring control between the
module interfaces and the interpreter.

The second step is to write test scripts that are executed
by the interpreter mentioned above. These test scripts are
written in a language designed specifically for module test
ing. The language is similar to C but is scenario-oriented
and contains facilities that simplify parameter validation.
Because the language is interpreted, errors in test scripts
can be quickly changed and rerun without having to recom
pile and relink. Using this language, the tester can specify
the order of events at the interface of the module being
tested. These events include calls to routines in the module
and calls from the module to routines in nonexistent mod
ules. Each occurrence of a call to a nonexistent routine is
handled separately in the scenario. This simplifies the task
of writing stubs yet allows a great deal of flexibility since
the script code for each call can be tailored for that specific
instance. By forcing the tester to specify the exact scenario
for a test, a more rigid test environment is created where
spurious calls by the module or calls made out of order
cannot go undetected.

At strategic points in a test script, the tester can place
statements to validate various parameters and other data
values. These statements are assertions or print statements.
The printing facility provided by the tool automatically
formats the output according to the type of value printed.
It can even print an entire recursive data structure.

While a script is running, the tool prints out information
about the events that have occurred. When any failure oc
curs, the tool reports the failure and exits. The exact loca
tion of the failure in the scenario is known immediately
by the tester. This information helps in the debugging pro
cess. If the information printed by the tool is insufficient
to solve the problem, the script can be reexecuted in any
conventional debugger such as xdb.

Product Test Suite
The test suite for the integrated FTAM product was de

signed and developed as if it were an actual product. This
means that in the early stages of design, much consideration
was given to creating a simple but flexible test suite that
had all the characteristics of an HP product such as usabil
ity and supportability.

Typically, there are multiple test suites for a product.
For example, a product may have a functional test suite, a
reliability test suite, a stress test suite, a performance test
suite, and so on. Instead of having completely independent
test suites for each type of testing, the FTAM test suite
encompasses all types of tests. These suites were developed
under a common umbrella, sharing a common architecture,
interface and output format. Among the advantages gained

AUGUST 1990 HEWLETT-PACKARD JOURNAL 29

© Copr. 1949-1998 Hewlett-Packard Co.

by using this philosophy are that a large amount of common
code can be shared across tests and the learning curve for
supporting and using the tests is reduced considerably.

The FTAM test suite features one uniform command line
interface for all of the different types of tests. The interface
contains many options that give the user a great deal of
flexibility in controlling the degree of testing. Options exist
for specifying the test or set of test cases to run, the number
of iterations for each test, how long to run the tests, the
number of connections to use during testing, the names of
the nodes (machines) to be used during testing, and so on.
For example, the user can specify that a set of reliability
tests run for 72 hours using a given set of nodes running
under a certain level of stress. There is also a single config
uration file that can be used to specify the values of various
parameters needed during testing.

The test suite can be run manually or automatically using
an automated test tool such as the internal HP tool known
as the scaffold.4 The output printed by the test suite con
tains only simple passed or failed messages. This allows a
novice user to determine the results of a test easily. If a
test fails, the parameter information of the call that failed
is printed to aid in solving the problem. The output printed
by the test suite is uniform (and deterministic) across all
tests.

Each test in the suite is written in a uniform manner so
that all tests have some similar characteristics such as the
same architecture, interface, and naming conventions.
Once the design of one test is understood, the design of all
tests for the product is also understood. A large number of
library routines exist that were designed to be as test case
independent as possible. These two factors greatly simplify
the addition, modification, and deletion of tests or test
cases.

The time spent designing and developing the test suite
has been worth the cost. The test suite has proven to be
very usable and all members of the FTAM team have be
come expert users of the suite within a short time. Tests
have been added and modified by different team members
with very few problems. Other project teams have already
adopted the architecture and methodology of this test suite
in the test suites for their products. Finally, a point worth
mentioning is that the amount of code for the test suite is
actually smaller than that of the product. This is a notewor
thy achievement given the complex nature of the MAP
FTAM interface.

Performance
Once the initial product was integrated, performance

tests were run to determine FTAM's file transfer throughput
rate. We discovered that FTAM could only transfer a file
at a rate of 3 kbytes/s on an HP 9000 Series 815 computer.
For this reason, a performance task force was organized
consisting of engineers representing all areas of the OSI
architecture. This task force identified major improvement
areas by taking performance numbers at different layers
and then analyzing execution traces to determine the most
significant areas for performance improvement.

The areas selected included the addition of the VFS to
the service provider process in the initiator, modification
of transport configuration parameters, and reduction in the
use of heap memory. With these changes, FTAM's through
put increased from its initial value to 60 kbytes/s on two
HP 9000 Series 815 machines, and to 225 kbytes/s on two
HP 9000 Series 835 machines.

Acknowledgments
Many individuals contributed to the design and develop

ment of the FTAM product. The engineers and managers
involved with FTAM were Suhas Badve, Rajiv Batra, Atul
Bhatnagar, Alan Burke, Jeff Conrad, Dave Hendricks, Lisa
Kozlowski-Owen, Paul Melmon, John Smith, and Don Til
ler.

References
1. Information Processing Systems - Open Systems Interconnec
tion 1-4), FiJe Transfer, Access and Management, ISO 8571 (Parts 1-4),
International Organization for Standardization, 1988.
2. Manufacturing Automation Protocol Specification, Version
3.0, General Motors Corporation, 1988.
3. Stable Implementation Agreements for Open Systems Intercon
nection Protocols, NIST Special Publication 500-162, National In
stitute of Standards and Technology, December, 1988.
4. C. D. Fuget and B. J. Scott, "Tools for Automating Software
Tes t no . Execut ion ," Hewle t t -Packard Journa l , Vol . 37 , no .
3, March 1986, pp. 24-28.

30 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

HP MAP 3.0 Manufactur ing Message
Specification/800
The f i rst re lease of HP's implementat ion of the MMS
standard of fers powerfu l communicat ion too ls for
monitoring and controll ing robots, PLCs, and other factory-
f loor devices in the manufactur ing environment.

by Peter A. Lagoni , Christopher Cral l . and Thomas G. Bartz

THE MANUFACTURING FLOOR of the 1990s is a
highly competitive and complex environment.
Sophisticated factory-floor devices such as sensors,

logical controllers, and robots are used to manufacture a
variety of products. These factory-floor devices require
powerful communication links to create a fully automated
manufacturing environment.

To establish an environment such as this is not an easy
undertaking, and requires some critical components. First,
the tools and devices must be sufficiently sophisticated to
be applied to the task. Second, a means for controlling and
coordinating all of these tools in the environment must
exist. By some well-defined method, distributed or hierar
chical control must be established and communicated
among the computers and devices.

Before the advent of the Manufacturing Automation Pro
tocol (MAP), many of these components already existed.
Developers of factory-floor devices and controllers have
for some time provided mechanisms for controlling and
monitoring their products. However, these devices have
lacked another critical component â€” standardization â€”
which provides reduced development and implementation
costs. When each robot or device requires its own propri
etary control language, the work required to develop a fully
automatic manufacturing environment is complicated
greatly. If a designer consciously decides to reduce this
complexity by limiting the number of proprietary control
languages to be used, a corresponding limitation of avail
able devices results.

The Manufacturing Message Specification (MMS) stan
dard was developed to meet this need. Its success hinges
not only on its standardization, but also on its sophistica
tion. To be a viable alternative to existing methods, it must
offer minimally the same level of control previously avail
able through proprietary means. We believe MMS achieves
this goal, and we will devote much of this article to describ
ing the powerful functionality that MMS delivers and how
we've implemented much of it in HP's first MMS product
offering, HP MMS/800. Before exploring this functionality
in greater detail, the development of MMS and the value
it provides will be discussed.

History of MMS
In 1980 General Motors Corporation formed the GM MAP

Task Force to identify or create standards for multivendor

factory-floor communication. The MAP architecture de
veloped by this task force is based on the International
Organization for Standardization (ISO) Reference Model
for Open Systems Interconnection (OSI). It uses standards
or subsets of standards that are appropriate for manufactur
ing at each layer of the OSI reference model. Because there
was no existing standard or even work in progress on a
standard that addressed the application layer (layer 7) com
munication needs between cell controllers and the devices
that they controlled, the MAP Task Force developed the
Manufacturing Message Format Standard (MMFS, pro
nounced "Memphis") to meet this need. MMFS was part
of the MAP 2.1 specification, which was published in 1985
and became the first generally useful version of MAP.

While MMFS provided a description of an application
layer protocol that could be used for factory-floor communi
cation, an international standard in this area was still
needed. Even before publication of the MAP 2.1 specifica
tion, the Electronic Industries Association (EIA) agreed to
adopt all of MMFS and to reissue it in a form that would
be acceptable as an ISO standard. This new version became
known as the Manufacturing Message Specification (MMS) .
MMS is identified by the document numbers issued by
both EIA and ISO. The EIA number is RS-511 and the ISO
number is ISO 9506. While these numbers refer to docu
ments maintained by two different organizations, the docu
ments are identical.

While MMS was initially based on MMFS, the current
form of the specification shows little resemblance to its
predecessor. One of the reasons for this is that the documen
tation format required by ISO is different from the one used
for MMFS. Another is that ISO application layer specifica
tions are designed to be implemented above an ISO presen
tation layer. MAP 2.1 had a null presentation layer. A third
reason for this change is that the MMS specification was
developed by a committee made up of employees of many
companies, not just General Motors, and input from these
different sources resulted in the specification's being ex
panded to meet newly identified needs.

MMS went through many drafts as it progressed through
the standardization process. By the time MAP 3.0 was is
sued, MMS had progressed to an ISO draft international
standard (DIS). It is this version that is included in the
MAP 3.0 specification and implemented in the HP MMS/
800 product.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 31

© Copr. 1949-1998 Hewlett-Packard Co.

An ISO DIS is one level below the most stable designation
given by ISO, which is ISO international standard (IS). A
specification is almost always changed as it moves from
DIS to IS status, and MMS is no exception. Since MAP 3.0
was published, MMS has become an international stan
dard, and there are differences between the version of MMS
specified in MAP 3.0 and the version of MMS specified by
ISO IS 9506. While these differences are not major, they
do make MAP 3.0 implementations incompatible with IS-
based implementations.

After the MAP 3.0 specification was published, General
Motors turned over the responsibility for continued work
on MAP to the MAP/TOP Users Group. The MAP/TOP
Users Group sponsors an MMS technical committee to ad
dress MMS technical questions. This committee is cur
rently addressing the MMS incompatibility between MAP
3.0 and IS 9506 and should have a solution in the near
future.

While it is necessary to have a well-defined standard to
allow multivendor communication, a standard cannot ad
dress all of the implementation details. No matter how
carefully standards are written, there can be differences in
their interpretation. To address these problems, implemen
tation agreements are necessary. Before publication of the
MAP 3.0 specification, an MMS special interest group was
created by the Industrial Technology Institute in Ann
Arbor, Michigan. This group developed implementation
agreements that were used to demonstrate the feasibility
of MAP at the Enterprise Network Event held in Baltimore,
Maryland in June 1988. Many of these implementation agree
ments are also included in the MAP 3.0 specification.

Following the move of MMS from DIS to IS, MMS was
included in the U.S. National Institute of Science and Tech
nology (NIST) OSI workshop. It is expected that future
versions of the MAP specification will include the im
plementation agreements from this workshop.

MMS Interface
MMS addresses the content of the messages sent over

the network. It does not, however, address the application
program interface provided by an implementation of MMS
for use by an application developer. An application pro
gram interface is the set of library calls provided by an
MMS implementation to the MMS user. These library calls
are used both to send and to receive MMS messages. The
MAP 3.0 specification includes a definition for the MMS
interface (MMSI). The definition specifies the function
calls, their parameters, and how each function call will be
used. This interface allows application developers to write
applications that can easily be ported to other vendor's
products that support the MMSI. This interface was de
veloped by the MAP application programming interface
committee. Following the publication of the MAP 3.0
specification, this committee moved to the MAP/TOP Users
Group. The HP MMS/800 product is the first MMS product
that supports this interface.

During the time that HP MMS/800 was being developed,
the committees working on the MMS standard, the MMSI
standard, and the implementation agreements were very
active. Two of the members of HP's development team
participated, and continue to participate, in meetings per

taining to MMS. This active involvement in these commit
tees allowed the development team to track changes and
incorporate them into the product in a timely manner. It
also allowed Hewlett-Packard to have a voice in the deci
sions made by these committees and to contribute to the
success of both MMS and MAP 3.0.

Now that MMS has reached international standard status,
most of the future MMS work will involve the creation of
companion standards to work with MMS to meet the spe
cial communication needs of the various types of devices
that use MMS. Work is currently progressing on companion
standards for robots, programmable logic controllers, nu
merical controllers, and production management (or cell
controllers). Companion standards may also be used to
address the special needs of certain industries. The process
control industry is currently creating a companion standard
for its use. Implementation agreements will be needed for
these companion standards as they become stable enough
to implement. The MMS special interest group at the NIST
OSI workshop will create these agreements.

The Problem MMS Solves
Within the OSI networking reference model, MMS is an

application layer (layer 7) protocol. A layer 7 entity is not
an application; instead, it provides tools and programmatic
access to facilitate application development. Manufactur
ing software design engineers develop their own applica
tions directly above the MMS services to solve a specific
manufacturing problem.

MMS functionality is organized into ten service sets,
each of which targets a specific set of tasks or areas of
control, such as connection establishment and mainte
nance, device status monitoring, uploading and download
ing of data and executable images, remote execution man
agement, and variable creation and access.

Before delving into the specifics of these and other ser
vice sets, it is helpful to develop a basic understanding of
the manufacturing environment and its layout. Fig. 1 shows
a classic layout of the manufacturing floor from the net
working point of view. There are four levels of hierarchy:
plant manager, area manager, cell controller, and factory-
floor devices.

Primary plant control and information assimilation are
coordinated by the plant manager. Area managers are re
sponsible for controlling what is to be manufactured at any
time by specifying this information and coordinating it
among the various cells on the factory floor. The cells are
linked together according to the chain of steps required to
assemble a given product. Each cell consists of a cell con
troller and a number of devices. These devices may be
programmable logic controllers, numerical controllers,
robots, or sensors. The cell controller directs the activities
of its devices based on its assigned responsibilities. The
area manager monitors progress as it is made and is alerted
by cell controllers of any problems that may arise. As this
information is collected, it is made available to other sites
such as the corporate offices via wide area networks or
dedicated links.

Communication between the area manager and the cell
control lers within i ts jur isdict ion is normally ac
complished through a file transfer protocol, such as FTAM

32 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Corporate
Offices

Area
Manager

I

Plant
Manager

T Broadband IEEE 802 .4 LAN

FTAM (or MMS)

Carr ierband IEEE 802.4 LAN

Cell
Control ler

Peer- to-Peer
M M S

Cell
Control ler

Client-Server
MMS

Programmable
Logic

Controller

Programmable
Logic

Controller

Numerical
Control ler

Factory-Floor Devices

(File Transfer, Access, and Management â€” see article, page
24). The information exchange often consists of instructions
(binary executables) and tables of data (e.g., Car XI, 2-door,
color blue, convertible; Car X2, 4-door, color brown, sedan;
etc.) that dictate what is to be manufactured and in what
order. Data tables can also consist of event logs (for diagnos
tic or inventory purposes) collected by the cell controllers
and showing what was indeed manufactured and the times
at which corresponding events took place. MMS also pro
vides file transfer capability that can be used in this capac
ity, but it is less efficient than FTAM.

Once a cell controller has received a set of instructions,
it is responsible for carrying them out. Doing so will nor
mally consist of establishing a connection to each device
in its cell and downloading executable and data images
over these connections. MMS remote process management
can then be used over this connection to start the executable
images. At this point, specific MMS variables can be created
and initialized at the devices for control and monitoring
purposes. The cell controller will likely establish connec
tions with neighboring cell controllers for peer-to-peer
MMS communication. Variables, semaphores, and event
monitors associated with these peer-to-peer connections
will then be created to provide synchronization of the ac
tivities on the assembly line (e.g., as a car passes from one
cell to the next, each cell must be notified of its arrival.)

This example is one manner in which MMS can be used
to facilitate and coordinate the production process. There
are certainly many other approaches to organizing a factory
floor and incorporating MMS.

We are now ready for a more detailed explanation of the
MMS services.

MMS Services
There are ten service sets in the MMS standard, each of

which defines a number of unique MMS messages. These
services sets are as follows:
Context Management. The context management services

F i g . 1 . T h e m a n u f a c t u r i n g f l o o r
from the networking point of view.

offer the ability to administer associations or connections
and the environment in which those connections are estab
lished. This includes opening, closing, and aborting con
nections, as well as notifying applications of aborted con
nections and protocol errors as they occur. Also included
are utilities to prepare the environment before any connec
tions can be initiated or received. These utilities spawn
any necessary processes and initialize global variables, ta
bles, and lists.

Connections have associated with them a certain context
for communication, which is negotiated at the time of es
tablishment. This context dictates what can be communi
cated on that connection and ensures that both ends under
stand the contents of the messages to be exchanged. For
example, a context for MMS will differ significantly from
an FTAM context because the message structures are very
different. MMS and its companion standards have their
own contexts. The context to be used is specified by the
initiator of the connection. If the responder cannot support
the specified context, it is forced to deny the connection
request.
VMD Support. VMD stands for virtual manufacturing de
vice. It refers to the model used and described by the MMS
documents to characterize the behavior of a manufacturing
device. A VMD can be thought of as the name MMS uses
to refer to a device under its control. The VMD support
services are used to obtain information about a device, such
as its identity (manufacturer and model number), its status,
what MMS objects it has defined (variables, semaphores,
journals, etc.), and what resources it has available.
Domain Management. A domain is an abstract object de
fined within the VMD model. It represents a subset of a
VMD's resources. Domains are analogous to object files and
can be grouped together to form an executable program.
Examples of VMD resources gathered within a domain are
data files, object code, and memory. The domain manage
ment services are used to create domains by reserving a
set of VMD capabilities (or resources), associating a name

AUGUST 1990 HEWLETT-PACKARD JOURNAL 33

© Copr. 1949-1998 Hewlett-Packard Co.

with them, and downloading the corresponding binary
image data. Furthermore, domains can be uploaded and
stored for future use, deleted, or interrogated to determine
their attributes. Some manufacturers provide static do
mains with their devices; these require no downloading.
Program Invocation Management. These services are used
to define a program invocation as a collection of domains,
and then control its execution. When creating a program
invocation, a list of existing or downloaded domains is
sent to the VMD and a name is given that binds them
together. Once created, the invocation can be controlled
by issuing start, stop, resume, reset, kill, or delete com
mands. The domains that make up the program invocation
will usually consist of executable device code and the data
the device uses to perform its assigned task.
Variable Access. The variable access services make it pos
sible to define remote variables and their types, and to read
and write those variables as needed. The variables may be
simple types, complex structures, or lists of other variables.
Named variables are defined by associating a name and a
previously defined type with a given memory address at
the VMD. Once defined, variables are easily accessed with
read and write messages.
Semaphore Management. The semaphore management ser
vices allow applications to create and access semaphores
for synchronization, control and coordination of shared
resources. Two types of semaphores can be managed by
MMS to provide this. Pool semaphores have a one-to-one
correspondence with acquirable, logical, or physical en
tities at the device. By taking control of a pool semaphore,
an application locks the corresponding resource for exclu
sive use. Token semaphores are provided for synchroniza
tion. If a given application has control of a token sema
phore, subsequent requests by other applications to control
the semaphore are queued.
Operator Communication. These services provide com
munication with remote operator stations. Remote operator
stations are simple input/display devices that provide for
human interaction with the devices and cell controllers.
The input service is used to request entry data from a device
such as a bar code reader, keyboard, or optical sensor. A
device such as a monitor or printer may be used as an
operator station to display data from the output service.
Event Management. Event management allows a client
MMS user to define and manage events at a VMD and to
be notified when those events occur. This is accomplished
by explicitly defining event conditions and event actions.
These are then tied together through event enrollments at
the VMD. An event enrollment dictates what event action
(MMS service) is to be taken by the VMD when a given
event condition occurs. Events can be triggered normally,
as they occur, or artificially by the MMS user. Additional
MMS services are provided to obtain current status sum
maries of event conditions and enrollments.
Journal Management. Journal management offers a facility
for recording and retrieving chronologically ordered infor
mation such as events, variables corresponding to those
events, or general textual comments. These services allow
the MMS user to create, delete, initialize, read, and write
journals and obtain status information about them.
File Management. These services offer simple file transfer

and file management capabilities. MMS services are pro
vided to open, read, and close files. When used together,
these three services are used to transfer a file from the
remote to the local system. To transfer a file to a remote
system, the obtain-file service is used. This tells the remote
system to obtain a file from a specified file server. The
requesting system may be that file server. Files can also be
deleted or renamed, and directory listings can be obtained
through a file directory service.

All of these MMS services are either confirmed services
or unconfirmed services. Both confirmed and unconfirmed
services are initiated by an MMS user issuing a service
request. This request is sent out on the network and is
received by the peer MMS user as a service indication. For
an unconfirmed service, the service has been completed at
this point. In the case of a confirmed service, the MMS
user that received the indication must send a response back
to the requesting MMS user, as shown in Fig. 2. This re
sponse is called a confirm when it is received by the MMS
user that issued the original request. At this point the con
firmed service is complete. Most of the services defined
for MMS are confirmed services.

HP MMS 800 Def ini t ion
The services provided by MMS allow a wide range of

applications. Unfortunately, it was not feasible for the MMS
team to provide all eighty-six MMS services in the HP
MMS/800 product. A narrower focus had to be developed.
In determining this focus, the typical HP MMS/800 appli
cation was evaluated. This typical application consists of
an HP-UX computer running MMS as a cell controller in
the automotive, aerospace, and electronics industries. The
factory-floor devices in this type of application include
programmable logic controllers (PLCs), numerical control
lers (NC or CNC machines), and robots.

To control these types of devices, a cell controller needs
to support the context management, VMD support, domain
management, program invocation, variable access, operator
communication, and file services. The variable access and
file services used in peer-to-peer communication are also
included. The peer in this case may be another cell control
ler or an area manager.

The remaining services â€” semaphores, journals, and
events â€” are mainly used in the process control industry.
MMS/800 is not designed for this type of application at
this time.

HP MMS/800 Services
Careful consideration was given to the set of services to

be implemented. This set had to be large enough to provide
the functionality needed for a cell controller, but small
enough to allow the services to be implemented and tested
in time to meet the HP-UX 7.0 operating system release

R e q u e s t i n g
M M S U s e r

R e s p o n d i n g
M M S U s e r

Reques t
C o n f i r m R e s p o n s e Ind i ca t i on

Fig . 2 . MMS serv ices are e i ther conf i rmed or unconf i rmed.
The response shown is omit ted for unconf i rmed serv ices.

34 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

schedule.
The major source of information used in choosing the

set of functionality to implement was the MAP 3.0 specifi
cation. The specification defines seven classes of devices
for which MMS will be used. The classes are:

MAPI. Used for NC machines
MAP2. Used for PLCs (simple)
MAP3. Used for PLCs (complex)
MAP4. Used for robots
MAPS. Used for process control applications (simple)
MAP6. Used for process control applications (medium)
MAP7. Used for process control applications (complex).
A product considered MAP 3.0-conformant must imple

ment all services defined in at least one of these classes.
The set of services chosen for the first release of HP's MMS
satisfies classes MAPI, MAP2, and MAP3. In addition, over
86% of the services in MAP4 are included in the first re
lease. The box on page 38 lists the services provided in the
first release.

HP MMS Implementat ion Model
As explained in the article on page 11 describing the

upper layer architecture, the HP MAP 3.0 product is based
on a two-process model. The two processes are the user
process and the service provider process.

In the MMS version of the model (Fig. 3), the application
program interface is the standard MMS interface (MMSI)
introduced earlier in this article. The application entity
coordinator is known as the high-level service provider
and the application service element is known as the MMS
protocol machine. Each of these MMS elements is de
scribed in more detail below.

The MMS User Process
The purpose of the MMSI is to allow the application

program to exchange MMS messages with devices or peer
applications. Therefore, much of the MMSI code simply

User Program

Appl icat ion Program
Interface-MMSI

Context
Management

Event
Management

User
Process

Messaging Rout ines

Messaging Socket

Messaging Rout ines

High-Level Servicer
Provider

Context
Management

MMS Protocol
Machine

Service
Provider
Process

Presentat ion Services

Lower Protoccl Stack H P O S I
Express Card

Fig. 3 . The HP MMS/800 implementat ion of the HP MAP 3.0
two-process model .

takes input from the user in the form of parameters and
input buffers and validates it. This data is then sent to the
service provider process through the messaging socket. The
service provider process expects the data in a format com
patible with its data structures, which are derived from the
Abstract Syntax Notation One (ASN.l) standard.1 The
MMSI performs the translation from MMSI standard struc
tures to the service provider process's ASN.l-derived struc
tures. The interface is also responsible for translating in
bound data from the service provider process into the user's
MMSI data structures.

The following algorithm describes the processing for
most of the MMS request and response functions.

1 . V a l i d a t e t h e s t a t u s o f t h e c o n n e c t i o n a n d t h e i n p u t d a t a
2 . T r a n s l a t e t h e d a t a f r o m M M S I f o r m a t t o s e r v i c e p r o v i d e r p r o c e s s

A S N . l - d e r i v e d s t r u c t u r e s
3 . P lace t he da ta i n a s tanda rd message fo rma t t o be sen t t o t he se rv i ce

p r o v i d e r p r o c e s s
4 . A d d t h e e v e n t t o e v e n t m a n a g e m e n t
5 . S e n d t h e m e s s a g e t o t h e s e r v i c e p r o v i d e r p r o c e s s
6 . I f t h e e v e n t i s s y n c h r o n o u s

{
w a i t f o r a r e p l y
c o p y t h e d a t a t o t h e u s e r ' s o u t p u t b u f f e r

}
7 . R e t u r n c o n t r o l t o t h e u s e r .

After control returns to the user for asynchronous events,
the user can call the event management wait function. This
function waits for the next completed event. At this time
the interface copies the data for the completed event into
the user's output buffer.

To receive indications (requests from the remote device),
the application must explicitly ask for them. This is ac
complished via the indication receive request Â¡Receive. The
IReceive function sends a message to the local service pro
vider process indicating that the user is willing to receive
one indication. It is the responsibility of the service pro
vider process to pair the IReceive requests with indications
received from the network. The service provider process
will queue any indications it has received for which the
user process has not issued an IReceive. The service provider
process will also queue IReceive requests for which indica
tions have not yet been received. When the service provider
process is able to pair an indication and an IReceive request,
the indication is passed to the user process. The indication
is then placed in the user's IReceive output buffer where it
can be processed by the application program.

The scenarios above for requests, responses, indications,
and confirms describe the general processing that takes
place for most of the VMD support, domain management,
program invocation, operator communication, and file ser
vices. However, the context management and variable ac
cess services require the interface to perform additional
work and store complex information.

The context management services require the interface
to keep track of local VMDs, application entities, and con
nections. Local VMDs are used when the application pro
cess wants to act as a server for the variable access services.
To be a server, the local side must be viewed as a VMD by

AUGUST 1990 HEWLETT-PACKARD JOURNAL 35

© Copr. 1949-1998 Hewlett-Packard Co.

the remote client. These local VMDs are created by execut
ing a function call indicating which application entities
will belong to the VMD. An application entity is the part
of an application that uses networking services. In an ISO
environment, these application entities have addresses that
the interface is required to store to facilitate the communi
cation with the remote devices. In our implementation, an
application entity corresponds to a service provider pro
cess.

The interface keeps track of the VMDs, application en
tities, and all connections to perform validity checking on
operations requested by the user. The information for each
VMD, application entity, or connection is stored in a sepa
rate data structure that is placed in the interface's VMD
table. A simplified version of the VMD table is shown in
Fig. 4. Hash functions are used to provide quick access to
particular entries in the VMD table and doubly linked lists
allow easy additions and deletions.

The VMD table also provides a means for storing MMS
objects defined by the user. In our current implementation,
variable and type objects are the only user-definable MMS
objects supported. These MMS objects have an associated
scope that dictates a range over which they can be used.
For example, a connection-specific variable can be accessed
only on the connection for which it was defined, whereas
a variable with a VMD-specific scope can be accessed on
any connection to the VMD. Since we support both connec
tion and VMD-specific variable access, the objects for vari
ables and types are stored under the structure correspond
ing to the particular connection or VMD.

Var iable Access
The variable access services are one of the most powerful

and complicated portions of MMS. The purpose of these
services is to allow the user to read and write variables on
the remote device. However, this is much more than a
simple interprocess communication mechanism. Once the
user has performed the necessary setup, the interface can
access the user's program variables directly to place data
received from the remote device or retrieve the data to be
sent to the remote device.

To achieve this level of variable access, the interface
must know all about the local variable. The interface must
know the type of the variable, which is either simple, an
array, or a structure. The interface must also know the
address of the program variable, its name, and how the
variable should look on the network. The MMSI provides
functions that allow the user to provide this information
to the interface dynamically. Once the information has been
supplied, a function call is used to define the variable to

the interface. This results in a variable access object struc
ture being added to the VMD table in Fig. 4. The variable
access object is placed under the VMD or connection struc
ture defined by the scope of the object.

One final piece of information needed by the interface
is knowledge of the C compiler packing rules. This informa
tion has been built into the interface. The packing rules,
along with the type of the variable and its starting address,
allow the interface to access the C program variable di
rectly.

Once the user has defined the local program variable to
the interface, reads and writes can be performed. For a
read, the interface retrieves the data from the remote device
and places it directly into the application program's C vari
able. On a write, the interface takes the data directly from
the application program's C variable and sends it to the
remote device. The local C variables in the application
program can then be used in normal computations.

The MMS Service Provider Process
The MMS service provider process contains two modules

that are specific to MMS. The first is the high-level service
provider and the second is the MMS protocol machine.
The rest of the modules that make up the MMS service
provider process are the same service provider process
modules used by the other HP MAP 3.0 components. The
service provider process is spawned by the user process
as the result of the MMS user issuing an application entity
activation function call. The service provider process pro
vides the communication pathway between the user pro
cess and the HP OSI Express card2 and the network. This
call must be made before any connections to the remote
device can be set up. Once a service provider process has
been activated, the MMS user can set up connections and
issue and receive MMS messages over those connections.

The high-level service provider has two primary func
tions. The first is to manage all communication between
the service provider process and the user process. This is
accomplished with function calls to the service provider
process messaging module. One management function is
to pack messages being sent to the user process into a form
that the user process can interpret and to unpack messages
being received from the user process. The routines to pack
and unpack MMS messages are discussed later in this arti
cle.

The second function of the high-level service provider
is to process all incoming indications that are responded
to automatically by this product. When the high-level ser
vice provider receives an incoming indication it checks to
see if it is for an autoresponse service. If it is not an auto-

I â€” Â»â€¢ VMD i

L V A R : " A "
S c o p e : V M D 3

A E 1 . 1 Â « - A E 1 . 2 ! ^ A E 3 . 1

I Â» -CONN 1 .1 .1 Â» -CONN 1 .1 .2 -â€¢-CONN 3.1.1

L V A R : " A "
Scope: CONN 1 .1 .1

_ V A R : " B "
Scope: CONN 1 .1 .1

L V A R : " A "
Scope: CONN 3 .1 .1

Fig. 4 . Data s t ructure for context
management .

36 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

response service, the indication is sent to the user process
to be processed by the MMS user. If it is an autoresponse
function, the high-level service provider performs the re
lated operation, creates the response, and sends it out on
the network without notifying the MMS user. Eight auto-
response services are supported in the HP MMS/800 prod
uct. These include the identify service and all seven of the
file services.

The primary function of the MMS protocol machine is
to enforce the MMS protocol as it is defined in ISO DIS
9506. This entails validating the values of MMS message
parameters and verifying that the state diagrams defined
by the MMS specification are not violated. In the event
that a protocol violation is discovered on an outbound
MMS message, an error is returned to the local MMS user.
If a protocol violation is discovered on an inbound MMS
message, an MMS reject message is sent back to the remote
device. In the case of a rejected inbound message, the local
MMS user is also notified of a rejected inbound message
with an MMS reject indication.

Both the high-level service provider and the MMS pro
tocol machine must maintain information about connec
tions and confirmed services. A common data structure is
used to store all of this information. Fig. 5 illustrates the
basic design of this data structure. When either a connect
request or a connect indication is processed by the service
provider process, a connection entry is added to the hash
table with its state indicating that the connection is in
progress. When a corresponding positive connect response
or confirm is processed, the state of the connection entry
is updated to show that the connection is valid. If the
corresponding response or confirm is negative, the connec
tion attempt failed, and the corresponding connection entry
is removed. A similar process occurs when the connection
is concluded.

When a confirmed service request or indication is pro
cessed by the service provider process, a request entry is
added to the request entry list for the corresponding con
nection entry. When the response or confirm is processed,
the request entry is removed.

Doubly linked lists are used for both the connection en
tries and the request entries. A common set of data structure
manipulation routines is used to manage these lists. This
includes initializing the data structures, adding new ele
ments to the list, retrieving the next element on the list,

CE = Connec t ion En t ry
RE = Reques t En t ry

Fig. 5. Data st ructure for in format ion about connect ions and
conf i rmed serv ices in the serv ice prov ider process.

and removing elements from the list. These routines are
designed to manipulate general doubly linked lists and are
used to manage data structures within the service provider
process and the user process. Because they were written
and tested early in the project, very few errors were discov
ered in these data structures during product testing.

ASN.1 Compi ler
Many of the modules in the HP MAP 3.0 product rely

on the ASN.l standard. For all of these modules, including
HP MMS/800, the ASN.l compiler described in the article
on page 11 was used to generate encoding and decoding
routines and data structures. While the purpose of the en
coding and decoding routines is to translate MMS messages
between the ASN.l-derived data structures and the bit pat
terns sent and received on the network, the MMS product
uses them for an additional purpose: to validate certain
MMS protocol requirements.

During connection establishment, the nesting level for
variables and the parameter conformance building block
are among several parameters negotiated for the connec
tion. The value of the nesting level determines the extent
to which structures can exist within other structures for
variables defined for the connection. The value of the pa
rameter conformance building block describes which fields
within specific MMS messages will be valid for the connec
tion. If the negotiated nesting level is exceeded or if an
invalid field is present as determined by the parameter
conformance building block, a protocol error occurs. To
determine if either of these situations exists, the entire
MMS message must be parsed and information must be
gathered regarding both of these values. Since the encoding
and decoding routines already parse MMS messages, addi
tional code was simply inserted into these routines to col
lect this information and validate that neither the nesting
level nor the parameter conformance building block is vio
lated. Since the creation of the encoding and decoding
routines by the ASN.l compiler is an automated process,
the insertion of this additional code was also automated.
Use of the encoding and decoding routine saves an addi
tional parse iteration of each MMS message and allows
faster processing of each MMS message.

Automat ic Generat ion of Pack and Unpack Rout ines
The ASN.l-derived data structures are used throughout

the service provider process and to send the MMS messages
to and from the user process. In the user process the MMS
messages are translated between the ASN.l-derived data
structures and those used by the MMSI. Since the ASN.l-
derived data structures are automatically generated by the
ASN. 1 compiler, there is a pattern to their design, including
the naming convention used for fields within the structures
and their corresponding types. The MMS development
team took advantage of this to generate the code to pack
these data structures into a buffer when sending them
across the channel linking the service provider process and
the user process. After determining the nature of the data
structure patterns, routines were written to process the
header file generated by the ASN.l compiler and locate
each pointer field within every structure. Each pointer field
represents a new structure within an MMS message which

AUGUST 1990 HEWLETT-PACKARD JOURNAL 37

© Copr. 1949-1998 Hewlett-Packard Co.

HP MMS/800 Services

In the c l ien t -server mode l used by MMS, a ce l l con t ro l le r i s
considered to be the c l ient , whi le the factory- f loor device is the
server. For peer- to-peer communicat ion, the cel l control ler must
be able to act as the server as wel l as the cl ient. For each of the
serv ices l is ted below, C or B is used to indicate whether the HP
MMS/800 imp lemen ta t i on hand les t he c l i en t s i de o r bo th t he
c l ien t s ide and the server s ide . An A ind ica tes tha t the serv ice
provider process (SPP) responds automatically in the server role.
When the SPP automat ica l ly responds, the appl icat ion program
nei ther receives the indicat ion nor sends a response.
â€¢ Context Management.

n In i t ia te (B) . Open a connect ion.
n Conc lude (B) . Gracefu l ly c lose a connect ion .
n Cancel (B) . Cancel a prev ious ly issued serv ice request .
n Abor t (B) . Abrupt ly c lose a connect ion .
a Reject (B) . Refuse an MMS message that v io lates the MMS

protocol.
'â€¢f. VMD (Virtual Manufacturing Device) Support

n Status (C). Request a VMD to provide its status information.
a Unso l i c i t ed S ta tus (C) . Rece ived an unso l i c i t ed s ta tus i n

d icat ion f rom a VMD.
n Get Name List (C). Retr ieve a l ist of named objects from the

VMD.
n G e t o f L i s t (C) . R e t r i e v e a l i s t o f t h e c a p a b i l i t i e s o f

the VMD.
n I d e n t i f y (B A) . G e t b a s i c i n f o r m a t i o n a b o u t t h e r e m o t e

device (e.g. , vendor name, model number, version number).
â€¢ Domain Management

n In i t ia te Download Sequence (C) . Ins t ruc t the VMD to s ta r t
downloading a domain f rom the ce l l cont ro l ler .

n D o w n l o a d S e g m e n t (C) . S e n d a s e g m e n t (p i e c e) o f t h e
domain to the VMD.

a T e r m i n a t e D o w n l o a d S e q u e n c e (C) . T e r m i n a t e t h e d o w n
load, usual ly because the download is f in ished.

n In i t ia te Upload Sequence (C) . Ins t ruc t the VMD to prepare
for uploading a domain to the cel l contro l ler .

n Up load Segment (C) . Ins t ruc t the VMD to up load the nex t
segment o f the domain.

D T e r m i n a t e U p l o a d S e q u e n c e (C) . T e r m i n a t e t h e u p l o a d ,
usual ly because the upload is f in ished.

n Request Domain Download (C) . The VMD requests the ce l l
control ler to in i t iate a download.

n Reques t Doma in Up load (C) . The VMD reques t s t he ce l l
control ler to ini t iate an upload,

n Dele te Domain (C) . De le te a domain f rom the VMD.
D G e t D o m a i n A t t r i b u t e s (C) . R e t r i e v e t h e a t t r i b u t e s o f a

domain f rom the VMD.
â€¢ Program Invocation

n Create Program Invocat ion (C) . L ink one or more domains
on the VMD in to one executable program.

n De le te P rog ram Invoca t i on (C) . De le te a p rog ram on the
VMD.

n Star t (C) . Star t a program on the VMD.
n Stop (C) . S top (suspend) a program on the VMD.
a Resume (C) . Resume a s topped program on the VMD.
n Reset (C) . Reset a s topped program on the VMD.
a Get Program Invocat ion Attr ibutes (C). Retr ieve informat ion

about a program on the VMD.
â€¢ Variable Access

n Read (B). Retr ieve the value of one or more var iables f rom
the remote device. These can be s imple var iables, arrays,
structures, etc.

n Write (B). Write new values to the remote device's variables.
a I n f o r m a t i o n R e p o r t (B) . S e n d t h e v a l u e s o f t h e l o c a l

mach ine ' s va r i ab l es t o t he r emo te dev i ce w i t hou t be ing
asked for them.

n Get Var iab le Access A t t r ibu te (B) . Re t r ieve the a t t r i bu tes
(type informat ion, etc.) of one or more remote var iables.

Operator Communicat ion
n Inpu t (C) . Re t r ieve da ta s t r i ngs f rom the remote dev ice ' s

console.
n Ou tpu t (C) . Send da ta s t r i ngs to the remote dev ice ' s con

sole.
i F i l e se rv ices

a Obta in F i le (BA) . Ask the remote dev ice to get a f i le (MMS
does not al low writ ing of f i les, so the remote device is asked
to read the f i le).

n F i le Open (BA) . Open a f i le on the remote dev ice.
D Fi le Read (BA). Read par t of a f i le on the remote device.
n F i le Close (BA). Close a f i le on the remote device.
D Fi le Rename (BA). Rename a f i le on the remote device.
D Fi le Delete (BA). Delete a f i le on the remote device.
D Fi le Di rectory (BA). Get a d i rectory l is t ing f rom the remote

device.

requires packing into the buffer. Once these fields were
detected, it was easy to derive their pointer types from
their names, and, together with some structural information
for each data type, generate the packing code.

A two-step process was employed. First, the ASN.l-gen-
erated header file was parsed to generate lists containing
the information required for packing. The elements on
these lists indicated the opening and closing of substruc
tures and unions, union tags, and pointers. Second, a recur
sive set of routines was written to interrogate these lists
and generate the corresponding packing code for each data
structure.

With minor modifications, the two-step process was re
peated to generate the unpacking code as well. Over ten
thousand lines of code were automatically generated using
this process, saving an enormous amount of tedious coding

and debugging time.

MMS Interoperabil i ty
As discussed earlier in this article, the reason for the

development of the Manufacturing Message Specification
was to provide a mechanism for multivendor communica
tion on the factory floor. To provide this multivendor com
munication, the HP MMS/800 product must be able to com
municate with MMS products from other vendors. HP is
actively conducting interoperability testing with the MMS
products of other vendors to ensure this communication.
At the present time, interoperability has been demonstrated
with a wide range of products from several other manufac
turers. As new MMS products appear on the market, HP
will continue this testing to provide MMS users a wide
range of devices to be used with the HP MMS/800 product.

38 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Conclusion
Until the advent of MMS, interconnecting factory-floor

devices was a costly and complicated process. Each device
and computer vendor had proprietary protocols that re
quired specialized communication hardware and software
to connect devices.

MMS and MAP 3.0 solve this problem by providing one
common communication standard for all factory-floor de
vices. MMS provides the necessary functionality for con
trolling these devices. This allows engineers in the factory
to choose the best vendor and device for a task without
having to worry about the cost of specialized communica
tion hardware and software to connect this new device.

In addition to providing factory-floor communication
with MMS, MAP 3.0 has defined a standard MMS interface
(MMSI). This standard interface reduces programmer train
ing costs and allows applications to be ported easily from
one vendor's computer to another. This provides the ability
to create flexible applications and reduce development
costs.

The HP MMS/800 product provides the application pro
grammer with MAP 3.0 MMS functionality through the
standard MMS interface. All the necessary functionality
for controlling factory-floor devices and peer-to-peer com
munication with other cell controllers has been included
in this product.

Acknowledgments
We would like to thank Steve Booth for his assistance

in the code development of the MMSI module and Mike

Robinson for helping in the automatic generation of the
service provider process pack and unpack routines. Thanks
also go to John Beckman, Hugh Mahon, Neal Bauer, and
Mickey Gittler for their efforts in the development and
testing of this product. We would also like to thank our
managers, Don Tiller and Jeff Lindberg, for their support
and guidance during this project. Finally, thanks go to the
marketing people who helped make this into a real product.
Tim Antonsen developed an excellent set of manuals that
make MMS understandable. Isabel Garity provided training
and sample programs, and Paul Morrison provided product
marketing guidance.

References
1. Information Processing Systems - Open Systems Interconnec
tion - Specification of Abstract Syntax Notation One (ASN.1J, ISO
8824: 1987 (E).
2. W.R. Johnson, "An Overview of the HP OSI Express Card,"
Hewlett-Packard Journal, Vol. 41, no. 1, February 1990, pp. 6-8.

Bibliography
1. A.H. Stacy, The MAP Book: An introduction to Industrial Net
working, Industrial Networking Incorporated, 1987.
2. Manufacturing Automation Protocol Specification Version 2.1,
General Motors Corporation, 1985.
3. Manufacturing Automation Protocol Specification Version 3.0,
General Motors Corporation, 1988.
4. Manufacturing Message Specification, ISO DIS 9506, Interna
tional Organization for Standardization, 1985.
5. V.C. Jones, MAP/TOP Networking: A Foundation for Computer-
Integrated Manufacturing, McGraw-Hill Book Company, 1988.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 39

© Copr. 1949-1998 Hewlett-Packard Co.

HP-UX Kernel Communications Modules
for a Card-Based OSI Protocol Stack
HP MAP 3 .0 products a re based on the HP OSI Express
card, which implements most of the OSI protocol stack on
an I /O card. The kerne l modules prov ide re l iab le data
transfer between the host computer and the HP OSI Express
card.

by Er ic C. Scoredos, Kimber ly K. Scott , and Richard H. Van Gaasbeck

THE OVERALL DESIGN of the HP MAP 3.0 product
is based on the HP OSI Express card.1 The HP OSI
Express card provides an implementation of the OSI

protocol stack on an I/O card for HP 9000 Series 800 com
puters. The card off-loads much of the network overhead
from the host, leaving CPU bandwidth available for pro
cessing user applications and MAP services.

To provide the reliable transfer of user data between the
host computer and the HP OSI Express card over the HP
Precision Bus (HP-PB) backplane, three host-resident mod
ules that run in the HP-UX kernel were developed for the
HP MAP 3.0 product. These kernel modules provide an inter
face that allows users to make or break connections (com
munication paths) between different hosts on the IEEE
802.4 network and to send and receive data on these con
nections. Up to 100 separate full-duplex connections can
be established between a given host and any other hosts
on the network. The kernel modules and portions of the
HP OSI Express card are shown in Fig. 1. The three kernel
modules are:
â€¢ The upper layer interprocess communication module

(ULIPC)
â€¢ The CONE (common OSI networking environment)2 in

terface adapter (CIA)
â€¢ The HP OSI Express card driver.

ULIPC Module. This module provides an interface that
allows higher-level network services such as FTAM, MMS,
and X.500 to create or terminate a networking connection,
send or receive data, or perform control functions. ULIPC
verifies the caller's parameters and transfers the data be
tween user memory and kernel memory. ULIPC then in
vokes the CONE interface adapter to carry out the requested
operation.
CONE Interface Adapter (CIA). This module is responsible
for the communication between the host and the HP OSI
Express card. It creates and maintains connections between
itself and its peer on the card, the backplane message inter
face (BMI).2 These two modules pass messages back and
forth regarding the creation or termination of connections
and the availability of data to be transferred inbound or
outbound. User data is also exchanged between these mod
ules as part of these messages.
OSI Express Card Driver. This module and its peer on the

HP OSI Express card, the backplane handler,3 are respon
sible for transferring data across the HP-PB backplane. For
outbound data transfers, the driver forms the data buffers
passed to it into a chain of buffers suitable for DMA, and
transfers these buffers via DMA to the card. For inbound
transfers, the driver forms empty buffers into a DMA chain
and uses DMA to transfer data from the card into the buffers.
In addition to its networking interface, the driver also has
an interface that handles the downloading of the executable
code for the OSI protocols and diagnostic operations on
the HP OSI Express card.

MAP
Application

Diagnostic
Program

f

T
HP-UX User Space

Upper Layer IPC
(ULIPC)

CONE Interface
Adapter

(CIA)

HP-UX Kernel

IEEE 802.4 Network

F i g . 1 . H P M A P 3 . 0 s o f t w a r e b l o c k d i a g r a m s h o w i n g t h e
HP-UX kerne l modu les and the i r peer HP OSI Express card
modules.

40 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

HP-UX Networking Implementat ion Model
The MAP kernel modules are designed to conform with

the structure and function of the existing HP-UX 7.0 kernel
networking subsystem. Fig. 2 shows a block diagram of the
HP-UX kernel networking model. This implementation is
based on Berkeley 4.2 BSD4 with extensions added to sup
port proprietary HP networking interfaces such as NetlPC.3

As shown in Fig. 2, HP-UX user applications make either
NetlPC, Berkeley IPC, or ULIPC networking system calls.
Within the kernel, the IPC system calls are initially handled
by code specific to the type of call. This code processes
the user request and then makes calls to the socket layer
to carry out the requested function.

A socket can be thought of as a communications end-
point. The socket layer provides a set of standard routines
for manipulating the kernel data structures that represent
a particular socket, as well as routines for sending and
receiving data on that socket and performing other opera
tions. To accomplish some of its tasks, the socket layer
invokes the services of specific networking protocol mod
ules through a protocol switch table. This table maps
generic calls into protocol-specific routines. The protocol
to be used for various networking services is generally
fixed. In Fig. 2 the protocol switch table is used for handling
NetlPC, Berkeley IPC, and ULIPC system calls. NetlPC and
Berkeley IPC calls typically use the TCP/IP (Transmission
Control Protocol/Internet Protocol) protocols, whereas the
ULIPC calls use the CIA, which has the same entry points
as the standard protocol modules. For example, a send
request made by the socket layer to accomplish a data trans
fer on behalf of Berkeley IPC invokes the TCP/IP send
routine, and a send request made by the socket layer on
behalf of ULIPC invokes the CIA's send routine.

Although TCP/IP and CIA occupy similar positions in
the HP-UX networking architecture, and are accessed in

much the same fashion, their relative roles in accomplish
ing user data transfer in their respective systems are quite
different. TCP and IP are traditional networking protocol
modules that perform standard transport and internet layer
functions such as flow control, error-free transmission, and
routing. Once user data passes through these modules, it
is ready for transmission by a LAN card. By contrast, the
CIA's role is mainly to act as a conduit for data to and from
the OSI Express card, where the transport and internet
protocol modules reside. The host and card must, in effect,
implement their own private protocol to set up host-card
paths and to exchange data before that data can be trans
mitted between different hosts on the network. Some as
pects of this protocol are discussed later in this article.

Upper Layer Interprocess
Communication Implementation

The ULIPC provides a system-call interface that is used
by higher-level host software (mainly network service mod
ules) to accomplish data transfers. This interface bears
some similarity to HP's NetlPC, with extensions added so
that additional OSI requirements such as long OSI address
es and user data with connect or disconnect requests can
be handled. The ULIPC interface is not exposed to users
and is accessible only by the higher-level software in the
HP MAP 3.0 implementation. Table I summarizes the
ULIPC calls and their functions.

Many of the ULIPC calls provide an option parameter
that contains different things depending on the call being
made. For example, OSI addresses are passed to the HP
OSI Express card using the option parameter in the ulcreate()
call. There are also special routines for creating and ma
nipulating the parameter's content. Other uses of the option
parameter include:

NS Applicat ion BSD Appl icat ion MAP Appl icat ion

N e t l P C S y s t e m C a l l s I I B S D I P C S y s t e m C a l l s

T

Â¡User Applications

HP-UX User Space
HP-UX
Kernel

Socket Layer

IEEE 802.3 Driver

Host-Card Path Host

I /O Card

IEEE 802.3
Interface

Card

HP OSI Express
IEEE 802.4

Interface Card

F ig . 2 . HP-UX kerne l ne twork ing
model.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 41

© Copr. 1949-1998 Hewlett-Packard Co.

t* Setting send and receive socket buffer sizes (i.e., the
amount of data that can be buffered at the socket)

Ã Setting send and receive thresholds (i.e., the amount of
data or space that must be available in a socket before
the socket is designated as readable or writable)
Setting time-out values for synchronous operation (i.e.,
the amount of time to wait in ulrecv() for data to be read)
Sending data with a connection request.

OSI Addresses and Connect ions
There are two concepts that are important in understand

ing the implementation of ULIPC connections: the rep
resentation of an OSI address and the process of establish
ing a connection in a connection-oriented system. An OSI
address is used to identify a given host and application in
a network.2 Fig. 3 shows a schematic representation of an
OSI address. As shown, an OSI address consists of multiple
subaddresses (selectors in OSI terminology) and each sub-
address corresponds to a different OSI protocol layer. The
OSI address is supplied to ULIPC calls through the option
parameter described earlier. One of the special option pa
rameter routines is used to insert the OSI address into the
option parameter before making the call.

Table I
Upper Layer IPC Cal ls and Their Funct ions

U L I P C C a l l F u n c t i o n
ulerÃ©ate Create a call socket (communication

endpoint)
ulconnect Initiate connection establishment
ulcontrol Perform various special functions on a

socket or connection
u ldes t Crea te a des t ina t ion OSI address

descriptor
ulrecv Receive data on a connect ion or OSI

connect request
ulrecvcn Receive the connection indication for a

call socket
ulselect Determine the status of a socket
u l s e n d S e n d d a t a o n a c o n n e c t i o n
ulshutdown Terminate a connection

OSI applications establish connections with each other
by exchanging protocol data units (PDUs) for their layers
in a specific sequence. A PDU can be thought of as a mes
sage that contains control information and possibly user
data for a specific layer. Ignoring implementation details,
the basic sequence of events for creating a connection is:

The application initiates a connection by sending a con
nect request PDU to the remote application with which
it wishes to make a connection.

t The PDU arrives at the remote host and generates a con
nect indication event, which is processed by the remote
application.

Â« If the remote application wishes to accept the connec
tion, it responds by sending a positive connect response
PDU to the initiating application.

'-.. The PDU arrives at the initiating host and generates a
connect confirm event, which is processed by the initiat

ing application. The OSI connection is now established
between the two applications.

ULIPC Connect ions
For HP MAP 3.0 an OSI connection between two appli

cations using ULIPC relies on the use of sockets.6 Sockets
are a widely used mechanism in networking interfaces for
establishing connections. The ULIPC interface uses three
types of sockets: call sockets, virtual circuit sockets, and
destination sockets. Call and virtual circuit sockets are the
most commonly used socket types. Call sockets are used
to establish the addresses of applications, whereas virtual
circuit sockets are used to reference individual connection
endpoints. Destination sockets are used in special instances
to hold address information for remote applications.

The process for establishing an OSI connection using
ULIPC is illustrated in Fig. 4. This figure shows two OSI
applications, A and B, which might be located on different
hosts on the network. While it is possible for HP MAP 3.0
nodes to communicate with MAP nodes from other ven
dors, for purposes of this example, both A and B are as
sumed to reside on HP MAP nodes. We will also assume
that application A wants to establish a connection with
application B.

For application A to be able to connect with application
B, both applications must create call sockets using ulcreate().
This is accomplished by both applications inserting their
OSI addresses into the option parameters and then calling
ulcreate() on their respective systems. The ulcreate() call regis
ters the address of the OSI application on the HP OSI Ex
press card, creates an associated call socket, stores the ad
dress in this socket, and returns a descriptor to the caller.
The descriptor is an integer value used for subsequent ref
erences to the socket. With the address registered on the
card, remote applications can now attempt to make connec
tions to the registered application. Fig. 4a shows the action
of the ulcreateQ calls by both A and B.

The next step is for application A to set up the structure
for initiating a connection with application B (see Fig. 4b).
To accomplish this, application A uses application B's ap
plication entity title, or the name of application B, to deter
mine B's OSI address. Application A can determine the
OSI address of B by accessing a directory using the directory
services of X.500. X.500 in HP MAP 3.0 is described on
page 15. Once application A has B's OSI address, it calls
the function uldest(). Uldest() creates a new destination socket

Presen ta t i on
A d d r e s s

Sess ion
A d d r e s s

T r a n s p o r t
A d d r e s s

Presentation Selector

Session Selector

Transport Selector

Network Address

Fig . 3 . The par ts o f an OS/ address.

42 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

A p p l i c a t i o n A

H o s t X

A d d r e s s (A)

A d d r e s s (A)

H P O S I
E x p r e s s

C a r d

A p p l i c a t i o n A

D e s c r i p t o r

A E T i t l e (B

H P O S I
E x p r e s s

C a r d

H P O S I
E x p r e s s

C a r d

A p p l i c a t i o n B

U s e r
P r o c e s s
"ÃœLA"

I E E E 8 0 2 . 4 L A N A d d r e s s (B) (b)

A d d r e s s (B)

A d d r e s s (A)

I E E E 8 0 2 . 4 L A N

U L A = U p p e r L a y e r A r c h i t e c t u r e (I n c l u d e s t h e
n e t w o r k s e r v i c e s a n d t h e i r r e l a t e d m o d u l e s) A E = A p p l i c a t i o n E n t i t y

A p p l i c a t i o n A

A p p l i c a t i o n A

H P O S I
E x p r e s s

C a r d

(d) I E E E 8 0 2 . 4 L A N

V C = V i r t u a l C i r c u i t

A p p l i c a t i o n A

U s e r
P r o c e s s
""ULA"

H P O S I
E x p r e s s

C a r d

A p p l i c a t i o n B
A p p l i c a t i o n A

H P O S I
E x p r e s s

C a r d

(e) I E E E 8 0 2 . 4 L A N

A p p l i c a t i o n B

H P O S I
E x p r e s s

C a r d

A p p l i c a t i o n B

Fig. ULIPC (a) process of establ ishing an OSI connection using the ULIPC system cal ls, (a) The
act ions and ulcreateQ cal ls by appl icat ions A and B. (b) The act ions of the directory lookup and
the uldestQ cal l by appl icat ion A. (c) Ini t iat ing a connect ion using uiconnectQ and ulrecvcn() by
appl icat ion A. (d) A f ledgl ing connect ion is establ ished between A and B with the uiseiectQ and
ul recvcn() ca/ /s by appl icat ion B. (e) Appl icat ion B makes a u l recvQ cal l to receive the contro l
information and data sent f rom A. (f) A connect ion is ful ly establ ished between A and B through
a uisendO call by B and a ulrecvQ call by A.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 43

© Copr. 1949-1998 Hewlett-Packard Co.

structure to hold the address information it is passed, and
returns a destination descriptor that references this socket.
This descriptor is used when making subsequent ULIPC
calls that need to refer to application B.

Now application A initiates the connection to applica
tion B (see Fig. 4c). First, A inserts any control information
and user data to be sent with the connect request PDU into
the option parameter. This includes information that the
host-resident protocol layers, including the application,
need to exchange to establish a connection. Next A calls
ulconnectO, supplying A's call socket descriptor and B's des
tination descriptor, along with the option parameter. Ulcon
nectO creates a virtual circuit socket (Al) for the connection,
and then returns to its caller a descriptor for this socket.
The host-control information and the user data travel
through the card-resident protocol layers, with each layer
adding its own control information to form a connect re
quest PDU, which is sent to the destination.

Having initiated the connect request, A now calls ulrecvQ
to await a connect confirmation event indicating that B has
accepted the connection. (Asynchronous modes of opera
tion that don't require waiting are also possible).

When the connect request PDU sent by A arrives at B's
host, a connect indication event occurs. The control infor
mation for the lower-layer protocols is removed from the
PDU by the card, leaving the host control information and
the user data sent by A. This data is passed to the host,
where it is attached to an unreferenced virtual circuit socket
(Bl) that the CONE interface adapter (CIA) creates for the
connection, pending its final acceptance. The virtual cir
cuit sockets in Fig. 4c are labeled with number suffixes
(Bl and Al) to signify that the connections these sockets
represent could be the first of many connections to be
created between the two applications.

To determine if an incoming connection indication event
exists at its call socket, B calls ulselect(), which is used to
detect the presence of connect indication events at call
sockets or data on virtual circuit sockets. If ulselectf) indi
cates the presence of a connect indication at B's call socket,
B then calls ulrecvcnQ. UlrecvcnQ completes the creation of
the virtual circuit socket for the connection on B's host
and returns a descriptor for the socket to application B (see
Fig. 4d). Note that the host control information and user
data have not yet been received by application B. At this
point a fledgling connection has been established between
A and B (enough so that OSI PDUs can be exchanged be
tween the two applications). However, the full OSI connec
tion is not yet completed until the required PDUs are ex
changed between A and B.

For the OSI connection to be completed, B must first do
an explicit ulrecvQ call to receive the control information
and data that were sent by A's ulconnect() call. Any user data
sent with the connect request is also received in this call.
Fig. 4e shows B receiving these items using ulrecvQ.

Application B can now determine if it wishes to accept
the connection. If B accepts the connection, it sends a posi
tive connect response PDU back to A using ulsend() in the
same manner described previously with ulconnect(). When
B's positive connect response PDU arrives at A, it causes
a connect confirmation event. This event causes applica
tion A's ulrecv() call to complete, and the host-control infor

mation and user data sent by B are passed to application
A. The OSI connection is now fully established.

This example shows that the kernel modules have little
OSI-specific knowledge. They are used primarily to estab
lish lower-level paths between the host and the HP OSI
Express card over which PDUs can flow to remote applica
tions. They provide mechanisms for sending and receiving
PDUs, but do not themselves have any knowledge of the
PDU content being sent or received. The exchange of PDUs
to establish a connection is orchestrated by higher-level
software, in this case the applications in conjunction with
the upper-layer network services.

If this example is changed to assume that application B
is running on a non-HP MAP node, nothing is changed
from the standpoint of application A, which will still issue
ULIPC calls in the sequence shown in the example to ini
tiate a connection with B. On the B node, the implementa
tion details of how B handles connect indication events
and sends connect response PDUs would be vendor-spe
cific and differ from the example, but the resulting flow of
PDUs between the two systems would be the same. The
kernel communication modules, along with the HP OSI
Express card facilities, allow standard OSI communication
between interoperable systems from any vendor.

Once an OSI connection has been established between
applications, users can send and receive data on the con
nection using ulsendO and ulrecv(). The ULIPC interface sup
ports the use of vectored I/O, which lets users pass messages
in both directions as an array of pointers to buffers contain
ing parts of the message. This saves users from having to
do extra data copies to send OSI messages.

A special ULIPC call, ulcontrol(), is used for performing
special functions on a socket or a connection. For example,
it can be used to set individual socket parameters such as
buffer sizes, thresholds, and time-outs.

CONE Interface Adapter

The CONE interface adapter, or CIA, is responsible for
establishing a communication path for a network connec
tion between the host and the HP OSI Express card, and
for sending and receiving user data on this path (see Fig.
1). This host-card path must exist to create a full OSI con
nection between applications. However, it differs from a
full OSI connection in that this host-card path exists before
the OSI connection is fully established and continues to
exist until after the OSI connection is terminated. (For the
rest of this section we will ignore this distinction and sim
ply use the term connection to refer to both the host-card
path and the complete OSI connection.)

Upper Interface
As we have already seen, the CIA provides an interface

that is similar to the interface provided by networking pro
tocol modules such as TCP/IP in HP-UX (see Fig. 2). Inter
face users such as the socket layer make requests to the
CIA on behalf of ULIPC system calls by calling the CIA's
upper interface entry point with several parameters. One
parameter is the request code that tells the CIA what oper
ation to perform, such as PRILSEND, which tells the CIA
to send data on a certain connection, and PRILABORT,

44 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

which tells the CIA to close the host-card connection. Other
parameters are a chain of buffers containing the user's data
and a pointer to the connection's associated socket data
structure.

CIA-to-BMI Message Communicat ion
The CIA and its HP OSI Express card counterpart, the

backplane message interface (BMI), work together to estab
lish communication paths across the host-card boundary.
Since these two modules execute in separate environments
and cannot communicate via procedure calls or shared data
structures, a messaging scheme was designed for communi
cation between them. Example messages that the CIA can
send to the BMI and the information they convey include:
â€¢ Create. Tells the BMI to expect data on a specified connec

tion in the future.
â€¢ Add_SAPS. Registers a call socket so that the BMI will

send a connect indication for a certain OSI address to
the associated call socket.

â€¢ Send. Sends user data to the BMI.
â€¢ Destroy. Tells the BMI to break a specified connection.

The BMI can also send messages to the CIA if the card
needs to initiate activity in the host, as in the case of an
incoming connect indication being received.

Many of the messages that can be exchanged between
the CIA and the BMI direct the modules to perform opera
tions that take time to perform. Therefore, most messages
have corresponding handshakes that the message sender
must wait for before assuming the operation has been per
formed. This handshaking keeps the operation of the CIA
and the BMI in synchronization on both sides of the back
plane. The CIA maintains state variables internally to en
sure that messages are sent only when appropriate.

Register Sets
The CIA uses specific register sets on the HP OSI Express

card for setting up connections and transferring messages
or data on connections. A register set is a collection of 16
32-bit registers that can be read from or written to by the
host to start a DMA transaction between the host and the
card.3 The host can address several hundred separate regis
ter sets independently and start DMA transactions on each
concurrently. Therefore, a register set can be thought of as
either a host-to-card (outbound) or card-to-host (inbound)
path depending on how it is being used. The allocation of
register sets for various host-card functions is given below.

Register Set Number
0
1

2,3
4,5

6-17
18,19
20,21
22,23

Function
Downloading and Diagnostics
Transparent Indication Register Set
Management Register Sets
Expedited Data Register Sets
Reserved
Path Register Set Pair #1
Path Register Set Pair #2
Path Register Set Pair #3

216,217 Path Register Set Pair #1 00

Register Set 0. This register set is used for downloading
the HP OSI Express card software and for sending and
receiving diagnostic messages and data to or from the card.
It is not used for normal networking operations.
Register Set 1. This register set is used to read transparent
indications sent from the card to the host. A transparent
indication is used to help provide card-to-host (inbound)
flow control.
Register Sets 2 and 3. These are management register sets
used by the CIA and the BMI to send messages to each
other about connections that are not yet established. The
even-numbered register set in this and other register set
pairs is always used for host-to-card message transfers, and
the odd-numbered register set is used for card-to-host trans
fers. When the CIA and the BMI want to set up a host-card
path for a networking connection, they first exchange mes
sages on the management register sets.
Register Sets 4 and 5. These register sets are used to send
and receive expedited data between the host and the card.
Expedited data is a type of data defined in the OSI protocols
whose transmission sometimes takes priority over normal
data.

Transparent indications and expedited data are de
scribed in more detail later in this article.

The remaining register set pairs are used for host-card
paths across which user data flows. Each path register set
pair supports one full-duplex network connection. There
are 100 such pairs and therefore 100 connections are
suppported. The path register set pairs are allocated to
connections as connections are established. The fact that
each connection maps one-to-one with a register set pair
means that connections can be handled independently and
one connection cannot block another.

Sending and Receiv ing Messages and Data
The CIA sends and receives messages (some of which

contain user data) across various register sets to and from
the BMI using the OSI Express driver. The register set used
depends on the situation and the type of message being
sent. To start a host-card path for a network connection,
the CIA and the BMI exchange create messages and hand
shakes on the management register sets. These messages
instruct both sides as to which path register set pair to use
for the connection. When user data is to pass between the
card and the host, the CIA and the BMI exchange send
messages (which contain user data) between them on the
appropriate path register sets. Finally, when a host-card
path is to be deallocated because the network connection
is being terminated, the CIA and the BMI exchange destroy
messages and handshakes on the management register sets
to effect the deallocation of the appropriate path register
sets and to clean up connection resources in the host and
the card.

OSI Express Card Driver

The OSI Express card driver transfers messages and user
data to and from the HP OSI Express card across the HP-PB
backplane. In addition, the driver can be used to exchange
diagnostic information with the card. The driver uses direct
memory access (DMA) transfers to move data between the

AUGUST 1990 HEWLETT-PACKARD JOURNAL 45

© Copr. 1949-1998 Hewlett-Packard Co.

host and the card. A detailed discussion of DMA transfers
between the host and the HP OSI Express card is given in
reference 3.

To transfer data using DMA, the driver forms the data
into a DMA chain. A sample DMA chain is shown in Fig.
5. A basic DMA chain is made up of a linked list of quads
(four 32-bit values) to which data buffers can be attached.
Each quad except the last (the link quad) contains informa
tion about the direction of the DMA transfer to be per
formed, an attached data buffer, and a byte count of the
data. The link quad denotes the end of a DMA chain and
references the DMA completion list entry for a transaction.
The completion list entry is a memory area that the card
updates with the status of the completed transfer. In addi
tion, the link quad can reference more DMA chains.

Networking
To transfer data to the HP OSI Express card, the driver

allocates resources for the connection and then sends or
receives messages and data using DMA.
Allocation and Deallocation of Register Sets. When a con
nection is brought into service, the CIA and the BMI allocate
path register sets and other resources to the connection.
The CIA also calls the driver so that the driver can allocate
its own resources for the connection. When this call is
made, the CIA passes the driver pointers to a set of proce
dures called completers. These routines, which are as
sociated with each connection, are called by the driver
whenever certain events occur on the connection. The three
types of completer routines are read completers, transpar
ent indication completers, and error completers. These
routines reside in the CIA.

When register sets are deallocated, the CIA, in addition
to sending BMI messages, makes appropriate calls to the
driver so that the driver can deallocate the resources that
had been allocated for the connection.
Sending and Receiving Messages and Data. When the CIA
wishes to exchange messages and data with the BMI, it
makes read or write requests for the desired register set to
the driver. The CIA passes to the driver a list of memory
buffers to use for the transfer. These buffers contain user
data in the case of writes, and space for inbound data in
the case of reads. Also, each buffer contains space for the
DMA quad required to form the DMA chain. This allows

the driver to avoid the additional effort of allocating mem
ory for quads. The driver forms the memory buffers into a
DMA chain similar in structure to that shown in Fig. 5.
Then, for an outbound transfer, the driver starts the DMA
transfer on the outbound path register set (even-numbered
registers) associated with the connection. For an inbound
transfer, the driver starts the DMA transfer on the connec
tion's inbound path register set (odd-numbered registers).

The driver allows the CIA the flexibility of starting simul
taneous DMA transfers on multiple connections or on con
nections with transfers in progress without having to wait
for the completion of existing requests. If a transaction is
in progress, the driver will queue a newly requested trans
action for that register set behind it.

When a DMA transfer is completed by the card, the card
fills in the completion list memory area pointed to by the
link quad with information about the transaction type and
its status. It also adds this completion list entry to the host's
DMA completion list and generates a host interrupt. A
special I/O service routine in the host kernel scans this
completion list and invokes the driver for each completed
transaction. For completed read transactions, the driver
calls the read completer routine associated with the con
nection. The read completer routine puts the data read on
the inbound socket buffer for the connection so that it can
be read by ULIPC calls. For completed writes, the driver
simply frees the memory buffers used in the transfer and
updates the connection's outbound socket buffer.

The transparent indication and its associated completer
routines provide a special mechanism for inbound (card-to-
host) flow control. A transparent indication is simply a
message that tells the host that data is available for reading
from the card. The message contains the number of the
connection on which the data is available and the quantity
of data. Register set 1 is always allocated for receiving
transparent indications from the card into the host, and
the driver always keeps a small number of read transactions
posted on this register set. If the driver receives a trans
parent indication on the special register set, it calls the
transparent indication completer routine for the connec
tion specified in the transparent indication. This completer
routine checks whether enough memory exists in the host
to read in the data. If so, the CIA calls the driver to read
the data; otherwise it waits until memory is available. The

Data Quad 1 Data Quad 2 Link Quad

F ig . 5 . A DMA cha in .

46 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

card will not send another transparent indication for the
same connection until the CIA has called the driver to read
the data for the indication already received.

Fig. 6 depicts the situation that could exist between the
host and the card if two applications in the host had each
established a single connection to an application elsewhere
on the network. Application X's connection is using regis
ter sets 18 and 19 to transfer data between the host and
card (and ultimately between two communicating hosts),
with register set 18 being used for outbound traffic and
register set 19 for inbound traffic. At the time this situation
occurs, the connection has one outbound and one inbound
DMA data transfer in progress.

Application Y's connection uses register sets 22 and 23.
This connection has multiple outbound data transfers in
progress. This could be the case if the remote host is for
any reason slow in receiving the data.

Also shown in Fig. 6 are transparent indications being
sent by the card to the host to indicate the presence of data
to be read on the card. The figure shows the first transparent
indication being received on behalf of application Y, and
the second by Application X. Presumably, both applica
tions would post subsequent reads to receive this data,
which would execute directly or queue after the read trans
actions depending on the system timing.

Diagnostic Use
Nodal management and diagnostic tools can call the

driver directly from user space to download software to
the HP OSI Express card or to exchange diagnostic informa

tion with the card. Examples of diagnostic operations the
card can perform are self-testing and uploading of memory
contents to the host for debugging.7

The driver supports the standard HP-UX system calls
open(), ioct!(), read(), writeQ, and close() for diagnostic access to
the card. The open() call makes the driver and card available
for diagnostic access. The ioctl() call tells the driver which
type of diagnostic transfer to initiate on a subsequent read()
or write() operation. When the driver's caller invokes read()
or writeO, the driver builds a DMA chain appropriate to the
diagnostic request to be performed, referencing the data
buffers to be read or written. The driver then starts the
DMA transfer and waits for its completion. After the oper
ations have been performed, the close() call relinquishes
the driver for diagnostic access.

Kernel Module Data Structures

Several data structures are used within the kernel mod
ules to maintain the state of the many activities associated
with a connection. Fig. 7 shows the key individual connec
tion data structures. The top-level structure is the socket
structure. This structure stores socket state information,
and also references two queues (socket buffers) for inbound
and outbound user data. When an application sends data
using ulsendQ calls, ULIPC moves data from user space into
the socket's outbound socket buffer. Similarly, incoming
data for the connection is queued on the socket's inbound
socket buffer and can be read from there using ulrecv() calls.
The state information and queues are updated as data flows

Host
Register Sets

Mult iple Queued Read
Transact ions for

Transparent Indicat ions

HP OSI Express Card

Transparent
Indications for
Inbound Data

Received
Transparent
Indications Single

Transactions in
Progress Inbound

and Outbound

Data
to/from

OSI
Protocols RS 19

Single Transaction
in Progress Inbound,

Mult iple Queued
Transact ions Outbound

Data to/from
OSI Protocols

RS 23

= DMA Transact ion Conta in ing
Message and/or Data

n = Q u e u i n g O r d e r

BMI = Backplane Message In ter face
B H - B a c k p l a n e H a n d l e r

F ig . 6 . T ransac t i ons i n p rog ress
between the host and the HP OSI
Express card on mul t ip le reg is ter
sets. In this example, there are two
fu l l -duplex connect ions wi th each
connec t i on i n use by a sepa ra te
appl icat ion.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 47

© Copr. 1949-1998 Hewlett-Packard Co.

through the connection.
The next data structure is the CIA control block. This

data structure is used to hold information about the current
state of the host-card path for a connection. Contained in
this state information are a socket pointer and a register
set value identifying the backplane register sets to be used
for the connection. The control block can also reference
queues of outbound expedited data and user data from
connect requests.

At the driver level, state information is kept for each
register set pair in use, as well as for each register set in
the pair. The register set pair information contains the com-
pleter routine pointers for the register set pair as well as
the overall state of the pair (e.g., is the pair allocated or
free). For each register set in the pair, the driver stores the
head and tail pointers for the DMA chain being transferred.

Special Kernel Module Features

Several features provided by the kernel modules enhance
the efficiency of network transfers. Some of these features
include the ability for more than one application to use
the same call socket, expedited transfer of high-priority
data flows, and guaranteed delivery of inbound data.

Cal l Socket Rendezvous
One of the special features that the ULIPC and the CIA

provide is the ability for two or more unrelated user pro

grams to wait for connection indications on the same call
socket. This ability makes it easier for server processes to
handle several indications at once.

The CIA with help from the ULIPC allows unrelated
processes to share the same call socket if they both specify
identical OSI addresses. When the first call socket is
created, the CIA sends a message (AdcLSAPS) to the BMI
with the OSI address included. Assuming that the card has
enough resources with which to register the address, it will
send back a positive response to this message along with
a special value that the CIA will associate with the first
call socket. When the second call socket is created by the
second process and the Add_SAPS message is sent to the
BMI with the same OSI address as for the first process, the
card software notices that the two addresses are the same
and sends the response back with the special value for the
first call socket. The CIA realizes from this that the second
socket is a duplicate of the first, and tells the ULIPC that
the two sockets should be merged. The call socket descrip
tor provided to the second process will therefore reference
the same call socket as that given to the first process.

Expedited Data
In the OSI environment, expedited data is data that some

times must be sent or received with a higher priority than
normal data and not be subject to normal flow control. A
message from an application to abort a connection is an
example of data that usually receives expedited treatment.

Socket

CIA
Control
Block

Register
Set Pair

State
Information

CIA Control
Block

Pointer
Outbound

Socket
Buffer

State
Information

Register Set

Outbound
Expedited

Data
Connect ion

User
Data

Completer
Routine
Pointers

Register Set
State

DMA Cha in Head

DMA Chain Ta i l

DMA Cha in Head

DMA Chain Ta i l

Inbound Register Set

Outbound Register Set
Fig. 7. Data structures for an indi
v idual connect ion.

48 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

The kernel modules make special provisions for this type
of data. First, dedicated register sets are allocated for receipt
and transmission of expedited data so that transmission of
this data is not impeded by pending transfers of normal
data. Then, at the CIA and the ULIPC level, inbound expe
dited data is marked so that it can be distinguished from
normal data. When inbound expedited data arrives, the
data on the inbound socket buffer is reordered so that all
expedited messages come before normal data. The socket
reservations (maximum amounts of data allowed to be buf
fered at the socket] are also increased so that the flow of
expedited data will not be impeded by normal data.

Outbound expedited data bypasses normal data stored
on the outbound socket and is either sent immediately or
stored (if the BMI is not yet ready to receive it) in the CIA
control block for the connection. Therefore, outbound
expedited data, as well as inbound data, always bypasses
the flow control mechanisms of normal data.

Guaranteed Del ivery of Inbound Data
In networking implementations where the transport pro

tocol resides in the host, the transport layer has access to
the latest status of resources in the host, particularly in the
area of memory availability. If the status is unfavorable for
receiving inbound data, the transport layer will know this
and can take appropriate steps to compensate by doing
such things as discarding inbound data. This assumes that
the remote side will likely retransmit the data and that the
unfavorable status is only a short-term condition.

However, when the transport protocol resides outside
the host, as is the case for this implementation, it must
receive data with no particular knowledge of or guarantee
about the host's ability to receive this data. If host condi
tions are unfavorable for receiving the data, the data cannot
simply be discarded because it has already been acknowl
edged to the transmitter as having been received, and will
therefore not be retransmitted. Therefore, data received by
the card transport protocol must be guaranteed successful
passage into the host.

The approach taken to this problem was to examine the
possible causes of host inability to receive data, and adjust
kernel configuration parameters (in particular, networking
memory reservations) for the implementation to ensure that
they could not occur under worst-case conditions.

Acknowledgments
Many people contributed to the modules described in

this article. At HP's Information Networks Division,
Allwyn Sequeira, Paul Gradin, Greg Marino, Doug Chan,
Ali Golshan, Collin Park, and Frank Fiduccia all contrib
uted to the design, development, and test of these modules
at various stages of the project. Tom Robins did the early
driver design and helped with the development of this
article. Ron Mok helped characterize ULIPC performance.
From HP's Roseville Networks Division, Bill Gilbert, Jim
Haagen-Smit, Dave Kumpf, Glenn Talbott, and Mike Wen-
zel made contributions. Our thanks to everyone above, and
to Greg Gilliom, Jean Yao, and Atul Bhatnagar for their
management support.

References
1. Hewlett-Packard Journal, Vol. 41, no. 1, February 1990, pp.
6-77.
2. S.M. Dean, et al, "CONE: A Software Environment for Network
Protocols," Hewlett-Packard Journal, Vol. 41, no. 1, February 1990,
pp. 18-28.
3. G.F. Talbott, "The HP OSI Express Card Backplane Handler,"
Hewlett-Packard Journal, Vol. 41, no. I.February 1990, pp. 8-18.
4. S. J. Leffler, et al, 4.2BSD Networking Impiementation Notes,
Computer Research Group, Department of Electrical Engineering
and Computer Science, University of California, Berkeley, Revised
July 1983.
5. R. J. Carlson, et al, "HP AdvanceNet: A Growth-Oriented Com
puter Networking Architectural Strategy," Hewlett-Packard Jour
nal, Vol. 37, no. 10, October 1986, pp. 6-10.
6. S. 4.3BSD Leffler, et al, The Design and implementation of the 4.3BSD

UNIX Operating System, Addison-Wesley, 1989.
7. J. K. Shah and C. L. Hamer, "Support Features of the HP OSI
Express Card," Hewlett-Packard Journal, Vol. 41, no. 1, February
1990.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 49

© Copr. 1949-1998 Hewlett-Packard Co.

Interoperabi l i ty Test ing for HP MAP 3.0
Interoperabi l i ty test ing is used to ensure that HP MAP 3.0
OSI services can communicate with other vendors' systems
and to uncover errors both in HP's and other vendors' OSI
implementat ions.

by Jeffrey D. Meyer

ONE OF THE PRIMARY objectives of HP's MAP 3.0
offering is to allow HP systems to communicate
with those of other system vendors. To be success

ful in meeting this objective requires interoperability test
ing in addition to standard software testing practices such
as module, system, and reliability testing. Interoperability
testing is the verification of the ability of different network
implementations to communicate. This type of testing
helps to expose implementation errors in both HP and other
vendors' systems, and most important, it helps to ensure
that we provide our customers with a truly open system.

Need for Interoperabil i ty Testing
The large number of network standards, their relative

newness, and the existence of many options within the
standards makes the implementation of a full OSI stack a
formidable task. Errors can be made both in the selection
and enforcement of options and in the general encoding
and decoding of the protocol data units that are sent across
the network. These types of errors may go undetected dur
ing testing between similar systems because they can be
canceled. Canceling happens when an error is present in
both the sending and receiving code, the net effect being
that no error is detected.

Fig. 1 illustrates this problem. In this case implementa
tion A incorrectly requires the presence of optional field
Y in a PDU. During the testing of A against itself this error
is not detected because A always includes field Y. When
A tests with implementation C, which does not include
this field, the error is exposed. Fig. 1 also illustrates that
interoperability testing is not transitive. A tests with B
successfully because B includes the optional field. Also B
tests successfully with C because B does not require the
optional field Y. But A fails the test with C.

Because of the canceling effect, an OSI product can go
through its internal software testing cycle and still contain
significant undetected errors. Because of the lack of tran
sitivity we cannot make assumptions about our ability to
operate with one vendor based on our experience with
another. For these reasons interoperability testing is an
important and necessary element of the test cycle for OSI
products.

Conformance Test ing
Another type of testing that exposes defects in OSI im

plementations is conformance testing. Conformance testing
consists of running a set of communication tests between
the system being tested and a reference system. The idea

here is that the reference system is a correct implementation
of the OSI layers being tested and that successful comple
tion of the conformance tests will indicate that the tested
system's implementation is also correct (conformant). Tests
for OSI implementations are administered by a national
agency. In the United States this is the Corporation for
Open Systems (COS), which issues certification marks to
systems passing the tests.

Conformance tests may eventually replace the need for
most interoperability testing, but this is not the case today.
The main problems existing are the availability and stabil
ity of tests and the commitment of vendors to undergo
testing. Because the FTAM conformance tests are still
under development and there are no accepted MMS tests
in the United States, we must perform interoperability test
ing.

HP is taking an active role in participating in the COS's
conformance testing. We have completed IEEE 802.4 and
OSI Transport Class 4 tests and are working with the COS
on FTAM testing. Because the conformance tests are also
subject to errors in implementation, the participation of
other vendors in conformance tests is essential to their
becoming stable. As stable conformance tests become avail-

implementation A
â€¢ Optional Field Y Always Present
â€¢ Incorrectly Requires Optional Field

Implementat ion B
â€¢ Optional Field Y Always Present
â€¢ Does not Require Optional Field

Implementat ion C
â€¢ Optional Field not Used
â€¢ Does not Require Optional Field

Fig. 1 , An example of how an error can be canceled between
systems.

50 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

able and are widely accepted among vendors, we should
see the following benefits.
â€¢ The tests will be very rigorous and produce a range of

behavior much greater than that generated by a typical
implementation. This should enable conformance test
ing to expose the majority of implementation errors.

* The tests will be improved over time to incorporate tests
for implementation errors that might still be found be
tween conformant systems.
The rigorous and improved tests will mean that a sys
tem's conformance mark will provide a high level of
confidence in its ability to interoperate with other con
formant systems. This will reduce the need to perform
controlled interoperability testing between each pair of
implementations.

The Interoperabi l i ty Test Process
Although interoperability testing could be performed by

purchasing the other vendor's equipment and implement
ing and running the tests in-house, experience has shown
that our most effective interoperability testing has resulted
from cooperation between HP and the other vendor. The
cooperative approach speeds the test development cycle
and it improves the ability to diagnose problems detected
in the other vendor's equipment. If problems are found in
the other vendor's equipment, their involvement improves
the turnaround time for fixes.

Fig. 2 shows the interoperability testing process that has
been established at HP. The process is initiated by an HP
field representative after a customer request has been re
ceived for an HP OSI network product. The other system
vendors on the network are reviewed against the systems
we have already tested. If any have not been tested then
the testing process begins. The testing process may also be
initiated by R&D or marketing for vendors our customers
might use in the future.

The first phase in the testing process is determining the
availability of personnel within the factory to perform the
testing. After identifying the internal team, contact with
the other vendor is established for carrying out the testing.
In some circumstances the customer may also be involved.

When the teams are established the next step is to ex
change information about each vendor's implementation.
The information exchanged consists of a document called
a Protocol implementation Conformance Statement (PICS)
and, if available, network traces showing the protocol data
unit encodings produced by the vendor's stack. The PICS
describes the services and options supported fora protocol.
Each of the ISO protocol standards specifies the informa
tion to be provided in the PICS, which usually takes the
form of tables to be filled in. The PICS information is used
to determine the functionality to be tested. The PICS infor
mation can also be used to determine if the functionality
requested by the customer is met by the two implementa
tions. The network traces from the other vendor can be
compared with those of our implementation to identify
differences and to look for known problems.

After this exchange of information takes place, both par
ties are prepared to decide on the appropriate test cases to
be executed and the location where the tests are to take
place. HP has a set of abstract test cases for both FTAM

and MMS, which are generally proposed as part of the test
suite. An abstract test case describes the test purpose, the
steps to execute the test, and the expected results.

In addition to testing at one of the vendor's facilities,
two other options exist for test location. Testing can be
performed over a wide area network by using a router to
move data from each vendor's local IEEE 802.4 network to
an X.25 public data network. An advantage of this type of
testing is that both parties can work out of their respective
labs, giving them easy access to the development and diag
nostic tools available. Testing may also be performed at
the COS's interoperability test lab. COS, the agency that
performs conformance testing, has provided floor space in
their lab for vendors to leave their equipment. For about a
week every quarter vendors are invited to come to the lab
to carry out interoperability testing. An advantage of this
environment is that testing can be performed with more
than one vendor.

Install, configure, and verify are combined and listed as
a separate step because when equipment is moved for the
purposes of this testing, it is important that its local func
tioning be verified first. This avoids wasting time diagnos
ing problems that have nothing to do with interoperability.

After all the preceding activities have been completed,
the actual execution and interpretation of the interoperabil-

Other Vendor
Identified

Tes t Team
Identified

Exchange and
Review PICS'

and Traces
â€¢^â€¢a

Ã‰
BH
m

Agree on Tests
and Locat ion

Install , Configure
and Veri fy

Execute IOP
Tests

Yes

Document
Results

Fig. 2 . The in teroperabi l i ty test ing process.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 51

© Copr. 1949-1998 Hewlett-Packard Co.

ity tests can take place. The evaluation of the failed tests
should involve both vendors. It is useful to gather as much
information as possible, including traces of the dialog, error
messages reported, errors logged, and configuration data.
After diagnosing a problem, ownership is assigned and the
problem corrected. If fixes are not readily available, both
vendors may agree to proceed with other tests if they are
confident that the error exposed will not affect the outcome
of the other tests. In fact, it is useful to define tests that are
loosely coupled, that is, test each component of the network
service with little dependence on other functions. This
ensures that testing can proceed in parallel with fixes being
developed for exposed problems.

When testing is complete an entry is made for that vendor
into an on-line information base. This entry describes the
tests that were performed, and for those that failed, the
symptoms and type of problem, the owner of the problem,
and the fix. In addition to the test results, these entries also
give information about the vendor's equipment, the person
nel involved in testing, the time and location of testing,
and the diagnostic tools available on the other vendor's
equipment. This record can then be used for evaluating
future field requests for vendor support as well as for track
ing trends in interoperability problems.

Interoperabil i ty Results
The most encouraging result to come from our interopera

bility testing is the high level of cooperation we have had
from other vendors. One reason for this cooperation is that
all parties involved gain from this testing. Both vendors
have the opportunity to improve their implementations
and their customers get the assurance that the different
systems will be able to communicate. We had originally
thought that issues of defect ownership might arise fre
quently, but all the defects we encountered so far have had
ownership resolved.

The distribution of errors we have seen so far is shown
in Table I. Some quick observations from this table include:
â€¢ Interoperability (IOP) testing is necessary because de

fects were uncovered in the tests with all vendors.
m Defect rates from the session layer on down were low

because the various implementations of these layers are
quite stable.

K Defect rates should decrease steadily as interoperability
testing is done with more vendors.

Table I
IOP Defects Exposed By Layer Dur ing IOP Test ing

with Eight Vendors (HP defect count at lef t)

Layer B D* H T o t a l s

F T A M 0 0 0 0 3 3 0 0 1 7 0 0 0 4 0 , 2 2 0
M M S 1 5 2 1 0 0 2 1 0 0 0 2 0 0 0 0 1 4

A C S E 4 1 2 4 0 1 0 0 0 1 0 1 0 0 0 0 1 4

P r e s e n t a t i o n 1 0 1 5 0 0 0 2 0 0 0 1 1 2 0 1 1 4
S e s s i o n 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 2
T P 4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
C L N P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M A C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* Indicates MMS testing (otherwise FTAM)

The largest class of errors encountered was protocol data
unit (PDU) encoding errors, about 20%. It is noteworthy
that from the presentation layer on up, the encoding rules
for the PDUs change, and this is where the majority of the
errors were located. The change is that the encoding rules
are no longer explicitly stated in each protocol specification
as they are in the lower layer standards. Instead, all the
upper layer standards use what is called Abstract Syntax
Notation One (ASN.l) to describe the way PDUs are to be
constructed. ASN.l is defined by two standard documents
of its own. ASN.l allows a consistent mechanism for de
scribing the upper layer protocols, but the cost is that the
final encoding of the PDU is less clear. ASN.l also permits
lengths of PDUs to be encoded in two different ways, and
several vendors, including HP, had some errors in decoding
both methods. See the article on page 11 for more about
ASN.l.

Within the FTAM errors, half of the errors were the result
of the incorrect effect being applied to the file being ac
cessed. For instance, a request to recreate a file with new
attributes might actually result in the same file being over
written and its old attributes kept (i.e., time of creation,
owner, access restrictions, etc.). Another large class of er
rors came from two implementations being overly restric
tive on a set of concurrency control flags, which are used
to control simultaneous access to files.

Another trouble spot, at the application and presentation
layers, had to do with the negotiation of contexts to be
used for the two entities to communicate. When a connec
tion is established at the presentation layer the two entities
agree what application layer protocols will be used (e.g.,
ACSE and MMS) and what encoding rules will be used,
which is always ASN.l. One problem was that the codes
used to indicate the protocols being proposed were still in
a state of flux late in the implementation cycle. Other prob
lems resulted from the standard's allowing multiple ways
to order the proposed protocols and different methods of
encapsulating the data from the upper layers.

One last trouble area worth mentioning resulted from
optional fields. Six errors were the result of either an im
plementation requiring a field that was optional, or not
handling a field that could optionally be present.

Useful Practices
The HP 4974A MAP 3.0 protocol analyzer proved to be

an indispensable tool during interoperability testing. The
analyzer captured all the OSI traffic between the two sys
tems being tested and displayed it in real time on the screen.
The traffic was presented in several windows correspond
ing to the different layers of the stack. This multilayer
display proved especially useful for situations when one
system encountered an error at an intermediate layer in
the stack. We could see in real time the dialog that had
occurred and determine which side was the last to transmit.
Because the analyzer is able to save the traffic it monitors
in files, we were able to keep track of exactly what dialogs
took place for each test case.

The analyzer was also useful in identifying problems
that are not apparent at the application layer. An example
was incorrect disconnect or abort dialogs. Although at the
application layer both sides may see the connection suc-

52 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

cessfully released, the analyzer exposed errors in the dialog
carried out at lower layers.

Another valuable quality of the analyzer is that it acts
as an unbiased observer on the network. There is no doubt
that traffic displayed by the analyzer is traffic that is actu
ally on the network. This is more reliable than traces taken
by either host.

The best method for isolating encoding errors is to place
traces of each system's encoding for a particular PDU side
by side and examine those fields that are different. Note
that this process can also be carried out before actual testing
if PDU traces are exchanged by the vendors as suggested
in the interoperability process.

The logging facilities of the HP MAP services and the
HP OSI Express card also proved very useful. Because much
care had been taken to associate unique log messages with
each potential error detected throughout the stack, several
errors could be identified immediately from the log mes
sage text.

Conclusion
The interoperability testing process we have developed

at HP has helped us uncover and correct errors in our OSI
implementation as well as several other vendors' im
plementations. We plan to continue our interoperability
testing with more vendors in the future. We now have a
better understanding of the types of problems that occur
between different implementations and through our rec
ords are in a better position to support our OSI offerings
in the field.

Acknowledgments
The following people played key roles in the success of

our interoperability test effort: interoperability project
manager Jim Cunningham, previous manager Greg Gilliom
who began this project, OSI Express engineers Mike Ellis,
Steve Mueller, and Tom Smith, FTAM engineer John
Smith, MMS engineers Pete Lagoni, Hugh Mahon, and Jeff
Williams, and fellow interoperability engineer Ken Brown.
Thanks must also be extended to the engineers at Allen-
Bradley, Computrol, Data General Corporation, GE-Fanuc,
Motorola, RETIX Incorporated, and Unisys for their hard
work in making open systems a reality.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 53

© Copr. 1949-1998 Hewlett-Packard Co.

The HP MAP 3.0 Software Integrat ion
Lifecycle
The HP MAP 3.0 prog ram was a large multidivisional effort
w i th pro ject teams spread over d i f ferent geographic
locat ions and work ing under d i f ferent organizat ions. To
manage the in tegrat ion of the hardware and sof tware
components f rom these d i f ferent pro ject teams, a gener ic
in tegrat ion l i fecyc le was developed for the HP MAP 3.0
product .

by Douglas R. Gregory

THE HP MAP 3.0 PROGRAM was a large software
and hardware development project that involved
teams from three HP U.S. divisions: Information Net

works Division in Cupertino, California, Colorado Net
works Division in Fort Collins, Colorado, and Roseville
Networks Division in Roseville, California. At the start, the
program was faced with the prospect of integrating and
releasing as a product software, firmware, and hardware
from more than ten project teams. These teams were geo
graphically dispersed and each had their own software
development and management methods. Ensuring that the
final product met its functional and quality goals was akin
to assembling an airplane in which all the parts were de
signed and built in different locations and at different
times, with the parts assembled into larger subassemblies
at different locations. As an added complication, the final
assembly had to continue despite ongoing changes to the
airplane parts.

From the experiences gained during the HP MAP 3.0
program, we have constructed a generic integration lifecy
cle that describes the various integration tasks and issues
a large, multidivision project needs to address and when
it needs to address them.

Integration Organization

In large projects integration activities can be ac
complished using three different organizational models:
distributed, centralized, or a combination of the two (see
Fig. 1). Using the distributed integration model entails di
viding integration responsibilities among one or more
members from each development team. These people are
responsible for integrating the team's software component
into the overall product, with limited support provided by
a dedicated program-wide integration person. While this
appears to optimize the needs of each team, in reality the
program suffers because there is often a lack of shared
plans, accountability, and decision making ability. Prob
lems are compounded in a multidivision environment be
cause different entities have different software lifecycles,
terminology, and quality and development objectives. For

example, one team may consider their job complete if their
software component builds and runs on just the final, cus
tomer shippable product, while another may feel it is neces
sary to ensure development stability by building and testing
their portion of the product weekly.

A centralized integration team offers the benefits of more
cohesive, program-wide integration planning, more ac
countability for the success of product integration, and
more focused effort to solve integration problems. How
ever, in a multidivision environment it is difficult for a
centralized team to meet the different needs of each organi
zation and project team. Care must be taken to ensure that
the central integration team is perceived by the rest of the
program as a partner and not as an organization constantly
in the way (i.e., something to work around).

The HP MAP 3.0 program evolved into a hybrid of the
above two organizations. A centralized integration team
was set up with the responsibility for ensuring the step-by-
step integration of the various software and hardware com
ponents for the final product and the final integration and
shipment of that product via the HP-UX release process.
As time progressed, it became apparent that, in addition
to the central integration team, each geographically sepa
rate division needed at least one full-time person dedicated
to meeting that entity's specific integration needs, plus a
member from each project team to serve as the first point
of contact for integration planning, problems, and issues
(see Fig. Ic).

The HP MAP 3.0 Integration Lifecycle

Integration activities can be divided into three phases:
the initial development phase, the initial product integra
tion phase, and the final product integration phase. The
initial development phase is characterized by preparatory
activities for integration and results in an integration plan.
In the initial product integration phase the integration plan
from the earlier phase is executed. Finally, the final product
integration phase involves making the product run on the
customer-release platform. Because these phases occur in
parallel with other software lifecycle activities, large, mul-

54 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

tidivisional programs may find it useful to add an integra
t ion ac t iv i ty column to thei r t radi t ional development
lifecycle.

Init ial Development Phase
Occurring in parallel with the design, coding, and unit

test phases of the development lifecycle, the integration
objectives of this phase are to plan the strategy and tactics
for assembling the individual software components to
create the final product. The output of this phase, an inte
gration plan, should address the following:

Identifying common interfaces between teams
Developing a program build strategy

* Implementing and distributing an integration develop
ment environment

Â» Identifying initial module entry criteria
â€¢ Developing an integration plan.
Because the success of the specification and design phase
of a software product has a strong impact on the success
of the implementation and testing phases, the activities
performed in this phase of integration greatly influence the
integration activities in later phases.
Common Interfaces. Because different organizations have
different ways of doing things, it is critical to identify com
mon interfaces through which they can interact. Although
there were interfaces in the HP MAP 3.0 program at all
levels (product teams, development teams, etc.), the inter
faces that were eventually used to manage the integration
effort for the program included a program-wide lifecycle
and program evaluation and review technique (PERT), a
common build technique and use rules, an integration de
velopment environment, initial module entry criteria, and
a final product system test strategy.

These interfaces defined the way entities such as the
divisions and development teams interacted with each
other while leaving them the freedom to innovate to meet
their specific, local objectives. It is important to note that
these interfaces were introduced as needs were identified,
and were continuously refined and improved as time passed.
Program Build Process and Strategy. The design and im
plementation of an efficient, consistent method of building
a software product is critical in any program. In a project
with geographically dispersed entities, it becomes even
more important because of the l imited communication
paths available to resolve differences and defects found
during product integration.

Originally intended to be used only for integration pur
poses, the HP MAP 3.0 build process was later adopted by
virtually all project teams and became an integral part of
the development environment. The build process provided
a method of compiling, linking, and verifying all or part
of the MAP product in a consistent, uniform fashion, while
giving each project team as much independence as possible
in implementing and testing their portion of the build. Fig.
2 shows the partial output of a build for HP MAP 3.0.

Of equal importance to a program's build process is its
bui ld s t ra tegy. The types of quest ions that need to be
answered with any build strategy include:
â€¢ How often should a product build be done?
â€¢ Should a product build be done in one location or should

each entity build its own portion?
Â» How should the build be distributed to development and

test teams?
â€¢ How should new modules be integrated into the product?

The original HP MAP 3.0 build strategy was to build and
distribute the latest version of the software every four to

Division A
Central

Coordinator

Division B Division A Division B

Division A
â€¢ Division

Coordinator Division B

Division C

A,, ...A4
B, , . . .B3
C, , . . .C2

Project
Teams

F i g . 1 . D i f f e r e n t m e t h o d s f o r o r
gan iz ing an in tegra t ion team, (a)
A distr ibuted integrat ion team, (b)
A c e n t r a l i z e d t e a m , (c) A h y b r i d
o f the two. For geograph ica l and
c o n v e n i e n c e r e a s o n s , H P M A P
3.0 adopted (c) as i ts model .

AUGUST 1990 HEWLETT-PACKARD JOURNAL 55

© Copr. 1949-1998 Hewlett-Packard Co.

six weeks. Each build, or integration release, contained
successively more product functionality. The large time
between releases was judged to be necessary because of
the instability of the product during the early phases of
development. Development teams were responsible for
picking up the latest release via disk image or across the
internet and using it for continued development, integra
tion, and testing.

However, from the moment developers created their own
private version of the build tree, they began to modify it,
incorporating "under the table" fixes from other develop
ment teams. This meant that by the time it was necessary
to build a new release, each development team's private
tree was often very customized and very different. While
individual modules passed their tests within private trees,
six weeks later, when a completely new product build was
performed, owners found that either their module or a mod
ule that depended on their module had broken because of
a code change they had not incorporated in the six week
interim. This resulted in integration releases that were tak
ing longer than anticipated to create, test, and distribute.

To alleviate these problems, partway through the pro
gram, we adopted a daily build strategy. Each night, an
attempt was made to build and test to a predefined level
the entire HP MAP 3.0 product using the latest version of
the source and test code. If a good build was achieved with
a quality level appropriate to a daily build, it was saved
and made available to development and test teams. By
keeping the daily and other last good builds in separate
areas, a failure to achieve a product build on any given
day did not impact a team's ability to retrieve the latest
good build. Before a major external release (e.g., an HP-UX
integration cycle), a designated daily build was set aside
in a separate area and tested for functionality and quality
levels appropriate to its intended customer (e.g., HP MAP
3.0 system test, beta test sites, and HP MAP 3.0 system
integration). Some of the other advantages gained from
daily builds included:

Daily builds provided constant feedback on the state of
the product. If the daily build was broken, the HP MAP
3.0 product was broken and not usable.

â€¢ Problems could be identified and isolated while they
were still fresh in the minds of those who had made the
changes.

Â» Good builds, complete with badly needed defect fixes,
could be made available on a much more frequent basis
to teams who needed them.

Development Environment. One of the major problems in

a large, geographically dispersed program is determining
how to distribute product builds to development and test
teams in a timely and nondisruptive fashion. To ac
complish this task, the HP MAP 3.0 integration team
adapted and modified for their use a set of tools that became
known as the integrated personal development environ
ment, or IPDE (see the box on page 59). The objectives of
the IPDE were to provide:
â€¢ A private copy of a build for each developer and tester
> A mechanism in which developers and testers could

easily incorporate a new build into their private copy
with minimal disturbance to their development and test
activities

Â» A procedure that allowed different teams to pick up
build trees with different frequencies

â€¢â€¢â€¢: A flexible toolset modifiable to meet the different needs
of different phases of the program.
Using the IPDE, the integration team was able to offer

appropriately tested build trees to the different integration
user groups (see Fig. 3). For instance, system test teams
who were interested in high-quality, stable code, picked
up a new build tree only after a major external release.
Some developers, on the other hand, wanted to be running
the latest code to test the compatibility of their changes,
or because they needed a major defect fix.

After a group picked up a new build tree, individual
users in that group linked into the new build tree. In that
way they were able to begin using in a short period of time
a build tree that contained the latest checked-in files from
all other teams, while continuing to use private versions
of their work files. By simply recompiling the portion of
the build they were working on, developers and/or testers
could decrease the probability that when they made their
work files available for a later build (by checking them into
the source control system), they would break another mod
ule or another module would break theirs.

Returning to the aircraft analogy used earlier, imagine
the chaos that would reign on the assembly line (or the
flight line) if a wing designer were to make a change to the
wing shape without being able to assess the change's impact
on the whole aircraft. Unless this assessment is done, the
whole assembly line may have to shut down, or, worse,
the aircraft may not even leave the ground. The IPDE pro
vided a way for software developers to make such checks
on the HP MAP 3.0 product.
Modules Entry Criteria. As developers finish their initial
code and module tests, it is important for them to know
the release criteria for their software modules. In other

osirei (Source)

< x 5 0 0

osibin

Binaries
Customer Releasable

Files

Makef i le d s a M a k e f i l e f m i p

M a k e f i l e S o u r c e M a k e f i l e S o u r c e
F i l e s F i l e s

sca f fo ld (Tes ts)

T e s t
S u i t e

T e s t
S u i t e

X500

I
Test
Suite

F i g . 2 . P a r t o Ã a n H P M A P 3 . 0
bu i l d f r ee . No te t he sepa ra te d i
rector ies for source, binaries, and
executables. The source and test
directories were further divided so
e a c h p r o j e c t t e a m c o u l d c o m
p l e t e l y o w n t h e i r o w n s u b d i r e c
tory.

56 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

words, at what point will their modules be accepted as an
integratable piece into the final product? In a document
known as the integration entry criteria, the HP MAP 3.0
integration team explicitly spelled out these criteria. Some
sample items included:
â€¢ Each module was required to conform to build process

rules.
â€¢ Specific test suites were required to accompany each

submitted module (i.e. , a quick and full regression suite).
â€¢ All test suites were required to run in a special test

execution environment (specifically, the scaffold).1
These module criteria helped to raise the likelihood of

successful later integrations. Those teams that began using
the criteria in this document from the start of their coding
phase spent far less time converting their modules and
development environments to fit the later needs of integra
tion.
Module Integration Plan. One of the most important out
puts of the initial development phase of the lifecycle is the
development of a module integration plan. HP MAP 3.0's
multidivisional nature made this even more difficult be
cause in many instances modules that resided in the same
HP-UX executable program were developed by different
teams ef geographically separate locations. Significant ef
fort went into producing a plan that reduced the amount
of engineering effort and calendar time it took to produce
a single product from the many HP MAP 3.0 components.

The plan was constructed using data flow techniques to
gain as much parallelism in the integration process as pos
sible (see Fig. 4). Each bubble in the plan represented an
integration step that could be accomplished without re
liance on modules not previously integrated. For instance,
the initial FT AM application program interface integration
was accomplished using stubs for all modules except for
a portion of the upper layer architecture.

To complete the integration plan it was necessary to
identify, for each bubble:
â€¢ Project teams responsible for completion (consider geo

graphic difficulties)
â€¢ Functionality at entry and exit

â€¢ Testing level at entry and exit
â€¢ Needed test suites
â€¢ Needed test equipment
â€¢ Timetable (schedule, manpower, etc.)

Module dependencies
â€¢ Needed stubs or emulators.

The completed plan had the benefit of making the inte
gration steps simple, manageable and measurable.

The HP MAP 3.0 program also made attempts to preserve
the software investment in test suites between integrations.
For instance, the test suite used to test the initial FTAM
and MMS integrations was also used to test all subsequent
integrations that involved the FTAM and MMS modules.
No new test suites had to be written. Instead, the same
suites were run on the newly integrated code with stubs
and software emulators replaced with their real counter
parts.

Init ial Integration Phase
If the initial development phase is characterized by plan

ning, then the initial integration phase is the execution of
that plan. The objective of this phase is to expend as little
calendar time and engineering effort as possible to assemble
all pieces of the software product on a stable operating
system (i.e., assemble the product while holding stable all
pieces that are external to it). The primary integration re
sponsibilities during this phase are to:
â€¢ Regularly perform daily and release builds and provide

feedback on status to management, developers, and test
ers

â€¢ Continuously improve the build strategy and process to
improve its reliability

â€¢ Continuously monitor progress of the integration plan
and modify it as needed to account for changes.

â€¢ Continuously support distributed toolsets.
A missing element in this list is the execution of each

integration bubble on the integration plan. Often in large
programs, the product is so complex that no single team
can hope to have the knowledge needed to assemble all
the pieces of the puzzle in a reasonable amount of time.

User
Group 1

User
Group 2

User
Group 3

User
Group 4

F i g . 3 . H P M A P 3 . 0 b u i l d u s e r
groups. The HP MAP 3.0 develop
ment environment provided for the
easy distribution of builds to teams
w i t h d i f f e r e n t n e e d s . I n d i v i d u a l
users were virtually l inked to a real
copy of a bui ld t ree.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 57

© Copr. 1949-1998 Hewlett-Packard Co.

Even on programs where the modules have clearly defined
interfaces, the first time a module is required to function
with another module, defects are found requiring knowl
edge and expertise from all the module builders to debug
and fix the defect. Such was the case in the HP MAP 3.0
program.

As development teams finished their modules, they were
given the responsibility for executing one of the integration
bubbles in the integration plan. Attempts were made to
assign these responsibilities to one geographic location to
reduce communication needs between entities. However,
many times there was still the need to assemble small,
short-lived, cross-project, and cross-divisional teams to
work on major integration problems. These teams proved
to be very effective because they brought together knowl
edge from one or more modules, test suites, or previous
integrations.

As part of the daily build process, integrators need to
provide continuous, appropriate feedback to the various
members of the program team. The build process can be
improved by providing a daily feedback mechanism that
includes such things as the state of the current build, prob
lems encountered, and historical metrics (e.g., modules
responsible for breaking a build, number of successful
builds, code stability, etc.), and by having a strong commit
ment from each team to the build's success. The regular
feedback also gives management a good understanding of
the state of the product's quality level and stability. The
key to using the feedback effectively is to ensure that it is
nonpunishing and that it is used constructively to deter
mine what steps to take to improve the build process.

Also critical during this phase is the effective manage

ment of the integration plan (see Fig. 4). As with any data
flow process, if any early integration bubble completes late
or without the required exit criteria (e.g., functionality, test
suites, quality level, etc.), it can impact an integration bub
ble later in the plan. Minimizing these impacts requires
good cross-team communications and coordination. The
HP MAP 3.0 team used a variety of forums to deal with
integration difficulties including the use of emergency ac
tion teams to focus on defects, cross-divisional program
management teams, and weekly or biweekly integration
teleconferences. Some of the solutions included putting
more effort on integration bubbles that were falling behind,
changing the entry and/or exit requirements of certain bub
bles, and revising the order of the integration plan itself.

Final Product Integrat ion Phase
While the product integration phase was primarily con

cerned with assembling an unstable product on a relatively
stable platform, final product integration involves taking
a reasonably integrated and stable product and making it
work on a new, and often unstable, base operating system.
This phase of the integration lifecycle is necessary primar
ily when the integrated product must be shipped with a
new operating system or other dependent system. The pri
mary integration responsibilities during this phase include:

Representing the technical needs and responsibilities of
the program to the operating system release team

B Modifying the build process and tools to build the final
product on the new operating system

â€¢ Incorporating any operating system integration tools into
the developers' tool kit.
Since it spans the entire program and usually has the

API = Appl icat ion Program Inter face
ULA = Upper Layer Arch i tecture

Fig. 4 . Par t o f the HP MAP 3.0 in
tegrat ion plan. Each bubble repre
sents a separate integrat ion act iv
i t y c o m p l e t e w i t h e n t r y a n d e x i t
criteria.

58 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

The Integrated Personal Development Environment

The integrated personal development environment (IPDE) Â¡s a
set of tools designed to give each software developer the abi l i ty
to acqu i re and mod i fy a copy o f the most recent p roduc t bu i ld
tree.

Or ig inated for the HP 9000 Ser ies 500 HP-UX kernel pro ject ,
the ideas for the environment were later incorporated into a toolset
for use by the "Network F i le System (NFS) teams before be ing
adopted and enhanced for the HP MAP 3.0 program. The IPDE
Â¡s des igned to work w i th the fo l low ing so f tware deve lopment
paradigm:

â€¢ The developer works on a copy of the product build and checks
a f i le out of the source contro l system and modi f ies i t .

Ã¼ The deve loper recomp i les a l l a f fec ted p ieces o f code and
thoroughly tests the change.
The modi f ied f i le is checked back in to the source contro l sys
tem for incorporat ion into the next product bui ld .

(P h y s i c a l T r e e) (W o r k D i r e c t o r y)

'fmip

f m i p . c .

fm ip .o

S y m b o l i c L i n k s

f tam

/ fm ip

- fmip.c

fmip.o

Fig. 1. An IPDE work d i rectory af ter a user has l inked into a
new build tree. Note that all the fi les in vtree, the user's virtual
copy of the tree, are symbolic links to files in the physical tree.

Each IPDE user is g iven a work d i rectory conta in ing a conf ig
urat ion subdi rectory , a v i r tua l t ree d i rectory , and a checkout d i
rectory. After a bui ld t ree is avai lable, a vir tual copy of the bui ld
t ree is created under the v i r tua l t ree d i rectory . The v i r tua l t ree
looks ident ical to the real t ree, except that al l f i les in the vir tual
t ree are actua l ly symbol ic l inks to the rea l f i les in the phys ica l
tree as shown in Fig. 1 .

When a user checks out a f i le f rom the source contro l system
(Fig. 2), a new, parallel directory Â¡s created in the user's checkout
d i r ec to ry , t he rea l checked -ou t f i l e i s p l aced i n t he checkou t
d i rectory, and the the symbol ic l ink f i le in the user 's v i r tual t ree
is changed to po in t to the new checked-out f i le . The user then
modif ies the new f i le as desired.

Because o f spec ia l modi f ica t ions to the bu i ld process, when
the user recompi les the checked-out module , the symbol ic l ink
to the old b inary is d issolved and the new binary appears in the

(P h y s i c a l T r e e)
I

(W o r k D i r e c t o r y)

scaffold osirel

I
ftam

I
fmip

I
fmip.c

I
fmip.o,,

ftam

fmip

I
fmip.c -

I
" fmip.o

osirel

ftam

fmip

â€” *â€¢ fmip.c

â€¢ New Link

Fig. 2. The IPDE work directory af ter a user has checked out
the f i le fmip.c. A new copy of the f i le has been created in the
checkout d i rectory and the symbol ic l ink in the user 's v i r tual
t ree changed to point to i t .

user's vir tual tree (see Fig. 3).
A f te r a new bu i ld t ree becomes ava i lab le , the user aga in i s

l inked into the new tree. Assuming the user has not yet checked
in a work f i le, the new virtual tree would once again look l ike Fig.
1. Whi le keeping exist ing work f i les, the user has p icked up the
latest copy of the product bui ld, incorporating the latest updates,
f ixes, and enhancements f rom other teams. The user need only
recompi le the v i r tual t ree af ter each re l ink to cont inue work ing.
This recompi lat ion is h ighly desi red f rom an integrat ion point of
v iew com i t he lps ensure that the user 's work f i les are s t i l l com
pa t i b l e w i t h t he l a tes t ve rs ion o f t he p roduc t bu i l d and he lps
avoid la ter bui ld problems.

(P h y s i c a l T r e e)
I

(W o r k D i r e c t o r y)

scaf fo ld osirel

I
'flam

I
fmip

I
fmip.c

I
fmip.o

osirel

/ftam

I
/fmip

I
fmip .c - -

fmip.o

osirel

/ftam

I
/fmip

I
--Â»- fmip.c

Fig. 3. The IPDE work directory af ter the user has rebui l t the
modif ied f i le fmip.c. The bui ld process was wri t ten to remove
the l ink to the target object module, fmip.o before compi l ing,
leaving a pr ivate copy of the new f i le in the user 's work direc
tory.

best technical overview of the entire product, the integra
tion team is ideally suited to serve as the program's techni
cal representative to the operating system release team. For
the HP MAP 3.0 program this entailed monitoring, com
municating, and assessing the impact of the HP-UX 7.0
schedule and deliverable changes on the program. This
also involved ensuring that all HP MAP 3.0 software com
ponents met HP-UX 7.0 system release requirements, and

building and releasing versions of the HP MAP 3.0 product
to the HP-UX 7.0 integration teams.

The amount of integration effort required during this
phase should not be underestimated, especially if the re
lease platform is in an unstable state when the decision is
made to begin using it. Because typical development, test
ing, and integration activities have often occurred on a
customer released, stable operating system, the issues and

AUGUST 1990 HEWLETT-PACKARD JOURNAL 59

© Copr. 1949-1998 Hewlett-Packard Co.

concerns that arise during the early phases of the integra
tion lifecycle are primarily internal. Once a new, poten
tially unstable operating system is adopted, issues must be
resolved that are often external to the new product. Having
a representative or liason to the HP-UX system release team
proved invaluable in resolving issues and avoiding prob
lems.

Although significant effort was spent getting the HP MAP
3.0 product tested to HP-UX 7.0 quality levels, the initial
transition from a customer shipped, stable version of the
HP-UX platform to the new HP-UX 7.0 integration environ
ment did not take a large amount of time. To ease this
transition, the HP-UX 7.0 program developed a transition
toolkit called the build environment that functioned like
a cross compiler. It allowed developers to build their prod
ucts on a stable HP-UX platform, but to run the resultant
binaries on a potentially unstable target system. The inte
gration team was able to modify the build process-and the
IPDE toolkit easily to incorporate the build environment,
making the changes almost transparent to developers and
testers.

Conclusion
Several key factors led to the success of the multidivi-

sional HP MAP 3.0 integration efforts and can be applied
to other such efforts. These include:
<* The integration team should view itself as a service or

ganization whose internal customers are developers and
testers.

â€¢ The entire program should view the product integration
phase as a critical part of the product's development.
They should design their software product and processes
for integratability, just as hardware engineers must de

sign their products and processes for manuf acturability.
" A common set of interfaces between all teams must be

established.
Â« There should exist thorough, complete, and reviewed

integration plans.
â€¢ There should be regular builds, at least weekly.
â€¢ There should be a program-wide build process and a set

of integration and development tools to support it.
The integration lifecycle described in this article is just

another component of the entire product lifecycle, parallel
ing the development phases of design, coding, unit testing,
and the more traditional integration periods. Project teams
wishing to incorporate this integration component into
their lifecycle should modify it to meet the needs of their
own program. By performing the early planning and con
tinuous coordination emphasized in this lifecycle, large,
multidivisional projects can efficiently use their resources
and reduce the development time and cost of their product.

Acknowledgments
The author would like to acknowledge the contribution

of all the HP MAP 3.0 integrators: Tom Robins, Toni Atkin
son, Diane Bracken, Ishun Chang, Stephen Fung, Mike
Robinson, Jan Stevenson, and Brad Taylor. Special thanks
to Karl Jensen for the original idea for the integrated per
sonal development environment tool, and to John Dilley
and Christina Mahon for their enhancements to the tool.

References
1. C.D. Fuget and B.J. Scott, "Tools for Automating Software Test
Package Execution," Hewlett-Packard Journal, Vol. 37, no. 3,
March 1987, pp. 24-28.

Authors
August 1990

6 Z Z H P M A P 3 . 0 :

Bruce J. Tal ley
Bruce Tal ley Is a product
manager a t HP 's In fo rma
t ion Systems Div is ion and
a team leader responsib le
for marketing and releasing
HP's MAP 3.0 product . He
joined HP In 1 987 and has
planned several successful
OSI early release sites, de
l ivered sales engineer ing

technica l t ra in ing courses, and t rade show and
customer demonstrat ions. A member of the Society
of Manufactur ing Engineers , Bruce earned a BS
degree (1 984) In business administration from the
University of Arizona, and an MBA degree (1 990)
from Golden Gate University In San Francisco. Be
fore joining HP, he was a communication special ist
with Telef l le Computer Products Incorporated in Ir
v ine, Cal i fornia, a communicat ion specia l is t wi th
Electronic Data Systems Corporation in Southfleld,
Michigan, and a coop student with IBM In Tucson,
Arizona. Born In Blythe, California, Bruce is married
and resides in Santa Clara, Cal i fornia.

Col l in Young Woon Park
: Collin Park joined HP's

Data Systems Divis ion in
1 976. He worked on the de
velopment of the kernel
modules for the HP MAP
3.0 product. Born In Hono
lu lu, Hawai i , he earned his
BS degree (1976) In
mathemat ics, and h is MS
degree (1980) in e lectr ical

engineering from Stanford University. He attended
graduate schoo l ass is ted by HP's Honors Coop
Program. Collin was the U.S. representative to the
ISO presentation working group In 1987, and one
of several HP representatives on the ANSI X3T5.5
(OSI) task group f rom 1986- to-1987. H is past as
signments Included work on the hardware and soft
ware development of datacom for HP 300 and HP
3000 computers , and he was a p ro jec t manager
for development of the HP 3000 IEEE 802.3 card.
A member of the IEEE Computer Society , Col l in 's
profess ional in terests center around sof tware en
g ineer ing product iv i ty . He is marr ied, has one
daughter, and l ives in Redwood City, California. His
Interests inc lude bib le study, sk i ing, h ik ing, and
camping.

60 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

11 ~ Upper Layer Arch i tec tu re :

San jay B . Ch i ka rmane
Sanjay Chikarmane
graduated f rom the Ind ian
Inst i tute of Technology in
Bombay, Ind ia , w i th a
Bache lor o f Technology
degree (1981) in e lectr ica l
engineer ing, and f rom
Syracuse University in New
York w i th an MS degree
(1982) i n compu te r en

g ineer ing. A sof tware deve lopment eng ineer , he
jo ined HP's Personal Computer Group in 1985.
Sanjay developed the upper layer architecture and
implemented the OSI presentation layer for the HP
MAP 3.0 product. Before joining HP, he designed
and deve loped a rea l - t ime operat ing sys tem and
X.25 network ing protocols at Rolm Corporat ion.
Born in Bangalore, India, Sanjay is marr ied and
l ives in San Jose, Cal i fornia. His hobbies include
sk i ing, cr icket , and photography.

15 ~ D i rec tory Serv ices :

Beth E. Cooke
Beth Cooke tested and
suppor ted the d i rectory
services product for the HP
MAP 3.0 pro jec t a f te r jo in
ing HP's In format ion Net
works Divis ion in 1988.
Databases are one of her
major pro fess iona l in
terests. Before joining HP,
she worked as a summer

intern at IBM and Magnavox Electronics. Beth re
ceived her BS degree (1 988) in computer science
form Purdue Universi ty in Indiana. Born in Fort
Wayne, Ind iana , Be th and her husband have re
cent ly moved to Mi lwaukee, Wiscons in . An av id
Purdue spor ts fan, Beth 's hobbies inc lude
windsurf ing, snow ski ing, and water sk i ing.

Colleen S. Fettig
Managing and p lay ing on
a compet i t ive soccer team
are two of Col leen Fett ig 's
after-hours act ivi t ies, and
she br ings the same team
spir i t to HP's Information
Networks Div is ion. As a
development engineer ,
Co l l een des igned and im
p lemented the database,

database access module, and the cache mecha
n ism for the HP MAP 3.0 X.500 d i rec tory ser
v ices . She a lso des igned and implemented
database management tools for the X.500. Prior to
jo in ing the X.500 deve lopment team, she im
p lemented the in t r ins ic in ter face and developed
the COBOL definition extractor for the HP System
Dictionary, which is used with HP 3000 computers.
She jo ined HP's Computer Support Div is ion in
1 982 , the same year she received her BS degree

in computer science from Oregon State University.
Bom in Seattle. Washington, Colleen is married and
lives in San Jose, California. The soccer team she
manages and plays with is part of the competit ive
f i rs t d iv is ion of the Bay Area Women's Soccer
League. Her in terests a lso inc lude b ib le s tudy,
backpack ing , f i sh ing , mounta in b ik ing , and ou t
door activit ies.

Darrel l O. Swope
^^â€¢^â€¢â€¢H Network ing and d is t r ibu ted

â€¢ applications are the profes-
f I s i o n a l i n t e r e s t s o f s o f t w a r e

â€¢B^ â€ ” , â€ ” 191 eng inee r Da r re l l Swope . A
graduate of the Georgia In
stitute of Technology with a
BS deg ree (1987) i n com
puter sc ience, he jo ined
HP's Informat ion Networks
Divis ion that same year.

Darrell was responsible for the development of the
X.500 protocol for the HP MAP 3.0 product . Born
in Marietta, Georgia, Darrell is married and lives in
Sunnyvale, Cal i fornia. He enjoys ski ing, mountain
bik ing, and basketbal l .

Paul B. Koski
Soon af ter jo in ing HP's
In format ion Networks Div i
s ion as a member o f the
technical staff in 1 988, Paul
Koski worked on X.500 pro
toco l development for the

Â¡HP MAP 3.0 product. He
ea rned an AA degree
(1979) f rom P ie rce Com
muni ty Co l lege in Cal i fo r

nia, a BS degree (1 984) in natural resources man
agement , and an MS degree (1987) , in computer
sc ience, both degrees f rom the Cal i forn ia
Polytechnic University at San Luis Obispo, Califor
nia. Distr ibuted computing is Paul 's major profes
sional interest. Before joining HP, he was a consul
tant and network systems developer with ImpelÃ
Pacif ic Company. Born in Lansing, Michigan, Paul
is married, has two children, and lives in Cupertino,
Cal i forn ia. His interests inc lude coaching youth
spor ts , basketbal l , backpacking, f ish ing, running,
and reading.

Roy M. Vandoorn
â € ¢ â € ¢ ^ ^ â € ¢ j ^ ^ s c u b a d i v e r , e m e r g e n c y

I m e d i c a l t e c h n i c i a n , R e d
^ M l C r o s s v o l u n t e e r , a n d C P R

r - (card io -pu lmunary- resus-
ci tat ion) instructor, Roy

* , V a n d o o r n ' s m u l t i p l e i n -
^ â € ” t e r e s t s a l s o i n c l u d e d e

veloping a trouble-shooting
program for HP service en
gineers. As a technical staff

member of HP's Information Networks Division, Roy
developed the d i rectory user agent l ib rary
(DUALIB) for the HP MAP 3.0 X.500 d i rectory
se rv i ces . He 's now work ing on new p roduc t de
velopments. This is Roy's second ar t ic le in the
Journal. In 1 986, he coauthored an article on a rule-

based sys tem to d iagnose ma l func t ion ing com
puter per iphera ls . He rece ived an AA degree
(1976) from DeAnza College in Cupert ino, Cali for
nia, a BA degree (1 978) in mathematics with a con
cent ra t ion in computer math , and an MS degree
(1980) in mathemat ics, both f rom San Jose State
Univers i ty in Cal i forn ia. Before jo in ing HP's Com
puter Suppor t Div is ion in 1980, Roy worked as a
systems analyst in a college coop program for IBM,
where he supported and documented an interface
be tween an inventory con t ro l sys tem and a pur
chas ing program. Bom in Edmonton, A lber ta ,
Canada, Roy currently resides in San Jose, Califor
n ia. Besides his l i fe-saving avocat ions, Roy also
enjoys d iv ing, sk i ing, f ish ing, photography, and
travel.

2 4 ~ F T A M / 8 0 0

I

Steven W. Manwei ler
- ^ f c ^ B o r n i n P h o e n i x , A r i z o n a ,

Steven Manweiler received
J M h i s B S d e g r e e (1 9 8 4) a n d

j ^ i - v B M S d e a r e e (1 9 8 6) i n c o m
puter science from the Uni-

^R*â„¢b â€¢ versi ty of Ar izona. He
jo ined HP's Colorado Net-

^ ^ _ _ w o r k s D i v i s i o n i n 1 9 8 7 , a n d

V Â » % J Â · P 3 B " 1 * d e v e l Â ° P e c l a n d t e s t e d t n e x ^ K ^ ^ V i H p M a p 3 o F i l e T r a n s f e r ,
Access, and Management (FTAM) system. Pr iorto
joining the HP MAP 3.0 program, Steve worked on
test ing HP's ARPA/Berkeley network ing serv ices.
He is HP's representat ive to the Nat ional Inst i tute
of Standards Technology special interest group on
FTAM. Steve's professional interests include distr ib
uted systems, programming languages, and com
pi lers. He is a coauthor of a prev ious technical
journal art ic le on distr ibuted systems and program
ming languages. He lives in Fort Collins, Colorado,
and enjoys go l f , cyc l ing, running, hunt ing, and
skiing.

31 â€” MMS/800

Peter A. Lagoni
Peter Lagoni works as an
R&D engineer wi th HP's
Coiorado Networks Div i -
s ion. He was respons ib le
for the design and develop-
ment o f the MMS protocol
mach ine modu le fo r HP
M A P 3 . 0 , a n d i s t h e l a b s u p -
por t engineer for the HP
MAP3.0 MMS product . He

a lso ass is ted in per formance and in teroperabi l i ty
testing for HP MAP 3.0. Pete earned a BS degree
(1 977) in agronomy from Iowa State University, and
a BS degree (1 986) in computer science from Col
orado State University. He joined HP as a summer
intern in 1 986 while studying at Colorado State Uni
vers i t y , and worked on Co lo rado Networks D iv i
s ion 's HP-UX toolbox. He came to HP fu l l - t ime in
1987 as a sof tware development engineer . He is
a member of the MAP 3.0 MMS Technical Commit
tee and the NIST OSI Implementors Workshop
MMS specia l in terest group. Born in Davenpor t ,
Iowa, Pete is marr ied, has one chi ld, and l ives in
Fort Coll ins, Colorado. His interests include home
improvement pro jec ts , fami ly ac t iv i t ies , and en
v i ronmental concerns.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 61

© Copr. 1949-1998 Hewlett-Packard Co.

Christopher Cral l
Sof tware deve lopment en
gineer Chr istopher Cral l
was responsible for the de
sign and implementation of
the MMS inter face for HP
MAP 3.0. He jo ined HP's
Co lo rado Networks D iv i
sion in 1 985 after earning a
BS degree (1981) and an
MS deg ree (1984) i n com

puter science from Iowa State University. He also
worked on ARPA/Berkeley networking services for
the HP 9000 Ser ies 800, and tes ted network ser
vices between the HP 9000, HP 3000, and HP 1 000
computer systems. Before joining HP, Chris was a
programmer wi th John Deere Company, and an in
s t ructor at Iowa State Univers i ty . He is a member
o f the MAP 3 .0 App l i ca t ion In te r face Subcom
mittee, which developed the MMSI standard. Born
in Albia, Iowa, Chris is married, has one child, and
lives in Fort Collins, Colorado. He enjoys spending
t ime wi th h is fami ly , basketbal l , and b icyc l ing.

Thomas G. Bar tz
Thomas Bartz joined HP in
1981 as a ha rdware de
ve lopmen t eng inee r as
s igned to d ig i ta l hardware
des ign for the HP 9000
Series 500 workstat ion.

I f Since 1983, when he joined
 H P ' s C o l o r a d o N e t w o r k s

/ * * " - u f l ~ D i v i s i o n , a n d p r i o r t o w o r k
ing on HP's MAP 3.0 prod

uct, Thorn developed NS Network File Transfer for
the HP 9000 and Digital Equipment Corporation's
VAX/VMS computers . He a lso deve loped tes t
suites and strategies for HP's ARPA/Berkeley and
Network F i le System products for the HP 9000
Ser ies 800 computers . As a team member in the
HP MAP 3.0 program, he designed and developed
the MMS h igh- leve l se rv ice p rov ider , and de
veloped an interoperabil ity test plan to verify MMS
connectivity with other vendors. Thorn is currently
a techn ica l p ro jec t leader fo r HP OpenView ne t
work management app l ica t ions . He rece ived h is
BS degree in e lect r ica l engineer ing in 1981 f rom
the Univers i ty o f Colorado. He a lso earned an
MSEE degree (1 983) from Stanford University, with
ass is tance f rom an HP Resident Fel lowship. Born
in Cleveland, Ohio, but ra ised in Colorado, Thorn
is married and l ives in Loveland, Colorado. Actively
involved in church act iv i t ies, h is hobbies inc lude
photography, sk i ing, and tennis .

4 0 ~ H P - U X K e r n e l M o d u l e s ;

Kimberly K. Scott
As a software development
eng ineer in HP 's In fo rma
t ion Networks Division,
K imber ly Scot t deve loped
the t rac ing and logg ing
funct ions for the HP MAP
3.0 kernel modules. She
joined HP's Computer Sys-
terns Division in 1981.
S ince then , K im has de

ve loped SNA communicat ions products fo r the
HP 3000 computer . Current ly , she is responsib le
for mainta in ing the OSI Express card dr iver . K im
earned a BA degree (1981) in computer sc ience
from Indiana University, and an MS degree (1 984)
in computer science from Stanford University. Born
in Webster City, Iowa, Kim resides in Santa Clara,
California. Her hobbies include ballet and jogging.

PEwi

Eric C. Scoredos
â€¢â€¢â€¢P^^^SHI Enc (R iÂ°) Scoredos i s a

â€¢ software development en-
m f & I 9 ' n e e r w ' ' n H P ' s I n f o r m a -

| t i on Ne tworks D iv i s i on . He
â € ¢ : r h e l p e d d e v e l o p t h e d r i v e r

and d iagnost ics for HP
MAP 3.0. Previously, he de-

! ve loped operat ing system
interfaces for the GMT 400
and pathway portions of the

MAP 2.1 product. Rio joined HP's Advanced Man
ufacturing Systems Operation in 1 985. Before join
ing HP, he was a software development engineer
a t Ro lm Corpora t ion work ing on te lecommunica
tions applications, at Sielox Corporation working on
user interfaces and graphics, and at Data General
Corporat ion developing a new computer archi tec
ture. He received a BA degree in history from the
Universi ty of Cal i fornia at Berkeley, and studied
computer sc ience at Stanford, the Univers i ty of
North Carolina at Chapel Hill, and at the University
of Cal i forn ia at Santa Cruz. He is a candidate for
a PhD degree in l i terature, pending submission of
his dissertat ion, at the Universi ty of Cal i fornia at
Santa Cruz. Born in Washington, D.C., Rio lives in
Boulder Creek, Cal i forn ia. His hobbies inc lude
canoeing, sk i ing, b icyc l ing, and d iv ing

Richard Henry Van Gaasbeck
A sof tware deve lopment
eng ineer in HP 's In fo rma
t ion Networks Division,
R ichard Van Gaasbeck de
ve loped the CONE in te r
face adapter and OSI
Express card driver for HP
MAP 3.0. In his previous
ass ignmen ts , he de
ve loped the te lnet pseudo

dr iver fo r the HP 1000 computer , and enhanced
and maintained the real-t ime executive drivers for
the HP 1 000. Rich, whose professional interests in
clude I /O drivers, microcomputers, and graphics,
joined HP's Data Systems Division in 1 985. He re
ceived his BS degree (1 985) in computer science
from the Cal i fornia Polytechnic Universi ty at San
Lu is Obispo, Cal i forn ia . Born in Bal t imore, Mary
land, Rich is marr ied and l ives in Mountain View,
Cal i fornia. His interests include Softbal l , home
improvement pro jects , music , as t ronomy, and
reading.

5 0 I n t e r o p e r a b i l i t y T e s t i n g ^ ^ ^ m ^ ^
Jeffrey D. Meyer

Jeffrey Meyer jo ined HP's
In format ion Networks Div i
s ion in 1986, after he
graduated from the Univer-

~ s i t y o f W iscons in a t Mad i
son, where he earned a BS
degree (1984) in computer
sc ience and math, and an

^ 3 ^ ^ Â » M S d e g r e e (1 9 8 5) i n c o m
puter science. Jeff was re-

spons ib le for the des ign and development o f the
d iagnost ic and ver i f ica t ion too ls and the in ter
operabi l i ty test ing strategy for HP MAP 3.0. Pr ior
to that, he worked on a team responsible for imple
menting MAP 2.1 services for HP 3000 computers.
Born in Pasadena, Cal i fornia, Jef f is marr ied and
now lives in Sunnyvale, California. His interests in
c lude b ik ing, juggl ing, hacky-sack, and t ravel ing.

5 4 S o f t w a r e I n t e g r a t i o n L i f e c y c l e H Z Z H I

Douglas R. Gregory
After joining HP's Colorado
Networks Division as a sys
tem tester in 1985, Douglas
Gregory worked on HP's
f i rst ARPA/Berkeley 4.2
sockets for HP 9000 Series
300 computers . As a
member of the technical
s taf f , he codesigned host
presentat ion services and

developed the software Â¡ntegrate-and-test system
for the HP MAP 3.0 program. Doug is now a produc
t i v i t y manager a t HP 's Graph ics Techno logy D iv i
s ion. His major profess ional in terests inc lude net
works, software engineering, and software project
management. He received a BA degree (1 983) in
English, a BS degree (1 983) in computer science,
and an MS degree (1 985) in computer science, all
f rom Washington State Univers i ty . Born in Fai r
banks, Alaska, Doug lives in Ft. Collins, Colorado,
interests inc lude hik ing, f ishing, back-country
sk i ing, road and mounta in b ik ing, t ravel ing, and
photography.

6 4 Z Z P r o g r a m m a b l e P u l s e G e n e r a t o r s Z Z Z Z :
Gerd F . Kof fmane

j Af ter graduat ing f rom the
University of Stuttgart with
an engineer ing d ip loma in
theoret ical e lectronics and
microelectronics, Gerd
Koffmane joined HP's BÃ²b-
l ingen Instruments Division
in 1983 as an R&D en
gineer. For the HP 81 31 A
pulse generator project, he

was responsible for developing the t iming system
architecture and the bipolartiming 1C. Previously,
he designed a fiber optic receiver. Gerd serves as
HP's representat ive in microelectronics at
EuroPACE (the European Program of Advanced
Cont inuing Educat ion). His professional interests
include bipolar 1C design, microelectronics, and 1C
technology. Born in Heidenheim, West Germany,
he is married and lives in Althengstett at the edge
of the Black Forest . His hobbies inc lude sai l ing,
b icyc l ing, gu i tar p lay ing, and music .

62 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Werner Berkel
Werner Berkel is the project
manager of the team that
developed the HP 81 30A
and 81 31 A pulse genera-

fc tors. Af ter jo in ing HP in
1 978 as a project engineer
a t the Bob l ingen Ins t ru
ments Div is ion, he helped

_ develop the HP 81 80A data
i genera to r and served as

pro ject manager for the HP 8151 A opt ica l pulse
power meter and the HP 8145A opt ica l t ime-
domain re f lectometer . He earned h is engineer ing
diploma (1 977) from the Engineering Academy in
Kar ls ruhe, West Germany. H is pro fess iona l in
terests inc lude c i rcu i t des ign and technology. He
has authored previous articles in the HP Journal on
timing systems, f iber optics, and the optical power
meter . Born in Speyer , West Germany, Werner is
marr ied and l ives in Merk l ingen, West Germany,
near the B lack Fores t . H is hobb ies inc lude b icy
c l ing, soccer, and technical l i terature.

F rede r i ck L . Ea tock
Fred Eatock is a hardware
development engineer with
the HP Sys tems Techno l
ogy Divis ion in Cupert ino,
Ca l i fo rn ia . He he lped de
velop a b ipolar in tegrated
c i rcui t for the HP 8130A
and 81 31 A pulse
generators. Fred jo ined
HP's Optoe lec t ron ics D iv i

s ion in 1977. He has cont r ibu ted to the deve lop
ment of ICs for optoelectronic, instrument, and
computer sys tems, and is cur rent ly a member o f
a hardware design team developing computer pro
cessor boards. He is listed as an inventor on three
pa ten ts on ana log compara to rs , vo l tage reg
ulators, and low-noise opt ical detect ion systems.
Before joining HP, he developed l inear integrated
c i rcui ts at Fairchi ld Semiconductor Corporat ion.
He is the author of a paper on inst rumentat ion
amplifiers presented at the 1 973 International Solid
State Circui ts Conference (ISSCC). Fred
graduated from the University of Brit ish Columbia,
earn ing a BASc degree (1964) in e lec t r i ca l en
g ineer ing. He a lso has an MSEE degree (1973)
from the University of Santa Clara in California. Born
in Regina, Canada, he lives in Cupertino, California,
is marr ied, and has a son. His in terests inc lude
camping, shor twave rad io , photography, as-
t romony, and e lect ronic construct ion pro jects .

Heino HÃ²pke
Heino HÃ²pke joined HP's
BÃ³blingen Instruments
D iv is ion as a des ign en
gineer in 1 985, shortly after
receiv ing an engineer ing
d ip loma in compu te r sc i
ence f rom the Engineer ing
School in Hamburg. He
he lped des ign the HP
8130A and 81 31 A pulse

generators, specif ical ly the software, the micropro
cessor board, and the keyboard. Born in Sp ieka,

Niedersachsen, Heino is married, has two children,
and l ives in Ehningen, Baden-WÃ¼rtemberg. His
in terests inc lude jogg ing, photography, and h is
family.

P a t r i c k S c h m i d
L^ Pat r i ck Schmid jo ined HP's

I Bobl ingen Inst ruments
D iv i s ion in 1987 and de
s igned the t iming board o f

J the HP 81 31 A pu lse
â€¢ generator. He is currently

^ " t h e R & D t r a i n i n g m a n
ager for Hewlet t -Packard

I GmbH. Patr ick received his
Ã engineering diploma in

1987 f rom the Univers i ty of Stut tgart . His hobbies
inc lude music and nature s tud ies

Hans-JÃ¼rgen Snackers
I Hans-JÃ¼rgen Snackers

jo ined HP 's Bob l ingen In
struments Div is ion as a
mechanica l engineer in
1986, shor t ly a f ter receiv
i ng a m i c romechan i cs de
gree f rom the Engineer ing
School in Furtwangen in the
Black Forest in West Ger-

I many. He was respons ib le
fo r the mechan ica l des ign , hybr id in te rconnec
tions, and thick-fi lm layout and process of the HP
81 30A and 81 31 A pulse generators. Born in Lud-
wigshafen/Rhein, Hans-JÃ¼rgen is married and lives
in Sulz an Neckar. His hobbies include hiking, jog
g ing, and ra i lway model ing.

7 9 â € ” 5 0 0 - M H z O u t p u t S e c t i o n ~

Hans-JÃ¼rgen Wagner
Hans-JÃ¼rgen Wagner was
respons ib le fo r deve lop
ment of the output amplifier
board , the hybr id techno l
ogy , and t he GaAs i n te
grated c i rcu i t for the HP
81 31 A pulse generator.
His professional interests
include microelectronics,
ICs , and hybr id techno l

ogy. He received his engineering diploma in 1 984
in technical e lectronics f rom the Univers i ty of
Stuttgart. Born in Ludwigsburg, Hans-JÃ¼rgen lives
in Sindelfingen. He is married and has two children.
He enjoys bicycl ing, soccer, dramatic act ing, and
technical l i terature.

S te fan G. K le in
As a member o f the HP
81 31 A pulse generator de
velopment team, Stefan
Kle in was responsib le for
des ign ing the t ransducer
board. He joined HP's BÃ²b-
ingen Instruments Division

in 1987 as an R&D pro jec t
engineer. His professional
interests center around mi

crowaves and technology A graduate of the Uni
versity of Saarbrucken, Stefan earned an engineer
ing diploma in 1 985 in high-frequency microwave
and measurement techno logy. Bom in Schaf f -
hausen. West Germany, Stefan l ives in Gechingen,
i s mar r ied , and has two ch i ld ren . H is hobb ies in
clude rai lway modeling, trumpet playing, and jazz.

85 â€” 300-MHz Output Section

Vo lke r Ebe r l e
As a pro ject leader for the
HP 81 30A pulse generator,
Vo lke r Eber le was respon
s ib le for the output board
and for transferring the HP
81 30A to production. He is
currently investigating sys-

^^ te rn a rch i tec tu re . A f te r jo in -
I i n g H P i n 1 9 7 5 , V o l k e r

he lped deve lop the HP
8092A de lay modu le fo r the HP 8080A pu lse
generator system, a bipolar LSI chip for several in
struments, and the HP 81 51 1 A optical head. He is
an engineer ing graduate of the Univers i ty of
Stuttgart, earning an engineering diploma in 1 974
in communicat ion and high-frequency techniques.
Born in Stut tgar t , Volker res ides in Bobl ingen. He
is married, has two daughters, and enjoys playing
the accord ion, b ik ing, and model ra i l roading.

Pe te r Sch inze l
Peter Schinzel joined HP as
an R&D engineer a t the
Bob l ingen Ins t ruments D i
v is ion in 1987. He helped
design the HP 81 30A slope
generators and hybr id
techno logy . A g raduate o f

* - i a v * ^ K l t h e U n i v e r s l t y o f S t u t t g a r t ,
I Peter earned h is d ip loma in

g ^ ^ ^ Ã œ B 1 9 8 7 i n c o m m u n i c a t i o n
and theoret ical e lectronics. Born in Stut tgart , he
now l ives in Boblingen. His hobbies include biking
and astronomy.

GÃ¼nter Steinbach
| | G Ã ¼ n t e r S t e i n b a c h e a r n e d
L j 3 n e n g i n e e r i n g d i p l o m a

(1977) in e lec t r ica l en
g ineer ing f rom the Un iver
s i ty of Kar lsruhe in West
Germany. He was a visit ing
scholar at the University of
Cal i fornia at Berkeley in
1978, and then studied for
h is PhD degree (1985) in

e lec t r ica l eng ineer ing whi le work ing a t Ruhr Un i
versity in Bochum. Gunter joined HP as an applica
tions engineer in 1 985 at the HP Technology Center
in Santa Clara, Cal i forn ia, and developed custom
bipolar ICs, including the linear output amplifier 1C
for the HP 81 30A pulse generator. His work has re
su l ted in a patent on an analog-d ig i ta l conver ter .
A member o f the IEEE, Gunter 's p ro fess iona l in
terests center around bipolar integrated circuit de
s ign. Born in Pforzheim in Southern Germany, he
is marr ied, has two sons, and l ives in San Jose,
California.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 63

© Copr. 1949-1998 Hewlett-Packard Co.

500-MHz and 300-MHz Programmable
Pulse Generators
These inst ruments are capable of test ing the most
advanced CMOS, ECL, and GaAs dev ices . A cus tom
bipolar 1C generates the t iming parameters.

by Werner Berkel , Gerd Koffmane, Frederick L. Eatock, Patr ick Schmid, Heino HÃ²pke,
and Hans-JÃ¼rgen Snackers

THE PULSE GENERATOR is a versatile and funda
mental instrument that is widely used for parametric
measurements on digital devices in automatic test

and bench R&D applications. Using a fast pulse generator
at the input of a device under test and a fast sampling
oscilloscope at the output, measurements of setup and hold
times, propagation delays, maximum toggle frequencies,
input level sensitivities, and many other parameters can
be made at normal operating speeds. The pulse generator
is also well-suited for characterizing transmission lines. It
can be used to measure crosstalk, loss, impedance match
ing, and other characteristics.

In fast bipolar digital technology and the fast-growing
GaAs field we saw a demand for a fast pulse generator.
After the initial investigation, we defined two. The HP
8131A (Fig. 1) is a 500-MHz pulse generator with fixed
200-picosecond rise and fall times. The HP 8130A (Fig. 2)
is a 300-MHz generator with variable transition times. Most
of the building blocks of the HP 8131A are used in both
instruments, the main exceptions being the HP 8130A slope
generator and output amplifier. Both instruments are fully
programmable via the HP-IB (IEEE 488, IEC 625).

500-MHz Pulse Generator
The HP 813lA's 200-ps transition times (10% to 90%)

and 500-MHz maximum repetition rate are suitable for test
ing the most advanced CMOS, BiCMOS, ECL, and GaAs
devices. For higher repetition rates, a transducer mode al
lows the generator to convert an external sine wave at a

frequency up to 1 GHz to a square wave with 200-ps tran
sition times and selectable amplitude up to 5V.

The pulse period (50% level) is programmable from 2 ns
to 99.9 ms. The pulse width (50% level) is programmable
from 500 ps to 99.9 ms, the maximum depending on the
period. Timing resolution is three digits â€” 10 ps best case.

The output swing is programmable from 100 mV to 5V
in a Â±5V offset window into 50 ohms. An optional second
channel provides two different but synchronized signals
for simulating clock and data signals for setup and hold
time measurements.

Fig. 3 shows typical HP 81 31 A waveforms.

300-MHz Var iable-Slope Pulse Generator
The HP 8130A's rise and fall times (10% to 90%) are

programmable from 1 ns to 100 Â¿is (independently from 2
ns). The pulse period is programmable from 3.33 ns to 99.9
ms, and the pulse width (50% level) is programmable from
1.5 ns to 99.9 ms, the maximum depending on the period.
Timing resolution is 10 ps best case.

The output swing is programmable from 100 mV to 5V
in a Â±5V offset window into 50 ohms, and an optional
second channel is available.

Fig. 4 shows typical HP 8130A output waveforms.

Block Diagram
Fig. 5 is a simplified block diagram of the two pulse

generators. The top level shows the base unit of both instru
ments excluding the power supply and the processor unit.

Fig. 1 . HP 8131 A 500-MHz pulse
genera to r w i th f i xed 200 -ps r i se
and fa l l t imes (opt iona l two-chan
nel version).

64 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

The trigger input amplifies and shapes external signals for
the external width, external burst, external trigger, and ex
ternal clock modes. After the period oscillator, which gen
erates the basic pulse train, the signal is split into the trigger
output channel and the main channels. The delay generator
determines the delay between the main channels and the
trigger output. The delay generator is followed by the width
generator, which determines the output pulse width.

The second level of the block diagram shows the HP
8131A output system, which is described in detail in the
article on page 79. A pulse shortener circuit reduces the
minimum width of 1 ns generated by the width generator
to 500 ps. An ECL signal modified by the normal/comple
ment switch drives the GaAs amplifier. The 200-ps trans
ition times are fixed for the full amplitude range of 100
mV to 5V.

Fig. 2. HP 8730/4 300-MHz pulse
generator wi th var iab le t rans i t ion
t i m e s (o p t i o n a l t w o - c h a n n e l v e r
sion).

The third level of the block diagram shows the HP 8130A
output system, which is described in detail in the article
on page 85. The variable transition times are generated by
two slope generators: a GaAs a fast slope generator and a
slow slope generator built using surface mount technology.
The HP 8130A output amplifier includes a vernier stage
for output swing adjustment and is designed to be ex
tremely linear because of the programmable slopes. A post-
attenuator is used to achieve the output voltage range of
100 mV to 5V.

1C Processes
One of the major challenges in the pulse generator project

was the difficulty of developing the high-performance,
high-speed analog circuits. When the project began, there
was little experience to draw upon in the design of broad-

(a) 8 O O m V / d i v 1 0 0 p s / d i v (c)

8 O O m V / d i v 5 0 0 p s / d i v (d) I 6 V / r 1 i v 1 6 V / d i v

Fig. leading trai l ing HP 8131 A output waveforms, (a) 200-ps f ixed leading and trai l ing edges, (b)
Var iab le pu lse width, (c) Var iab le ampl i tude, (d) Opt ional second channel .

AUGUST 1990 HEWLETT-PACKARD JOURNAL 65

© Copr. 1949-1998 Hewlett-Packard Co.

F i g . 4 . T y p i c a l H P 8 1 3 0 A o u t p u t w a v e f o r m s , (a) V a r i a b l e
widths and s lopes, (b) Simulated c lock and data s ignals wi th
opt ional second channel .

band linear ICs running from dc to GHz.
We needed a 500-MHz timing circuit, a 600-ps slope

generator, and an adjustable output amplifier. A feasibility
study to find the best available, most reliable, integrated
circuit processes for these requirements led to the choice
of two proprietary HP processes.

For the high-speed timing system we chose HP's 5-GHz
bipolar process, and for the output amplifier we chose HP's
gallium arsenide RFIC process. The design of the timing

circuits is described in the next part of this article. The
GaAs amplifier design is covered in the article on page 79.

Timing Board

In the HP 8130A and HP 8131A pulse generators, all of
the timing for the two 500-MHz channels is generated on
a single board. This timing board is used in both instru
ments. It consists of four major parts: three timing circuits
to generate period, delay, and width and the trigger input
stage. In the optional two-channel version, the delay and
width generators are simply duplicated. Fig. 6 is a block
diagram of the timing board.

Timing Circuits
As mentioned above, there are three timing circuits in

the standard instrument and five in the optional two-chan
nel pulse generator.

The timing circuits for period, delay, and width genera
tion are very similar. Each consists of one of the 500-MHz
bipolar timing ICs described above, a 200-MHz bipolar
counter, five current sources, one voltage source, and some
control circuitry. The period generator has an additional
10-MHz TTL burst counter. Fig 7 is a diagram of the timing
circuit.

Depending on the mode selected by the digital mode
control circuitry, the timing circuit can operate as

A gateable oscillator
A triggerable monostable multivibrator (one-shot)
A transparent 1C (output signal = input signal).
The timing 1C and the counter form the core of the timing

circuit. The timing 1C is capable of generating a pulse train
with a period between 2 ns and 100 ns and a pulse width
between 1 ns and 100 ns. This analog timing generation is

To Second
Channel

External
Input

Period
Generator

Delay Line

Delay
Generator

Transducer Mode
f Switch (HP 81 31 A Only)

H P 8 1 3 1 A

Pulse
Shortener

Pulse Shaper and
Normal /Complement

Switch

Width
Generator

GaAs Output
Amplifier

Trigger
Amplif ier

Differential
Output

HP 8130A

Differential
Output

F ig . 5 . B l ock d i ag ram o f t he HP
8 1 3 1 A a n d H P 8 1 3 0 A p u l s e
genera to rs . The top leve l i s com
mon to both instruments. The mid
d le leve l i s the HP 8131 A output
section. The bottom level is the HP
8130A output sect ion.

66 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Trigger Output

F ig . 6 . B l ock d i ag ram o f t he t im
i ng boa rd (op t i ona l two -channe l
version).

split into two ranges. In the first range, timing parameters
below 10 ns are generated and the timing resolution is 10
ps. In the second range, above 10 ns, the resolution is 100
ps.

The counter is used to enlarge the period or width by a
factor of 10n, where n is between 1 and 6. This makes it
possible to generate timing parameters up to 100 ms.

Like the timing 1C, the counter is a custom bipolar 1C
designed in the HP-5 process.

Timing Parameter Generat ion
Fig. 8 shows how the period, delay, and width are gen

erated on the timing board in the normal operating mode.
The period generator works as a free-running oscillator. Its

repetition rate is the period of the pulse train. The output
signal is used twice. It supplies the output trigger stage on
the output board and it triggers the delay generator. The
delay and width generators work as one-shots, both
triggered on the rising edges of their input signals. Thus
the delay generator triggers the width generator after the
programmed delay, which corresponds to the pulse width
of the delay generator. The width generator determines the
width of the output pulse. The output of the width
generator goes to the output board, where it is amplified
and becomes the output of the instrument.

In addition to the normally used auto mode, the timing
board can be used in an externally triggered mode by
switching the period generator to a transparent state. The

10-MHz Burst Counter
(Period Only)

P B C L K H B G T E

Fig. diagram. Timing circuit (period, delay, or width generator) block diagram.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 67

© Copr. 1949-1998 Hewlett-Packard Co.

external input signal then directly triggers the delay
generator and appears at the same time at the trigger output.

In the gated mode, the period generator operates as in
the auto mode, but with its gate input enabled. This makes
it possible for an external signal to start and stop the period
generator. Built-in last-cycle-complete logic ensures that
all pulses of a pulse stream will have the same timing
characteristics and that no pulse can be shortened by the
external input signal.

In the burst mode, the period generator is started by an
external trigger event and stopped after a predefined
number of pulses, selectable from 1 to 9999. The maximum
frequency of 200 MHz in this mode is achieved by using
the bipolar counter to count the number of pulses. In the
period range above 100 ns, this counter is used to enlarge
the timing IC's repetition rate, and an extra TTL counter,
the burst counter, takes over the pulse-counting role.

Triggering the width generator not only on the rising
edge of its input signal but also on the falling edge results
in the double-pulse mode. In this mode the output consists
of pairs of pulses separated by a time interval determined
by the delay generator. The maximum repetition frequency
in this mode is 277 MHz (tpers* 7.2 ns).

For most of the operating modes of the timing board, an
external signal must be supplied. To make it easy for the
user to trigger the pulse generator on almost any interesting
signal, a 500-MHz bipolar trigger input stage is im
plemented on the timing board. This trigger input can be
set to trigger on the positive or negative edge of the input
signal at a trigger level programmable in a range between
+ 5V and -5V.

Timing Board Adjustment
The timing board is completely adjusted by an adjust

program. Therefore, there are no manual adjustments on the

board. All adjustment information is stored in an EEPROM
on the board. This method makes it possible to adjust and
test the timing board in less than 30 minutes for a two-chan
nel board. Most of the adjustment and test procedures run
automatically, so only for about 10 to 15 minutes does a
technician have to handle the board. The rest of the proce
dure is performed entirely by automatic test equipment.

As explained previously, the principle of timing genera
tion is very simple. A capacitor is charged by a certain
current. The voltage on the capacitor increases until it
reaches the upper threshold of a Schmitt trigger. The
capacitor is then switched to a negative current to discharge
it. The voltage decreases until it reaches the lower threshold
of the Schmitt trigger. The current source is switched again,
recharging the capacitor, and the cycle repeats. If the timing
1C is used as a period generator, this charging/discharging
cycle runs continually, while it runs only once if delay or
width is being generated.

To adjust the timing parameters, it is necessary to align
the parameters in this circuit, which can vary in production
between individual timing circuits. These parameters are:
â€¢ The value of the ramp capacitor
m The charging and discharging currents
H The internal propagation delay of the timing 1C.

Because of the complex circuitry necessary to stimulate
and control the timing 1C, at least 10 to 12 potentiometers
would have to be implemented to adjust one timing circuit.
On a complete timing board, this would result in 50 to 60
potentiometers. To make the problem more difficult, there
would be several interdependÃ¨ncies between the poten
tiometers and there are some limits to observe. Obviously,
a better solution had to be found. As already mentioned,
the solution was to adjust the timing board automatically,
by means of a program. All of the components needed for
complete software control were available. The HP 54120A,

From Trigger Input

OUT

OUT

O U T = P O U T

tn= Per iod

r D e l Delay = ta

Width

P O U T T R O U T
t o T r i g g e r t o O u t p u t
A m p l i f i e r A m p l i f i e r

Fig . 8 . T iming parameter and t im
ing generator relat ionships.

68 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

a fast digital oscilloscope, could be used for accurate high
speed timing measurements, and because the pulse
generator was designed to be programmable, digital-to-
analog converters (DACs) were already implemented on
the board. It was only necessary to make these 12-bit DACs
instead of the 10-bit DACs that would normally have been
required. The improved DAC resolution makes adjustment
possible over a wide range while maintaining the required
timing resolution.

Theory
The most direct approach to software adjustment is to

find the DAC values for some equidistant timing values
within a particular timing range, as shown in the following
example:

Period (ns)
DAC Values

: 2.0 2.5 3.0 3.5 4.0 4.5 5.0...
: 100 150 190 250 310 350400...

For each timing value, the corresponding DAC value has
to be found as accurately as possible. This usually takes a
few iterations. Once found, these DAC values can be stored
in an EEPROM. The microprocessor in the pulse generator
would access these values and calculate intermediate val
ues using linear interpolation.

The disadvantage of this method is that it is necessary
to measure a large number of timing values very accurately
to ensure small deviations across the entire timing range.
For this reason, a faster solution was wanted.

Our solution is to calculate the dependence between each
timing parameter and the control mechanism â€” for exam
ple, the period of the timing 1C as a function of the DAC
value â€” taking all possible variations into account. A realis
tic formula for the dependence between the delay or width
and the charging current is:

T =
\ T

* hys t ktn (i)

where T is the timing value (delay or width), Vhyst is the
voltage window of the Schmitt trigger, Cramp is the ramp
capacitance, Ic is the charging current, tpd is the internal
propagation delay of the Schmitt trigger, and k is a factor
greater than or equal to 2.

The timing value T is proportional to 1/IC. To operate
the DAC in a reasonable manner, the timing should be
proportional to the DAC value. To achieve this, the current
has to be proportional to 1/Z, where Z is the DAC value.
Therefore, the dependence between the current and the
DAC value is given by:

(2)

where Zmax is the maximum DAC value (e.g., 4095), Z is
the actual DAC value, Iref is the DAC reference current, and
I0 is an additional current offset.

Combining equations 1 and 2, the relation between the
DAC value and the timing can be calculated as:

T = ^ C r a m p V h y s t + k t

*ref + I

or, written in other terms:

T =
A/Z + B

+ C.

(3)

(4)

A, B, and C are characteristic values of the function that
depend on the individual timing circuit. This formula can
be inverted to calculate the DAC value for a given T:

Z =
A

1/(T - C) - B
(5)

This function is implemented in the adjust program for
the timing board. The program only has to determine DAC
values for a few timing values and can then calculate A, B,
and C. These characteristic values are stored in the EEPROM.
The system microprocessor in the pulse generator reads
them and calculates the DAC values according to equation
5.

The advantage of this procedure is that fewer measure
ments are necessary than in the normal procedure. In addi
tion, these measurements don't have to be so accurate,
because the function doesn't need exact timing to calculate
A, B, and C.

Practical Experience
Using this procedure in production showed that it was

possible to do an accurate adjustment very quickly. The
run time for the adjust program is about 15 minutes for a
two-channel timing board.

A few problems were encountered. One of them was that
in the highest frequency range, the timing IC's characteris
tic is nonlinear. Therefore, in this range the algorithm to
calculate the characteristic values has to be changed to get
good results. Another problem, a disadvantage of doing the
adjustment using a relatively complex function, is that if
the adjust program fails, it is impossible to correct the
values stored in the EEPROM, because they do not repre
sent a single DAC value but a part of a function. For this
reason, the program had to be designed very carefully, using
error trapping routines to catch any error that might occur.

500-MHz Universal Pulse Timing 1C

A custom bipolar integrated circuit realized using HP's
5-GHz 1C process provides all of the pulse timing capabil
ities necessary for the HP 8131A and HP 8130A pulse
generators. Fig. 9 shows its functional block diagram. It
consists mainly of a spike generator block, a timing
generator block, and some logic to control the signal paths.

The spike generator is the first block in the signal path
starting with the timing IC's trigger/gate input PTG. Depend
ing on the operating mode (gated, triggered, or transparent)
the spike generator either passes the incoming signal un
changed to its outputs or generates short pulses correspond
ing to either the positive edge or both the positive and
negative edges of the incoming signal. The short pulses are
generated in an emitter-coupled monostable multivibrator

AUGUST 1990 HEWLETT-PACKARD JOURNAL 69

© Copr. 1949-1998 Hewlett-Packard Co.

LNEG LREN PCOUTB PCIN LFTIM

P T G

POUTB

POUT

H G L T H B G T E P B C L K H G T E
From
Burst

Counter

T o F r o m
B u r s t R a n g e

C o u n t e r C o u n t e r

PCLK
To

Range
Counter

LSTIM

(one-shot) and are typically around 800 ps wide.
In transparent mode the input signal is guided directly

to the timing IC's main outputs POUT and POUTB by activat
ing the control signal LREN. In this case the timing generator
block is disabled by LTEN.

In all other modes the timing generator operates as a
multigated VCO. Free-run mode is obtained by keeping the
PTG input active. In triggered mode the short pulses from
the spike generator are used to gate one period only, thus
operating the timing generator as a one-shot. For frequen
cies from 10 MHz to 500 MHz or one-shot times from 1 ns
to 100 ns, the timing generator's output PCOUTB (connected
externally to PCIN) is routed to POUT and POUTB by control
signal LFTIM. The external range counter is inhibited. For
frequencies lower than 10 MHz or pulse widths larger than
100 ns, the external range counter (clocked by PCLK) is
enabled and ORs its terminal count signal via HGTE with
the gate signal. The third gate input, HBGTE, is controlled
by the terminal count signal of a burst counter (clocked by
PBCLK) and is used in the period generator only. PCOUTB
and PCLK are externally single-terminated CML outputs.
POUT and POUTB are double-terminated EECL outputs with
source termination on the chip. Fig. 10 shows an example
of multiple gating for the case of a slow four-pulse burst
with the range counter dividing by a factor of 4. In reality,
the range counter divides by powers of 10.

Spike Generator
To meet the performance specifications of the instru

ments, a number of performance goals were established for
the spike generator. These included the generation of
tightly controlled 800-ps-wide pulses at repetition rates

Fig . 9 . Func t iona l b lock d iagram
of the timing 1C.

exceeding 500 MHz with low pulse jitter, widths indepen
dent of the supply voltage, and a low residual temperature
coefficient.

Fig. 11 shows a functional block diagram of the spike
generator including a simplified schematic of the pulse
generation circuitry. With the HGLT mode control input
held low, a square wave applied to the PTG input produces
two complementary 800-ps-wide pulse trains at outputs D
and G1 , synchronized to the positive edges of the PTG signal.
At the same time, a second complementary train of 800-ps-
wide pulses is produced at the terminals X and Y, but syn
chronized to the negative edges of the PTG signal. Holding
HGLT high causes the PTG input to be passed transparently
to the D and G1 outputs. In this mode, outputs at X and Y
are inhibited. A pulse width control input is provided for
fine adjustment of the pulse width and to accommodate
the process spread of the on-chip components that define
the pulse width.

In the pulse generator mode, a signal applied to the PTG
input is level shifted and applied to a differential amplifier
composed of transistors QA and QB. The amplifier outputs
are applied to a pair of emitter followers, Qc and QD. which
drive the timing capacitor C. Referring to nodes Vl through
V4> on the negative-going edges of V^ and V2, transistors
Qc and QD, respectively, will be turned off for a period of
time proportional to the slew rate of the voltages at nodes
V3 and V4. This cutoff period defines the pulse width, and
is determined by the value of capacitor C and the currents
I drawn by the current sources for transistors Qc and QQ.
During the time that Qc is off, the voltage at node V5 is
high. Voltage V5 is then buffered and directed to outputs
D and G1. A second buffer connected to the collector of

PTG

G1

G 3

G 2

Trigger Gate Input

Spike Generator
Output
VCO Effect ive Gate

VCO Clock Output

Range Counter

Burst Counter

Main Output

F i g . 1 0 . M u l t i p l e g a t i n g b y t h e
range and burs t counters . In th is
example, the burst count is 4 and
the range counter divides by 4. (In
rea l i ty , the range counter d iv ides
by powers of 10.)

70 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

P T G

HGLT Mode Control
(Pulse/Transparent)

Fig . 11 . Funct iona l b lock d iagram of the sp ike genera tor in
c l ud ing a s imp l i f i ed schemat i c o f t he pu l se gene ra t i on c i r
cuitry.

transistor QD provides outputs at X and Y. In the transparent
mode of operation, signals applied to the PTG input are
amplified, passed with small delay, and wire-ORed to node
V5 where they are also buffered to the D and G1 outputs.
Fig. 12 shows simulation waveforms for the circuit in the

pulse generation mode of operation. Mathematical analysis
of the circuit shows that pulse width can be estimated by
the function:

tw = KRC

where K is a constant of proportionality determined by
on-chip resistor ratios, and R and C are on-chip circuit
elements as shown in Fig. 11.

Timing Generator
Fig. 13 shows the functional block diagram of the timing

generator together with external control voltage and current
sources. In the center is the ramp capacitor Ca, which is
charged by current IPOs and discharged by current INEG-
These currents are alternatively switched to the ramp node
R by the diode bridge, resulting in a triangular voltage at
the ramp node. A Schmitt trigger circuit senses the ramp
voltage. When the ramp crosses the switching point, the
Schmitt trigger switches the diode bridge, thus inverting
the current flow through the capacitor. A second capacitor,
C2, can be switched in parallel with C^ by a saturated tran
sistor to increase the timing range by one decade. With the
gate input G low (inactive), the ramp node R is held high
by the bridge through the ORed transistors with the Schmitt
trigger's inverting output O being low. When the gate signal
G becomes high (active), the ramp is released and starts
cycling. A comparator compares the gate signal with the
switching status of the diode bridge. When the gate signal
becomes asynchronously low (inactive), the comparator
prevents the downgoing ramp from being interrupted,
which would lead to an incomplete pulse. Only if the ramp
is upgoing with the gate input low will the ramp be latched
at its high level through the diode bridge. This stop state
is very stable because of the positive feedback loop formed
by the output comparator, the OR gate, and the positive
input comparator. Fig. 14 shows the principle of the syn-

HP Spice
0.0

-600.0

3 . 0 - r

0.0

\
- 0 . 5 - r

>

5
-1.5

A
-0 .5 - r

- 2 . 0

: J " l _ T T T T
H 1 h

0.0 2 0 . 0 4 0 . 0
T ime (ns)

F i g . 1 2 . S i m u l a t e d s p i k e g e n e r
ator waveforms in the pulse gener
at ion mode.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 71

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. external Functional block diagram of the timing generator with external control sources.

chronous gate and trigger operation.
The diode bridge switching signal S is connected to the

output amplifier, where it is split into the complementary
output signals PCLK and PCOUTB.

The last block is a compensation network with a second
diode bridge and inverse charging currents IPOsc an(3 INEGC
connected to a buffer. This circuit is used to compensate
offset errors of the switching diode bridge and will be
explained later.

The hysteresis of the Schmitt trigger can be controlled
in amplitude and offset by IHYSTI and VHYST2, respectively.

Operat ing Modes
If the timing 1C is used as a period generator, the timing

generator works as a VCO and is operated with variable,
symmetrical charging currents IPOS and INEG- This leads to
an output duty cycle of 50%.

With Ic = |INEG| = IPOS, the period is given by:

-+ 4t Pd

where Cramp is the effective ramp capacitance, Vhyst is the
peak-to-peak voltage between the Schmitt trigger's switch
ing levels (hysteresis amplitude), Ic is the variable charging
current (Ic = IPOS = INEG), and tpd is the propagation delay
from the time the Schmitt trigger reaches the switching
level until the charging current is reversed.

To generate steep ramps for short periods, a small Cramp
and a large Ic are used, and the propagation delay tpd be
comes the dominant speed-limiting factor. This is also true
for the Schmitt trigger's internal positive feedback loop,
which becomes a negative feedback loop for short periods
because of the phase shift resulting from the internal prop
agation delay. To compensate for the propagation delay,
the hysteresis amplitude Vhyst has to be decreased.

However, if Vhyst is small, it is necessary to use a very
small Ic to get the VCO oscillating with a large period. A
small charging current Ic will be more noisy, and this noise

Gate Gate

Trigger/Gate Signal

Signal at Ramp Node

Switching Signal
â€¢ Trigger Gate Signal

Schmitt Tr igger Output

F i g . 1 4 . S y n c h r o n o u s g a t e a n d
t igger operat ion. The last cycle is
a lways completed.

72 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Large Charging Currents
IPOS I,

Large Hysteresis

Small Hysteresis

â€” l
Min period cannot be achieved

* h y s t -

Max per iod cannot be achieved.

F i g . 1 5 . I n f l u e n c e o f t h e h y s t e r
es is o f the Schmi t t t r igger on the
V C O o p e r a t i o n w i t h d i f f e r e n t
charging currents.

will be transformed into high timing jitter by the flat ramp.
The small hysteresis together with the flat ramp slope also
leads to very slow transitions at the Schmitt trigger's output
because of its relatively low closed-loop gain. Fig. 15 shows
the influence of the Schmitt trigger's hysteresis on the
VCO's behavior for large and small periods. To realize both
high speed and low jitter, the Schmitt trigger's hysteresis
has to be set according to the period. For periods smaller
than 10 ns this is done by controlling IHYSTI and VHYsT2
together with IPOS and INEG- FÂ°r periods larger than 10 ns,
the propagation delay becomes more and more negligible,
and the hysteresis can be kept constant.

When used as a delay or width generator, the timing 1C
has to be operated as a one-shot for widths up to 100 ns
and as a VCO for widths larger than 100 ns. The width is
determined by the rising ramp only. The falling ramp
creates an inevitable dead time, which limits the retrigger
period. Because this leads to a limited delay and width
range for the instrument, this dead time has to be kept as
short as possible. Therefore, a variable IPOS is used to con

trol the width and a large, fixed INEG is used to minimize
the dead time.

The dead time is given by:

W a m p * h y s t

INEG

The width is defined as:

* hyst

I

tpd (1

+ tpd(l+INEG/Ipos).

The period in VCO mode or the retrigger time in one-shot
mode is:

t p e r =

Fig. 16 shows the principle of the delay/width operation.
Because of the large fixed INEG and the variable IPOS, the

Single-Shot Mode VCO/Counter Mode

VCO Output VCO Output

Main Output Main Output
F i g . 1 6 . P r i n c i p l e o f d e l a y a n d
width generator operat ion.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 73

© Copr. 1949-1998 Hewlett-Packard Co.

diode bridge has to operate with changing asymmetrical
currents over the timing range. This leads to a changing
offset voltage across the diode bridge. Without compensa
tion of this offset voltage, the rising ramp would be clamped
by the diode bridge near or even before the upper switching
level of the Schmitt trigger, resulting in increased jitter or
even in malfunction. The offset is compensated by offset
ting the Schmitt trigger's output signal by exactly the same
offset voltage, but in the opposite direction. Because the
offset voltage is a fairly complex function of diode voltage
drops at different diode forward currents, the easiest way
to generate this compensation offset voltage is to use the
same diode bridge with inverse charging currents Iposc
and INEGC together with a buffer amplifier. These currents
are shown in Fig. 13.

Realization
The timing 1C was realized using the HP-5 bipolar pro

cess, which has an fT of 5 GHz. The analog blocks are
custom designs down to the component level. For the log
ical blocks, cells from a cell library were modified and
used. The 2.7-mm-by-3.0-mm die, together with four sur
face mount parts, is assembled into a custom 72-pin multi
layer PCPGA (printed circuit pin-grid array) package. Fig.
17 shows the assembled package with the lid removed.
The decision to use a custom PCPGA package was driven
mainly by the need to place the timing and bypass
capacitors very close to the die. Another reason was the
possibility of designing 50Ã1 lines for all signal inputs and
outputs and wide, low-impedance lines for ground and
power supply purposes. The die is directly mounted on a
copper slug connected to a three-fin heat sink. This keeps
the junction temperature below 105Â°C with 2 watts worst-
case power dissipation and under worst-case environmen
tal conditions.

Fig. 18. Layered f i rmware arch i tecture.

Firmware Architecture

The system architecture can be described as a layered
model consisting of four layers, the first three software and
the last hardware (see Fig. 18). The top layer contains the
human interface, which is the bridge between the outside
world and the instrument and contains the front-panel con-

Microprocessor Board

Microprocessor

HP-SL
(HP System
Language)

Device Bus

Device Bus
Interface

Calibration
EEPROM

Timing Board

h i Signal Lines

Device Bus
Interface

Calibration
EEPROM

2 K x 8

Output Board
Channel 1

Device Bus
Interface

Calibration
EEPROM

2 K x 8

Output Board
Channel 2

F i g . 1 7 . T h e t i m i n g 1 C i n i t s P C P G A p a c k a g e w i t h t h e l i d
removed. F ig . 19. B lock d iagram of a two-channel pu lse generator .

74 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

trols and the HP-IB interface. The next layer is a real-time
multitasking operating system, which performs the internal
system control. The lowest software layer contains the driv
ers for the hardware.

Each parameter (period, width, etc.) of the device is as
signed to a driver. If a parameter has changed, the corre
sponding driver number will be stored into a buffer called
the driver queue. A specific task of the operating system
(the hardware task) takes this number and calls the corre
sponding driver routine to change the hardware state. These
driver routines use the adjust values stored in EEPROM on
the board to calculate the correct digital values to program
the pulse parameters.

The lowest layer of the architecture is the hardware layer.
A simplified block diagram of the HP 8131A and HP 8130A
two-channel version is shown in Fig. 19. It consists mainly
of a timing board, one or two output boards, and the micro
processor board. The boards are connected by an internal
device bus. In the HP 8131A pulse generator there is an
EEPROM on the timing board. In the HP 8130A there are
additional EEPROMs on the output boards for storing cali
bration constants. All calibration constants are measured
and calculated by the adjust program described earlier and
are stored into the EEPROMs automatically. The firmware
uses these adjust values to calculate the digital values to
program the boards.

HP-IB Programming
All modes and parameters are programmable via the HP-

IB. The standard versions of the instruments have one chan
nel. In the optional dual-channel version all parameters
are independently adjustable except that the period
generator, the trigger logic, the burst counter, and the modes
are common for both channels. The HP-IB interface con
forms to three standards â€” two external standards and one
internal HP standard. The first is IEEE 488.1, Standard
Digital Interface for Programmable instrumentation, the

(root)

:INPut

Sys tem Component X Sys tem Component Y

Manufacturer 's
Specif icat ions

M a n u f a c t u r e r ' s I E E E 4 8 8 . 2 I E E E 4 8 8 . 1 I E E E 4 8 8 . 2
S p e c i f i c a t i o n s S t a n d a r d | S t a n d a r d | S t a n d a r d
Layer D Represents Dev ice Funct ions
Layer C Represen ts Common Sys tems Func t ions
Layer B Represents Message Communica t ion Funct ions
Layer A Represents In ter face (IF) Funct ions

Fig. 20. Relat ionships between IEEE 488 s tandards.

original HP -IB. Because each company using this standard
handled message protocol and data formatting in a different
manner and instruments were programmed by different
command sets for similar functions, the IEEE 488.2 stan
dard was developed. This standard describes a set of codes,
data formats, message protocols, and common commands
to use with the IEEE 488.1 standard. The instrument inter
face can be divided into several functional layers, as shown
in Fig. 20. The lowest layer is the remote interface messages
layer or the IEEE 488.1 bus. This layer is the physical inter-

(cont inued on page 78}

O U T P u t [(c h n >] S Y S T e m

miff ing
â€¢PFRind (numeric value)
:PERiod?

:WID th (numer i c va lue)
:WIDth?

iDu tyCYCIe (numer i c va lue)
:DutyCYCIe:

M O D E O N O F F 1 0
MODE?

:DutyCYCIe?

:DELay (numer i c va lue)
:DELay?

:DOUBIe (numer i c va lue)
:DOUBIe?
:DOUBIe:

M O D E O N O F F 1 0
MODE?

iLEVel
:H IGH (numer i c va lue)
:HIGH?

:LOW (numer i c va lue)
:LOW?

l A M P L i t u d e (n u m e r i c v a l u e)
:AMPL i t ude?

:OFFSET (numer i c va lue)
:OFFSET?

Fig. 21. This subset of the HP Sys
tem Language i s used fo r HP- IB
(IEEE 488) control of the HP 81 31 A
and HP 81 30 A pulse generators.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 75

© Copr. 1949-1998 Hewlett-Packard Co.

Hybrid Assembly

Custom high-performance integrated circui ts of ten need thick-
f i lm hybr ids for bonding and prov id ing the 1C wi th i ts e lect r ica l
environment. For the HP 8130A and HP 81 31 A pulse generators,
a n e w k i n d o f h y b r i d a s s e m b l y w a s d e v e l o p e d . A s i m p l e w a y
was found to connec t a h igh -pe r fo rmance hyb r id d i rec t l y t o a
pr inted circui t board. Two of these hybr ids are used in the pulse
generators. One is a swi tched GaAs ampl i f ier for the HP 8131A
and the second is a slope generator fol lowed by a l inear amplif ier
fo r the HP8130A.

Specif ications
The basic in i t ia l requi rements for the hybr id assembly were:

â€¢ Transition times as short as 150 ps
Â« Frequency range 1 to 2 GHz
â€¢ Direct contact between the hybr id c i rcui t and pr inted c i rcui t

boards
â€¢ Low cost
â€¢ Integrated circuit junction temperature less than 125Â°C at the

maximum instrument ambient temperature of 60Â°C
â€¢ Easy serviceability
â€¢ High number of electrical connections (about 40).

At the beg inn ing o f the pro jec t no hybr id assembly was ava i l
ab le hy matched a l l these requ i rements . For low- f requency hy
b r ids w i th a sma l l number o f connec t ions , l ead f rames a re the
most common so lu t ion . H igh- f requency hybr ids are assembled
into f la tpacks or p lug- ins, which are custom-designed packages
in mos t cases . The hybr id i s f i xed in these packages and can
never be removed for service or upgrading. To change the hybrid,
the expens ive package has to be removed as we l l .

Description
The main prob lem in the des ign o f the hybr id was the s igna l

connect ions to the pr in ted c i rcu i t board. Leadframes seemed to
be the best so lut ion, but s ignal per formance degrades because
the 50ÃÃ conductor impedance cannot be mainta ined. I t is a lso
di f f icul t to plug the leadframes into the pr inted circui t board. The
solut ion was found in the elastomers of fered by several vendors
tha t have mu l t i p le , separa te , pa ra l l e l conduc to rs a round the i r
sur faces. The e lastomers are covered wi th a poly imide f i lm and
copper fo i l , which is go ld-p la ted. The copper fo i l is d iv ided in to
many conduc tors separa ted by smal l gaps .

The mos t c r i t i ca l aspec t o f a hybr id d i rec t l y assemb led to a
pr inted circui t board is i ts th ickness tolerancing. The elastomers
are able to absorb a l l the th ickness to lerances, which are up to
0.4 mm for the printed circuit board and 0.3 mm for the remaining
assembly. Unl ike al l former solut ions, the elastomers can provide
a h i gh numbe r o f connec t i ons t ha t can a l so be d i sconnec ted
easily.

F ig . 1 shows the hybr id assembly . The e las tomers a re f i xed
by a mo lded f rame . The f rame and a me ta l p la te above i t a re
p ressed down to t he hyb r i d and the p r i n ted c i r cu i t boa rd and
a re f i xed by f ou r sc rews . The sc rews can be t i gh tened f i rm l y
w i thout c rack ing the hybr id because the f rame is suppor ted by
the pr in ted c i rcu i t board and not by the hybr id .

T h e h y b r i d c i r c u i t a n d t h e p r i n t e d c i r c u i t b o a r d a r e o n t h e
same plane. The elastomer is pressed down by the molded frame
onto the surfaces of both components. One part of the elastomer
contacts the border area of the pr inted circui t board and another
par t contacts the border area of the hybr id . Thus the e lastomer
connects the two par ts l i ke a br idge between two is lands.

The metal plate is necessary for support ing the molded frame,
which tends to r ise a l i t t le a t h igher temperatures. I f the f rame
we re a l l owed t o r i se , secu re connec t i ons cou ld no l onge r be
guaran teed . Chang ing the geomet ry o f the f rame wou ld so lve
th is meta l but he ight l imi ta t ions do not a l low th is , so the meta l
p la te was added. I t accompl ishes i ts task qui te wel l .

S ignals are car r ied by the e lastomers on top of the hybr id . A
g round pa th i s p rov ided by a second layer o f e las tomers f rom
the backside of the pr inted c i rcui t board to the backplane of the
hybrid.

For servic ing, only two screws on the backside and the hybr id
f rame have to be removed. The th ick- f i lm subst rate is a t tached
to a copper heat s ink w i th an epoxy adhes ive. In the subst ra te
is a small hole for a pedestal of the heat sink. The 1C is attached
d i rec t ly to the pedesta l . Th is so lu t ion was chosen because the
power dissipation of the GaAs 1C is about 4W. Taking the alumina
substrate and the interface between the substrate and the copper
heat sink out of the thermal path improves the thermal impedance
between the GaAs 1C and the heat sink considerably. The thermal
per formance is a d i rect resul t of the excel lent heat conduct iv i ty

Â©

Pedestal

Metal Plate

Plastic Frame

Elastomer

Hybrid

Printed Circuit Board

Copper Heat Sinks

Elastomer

Copper Heat S ink Tub

F ig . 1 . Hyb r i d assemb ly us i ng e l as tomers t o i n t e r connec t
the hybr id c i rcu i t and the pr in ted c i rcu i t board.

76 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

of the copper heat s ink.
W i t h t h e u s e o f c o p p e r a s a h e a t s i n k n e w p r o b l e m s a n d

d i scuss ions came up abou t t he m ismatch o f t he two d i f f e ren t
thermal expansion coef f ic ients (Table I) .

Thermal Expansion Coeff ic ients

Material

Copper
E poxy
AI203

Thermal Expansion Coeff icient
(1(T6/K)

16.5
40.0

6.0

The max imum leng th d i f f e rence o f t he two a t tached compo
nents is about 0.06 mm. Most of the resul t ing mechanical stress
is taken up by the epoxy because of i ts low d ie shear s t rength.
In sp i te of th is mismatch, there have been no known fa i lures in
t he hund reds o f hyb r i ds so ld i n t he l as t two yea rs . These as
sembl ies have passed four d i f fe rent env i ronmenta l tes ts and a
stringent reliabil i ty test.

Whi le a copper heat s ink is an acceptable solut ion for hybr ids
up to heat size of ours, bigger hybrids would require another heat
s i n k m a t e r i a l w h o s e t h e r m a l e x p a n s i o n c o e f f i c i e n t i s b e t t e r
matched to the alumina substrate. Two possibi l i t ies are Kovar or
the new copper-moly-copper composi te. Disadvantages of these
materials are about a f ivefold increase in material cost and about
a 50% decrease in thermal conduct iv i ty .

At the beginning of the pro ject there were some contact prob
lems humid the elastomers. Solder residue, fingerprints, and humid
ity led to a kind of salt corrosion between the printed circuit board
and t he e l as tomer . C lean ing a l l t he pa r t s t ha t may have any
contact with the elastomers with propanol appears to have solved

this problem.
A hole in the hybrid frame and the hybrid plate permits removal

o f some peak ing bonds i n t he ou tpu t pa th . The bonds can be
removed during test without disassembly of the hybrid. The open
bonds, wh ich are not pro tec ted by a ceramic l id on the hybr id ,
are suf f ic ient ly protected by the f rame.

Fig. 2 shows the top and bot tom parts of the hybr id assembly
wi th the two hybr id c i rcui ts i t is designed to conta in.

Summary
A simple, economical hybrid interconnection solut ion has been

developed. Env i ronmenta l tes ts were successfu l ly passed, and
e lec t r i ca l per fo rmance up to 2 GHz is exce l len t . Many connec
t ions between a hybr id and a pr inted c i rcui t board are possib le.
Hardware des ign i s no t l im i ted by the assemb ly du r ing layou t
development.

Wans JÃ¼rgen Snackers
Mechanica l Engineer

Bobl ingen Instruments Div is ion

F i g . 2 . H y b r i d a s s e m b l y a n d h y
brid circuits.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 77

© Copr. 1949-1998 Hewlett-Packard Co.

face. It includes the mechanical connector, wiring, and
electrical signals. The IEEE 488.2 standard defines the mid
dle two layers. These consist of the syntax and data struc
tures layer and the common commands and queries layer.
The syntax and data structures layer defines how data is
communicated between devices. For example, it defines
the use of the ASCII character set for data representation.
It also defines data formats for binary numbers. The final
layer is the device dependent message layer, which each
manufacturer defines. These messages are the device com
mands for programming an instrument over the HP-IB.

Based on these standards (IEEE 488.1 and IEEE 488.2)
Hewlett-Packard has created an internal standard called
the Hewlett-Packard System Language, or HP-SL. This in
ternal standard is written as a designer's guide for messages
to be included in HP programmable instrumentaion. Fig.
21 shows the subset of the HP-SL that is used to program
the HP 8131A and HP 8130A pulse generators.

Acknowledgments
During this project we received a great deal of good ad

vice and assistance from Torn Hornack's group in HP
Laboratories and from Val Peterson's group at the Micro
wave Technology Division.

The authors want to thank all the people involved in the
design, layout, production, and test of the timing 1C. Special
thanks go to Bill Brown and his team at the HP Santa Clara
Technology Center for their support during the design
phase. Particular thanks go to Jim Grace for his contribu
tions to the design and to Jean DeGrenier, Kazuko Kikuta,
and Jennifer de Neve for taking care of the 1C layout. Special
thanks also to Mike Oshima, the responsible production
engineer, and to Don Riccomini, SCTC marketing, for their
efforts to coordinate all the people involved in the design.
Thanks also to Joe Garibaldi, test engineer, and Kevin Mar
tin, reliability engineer. Last but not least, particular thanks
to Craig Tanner at the HP Colorado Integrated Circuit Divi
sion for handling the packaging and assembly issues.

It is impossible to mention all the people who have con
tributed to make this project feasible, but we would like
to take this opportunity to extend many thanks to all the
people who were involved.

78 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

A 500-MHz Pulse Generator Output Section
Surface mount, th ick- f i lm hybr id, and gal l ium arsenide
technologies contribute to the advanced output capabil i t ies
of the HP 81 31 A pulse generator.

by Stefan G. Klein and Hans-JÃ¼rgen Wagner

THE OUTPUT SECTION of the HP 8131A 500-MHz
pulse generator consists of the transducer board and
the output amplifier. This section provides short

pulse widths, pulse trains up to 1 GHz derived from exter
nal sine waves, output level control, and overvoltage pro
tection. A thick-film hybrid circuit containing a custom
gallium arsenide integrated circuit is the main component
of the output amplifier.

Transducer Board
The transducer board is the interface between the timing

board (see article, page 64) and the output amplifier. All
of the components on the board are surface mount devices.
The transducer board has the following functions:
â€¢ Shaping and refreshing of the input signals from the

timing board
â€¢ Normal/complement switch
â€¢ Generation of pulse widths less than 1 ns
â€¢ Restoration of an external sine wave signal in transducer

mode.
Fig. 1 shows the functional block diagram of the trans

ducer board. In normal mode, the signal from the timing
board goes to one input of the first NOR gate. The function
of this NOR gate is to select between the signal from the
timing board (all modes except transducer mode) and the
signal from the transducer (transducer mode). After the

NOR gate, the signal path branches. Both of the resulting
paths contain differential amplifiers which shape the sig
nals.

After the amplifiers, one signal path goes directly to one
input of the second NOR gate, while the other signal path
goes through a 500-ps delay line to the other input of the
second NOR gate. Normally, the direct signal path is
switched off by control signal HSPU, and the NOR gate works
as a simple inverter. When the direct signal path is switched
on, the output pulse width is 500 ps shorter than the input
pulse width. Fig. 2 shows the principle of short pulse gen
eration. With the short pulse generation circuit the HP
81 31 A is able to generate pulse widths from 1 ns down to
less than 500 ps.

After the second NOR gate, the signal path branches again.
One path uses the noninverted output of the NOR gate and
the other uses the inverted output. Both paths contain dif
ferential amplifiers, which refresh the pulses from the NOR
gate. A normal/complement relay after the amplifiers
selects between the noninverted path and the inverted path.

A level shifter following the relay shifts the signal to the
required output levels, and the line driver, a differential
amplifier, produces a differential signal that goes to the
output amplifier hybrid. The line driver delivers a signal
with more than 600-mV peak-to-peak amplitude and tran
sition times less than 300 ps.

Trigger/
Transducer

Switch
External lnput(

External Trigger
, to Timing Board

Transducer

To Second Channel

Pulse Input From
Timing Board

Fig. board. Functional block diagram of the HP 8131 A transducer board.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 79

© Copr. 1949-1998 Hewlett-Packard Co.

5 0 0 p s 5 0 0 p s
Time

OUT ÃLJl
Time

F i g . 2 . O p e r a t i o n o f t h e s h o r t
pu lse genera t ion c i rcu i t . The ou t
pu t pu l se i s 500 ps sho r te r t han
the input pulse.

In transducer mode, the timing board is switched off. A
sine wave signal from the external input goes to the trans
ducer, which consists of two cascaded differential ampli
fiers that are used as a preshaper. To protect the transducer
input from high voltages, a diode clamping circuit is used.
The shaped signal after the transducer goes to the second
input of the first NOR gate. Thereafter, it is processed nor
mally by the following stages and the output amplifier.

Realization
The transducer board is built using a single-sided surface

mount process and has a size of 124 mm by 113 mm. The
board is mounted on the output board like an 1C. The supply
voltages, control inputs, and outputs are connected to the
output board by means of leadframes. The RF inputs are
connected to the timing board by coaxial cables. The key
parts of the circuit are the NOR gate 1C and the differential
amplifier 1C, which are packaged in SOIC (small-outline
integrated circuit) housings. The 500-ps delay line can be
adjusted to compensate for printed circuit board process
variations.

Output Ampli f ier
The main component of the output amplifier is a thick-

film hybrid circuit that includes the high-frequency signal
path. The hybrid consists of the cascade of a commercial
bipolar differential amplifier and a custom GaAs 1C (see
Fig. 3]. The bipolar stage amplifies the input signal to get
1.5V p-p amplitude and less than 350-ps transition times.
The GaAs 1C consists of three switched, direct-coupled,
differential amplifier stages. Also on the hybrid are the
input termination, the power supply decoupling, the out
put termination with peaking inductors, and a level shifting
network between the active devices.

The key specifications established for the output ampli
fier are:
â€¢ Amplitude range 0.1V p-p to 5V p-p into 25 ohms
â€¢ Rise and fall times less than 200 ps
â€¢ Overshoot and ringing less than 15% (10% in most set

tings)
â€¢ Input swing less than 0.6V p-p, differential
â€¢ Input transition times less than 1 ns.

Fig. 4 shows the output waveform at the maximum fre
quency.

GaAs Process
The only process that held promise of meeting the above

output specifications at the beginning of the project was
the RFIC GaAs process of HP's Microwave Technology Di
vision. It is a l-/u,m-gate-length, self-aligned, depletion
mode MESFET process with an fT of 15 GHz. The parasitic
reactances of the active devices are small enough to switch
large currents with large internal swings in short times.
The semi-insulating substrate reduces the parasitic capaci
tance between the traces and the backside electrode com
pared to the conducting silicon substrate used in other
processes. Transition times below 150 ps within the chip
are possible. The large gate-to-drain breakdown voltage al
lows a large output amplitude. Typical process parameters
for a 1000-/nm FET are: pinch-off voltage Vp = -2.1V,
Idss = 200mA,gm = 135mS,Cgss = 2pF,Vdgmax = 11V.

The most important question for the design was how to
live with the GaAs anomalies in our large-signal, wide-
bandwidth, time-domain application. GaAs anomalies are
second-order electrical phenomena that occur only with
GaAs and not with other semiconductor materials. The
most important anomaly for digital time-domain applica
tions is the slow tail problem (see Fig. 5).

High Level

Thick-Fi lm Hybrid

OUT

OUT

Ampli tude

Fig. 3. Output ampl i f ier th ick- f i lm
h y b r i d c i r c u i t . A c o m m e r c i a l b i
polar stage and a level shifter feed
a cus tom GaAs ampl i f i e r . Outpu t
l eve l con t ro l i s a func t ion o f t he
weighted output dr ivers.

80 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

23,7520 25 0020 ns 26.2520 ns

Ch. 4
T i m e B a s e =
Ch. 4 Parameters
Rise Time
Fall Time
P-P Volts

800.0 mVolts div
2 5 0 p s d i v

134.4 ps
113.2 ps
5.3750 Volts

F r e q . = 5 0 8 . 8 5 4 M H z
+ W i d t h = 8 7 4 . 4 p s
P r e s h o o t = 4 . 0 0 0 %
R M S V o l t s = 2 . 3 8 9 5 V o l t s

Offset
Delay
Period
- W i d t h
Overshoot
Duty Cycle

= 0 . 0 0 0 V o l t s
= 2 3 . 7 5 2 0 n s
= 1 . 9 6 5 2 n s
= 1 . 0 9 0 8 n s
= - 3 . 5 0 0 %
= 4 4 . 4 9 %

F i g . 4 . H P 8 1 3 1 A o u t p u t w a v e
form at max imum f requency.

The slow tail problem is caused by either threshold drift
with frequency at the gate node (called gate lag) or variation
of the output impedance with frequency at the drain node.
The gate lag is measured by stimulating the gate of a FET
with a square wave. The drain is biased at 5V and the
source is connected to ground through a 1ÃÃ resistance. The
swing at the gate is 3V p-p to switch the FET on and off,
and the high level is 0V. The voltage swing at the source
is small compared to Vds but shows a tail of about 7% of
the amplitude with a time constant of about 50 /us. This
tail occurs mainly after the FET is switched off. The output
resistance rds of a GaAs FET decreases with frequency to
about 30% of the dc value and remains constant for frequen
cies greater than 10 MHz.

Switched differential amplifiers with resistive loads, gate
stages, and cascoded source followers with cascoded cur
rent sources are the basic circuits that help cope with the
slow tail anomaly (see Fig. 6). A gate stage presents a very
high output impedance at the drain:

where rd is the small-signal resistance at the drain, gm is
the transconductance of the FET, rds is the frequency depen
dent drain-to-source resistance, and Rs is the resistance of
the current source. This large output resistance varies with
frequency, but compared to the small drain load resistance

this variation is neglible, so no tail occurs.
A switched differential amplifier only behaves linearly

during the short transition time. After the transition the
switched-on FET behaves like a gate stage, so the drain-re
lated slow tail behavior is the same as for the gate stage.
For low frequencies and for signals with duty cycles differ
ent from 50%, the gate-node-related part of the slow tail
problem makes a larger input swing necessary to ensure
that the amplifier is fully switched.

The source follower is a linear amplifier. A cascoded
device keeps the swing across rds constant (first-order ap
proximation) so the frequency dependence of rds doesn't
matter. The cascoded current source has a frequency-de
pendent output resistance that is large compared to the
source follower source resistance l/gm. The cascode con
nection increases the current source output resistance.

GaAs Ampli f ier
The GaAs amplifier consists of three switched differen

tial amplifiers with resistive loads. The stages are direct-
coupled through source followers with diode-based level
shifting networks. The preamplifier stage amplifies the
input signal (1.5V p-p, 350 ps) to get 3.5V p-p with 350-ps
edges. The shaper stage speeds up the edges to get 3.5V
p-p with <150-ps edges. The final driver stage switches
up to 200 mA in less than 200 ps to get 5V p-p into 25
ohms. It includes an active attenuator that provides an

Input Waveforms

f
Distorted Output Waveforms

GaAs Ampli f ier
with Slow Tai l

Problem
J l 1

F i g . 5 . T h e s l o w t a i l p r o b l e m i n
GaAs circuits.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 81

© Copr. 1949-1998 Hewlett-Packard Co.

G a t e S t a g e D i f f e r e n t i a l A m p l i f i e r

No te : X1 , X2 , 3 X2 i nd i ca te FET w id ths .

amplitude range of 0.1V p-p to 5V p-p.

Preamplifier
Fig. 7 is a schematic diagram of the preamplifier stage.

The input FETs are biased at a small fraction of Idss so that
an input swing smaller than Vp switches the current com
pletely. Because of the large size of the FETs and the large
resistive loads, a smaller cascoded gate stage serves as an
impedance converter to (1) increase the output resistance
compared to the resistive loads and (2) decrease the drain
capacitance. The cascode connection of the source fol
lower, which is done to alleviate the slow tail problem,
reduces the influence of the gate-to-drain capacitance of
the source follower on the load node so that large resistive
loads are possible for a given bandwidth specification (>1 .2
GHz]. To get a small impedance at the output of the
preamplifier stage, the series resistance of the level shifting
diodes is bypassed by a capacitor.

To force the signal swing at the load resistors to be exactly
3.5V while the resistors can vary by Â±15%, a monitor resis
tor is placed close to the loads. This resistor is measured

I N

O U T

O U T

Sou rce Fo l l owe r

Fig. 6. Circuits for coping with the
s l o w t a i l p r o b l e m i n c l u d e g a t e
stages, swi tched di f ferent ia l ampl i
f iers wi th resist ive loads, and cas
coded source fo l l owers w i th cas
coded current sources.

in a closed-loop system to determine the necessary switch
ing current. To adjust the internal differential offset, the
current sources of the level shifting diodes are externally
adjustable.

Shaper
The shaper stage schematic diagram (Fig. 8) is very simi

lar to the preamplifier's. A cascoded gate stage is not needed
because the resistive loads are smaller and the currents are
larger. The source follower stage and the level shift current
are larger because the input capacitance of the driver stage
is a large 2 pF.

Line Driver
The line driver stage is the direct interface to the cus

tomer's load, which is nominally 50ÃI. The driver stage
determines the output level, rise time, fall time, overshoot,
and preshoot. For a nominal customer load the amplitude
is programmable between 0.1V and 5V within a Â±5V volt
age window. For loads different from the nominal, the out-

OUT

Fig. 7 . Diagram of the preampl i f ier sect ion of the GaAs 1C. F ig. 8 . Diagram of the shaper sect ion of the GaAs 1C.

82 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Fig . 9 . An example o f the DAC approach to a t tenuator des ign .

put must be protected because reflections can cause the
output voltage to exceed the nominal value. Protection is
also necessary for customer loads that are connected to an
external voltage.
Attenuator. To build an attenuator that has a resolution of
10 mV with fully switched differential amplifiers, two al
ternative topologies are possible: the DAC approach and
the one-stage approach.

Fig. 9 shows the DAC approach. Binary-weighted am
plifiers switch currents Ires, 2Ires, and so on. Each current
source can be switched on and off independently, so any
linear combination of currents is possible. For zero
amplitude all currents equal zero. If the maximum output

OUT

O O U T ,

IN

Fig. 10. The output l ine dr iver design is a combinat ion of the
DAC and one-stage approaches. I t cons is ts o l two weighted
(7 :1) d i f f e ren t i a l pa i r s tha t p rov ide two amp l i t ude ranges .
W i th in each range the amp l i t ude i s con t ro l l ed by p rog ram
ming the swi tched currents. A cascoded gate stage provides
overvoltage protect ion.

amplitude is 5V, then for a minimum output amplitude of
100 mV (linear combination of currents equal to Imin), 2%
of the total FET size carries current and 98% carries no
current. Because the differential pairs are in parallel at the
gate and the drain nodes, a large preshoot occurs for small
amplitudes because the switching differential voltage has
to charge the gate-to-drain capacitance of 100% of the FET
size, causing extremly large preshoot currents compared
to the signal current Imin.

In the one-stage approach, the differential input voltage
of a differential pair switches the entire current. The output
amplitude is programmed by varying the magnitude of the
current source. With a constant input voltage swing, the
overdrive of the differential pair increases with decreasing
current. The overdrive, coupled with the gate-to-source
capacitance and the common source node capacitance,
causes overshoot. This overshoot gets dramatically worse
at small amplitudes. To maintain constant overdrive, the
input drive should be reduced for reduced currents. How
ever, the switching FETs are scaled to drive the largest
current. For small amplitudes, the FETs are biased very
close to pinch-off and have a small, very flat transconduc-
tance. This makes larger overdrive necessary to ensure that
the rise time is short enough. The large overdrive and the
large parasitic capacitance resulting from the the large FET
size cause unacceptable pulse performance.

The solution for this amplifier was a mixed structure
{see Fig. 10). Two weighted differential pairs (weight
ratio = 7:1) give two amplitude ranges. For the large
amplitude range, both pairs switch current, and for the
small range the current of the large pair is zero. Within
each range the output amplitude is determined by control
ling the switched current. Additionally, the shaper and
preamplifier swings are adjusted with the amplitude cur
rent.
High-Level Control. The high level of the output signal is
controlled by varying the common-node voltage of the in
ternal 50ÃÃ resistors. The supply voltages of the GaAs 1C
float with the high level for all positive high levels.
Overvoltage Protection. The gate stage cascoded with
the switching FETs of the driver stage gives two benefits.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 83

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢high

Fig . 11. Output load conf igura t ion on the hybr id c i rcu i t .

The reduced swing at the source node decreases bandwidth
limitations at the gate node of the switching pair imposed
by the gate-to-drain capacitance. The gate stage also reduces
the Vds swing at the switching FETs.

Both external mismatch and external voltages can cause
excessive voltage at the drain. For transient overvoltages,
Â±10V is allowed. For periodic and static overvoltages, a
peak detector circuit disables the output and internally
terminates the signal. The detector works up to 100 MHz
for square wave signals.

Overshoot Adjustment
Within each amplitude range, overshoot is adjusted by

controlling the voltage swings at the preamplifier and the
shaper. For signals with duty cycles different from 50%,
the slow tail problem makes a larger internal swing neces
sary to ensure that the differential amplifier is fully
switched. This causes more overshoot after the transition
into the "preferred level" (for duty cycles less than 50%
the preferred level is the low level and vice versa). Instead
of increasing the voltage swing to overcome the slow tail
problem, the differential offset at the shaper stage output
is adjusted with frequency. A low-pass filter measures the
dc component of the signal, and this information is used
to adjust the level shifter current sources accordingly.

A passive overshoot adjustment is implemented on the
hybrid as shown in Fig. 11. Because it dissipates 2W, the
area of the 50Ã1 load resistor is larger than the area of the
GaAs chip, so this resistor has a large parasitic capacitance.
The adjustable inductance Lx in series with the 50ÃÃ load
resistor causes the output impedance to increase at higher
frequencies. This compensates for the effect of the parasitic
capacitance of the load resistor. Lx is printed and can be
adjusted by removing bond wires that short the inductance.
A 50Ã1 damping resistor in parallel with Lx eliminates ring
ing caused by the resonance of Lx and the parasitic capaci
tance.

Acknowledgments
Thanks to Allan Armstrong and Val Peterson of HP's

Microwave Technology Division and Ken Poulton of HP
Laboratories for their generosity with their time and exper
tise in GaAs design.

84 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

A 300-MHz, Variable-Transition-Time Pulse
Generator Output Sect ion
The design inc ludes separate fast and s low s lope
generators and custom GaAs and b ipo lar ICs.

by Peter Schinzel, Volker Eberle. and GÃ¼nter Steinbach

THE OUTPUT SYSTEM of the HP 8130A 300-MHz,
variable-transition-time pulse generator consists of
the slope generator and the output amplifier. The

programmable rise and fall times are produced by the slope
generator, which uses a custom GaAs 1C for the fast slopes.
The output amplifier is a custom linear bipolar 1C.

Slope Generator
A simplified block diagram of the slope generator is

shown in Fig. 1. The four basic blocks are the input buffer,
the fast slope generator and slow slope interface, the slow
slope generator, and the level shifter and impedance con
verter. The purpose of the slope generator is to generate a
signal that combines stable amplitude with variable rise
and fall times.

The incoming signal from the timing board is single-
ended and has EECL levels. The output signal has program
mable rise and fall times from 600 ps to 100 /as. The output
amplitude is adjustable from 1.5V to 1.8V.

In the input buffer the signal is split into a slow slope
signal path (transition times from 5 ns to 100 /us) and a fast
slope signal path. The split was necessary to achieve very
fast slopes (below 1 ns) and high-precision slopes for tran
sition times less than 50 ns at the same time. The major
goals for the slow slope generator were high transition-time
accuracy and high linearity. The major goals for the fast
slope generator were fast transition times and a high
maximum transfer frequency.

Input Buffer
The input buffer is built with standard components on

a printed circuit board using surface mount technology.
This technology was chosen to minimize the parasitics
(stray capacitances and series inductances) on the printed
circuit board. The input signal has transition times less
than 600 ps and a voltage swing of 600 mV. The output to
the fast slope generator has a voltage swing of 1.6V and
transition times less than 650 ps. The edges of the slow
slope output are about 1 ns and the output swing is 600 mV.

Slow Slope Generat ion
The design goals for the slow slope generator were:

s Total range 5 ns to 100 /Â¿s
â€¢ Leading and trailing edges independently programmable
â€¢ Edge ratio 20:1 within one range
â€¢ Nonlinearity of slopes less than 2% for slopes greater

than 50 ns and less than 5% for slopes between 5 ns and
50 ns

â€¢ Slope accuracy better than 5%.
Usually, slopes are generated by charging a capacitor

with a constant current (see Fig. 2). The charging current
ILEE corresponds to the leading edge of a pulse and the
discharging current ITRE corresponds to the trailing edge.

To limit the voltage on the ramp capacitor Cr, a diode
bridge is used in front of the capacitor. This bridge serves
as a switch controlled by the input step, and is in balance
when the voltage Vr at the capacitor has reached the input
level. The signal source must have low output impedance
to avoid exponential transitions like an RC network's, so
an emitter-follower output is used.

Elimination of Offset
In the HP 8130A, to avoid accuracy errors caused by

leakage and/or base currents, the ramp is decoupled by an
impedance converter with very high input impedance and
low output impedance and then fed to a differential
amplifier with current feedback (see Fig. 3). The feedback
in this stage is large enough to allow linear operation with
out degradation of the slopes. The other input of the dif
ferential amplifier is held at dc. Thus, the single-ended
input voltage is converted to differential output currents.

The currents ILEE and ITRE are varied to achieve continu
ous variation of the leading and trailing edges, respectively.
The levels at the ramp node also vary because of the series
resistance of the diodes. This can be seen directly at the

Fast /S low
S lope

Leading Edge
Trai l ing Edge

Fast/Slow
Slope

Input
From
Timing
Board

Output
to Linear
Amplifier

Trai l ing Edge
Leading Edge

F ig . 1 . S imp l i f i ed b lock d iag ram o f t he s l ope gene ra to r o f
the HP 81 30 A pulse generator.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 85

© Copr. 1949-1998 Hewlett-Packard Co.

Fig . 2 . 8as /c s low s lope genera tor .

output nodes OUT1 and OUT2 as an error in the output
signal. To avoid this effect, the other input of the differen
tial amplifier is also connected to a diode bridge. This
second bridge is controlled by currents equal to ILEE and
ITKE- Slight mismatches of the diode bridges can be adjusted
very accurately. The remaining common-mode offset at the
amplifier's inputs cannot be seen at its outputs.

Minimum Transi t ion Time
The time during which the ramp capacitor Cr is charged

by a current I to some voltage V is given by:

t = CrV/I

All three parameters Cr, V, and I contribute to the quality
of the ramp.

The ramp can never be faster than the original input
signal because the bridge will immediately balance and
the voltage at the ramp node will follow the input signal.
The speed of the controlling edge is given by the slew rate
of the previous circuitry, so the absolute minimum input
transition time is achieved at the lowest value of V. On the

other hand, a low voltage swing at the ramp node calls for
large gain in the following amplifiers, which decreases the
bandwidth. Also, the diodes of the bridge have series resis
tance, and whenever the bridge balances, some rounding
of the edges occurs, degrading performance. The amount
of this rounding is constant for a given Rs and I, and there
fore is relatively smaller for larger V. In view of these effects,
the selection of an optimum value of V involves a trade-off
between speed and linearity.

As can be seen from the equation above, the minimum
transition time occurs for the maximum charging current.
The limitation here is also given by the voltage drop across
the diodes' series resistance (and, of course, by the current
capability of the associated devices). The diode bridge is
chosen for an adequate compromise between minimum
series resistance and minimum capacitance Cs (see
"Capacitive Step" below) at reasonable cost. A GaAs bridge
would have met the technical requirements but was found
too expensive. Therefore, an HP Schottky quad packaged
as a surface mount device was selected.

The values selected for the ramp parameters are Cr = 30
pF, V = 2.4V, and I = 12.5 mA, giving a rise time of:

tr = 0.8(30 pF)(2.4V)(/12.5 mA) = 4.6 ns

The factor 0.8 accounts for the measurement of transition
times between the 10% and 90% amplitude levels.

For a given V and I, the minimum transition time is
achieved if the capacitance is as small as possible. The
total capacitance is the sum of the lumped capacitance and
several parasitics. Since the parasitics are process depen
dent and temperature sensitive, they need to be kept as
low as possible. To keep all parasitic reactances (series
inductances as well as parallel stray capacitances) low, the
slow slope generator is implemented using surface mount
technology.

The complete slope range of 5 ns to 100 /JLS is achieved
by adding additional capacitors. Each range is a factor of
10 higher than the previous one, so the additional capacitor
is nine times larger. An edge ratio of 20:1 within one range

Fig. 3. Slow s lope generator of the HP 81 30 A pulse generator .

86 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

5 ns 10 ns 50 ns
 1

100 ns 500 ns 1 MS 10 MS
 1 â € ”

50 100 MS

r = CM=30pF

C, = Ca = 300 pF

Cr = Ca + Ca = 3 nF

C, = Ca + Ca + C,4 = 30 nF Fig. 4. Stow slope ranges and the
corresponding ramp capacitances.

can be achieved by setting the charging currents to a ratio
of 20:1. This leads to an overlap of the ranges with a factor
of two (Fig. 4).

The additional capacitors are switched into the circuit
by transistors. However, when the transistor switches are
off, they add several picofarads of parasitic capacitance to
Cr. To keep the parasitic part of the total Cr as low as
possible, the switches are connected at a less sensitive
node, that is, at the diode bridge on the opposite side of
the differential amplifier (Fig. 3). This works because the
second slope range â€” 50 ns to 1 /AS â€” calls for a 300-pF ramp
capacitor, large enough that the parasitic capacitance is a
small percentage of the total capacitance and does no harm
to the accuracy and drift performance. This is also true for
the higher ranges. Thus, for slopes from 5 ns to 100 ns, the
pulse input signal is applied to the slope generator at its
"fast input" IN1, keeping the "slow input" IN2, at dc. For
slopes between 50 ns and 100 fj.s, the pulse input signal
is applied to the slow input, keeping the fast input at dc.
The range switching is done at the slow input.

Capacit ive Step
In practice, between the input and the output of the

bridge there is some parasitic capacitance because of the
capacitance of the bridge diodes and the stray capacitance
of the board. Thus, the input pulse step is also visible at
the ramp node with magnitude:

Typical values are Cs = 3pF,Cr = 30pF,andVc = 0.1 Vin.
This is a huge error and cannot be tolerated. Cs has al

ready been minimized, and Cr cannot be increased without
degrading the fast transition times. The only solution is to
compensate for this effect. This is done by coupling the
complement of the input signal through a capacitor of the
same value as Cs directly to the ramp node (see Fig. 5).

Fast Slope Generation
The fast slopes are generated by a custom GaAs 1C. On

this chip are two switched, direct-coupled differential
amplifiers, a diode bridge, two sense diodes, two diodes
that feed in the slow slope signal, and output source follow
ers (see Fig. 6). The 1C is mounted on a thick-film hybrid
which also contains the level shifter and the output

amplifier. The gallium arsenide process is the same as the
one used for the output amplifier of the HP 8131A pulse
generator (see article, page 79).

The design goals for the fast slopes were:
â€¢ Programmable transition times from 600 ps to 10 ns for

pulse widths greater than 1.5 ns. Leading and trailing
edges independently programmable for transition times
longer than 2 ns.

â€¢ Nonlinearity less than 5%.
â€¢ Differential output swing adjustable between 1.5V and

1.8V.

Capac i t i ve S tep

Fig. 5. Compensat ion oÃ the capacit ive step.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 87

© Copr. 1949-1998 Hewlett-Packard Co.

Slow Slope
Input from
Slow Slope
Generator

Fast Slope
Inpu t

f r o m I n p u t
Bu f f e r

GaAs 1C

Preamp l i f i e r

Output to
Level

Shifter

S e n s e D i o d e s C l a m p i n g
Voltages

\ y

to Offset and Ampli tude
Compensation Circuit

â€¢ Transition time accuracy 100 ps Â±5%.
Input Amplifier. The first stage of the GaAs 1C is a shaping
preamplifier. The input signal has a voltage swing of 1.6V
and transition times less than 650 ps. The outgoing signal
has a 3.5V voltage swing and edges less than 400 ps. The
schematic diagram is the same as for the preamplifier of
the HP 8131A GaAs 1C (see article, page 79). Because of
the smaller maximum frequency of the HP 8130A, the re
sistor loads are larger and the FETs are biased with a smaller
fraction of Idss. This makes it possible to decrease the tran
sition times and increase the amplitude in one stage.
Driver. The driver consists of two switched differential
amplifiers in parallel (Fig. 7). One switches three times as
much current as the other. The driver switches the sum of
the load currents of the fast slope generator in less than
300 ps. The current, which determines the transition times,
varies over a 20:1 range. For slopes below 2 ns, both differ
ential amplifiers operate. For transition times from 2 ns to
10 ns, only the small amplifier operates. Slower transition
times are generated by the slow slope generator on the
printed circuit board and both amplifiers are turned off.
The differential amplifiers are scaled 3:1 to reduce the par-
asitics of the current switch for low currents to achieve
better performance for slopes from 2 ns to 10 ns.
Theory of Slope Generation. Fig. 8 shows how the slopes
are controlled. The currents Ij and I2 determine the leading
and trailing edges independently. ISUM is the sum of Ii and
I2. At time tj, transistor Qj turns on and QÂ¿ turns off. The
constant current that discharges Ct is determined by:

= I2

This provides the slopes of OUT/ from ta to t2, the time
when the voltage at OUT/ has dropped to the clamping level
V(OUT/)[t2]. At t2, diode CRa starts to conduct and keeps
OUT/ from falling any farther. The voltage relationship is:

Source
Follower

Fig . 6 . B lock d iagram o f the fas t
s lope generator, a custom gal l ium
arsenide 1C.

VCR1 is the forward voltage across CRa. At time t3, transistor
Qt turns off and Q^ turns on. ISUM then flows through Ck
and the current that recharges C^ from t3 to t4 is:

At t4, diode CR2 starts to conduct and prevents OUT/ from
rising above

V(OUT/)[>t4] = VCL+ + VCR2.

The voltage levels at OUT are determined in a similar man
ner:

I f C z H M J = 1 ,

V(OUT)[t2,t3] = VCL+ + VCR4

I(C2)[t3,t4] = - I2

V(OUT)[>t4] = VCL_ - VCR3.

V(OUT/)[t2,t3] = V, C L - - v, CR1-

1 / 4 l s u m 3 / 4 I 5 U

Fig . 7 . Schemat ic d iagram of the s lope genera tor d r iver on
the GaAs 1C.

88 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

As mentioned above, the rise and fall times are deter
mined independently by Ij and I2. The disadvantage of this
circuit is that the amplitude and the differential offset at
the outputs are functions of the voltages across the clamp
ing diodes. This means that these parameters are functions
of Ij, I2, and temperature. To compensate for this, two sense
diodes CRIt and CRI2 are integrated on the 1C. CRn carries
the current ^ and CRI2 carries I2. The voltages VCL_ and
VQL+ are then:

VCL- = + V(CRU)

- V(CRI2)

V a m p l = v2-va,

where V2 determines the high level of OUT or OUT/ and Vj
determines the low level. Vj is a fixed voltage. V2 is adjust-

I N

I N /

O U T

OUT/

Fig. 8 . Ci rcu i t and waveforms for fast s lope generat ion.

able to vary the output amplitude V^pj between 1.5V and
1.8V. This makes the output amplitude independent of the
forward voltages of the clamping diodes. The only disad
vantage of this circuit is that the differential offset of the
output voltages is a function of the ratio of Ij and I2. The
offset is zero only if It equals I2 (rise time equals fall time).
The offset Voffs is equal to:

V,*,, = V(GRn) - V(CRI2).

This offset must be canceled because the linear output
amplifier, which is driven by the slope generator, is ex
tremely sensitive to overdrive, especially for slopes be
tween 1.5 ns and 5 ns. To cancel the offset, Voffs is fed into
the level shifter as an additional control signal. This causes
the differential offset between the shifted voltages at OUT
and OUT/ to be zero. Assuming ideal matching of all diodes,
the output signal is now independent of the currents L,, I2,
and temperature.

Slow Slope Interface
The slow slope interface of the fast slope generator con

nects the slow slope signal path with the fast slope signal
path. The main problem in the design of the interface was
to avoid degrading the fast slopes when the fast slope signal
path is turned on. The problem was solved by using small
Schottky diodes, integrated on the slope 1C itself, to
minimize parasitics.

If the fast slope path is operating, the diodes are reverse-
biased. When the slow slope signal is being fed into the
1C, the driver of the fast slope generator is turned off. The
load currents I, and I2 of the fast slope generator are equal
(typically 3 mA) and forward-bias the interface diodes. The
slow slopes are fed in by the forward-biased Schottky
diodes.

Level Shif ter and Impedance Converter
Because the output amplifier floats with the program

mable output offset, a level shifter with a variable shift
voltage is necessary. The input current of the level shifter
has to be as small as possible, because every input current
causes an error in the transition times. The output imped
ance has to be less than 50ÃÃ.

The impedance converter is realized by a FET on the 1C
itself to reduce parasitics and minimize cost. The FET is
used as a source follower.

This solution has two disadvantages. First, Vgs is a func
tion of temperature, which means that the output level is
a function of temperature. Second, the slope nonlinearity
tends to increase dramatically because of the droop of the
source follower. It was absolutely necessary to avoid these
disadvantages, especially the second.

The design goals for the level shifter and impedance
converter were:
â€¢ Shift voltage 5V to 10V
â€¢ Distortion less than 0.5% for rise times greater than 50

ns and less than 1.5% for rise times between 500 ps and
50 ns

" Minimum transition times less than 300 ps.
Fig. 9 is a schematic diagram of the level shifter and

impedance converter. As already mentioned, at the input

AUGUST 1990 HEWLETT-PACKARD JOURNAL 89

© Copr. 1949-1998 Hewlett-Packard Co.

of the level shifter is a FET used as a source follower. To
achieve stable operation (independent of the shift voltage)
most of the source current (about 40 mA) flows through
the on-chip current source. To get a variable shift voltage
the current through R2 is adjustable between 6 m A and 11
mA. The shift voltage is:

V.hift = V(R2) + Vgs(QJ

This means that Vshift depends only on the accuracy of
Ishift, R4, and Ul. The voltage drop across Ra and R3 is
negligible. Ul is a high-precision, high-speed operational
amplifier. It forces a differential input voltage of zero volts
at its inputs by controlling the current source ILV, that is,
by controlling V(R2). For high frequencies, the voltage gain
GHF of the level shifter is determined by the source follower
(GHF <1). To avoid distortion, the level shifter gain must
not vary with frequency. Therefore, the input signal is at
tenuated by the resistive divider consisting of Rlf R3, RV1,

R3/, and R-i/ before it goes to the operational amplifier. This
keeps Ul from forcing (by varying ILV) the output swing
to equal the input swing for low frequencies. This also
means that although the low-frequency source follower
gain varies with frequency (this effect is known as droop),
Ul forces (by varying ILV) the level shifter gain to remain
GHF- With RV1, the gain forced by Ul at low frequencies is
adjusted to be equal to the high-frequency gain GHF of the
FET.

To reduce distortions at the frequency where Ul starts
to work, CV1 is adjusted according to:

(Rj + R3)Clpar= R4(C2par + CV1)

RV1 Â» Rj + R3.

This means that both input time constants of the opera
tional amplifier are equal. Clpar and C2par are parasitic
capacitances of the printed circuit, Ul, the hybrid, and the
current source. Because the sum of Rt and R3 is larger than
R4, the additional capacitance CVi is necessary at the nega-

GaAs 1C

F i g . 9 . L e v e l s h i f t e r a n d i m p e d
ance converter c i rcui t .

90 HEWLETT-PACKARD JOURNAL AUGUST 1990

© Copr. 1949-1998 Hewlett-Packard Co.

live input of Ul (or Ul/) to equalize the time constants.
C2 reduces the dynamic output resistance at high fre

quencies. This is necessary to feed the following linear
amplifier with high-frequency signals. Rj and R, are
needed for decoupling the signal paths at high frequencies
and to avoid parasitic oscillations. Because R-Â¡ (R-Â¡/) is on
the 1C and varies with temperature, an additional resistor
R3 (R3/), ten times larger, is added to make GHF more stable.

In the fast slope mode, the currents Ishlft and IshÂ¡ft/ are
slightly different to compensate for the input offset of the
fast slope generator. The difference is adjusted so that

= vshlft - v shift/

V a r i a b l e - G a i n L i n e a r O u t p u t A m p l i f i e r
The output amplifier of a pulse generator needs good dc

linearity and high speed over a wide range of gain settings,
and must handle high output currents and voltages. The
linear amplifier in the HP 8130A directly generates the
signals that appear at the instrument's output terminals,
so it determines many of the instrument's specifications.
Design goals that were of particular concern during the
development of the amplifier were:
â€¢ Output amplitude 0. IVp-p to 5 Vp-p in a Â± 5V window
â€¢ Minimum output rise time 900 ps
â€¢ Output high/low level drift with temperature less than

2% of amplitude
â€¢ Output transition nonlinearity less than 3%.

V0 (F loa t)

O U T

GaAs
MESFET 1C

V n = - 2 5 V

F ig . 10 . D iag ram o f t he ou tpu t s tage w i t h b i po la r l i nea r amp l i f i e r 1C , common-ga te GaAs
MESFET 1C, and postattenuator.

AUGUST 1990 HEWLETT-PACKARD JOURNAL 91

© Copr. 1949-1998 Hewlett-Packard Co.

Current Handl ing at Speed
The output pulses must be delivered into a 50Ã1 external

load in parallel with a 50Ã1 termination in the instrument.
This means that the amplifier must deliver output current
swings up to 200 mA. Offsets up to 5V can be generated
by adding a dc current at the amplifier output, so the 1C
need "only" handle the pulse part of the instrument output.

As in earlier HP pulse generators, the HP 8130A's output
amplifier is configured as a transconductance amplifier,
turning an input voltage pulse into an output current. This
linear amplifier was designed in HP's mature 5-GHz bipolar
1C technology to minimize the risk of unpleasant surprises
with current handling and speed requirements.

Device Breakdown Vol tage
Modern fast bipolar technologies have fairly low break

down voltages, and in the case of the linear amplifier the
collector-to-emitter breakdown voltage specification of 6V
was the most critical. Obviously, this clashes with a 10V
output voltage range. Floating the whole chip, along with
all its supplies and bias voltages, with the output offset
reduces the Vce requirement to about 6V, equal to the
maximum output pulse amplitude plus IV for Vbe and a
minimal safety margin. However, nothing prevents the user
from letting the instrument output run open so that the
amplifier sees a 50Ã1 load instead of the specified 25Ã1, thus
doubling the output swing.

Two more measures had to be combined with the floating

stage at the output with a drain-to-source breakdown volt
age of 10V has ample margin to handle normal operating
conditions, and a peak detector opens a disable relay when
the output amplitude exceeds about 7V p-p, taking care of
the open-output case.

Ampli tude Range, Lineari ty, and Stabi l i ty
The linear amplifier is configured as an emitter-degener

ated differential pair with a two-quadrant analog multiplier
cell on top (see Fig. 10). The differential pair Q1(Q2 acts
as a precise, linear voltage-to-current converter. The mul
tiplier cell Qs, Q4, Qs, Qg takes care of the output amplitude
adjustment since any current fed into its control port V is
subtracted from the differential pair's collector currents on

their way to the output pads OUT and OUT/.
Unfortunately, when driven with tail currents switched

all the way from side to side, these multiplier cells are only
linear and dynamically well-behaved over a gain range of
about 1 to 1/3 (a gain of 1 means that all the differential-pair
current goes to the output pads). This is a far cry from the
gain range specification of 50:1.

The solution to the gain range problem is to use three
binary-weighted amplifier/multiplier combinations in par
allel (only one is shown in Fig. 10), each running at a gain
of either 0 (off) or 1/3 to 1 (on). Their currents are 4/7, 2/7,
and 1/7 of the 200-mA total. All three together cover
amplitudes of 5V to 5V/3 = 1.667V. Switching the largest
one off results in amplitudes from 5V x 3/7 = 2.86V to
5V x 1/7 = 0.71V, and the smallest one alone covers 5V/7
= 0.71V to 5V/21 = 0.24V. Finally, an external attenuator
takes care of the reduction down to the minimum
amplitude of 0.1V.

An amplifier/multiplier stage is switched off by sourcing
enough current into its multiplier control input to force its
gain to 0. Obviously, at that gain, linearity is not a concern
anymore. All stages that are on, that is, have a gain greater
than zero, are run at the same gain to avoid settling
anomalies.

Correction is required to meet the drift specification of
<2% over a 50Â°C temperature range. In the linear amplifier,
the temperature coefficient of the base current error is re
duced by a feedback loop that uses the external op amp
Ul as well as two on-rhin dummy transistors O7 and Q=
running at the same current densities as the amplifier and
multiplier transistors, respectively.

Acknowledgments
The authors would like to take this opportunity to thank

all of the people involved in the project. Particular thanks
go to HP's Microwave Technology Division, especially to
Allan Armstrong, who designed the GaAs FET cascode and
provided significant support in the design of the slope 1C,
and to Don Montgomery and Matt Borg, who tested the
GaAs ICs. The hybrid circuit is manufactured and tested
at HP's Colorado Springs Technology Center. Special
thanks to Dale Pittock for his contributions to the testing
and characterization of the hybrid.

Hewlet t -Packard Company, 3200 Hi l lv iew
Avenue, Palo Al to, Cal i forn ia 94304

ADDRESS CORRECTION REQUESTED

H E W L E T T - P A C K A R D J O U R N A L

August 1990 Volume 41 â€¢ Number 4

Technical Information from the Laborator ies of
Hewlett -Packard Company

Hewlet t -Packard Company, 3200 Hi l lv iew Avenue
Palo Alto, Cal i fornia 94304 U.S.A.

Hewlet t -Packard Marcom Operat ions Europe
P.O. Box 529

1180 AM Amste lveen, The Nether lands
Yokogawa-Hewlet t -Packard L td . , Suginami-Ku Tokyo 168 Japan

Hewlet t -Packard (Canada) Ltd.
6877 Goreway Dr ive, Miss issauga, Ontar io L4V 1M8 Canada

Fr= DICK DOLAN/BLDG16PUB

Bulk Rate
U.S. Postage

Paid
Hewlett-Packard

Company

00072856
446

DDIV 0000 Â£OBR

C H A N G E O F A D D R E S S : To subscribe, change your address, or delete your name from our mail ing l ist, send your request to Hewlett-Packard
Journal , 3200 Hi l lv iew Avenue, Palo Al to, CA 94304 U.S.A. Inc lude your o ld address label , i f any. Al low 60 days.

5953-8582

© Copr. 1949-1998 Hewlett-Packard Co.

	HP Manufacturing Automation Protocol 3.0
	Overview of the OSI Reference Model
	Upper Layer Architecture for HP MAP 3.0 OSI Services
	Directory Services in the HP MAP 3.0 Environment
	HP MAP 3.0 File Transfer, Access, and Management/800
	HP MAP 3.0 Manufacturing Message Specification/800
	HP MMS/800 Services
	HP-UX Kernel Communications Modules for a Card-Based OSI Protocol Stack
	Interoperability Testing for HP MAP 3.0
	The HP MAP 3.0 Software Integration Lifecycle
	The Integrated Personal Development Environment
	500-MHz and 300-MHz Programmable Pulse Generators
	Hybrid Assembly
	A 500-MHz Pulse Generator Output Section
	A 300-MHz, Variable-Transition-Time Pulse Generator Output Section

