
H  E  W  L  E  T -  P A C K A R D  

JOURNAL 
June 1997 

H E W L E T T  P A C K A R D  
© Copr. 1949-1998 Hewlett-Packard Co.



H E W L E T T - P A C K A R D  

JOURNAL J u n e  1 9 9 7  V o l u m e  4 8  â € ¢  N u m b e r  3  

Articles 

A Lower-Cost  InkJet  Pr in ter  Based on a  New Pr in t ing  Per formance Arch i tec ture ,  by  Dav id  J .  
She/ ley ,  James Majewsk i ,  Mark  R.  Thackray ,  and John L  McWi l l iams 

12 PPA Pr inter  Sof tware Dr iver  Design,  by David M. Hal l ,  Lee W. Jackson,  Katr ina Hei /es,  Karen E.  Van 
der  Veer ,  and Thomas J.  Halpenny 

)  )  P P A  P r i n t e r  F i r m w a r e  D e s i g n ,  b y  E r i k  K i l k  

PPA Pr in ter  Cont ro l le r  ASIC Deve lopment ,  by  John L .  McWi l l iams,  Leann M.  MacMi l lan ,  B imal  
Pathak, and HarÃan A. Talley 

I  Next -Genera t ion  InkJet  Pr in thead Dr ive  E lec t ron ics ,  by  Huston I / I /  R ice  

I The Chip, Blanchard Microprocessor: A Highly Integrated System on a Chip, by Terry W. Blanchard and 
H r O  P a u l  G .  T o b i n  

A R Conf igurabi l i ty  of  the  PA 7300LC 

j  Funct iona l  Des ign o f  the  PA 7300LC,  by  Le i th  Johnson and Stephen R.  Undy 

Â¡ Timing Flexibility 

61 High-Performance Processor Design Guided by System Costs,  by David C.  Kubicek,  Thomas J.  
Su l l i van,  Ami tabh Mehra,  and John G.  McBr ide 

Executive Robin Steve BeitlerÂ» Managing Editor, Charles L Leath â€¢ Senior Editor, Richard P. Dolan â€¢ Assistant Editor, Robin Everest 
Pub l i ca t ion  Produc t ion  Manager ,  Susan  E .  Wr igh t  â€¢  D is t r ibu t ion  Program Coord ina to r ,  RenÃ©e D.  Wr igh t  â€¢  Layou t / I l l us t ra t ion ,  John  N icoara  
W e b m a s t e r ,  J o h n  H u g h e s  

A d v i s o r y  B o a r d  

Ra jeev  Co lo rado  In teg ra ted  C i r cu i t  Bus iness  D iv i s ion ,  Fon  Co l l i ns ,  Co lo rado  
W i l l i a m  W .  B r o w n ,  I n t e g r a t e d  C i r c u i t  B u s i n e s s  D i v i s i o n ,  S a n t a  C l a r a ,  C a l i f o r n i o  
R a j e s h  D e s a i ,  C o m m e r c i a l  S y s t e m s  D i v i s i o n ,  C u p e r t i n o ,  C a l i f o r n i a  
K e v i n  G .  E w e r t ,  I n t e g r a t e d  S y s t e m s  D i v i s i o n ,  S u n n y v a l e ,  C a l i f o r n i a  
B e r n h a r d  F i s c h e r ,  B o b l i n g e n  M e d i c a l  D i v i s i o n ,  B o b l i n g e n .  G e r m a n y  
D o u g l a s  G e n n e t t e n ,  G r e e l e y  H a r d c o p y  D i v i s i o n ,  G r e e l e y ,  C o l o r a d o  
Ga ry  Go rdon ,  HP  Labo ra to r i es ,  Pa lo  A l t o ,  Ca l i f o rn i a  
M a r k  O r e g o n  I n k J e t  S u p p l i e s  B u s i n e s s  U n i t ,  C o r v a l l i s ,  O r e g o n  
M a t t  J .  M a r l i n e .  S y s t e m s  T e c h n o l o g y  D i v i s i o n ,  R o s e v i l l e ,  C a l i f o r n i a  
K i y o y a s u  H i w a d a ,  H a c h i o j i  S e m i c o n d u c t o r  T e s t  D i v i s i o n ,  T o k y o ,  J a p a n  
B r y a n  H o o g ,  L a k e  S t e v e n s  I n s t r u m e n t  D i v i s i o n ,  E v e r e t t ,  W a s h i n g t o n  
C .  S t e v e n  J o i n e r ,  O p t i c a l  C o m m u n i c a t i o n  D i v i s i o n ,  S a n  J o s e ,  C a l i f o r n i a  
R o g e r  L .  J u n g e r m a n ,  M i c r o w a v e  T e c h n o l o g y  D i v i s i o n ,  S a n t a  R o s a ,  C a l i f o r n i a  
F o r r e s t  K e l l e r t ,  M i c r o w a v e  T e c h n o l o g y  D i v i s i o n ,  S a n t a  R o s a ,  C a l i f o r n i a  
Ruby  B .  Lee ,  Ne tworked  Sys tems  Group ,  Cuper t i no ,  Ca l i f o rn ia  
S w e e  K w a n g  L i m ,  A s i a  P e r i p h e r a l s  D i v i s i o n ,  S i n g a p o r e  
A l f r e d  M a u t e ,  W a l d b r o n n  A n a l y t i c a l  D i v i s i o n ,  W a l d b r o n n ,  G e r m a n y  

A n d r e w  M c L e a n ,  E n t e r p r i s e  M e s s a g i n g  O p e r a t i o n ,  P i n e w o o d ,  E n g l a n d  
Dona View, Cal i fornia Worldwide Customer Support  Div is ion,  Mountain View, Cal i fornia 
M i t c h e l l  J .  M l i n a r ,  H P - E E s o f  D i v i s i o n ,  W e s t l a k e  V i l l a g e ,  C a l i f o r n i a  
M i c h a e l  P .  M o o r e ,  V X I  S y s t e m s  D i v i s i o n ,  L o v e l a n d ,  C o l o r a d o  
M .  S h a h i d  M u j t a b a ,  H P  L a b o r a t o r i e s ,  P a l o  A l t o ,  C a l i f o r n i a  
S t e v e n  J .  N a r c i s o ,  V X I  S y s t e m s  D i v i s i o n ,  L o v e l a n d ,  C o l o r a d o  
D a n n y  J .  O l d f i e l d ,  E l e c t r o n i c  M e a s u r e m e n t s  D i v i s i o n ,  C o l o r a d o  S p r i n g s ,  C o l o r a d o  
G a r r y  O r s o l i n i ,  S o f t w a r e  T e c h n o l o g y  D i v i s i o n ,  R o s e v i l l e ,  C a l i f o r n i a  
Ken  Pou l t on ,  HP  Labo ra to r i es ,  Pa lo  A l t o ,  Ca l i f o rn i a  
G i i n t e r  R i e b e s e l l ,  B o b l i n g e n  I n s t r u m e n t s  D i v i s i o n ,  B o b l i n g e n ,  G e r m a n y  
M i c h a e l  B .  S a u n d e r s ,  I n t e g r a t e d  C i r c u i t  B u s i n e s s  D i v i s i o n ,  C o r v a l l i s ,  O r e g o n  
P h i l i p  S t e n t o n ,  H P  L a b o r a t o r i e s  B r i s t o l ,  B r i s t o l ,  E n g l a n d  
S tephen  R .  Undy ,  Sys tems  Techno logy  D i v i s i on ,  Fo r t  Co l l i ns ,  Co lo rado  
J i m  W i l l i t s ,  N e t w o r k  a n d  S y s t e m  M a n a g e m e n t  D i v i s i o n ,  F o r t C o l l i n s ,  C o l o r a d o  
K o i c h i  Y a n a g a w a ,  K o b e  I n s t r u m e n t  D i v i s i o n ,  K o b e ,  J a p a n  
B a r b a r a  Z i m m e r .  C o r p o r a t e  E n g i n e e r i n g ,  P a l o  A l t o ,  C a l i f o r n i a  

Â©Hewle t t -Packa rd  Company  1997  Pr in ted  i n  U .S .A .  T h e  H e w l e t t - P a c k a r d  J o u r n a l  i s  p r i n t e d  o n  r e c y c l e d  p a p e r .  

June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



j  Ver i fy ing the Correctness of  the PA 7300LC Processor ,  by  Duncan Weir  and Paul  G.  Tobin  

Random Code Generation 71 
73 

82 

An Entry-Level  Server  wi th  Mul t ip le  Per formance Points ,  by L in  A.  A/ease,  K i rk  M.  Bresniker ,  
Char les  J .  Zacky,  MichaelJ .  Greens ide,  and Al isa Sandoval  

A  Low-Cost  Works ta t ion  w i th  Enhanced Per formance and I /O Capab i l i t ies ,  by  Scot t  P .  A l lan ,  Bruce 
P. Bergmann, Ronald P. Dean, Diane Jiang, and Dennis L Floyd 

)  Tes t ing  Sa fe ty -Cr i t i ca l  So f tware ,  by  Evange los  N iko la ropou los  

J y Another Approach to Test ing:  Inspections 

A High-Leve l  Programming Language fo r  Tes t ing  Complex  Safe ty -Cr i t i ca l  Sys tems,  by  Andreas 
Pirrung 95 

'  Structural Testing, Random Testing, and Statistical Structural Testing 

I  An  Au toma ted  Tes t  Eva lua t i on  Too l ,  by  Jo rg  Schwer ing  

109 Effect ive Test ing of  Local ized Sof tware,  by Evangelos Niko laropoulos,  JÃ³rg Schwer ing,  and 
Andreas P i r rung 

Departments 

4  I n  t h i s  I s s u e  
5  C o v e r  
5  W h a t ' s  A h e a d  

1 1 2  A u t h o r s  

T h e  H e w l e t t - P a c k a r d  J o u r n a l  i s  p u b l i s h e d  b i m o n t h l y  b y  t h e  H e w l e t t - P a c k a r d  C o m p a n y  t o  r e c o g n i z e  t e c h n i c a l  c o n t r i b u t i o n s  m a d e  b y  H e w l e t t - P a c k a r d  ( H P )  
p e r s o n n e l .  w a r r a n t i e s  t h e  i n f o r m a t i o n  f o u n d  i n  t h i s  p u b l i c a t i o n  i s  b e l i e v e d  t o  b e  a c c u r a t e ,  t h e  H e w l e t t - P a c k a r d  C o m p a n y  d i s c l a i m s  a l l  w a r r a n t i e s  o f  m e r c h a n t  
ab i l i t y  damages ,  ind i rec t ,  fo r  a  par t i cu la r  purpose  and  a l l  ob l iga t ions  and  l iab i l i t i es  fo r  damages ,  inc lud ing  bu t  no t  l im i ted  to  ind i rec t ,  spec ia l ,  o r  consequent ia l  
d a m a g e s ,  p u b l i c a t i o n .  a n d  e x p e r t ' s  f e e s ,  a n d  c o u r t  c o s t s ,  a r i s i n g  o u t  o f  o r  i n  c o n n e c t i o n  w i t h  t h i s  p u b l i c a t i o n .  

S u b s c r i p t i o n s :  T h e  H e w l e t t - P a c k a r d  J o u r n a l  i s  d i s t r i b u t e d  f r e e  o f  c h a r g e  t o  H P  r e s e a r c h ,  d e s i g n  a n d  m a n u f a c t u r i n g  e n g i n e e r i n g  p e r s o n n e l ,  a s  w e l l  a s  t o  
q u a l i f i e d  y o u  i n d i v i d u a l s ,  l i b r a r i e s ,  a n d  e d u c a t i o n a l  i n s t i t u t i o n s .  T o  r e c e i v e  a n  H P  e m p l o y e e  s u b s c r i p t i o n  y o u  c a n  s e n d  a n  e - m a i l  m e s s a g e  i n d i c a t i n g  y o u r  
H P  e n t i t y  a n d  m a i l s t o p  t o  I d c j i t p r o @ h p - p a l o a l t o - g e n 1 3 . o m . h p . c o m .  Q u a l i f i e d  n o n - H P  i n d i v i d u a l s ,  l i b r a r i e s ,  a n d  e d u c a t i o n a l  i n s t i t u t i o n s  i n  t h e  U . S .  c a n  r e q u e s t  
a  s u b s c r i p t i o n  t o :  e i t h e r  w r i t i n g  t o :  D i s t r i b u t i o n  M a n a g e r ,  H P  J o u r n a l ,  M / S  2 0 B H ,  3 0 0 0  H a n o v e r  S t r e e t ,  P a l o  A l t o ,  C A  9 4 3 0 4 ,  o r  s e n d i n g  a n  e - m a i l  m e s s a g e  t o :  
h p _ j o u r n a l @ h p . c o m .  W h e n  s u b m i t t i n g  a n  a d d r e s s  c h a n g e ,  p l e a s e  s e n d  a  c o p y  o f  y o u r  o l d  l a b e l  t o  t h e  a d d r e s s  o n  t h e  b a c k  c o v e r .  I n t e r n a t i o n a l  s u b s c r i p t i o n s  
c a n  b e  r e q u e s t e d  b y  w r i t i n g  t o  t h e  H P  h e a d q u a r t e r s  o f f i c e  i n  y o u r  c o u n t r y  o r t o  D i s t r i b u t i o n  M a n a g e r ,  a d d r e s s  a b o v e .  F r e e  s u b s c r i p t i o n s  m a y  n o t  b e  a v a i l a b l e  
in  a l l  coun t r ies .  

T h e  H e w l e t t - P a c k a r d  J o u r n a l  i s  a v a i l a b l e  o n l i n e  v i a  t h e  W o r l d  W i d e  W e b  ( W W W ) .  T h e  u n i f o r m  r e s o u r c e  l o c a t o r  ( U R L )  i s ;  

ht tp: / /www.hp.com/hpj / journal .h t rn l  

S u b m i s s i o n s :  H P -  a r t i c l e s  i n  t h e  H e w l e t t - P a c k a r d  J o u r n a l  a r e  p r i m a r i l y  a u t h o r e d  b y  H P  e m p l o y e e s ,  a r t i c l e s  f r o m  n o n - H P  a u t h o r s  d e a l i n g  w i t h  H P -  
r e l a t e d  c o n s i d e r e d  o r  s o l u t i o n s  t o  t e c h n i c a l  p r o b l e m s  m a d e  p o s s i b l e  b y  u s i n g  H P  e q u i p m e n t  a r e  a l s o  c o n s i d e r e d  f o r  p u b l i c a t i o n .  B e f o r e  d o i n g  a n y  w o r k  o n  a n  
a r t i c l e ,  p l e a s e  c o n t a c t  t h e  e d i t o r  b y  s e n d i n g  a n  e - m a i l  m e s s a g e  t o  h p _ j o u r n a l @ h p . c o m .  

Copyr ight  pub l ica t ion 1997 Hewlet t -Packard Company.  A l l  r ights  reserved.  Permiss ion to  copy wi thout  fee a l l  o r  par t  o f  th is  pub l ica t ion is  hereby granted prov ided that  
1 1  t h e  c o p i e s  a r e  n o t  m a d e ,  u s e d ,  d i s p l a y e d ,  o r  d i s t r i b u t e d  f o r  c o m m e r c i a l  a d v a n t a g e ;  2 )  t h e  H e w l e t t - P a c k a r d  C o m p a n y  c o p y r i g h t  n o t i c e  a n d  t h e  t i t l e  o f  t h e  
p u b l i c a t i o n  a n d  d a t e  a p p e a r  o n  t h e  c o p i e s ;  a n d  3 )  a  n o t i c e  a p p e a r s  s t a t i n g  t h a t  t h e  c o p y i n g  i s  b y  p e r m i s s i o n  o f  t h e  H e w l e t t - P a c k a r d  C o m p a n y .  

Please Hewlett-Packard inquiries, submissions, and requests to: Managing Editor, Hewlett-Packard Journal, M/S 20BH, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A. 

June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



In this Issue 
One of  the most  compet i t ive areas in the personal  computer  market  today is  the 
race  to  The  p r in t i ng  so lu t i ons  to  mee t  the  needs  o f  the  en t i re  fam i l y .  The  
speci f icat ions for  a  successfu l  pr in ter  in  th is  arena inc lude technolog ies that  
p rov ide  con t inuous  improvement  in  th roughput  and  p r in t  qua l i t y ,  low cos t ,  
at t ract ive smal l  s ize,  quiet  operat ion,  ease of  use,  and designs that  lend them 
selves to h igh-volume product ion.  

Design inkjet  at  Hewlett-Packard div is ions that are responsible for HP color inkjet  
pr in ters  dec ided to  take a phased approach to  meet  the chal lenges posed by 
t h e s e  r e s u l t i n g  T h e  H P  D e s k J e t  8 2 0 C  ( p a g e  6 )  i s  t h e  f i r s t  p r o d u c t  r e s u l t i n g  

f r o m  t h i s  a n d  p r o d u c t  p l a n .  T h e  D e s k J e t  8 2 0 C  c o n t a i n s  a  w r i t i n g  s y s t e m ,  p r i n t  m e c h a n i s m ,  a n d  
package leveraged f rom the HP DeskJet  850C and a new e lect ron ic ,  f i rmware,  and sof tware arch i tec ture 
ca l led the Pr in t ing Per formance Arch i tecture (PPA).  

PPA grew out  o f  the recogni t ion that  newer  generat ions o f  personal  computers  have the bandwidth  to  
take printer, software of the computing tasks typically relegated to the printer, and many software applications 
are rapid ly moving away f rom MS-DOS'" '  to a Microsof t  WindowsÂ® environment.  With th is real izat ion,  
the des ign teams developed a sof tware,  f i rmware,  and d ig i ta l  e lec t ron ics  arch i tec ture that  uses the 
comput ing resources of  the PC instead of  dupl icat ing these resources in  the pr in ter .  This  arch i tecture 
helped ROM lower the cost of the printer by reducing RAM from 1M bytes to 128K bytes, ROM from 2M 
bytes to 64K bytes, and the gate count of the largest ASIC by 25%. 

With DeskJet reduction in the logic-supporting hardware in the DeskJet 820C, printer functions such as swath 
cut t ing the data format t ing were moved in to  the sof tware dr iver .  The ar t ic le  on page 12 d iscusses the 
design of printer, PPA printer software driver, which implements functions tradit ionally found in the printer, 
hand les  PPA communica t ion  be tween the  hos t  and the  pr in te r ,  and prov ides  PCL emula t ion  fo r  DOS 
appl icat ion support .  

Because so many pr in ter  f  unct ions are implemented in  the host  sof tware dr iver ,  f  ewer  f  unct ions are 
needed "Don't  the f i rmware f  or the DeskJet820C. As described in the art ic le on page 22, "Don't  touch the 
do ts "  the  so  f i rmware  des igners '  go lden ru le .  Th is  means tha t  f i rmware  in  the  p r in te r  was  des igned so  
that it commands motor responsible for taking the formatted data from the host and sending commands to the motor 
and  p r i n t  a l so  t o  p lace  the  do ts  a t  t he  app rop r i a te  p laces  on  the  pape r .  The  p r i n te r  f i rmware  i s  a l so  
responsib le for  user  in ter face and status funct ions.  

ASIC p r in thead  fo r  the  PPA pr in te r  con t ro l le r  and  the  InkJe t  p r in thead  d r i ve  e lec t ron ics  i s  descr ibed  
in  the ar t ic les on pages 31 and 38 respect ive ly .  A typ ica l  d ig i ta l  contro l ler  for  a  pr in ter  conta ins a micro 
processor  to  contro l  the pr in ter ,  RAM for  incoming data,  ROM for  f i rmware,  and custom log ic  for  pr in ter -  
s p e c i f i c  t o  F o r  t h e  D e s k J e t  8 2 0 C ,  t h e s e  f u n c t i o n s  w e r e  i n t e g r a t e d  o n  o n e  c h i p  a n d  o p t i m i z e d  t o  
meet responsible requirements of PPA. The pen drive electronics are responsible for driving signals to eject the 
ink f rom area pen and provid ing a control  system to maintain a constant  temperature in the act ive area of  
the pen. integrated the DeskJet 820C's pen drive electronics, the functions of four ICs were integrated in one 
chip, carriage's assembly. the electronics related to the pens were moved onto the carriage's printed circuit assembly. 

Today,  focus design decis ions associated wi th developing a microprocessor not  only focus on technical  
requi rements  such as a h igher  speed,  but  a lso on bus iness and market ing requi rements .  A few years 
ago HP higher-volume developing a line of PA-RISC processors to meet the needs of higher-volume and more 
cost -sens i t ive  products .  The ar t ic le  on page 43 in t roduces four  ar t ic les  that  descr ibe the la tes t  proces 
sor in this l ine, the HP PA 7300LC. The HP PA 7300LC processor is opt imized for entry- level to midrange 
h igh-vo lume systems such as worksta t ions and servers .  

The PA 7300LC processor is the resul t  of  leveraging the superscalar CPU core f rom the HP PA 7100LC 
processor ,  adding a large embedded pr imary cache,  and reducing the ch ip area and p ipe l ine s ta l ls .  The 
art ic le I /O page 48 descr ibes the PA 7300LC microarchi tecture,  the CPU core,  and the memory and I /O 
con t ro l le r .  The  leverag ing  e f fo r t ,  the  ch ip  a rea  reduc t ion ,  and  the  redundant  cache  RAM ar rays  a re  
discussed in the art ic le on page 61. 

June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



â€” 

No matter verification much leveraging is done or how mature the 1C fabrication process, functional verification 
of a new describes is always an important step in the process. The article on page 69 describes the processes 
used in the presi l icon and posts i l icon phases to ver i fy  the correctness of  the PA 7300LC processor.  

The HP 9000 D-c lass server  (page 73)  and the HP 9000 B-c lass workstat ion (page 82)  are examples of  
products that  use the PA 7300LC processor .  The D-c lass server  is  targeted for  the h igh-volume envi ron 
ment of  departmental  and branch comput ing.  The art ic le includes a comparison between di f ferent  models 
of  D-class servers that  use HP processors other than the PA 7300LC. The HP 9000 B-class workstat ion is 
comparably  pr iced to  the HP 9000 Model  715 workstat ion but  has super ior  per formance and I /O capabi l i  
t ies.  The art ic le focuses on how cooperat ive engineer ing between the var ious ent i t ies involved in product 
development helped to reduce the t ime to market  for  th is  product .  

So f tware  tes t  i s  a lways  one  o f  the  mos t  c r i t i ca l  phases  o f  the  so f tware  deve lopment  p rocess .  I f  t es t  
p lanning is  la te or  inadequate,  the test  ef for t  can cause late,  or  worse,  low-qual i ty  products.  The level  of  
test ing in the pass/ fa i l  cr i ter ia vary wi th the type of  sof tware.  For example,  sof tware used in v ideo games 
would software monitors. tested the same way or have the same pass/fail criteria as software used in patient monitors. 
The ar t ic les beginn ing on page 89 descr ibe the processes,  languages,  and too ls  the authors have devel  
oped safety-critical software safety-critical software. In this case the safety-critical software involves software used 
in the parameters critically patient monitors, which monitor the physiological parameters of critically il l patients. 

The  evo lu t ion  o f  the  so f tware  tes t ing  p rocess  fo r the  HP OmniCare  pa t ien t  mon i to rs  and  resu l t ing  tes t  
tooling high-level testware are described in the f irst art icle. The next art icle (page 95) describes a high-level 
programming language ca l led ATP (Automat ic  Test  Processor) ,  which a l lows the in tegrat ion of  ex is t ing 
test processors used for val idat ion. The AutoCheck program (page 103) evaluates test f i les and documents 
the resul ts of  the evaluat ions.  The f inal  ar t ic le (page 109) descr ibes how these test  tools can be used to 
help in test ing local ized sof tware.  

C.L. Leath 
Managing Edi tor  

Cover 
The cover Pr int ing an art ist ic rendi t ion of  the change in the pr int ing model brought on by the Pr int ing 
Performance Archi tecture (PPA) implemented in the HP DeskJet  820C. The top f igure depicts pr int ing 
before the PPA where most  of  the pr int ing logic  res ides in the pr inter .  The lower f igure depicts  pr int ing 
after computer. PPA where most of the printing logic resides in the host computer. 

What's Ahead 
Featured in our August issue wi l l  be:  
The design and ver i f icat ion of  the HP PA 8000 and PA 8200 four-way superscalar CPUs 
The HP OpenCal l  fami ly  o f  te lecommunicat ions p la t forms based on in te l l igent  network concepts  
Sof tware to  tes t  po l ic ing in  ATM networks 
An ob jec t -or iented database management  sys tem for  la rge h is tor ica l  data  arch ives 
The HP 4500 benchtop induct ive ly  coupled p lasma mass spect rometer  
Five papers f rom the 1996 HP Design Technology Conference. 

Reminder 
Because we are get t ing ready for  a  new Journa l  des ign and focus ing on o ther  pro jec ts ,  we won ' t  be 
publ ishing an issue in October.  

June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



A Lower-Cost InkJet Printer Based on 
a New Printing Performance 
Architecture 
The HP DeskJet 820C printer is the first HP inkjet printer in an 
evolutionary product plan that takes advantage of computer and operating 
system trends to make inkjet printing affordable for more users. The 
printer's integrated software, firmware, and digital electronics 
architecture uses the computational resources in the PC instead of 
duplicating these resources in the printer. 

by David J. Shelley, James T. Majewski, Mark R. Thackray, and John L. Me Williams 

The two Hewlett-Packard divisions in Vancouver, Washington 
are responsible for establishing and maintaining HP color 
inkjet printers as market leading personal products in the 
home and office computing environments. These divisions 
have a ten-year history of successful products starting with 
the original HP DeskJet printer in 1986 and culminating 
most recently with the introduction of the new HP DeskJet 
820C (Fig. 1) in the spring of 1996. 

Our competitors, of course, have also been introducing 
products, some of which incorporate newly developed tech 
nologies that strongly challenge the performance, print qual 
ity, and cost-effectiveness of our own. It is clear that our 
competitors are here for the long term, so we must develop 
long-term strategies to compete with them. 

Aside from competition, we also have before us an excellent 
opportunity to broaden our printing solutions to embrace 
the needs of the entire family, a step well beyond the tradi 
tional "take work home" professional who has been our 
mainstay home customer. These new customers have dis 
tinctly different needs that will require insightful under 
standing as well as timely incorporation of focused innova 
tions in our products. 

Fig. 1. HP DeskJet 820C color inkjet printer. 

At the beginning of the HP DeskJet 820C project, it was 
clear that our ability to retain and grow our market leader 
ship depended heavily upon our ability to deal with these 
two powerful market dynamics. We knew that we had to 
simultaneously stay ahead of the competition and satisfy 
the rapidly increasing breadth of home printing needs. The 
ingredients for long-term success in this endeavor were 
equally clear: 
Technologies that result in continuously improving print 
throughput and quality 
Designs that earn adequate profits at reduced customer 
prices 
Designs that appeal to home customers by virtue of small 
size, attractive industrial designs, very quiet operation, and 
unparalleled ease of use 
Designs capable of high-volume production at multiple 
international factory sites 
The ability to design products to hit narrow market 
windows. 

We realized that no single product program could success 
fully satisfy all of these criteria, so we needed to develop a 
phased approach. We decided that each new product devel 
opment effort should leverage previous capabilities while 
incorporating a small set of new and innovative capabilities 
focused on our customer needs. These new capabilities 
would then be leveraged forward into succeeding efforts. 
In this fashion we could ensure a timely series of product 
introductions, each building upon previous successes and 
incrementally providing new capabilities that would ulti 
mately satisfy all of our strategic initiatives. In addition to 
the market timeliness gained by a phased approach, we also 
knew that this plan would use scarce development resources 
in the most efficient manner. 

Design Objectives 
The HP DeskJet 820C printer is the first product in this evo 
lutionary product plan. In keeping with our overall strategy, 
the primary objectives of the development program were to: 
Leverage the speed and print quality afforded by the new 
writing system developed for the HP DeskJet 850C 

June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



' Leverage the printing mechanism of the HP DeskJet 850C 
' Innovate by offering this printing capability at a greatly 

reduced price for home customers 
â€¢ Introduce in the spring of 1996. 

While reduced cost and a spring 1996 introduction were 
clearly the primary objectives for the HP DeskJet 820C effort, 
we also decided to begin our journey towards consumer 
design by making industrial design changes that fit within 
the constraints of a leveraged mechanism and package. 

Since we had decided to leverage the writing system, print 
mechanism, and package, we needed to examine the elec 
tronic, firmware, and software driver subsystems to find cost 
reduction opportunities. Based on our initial investigation 
we set a program goal to reduce direct material cost by 30%. 

Design Approaches 
Our first design tactic recognized two trends. First, newer 
generations of personal computers have more than enough 
bandwidth to take on some of the computing load that has 
until now resided in the printer itself. Second, software ap 
plications are rapidly moving away from MS-DOSÂ® and into 
the Microsoft WindowsÂ® environment. In view of these 
trends, we decided that the HP DeskJet 820C printer would 
not support printing from standalone DOS applications. This 
enabled us to develop an integrated software, firmware, and 
digital electronics architecture that uses the computational 
resources in the PC instead of duplicating these resources in 
the printer. We call the architecture Printing Performance 

Architecture, or PPA. This architectural choice enabled us 
to achieve half of our 30% cost reduction goal by reducing 
RAM from 1M bytes to 128K bytes, ROM from 2M bytes to 
64K bytes, and gate count in our largest ASIC by 25%. At the 
same time, higher-power PCs enabled us to maintain and in 
many cases improve system throughput. 

A second critical design decision was to disallow simulta 
neous firing of the black and color print cartridges during a 
single print swath. While this strategy achieved an additional 
20% of our overall goal, the obvious risk was a reduction in 
throughput for documents that contain juxtaposed black 
and color. However, we felt that our new system architec 
ture would mitigate this risk and still allow us to meet our 
performance objectives. This single decision allowed us to 
simplify the drive electronics for the print cartridge to the 
point where they could be located on a small, carriage- 
mounted printed circuit assembly rather than on the main 
logic printed circuit assembly. This change, in turn, enabled 
two other very significant cost reductions. First, the interface 
between the logic and carriage printed circuit assemblies 
was dramatically simplified, allowing the use of standard 
and easily available cables and connectors rather than the 
custom designs that we had previously used. Second, using 
this new partitioning of analog functions, the design team 
was able to implement the required capability using two 
custom analog ASICs in contrast to the four that had been 
used in the DeskJet 850C. 

An additional 10%) of our cost goal was achieved by capitaliz 
ing on three cost saving opportunities in our power supply. 
First, the initial IIP DeskJet 850 power supply was specified 
with significant margin to allow flexibility for the newly de 
veloped writing system in that product. However, the HP 
DeskJet 820C development team had the advantage of a 

stable writing system and therefore could specify power 
needs more precisely. Second, we modified the user inter 
action model with the printer's power functions and were 
able to eliminate some of the complex capabilities that were 
included in the HP DeskJet 850. Third, we specified our 
power supply at a ven,- high level of abstraction to use the 
design expertise of our vendor base to deliver cost-optimal 
implementations. 

Several sources contributed to the final 20% of our cost 
reduction goal. Our new system architecture and new parti 
tioning of analog functionality allowed a significant reduction 
in the size of our printed circuit assemblies. Direct material 
cost savings were realized by elimination of the connectors 
and support components for interconnecting to Apple PC's. 
Focused design work to cost -optimize our EMI and ESD 
solutions eliminated many discrete electronic components. 

As a result of our plan to leverage and our focus on limited 
but meaningful innovation, the HP DeskJet 820C was intro 
duced to the market on schedule in the spring of 1996 fol 
lowing a development effort that exceeded objectives by 
achieving a 33% direct material cost reduction and actual 
performance nearly twice our initial expectations. The 
techniques responsible for this success have been carried 
forward and are already incorporated into the next prod 
ucts in our evolutionary process. 

Printing Performance Architecture 
The process of printing a document created on a computer 
involves several steps to transform and prepare the informa 
tion. In the traditional Windows model used by inkjet print 
ers, the printer driver software receives a description of the 
page from the application, transforms that description into 
a mechanism independent format that can be understood by 
the printer, and encodes it into a standard printer language. 
The encoded description is then transferred to the printer. 
The printer decodes the data and formats it for its particular 
printing mechanism. To encode the information for transfer 
to the printer, Hewlett-Packard developed a standard lan 
guage called PCL (Printer Control Language). Because of 
the widespread use of HP printers, this language has become 
a de facto standard. PCL allows the computer to prepare an 
image for printing without detailed knowledge of the me 
chanical details of the printer. 

For the Microsoft Windows environment, HP has always 
developed the software drivers for its inkjet printers. In the 
Windows model, the application sends a page description to 
the driver through the operating system. The description is 
in the form of drawing objects (lines, rectangles, text, etc.). 
The driver then rasterizes the description. Rasterization is 
the process of mapping the page description to an X-Y plane 
or bitmap. At this point, the data still must undergo several 
more transformations before it can be used to print. For ex 
ample, the first bitmap may be 24-bit data at 300 dpi, where 
as the inkjet mechanism may be 600 dpi and only able to put 
one of four colors at each pixel (black; cyan, magenta, yel 
low). Traditionally, the driver performed some of the needed 
transformations, but left many of the more compute-intensive 
ones to dedicated hardware and firmware in the printer. 

After the driver has performed all of its computations, it 
encodes the information using the subset of PCL needed for 
bitmapped data. The printer in turn decodes the PCL and 

June l!i<)7 Hewlett-Packard Journal 
© Copr. 1949-1998 Hewlett-Packard Co.



Host Computer Printer 

I/O Data 
Formatter 

Hardware  
Data Path 

Printing 
Mechan ism 

Fig. 2. Traditional PCL printing model. 

performs all of the necessary further computations to format 
the data for the printing mechanism. Manipulations the 
printer must perform include, but are not limited to, some 
color transformations, cutting the data into individual swaths, 
and separating the data into columns (inkjet cartridges are 
composed of two columns of staggered nozzles). This 
process is diagrammed in Fig. 2. 

The process in the MS-DOS environment is similar with two 
exceptions. One, the application must perform the rasteriza 
tion for all graphics and PCL encoding, and two, the printer 
will accept nonrasterized text, alleviating the need for the 
application to do it. Because of this second difference, pre 
vious inkjet printers were required to have extensive memory- 
intensive fonts built into them. In addition, the printer had to 
contain firmware and hardware to rasterize the fonts. Since 
the data manipulations performed were extensive, they 
required a powerful microprocessor and significant amounts 
of dedicated hardware. 

The concept of the new Printing Performance Architecture, 
or PPA, is to change this model by eliminating some of the 
steps. Because modern personal computers have powerful 
microprocessors and a large amount of system memory, the 
task of data formatting for the print mechanism is moved 
entirely to the host computer. Also, because the data is no 
longer in a PCL-compatible format, PCL is not used to trans 
mit the data to the printer. Instead, a very simple proprietary 
protocol was developed. The protocol is simple enough that 
the hardware can automatically depacketize the data without 
help from the firmware. The data is then directly used to print 
the image on the page. This process is diagrammed in Fig. 3. 

Advantages of PPA 
The primary advantages of PPA are cost and performance. A 
PPA printer can deliver performance similar to a traditional 
non-PPA printer at a reduced cost. Alternatively, it can deliver 
higher levels of performance at a similar cost. The reasons 
for the cost advantage fall into two areas: less memory is 
required (both RAM and ROM), and a lower-performance 
microprocessor can be used in the printer because the micro 
processor doesn't have to touch the data. 

Memory costs are a significant portion of the material cost 
of a low-end printer. A PPA printer requires significantly less 
ROM and RAM. First, the PPA printer doesn't have to store 
any internal fonts. Traditional printers supported both the 
Windows environment and the DOS environment. The print 
ing model in the DOS environment requires the printer to 
store font information. A DOS application sends an ASCII 

code for the desired text character. To print that character, 
the printer needs a bitmap for that character in its ROM. 
In contrast, applications in the Windows environment send 
only bitmapped graphic information to the printer, never 
ASCII text. Because the PPA printer is designed exclusively 
for the Windows environment, it doesn't need to store the 
fonts in ROM. 

Second, because the printer doesn't do any PCL decoding, 
swath cutting, or data formatting, the printer requires much 
less firmware, again saving ROM. The primary functions of 
the printer firmware are mechanism control, input/output, 
and the user interface. In the HP DeskJet 820C, the firmware 
is stored in only 64K bytes of ROM. Because there is so little, 
it was possible to integrate the ROM into the digital ASIC. 
Previous non-PPA printers of similar capability used 512K 
bytes or more of ROM. 

Finally, because the processor doesn't touch the data and 
doesn't need to create any intermediate forms of the image 
data, the printer requires less RAM. The HP DeskJet 820C 
uses a 128K-byte DRAM. The previous generation, non-PPA 
printer used 512K to 1M bytes of RAM. Because there are 
fewer memory ICs, the memory cost for a PPA printer is 
much lower. The reduced number of memory devices also 
reduces the printed circuit board area, again saving cost. 

The second factor in saving cost comes from the need for 
less microprocessor horsepower. In a PPA printer, the pro 
cessor does not do swath cutting and formatting of the data. 
Its primary functions are mechanism control, inputA)utput, 
and the user interface. This requires a less complex and con 
sequently less expensive microprocessor. The HP DeskJet 
820C uses a Motorola 68ECOOO. The 68ECOOO can be config 
ured with either an 8-bit or a 16-bit data bus. In the HP Desk 
Jet 820C, the processor is used in 8-bit mode. This reduces 
the bus width in the digital custom ASIC, again saving area 
and hence cost. 

Finally, because of the simplified data path in the printer (the 
data path is the path the data takes from the input/output 
port, through the ASIC, and out to the print cartridge), it was 
possible in the HP DeskJet 820C to design a data path in 
which the processor doesn't touch the image data. A dedi 
cated hardware data path is always much faster, albeit less 
flexible, than a data path in which the processor must trans 
form or handle the data. A full hardware data path is not 
limited to a PPA architecture, but is much easier to accom 
plish in a PPA printer because of the simplified data path. 

Host Computer Printer 

I/O Hardware  
Data Path 

Printing 
Mechan ism 

Fig. 3. New Printing Performance 
Architecture (PPA) printing model. 

8 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Challenges of PPA 
While PPA has some significant advantages, it also brings 
with it some challenges: 

â€¢ DOS is supported only through Windows and not in a 
standalone environment. 

â€¢ PPA hosts must be more powerful than hosts for an 
equivalent non-PPA printer. 

â€¢ The printer driver requires detailed knowledge of the 
printing mechanism. 

â€¢ PPA required a change in the development and manufac 
turing paradigm at the HP Vancouver Division. 

The PPA architecture does not support printing in the tradi 
tional standalone DOS environment. In the Windows envi 
ronment, all information sent to the printer is bitmapped 
graphics. The data is prepared under the control of a single, 
HP-designed and optimized printer driver. In the older DOS 
environment, application vendors write their own printer 
drivers. Applications send ASCII codes to the printer and 
expect the printer to use its own internal fonts to generate 
the bitmapped characters. The applications have no knowl 
edge of the printing mechanism and hence are unable to do 
any swath cutting or data formatting. 

The HP DeskJet 820C does support printing from a DOS 
application if the application is run under the Windows envi 
ronment. Windows allows DOS-only applications to be run 
in a DOS bo.r. Printing in this environment uses the standard 
Windows printing mechanism and hence the HP driver. 

PPA printers require a higher-powered host than non-PPA 
printers to achieve comparable levels of performance. 
Because the job of swath cutting and data formatting is now 
done by the PC, more computing power is required. On the 
HP DeskJet 820C, acceptable levels of performance are 
achieved with a 66-MHz Intel486-based machine with 8M 
bytes of RAM. 

PPA required a shift in the HP Vancouver Division's develop 
ment, and manufacturing paradigm. Having designed and built 
PCL-based printers for over 15 years, all of the division's tools 
and processes were centered around this type of printer. For 
instance, over the years the manufacturing and customer 
assurance organizations had developed many tools based 
around PCL printers for doing production tests and exercis 
ing the printer in environmental tests. None of these tools 
work with a PPA printer. Similarly, the firmware test organi 
zation had to revise its tests completely. Because the HP 
DeskJet 820C printer has only 64K bytes of ROM, extensive 
demo pages and self-test pages could no longer be included 
in the printer. 

Because of the high level of integration and because the 
architecture follows the paradigm that "the processor 
doesn't touch the dots," it is difficult to observe the flow of 
data through the machine. This made debugging problems 
during development quite challenging. This problem was 
solved in several steps. First, the ASIC design team did 
extensive simulations. Second, the team used a hardware 
emulator to emulate the digital ASIC. This emulator had a 
mechanism that provided ports to internal nodes so that 
they could be observed with a logic analyzer. Finally, simple 
patterns were devised and sent through the architecture that 
simplified problems and made debugging possible. 

Finally, in the PPA environment, the driver must have knowl 
edge of the printing hardware. This makes the driver less 
universal and the job of leveraging the driver to future prod 
ucts more difficult. The driver was carefully organized and 
modularized so the hardware dependent pieces can be 
changed while the underlying driver features can be lever 
aged into future products. 

Inside the Printer 
InkJet printing is a complicated process that involves tying 
together several electromechanical subsystems that work 
together to create the printed page. All inkjet printers con 
sist of these major subsystems regardless of the particular 
implementation used for each one. Fig. 4 shows the HP 
DeskJet 820C printer with its top cover removed and the 
major subsystems labeled. 

Paper Path. The paper path is responsible for moving paper 
through the printer. The user inserts paper or envelopes into 
the input tray. At the appropriate time, a single piece of 
paper is picked from the stack and begins moving through 
the printer. Each time the carriage finishes a pass over the 
paper, the paper is advanced an appropriate amount to pre 
pare for the next pass of the carriage. At the end of a page, 
the paper is "kicked," or deposited in the output tray, where 
the user can remove it. In the HP DeskJet 820C, a single 
electric motor is used to move the paper. Paper movement 
is open-loop â€” there is no feedback about the actual paper 

Print Cartridges 

Carriage 

Paper Path 

(a) 

Pen Server Station 

Carriage 

Digital  Electronics 

Carr iage Motor  

Paper Motor 

(III 

Fig. 4. HI' DeskJet 820C printer subsystems. 

.lime 1997 Hewlett-Packard Journal 9 

© Copr. 1949-1998 Hewlett-Packard Co.



position. The paper path in the HP DeskJet 820C gracefully 
handles a variety of paper sizes and thicknesses as well as 
envelopes. 

Carriage. The carriage holds the pens used in the printer. To 
print a swath of data, the printer moves the carriage across 
the page at a constant speed, firing the pens at appropriate 
times. A single motor is used to move the carriage. Carriage 
movement is a closed-loop process. The carriage's position 
is tracked using an LED, which shines on a photoreceptor 
and a strip of plastic made up of alternating light and dark 
regions placed between the LED and the photoreceptor. As 
the carriage moves across the page, logic recognizes when 
the LED is in front of a dark region and when it is in front 
of a transparent region. Using this information, it tracks the 
carriage's position on the page. In addition to holding the 
pens, the carriage holds a printed circuit board. On the 
board are parts that connect electrically to the pens and a 
portion of the electronics needed to drive the pens. In the 
HP DeskJet 820C, all electronics directly used to fire the 
pens are located on the carriage board (see article, page 38). 

Print Cartridges. The print cartridges in the HP DeskJet 820C 
are user-replaceable cartridges that contain both the ink and 
the mechanism for placing the ink on the paper (thermal 
inkjet). They are often referred to simply as the "pens." The 
pens are the same as those used in the HP DeskJet 850 and 
870 printers. There are two pens: a black pen and a color 
pen. The black pen has 300 nozzles spaced at 1/600 inch. 
The swath height for black is therefore 1/2 inch. The color 
pen holds three colors of ink: cyan, magenta, and yellow. 
Each color is printed with a series of 64 nozzles spaced at 
1/300 inch. The swath height is therefore approximately 
1/5 inch. Colors other than cyan, magenta, and yellow are 
created by placing dots of these three colors in close prox 
imity in appropriate ratios. Since at a distance of more than 
a few inches the resolution of the eye is not great enough to 
discern the individual dots, they blend together visually, 
forming the desired colors. 

Pen Service Station. To maximize the life of the pens and to 
maintain optimum print quality over that life, it is necessary 
to service the pens. Servicing includes but is not limited to 
such actions as capping the pens when not printing so that 
they do not dry out and wiping them on occasion to prevent 
ink buildup. The service station includes all the electrical 
and mechanical parts necessary to perform the servicing 
actions. In particular, it includes a motor that is used to 
actuate actions such as wiping and capping. The motor is 
controlled by an open-loop process. 

Power Supply. A power supply is needed to provide energy 
to the printer. The power supply accepts an ac signal from 
a standard outlet and converts it to the dc voltages and cur 
rents used to power the printer. Because the HP DeskJet 
820C will be sold worldwide, it is capable of running on all 
permutations of 50/60Hz and 110/220V inputs found around 
the world. 

Digital Electronics. The digital electronics are responsible 
for controlling all of the other electromechanical parts. The 
digital electronics generally include at least one of each of 
the following: a microprocessor, a ROM, a DRAM or SRAM 
or both, a block of custom logic, and an EEPROM. The 
microprocessor controls all mechanism movements, I/O, 

the user interface, and print data manipulation if necessary. 
The ROM holds firmware, and in previous products but not 
in the HP DeskJet 820C, fonts. The volatile memory is used 
to hold firmware variables and print data and commands 
that arrive over the I/O port. The custom logic implements 
printer-specific functions that require hardware support. 
The EEPROM holds information that must be retained 
through a power cycle. In the HP DeskJet 820C, the micro 
processor, the ROM, the custom logic, and an SRAM are all 
integrated into a single ASIC (see articles, pages 22 and 31). 

Case. The case is the part of the printer that the customer 
sees, so every effort is made to make it attractive. The case 
includes a small panel of LEDs and buttons by means of 
which the user interacts with the printer. The front panel of 
the HP DeskJet 820C is very simple, consisting of just two 
buttons and three LEDs. The case also has a door that can 
be lifted to gain access to the pens. 

Driver. In addition to the physical part of the printer, all 
printer products require a software driver, which resides 
on the host computer. The driver allows applications soft 
ware running on the PC to interact with the printer. In most 
modern operating systems, an application that wishes to 
print calls the printer driver through the operating system. 
This model allows the printer manufacturer to supply the 
driver, so application suppliers don't have to. The exception 
to this model is DOS, which requires the driver be integrated 
into can application. Because of the simplifications that can 
be made to the printer, the HP DeskJet 820C only works with 
Windows applications, or DOS applications running in a 
DOS box (see above and the article on page 12). 

HP DeskJet 820C Printing Sequence 
To begin the printing sequence, the user chooses Print from 
the appropriate menu in the application. The application 
formats the page into the standard description format used 
by the Windows operating system. Using this format, the 
application passes a description of the page to the printer 
driver. The driver reformats the page into a form appropriate 
for sending to the printer. In the process of reformatting the 
image, the driver performs various transformations to map 
the image to the inkjet printing technology. In previous HP 
inkjet printers, the format used to send data to the printer 
was PCL, a page description language. In the HP DeskJet 
820C, the format is a bitmapped image that can be used to 
fire the printheads with minimal further transformations. 

Once the image is in the right format, data is sent to the 
printer over the I/O cable. Before the data can be printed, the 
driver must send commands to the printer that tell it to pre 
pare to print a page. When the driver sends these com 
mands, the printer first uncaps the pens and services them 
to prepare them for printing. Then it picks a piece of paper 
and advances it to the first spot where printing will occur. 

After the printer is prepared and has enough data in its local 
memory to print an entire swath, it performs a print sweep by 
moving the carriage across the page. As it moves the carriage, 
it pulls data out of its local memory, performs some final 
formatting, and uses the data to fire the printheads at appro 
priate times. After the sweep has been completed, the printer 
advances the paper, waits for enough data to print the next 
swath to arrive over the I/O, and then, upon command from 

10 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



the driver, prints the data. The process repeats for the rest 
of the page. At end of the page, again upon command from 
the driver, the printer kicks the paper, depositing it in the 
output tray. Assuming that there are no further pages to be 
printed, the printer then parks the carriage over the service 
station, caps the pens, and performs other cleanup pen ser 
vicing. The printer then waits patiently until the next time it 
is called upon to print. 

Summary 
The advance of personal computer horsepower and the uni 
formity of the Windows printing environment in which HP 
has control of the printer driver have made it possible to 
change from the PCL printer model to a PPA printer model. 
The customer benefit is that PPA printers can provide equiv 
alent levels of performance at a much lower cost. 

Microsoft, Windows, and MS-DOS are US registered trademarks of Microsoft Corporation 

Intel486 is a US trademark of Intel Corporation. 

June lluir Hewlett-Packard JoumaJ I I 

© Copr. 1949-1998 Hewlett-Packard Co.



PPA Printer Software Driver Design 
The software driver for the HP DeskJet 820C printer performs many 
functions that were formerly performed in the printer, including swath 
cutting, data formatting, and communications. The driver also includes 
a PCL emulation module for DOS application support. 

by David M. Hall, Lee W. Jackson, Katrina Heiles, Karen E. Van der Veer, 
and Thomas J. Halpenny 

The software driver for the new HP DeskJet 820C printer 
includes many new functions that need to be performed on 
the host computer because of the printer's Printing Perfor 
mance Architecture (PPA). In older PCL (Printer Control 
Language) printers, these functions were performed in the 
printer. Fig. 1 shows the differences. These functions 
include: 

â€¢ Swath cutting 
â€¢ Data formatting 
â€¢ PPA communications 
â€¢ PCL emulation for DOS application support. 

This article provides an overview of the changes necessary 
for supporting PPA and then discusses each of the functions 
listed above in more detail. 

Driver Overview 
Under the WindowsÂ® operating system, printer drivers are 
responsible for supporting a specific API (application pro 
gramming interface) known as the DDI (Device Driver Inter 
face). This interface gives the driver fairly high-level drawing 
commands. It is up to the driver to take those commands 
and produce a bitmap that can be encapsulated in a language 
and sent to the printer. 

Typically, within a Windows printer driver, a rendering engine 
takes the DDI commands and produces a rendered bitmap. 
A halftoning algorithm is performed on the rendered bitmap 
and a halftoned bitmap is produced. This halftoned bitmap 
is typically in a format that can be encapsulated in a language 
such as PCL and then given to the printer. 

For the HP DeskJet 820C, this halftoned bitmap has to be 
put through additional processing as shown in Fig. 1 to 
create data that is ready to be printed by the printer's elec 
tronics directly. This additional processing includes swath 
cutting and sweep formatting. 

Since the HP DeskJet 820C does not understand PCL (Printer 
Control Language), a PCL emulation module is necessary to 
provide support for DOS applications. The DOS application 
data stream is captured by a DOS redirector and passed to 
the PCL emulator, which produces a halftoned bitmap ready 
for swath cutting. 

PCL versus PPA 
Fig. 2 shows the printing model for PCL printers. For PCL 
printers, the process of encapsulating the halftoned bitmap 

is fairly straightforward. Raster data from the halftoned bit 
map is compressed, PCL wrapped, and then sent to the I/O 
module. The reason that this is a simple process is that PCL 
printers are designed to receive data in the same format as 
the halftoned bitmap. PCL printers unwrap the data into an 
internal buffer and perform the necessary swath cutting and 
data formatting internally. 

Fig. 3 shows the printing model for PPA printers. For the HP 
DeskJet 820C, the PCL encapsulator is replaced with an SCP 
data encapsulator. SCP (Sleek Command Protocol) is an 
HP-proprietary command language. This module contains 
swath cutting functionality, data formatting, SCP language 
encapsulation, and printer status management. 

Raster data from the halftoned bitmap comes into the SCP 
data encapsulator, goes through the SCP manager, and 
eventually arrives at a raster block within the swath manager. 
The swath cutting state machine examines the data and de 
termines the appropriate sweep to generate. A sweep is a 
collection of rasters appropriate for the printer mechanism 
to print while it sweeps the printhead over the paper. 

Once the sweep is generated, it is given to the sweep for 
matter. The sweep formatter is responsible for taking the 
sweep data and putting it into the appropriate format for the 
HP DeskJet 820C internal hardware. Then the data is com 
pressed, wrapped in SCP, and handed off to the I/O layer. 

The I/O layer is responsible for communicating with the 
printer by wrapping the data stream in VLink and IEEE 1284 
protocols. VLink is an HP-proprietary link-level protocol and 
IEEE 1284 is an industry-standard physical-layer protocol. 

Performing Swath Cutting on the Host 
Swath cutting is the process of talcing a page of halftoned 
raster data and producing sweep data appropriate for the 
carriage electronics to print as the printhead is sweeping 
across the page. Swath cutting has historically been part of 
printer firmware, but in the HP DeskJet 820C printer, it is 
part of the software driver running on the host computer. 
Typically, a swath manager encapsulates a swath cutting 
engine and receives as input a bitmap representation of the 
page to be printed. The swath manager is responsible for 
determining how the pens and paper should be moved and 
when and how the pens should be fired to produce the 
printed page. The swath manager must balance the often 
conflicting goals of printing with the highest possible print 

12 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



DOS 
Appl icat ion 

D D I  C o m m a n d s  P C L  D a t a  S t r e a m  

R e n d e r e d  â € ¢ !  H a l H o n e d  
B i t m a p  S g  H a l f t < " " n 9  S g  B i t m a p  

Compression 

Current PCL 
Data Path 

S w e e p  
Formatting 

PCL 
Encapsulation Compression 

^^m 

SCP 
Encapsulation 

MLC 
Protocol 
I/O Layer 

VLink 
Protocol 
I/O Layer 

N e w  
PPA 
Data 
Path 

Fig. 1. Printer driver functional block diagram, showing differences 
between PCL and PPA data paths. 

quality and printing as fast as possible. The swath manager 
must as aware of certain printer-specific attributes such as 
printhead alignment and strategies to minimize line feed 
error. In PPA, swath management is performed on the host 
computer. 

The process of swath cutting can be readily modeled using 
a state machine. Consider the example shown in Fig. 4. A 
state machine capable of processing this page would need to 
contain five states: Top of Page, Blank Skipping, Black Text Printing, 
Color Graphic Printing, and End of Page. Thus, we can create the 
state machine shown in Fig. 5. A particular instance of a 
state machine exists for each print mode the swath manager 
supports. For example, there could be a print mode for 

pages that only have black text on them, another print mode 
for pages with black and color, and yet another print mode 
for pages with complex graphic images. 

As the state machine begins to examine the data on the 
page, it starts in the Top of Page state. The first data it comes 
to is a series of blanks. This would cause it to move to the 
Blank Skipping state. During this transition the swath manager 
would typically load the page. While in the Blank Skipping 
state, the swath manager would advance the paper. Next, it 
would encounter a black text region and move to the Black 
Text Printing state. Depending upon the type of printing being 
done at that time, this transition may produce a sweep. 

Assume that for this print mode, the data on the page is 
being printed by making two sweeps for each une. Thus, in 
making the transition from Blank Skipping to Black Text Printing 
the printer could print the first pass of the black text region 
with the bottom half of the printhead, advance the paper 
half a printhead height, and then enter the Black Text Printing 
state. During the next sweep generated, the Black Text Printing 
state would finish the lines that were printed during the 
transition and continue printing the black text region 
(see Fig. 6). The data on the page would continue to be 
consumed and transitions made between states until the 
End of Page state is reached. 

Halftoned 
Bitmap 

PCL Data 
EncapsulateÂ» 

Raster Data 

Compression 

Fig. 2. PCL printing model. 

June 1997 Hewlett-Packard Journal 13 

© Copr. 1949-1998 Hewlett-Packard Co.



Halftoned 
Bitmap 

SCP Data Encapsulator 

SCP Manager  

S w a t h  M a n a g e r  
Factory Added to 

Creates 

S w a t h  M a n a g e r  

Compression 

External Status 
User Interface 

Fig. 3. PPA printing model. 

Obviously, this example is a simple one. The number of 
states and the number of transitions to consume data for a 
real page can be quite large. Using PPA we have the oppor 
tunity to perform the resource-intensive task of swath cut 
ting on the host. This allows greater flexibility in developing 
machines with unique print modes, which provides the 
opportunity for higher print quality and throughput as well 
as reduced mechanism costs. 

Blank Region 

Black Text Region 

Blank Region 

Color Graphic Region 

Black Text Region 

Top of Page to 
Blank Transition 

Blank to Black 
Text Transition 

Black Text to 
Blank Transition 

Blank to Color 
Graphic Transition 

Color Graphic to 
Black Text Transit ion 

Black Text to End 
of Page Transition 

Fig. page. Swath cutting state machine transitions for a typical page. 

PPA Data Formatting 
The HP DeskJet 820's Printer Performance Architecture 
requires the host to perform the majority of the data manip 
ulation. The data that is sent to the printer must be in a for 
mat that is very close to the final form used to fire the print- 
heads. The main difficulty in formatting the data for the 
printhead lies in the fact that the data doesn't come out of 
one position on the carriage mechanism. Instead, there are 
two columns for each of the four pen colors. Each column is 
at a different vertical and horizontal offset from a relative 
zero carriage position. To minimize the cost and complexity 
of the electronics in the printer mechanism, the data sent 
from the host to the printer must be ordered so that it is 
ready to go directly into these offset printheads in the 
appropriate order so that it is fired at the correct locations 
on the page. This ordering is based on: 
The starting page position of each color 
The servant architecture in the printer hardware (described 
later) 
The printhead (see Fig. 7). 

Fig. 5. Swath cutting state machine. 

14 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Pr in thead 

(a) 

(b) 

Pr in thead 

Fig. Text (a) In making the transition from Blank Skipping to Black Text 
Printing, the printer prints the first pass of the black text region with 
the bottom half of the printhead, advances the paper half a print- 
head height, and then enters the Black Text Printing state, (b) During 
the next sweep generated, the Black Text Printing state finishes the 
lines that were printed during the transition and continues printing 
the black text region. 

To print a page, it is necessary for the carriage mechanism 
to move back and forth across the page, firing drops of ink 
as it moves. Each movement of the carriage across the page 
is called a print sweep. When the driver receives a page 
to print from some application, it renders the page into a 
halftoned bitmap. At this point, a PCL printer driver would 
send compressed and encapsulated PCL data directly to the 
printer. The PPA printer driver uses the swath cutting state 
machine to generate a swath of data that can be printed by 
a single pass of the pen carriage. The resulting swath of data 
is passed on to the sweep formatter, which manipulates the 
data into a buffer that can be copied directly to the print- 
heads. The print sweep formatter uses knowledge of the pen 
carriage, hardware, and firmware architecture to prepare 
and reformat the data into a print sweep. 

The number of print sweeps required on a given page is 
dependent upon: 
The amount of data on the page (text or dense graphics) 
The print mode selected by the user (best, normal, or 
econofast) 
The paper type (plain, glossy, transparency, or special). 

For each print sweep, the host sends two pieces of informa 
tion to the printer. The first is the PRINT_SWEEP data, a buffer 
of image data sent before the PRINT_SWEEP command, which 
contains an entire sweep of swing buffer data blocks in 
the correct order. The second piece of information is the 
PRINT_SWEEP command, the mechanism by which the driver 
tells the printer where and how to place the print sweep 
data on the page. A PRINT_SWEEP command contains mini 
mum and maximum positions for each pen column, the 

Paper in Printer 

print direction, print speeds, and NEXT_PRINT_SWEEP informa 
tion. 

The PRINT_SWEEP command information is calculated by the 
printer driver based upon: 

â€¢ Which pens are active (black, cyan, magenta, yellow) 
â€¢ The starting and ending locations on the page for each pen 

color 
â€¢ The direction of the print sweep 
â€¢ The sen-ant architecture: 

c The distances between pens 
~ The distances between odd and even columns within a 

pen 
: The 0,0 position in relation to the pen columns. 

Servant Architecture 
The servant hardware (see article, page 31) is composed of 
a pah1 of buffers, called swing buffers, for each column of 
the printhead (two columns per color). To build a print 
sweep, the driver must: 

â€¢ Separate the image into CMY planes, or primitive data 
blocks 

â€¢ Separate the primitive data blocks into swing buffer data 
blocks 

â€¢ Order the swing buffer data blocks into a servant image. 

A primitive data block (a bitmap image of each plane for 
each color) is created by the driver. Each primitive data 
block needs to be split into two separate swing buffer data 
blocks: an odd block and an even block. This is necessary 
because of the pen design, which consists of two offset 
columns, as pictured in Fig. 8. 

Each column on the color pen has 32 nozzles. The color pen 
has a height of 64/300 inch. For any given column of data, 
rows 1, 3, 5, ..., 63 will be part of the odd column and rows 2, 
4, 6, ..., 64 will be part of the even column. 

The even and odd swing buffer data blocks are each 8 bits 
wide, the width of servant RAM, and each is the height of a 
printhead nozzle column. Swing buffer data blocks are cut 
for each primitive color and for either the even or odd 
nozzle column. Thus, each swing buffer data block contains 
every other row from the primitive data block. 

Pen Cartridge 

Color Pen 

T  
Black 

Printhead 
Mot ion 

Y e l l o w  

Magenta  

Cyan 

Paper 
Motion 

Fig. 7. HP DeskJet 820C print cartridge layout. The lines correspond 
to nozzle columns and their general configuration on the printer 
carriage. 

Cyan Pen 

64 

32 Rows 

Fig. 8. Each color pen has two offset columns of nozzles. 

June 1997 Hewlett-Packard Journal 15 

© Copr. 1949-1998 Hewlett-Packard Co.



B y t e  0  B y t e  1  B y t e  2  B y t e  3  B y t e  4  B y t e  5  

Fig. 9. Primitive data block organization for a printhead that 
has two columns of six nozzles per color. Byte n (n = 0, 1, 2, 3, 
4, 5) is a buffer of data 8 pixels wide by 6 rows (nozzles) high. 
The HP DeskJet 820C printheads have two 32-nozzle columns 
per color, as shown in Fig. 8. 

Fig. 9 shows a simplified example of a primitive data block. 
Each byte is a buffer of data that is one byte (8 pixels) wide 
by N rows high, where N is the number of nozzles in a print- 
head column. For the example in Fig. 9, N is 6, while N is 32 
for the HP DeskJet 820C color printheads. 

Each column of the primitive data block in Fig. 9 is divided 
into four swing buffer data blocks with bytes relocated to 
the positions shown in Fig. 10. Only the cyan pen is shown, 
and only two of the swing buffer data blocks for each col 
umn of Fig. 9 are shown. The drawing would be similar for 
the magenta and yellow pens. 

Once the data is in the form of even and odd swing buffer 
data blocks, the blocks must be ordered and sent to the 
printer. This ordering is done with knowledge of the column 
spacing on the printhead and knowledge of the order in 
which the servant architecture will require the data. The 
printer driver controls the order in which the columns will 
trigger via fields in the PRINT_SWEEP command. The ordered 
swing buffer data blocks are then sent down as PRINT_SWEEP 
data ready to be loaded into the primitive swing buffers in 
the printhead. 

Swing Buffer Data 
Blocks, Byte 0 

Swing Buffer Data 
Blocks, Byte 1 

C0:0 CE:0 C0:1 CE:1 

C0:x = Cyan Odd Printhead Column: Primitive Data Block # 
CE:x = Cyan Even Printhead Column: Primitive Data Block # 

Fig. data Swing buffer data blocks for the example primitive data 
block shown in Fig. 9. 

Each primitive swing buffer consists of two 8-bit columns, 
separated by a swing trigger point. While the servant print 
process is unloading one side of the odd column swing buffer, 
the other side of the odd column swing buffer is being loaded 
by the servant load process. Once the byte is loaded, the 
servant print process fires one bit by 32 rows at a time for 
each pen column in the color pen. When the servant print 
process has unloaded all eight bits, it crosses a swing trigger 
point, and the servant print process switches to the other 
swing buffer and triggers the servant load process to load the 
empty swing buffer. The pen fires one bit by 32 rows at a time 
for each pen column. The servant (printer) is responsible for 
any complexity involved below the byte level. 

When all of the swing buffer data blocks have been con 
sumed by the printhead, the carriage mechanism uses the 
NEXT_PRINT_SWEEP information to position itself for the start 
of the next print sweep. 

Because the PPA printer relies upon the driver to format the 
data appropriately, the architecture does not require the 
printer firmware to have any knowledge of the operations 
just described. Thus, the cost and complexity of the elec 
tronics in the printer mechanism are significantly reduced. 

PPA Communication 
One of the goals of the HP DeskJet 820C printer is to pro 
vide continuous feedback to the user during any printing 
operation, and to guide the user during problem solving. To 
accomplish this, the driver requires a mechanism to ask the 
printer for information and to allow the printer to notify the 
driver whenever something happens (the printer is out of 
paper, the user opened the cover, etc.). The mechanism used 
by the PPA driver to communicate with the printer is called 
status messaging. 

To notify the user to align the print cartridges when a print 
cartridge has been changed, that the top cover is open, or 
that something else needs attention, a bidirectional link with 
the printer is required. Two new HP-proprietary protocols 
allow the driver to communicate bidirectionally with the HP 
DeskJet 820C: VLink packet protocol and Sleek Command 
Protocol (SCP). Previous HP DeskJet printers used an I/O 
packetizing protocol called MLC (Multiple Logical Channel) 
and a proprietary HP printer command protocol. For PPA, 
VLink replaces MLC, and SCP replaces both PCL and the old 
printer command protocol. 

While giving users error messages might seem to be a luxury 
they could do without, the real reason to have a protocol 
like VLink is that it is useful to figure out what is wrong 
when, for example, the printer's input buffer fills up, the 
printer stops accepting data, and the host is unable to send 
even one more byte. This often happens and is temporary, 
but in the days before bidirectional protocols, the driver 
would sometimes wait and wait to be allowed to send again, 
and it didn't know whether the delay was because the top 
cover had been opened, a print cartridge had failed, or a 
fatal error had occurred. It is helpful to know whether to 
abort the job or ask the user to insert a print cartridge or 
close the door. With a bidirectional protocol, the printer tells 
the driver exactly what the problem is, and the driver can 
decide what action to take next. 

1 6 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



From Dr iver  
Front End 

PPA Driver Data Path 

Data Encapsulator 

SCP Manager  

I /O Manager  

HP DeskJet  
820C Toolbox 

Hidden Status 
C r e a t e s  W i n d o w  

_  _  J  

Fig. 11. PPA status messaging architecture. 

A bidirectional link is not required for printing or to have 
limited status feedback from the printer. However, unlike 
PCL printers, which can accept either PCL data wrapped in 
MLC or raw PCL data, PPA printers can only interpret data 
wrapped in VLink and SCP. Thus, while MLC is an option 
that can be added when a bidirectional link exists, VLink 
must handle printing with and without a bidirectional link as 
well as printing to a file. 

Based on VLink's channelization features, there are two 
paths the data can take to the printer. One is for image data 
(the dots that will go on the page), and the other is for com 
mand data. Command data includes commands sent to the 
printer, such as "Print this sweep," requests for information, 
or queries, such as "What print cartridges are installed?", 
and status information, termed autostatus, such as "The top 
cover is open." Sending image data is easy from an I/O 
standpoint â€” if the printer has room in its buffer, the driver 
will send the data. Since command data must be sent and 
also received (autostatus may come in at any time), it is by 
nature a more complex affair. 

As shown in Fig. 11, data that comes in from the front end 
of the driver goes through the data encapsulator, like PCL 
printer drivers, but from there it goes through several new 
objects. The SCP manager wraps the data in SCP and sends 
it to the I/O manager, which provides an interface to the 
datacomm objects. The VLink layer wraps the data in the 
VLink protocol and sends it to the IEEE 1284 layer and out 
to the printer. 

Data that is sent by the printer, such as notifications that 
something is wrong, are put in the printer's output buffer. 
The driver spawns a hidden executable at the beginning of 
each print job called the port sniffer, which checks the port 
even,- half second to determine if the printer has sent any 
data. If so, the data is routed through the IEEE 1284 layer 
to the VLink layer, which then posts a message to the I/O 
manager's hidden status window. 

The status window uses a callback to call into the SCP man 
ager, which translates the status information, and if the mes 
sage is something that should be displayed to the user, puts 
it on the event list. The event list prioritizes the messages on 
it so that the most important message gets sent to the HP 
Toolbox, which displays the dialog box to the user. If the 
message is an error, it may get resolved (for example, the 
user puts paper in the printer and presses the Resume button). 
The message is then routed up through the same path and 
deleted from the event list. The Toolbox takes the dialog box 
down and displays the next most important message, if 
there is one. 

Internal Objects in PPA Status Messaging 
PPA status messaging involves several high-level modules 
and objects: the SCP (Sleek Command Protocol) manager, 
the I/O manager, the VLink module, and the event list (see 
Fig. 12). 

SCP Translator. The function of the SCP translator object in 
the SCP manager is to encode data into the SCP format and 
decode messages received in the SCP format from the printer 
into query replies and event information. The SCP translator 

From Front End 
SCP Manager  

SCP Data 

IEEE 1284 

Query Path 
Event Path 

General Path 

Fig. 12. Galls between status messaging objects. 

June 1997 Hewlett-Packard Journal 1 7 

© Copr. 1949-1998 Hewlett-Packard Co.



Command Ã‡0!â„¢"31"1 f 
S p e c i f i e r  ^ f e r e " c e  |  

N u m b e r  Â ° -  
Data (Optional) 

Fig. 13. SOP command format. 

does not send SCP data directly to the I/O manager, since 
memory management for the data buffers is done in the SCP 
translator's clients, which are the swath manager and the 
status manager. The client of the SCP translator passes in a 
pointer to the data, an empty buffer, and the maximum data 
length. Once the data has been packaged, if the SCP transla 
tor finds that the data is larger than the buffer, it will return 
an error. Otherwise, it will pass back the actual SCP data 
length. The goal in designing the SCP translator was to en 
capsulate the Sleek Command Protocol so that changes in 
SCP in the firmware affect clients of this module as little as 
possible. 

Commands in SCP use the format shown in Fig. 13. The 
command specifier field identifies the SCP command. The 
length field indicates the number of bytes in the data field. 
The data field does not exist for every command. 

Priorities. Priorities allow the printer to execute commands 
in a different order than received. This may be necessary 
when a command cannot complete execution and it is desir 
able for the printer to process queries so the driver can find 
out what the problem is. Priority levels are defined in the 
SCP translator and the clients can set whatever priorities 
they like. Standard priority levels are defined as shown in 
Table I. 

T a b l e  I  
C o m m a n d  P r i o r i t i e s  

It is assumed that the swath manager will send all of its 
printing commands (LOADJV1EDIA, PRINT_SWEEP, EJECT_MEDIA) 
at the lowest priority. Any queries it needs to make will call 
into the status manager. All queries should be at the same 
priority and higher than printing commands. It is up to the 
clients to set priorities. 

Status Manager. The status manager manages messages to 
and from the printer. These messages can be broken into 
two categories: events and queries. Events are unsolicited 
notifications by the printer (i.e., autostatus) that something 
has occurred to change the state of the printer, such as "the 
door is open." Queries are requests for information made by 
the driver to the printer, such as the pen IDs of the installed 
pens. The status manager tracks the state of the printer and 
creates events when state changes occur. For example, when 

the Resume button is pressed, an internal state change occurs. 
This state change is recognized by the status manager and 
reported as an event to the event translator. 

When it status manager receives notification of an event, it 
determines what has changed and whether the event is some 
thing the event translator has requested to know about. If it 
is, a callback in the event translator is called. 

Upon starting a print job, the status manager queries the 
printer to get the current state of events. No event notifica 
tion will be received until an event occurs in the printer. 

Event Translator. This module exists between the event list, 
which is Windows-specific, and the status manager. The 
event translator translates the bit-field data, which is re 
turned to the status manager by the printer in autostatus, 
into events. New events are added to the event list by the 
status manager, and events that are no longer valid (e.g., the 
door was open but the user shut it) are removed from the 
list. The event list orders the events reported to it according 
to their importance to the user, and tells the status monitor 
which dialog box to display. From most important (1) to 
least important (10), the following event priorities are used: 
(1) I/O errors, (2) paper jam, carriage stall, or maximum 
thermal limit, (3) pen failure, (4) wrong pen, (5) low or out 
of ink, (6) pen missing, (7) out of paper, (8) cover open, 
(9) dry timer, (10) new pen. 

I/O Manager. This module is intended to glue the VLink mod 
ule, which is Windows-specific, to the SCP manager, which 
is shared. Handling for events, queries, and buffer manage 
ment must be performed by the I/O manager in addition to 
sending data to the printer as quickly as possible. 

Events. The I/O manager creates a hidden window so that 
when the printer sends unsolicited event notification, Win 
dows messages to that effect can be posted to this window 
by the VLink module. When the I/O manager processes this 
window message, it will read the SCP data buffered by 
VLink and call a callback in the status manager, passing in 
the SCP data. 

Queries. To get replies to queries, the inquiring module calls 
VLink, specifying a buffer in which to place the reply. VLink 
checks this query reply buffer to see if anything has been 
returned in response to the query. If so, it immediately re 
turns with the SCP data. If not, it polls the incoming channels 
for a specified timeout period to attempt to retrieve the reply. 
If a reply is received before the timeout period expires, the 
SCP data is passed through to the status manager. 

Datacomm Paths. The image and command datacomm paths 
send data to the printer as long as there is space in the buffer. 
If space runs out, the command datacomm path waits until 
more space becomes available. The image data is handled 
differently. If space runs out while sending image data, the 
image datacomm path returns to the caller, allowing it to 
render more swaths until more space becomes free in the 
printer. 

VLink. The VLink module must package data in a protocol 
the printer recognizes, and send only as much data as the 
printer can take, as quickly as possible. VLink must also 
unwrap data from the printer and route the messages to the 
appropriate clients. 

18 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



The Mink protocol replaces MLC (Multiple Logical Channels) 
for the HP DeskJet 820C. Like MLC. YLink's intent is to pro 
vide a way for the host and the peripheral to exchange data. 
Unlike MLC. \~Link is not optional. All data going to the 
printer must be wrapped in its protocol. In addition, VLink is 
streamlined or "sleek." and doesn't have many of MLC's fea 
tures. MLC supported multiple logical channels, while VLink 
supports two outgoing and three incoming channels. 

Outgoing Channels. The printer accepts data in either its input 
buffer or its command buffer. The VLink module specifies 
which type of data it is sending through a field in the VLink 
packet header. A template of a VLink packet is shown in 
Fig. 14. 

Image data is sent to the printer's input buffer on the image 
data output channel. Commands and queries are sent to the 
command buffer on the command data output channel. 

Incoming Channels. Since a bidirectional link cannot be guar 
anteed, all incoming data is optional. This is necessary for 
file dumps and bad cables, and miscellaneous communica 
tion problems. 

The printer periodically notifies the host how much buffer 
space is left in the printer. This is known as credit, and the 
printer sends notification for both the command and input 
buffers on the credit input channel. The VLink module will 
not send more data than the available credit. 

VLink accepts two types of data packets from the printer in 
addition to credit packets: query replies, which are expected 
on the status input channel, and a collection of bundled 
items regarding printer status (such as out of paper), called 
autostatus messages. Autostatus messages ultimately map 
to events. 

An autostatus message from the printer consists of a bit 
collection of several long words representing the current 
state of the printer. For example, when the door is opened, 
the door open bit in the collection is set to true. A report is 
generated on the autostatus input channel when any of 
these bits are toggled. 

When the VLink layer receives some data, the data is identi 
fied as either credit, a query reply, or an autostatus message. 
Credit is interpreted and handled within the VLink module. 
A query reply or an autostatus message is buffered internally 
so that the clients can read it later. 

If a received message is an autostatus message, the VLink 
layer posts a Windows message to the I/O manager indicating 
that an autostatus message is waiting to be read. When the 
I/O manager processes the Windows message, it reads the 
buffered autostatus message. Posting a message is necessary 
so that VLink can be free to poll the data lines for more 
incoming data from the printer. 

Once the buffered message has been read, it is deleted. Only 
one query reply and one autostatus message can be buffered 
at a time. If a new message comes in before the original 

Start of 
P a c k e t  C h a n n e l  

(Si 

message can be read, the new message replaces the old one. 
It is for this reason that no additional printer queries should 
be made while waiting for a reply. No harm is done if a new 
autostatus message overwrites the old message because 
the same information is contained in each message and the 
newest message is the most relevant 

PCL Emulation for DOS Application Support 
The development period of the HP DeskJet 820C coincided 
with most users rapidly transitioning away from DOS appli 
cations towards Windows applications. While we expected 
that most users would use the printer in its optimized design 
center, we recognized that we needed an adequate bridge to 
the few DOS applications that would continue to be used. 

The HP DeskJet 550C printer was the final printer to be sup 
ported by most DOS applications, so the solution had to be 
functionally compatible with this printer and provide equally 
good print quality. We chose to provide compatibility with 
the HP DeskJet 660C printer, which was a contemporary 
printer that satisfied these requirements and provided an 
internal interface that enabled us to separate the PCL per 
sonality from the printer engine firmware. We planned to 
port the PCL personality functions to the HP DeskJet 820C 
printer driver, encapsulating them in a. PCL emulator module. 
The required printer-engine functions would then be supplied 
by the rest of the HP DeskJet 820C driver, hi this way, we 
could minimize design changes and maximize the chances of 
identical compatibility. If a DOS application is run from an 
MS-DOS prompt window, also referred to as a DOS box, the 
printer driver can intercept the PCL data stream that the 
DOS application sends to the PC's parallel port and redirect 
the data stream to the PCL emulator. 

The HP DeskJet 820C PCL emulator encapsulates the HP 
DeskJet 660C formatter and text engine code. The design of 
the HP DeskJet 660C firmware was such that all interfacing 
to the external mechanism was done through a well-defined 
API internally known as the Ed Interface (see Fig. 15). 

The Ed Interface resides between the formatter and font 
manager and the rest of the firmware. It is a collection of 
function calls to the support code in the firmware. Since we 
reused the formatter and font manager code, we provided 
the equivalent firmware functionality by mapping the Ed 
Interface calls into HP DeskJet 820C support objects. 

The functions of the formatter and text engine firmware 
code were written in C, and as such are functions in the PCL 
emulator application (Fig. 16). The PCL emulator applica 
tion provides C++ objects that encapsulate the functionality 
expected by the Ed Interface. 

The PCL emulator application is designed to receive a file 
name that contains the PCL data to operate on. Interfacing 
between the internal PCL emulator object and the external 
driver is provided through a PCL personality object. 

The PCL emulator is implemented as an executable applica 
tion because the original firmware code expects to be a sep 
arate task, and this implementation allows almost direct 
porting of the HP DeskJet 660C firmware code. The PCL 
personality provides the handler functions and the external 
interface for receiving the PCL file name. 

Fig. 14. VLink packet format. 

June 1997 Hewlett-Packard Journal 19 

© Copr. 1949-1998 Hewlett-Packard Co.



Support 
Objects 

Fig. 15. PCL emulation is provided in the HP DeskJet 820C printer 
by mapping the existing Ed Interface calls to DeskJet 820C support 
objects. 

PCL File Name 

To allow DOS applications to print to the HP DeskJet 820C, 
it is necessary to capture the data generated by the DOS 
applications. This process is referred to as DOS box redirec 
tion. Essentially, it is necessary to capture the bytes intended 
for the parallel port and put them into a file so that the PCL 
emulator can properly interpret the data. 

Under Windows 3.1, DOS box redirection is not part of the 
operating system, so it was necessary for us to provide a 
redirection solution. This functionality is provided by a 
redirector VxD (virtual device driver), a redirector DLL 
(dynamic link library), and a redirector EXE (executable), 
as shown in Fig. 17. These three pieces capture the data 
stream and put it into a temporary file. This file is then hand 
ed to the driver, and the driver hands it to the PCL emulator. 

Under Windows 95 (Fig. 18), DOS box redirection is provided 
by the Windows printing system, so our redirector solution 
is not necessary for spooling to work under Windows 95. 
PCL printers essentially get DOS box redirection free. PPA 
printers need to intercept and perform PCL emulation on 
the DOS data stream. Microsoft provides a replaceable mod 
ule called a language monitor where the data stream can be 
intercepted. The language monitor is a 32-bit DLL called 
directly by the spooling subsystem. The language monitor 
takes the incoming buffers, writes them to a temporary file, 
and passes the file name to the driver. 

Porting the Firmware 
The process of porting the C-language code from the HP 
DeskJet 660C presented several challenges. The original 
firmware was developed for a Motorola 68000 processor, 
while the printer driver runs on the Intel 80x86 processor 
in Windows 16-bit mode. 

These two hardware platforms have conflicting ways of 
addressing memory for data types larger than a byte â€” the 
former is big endian (the most significant byte comes first) 
and the latter is little endian. As long as a data element is 
consistently accessed with the same data type, there is no 
problem. However, there are places in which a data type is 

PCL Emulator Application 

Font 
M a n a g e r  

Fig. 16. The PCL emulator appli 
cation provides C++ objects that 
encapsulate the functionality 
expected by the Ed Interface. 

20 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



written as several single bytes, then read as 2-byte or 4-byte 
quantities. We needed to identify and change the code in 
these places. 

The original font data that described the glyph (shape) infor 
mation for the text engine was a single block of 250K bytes 
of read-only data. This block was mapped to five blocks of 
resource data, since each block had to be less than 64K 
bytes for Windows 16-bit mode. These blocks are discard 
able, meaning that the operating system can load them when 
it needs to read some data, but to load other code or re 
source blocks when Windows has run out of memory, they 
can be replaced by other blocks. 

The original firmware's text engine depended on a special 
hardware component that rotated font glyph data from hori 
zontal to vertical orientation, could double the size of the 
data, and smoothed the edges of a glyph using several rules 
for HP Resolution Enhancement technology (REt). Since 
this hardware was not available to the printer driver, we 
were able to simulate the first and second of these functions 
in software. We determined that the print quality would still 
be better than the HP DeskJet 550C even if we did not simu 
late the REt rules. The resulting software simulation executes 
more slowly, but the orginal firmware design included a font 
cache, which minimizes the the number of times that we need 
to execute this function. 

Some further syntax modifications were necessary. The 
printer driver is capable of supporting more than one of the 
same printer, for example, a printer on the LPT1 port and 
another on the LPT2 port, and these printers can be printing 
at the same time. For Windows to be able to execute multiple 
instances of the PCL emulator, the code must be compiled in 
the Windows medium-memory model. This required that 
many C-language pointer variables be designated far pointers 

rather than the more efficient near pointers. Also, some 

Redirector 
DLL 

Stream 
Data 

Redirector 
EXE 

Spool 
File 
Name 

W i n d o w s  
Driver 

Stream Data 

Ã 
Temporary 
Spool File 

Stream Data 

WindowsÂ» 
Printing 

Subsystem 

Data 
Stream 

Language 
Moni tor  

(32-Bit DLL! 

Temporary 
Spool File 

Fig. 17. DOS box redirection for Windows :i.l. 

Fig. 18. DOS box redirection for Windows 95. 

subtle syntax correction was necessary because an integer 
data type is 32 bits for the 68000, but 16 bits for the 80x86. 

The PCL emulation implementation was accomplished in a 
staged development process. Two months before the first 
printer driver components to support the HP DeskJet 820C 
became available, we were able to build a DOS application 
that was totally decoupled from a printer driver. It would 
accept a test input stream of PCL data and map the input to 
an output file of raster data, which could be printed on the 
HP DeskJet 850C, which was mechanically identical to the 
target HP DeskJet 820C. Using our test center's extensive 
suite of input test files, we were able to stabilize the porting 
implementation, within the limits of the DOS application. 
For example, we noticed that the DOS memory allocation 
algorithm would fragment memory that was being continually 
allocated and freed, so that eventually a memory allocation 
request would fail. However, when we moved on to a subse 
quent stage in which we depended on the Windows memory 
manager, we found that this memory fragmentation no longer 
occurred. Once the DOS port was stabilized, we integrated 
the PCL personality into the printer driver, using the HP 
DeskJet 850C output target path, while still providing an 
input file of PCL. Next we introduced and stabilized the DOS 
redirector input path. When the HP DeskJet 820C output 
target path finally became available, we were able to switch 
to it cleanly, and the PCL emulator became an effective tool 
to help stabilize the new output target path. Finally, we com 
pleted the target functionality, always building upon a stable 
base. 

To summarize, by reusing original firmware code we were 
able to provide identical PCL functionality for PPA printers. 
Providing support for the Ed Interface API allowed the firm 
ware code to be reused with little design modification. 

Windows is a U.S. registered trademark of Microsoft Corporation. 

June 1997 Hewlett-Packard Journal 21 

© Copr. 1949-1998 Hewlett-Packard Co.



PPA Printer Firmware Design 
Hewlett-Packard's new Printing Performance Architecture (PPA) includes a 
significantly reduced set of printer firmware. "Don't touch the dots" was 
the firmware designer's golden rule. This means that the firmware and 
processor do only mechanism control, I/O, command parsing, status 
reporting, user interface, and general housekeeping functions. 

by Erik Kilk 

A significant factor in Hewlett-Packard's new Printing Per 
formance Architecture (see article, page 6) is the reduction 
of the processing power embedded in the printer. Using the 
host PC for all image formatting leaves only motor, print 
cartridge, I/O, user interface, command, and status functions 
to be controlled by the firmware. This results in significant 
cost savings by reducing processor needs and by reducing 
ROM and RAM requirements. The goal, which was achieved, 
was to reduce the ROM requirements to 64K bytes. 

Fig. 1 shows the traditional firmware architecture used in 
HP DeskJet printers. The firmware receives from the host 
PC a combination of text, text formatting commands, and 
raster graphics data. This is formatted according to the 
Hewlett-Packard PCL printer language specification. The 
information to print arrives at a page description level, 
which requires firmware to rasterize a bit image, generate 
and place fonts, and format and cut the image into swaths 
according to the requirements and format of the print 
cartridge. 

At the I/O layer, previous HP DeskJet printers make use of 
the Multiple Logical Channel packetizing layer (MLC, being 
proposed as IEEE standard 1284.4) to offer multiple connec 
tions between a host and a printer. PCL and an HP propri 
etary peripheral status language share the bidirectional 
parallel port. 

The rasterizing step involves converting text and text for 
matting commands into a graphical bit image to be printed. 

Separate bit-image planes are created for each of the four 
ink colors: black, cyan, magenta, and yellow. 

The swath cutting step involves cutting the bit image into 
print-cartridge-high swaths, performing image enhance 
ments such as overlapping print sweeps, and adjusting the 
bit-image planes to the particular format required by the 
print cartridges used in the printers. 

In general, not only does the traditional HP DeskJet firm 
ware consist of more modules but the modules themselves 
are considerably more complex than with the new Printing 
Performance Architecture. 

PPA Firmware Architecture Overview 
The primary goal of the Printing Performance Architecture, 
or PPA, is to reduce the price of an HP DeskJet printer while 
maintaining or increasing print performance. The digital 
electronics portion of this savings is accomplished by reduc 
ing ROM, RAM, and microprocessor costs. ROM is reduced 
by moving the rasterization, font, and swath module func 
tions onto the host's printer driver, and by using streamlined 
I/O and command language protocols. RAM is reduced by 
requiring only enough RAM for a worse-case print sweep 
plus spare RAM for firmware overhead. Microprocessor 
costs are held down by reducing the processing, in particular 
the data processing, required of the microprocessor. The 
"don't touch the dots" concept enabled the use of a low-cost 
68000 processor. 

Fig. 1. Traditional HP DeskJet 
printer firmware architecture. 

22 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Fig. 2. HP DeskJet 820C printer firmware architecture overview. 

Fig. 2 shows the firmware architecture of the HP DeskJet 
820C. It consists of a small set of communicating modules. 
Each module is implemented with a few communicating 
processes and interrupt service routines. The processes 
communicate through the use of messages (see below). 

The I/O module receives data and commands from the host 
PC, passing them on to the command module, and transmits 
responses and status information back to the PC. The com 
mand module parses and prioritizes the incoming commands 
and passes them on to the other modules, most often the 
mechanism module, for execution. The mechanism module 
receives paper load and eject, print sweep, and print car 
tridge servicing commands, performs the requested actions 
by controlling the motors and print cartridges, and passes 
the results back to the command module. The U/I (user 
interface) module handles the front-panel state machine, 
sending commands to the command module as necessary. 
The status module monitors the printer's status, communi 
cates this status back to the PC via the I/O module, and 
keeps the rest of the modules informed of system status. 

Processes, Messages, and Operating System 
A small and efficient custom operating system manages the 
execution of multiple processes and the delivery of mes 
sages from one process to another. The operating system 
also provides support for interrupt service routines, delayed 
procedure calls, and binary semaphores. 

Processes. Multiple, cooperating independent threads of 
execution called processes are used to provide priority, mod 
ularity, and parallelism within the PPA firmware architec 
ture. Individual processes are instantiated with a function 
stack, a fixed priority of execution, and a specific set of 
broadcast classes. The highest priority ready process exe 
cutes to either a higher-priority process becomes ready to 
execute, the current process is blocked waiting for a new 
message, or the process is blocked waiting for a semaphore 
to be unlocked. The process's broadcast classes indÃcale 
which set of broadcast messages the process wants to re 
ceive. Processes are static and never terminate. 

A fundamental architectural concept is that there is a one- 
to-one correspondence between a process and a message 
queue. In other words, each and every process has its own 
queue for messages and no other queue. This concept is 
hardwired into the system. There are no facilities for the 
creation or use of any other message queues. When a pro 
cess requests a message, its context defines which queue is 
selected. 

The PPA firmware design is rather liberal with the use of 
processes to both modularize and parallelize functionality. 
Table I shows the eighteen processes used in the HP Desk 
Jet 820C printer. 

T a b l e  I  
F i r m w a r e  P r o c e s s e s  i n  t h e  H P  D e s k J e t  8 2 0 C  P r i n t e r  

M a j o r  F i r m w a r e  M o d u l e  

I / O  C o m m a n d  M e c h a n i s m  S t a t u s  

1 0  P a r s e r  M e c h a n i s m  A u t o s t a t u s  
S ta te  Mach ine  

I E E E  1 2 8 4  P a c e r  W a l k e r /  
D ispatcher  

Status 
Request  

VLink 
Pacing 

Execute r 

U / I  O t h e r  

U  I  P S t a t e  

C o n f i g  
urat ion 

NV 
RAM 

Execute 
Data 

Test 
Print 

Simple 

Messages. Messages form the fundamental communication 
method between processes. Physically, messages are fixed- 
size, small blocks of memory. They contain both required 
and optional fields. 

The typical life of a message is as follows. A process ac 
quires an uninitialized message from the operating system. 
The process fills the necessary message fields. The message 
is posted to another process with a specific priority. The 
receiving process gets the message and performs the action 
implied by the message's identity. Depending on flags set 
within the message, a response message may be posted 
back to the originator or the message may be released back 
to the operating system for reuse. 

The reception of messages can be gated by a priority or lim 
ited by a timeout or both. Messages can be posted to an indi 
vidual process or broadcast to many processes. The posting 
of a message can be deferred for a specific time to provide 
for periodic actions. Interrupt service routines can only post 
messages, so arrangements must be made to acquire their 
messages outside of interrupt execution. 

Table II shows the message structure. Messages include a 
token field, which gives the message an identity or specific 
meaning. For example, a command module process requests 
raw input data by posting to an I/O module process the 
RECV_REQUEST message (a message with its token set to 
RECV_REQUEST). A response field indicates which process is 
to be posted the result of the message. For example, when 
processing the RECVJEQUEST message, the I/O module pro 
cess will post a response back to the process mentioned in 
the response field. A data pointer field, a size field, and a 
recover field associate a block of memory with a message. 
The recover field indicates which process is to be notified to 
recover the memory block when it is no longer needed. The 
use of associated data in this manner allows the firmware to 
pass data blocks from process to process and let the final 
process recover the data properly. 

June 1997 1 lewlett-Packard Journal 23 

© Copr. 1949-1998 Hewlett-Packard Co.



Table II 
Message Structure 

Message 
F i e l d  S i z e  D e s c r i p t i o n  

Token 16 bi t s  Message ident i ty .  For  example ,  
RECV_REQUEST indicates this message 
is a request to receive data. 

Sender  32 bi ts  Sending process 's  ident i ty .  

Response 32 bits Identity of the process to receive the 
response to the message. 

Da ta  32  b i t s  Po in te r  to  an  assoc ia ted  da ta  b lock .  
P o i n t e r  F o r  e x a m p l e ,  t h i s  c o u l d  p o i n t  t o  a  

block of input data for a RECV 
message. 

Data Size 32 bits Number of bytes of data associated 
with the message. 

Recover 32 bits Identity of the process to recover the 
associated data. 

F l a g  8  b i t s  I n d i c a t e s  w h e t h e r  t h e  m e s s a g e  m u s t  
be responded to or data must be 
recovered. If a response message, 
indicates if failure, OK, or an 
unknown message type. 

Mise 1 32 bi ts  Message-specif ic  information.  

Mise 2 32 bi ts  Message-specif ic  information.  

Semaphores. Semaphores provide a mechanism to restrict 
access to a shared resource (often global variables) to one 
process at a time. They are analogous to a lock on a door. 
Semaphores can be instantiated, locked, and unlocked. 
There are only a few critical uses of semaphores in the 
system. One is for the exclusive use of global configuration 
data. Another is for the exclusive use of the general-purpose 
memory pool. 

Delayed Procedure Calls. Individual functions can be executed 
at a later time via the operating system. The operating sys 
tem maintains a list of functions to be executed and at the 
appropriate time will execute the functions at a low inter 
rupt level. Processes can take advantage of this feature 
to execute critical code at a higher-priority interrupt level. 
Interrupt service routines can take advantage of this feature 
to execute noncritical code at a lower interrupt level. Since 
a list of functions is maintained by the operating system, 
delayed procedure calls can be canceled. The user interface 
module uses deferred procedure calls to implement key 
debouncing. The deferred post feature of message posting 
is implemented by using deferred procedure calls. 

Interrupt Service Routines. Interrupt routines are statically 
installed. In practice, interrupt routines often just post a 
message to wake up a process. For more sophisticated needs, 
interrupt routines can logically suspend until a subsequent 
interrupt. This facilitates designing serial and sequential 
interrupt state machines. 

Memory Management. Memory management is strictly static 
with few exceptions. The operating system does not provide 
any sort of functionality to allocate or free memory. The 

reliability of the system was greatly enhanced by designing 
it for static memory use. The I/O module does provide 
for the use of its output ring buffer for general-purpose, 
restricted memory allocation with function calls such as 
Ring_Request() and Ring_Recover(). The restrictions were im 
posed for simplicity and because of the ring nature of the 
buffer: memory must be allocated in multiples of 4 bytes, 
memory must be held for a very short time or the efficiency 
of the output buffer will degrade, and although memory can 
be returned piecemeal, the pieces must start on 4-byte 
boundaries and be multiples of 4 bytes. 

Firms (Soft Constants). Afirm is a concept added to the firm 
ware design to facilitate adjusting constants postrelease. 
Constants that may need adjustment after the printer has 
been released for manufacture are grouped together in lists. 
Access to these constants is via the Firm() function call. Firm() 
is called with a list and a constant identifier. Firm() looks up 
and returns the desired constant. Firm(| also quickly scans a 
small constant replacement list. This replacement list in 
cludes the original list and constant identifier along with a 
new value for the constant. If a replacement exists, Firm() 
returns the replacement. The constant replacement list is 
stored in nonvolatile memory. Generally this would occur 
as a final step in the manufacturing process. 

I/O Module 
Fig. 3 shows how the I/O module is structured into physical, 
link, and application layers. The physical layer deals with 
the signaling on the parallel cable. The link layer deals with 
logically dividing a single cable into multiple logical channels. 
The application layer deals with the various data, command, 
status, and pacing applications necessary to implement the 
printer features. 

Physical Layer â€” IEEE 1284 Parallel Port. The connector on the 
back of the HP DeskJet 820C printer connects to the parallel 
printer port on the PC. The IEEE 1284 bidirectional parallel 
port specification is supported by dedicated hardware and 
firmware. Hardware performs the basic data transfer of bytes 
from the PC directly into RAM. Firmware supports the IEEE 
1284 overhead required to put the port in the proper transfer 
modes and to transfer data back to the PC. 

IEEE 1284 redefines the traditional parallel port lines BUSY, 
NFAULT, PERR, and so on to permit faster data transmission 
and to allow data to be sent back to the PC from the printer. 
Faster data rates are achieved by having the host only 
pulsing the NSTROBE line until the printer raises its BUSY line. 

Application 
Layer 

Link Layer 

Physical 
Layer 

Fig. 3. Layered I/O structure. 

Paral lel  Cable 

24 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Table III 
VLink Channel  Uses 

Ã = Start of Packet 

Fig. 4. YLink packet traveling on the physical cable. 

Traditionally the NSTROBE line had to be held down for a set 
minimum time period (which was a relatively long time I. 

The IEEE 1284 overhead for mode switching is implemented 
as a separate firmware process in the system. To achieve the 
IEEE 1284-required 35-ms response time, the process runs at 
the highest priority in the system. The process monitors the 
parallel port lines and responds to changes by maneuvering 
through a constant state table. This state table includes in 
formation on what to watch for on the parallel lines, how to 
respond on the parallel lines, how to get and retrieve data 
at the appropriate times, and which states can be expected 
next. 

Link Layer â€” VLink. The link layer provides a simple logical 
channel protocol. To prevent the printer's input buffer from 
completely filling up and preventing communication with 
the PC, image data and command data are separated into 
two logical channels. Each of these two logical channels is 
individually paced to prevent one from blocking the other. 
To separate the data and commands into two logical chan 
nels, the raw bytes are packetized so that a channel number 
can be assigned to each packet. 

A new HP-proprietary link-level protocol, VLink, replaces 
the more sophisticated MLC protocol used in the other 
DeskJet and LaserJet models. VLink requires considerably 
less code, can be substantially implemented in hardware, 
and doesn't require a bidirectional link. 

Fig. 4 shows the VLink packets. To packetize the data, VLink 
adds four additional header bytes to each block of data. 
First, a start-of-packet character, $, is sent. Second, one byte 
specifying the channel number is sent. Third, a word is sent 
indicating the number of data bytes to follow. A packet can 
contain up to 64K bytes of data. Custom I/O hardware strips 
off the four header bytes, uses the channel number to select 
a ring buffer in RAM in which to store the data, and subse 
quently tranfers the data into the ring buffer by DMA. 

Table III shows how channels are allocated in the Desk.lcl 
820C. Incoming packets arrive for either channel 0 or chan 
nel 1. Channel 0 is used for image data. Channel 1 is used for 
commands. Outgoing packets are transmitted using channels 
1, 2, and 128. Outgoing channel 1 is used for responses to 
commands. Outgoing channel 2 is used for the periodic auto- 
status information. Outgoing channel 128 is used to supply 
pacing information to the host PC. 

Ring Buffers. Two ring buffers store the two incoming data 
streams from the host PC. One stores the image data arriving 
on VLink channel 0. The other stores commands arriving on 
VLink channel 1. The ring buffers are implemented with a 
combination of custom hardware and firmware. 

Fig. 5 shows a diagram of a single ring buffer. The custom 
ASIC selects the ring buffer in which to deposit incoming 
data based upon the channel number in the VLink header. 
Incoming data bytes are placed into the byte pointed to by 
the ring's fill register, and the fill register is incremented. If 
the fill register passes the high wrap register, the fill register 
is set equal to the low wrap register. Once the fill register 
equals the recover register, no more input is permitted. Any 
further input for this ring buffer will cause the parallel port's 
BUSY line to be set high and remain high until the recover 
register is changed. 

For the command ring buffer, the grant register (a firmware- 
only register not in the custom ASIC) is used to mark the 
data that has been granted to the parser. When the com 
mand associated with the data has completed executing, 
its data is recovered by advancing the recover register. This 
permits further data input. 

For the image ring buffer, the ASIC advances the recover 
register as it pulls data out for the print cartridges. This 
occurs while the print sweep is taking place. This permits 
further input to occur on the image channel in case the buffer 
was previously full. The grant register does not exist for the 
image buffer. 

A third ring buffer, one that is implemented entirely in firm 
ware and has no custom ASIC registers, is used for an output 
buffer and occasionally general-purpose memory allocation. 
The same ring buffer design is used, thereby reusing the ring 

High Wrap Low Wrap 

Recover 

Grant 

Fig. 5. I/O i-intf buffer. 

.lime- 1!W7 I Icwlclt-I'arkarcl Journal 25 

© Copr. 1949-1998 Hewlett-Packard Co.



buffer utility functions. In this case, memory is granted to a 
process, advancing the grant register. Eventually the memory 
will be recovered, advancing the recover pointer. For this 
output buffer, the input register has no use. 

An enhancement useful for both the command and general- 
purpose output ring buffers is the ability to recover blocks 
of memory out of order. This is facilitated by managing sub- 
recovered blocks of memory between the grant pointer and 
the recover pointer. With the rule that all memory requests 
and recoveries must be restricted to multiples of 4 bytes, 
subrecovered blocks can be implemented using only the 
RAM contained within the recovered blocks themselves. 

Output. For output, the main control I/O process receives 
SEND messages from the other processes within the system. 
Like input, output is formatted as VLink packets. Three 
VLink channels are used: channel 1 to transmit command 
responses back to the host, channel 2 to transmit periodic 
autostatus back to the host, and channel 128 to transmit I/O 
buffer pacing information back to the host. 

The design handles cases when bidirectional I/O is not avail 
able. This can happen when the printer driver is busy and 
not communicating with the parallel port, when the driver 
is not running at all, when an external device using non- 
IEEE-1284-compliant cables is between the printer and the 
host, when the PC does not support IEEE 1284, or when 
there exist miscellaneous hardware and software conflicts 
with the parallel port. 

In cases where bidirectional I/O is not available, output is 
prevented from accumulating inside the printer by buffering 
at most one packet per VLink channel. Any previous packets 
are automatically recovered back into the system and never 
transmitted. This priority scheme ensures that the host PC 
always receives the latest status. The only repercussion for 
bidirectional systems is that the driver cannot send multiple 
queries to the printer without waiting for each individual 
response. 

Image Data. A key and early concept of PPA is that data arriv 
ing at the printer will already be formatted for the custom 
ASIC hardware controlling the print cartridges. In other 
words, the firmware and microprocessor in the printer do 
not process the data, nor do they move the data in RAM. The 
image data is transferred by DMA into the image ring buffer 
from the ASIC I/O block and from the ring buffer to the print 
control ASIC blocks. 

Autostatus. To keep the host PC informed of the status of the 
printer, an autostatus process periodically formats a data 
block with the printer's current status. This data block is 
then given to the I/O module for transmission back to the 
host on VLink channel 2. 

I/O Pacing. When one of the input ring buffers fills up com 
pletely and another byte arrives for this full ring buffer, the 
overflowing byte causes the parallel port's BUSY line to raise 
and hold off the host PC from transmitting any further data. 
Such a situation could prevent the host PC from querying 
the printer's status or canceling a print job, so the printer 
and host work together to prevent either of the input ring 
buffers from completely filling up, thus allowing the other 
ring buffer to continue to receive data. 

The printer transmits back to the host periodic ring buffer 
status information on VLink channel 128. The data trans 
mitted indicates both the instantaneous free space available 
in each buffer and the amount of data recovered from the 
ring buffers. The amount of data recovered from the ring 
buffers is cumulative. In other words, the printer reports the 
total number of bytes it has recovered from all of the input 
buffers. 

This total number of recovered bytes permits the host PC to 
determine exactly how much space is available at any time 
in the printer's input buffers, as long as it keeps track of how 
many bytes it has itself transmitted. This mechanism is re 
quired because the printer's report of the free space available 
in the input buffer is only an instantaneous reading. It doesn't 
account for any data in transition and could thus give the 
host PC a false reading. 

Command Module 
The command module is responsible for parsing and execut 
ing SCP (Sleek Command Protocol) commands. SCP provides 
the command protocol for communication between a PPA 
printer and its host driver. SCP is a binary language (as op 
posed to the ASCII formatting of the traditional PCL com 
mand language). The general command syntax is shown in 
Table IV. Some SCP commands are shown in Table V. 

T a b l e  I V  
S C P  C o m m a n d  S t r u c t u r e  

Command Parsing. The Parser process requests raw data bytes 
from the I/O module by sending a message. Command bound 
aries are identified, blocked, and attached to an acquired 
message. Each SCP command is attached to one message. 
This message identifies and leads the command through the 
system for execution. The individual messages are at first 
posted to the Pacer process. 

Command Pacing. The Pacer process receives messages point 
ing to raw SCP command bytes and sorts them according to 
priority. It continuously selects the highest-priority command 
and posts that command to the appropriate module for exe 
cution (which could be I/O, mechanism, etc.) The Pacer then 
waits for the command to complete by waiting for a response 
message from the selected executor. 

Commands are sent to the Pacer not only by the Parser but 
also by other modules that may want a command executed. 

26 Juno 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



For example, when the printer door is opened, a HANDLE, 
PRINT_CARTRIDGE: Change_Print_Cartridge command is given to 
the Pacer for execution. This command is issued by the I 1 
module. 

T a b l e  V  
Examples of  SCP Commands 

Descr ip t ion  

Configure hardware to print 
a sweep of data 

Load and eject 

Print cartridge change, wipe, 
spit, etc. 

C O N F I G U R E _ P R I N T _ C A R T R I D G E  P r i n t  c a r t r i d g e  t e m p e r a t u r e s  

C o m m a n d  

PRINT_SWEEP 

H A N D L E . M E D I A  

HANDLE_PRINT CARTRIDGE 

STATUS_REQUEST/REPORT 

CONFIGURE.AUTOSTATUS 

CANCEL_COMMAND/DATA 

RESTART 

ECHO.DATA, PERFORM_TEST, 
SET_ALIGNMENT_INFORMA-  
TION 

U L S T A T E ,  U L M O N I T O R  

A T O M I C  C O M M A N D  

Synchronous status 
information 

Asynchronous status 
information 

Flush a command or image 
data 

Reboot printer 

Miscellaneous functions 

User interface set and read 

Low-level manufacturing and 
test command 

Command Execution. A third command module process, the 
Executor, executes SCP commands designated for the Parser. 
Generally, SCP commands are delegated to their respective 
modules for execution. A few commands, such as the 
CANCEL_COMMAND command, are executed by the command 
module itself. 

Mechanism Module 
The mechanism module executes the mechanism-related 
SCP commands, maintains the system's mechanical state, 

handles periodic print cartridge servicing needs, handles all 
motor needs and functions, and prints sweeps of data. 

The mechanism module consists of two processes and sev 
eral interrupt service routines. The top-level process, the 
Mechanism State Machine, manages the high-level mechanism 
state (cover open, paper loaded, etc.). The low-level process, 
the Walker/Dispatcher, manages the execution of mechanism 
motion scripts called jlo >c*. 

Mechanism State Machine. The Mechanism State Machine is a pro 
cess that maintains the current mechanical state of the sys 
tem, takes the proper actions when state changes occur, and 
returns to previous states after asynchronous state changes 
occur. Fig. 6 shows a small portion of the mechanism state 
machine to give an example of its hierarchical nature. 

The mechanism starts in the Entry state and after initializa 
tion proceeds to an Idle state. As a print job comes in, a 
HANDLE_MEDIA: Load_Paper command causes an entry into the 
Load state, and when paper is loaded, to a Ready to Print state. 
During these states and changes, mechanism flows (or 
scripts) are performed and the state machine responds to 
asynchronous events such as a print cartridge change or 
paper jam. When responding to asynchronous events, an 
asynchronous state change is made and the appropriate 
flows are performed. The state then reverts back to the state 
that existed when the asynchronous event occurred. 

Mechanism Flows. Mechanism flows are small lists of individ 
ual mechanism instnictions, typically motor moves, to com 
plete a high-level mechanical task. For instance, when start 
ing the Load Paper state, a load paper flow is executed. This 
flow contains a list of individual motor move commands to 
accomplish the multimotor task of loading paper. 

Flows are written in a custom scripting language. The reason 
for the custom scripting language is to permit development 
of motor motion without recompiling and building the firm 
ware set. A flow can be downloaded to the printer and exe 
cuted, permitting an easy standalone mechanism develop 
ment environment. This technique is also used during 
manufacturing to invoke custom manufacturing motor 
movements. When a particular mechanism flow has been 
developed, the flow can be incorporated into the firmware 

Any State Any State 

w  

Fig. 6. A portion of the mecha 
nism module's hierarchical stale 
machine. 

June 1997 Hewlcll-I'iirkarcl Journal 27 

© Copr. 1949-1998 Hewlett-Packard Co.



set and executed just as during development. Table VI lists a 
few of the available flow commands. 

T a b l e  V I  
P a r t i a l  L i s t  o f  F l o w  S c r i p t i n g  C o m m a n d s  

F l o w  O p c o d e  

Car r iage  Moto r  Move  
Paper  Mo to r  Move  
Wa i t  Car r iage  Moto r  Done  
Wa i t  Paper  Mo to r  Done  
Jump to  Sub F low 
Goto Flow 
Fan 
Relat ive Branch 
Exit Flow 

P a r a m e t e r s  

Speed, position 
Speed, distance 

Flow ID 
Flow ID 
On/off 
Condition, branch distance 

Walker/Dispatcher. The flow script executor is a process called 
the Walker/Dispatcher. This process receives messages with 
either addresses of flows to execute or addresses of comple 
tion routines to execute. When given an address of a flow to 
execute, the Walker/Dispatcher looks up each opcode and calls 
the corresponding function to perform the opcode. When 
given a completion routine to execute, the Walker/Dispatcher 
executes the completion routine and then retries any opcode 
that had to wait for a completion before continuing. This is 
similar to a microprocessor retrying an instruction after a 
page fault is corrected. 

Actors and Gaffers. The functions that implement the flow 
opcodes have been nicknamed actors. There is one actor 
function for each flow opcode. A function table is used to 
select which actor function to execute for each flow opcode 
encountered. 

An actor function parses the flow opcode's parameters, 
verifies that the particular mechanism resource isn't in use 
(generally a motor), and makes the appropriate call to the 
motor control code to start the proper motor movement. 
If a resource is in use preventing the actor from continuing 
execution, execution of the actor terminates and is retried 
when a resource becomes free. 

A completion routine is passed to the motor control code to 
be executed when the motor has completed motion. These 
completion routines have been nicknamed gaffers. They 
deal with errors during motion, do any final cleanup, and 
cause the script executor to retry an actor function that 
couldn't execute because of a resource limitation. Gaffers 
aren't executed by the motor control code, but rather are 
posted to the Walker/Dispatcher for execution. 

Motor Control. Motor control is accomplished via a combina 
tion of process and interrupt threads of execution. Generally 
the execution that occurs in process space would include all 
initial motion and interrupt setup calculations. A transition 
is made to the interrupt space of a selected hardware inter 
rupt space, a call to lnterrupt_Context(). Once in interrupt space, 
calls can be made to Wait_For_lnterrupt() to effectively suspend 
the execution until the associated interrupt occurs again. 
Execution continues, including any additional suspensions 
for additional interrupts, until time to inform the Walker/ 
Dispatcher flow executor of completion. A message is posted 
to the Walker/Dispatcher with the address of the appropriate 
completion routine, the gaffer. 

An example of a motor control function using such a combi 
nation is CM_Move_And_Hold(), which moves the carriage motor 
to a specific location, holds there, and posts the given com 
pletion routine. CM_MoveJ\nd JoldO is called with a motion 
acceleration profile, a final position, a few other motor ad 
justments, and a pointer to a completion message. The func 
tion does some preprocessing to account for previous motor 
motion errors, to calculate the direction and distance to 
travel, and to select acceleration and slew parameters. The 
transition to interrupt space is made. The function then goes 
through three loops: one for accelerating, one for slewing, 
and one for decelerating. Each loop calls Wait_For_lnterrupt() 
and sets up the next incremental motion request. Finally, at 
the completion of the motion, the function posts the comple 
tion message to the Walker/Dispatcher process. 

Configuration RAM 
The HP DeskJet 820C printer has a block of nonvolatile 
RAM that is used for configuring the printer in ways that 
must survive shutdowns. A C-language structure is used to 
organize this configuration data. Two small processes read 
and write the data from the nonvolatile RAM and control 
when this must be done. Examples of fields stored in non 
volatile RAM are shown in Table VII. 

T a b l e  V I I  
P a r t i a l  L i s t  o f  C o n f i g u r a t i o n  R A M  C o n t e n t s  

C o n f i g u r a t i o n  F i e l d  D e s c r i p t i o n  

Startup Tests List of startup tests to perform 

Print Cartridge Stored print cartridge calibration 
C a l i b r a t i o n  f i g u r e s  

Page Count Count of how many pages have been 
printed 

Firm Replace- Set of constant replacements 
ments 

Alignment Dual print cartridge alignment 
adjustment factors 

Mechanism State Indication of whether the mecha 
nism was properly stored before 
shutdown 

A copy of the nonvolatile RAM is kept in normal RAM. This 
copy is made upon startup by the Configuration process. Any 
process can access the configuration data copy as long as its 
access is protected by locking a semaphore. After a process 
has made any change, it must send a SAVE_CONFIGURATION 
message to the Configuration process. Configuration schedules 
the nonvolatile RAM update by sending a message to the 
NV RAM Process. 

A second process actually reads and writes the nonvolatile 
RAM. This is to avoid holding up the system, since the physi 
cal reading and writing of nonvolatile RAM takes time. The 
NV RAM process executes at a very low priority so that non 
volatile RAM is only updated when there is nothing else to 
do in the system. 

28 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Power-On/Shutdown Sequencing 
A process known as Pstate is used to facilitate a controlled 
startup and shutdown procedure. This is important to ensure 
that dependencies are handled during startup and shutdown. 
To accomplish this, a phased startup or shutdown is used. 
During startup phase 1, processes cannot assume that any 
other process has had a chance to execute any code. Each 
process initializes only its own internal data structures. 
During startup phase 2, processes can assume that all of the 
other processes have completed their phase 1 code. There is 
no hard and fast rule governing what is to be done at each 
phase. It is simply known that within a given phase, a pro 
cess can assume that all other processes have completed all 
previous phases. Similar procedures are used in shutdown. 

The startup sequence proceeds as follows. At startup, Pstate 
broadcasts to each process desiring startup information the 
START message. Processes indicate they want the startup in 
formation by belonging to the Startup class. Included within 
the START message is a phase number. The first time START is 
broadcast, the phase field is set to 1. Once each process has 
responded to this first START message, another START message 
is broadcast, this time with the phase field set to 2, and again, 
each process will respond. Finally, once all phases have been 
completed, Pstate broadcasts the message START_SEQUENCE_ 
DONE. At this point, all processes can assume that the system 
is operational. 

Internal Test Print 
A small process is used to perform the internal test print 
feature. The Test Print process waits until it is handed the 
DO_TEST message. It then temporarily disables I/O and takes 
over the image input buffer, filling it up with test print data. 
To print, this process builds its own HANDLE_MEDIA: Load, 
PRINT_SWEEP, and HANDLE JVIEDIA: Eject commands and sends 
them to the command Pacer for execution. Finally I/O buffers 
are restored and I/O reenabled. 

User Interface 
The user interface module, I I/I, is designed to respond to 
stimulus of various events happening in the system. A state 
table is used to map a stimulus to a particular action and 
subsequent state. Each state also includes a set of exit con 
ditions. The process's main function is to respond to ULEVENT 
messages which are posted when front-panel changes occur. 

The printer cover door and buttons generate interrupts when 
they change. Each of these has an interrupt service routine 
that takes care of debouncing, using deferred procedure 
calls, and posts a message to the U I process indicating the 
event change. The Ul process then marches through its state 
table to make the internal change to the printer and the visual 
change to the user. 

Printer Status 
Printer status is managed by the status module. This module 
receives update indications from the rest of the system, 
composes specific status responses back to the host PC, and 
composes periodic autostatus responses back to the host PC. 

Autostatus. Table VIII shows a sample of the autostatus data. 
Autostatus is a fixed structure of bits and numeric fields that 

Table VIM 
Examples of  Autostatus F ie lds 

F i e l d  D e s c r i p t i o n  

Misload Paper  load fa i led â€” most  l ikely  out  
of paper 

D o o r  O p e n  C o v e r  d o o r  o p e n  

M e d i a  J a m  P a p e r  j a m  d e t e c t e d  

Print Cartridge Dual print cartridges not properly 
U n a l i g n e d  a l i g n e d  

Last Error Code Last error encountered by the 
firmware 

is transmitted back to the host on a periodic basis. The Auto 
status process is responsible for building the transmitted 
data block and handing it over to the I/O module for trans 
mission to the host. 

Status Update. UPDATEJTEM messages are posted to the status 
module to update specific fields in the autostatus block. At 
this time additional notification to the rest of the system can 
be made by the status module. For instance, the status mod 
ule will notify the U/I module of paper misleads, cover door 
openings, missing print cartridges, and so on. 

Status Responses. The host PC can also request specific in 
formation from the printer. The Status Request process receives 
status request commands from the Command Pacer module, 
formats the result, and again hands the data over to the I/O 
module for transmission to the host. 

The Simple Process 
There are small functions or commands that must be exe 
cuted that don't really fit logically into any of the modules in 
the system. Logically for modularity reasons, they might 
each form their own module or process. But in an effort to 
conserve ROM and RAM, these functions have been com 
bined into a single process. Table IX shows a partial listing 
of the functions handled by the Simple process. 

T a b l e  I X  
E x a m p l e s  o f  S i m p l e  P r o c e s s  F u n c t i o n s  a n d  C o m m a n d s  

F u n c t i o n  D e s c r i p t i o n  

SCP Cmd NV RESET Reinitializes nonvolatile RAM 
to default values 

SCP Cmd SET ALIGN INFO Stores the print cartridge 
alignment information 
received from the host 

SCP Cmd SET PAGE COUNT Stores a new value for the 
page counter 

SCP Cmd REPLACE FIRM Stores a new value for the 
specified firm 

Calibration Functionality Performs periodic calibration 
functions 

.June 1!I!I7 Hewlett-Packard .Journal 29 

© Copr. 1949-1998 Hewlett-Packard Co.



Flash Memory Support 
To provide for firmware upgrades during development and 
the early stages of manufacturing, flash memory is tempo 
rarily substituted for ROM. The flash memory can be repro- 
grammed whenever a new firmware set is available. 

The SCP command language provides a command, EXECUTE 
DATA, which causes the firmware to jump to data downloaded 
into the image buffer. Before making this jump, the printer 
shuts down all interrupts to guarantee that none of the exist 
ing firmware is still executing. To reprogram the flash mem 
ory the downloaded program contains both the code to re- 
program the flash memory and the data to program into the 
flash memory. When this downloaded program has completed 
reprogramming the flash memory, it executes a 68000 reset 
instruction, effectively returning control back to the flash 
memory and beginning execution of the newly installed 
firmware. 

Conclusion 
The HP DeskJet 820C printer firmware architecture success 
fully met or exceeded all cost, quality, schedule, and through 
put goals. This is particularly satisfying considering the firm 
ware platform started completely from scratch, with design 
leverage only in the mechanism flow scripting arena. 

Acknowledgments 
Special acknowledgments are in order for the HP DeskJet 
820C firmware team. David Neff and Eric Ahlvin managed 
the team at different times. Gene Welborn started on the 
architecture early and had a key role in leading the concept 
of using message communication processes and designing 
the operating system interface. Mark Garboden led the de 
sign and implementation of the Walker/Dispatcher along with 
its associated flow scripts for motion control. John Van 
Boxtel designed and implemented the operating system and 
the low-level motor control code. Rose Elley had the critical 
role of providing engineering support and tools to enable 
R&D, customer assurance, and manufacturing to move 
towards the new PPA architecture. Melinda Grant did user 
interface design. Carl Thompsen, Bob Callaway, and Hugh 
Rice did significant design, consulting, and coding in the 
areas of print cartridge, motor, and analog functions. 

30 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



PPA Printer Controller ASIC 
Development 
As the first Printing Performance Architecture printer, the HP DeskJet 
820C The a completely new digital controller ASIC design. The chip's 
architecture was optimized for the specific requirements of PPA. 
Concurrent development of hardware and firmware through the use of 
hardware emulators and attention to regulatory issues during the design 
helped the product meet all of its requirements on schedule. 

by John Talley McWilliams, Leann M. MacMillan, Bimal Pathak, and HarÃan A. Talley 

The Printing Performance Architecture (PPA) used in the 
HP DeskJet 820C printer is a significant step forward from 
any previous HP inkjet printer product in providing the 
consumer with a high-performance product at an excellent 
price point. Since PPA redistributes the printing tasks 
between the host and the printer, a complete redesign of the 
digital controller ASIC in the printer was required. This 
redesign effort took into account the overall product con 
straints of cost and time to market as well as all applicable 
government regulations. The result is a highly integrated 
ASIC that implements all digital functions performed by the 
HP DeskJet 820C on a single chip. This high level of integra 
t ion  the  dec reased  the  cos t  o f  the  e lec t ron ics  in  the  
HP DeskJet 820C compared to the previous-generation prod 
uct while maintaining the printer's performance. This article 
describes the system considerations, engineering decision 
trade-offs, and development methodologies that played a 
role in the development of the digital controller ASIC for the 
HP DeskJet 820C. 

The design of the controller ASIC had to be done under 
numerous constraints. As in any consumer-oriented product, 
the foremost consideration during design was the final cost 
to the buyer. The Performance Printer Architecture, as de 
scribed in the article on page 6, was developed to reduce the 
total cost of the printer. PPA allows several optimizations in 
the digital architecture. In today's competitive environment, 
time to market is nearly as critical a constraint as cost. 
Meeting the time-to-market constraint required concurrent 
development of hardware and firmware and a bug-free ASIC 
at netlist release. These needs were addressed by using hard 
ware emulators during development. Finally, the printer 
had to meet or exceed all government regulations including 
those pertaining to EMI and ESD. Taking these needs into 
account during the ASIC design helped the product pass all 
requirements on schedule. 

Digital Architecture 
Regardless of their specific type, all printers require several 
pieces of digital hardware. These pieces include a micropro 
cessor to control the printer, RAM for data, ROM for firm 
ware, and custom digital logic for printer-specific functions. 

By optimizing each of these pieces, significant cost savings 
were realized in the digital ASIC. 

PPA significantly reduces the cost of the printer by optimally 
partitioning the printing tasks between the software running 
on the host and the hardware and firmware running in the 
printer. The partitioning is done without sacrificing the 
printer's performance. All tasks that can be done on the host 
computer without severely affecting application performance 
are done in the driver. Tasks with real-time constraints are 
performed by the hardware and firmware in the printer. 
Because the host performs the majority of the data manipu 
lation, data that is sent to the printer is in a format that 
is very close to the final form used to fire the printheads. 
Because of this, the digital architecture was designed with a 
guiding principle of "the processor does not touch the data." 
Once this principle was adopted, the ASIC team was able to 
make several important design decisions. 

First, a relatively low-power processor is all that is needed, 
since the processor does not manipulate the data. After sur 
veying the available microprocessors, the 16-MHz version 
of the Motorola 68ECOOO was chosen as the best fit. Second, 
since the number of tasks the firmware performs is limited, 
the code size can be kept small enough that a ROM willi all 
firmware can be integrated on the ASIC, eliminating the 
need for an external flash memory or ROM. Third, all data 
manipulations need to be done in hardware, which limits 
those manipulations to being relatively simple. Finally, the 
memory requirements are limited â€” a IM-bit DRAM is suffi 
cient for the data needs. The DRAM holds all firmware vari 
ables and stacks as well as all printing data. Even with the 
DRAM doing double duty, the memory bandwidth require 
ments of the architecture are fairly low, and the product is 
able to use a low-cost, IM-bit, nibble-wide DRAM. 

A block diagram of the HP DeskJet 820C's digital architec 
ture is shown in Fig. 1. The digital electronics consists of 
three main components: the digital ASIC, a IM-bit DRAM, 
and an optional external flash memory or ROM. The digital 
ASIC consists of a 68ECOOO microprocessor, a 64K-byte 
ROM, a 55,000-gate standard cell block, and a IK-byte SRAM 
used as a data cache. In addition to the external memory 

June 1997 Hewlett-Packard Journal 31 

© Copr. 1949-1998 Hewlett-Packard Co.



Controller ASIC 

68ECOOO 
M i c r o  

processor 

Standard 
Cell 

Microprocessor  
Interface 

I/O 
Connector 

components, the digital ASIC is connected to the I/O con 
nector (IEEE 1284), the printer motor ASIC, the printhead 
ASIC, and an optical encoder which provides carriage 
position information. 

The majority of the standard cell area is devoted to the data 
path, which is the path the data follows as it moves from the 
I/O connector, through the DRAM and SRAM, and up to the 
pen ASIC. The remaining logic is used for interfacing to the 
microprocessor, for controlling motors, and for keeping 
track of the current carriage position. All memories, includ 
ing registers in the standard cell block, are memory mapped 
into the GSECOOO's standard address space. 

Flash or ROM 
The ASIC is designed to be able to read code for the proces 
sor from one of three sources: a flash memory device, an 
external mask-programmable ROM (MROM), or the internal 
ROM. The reason for the three separate sources is to better 
meet time-to-market constraints. At the beginning of the 
manufacturing ramp, code was stored in flash memory. That 
way, final firmware did not need to be released until just 
before the start of the ramp. As soon as the firmware was 
stable, it was released to both the MROM vendor and the 
digital ASIC vendor for programming into the internal ROM. 
However, MROM lead times are much shorter than general- 
purpose ASIC lead times, so MROM parts were available 
much sooner than ASICs with properly programmed internal 
ROMs. Consequently, printers were built with MROMs for a 
period of time until ASICs with final firmware were available 
(MROMs are about half the cost of flash parts). 

Print 
Cartridge 

ASIC 

Fig. 1. HP DeskJet 820C con 
troller ASIC block diagram. 

Motor Control 
The HP DeskJet 820C has three motors: a dc motor for mov 
ing the carriage across the paper, a stepper motor for picking 
and advancing the paper, and a second stepper motor for 
controlling the pen service station. The stepper motors are 
controlled in an open-loop process by the firmware. The 
firmware controls a stepper motor move by writing appro 
priate phase and pulse width data to registers in the ASIC. 
Hardware then generates the appropriate signals for the 
motors. The phase and pulse width data determines the 
direction and speed of the moves. 

The carriage motor is controlled by a firmware-based con 
trol loop that monitors the carriage position and adjusts the 
motor is signals appropriately. The carriage position is 
determined through the use of an optical encoder. The opti 
cal encoder consists of a light emitter-detector pair with a 
plastic encoder strip between them. As the carriage moves 
across the paper, the light emitter-detector pair senses that 
it is moving along the plastic strip, and sends some signals 
to the ASIC. The hardware in the ASIC takes this information 
and uses it to keep track of the current carriage position. 
Using the carriage position, the firmware tracks the car 
riage's speed and acceleration and adjusts the motor energy 
appropriately. 

PPA I/O Packet Format 
The data from the host comes to the printer in a simple 
packetized format. As shown in Fig. 2, the packets are made 
up of two pieces: header information and data. The header 

32 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Header  

Data 

First Byte 

Last Byte 

Fig. 2. P PA data packet formal 

information consists of a start-of-packet (SOP) byte, a chan 
nel byte, and a two-byte data-size field that reflects the 
number of bytes in the data field (0 to 65K). 

In the HP DeskJet 820C, packets from the host may contain 
one of two types of information: command data or image 
data. The channel byte determines which type of data is 
contained in the packet (hence, in the HP DeskJet 820C, the 
channel byte will be one of only two distinct values). Com 
mand data contains PPA printer control commands, while 
image data contains information that is to be printed on a 
page. The image data that is sent to the printer is in a form 
that resembles a bitmap of the image, and therefore requires 
a minimum amount of reformatting before being used to fire 
the printheads. To minimize the amount of data that must be 
sent over the I/O cable, image data is optionally compressed 
before being sent to the printer. 

Data Path 
A block diagram of the data path is shown in Fig. 3. Data 
enters the ASIC through the I/O cable. Hardware depacket- 
izes it and separates it into the image and command channels. 
Image data is transferred to one buffer in the DRAM and 
command data to another, both by DMA. Command data is 
consumed by the firmware with no hardware interference. 
Image data is moved by the servant hardware from the 

DRAM to the SRAM. During the move, the image data is 
decompressed if necessary. From the SRAM, data is moved 
to a shift register from which it is serially shifted up to the 
carriage board and is used to fire the pens. 

Input/Output 
The standard cell I/O block implements the low-level hard 
ware that takes in packets of information from the host via 
the parallel port. It contains hardware support for IEEE 1284 
compatibility mode and extended capability port (ECP) in 
the forward direction from the host to the printer. The hard 
ware also supports, with firmware assist, reverse-channel 
nibble mode for sending information back to the host com 
puter. The I/O block also contains hardware that strips the 
data stream of its packet header information, separates the 
packets into command and image data, and sends them to 
the I/O DMA block. From the header information, the hard 
ware checks the start-of-packet byte to make sure it is the 
correct value, uses the channel byte to select the appropriate 
DMA channel, and uses the size field to determine when to 
expect a new packet. 

The I/O DMA block receives data via the I/O interface and 
stores it into either the command buffer or the image buffer 
in the DRAM. These buffers are designed as general-purpose 
circular buffers that can reside anywhere in the DRAM 
memory space. The command buffer is emptied by the 
processor as it executes the commands. Image data is con 
sumed by the servant hardware. As data from the buffers is 
consumed, the host is notified, via the firmware, of the avail 
able buffer space, and more data is sent down. This archi 
tecture allows the printer to make optimal use of its limited 
memory resources. 

DRAM Controller/Arbiter 
The external DRAM is connected to its own nibble-wide bus. 
Hardware arbitrates accesses to the DRAM between the 
I/O DMA hardware, the servant hardware, and the micro 
processor. The arbitration method is a combination of priority 
and round-robin schemes. Both the I/O and the servant hard 
ware processes have real-time constraints that dictate the 
maximum length of time they can be blocked while waiting 
for access to the DRAM. Although the microprocessor is less 
tightly constrained, it is important that it not be completely 
locked out of the DRAM for extended periods of time. 
Hence, while each block has a priority for DRAM accesses, 

Servant 
Load and 

Decompress 
Processes 

F i g .  3 .  l ) i i l ; i  p a t h .  

June MHlTl l i -wlct l - l 'ac-kard Journal  33 

© Copr. 1949-1998 Hewlett-Packard Co.



Paper 

Servant load process 
loads new bytes. 

Pixel  processor selects correct pixels 
from the appropriate column. 

the hardware is designed so that no one unit can hold the 
DRAM bus continuously. 

In addition to arbitration, the DRAM controller takes care 
of the low-level interface to the DRAM. It interfaces the 4-bit 
DRAM data bus to the 8-bit microprocessor data bus. Using 
fast page mode accesses, it retrieves two nibbles and con 
catenates them into a byte. It guarantees that the DRAM 
refreshes take place at appropriate times. Although only a 
IM-bit part is used in the HP DeskJet 820C, the controller 
also supports 4M-bit DRAMs. 

Servant 
One of the key contributions of the PPA architecture is that 
it moves much of the pixel processing into the driver. The 
image data sent to the printer is in a format nearly ready to 
be used to fire the pens. The only significant operation that 
is not done by the driver is the operation of picking out the 
individual bits (corresponding to dots on the paper), and 
sending them to the pens in the correct order. The servant 
logic, so named because it serves the pen by providing it 
with pixel data, accomplishes this by loading the data into 
an on-chip cache (the SRAM), and subsequently pulling it 
out at the correct time and in the correct order. The cache 
is divided into sets of swing buffer pairs (one pair for each 
color) such that while data is being taken out of one swing 
buffer by the pixel processor logic, new data is being loaded 
into the other swing buffer by the servant load logic. When 
the pixel processor consumes all the data in one swing buffer 
and switches to the other swing buffer, the servant load 
process begins loading new data into the first buffer. This 
process is depicted in Fig. 4. 

The PPA driver provides the pixel data in swing buffer loads, 
which are chunks of a bitmap eight pixels wide and the same 
height as the printer's pens. The driver provides the swing 
buffer loads in exactly the order required by the pens. The 
servant load process transfers the data by DMA from the 
DRAM to the SRAM as it is needed to fire the pens. During 
the process of moving data from the DRAM to the SRAM, 
the data is decompressed if it was sent over the I/O in a 
compressed format. 

Fig. 4. Swing buffer operation. 

SRAM Arbiter 
The SRAM arbiter arbitrates memory requests between the 
servant load process, the pixel processor, and the micro 
processor. The arbiter implements a priority-based scheme. 
Since the microprocessor accesses the SRAM only infre 
quently, it is given the lowest priority. On the other hand, 
data for the pen must be immediately available on demand 
(the carriage cannot be paused for the pen to wait for data). 
Hence, the pixel processor is given the highest priority. The 
servant load process has the middle priority. 

Pixel Processor 
The pixel processor is responsible for placing the bits sent 
to the pens in exactly the order in which they are needed to 
fire the pens. Since the nozzles on the pen are staggered, the 
order in which the bits are needed is not entirely straight 
forward. As the correct bits are pulled out of SRAM, they are 
placed in a shift register from which they are serially shifted 
to the pen driver 1C on the carriage board. 

Each bit sent to the pens corresponds to a nozzle firing or not 
firing. Firing data sits in the SRAM in byte-wide chunks. Each 
byte corresponds to eight columns of dots on the printed 
page. All dots in a column are fired before beginning to fire 
the next column. Hence each byte in a swing buffer is ac 
cessed eight times, once for each column. After all eight col 
umns are fired, the logic switches to the other swing buffer. 

Pen Interface 
This block communicates with the analog pen driver 1C over 
a custom serial interface. The pen interface receives data 
from the pixel processing block and shifts it serially to the 
pen driver 1C. It also generates the timing pulses that the 
pen driver 1C uses to fire the pens and put ink dots on the 
page. In addition to sending pen firing data, the interface 
sends setup information to the pen driver 1C to adjust vari 
ous printing parameters that affect print quality. The serial 
interface is bidirectional, enabling the pen driver 1C to send 
back information about the pens' status. For example, the 
pen drive 1C is able to measure temperatures of the pens, 
which are important parameters in thermal inkjet printing. 

34 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



This information is sent to the digital 1C and read by the 
firmware. Firmware then uses this information to adjust 
printing to ensure that the customer will receive optimum 
print quality. 

Because of the staggering of the nozzles on the printhead 
(see Fig. 1 on page 40), for each column of dots on the page, 
the pen must be fired multiple times. The pens must be fired 
every time a set of vertically aligned nozzles is at the correct 
position on the page. If all nozzles in a dot column are not 
fired at the same physical position on the page, that column 
will appear jagged to the customer. Special logic in the chip 
ensures the proper alignment of the dots and therefore opti 
mum print quality. This logic uses the carriage position as 
determined directly from the optical encoder, which is at a 
relatively low resolution, and interpolates it up to the resolu 
tion needed to fire the pens. The interpolation is done by 
phase-locked-loop-like logic that measures the time it takes 
the carriage to move 1/150 inch, and divides this time down 
to get the time it takes the carriage to move a distance equal 
to the nozzle stagger distance. By doing this, the logic is able 
to issue firing pulses to the pen at the correct time. 

Development Methodology 
The HP DeskJet 820C was developed under some very tight 
time-to-market constraints. These constraints dictated that 
the latest CAE tools be used to speed the development of 
the ASIC. Additionally, the project team wished to have con 
current design of the hardware and the firmware. This meant 
that the firmware team needed a platform on which to do 
development before the ASIC was finished. To meet this 
need, Aptix hardware emulators were used. 

The HP DeskJet 820C ASIC was designed entirely in the 
Verilog Hardware Description Language (HDL). HDLs are 
computer languages used to describe digital circuits. They 
contain constructs that allow designers to describe the func 
tion of a circuit rather than the exact gates that are necessary 
to implement that function. Thus, HDLs allow designers to 
work at a higher level of abstraction than in the past. Once 
a designer has written the HDL for a circuit, a compiler 
program can synthesize the HDL into a gate-level design. By 
working at a higher level of abstraction, engineers can greatly 
increase their productivity. The time required to do the design 
of the HP DeskJet 820C ASIC was significantly decreased 
over past products. 

Since designing an ASIC using an HDL is analogous to writing 
a piece of software, it is not surprising that many of the 
practices used by software engineers can be used success 
fully by hardware teams using HDLs. At the beginning of the 
project, coding conventions were established. Similar struc 
tures in different designers' modules were coded similarly. 
Designers were encouraged to comment their code liberally. 
Code reviews were held during the project to find errors and 
to improve designers' coding practices. These techniques 
allowed designers to look at each other's code and quickly 
understand it. In addition to having obvious benefits for the 
HP DeskJet 820C project, the good coding practices will 
allow the HP DeskJet 820C hardware to be easily leveraged 
into future products. 

To synthesize the Verilog code into standard cell gates, Syn- 
opsys software was used. This software allows the designer 

to enter information about the design to help the software 
produce an optimum implementation. Synopsys-specific 
scripts were used to enter the required information. By 
using scripts, the designers were able to make changes to 
the code, and with minimum effort, synthesize the new im 
plementation. Just as for the original Verilog code, conven 
tions and templates for the scripts were developed. As a 
result of these techniques, in a few special cases engineers 
were able to modify code written by a different designer and 
synthesize new hardware very efficiently. 

An important part of ASIC design is test development. The 
HP DeskJet 820C ASIC design team used an HP proprietary 
technology that allowed the engineers to write test vectors 
directly in Verilog. These test vectors were used to verify 
that the functionality of the synthesized design matched the 
original Verilog. The same vectors were then translated into 
a format the ASIC tester understood, and used to test the 
finished silicon. Using this technique, a single set of test 
vectors was used throughout the project. In addition to the 
functional test vectors, scan testing was used to achieve the 
desired fault coverage. Since the insertion of scan hardware 
and the creation of scan test vectors is done semiautomati- 
cally, scan testing was successfully added to the ASIC with 
out incurring a schedule delay. The use of scan testing did 
increase the cost of the chip because the scan circuitry 
caused the chip size to grow, but this was deemed accept 
able when traded off against the time it would have taken 
the designers to write functional test vectors with adequate 
coverage. 

Hardware/Software Codesign 
To meet the overall project goal of a low-cost product, it was 
necessary to make careful trade-offs between the hardware 
and firmware in the product. Functions that are realized in 
hardware cost money because silicon real estate is used. 
Functions realized in firmware cost money because they 
require bits in memory. Since the ROM that holds the firm 
ware in the HP DeskJet 820C is integrated into the system 
ASIC, its size had a hard upper limit. Also, the HP DeskJet 
820C uses a relatively low-power processor, so the process 
ing bandwidth available to perform functions in real time is 
limited. With the standard cell logic, the processor, and the 
firmware ROM all integrated onto the same chip, optimal 
trade-offs between the three were especially important. 

To make the correct trade-offs, the ASIC engineers responsi 
ble for particular hardware blocks coordinated closely with 
the firmware engineers responsible for the corresponding 
firmware blocks. This process allowed the hardware engi 
neers to gain insight into how the firmware would use the 
block, and at the same time allowed the firmware engineers 
to have a good understanding of the hardware. This mutual 
understanding led to better trade-offs. The hardware was 
designed with just enough functionality to allow the firm 
ware designer to implement the code within the product 
code size and processor bandwidth constraints, but without 
a lot of extra hardware thrown in "just in case." A secondary 
benefit of this approach was that the firmware engineers 
were able to write the code for blocks designed this way 
with few problems. Code for blocks not designed using this 
process (primarily blocks leveraged from previous products) 
proved much more problematic to bring up. 

June 1997 Hewlett-Packard Journal 35 

© Copr. 1949-1998 Hewlett-Packard Co.



ASIC Emulation 
To meet the aggressive schedule, it was necessary for the 
firmware team to begin implementing the code well before 
ASICs were available to run the code. In fact, firmware imple 
mentation began before the ASIC design was even complete. 
To allow this activity to take place, it was necessary to set 
up an emulation environment. Traditional methods of doing 
such emulation include building a custom printed circuit 
board populated with one-time-programmable devices (anti- 
fuse devices, laser programmed parts, etc.) and software- 
based emulation using a previous product. Since the digital 
architecture for this ASIC was a significant departure from 
any previous product, emulation on a previous product 
would have been difficult at best and would have required a 
significant code port when the ASIC became available. One 
time-programmable devices were not flexible enough to sup 
port emulation before the design was functionally complete. 
For these reasons, the product team chose to use full-chip 
1C emulators from Aptix to support firmware development 
before ASICs were available. 

1C emulators are essentially a large array of SRAM-based 
FPGAs (field programmable gate arrays) with programmable 
interconnect between them. Software reads in a gate-level 
design for an 1C, partitions it into the FPGAs, and then 
creates all the necessary files to program the FPGAs and the 
interconnect between them. The emulator then is functionally 
equivalent to the 1C that will be fabricated. The emulators are 
highly flexible since they can be reprogrammed by simply 
downloading a new pattern into the SRAMs. The main draw 
back of the 1C emulators is that they generally are not able to 
run at the same speed as the final silicon. For this product, 
the emulator ran at one fourth of the final clock speed. 

Using this approach, the 1C team was able to provide the 
firmware team with usable hardware approximately four 
months before silicon arrived. Since the ASIC design was 
not complete at that point, the first hardware provided was 
only a subset of the full standard cell logic. What was pro 
vided was enough for the firmware team to begin writing 
and testing the operating system, the code that needed to 
be written first. As more blocks in the 1C were completed, 
they were incorporated into the emulation system. 

In addition to providing early hardware to the firmware team 
for development purposes, the use of 1C emulators allowed 
the hardware to be verified in the full printing system with 
actual firmware before being committed to silicon. Because 
the emulators ran at close to the system speed, several 
orders of magnitude more clocks cycles of verification 
occured on the emulators than with software simulation. 
Also, since it was real firmware running, the ASIC was put 
in states that would have been difficult or impossible to 
achieve in simulation because of the complexity of getting 
into that state. Finally, many unanticipated hardware/firm 
ware interactions were discovered. The team was eventually 
able to print with the 1C emulators, giving very high confi 
dence in the functional correctness of the ASIC. 

Thanks to the emulators, two problems in the design were 
discovered and fixed before committing the design to silicon. 
Both problems were system interaction issues that would 
have been very difficult to discover through simulation alone. 
When silicon arrived, firmware was almost immediately 
bootable on it. The only things that needed to be changed 

in the firmware were things that were affected by the differ 
ence in clock speed, and these had been deliberately coded 
to be easy to change. 

Regulatory Requirements 
Because the HP DeskJet 820C printer is sold in the consumer 
marketplace it must meet all applicable consumer electronic 
regulations. Of particular interest to the electronic design of 
the product are the electromagnetic interference (EMI) and 
electrostatic discharge (ESD) requirements. EMI occurs 
when an electronic product creates an electric field and 
interferes with the correct operation of another electronic 
product. ESD occurs when an object (generally a human) 
that has built up a large static charge discharges to a second 
object (for example, an 1C). In addition to government 
requirements on a product's level of EMI and sensitivity to 
ESD, HP maintains internal standards, which are generally 
tougher than the government standards. Meeting or exceed 
ing these internal standards on every product is an important 
aspect of HP's reputation for high-quality, reliable products. 
Since the HP DeskJet 820C could not legally be released 
without meeting government regulations on EMI and ESD, 
failure to meet them was a significant schedule risk to the 
product. Therefore, both were addressed early during the 
design of the digital ASIC. 

In general, EMI results from improperly controlled high- 
frequency signals that travel a long distance, particularly 
signals that travel over cables. The trick in designing for 
reduced EMI is to control the signals with high-frequency 
content to the greatest possible extent. All I/O pads in the 
HP DeskJet 820C make use of an HP proprietary technology 
that compensates for process, voltage, and temperature 
(PVT) variations in the operating environment of the chip. 
The compensation ensures that the pads have nearly the 
same slew rate regardless of the PVT environment. (Typically, 
parts in an environment that causes the chip to run fast have 
about twice the slew rate of parts in an environment that 
causes the chip to run slow). Of particular concern in this 
product were the digital signals that travel between the main 
logic board and the carriage board. These signals, which are 
in the megahertz range, travel approximately 19 inches along 
an unshielded and untwisted flex cable. This was deemed 
the most EMI-prone piece of the design. The I/O pads that 
drove these signals were designed to have as slow a slew rate 
as the signal speed would allow. As a backup system, phase- 
locked loop hardware and additional logic to dither the 
system clock or the signals on the flex cable was designed 
into the ASIC. The result of this design effort was successful 
passing of the EMI regulations on schedule. 

The other big regulatory threat, ESD, was recognized early 
in the project by both the designers and the ASIC vendor 
(ICBD, a division of HP). Because ESD events can cause 
damage that will not immediately destroy the chip but 
instead will cause it to fail months or even years later, inade 
quate ESD protection can result in product reliability and 
customer satisfaction problems down the road. The chip 
needed to be able to withstand ESD events both before and 
after being put on a printed circuit board. When the chip 
is on a printed circuit board, external components can be 
placed around the chip to help protect it. However, each 
component adds cost to the product, so integrating protec 
tion the the chip results in a cost savings. Also, although the 

36 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Fig. 5. HP DeskJet 820C digital controller ASIC. 

chips will be in a relatively controlled environment before 
being put onto the printed circuit board, ESD events can and 
will occur, so the chip needs to be able to withstand them. 

When an ESD event occurs at the chip pins, a large current 
between the discharge point and ground is induced in the 
ASIC. Most structures internal to the ASIC cannot withstand 
such a large current without damage. Therefore, a chip de 
signed to withstand ESD has structures that can withstand 
the high current, and routes the current to these structures 
rather than to the chip internals. Since an ASIC's only con 
tact to the outside world is through its pads, ESD protection 

de\ices are generally located at the pads. During the design 
of the ASIC, the ASIC vendor assigned a dedicated engineer 
to evaluate the ESD design. A current-limiting resistor and a 
reverse-biased diode were used in each pad to limit the cur 
rent that can reach the chip internals. Additionally, shunt 
structures between VÂ¿Â¿ and ground were carefully designed 
and positioned in the 1C. This early involvement by the ven 
dor resulted in a solid design that meets HP ESD requirements. 

Conclusion 
By taking into account the HP DeskJet 820C's overall project 
goals of low cost and time to market from the start, a well- 
optimized digital controller for the printer was delivered on 
schedule. The chip is specifically designed for HP's Printing 
Performance Architecture. By integrating all digital func 
tions in the printer on a single piece of silicon, the cost of 
the electronics in the product was greatly reduced over the 
previous-generation product while maintaining or increasing 
performance. The design team used the latest ASIC develop 
ment tools to deliver a correctly functioning ASIC on a very 
tight schedule. Through the use of hardware emulators, the 
firmware team was able to begin coding before the final chip 
design had been released for manufacturing, further speeding 
the printer's design. All EMI and ESD requirements for the 
product were met on schedule. A lithograph of the final chip 
silicon is shown in Fig. 5. The chip area is approximately 
81 mm2. 

Acknowledgments 
The authors would like to acknowledge Tom Pritchard and 
Mark Thackray for their contributions to the ASIC. They 
would also like to thank the entire team at the HP Integrated 
Circuit Business Division for their design, development, and 
manufacturing contributions. 

Juno 1997 Hewlett-Packard Journal 37 

© Copr. 1949-1998 Hewlett-Packard Co.



Next-Generation InkJet Printhead 
Drive Electronics 
By integrating the functions of four ICs into one new custom 1C and then 
moving the the electronics related to the pens up to the carnage with the 
pens, significant savings were realized. A simple, low-contact-count, 
inexpensive flexible cable is used to connect the carriage to the main 
printed circuit assembly. 

by Huston W. Rice 

The project team for the HP DeskJet 850C printer developed 
the many elements of the printing system in parallel. In par 
ticular, the print cartridges (called pens) were new designs, 
along with the electronics that control them. As a result of 
the pens being new designs, their drive and control require 
ments were not completely defined, but were changing dur 
ing the development program. The result of this was a sys 
tem that worked well electrically, but was not fully 
optimized from a cost standpoint. 

In particular, two aspects of the pen drive system presented 
opportunities for significant cost reduction. First, the flexible 
cable connecting the carriage and pens to the main printed 
circuit assembly was very elaborate and fairly expensive. 
Second, the electronics that control the pens were imple 
mented in four different analog ICs, three of them custom 
ASICs. 

With the advantage of being able to look back on the now 
well-defined system needs, a new approach was selected. 
By integrating the functions of the four ICs into one new 
custom 1C and then moving all the electronics related to the 
pens up to the carriage with the pens, significant savings 
were realized. The new, highly integrated ASIC is less expen 
sive to purchase and to assemble into the product. Since the 
signals are restricted to digital data and raw power, a simple, 
low-contact-count, inexpensive flexible cable is used to con 
nect the carriage to the main printed circuit assembly. 

For this design approach to be successful in the HP DeskJet 
820C, several issues had to be overcome. For the greatest 
benefit, all of the electronics associated with the the pens 
had to be contained on the carriage printed circuit assembly. 
Would it all fit? Because of a tight schedule and limited me 
chanical engineering staffing, no mechanical changes could 
be made to the carriage assembly to make more room. An 
additional mechanical constraint was that no components 
could be placed on the bottom half of the printed circuit 
board, which was needed for the connectors for the pens. 
To get the circuits to fit, all the analog 1C functions had to 
be integrated into a single ASIC. Could all the different func 
tions â€” power control, digital I/O, sensitive analog-to-digital 
measurements, power drivers â€” be integrated into a single 
device? If all the analog functions from four ICs were in 
tegrated into one 1C, would there be thermal overheating 
issues in the 1C? Would there be problems with radiated 

electromagnetic emissions from the digital interface to the 
carriage over a simple unshielded flexible cable? 

To provide an aspect of excitement to the program, once 
this approach was chosen, there was no easy alternative to 
fall back upon if the above issues could not be dealt with. 
If this design failed, the whole HP DeskJet 820C printer 
program would be put in jeopardy. 

Carriage Electronics Implementation 
A key architecture change was made in the pen drive and 
control electronics in the HP DeskJet 820C compared to the 
DeskJet 850C. The power supply for the pens was modified 
in two ways. First, two independent dc-to-dc converters are 
used to supply power to the black and color pens in the 
DeskJet 850C. In the DeskJet 820C, a single pen power sup 
ply is used to drive both the black and color pens. Second, 
the control topology of the dc-to-dc converter was changed, 
as explained later in this article. The DeskJet 850C design 
requires seven large capacitors, two inductors, two power 
FETs, two power diodes, and several small discrete resistors 
and capacitors. All of this was replaced with two capacitors, 
one inductor, one power FET, one power diode, and one 
power resistor. This eliminates not only the need for several 
square inches of printed circuit board space that was not 
available on the DeskJet 820C carriage printed circuit board, 
but also the cost of the unneeded components. 

The two pens in the product (black and color) must be driven 
at different voltages, and the DeskJet 820C design now only 
has one power supply, which is shared between the pens. 
This forced a change in the way printing is done. In the Desk 
Jet 850C, both pens can be driven at any time, allowing max 
imum flexibility in how the printed image can be formed, and 
therefore maximum speed. In the DeskJet 820C, printing 
with the black and color pens alternates. For instance, black 
may be printed from right to left and then color from left to 
right. This difference costs a little in print speed for some 
color documents, but was key in enabling all the electronics 
to fit on the carriage printed circuit assembly. 

Several techniques were used to integrate all the pen elec 
tronics onto the carriage for the HP DeskJet 820C. Beyond 
the power supply changes, the next most important step 
was designing a mixed-signal analog/digital/power ASIC that 
integrates all the functions required to drive and control the 

38 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



pens. The general strategy7 was to integrate all the relatively 
small-signal electronic functions into one ASIC to minimize 
the the total component count. This both minimizes the cost 
and uses the minimum printed circuit board area on the very 
small carriage printed circuit assembly. However, to keep 
the ASIC silicon die area under control and to minimize the 
total power dissipated by the ASIC, several key components 
are not integrated. The power FET and diode for the dc-to-dc 
converter, both very large devices (from a silicon area point 
of view) are implemented as discrete devices externally. 
Two linear regulators are also implemented with off-the-shelf 
discrete devices to keep their power dissipation out of the 
ASIC package. Beyond these parts and some discrete capac 
itors and inductors that cannot be integrated, everything else 
is internal to the ASIC. 

The process of developing the ASIC was the most difficult 
aspect of the carriage electronics design. Because of the 
high expected production volumes, at least two independent 
suppliers were needed. In the special mixed-signal/power 1C 
industry, there is considerable process variation from one 
supplier to the next. However, only pin compatibility is 
required between sources. The two ICs do not have to be 
identical. Over a period of about six months, the analog 
ASIC was codeveloped by HP and the two suppliers. This 
allowed system design trade-offs to be made to keep both 
ASICs compatible. In addition, the overall program schedule 
demanded that the first pass of this full custom 1C had to 
work, because there was only time for small revisions to the 
device before production started on the HP DeskJet 820C. 
As a result of excellent design teams at the suppliers and the 
careful codevelopment communication between HP and the 
suppliers, the first samples of the ASICs worked with only 
a few faults. Simple 1C mask changes and the addition of a 
few small external components resulted in the system being 
completed on time. 

In addition to the mixed-signal ASIC, three printed circuit 
board layout techniques were used to get all the components 
to fit. First, a 3D map of available space for components on 
the circuit board was generated. With this, small parts could 
be tucked under mechanical components, and the larger 
components could be carefully placed to avoid mechanical 
interferences. Second, the placement of the components was 
very carefully designed to minimize interconnect distances 
and the number of vias required. Third, the classical layout 
placement design rules that govern component spacings 
were pushed or outright violated. Breaking the rules was 
justified because the alternative was changing to a two- 
sided surface mount assembly process, which is a much 
more expensive and unattractive alternative. 

In the end, all the parts were made to fit on the top side of 
the printed circuit board. An added benefit of the careful 
printed circuit board design is a very low-noise circuit. 
During the development process, we discovered many of the 
high-current switching circuits interfered with the sensitive 
measurement circuits. The compact layout provided signifi 
cantly better performance than earlier prototype layouts. 

As might be expected, the low-noise layout is also low-noise 
from an electromagnetic radiation point of view. Steps taken 
to control the slew rates of the digital signals on the flexible 
cable also proved effective in minimizing radiated emissions 
from the cable. 

Finally, the steps taken to minimize the power dissipation in 
the mixed-signal ASIC were successful, to the point that the 
1C operates at junction temperatures less than 100=C under 
even the most extreme conditions. 

Pen Operation 
The black and color pens in the HP DeskJet 800 family of 
printers operate as a matched pair to deliver high-quality 
color documents. The pens themselves are in many senses 
the heart of the printer, and all of the electrical and mechan 
ical systems are designed to support and optimize their per 
formance. The electrical systems that drive and control the 
pens accomplish two major tasks: they maintain the temper 
ature of the printheads to optimize the print quality, and they 
drive the correct InkJet nozzles at the right times to print the 
desired image on the paper. 

The viscosity of the ink in the pens is sensitive to tempera 
ture, and the size of the drops ejected by the pens is sensi 
tive to ink viscosity. By controlling the temperature of the 
pens, the viscosity and therefore the drop size can be con 
trolled. Consistently sized drops provide the best print quality. 
Integrated into the pens is a temperature sensor, which can 
be used to measure and control the temperature of the pens, 
and therefore the ink viscosity and drop volume. 

In previous generations of inkjet pens, the task of driving 
the pen nozzles has been fairly straightforward. The nozzles 
were arranged into columns on the pens, and every nozzle 
(or firing resistor) was controlled and driven directly. The 
pens in the HP DeskJet 820C printer have 300 nozzles (black 
pen) or 192 nozzles (color pen, 64 nozzles for each color). 
This high nozzle count makes it impossible to drive each 
nozzle directly with a dedicated signal and interconnection. 
For these high-nozzle-count pens, a matrix drive technique 
is used. The method is the same for the black and color 
pens. The matrix drive has two benefits. First, the number 
of connections to the pens is now much lower: 22 addresses 
and 16 columns can select 22 x 14 = 308 nozzles. The con 
nection count is 22 + 14 + 14 = 50. (The second 14 connec 
tions are for the column ground return currents.) Second, 
for power reasons, all the nozzles cannot be fired at one 
time. For each nozzle, a 2.5-[is firing pulse is applied to the 
nozzle resistor that boils the ink and ejects the drop. The 
pulse voltage is about 10V and the current is 250 mA. If all 
300 nozzles were driven at the same time, a total current of 
75A at 10V would have to be available! This is impractical. 
For power reasons alone, all the nozzles cannot be fired at 
once, and the matrix drive provides a convenient way to 
distribute firing the nozzles in time. 

The pen is electrically constructed as a series of 22 address 
inputs driving FETs in the rows of the matrix and 14 primi 
tive inputs driving the firing resistors in the columns of the 
matrix. Inside the pen are selection FETs for each nozzle 
resistor; these can enable or disable a given nozzle. 

The pen is driven one address row at a time. First, address 
one is driven, turning on the selection FETs for the top row 
of 14 nozzle firing resistors. Any of the 14 primitives are then 
driven (all, a few, or none) with the previously mentioned 
10V, 250-niA pulse to fire the desired nozzles for each column 
associated with row 1. Address one is (hen turned off and 
address two is driven, selecting the next row of FETs and 
nozzle resistors. The desired primitives are again driven, but 

. l i m r  I I I I I 7  l l c w l c i l  P a c k a r d  J o u r n a l  3 9  

© Copr. 1949-1998 Hewlett-Packard Co.



this time firing nozzles associated with row 2. This process 
is continued through address 22 and then repeated. By se 
quencing through all 22 addresses, every one of the 300 
nozzles can be selected and driven. (Note: 22 addresses 
times 14 primitives yields 308 potential nozzles. Since the 
pen only has 300 nozzles, eight of the combinations do not 
have a selection FET or nozzle resistor.) 

Mechanically, the pen nozzles are arranged in a pattern to 
generate proper images, even though all the nozzles are not 
fired at the same time. The black pen in the HP DeskJet 
820C is capable of 600-dpi printing. The print swath (the 
band of ink printed in one pass) is 1/2 inch high, and the 
columns of dots in the swath are 1/600 inch apart. 

A simple example will illustrate how the nozzles are ar 
ranged. Suppose we want to print a vertical line, 1/600 inch 
(one dot) wide. If the pen were constructed to fire all the 
nozzles at the same time to print a vertical column, the 
nozzles would be arranged in a vertical line on the pen. For 
power reasons, the nozzles are fired in 22 different groups of 
14 (the 22 addresses and 14 primitives), and these are not all 
driven at the same time. Since the pen is continuously moving 
while the nozzles are fired, the desired vertical line would 
come out jagged or sloped if the nozzles were arranged in a 
straight line on the pen. To get a straight line on the page, 
the nozzles are staggered to compensate for the timing dif 
ferences of the firing (see Fig. 1). 

There is one additional complicating factor: The 600-dpi 
black pen has the nozzles arranged in two groups, odd 
nozzles in one column (with some stagger to compensate for 
the firing timing), and even nozzles in another column about 
4 mm away. Two nozzle columns allow 1/300-inch spacing 
between nozzles in a given column rather than 1/600-inch, 
making the pen easier to manufacture. 

Now, to print a vertical, one-dot-wide line on the page, the 
odd nozzles are first driven, one address group at a time. 
Some time later, after the pen/carriage assembly has moved 
4 mm and the even nozzles are over the same location on 
the paper, the even nozzles are driven, one address group at 
a time. 

The implication is that the data sent to the pens must be 
sequenced properly to compensate for the nozzles being 
fired in 22 different address groups and also for the 4-mm 
odd/even nozzle spacing on the pen. 

The color pen is constructed in a similar manner. Just like 
the black pen, the nozzles are fired one address at a time 
and are staggered on the pen to compensate for this. The 
first 16 of the 22 black address lines are shared between the 
black and color pens, while the color pen has its own unique 
12 primitive lines. The 16 addresses times 12 primitives are 
sufficient to drive the 192 color nozzles, 64 per color. Like 
the black pen, the nozzles of the three colors are placed in 
dual odd and even columns. Between all the colors and the 
odd and even columns there are six different color nozzle 
placement columns, all with small-scale stagger. Therefore, 
for a color document, the sequencing of data is even more 
complex than for black printing. The data has to be timed 
for the address and row sequential firing, separated for odd 
and even nozzle columns, and timed to compensate for the 
displacement of the three colors with respect to each other. 

S  2  

150 149 

300 299 

Fig. 1. Black pen nozzle placement. 

The task of sequencing the data for the pen nozzles was 
traditionally handled by the printer digital electronics. In the 
HP DeskJet 820C, the Printing Performance Architecture 
(PPA) implementation moves the data sequencing task to 
the host PC and driver, where a lot of data processing was 
already being done. This relieves the printer of the burden of 
this data sequencing task, and allows it to simply drive the 
nozzles selected by the data coming into the printer. 

Pen Drive Electronics Functions 
The pen control and drive electronics have two key tasks. 
They provide the driving signals to eject the ink from the 
pens, and they provide a temperature control system to 
maintain a constant temperature in the active area of the 
pen. To accomplish this, the overall carriage electronics 
system has the following functions, most of which are inte 
grated into the mixed-signal ASIC (see Fig. 2): 
Two-way digital interface between the pen drive electronics 
and the main digital controller ASIC in the printer (see ar 
ticle, page 31). Data is sent to the carriage to control which 
pen nozzles to fire during printing and to give control com 
mands for the analog-to-digital converter (ADC), pen power 
supply, and other circuits. Pen measurements made by the 
mixed-signal ASIC are sent to the digital ASIC. 

40 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Digital Control 
Signals 

Pen 
Temperature 

Sensors 

Pen 
Temperature 
Control DAC 

and 
Comparators 

Chip Over- 
temperature 
Power  Over /  
Undervoltage 
Row/Column 
Fault 
Vn.n On/Off 

Vpen Regulator 

DC-to-DC 
Converter 
Controller 

External 
FET, Diode, 
Capacitor, 
Inductor, etc. 

Row 
Output 
Fault 

â€¢ 22 address drivers to provide the 12V signals to turn on the 
FETs inside the pens and select the correct row to be driven. 
These drivers are shared by the black and color pens. 

â€¢ 26 column drivers to provide the high-current drive that 
fires the ink out of the pens. 14 drivers are used by the black 
pen and 12 by the color pen. 

â€¢ A -'30W. programmable dc-to-dc converter to provide preci 
sion power for the column drive signals. 

â€¢ Two temperature control systems, one for each pen. This 
consists of an ADC to make calibration measurements on 
the pen temperature sensor, DACs to set target tempera 
tures for the pens, and control comparators and logic to 
implement the temperature control system. 

â€¢ Electronics to measure the pen firing resistors, to determine 
if the pen is damaged. 

â€¢ Circuitry to provide thermal protection to the analog ASIC 
and resetting functions. 

The overall system provides all of the means necessary for 
the digital ASIC and firmware to control the pens, both to 
maintain their target temperature, and to drive specific 
nozzles to print the images desired by customers. 

DC-to-DC Converter Design 
The dc-to-dc converter that provides regulated power to 
drive the pens uses a new digital control technique. The 
feedback control of the regulator is a simple, purely digital 
system. If the voltage is too low, it turns on the regulator to 
full power and charges the bulk-storage filter capacitor to 
the target voltage as fast as possible. If the voltage is high, it 
turns off the regulator completely. Fig. 3 is a block diagram 
of the converter. 

Fig. 2. Block diagram of the mixed-signal ASIC. 

External 

B + 

Current 
Sense 
Resistor 

Undervoltage 
C o n t r o l  C o m p a r a t o r  

Fig.  3 .  l i ln rk  d iagram nl ' t l i r  dc 
to-dc converter. 

.June 1!Â«)7 I Icvvlrt I Packard Journal 41 

© Copr. 1949-1998 Hewlett-Packard Co.



This control technique has several advantages: 
â€¢ The control system is very simple and is easily integrated. 
â€¢ The control system is inherently very stable and does not 

require additional compensation components or controlled 
values for the inductor and capacitor. 

â€¢ The effective bandwidth of the regulator is very high, so it 
responds to changes in the load very quickly. Since the load 
placed on the regulator by the pens can change from 0 to 3A 
in less than 100 ns, fast response time is useful. 

> As a result of the inherent stability and fast bandwidth, the 
size of the bulk storage capacitor could be reduced. Only 
one capacitor is needed in the HP DeskJet 820C design 
where three identical parts were used in the DeskJet 850C 
design. This was a key contributor to the goal of getting 
everything to fit on the carriage printed circuit board. 

â€¢ Additional simple digital control functions, such as overcur- 
rent and undervoltage shutdowns, were easily integrated. 

Beyond the savings in components, the biggest benefit that 
this control topology presented was design flexibility. The 
definition of the mixed-signal ASIC, which contains the con 
troller for the regulator, had to be finalized months before 
any testing could be started. By externally generating the 
clock for the regulator in the main digital ASIC under firm 
ware control, changes could be made to the regulator in 

software, up to the day printer production began. Two of the 
key parameters in the design of any switching power supply 
are the switching frequency and the maximum duty cycle. 
By moving the generation of the clock frequency and duty 
cycle to the firmware and digital hardware, the final decision 

on the clock parameters could be delayed until the system 
was carefully tested and analyzed. For instance, as changes 
were made to the printed circuit board layout, the clock was 
fine-tuned to compensate for the differences in performance 
that were seen. The clock can even be dynamically modified 
to provide regulator behavior to match the printer operation 
mode at any given time. 

The net result is very successful. The programmable clock 
was used to tune the regulator performance to match the 
system need after many prototypes had been built and char 
acterized. The regulator switches SOW of power from a 
poorly regulated 18V supply to a very well-regulated, pro 
grammable voltage appropriate for either the black pen or 
the color pen. The regulator only uses about about 6 cm2 
( ~ 1 in2) of printed circuit board area. 

Acknowledgments 
John Widder and George Barbehenn, both of the HP DeskJet 
850C development team, provided vital consulting on the 
design of the pen drive and control systems. Mark Thackray 
and Leann MacMillian worked on the development and 
implementation of the serial digital interface for the mixed- 
signal ASIC. Mark Garboden and Carl Thompson wrote the 
firmware that controls all of the carriage electronics and 
integrated the assorted electronics components into a com 
plete pen control system. Steve Stemple, the manufacturing 
support engineer for the HP DeskJet 820C, provided endless 
testing and design verification throughout the prototyping 
phases of the project. 

42 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



The PA 7300LC Microprocessor: A 
Highly Integrated System on a Chip 
A collection of design objectives targeted for low-end systems and the 
legacy of an earlier microprocessor, which was designed for high-volume 
cost-sensitive products, guided the development of the PA 7300LC 
processor. 

by Terry W. Blanchard and Paul G. Tobin 

In the process of developing a microprocessor, key decisions 
or guiding principles must be established to set the bound 
aries for all design decisions. These guiding principles are 
developed through analysis of marketing, business, and 
technical requirements. 

Several years ago, we determined that we could best meet 
the needs of higher-volume and more cost-sensitive products 
by developing a different set of CPUs tuned to the special 
requirements of these low-end, midrange systems. The 
PA 7100LC was the first processor in this line, which con 
tinues with the PA 7300LC. 

This the will review the guiding principles used during the 
development of the PA 7300LC microprocessor. A brief over 
view of the chip will also be given. The other PA 7300LC 
articles included in this issue will describe the technical 
contributions of the PA 7300LC in detail. 

Design Objectives 
Although the PA 7300LC was targeted for low-end systems, 
cost, performance, power, and other design objectives were 
all given high priority. With the design objectives for the 
PA 7300LC we wanted to: 

> Optimize for entry-level through midrange high-volume 
systems (workstations and servers) 

> Provide exceptional system price and performance 
> Roughly double the performance of the PA 7100LC 
' Provide a high level of integration and ease of system design 
> Provide a highly configurable and scalable system for a 

broad range of system configurations 
< Tune for real-world applications and needs, not just bench 

marks 
â€¢ Emphasize quality, reliability, and manufacturability 
1 Provide powerful, low-cost graphics capabilities for technical 
workstations 

â€¢ I Ise the mature HP CMOS14C 3.3-volt 0.5-um process 
1 Use mainstream, high-volume, and low-cost technologies 
while still providing the necessary performance increases 

1 Emphasize time to market through the appropriate leverage 
of features from previous CPUs. 

Meeting Design Goals 
We began by leveraging the superscalar processor core 
found in the PA 7100LC processor. First we investigated 
the value of high integration. Next we added a very large 

embedded primary cache, now feasible with the 0.5-um 
technology. Then we enhanced the CPU core to take advan 
tage of the new on-chip cache by reducing pipeline stalls. 
We also ensured high manufacturing yields by adding cache 
redundancy. 

We found that integration supported our design goals in 
many positive ways. Because the primary cache, the second 
ary cache controller, and the DRAM controller could be on 
the same chip (see Fig. 1), we had an opportunity to design 
and optimize them together as a single subsystem. This was 
a large factor in allowing us to achieve such an aggressive 
system price and performance point. The high-integration 
approach also yielded much simpler system design options 
for our system partners. To further support these partners, 
we designed the integrated DRAM, level-2 cache, and I/O 
bus controller with extensive configurability (see "Configur 
ability of the PA 7300LC" on page 45). This configurability 
enabled a wide variety of system options ranging from 
compact and low-cost systems to much more expandable, 
industrial-strength systems. 

We were careful not to take a cost-first approach to this 
design. We believe that performance is just as important for 
customers of HP's lower-cost systems. We took a total sys 
tem approach in optimizing performance while emphasizing 
application performance over benchmarks in making design 
trade-offs. The highly optimized memory hierarchy shows 
dramatic improvement for the memory-intensive programs 
found in technical and commercial markets. 

Another way of meeting our performance goals was to push 
the frequency while increasing the level of integration. We 
focused early on the layout and floor plan of the chip to 
enable higher-frequency operation. Through this effort, all 
critical paths were optimized. We tracked and optimized 
62,000 individual timing paths during the design phase. 

Despite leveraging the design from an existing CPU, the 
PA 7300LC design team still evaluated a large array of tech 
nical features and alternatives to meet our performance 
goals. Fundamentally, our approach was to build a robust 
CPU using a simple, efficient microarchitecture. Such a 
design ran less risk of functional bugs and allowed physical 
designers more leeway to push their circuits for higher 
performance. 

.June 1ÃIÃI7 I l rvvlr l l -Pac Raid Journal  43 

© Copr. 1949-1998 Hewlett-Packard Co.



P A  7 3 0 0 L C  

64K-Byte 
Data 

Cache 

Optional 
Level-2 Cache 

ECC DRAM 
(16M Bytes to 3.75G Bytes) 

64K-Byte 
Instruction 

Cache 

Clock 
Generator 

20 and 3D 
Graphics Integrated I/O Bus Converter 

Fig. 1. PA 7300LC system design. 

On-Chip Primary Cache Decisions 
It was clear from the beginning that the CMOS14C process 
would allow an on-chip cache of reasonable size, so a signif 
icant investigation was done to determine an optimal cache 
size and configuration. HP's System Performance Lab in 
Cupertino, California assisted us by repeatedly running 
benchmarks and code traces with different cache topologies 
and memory latencies. 

Optimal Cache Size. Finding a balance between instruction- 
cache and data-cache sizes was difficult The PA 7300LC 
was intended for use in both technical markets, where 
larger data caches are desired, and commercial markets, 
where programs favor large instruction caches. The stan 
dard industry benchmarks can easily fool designers into 
using smaller instruction caches, trading the space for more 
data cache or simply keeping the caches small to increase 
the chip's frequency. HP has always designed computer 
systems to perform well on large customer applications, so 
we included them in our analysis. Ultimately, we found that 
equally sized caches scaled extremely well with larger code 
and data sets. The typical performance degradation found 
when a program begins missing cache was mitigated by 
large cache sizes and our extremely fast memory system. 

We could physically fit 128K bytes of cache on the die, so it 
was split into 64K bytes for the instruction cache and 64K 
bytes for the data cache. Not only would this provide 
impressive performance, but we noted that it would be 
the largest on-chip cache of any microprocessor when it 
began shipping. 

Cache Associativity. Cache associativity was another issue. 
Recent PA-RISC implementations have used very large di 
rectly mapped (off-chip) caches. Associativity would reduce 
the potential for thrashing in the relatively small 64K-byte 
caches, but we were worried about adding a critical timing 

path to the physical design â€” selecting the right way* of 

associativity and multiplexing data to the cache outputs. 
Increasing the ways of associativity would further reduce 
the thrashing, but make the timing even worse. The Systems 
Performance Lab included associativity in their performance 
simulations, helping us arrive at our decision to implement 
two-way caches. To reduce the impact on timing, we elimi 
nated cache address hashing, which had been used to re 
duce thrashing in directly mapped cache designs. Once we 
added associativity, hashing was no longer necessary. 

Associative cache designs also need an algorithm for deter 
mining which way to update on a cache fill. Again, there are 
many alternatives, but our simulations showed the easiest 
approach to be the best. A pointer simply toggles on each 
fill, so that the ways alternate. 

Other Cache Decisions 
Many other cache decisions fell out of the same types of 
analysis. The data cache uses a copy-back rather than a 
write-through design and a 256-bit path to the memory 
controller was included for single-cycle writes of copyout 
unes as shown in Fig. 2. 

Moving the caches onto the chip also simplified changing 
the CPU pipeline to remove the "store-tail" penalty, in which 
stores on consecutive cycles cause a hang. This made it 
easier for compilers to optimize code. 

'  Way, or N-way associativity, is a technique used to view a single physical cache as N equally 
sized logical subcaches. The PA 7300LC caches are two-way associative, so each B4K-byte 
cache for two ways of 32K bytes each. This provides two possible locations for any cached 
memory two reducing the thrashing that can occur in a direct-mapped cache when two 
memory references are vying for the same location. 

'  In  a  cache cache des ign ,  da ta  i s  wr i t ten  to  bo th  the  cache and main  memory  on  a  
write. written a copy-back cache design, data is written to the cache only, and is written to main 
memory only when necessary. 

44 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Configurability of the PA 7300LC 

Rather con choosing a single, inflexible memory and level-2 cache con 
figuration, we architected the PA 7300LC so that system designers can 
make price and performance trade-offs themselves. Most of the choices 
available to designers are in the memory system. 

B u s  F r e q u e n c i e s  
The PA 7300LC GSC (general system connect) bus interface supports 
several CPU:GSC frequency ratios. GSC frequencies at or near the bus 
maximum frequency of 40 MHz can be maintained even when the CPU 
is running at noninteger multiples of the bus frequency (e.g., 132 MHz). 

M e m o r y  I n t e r f a c e  
The memory interface can be designed with either 64-bit or 128-bit 
(72-bit or 1 44-bit with error correction) data paths. A maximum of 1 6 
memory banks is supported, and each bank can hold from 8M bytes to 
51 2M bytes of DRAM. The DRAM technology can be either FPM (fast 

page to or EDO (extended data out), with chip sizes from 4M bits to 
256M bits. A broad range of DRAM speeds is allowed, as DRAM timing 
can be and programmed using a nine-element MIOC (memory and 
I/O controller) timing vector. 

Memory and correction is optional. Single-bit correct and double-bit and 
four-bit burst error detection schemes are available, all with sufficient 
error logging for system diagnosis and program data protection. 

L e v e l - 2  C a c h e  
The level-2 cache Â¡s completely optional. Three types of SRAM are sup 
ported: register-to-register, flow-through, and asynchronous. Depending 
on the two, speed and CPU frequency, level-2 cache latencies of two, 
three, or four CPU cycles can be programmed into the MIOC. Parity error 
protection on the SRAM data Â¡s also optional. 

Adding Spare Columns to the Cache Arrays. Manufacturability 
is a big concern for large VLSI memory structures like the 
PA 7300LC's caches. Dense, regular structures like cache 
RAM cells are very susceptible to the smallest manufacturing 
defects, and just one failing bit out of 1,200,992 can make a 
part useless. To compensate, the cache design team added 
spare columns to the cache arrays. During the initial wafer 
test of a CPU die, an internal built-in self-test (BIST) routine 
runs to check for errors. If a bad RAM cell is found, the BIST 
signature indicates which column should be swapped out, 
and a laser is used to blow a special metal fuse on the chip. 
The bad column is replaced with the spare, fully restoring 
the chip's functionality. The article on page 61 describes this 
feature in detail. 

Integrated Memory and I/O Controller Decisions. Incorporating 
the memory and I/O controller (MIOC) onto the PA 7100LC 
chip was an important performance win, and we worked to 
make it even better on the PA 7300LC. Simply having the 
MIOC and CPU on the same die is extremely efficient. 
An off-chip MIOC would require a chip crossing for each 
data request and data return. Chip crossings are time- 
consuming, costing many chip cycles at 160 MHz. Since 

the CPU stalls on a critical request, chip crossings directly 
degrade performance. 

Chip crossings also require additional pins on packages, driv 
ing up the cost. As a result, designers strive to keep external 
data paths narrow. With the MIOC on-chip, we were able to 
use wider data paths liberally for faster transfers. We placed 
some of the MIOC's buffers inside the cache and used wider 
data paths to create a bus that is one cache line wide for 
blasting cache copyouts to the MIOC in one cycle. 

Cost and Performance Decisions. Despite all the performance 
enhancements, the increased CPU frequency placed a bur 
den on the MIOC to minimize memory latencies and pipeline 
stalls because of filled request queues. Blocking for an off- 
chip resource costs more CPU cycles at higher frequencies, 
so it was paramount that the PA 7300LC MIOC be fast and 
efficient. The challenge was in achieving this without signifi 
cantly increasing the system cost. 

Doubling the external memory data path to 128 bits was a 
clear performance advantage, but it also increased system 
cost. Adding 72 (64 data + 8 error correction) pins to the 
CPU die and package came at a price. We were concerned 

MIOC =  Memory  and  I /O  Cont ro l le r  
E C C  =  E r r o r - C o r r e c t i n g  C o d e  

Fig. 2. I'riniiiry cache system on 
Die I 'A 7:!(>OL(' chip. 

.June 1097 Hewlett-Packard Journal 45 

© Copr. 1949-1998 Hewlett-Packard Co.



that system designers would also be forced to create more 
expensive memory designs. Configurability was the best 
solution. The increased performance warranted adding pins 
to the CPU, but the MIOC was designed to support a 64-bit 
mode for less expensive memory designs in low-cost systems. 

Off-Chip Second-Level Cache Performance. In addition to the 
primary cache, one of the PA 7300LC's most intriguing fea 
tures is its second-level cache (see Fig. 3). Even with the 
MIOC's very fast memory accesses, it takes at least 14 CPU 
cycles for cache miss data to be returned. While this is 
excellent by industry standards, we had the opportunity 
to make it even faster by implementing an off-chip second- 
level cache. 

In many cases, the CPU is stalled during the entire memory 
access. A typical second-level external cache design could 
drastically reduce the number of stall cycles, but would be 
expensive. The engineering pros and cons were debated, 
and a a interesting solution was found. Address pins for a 
second-level cache were added to the CPU, but the second- 
level cache and DRAMs share the memory data lines (either 
64 or 128). Very fast FET switches are used to shield second- 
level cache accesses from the heavy DRAM line loads until it 
is determined that the second-level cache will miss. While 
adding one cycle to memory accesses, this technique re 
duces access time to only six cycles on a second-level cache 
hit. The second-level cache is optional for low-cost systems 
or for those applications where a second-level cache is not 
beneficial. 

MIOC Design Enhancements. Internally, the MIOC design was 
enhanced in many areas in the PA 7100LC MIOC. The inter 
nal pipeline was split into independent queues for memory 
and I/O, preventing memory stalls during long I/O operations. 
Reads can be promoted ahead of memory writes to satisfy 

CPU requests rapidly, and graphics writes are accelerated 
ahead of other transactions to increase graphics bandwidth. 
Finally, the GSC*(general system connect) interface was en 
hanced to improve graphics bandwidth by well over 200% 
over the PA 7100LC and to support a broader range of 
CPU:GSC operating ratios. 

CPU Core Decisions 
Removing the Phase-Locked Loop. Because of its higher oper 
ating frequency, the original PA 7300LC design contained 
a phase-locked loop circuit to synthesize both CPU and 
system clocks. Designing a phase-locked loop in a digital 
CMOS process is challenging and historically has affected 
yield and robustness in VLSI designs. When an inexpensive 
external clock part was found, we decided to recover the 
phase-locked loop circuit area and reduce technical risk by 
removing it. 

Integer and Data Cache Controller Enhancements. The on-chip 
caches caused both the integer and data cache controllers to 
be redesigned, and significant enhancements were included 
in both. The data cache controller added a deeper store 
buffer, and by also modifying the instruction pipeline, we 
were able to eliminate completely the store-tail problem 
mentioned earlier. Also, memory data is bypassed directly to 
execution units before error correction, with later notifica 
tion in the rare event of a memory bit error. 

The instruction cache controller expanded the instruction 
lookaside buffer (ILAB) from one entry to four, and im 
proved the performance of bypassing instructions directly 
from the MIOC to the execution units. Both are very tightly 
coupled to the MIOC so that memory transfers to and from 
the caches are extremely fast. 

1 The bandwidth is the local bus that is designed to provide maximum bandwidth for memory-to- 
graphics transfers. 

PA7300LC 

General  
Registers 

Data 

T o  C P U  C o r e   m c c  

To CPU Core Second-Level 
Cache Tag 

SRAM 

Optional 
Second-Level  Cache 

Fig. 3. Memory subsystem for the PA 7300LC. 

46 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



S u m m a r y  A c k n o w l e d g m e n t s  
We developed a set of guiding principles based upon market- We wish to thank the rest of the PA 7300LC design team in 
ing, Engineering and technical requirements for this system. HP's Engineering Systems Lab in Fort Collins, Colorado for 
The guiding principles enabled the design of an exceptional their superb technical contributions. We also express ap- 
microprocessor targeted to the volume and price/perfor- preciation to our partners in the General Systems Lab and 
manee requirements of the workstation and server market. Fort Collins Systems Lab, as well as various HP marketing 
A large providing of the overall success of this design comes from organizations for providing customer input and requirements. 
the well-engineered cache and memory hierarchy. The tech- Finally, we express appreciation to the Systems Performance 
nology performance simulations allowed us to develop a high-capacity Lab for their efforts in running performance simulations 
primary cache and a rich set of performance-improving on our behalf. A special recognition is made to Tian Wang 
f e a t u r e s .  ( d e v e l o p e r  o f  t h e  P A  7 3 0 0 L C  p e r f o r m a n c e  s i m u l a t o r )  w h o  

passed away during this development effort. We extend our 
The PA his  design met  i ts  schedule and exceeded i ts  svmpathies  to  his  famllv.  
performance goals. Customers are receiving PA /300LC- 
based systems today. 

June 1997 I Icwlc-tl -Packard Journal 47 

© Copr. 1949-1998 Hewlett-Packard Co.



Functional Design of the HP 
PA 7300LC Processor 
Microarchitecture design, with attention to optimizing specific areas of 
the CPU and memory and I/O subsystems, is key to meeting the cost and 
performance goals of a processor targeted for midrange and low-end 
computer systems. 

by Leith Johnson and Stephen R. Undy 

The PA 7300LC microprocessor is the latest in a series of 
32-bit PA-RISC processors designed by Hewlett-Packard. 
Like its predecessor, the PA 7100LC,1'2 the PA 7300LC 
design focused on optimizing price and performance. We 
worked toward achieving the best performance possible 
within the cost structures consistent with midrange and 
low-end systems. This paper describes the microarchitec- 
ture of the two main components of the PA 7300LC: the 
CPU core and the memory and I/O controller (MIOC). 

CPU Core Microarchitecture Design 

Approximately one-half of the engineering effort on the 
PA 7300LC processor was dedicated to the design of the 
CPU core. The CPU core includes integer execution units, 
floating-point execution units, register files, a translation 
lookaside buffer (TLB), and instruction and data caches. 
Fig. 1 shows a block diagram of the CPU core. 

Core Design Objectives 
The design objectives for the PA 7300LC processor were to 
provide the best possible performance while choosing the 

proper set of features that would enable a system cost ap 
propriate for entry-level and high-volume workstation prod 
ucts. To reach this goal, we integrated large primary caches 
on the processor chip and developed a tight coupling be 
tween the CPU core and the memory and I/O subsystems. 
The design objectives for the PA 7300LC are discussed in 
detail in the article on page 43. 

CPU Core Differences 
The PA 7300LC CPU core is derived from the PA 7100LC CPU 
design.1'2 Although the PA 7300LC has many similarities 
with its predecessor, there are some key differences in the 
design that allowed us to meet our performance objectives. 
The first difference is that the PA 7300LC runs at 160 MHz 
compared to only 100 MHz for the PA 7100LC. The most 
obvious difference is the large primary instruction and data 
caches integrated directly onto the PA 7300LC chip. The 
PA 7100LC only has a small (IK-byte) instruction cache on 
the chip. Also, the organization of the caches was changed 
to avoid many of the stall cycles that occur on the PA 7100LC. 
The cache organization is discussed later in this article. The 
PA 7300LC has a 96-entry TLB, compared to 64 entries on 

Branch Address 

To Memory 
and I/O 

To Memory 
and I/O 

ILAB = Instruct ion Lookaside Buffer  
TLB =  Trans la t ion  Lookas ide  Buf fe r  

Fig. 1. The PA 7300LC CPU core 
block diagram. 

48 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Instruction 
Cache Access 

Instruction 
Avai lable 

I ns t ruc t ion  
Decode  

Register 
Read 

Fig. 2. The PA 7300LC pipeline diagram. 

the PA 7100LC. Finally, the PA 7300LC has a four-entry 
instruction lookaside buffer (ILAB) while the PA TlOOLC's 
ILAB contains one entry. 

Pipeline and Execution Units 
Like all high-performance microprocessors, the PA 7300LC 
is pipelined. What is notable about the PA 7300LC pipeline 
is that it is relatively short at six stages, while running at 
160 MHz. 

Fig. 2 shows a diagram of the PA 7300LC pipeline. It does 
not differ greatly from the pipelines used in the PA 7200, 
PA 7100LC, or PA 7100 processors.1'2-3'4 The following opera 
tions are performed in each stage of the pipeline shown in 
Fig. 2: 

1. Instruction addresses are generated in the P stage of the 
pipeline. 

2. The instruction cache is accessed during the F stage. 

3. The instructions fetched are distributed to the execution 
units during the first half of the I stage. During the second 
half of the I stage, the instructions are decoded and the 
appropriate general registers are read. 

4. The integer units generate their results on the first half 
of the B stage. Memory references, such as load and store 
instructions, also generate their target address during the 
first half of the B stage. 

5. Load and store data is transferred between the execution 
units and the data cache on the second half of the A stage. 

6. The general registers are set on the second half of the 
R stage. 

Superscalar Processor. The PA 7300LC is a superscalar pro 
cessor, capable of executing two instructions per pipeline 
stage. This allows it, at 160 MHz, to execute at a maximum 
rate of 320 million instructions per second. This, however, 
is a peak rate that is rarely achieved on real applications. 
The actual average value varies with the application run. 
The theoretical maximum assumes the proper mix of in 
structions, but not every pair of instructions can be bundled 
together for execution in a single cycle. Fig. 3 shows which 

Data 
Address 

Data Cache 
Access 

Load and 
Store Data 

Register 
W r i t e  /  

pairs of instructions can be bundled for execution in a single 
pipeline stage. 

Delayed Branching. The PA-RISC architecture includes delayed 
branching.0 That is, a branch instruction will not cause the 
program counter to change to the branch address until after 
the following instruction is fetched. Because of this, branches 
predicted correctly with a simple branch prediction scheme 
execute without any pipeline stalls. The majority of the re 
maining branches execute with only a single stall (see Fig. 4). 

Fig. 7300LC. Valid superscalar instruction combinations for PA 7300LC. 

June 1997 Hewlett-Packard Journal 49 

© Copr. 1949-1998 Hewlett-Packard Co.



Fig. 4. Branch behavior, (a) Correctly predicted branch, 
(b) Incorrectly predicted branch. 

Two Integer Execution Units. The PA 7300LC contains two 
integer execution units. Each contains an ALU (arithmetic 
logic unit) that handles adds, subtracts, and bitwise logic 
operations. Only one unit, however, contains a shifter for 
handling the bit extract and deposit instructions defined in 
the PA-RISC architecture. Since only one adder is used to 
calculate branch targets, only one execution unit can pro 
cess branch instructions. This same unit also contains the 
logic necessary to calculate nullification conditions. By 
limiting execution to only one branch or nullifying instruction 
per pipeline stage, we avoided a great deal of functional com 
plexity. Finally, only one unit contains the logic to generate 
memory addresses. Since the data cache is single-ported, 
there is no need to have two memory addresses generated 
per cycle. In special cases, however, two integer load or 
store instructions may be bundled together, provided they 
use the same double-word address. As mentioned before, 
these asymmetries between the integer units prevent any 
two arbitrary integer instructions from bundling together. 
However, even with this limitation, compilers are able to 
take advantage of the integer superscalar capabilities of 
the PA 7300LC. 

Multimedia Instructions. The PA 7300LC integer units imple 
ment a set of instructions first introduced on the PA 7100LC 
that accelerate multimedia applications.1'2'6 These instruc 
tions allow each integer unit to perform two 16-bit adds, 
subtracts, averages, or shift-and-adds each cycle. Because 
of superscalar execution, the PA 7300LC can execute four 
of these operations per cycle for a peak rate of 640 million 
operations per second. 

Floating-point Unit. The PA 7300LC contains one floating-point 
unit. Contained in this unit is a floating-point adder and a 
floating-point multiplier. The adder takes two cycles to cal 
culate a single- or double-precision result. It is pipelined so 
that it can begin a new add every cycle. The multiplier takes 
two cycles to produce a single-precision result and three 

1 The conditionally architecture enables certain instructions to conditionally nullify or cancel the 
operation of the following instruction based on the results of the current calculation or 
comparison. 

cycles for a double-precision result. It can begin a new 
single-precision multiply every cycle and a new double- 
precision multiply every other cycle. Divides and square 
roots stall the CPU until a result is produced. It takes eight 
cycles for single-precision and 15 cycles for double-precision 
operations. 

Instruction Cache and ILAB 
Integrating a large primary instruction cache onto the pro 
cessor chip broke new ground for PA-RISC microprocess 
ors. In the past, our processor designs relied on large exter 
nal primary caches. With the PA 7300LC, we felt that we 
could finally integrate enough cache memory on the proces 
sor chip to allow fast execution of real-world applications. 
Indeed, we have integrated twice as much cache on-chip as 
the PA 7100LC used externally in the HP 9000 Model 712/60 
workstation (i.e., 128K bytes versus 64K bytes). The inte 
grated cache not only improves performance but also 
reduces system cost, since an external cache is no longer 
mandatory. 

Primary Instruction Cache. The PA 7300LC primary instruction 
cache holds 64K bytes of data and has a two-way set associ 
ative is A set associative cache configuration is 
difficult to achieve with an external cache, but much more 
practical with an integrated cache. When compared to a 
similarly sized directly mapped cache, it performs better 
because of higher use and fewer collisions. We chose a two- 
way associative cache over other ways to save overhead 
caused by the replication of comparators and to reduce the 
propagation delay through the way multiplexer. 

The primary instruction cache is virtually indexed and physi 
cally tagged. Because the PA-RISC architecture restricts 
aliasing to IM-byte boundaries, we could use a portion of 
the virtual address (in this case, three bits) to form the index 
used to address the cache. To avoid using virtual address 
bits would have required us either to place the virtual-to- 
physical translation in series with cache access (increasing 
the cache latency) or to implement a large number of ways 
of associativity (in the case of a 64K-byte cache, this would 
have required a 16-way set associative organization). 

Data Array Requirements. The instruction cache is composed 
of a tag array and a data array, each containing addresses and 
instructions. Without using more wires or sense amplifiers 
than those found in a conventional cache organization, we 
organized the data arrays in an unusual fashion in the pri 
mary caches on the PA 7300LC to meet two requirements. 

The first requirement is for the instruction cache to supply 
two instructions per cycle to the execution units. Because 
the cache is two-way set associative, each location, or set, 
contains instructions corresponding to two distinct physical 
addresses. Thus, for any given set (determined by the in 
struction fetch address), there are two possible choices for 
the instructions being read. Each of these choices is called a 
group (see Fig. 5a). For speed reasons, both groups are read 
from the instruction data arrays simultaneously. Logic that 
compares the physical addresses in the tag arrays (one per 
group) with the physical address being fetched from the data 

1 Aliasing refers to intentionally allowing two different virtual addresses to map to the same 
physical address. The PA-RISC architecture restricts the number and location of bits that may 
differ between two virtual addresses. 

50 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Addressed]  Address[10] 

Hit Compare 

(b) 

Address[0:9] 

Left Array 

10 

Right Array 

10 

Set[x + 1] 

"  "  
(cl 

Right[11] 

Fig. 5. (a) Conventional two-cache 
organization, (b) Checkerboard in 
struction fetch, (c) Checkerboard 

Group 1 full line access. 

June 1997 Hewlett-Packard Journal 5 1 

© Copr. 1949-1998 Hewlett-Packard Co.



array determines which group is selected and sent to the 
rest of the CPU. Since this is the normal instruction fetch 
operation, it must be completed in a single processor cycle. 

The second requirement is to be able to write eight instruc 
tions simultaneously, all to the same group. Because a write 
occurs as part of the cache miss sequence, it is important 
that the write take only a single cycle to interrupt instruction 
fetches as little as possible. 

Fig. 5a shows the conventional method of addressing data 
arrays. Because of electrical and layout considerations, the 
upper four instructions of each eight-instruction-long cache 
line are kept in a separate array from the lower four instruc 
tions. Both the upper and lower arrays are addressed and 
read concurrently. There are four arrays in total: group 0 
upper, group 0 lower, group 1 upper, and group 1 lower. 
The instruction fetch address sent to the instruction 
cache, Address[0:11], contains twelve bits. One address bit, 
Address[10], selects between the upper and lower arrays. The 
rest of the address bits, Address[0:9] and Address[11], go to all 
four arrays and determine which set (Set[x]) is read out of the 
arrays. This is accomplished with the ll-to-2048 decoders. 
In reality, four decoders, one for each array, would be 
needed, but they all connect to the same address. As dis 
cussed above, there are two possible pairs of instructions to 
choose from with a given address. A signal from logic called 
hit compare selects between the two possibilities. In the 
example shown in Fig. 5a, instructions 0 and 1 from group 0 
are selected from the instruction cache. 

This conventional approach meets our first requirement. 
However, it does not meet our second requirement. It cannot 
access all eight instructions as a single group simultaneously. 
This is because a cache line is located in two adjacent sets 
and only half of the line can be read (or more important, 
written) at any one time. For example, if the group 0 upper 
array is supplying instructions 0 and 1, it obviously cannot 
supply 2 and 3. The only way to solve this problem with the 
conventional approach is to split each array into two halves. 
This, however, would require twice as many wires and possi 
bly sense amplifiers producing a sizable increase in area cost. 
By making a slight modification to the way the data arrays 
are organized and addressed, we found we could avoid this 
pitfall and meet both of our requirements. 

Our addressing approach on the PA 7300LC is called checker 

boarding. Fig. 5b shows how instructions are fetched from 
the instruction cache on the PA 7300LC. There are, again, 

four arrays: left upper, left lower, right upper, and right 
lower. The most significant address lines, Address[0:9], go to 
all four arrays, while Left[11] goes only to the two left arrays 
and Right[1 1] goes only to the the two right arrays. A single 
address bit, Address[10], selects between the upper and lower 
arrays, as before. 

When are instruction is fetched, both Left[11] and Right[11] are 
set to the value of Address[1 1]. Because of this, the operation 
is virtually identical to the conventional approach described 
above, except for one key difference: a cache line for a 
given group is spread across all four arrays, rather than just 
two. This can be seen in Fig. 5b, where the instructions 
corresponding to group 1 have been shaded. Each array con 
tains pieces of cache lines from both groups in a checker 
board fashion. 

Fig. 5c illustrates how checkerboarding allows simultaneous 
access to an entire cache line. By setting Left[11] to the group 
desired and Right[11] to the opposite value, all eight instruc 
tions from one group can be read or written. In the example 
shown in the figure, an entire cache line from group 1 is read 
out. Left[11] is set high, while Right[11] is set low. Address[0:9] 
selects which pair of sets, Set[x] and Set[x+1], are accessed. 
Fig. 6 lists the results of addressing the arrays with the 
various combinations of values on Left[11] and Right[11]. 

I n s t r u c t i o n  C a c h e  H i t  S t a g e s .  T h e  C P U  c o r e  w i l l  a t t e m p t  t o  
fetch a pair of instructions from the instruction cache every 
cycle during which it is not stalled. For example: 
The instruction fetch address arrives at the instruction 
cache at the end of the P stage of the pipeline. 
On the first half of the F stage, the word line decoders fire 
one word line to each array. 
On the second half of the F stage, the array is read, driving 
its value onto the bit lines to the sense amplifiers. The way 
multiplexer then selects the proper pair of instructions from 
the sense amplifier outputs. 
On the first half of the I stage, the instructions are driven to 
the execution units for decoding and execution. 

Instruction Cache Miss Stages. In the case of an instruction 
cache miss, which is known by the end of the F stage of the 
pipeline, the entire pipeline will stall. A read request for an 
entire cache line will then be sent to the memory controller. 
This request is called a copy in request. A 64-bit data path 
between the memory controller and the instruction cache 
requires a minimum of four cycles to transfer the entire 

L e f t f l l ]  R i g h t f u l  

Setlx] 
Group 0 
Instructions 0,1 

Set[x] 
Group 0 
Instructions 0,1 

Set[x + 1] 
Group 1 
Instructions 2,3 

Set[x + 1] 
Group 1 
Instructions 2,3 

le f t  Lower  Array 
Output 

Set[x] 
Group 0 
Instructions 4,5 

Set[x] 
Group 0 
Instructions 4,5 

Set[x + 1] 
Group 1 
Instructions 6,7 

Set[x + 1] 
Group 1 
Instructions 6,7 

Right Upper Array 
Output 

Set[x] 
Group 1 
Instructions 0,1 

Set[x + 1] 
Group 0 
Instructions 2,3 

Set[x] 
Group 1 
Instructions 0,1 

Set[x + 1] 
Group 0 
Instructions 2,3 

Right Lower Array 
Output 

Set[x] 
Group 1 
Instructions 4,5 

S e t [ x + 1 ]  
Group 0 
Instructions 6,7 

Set[x] 
Group 1 
Instructions 4,5 

Set[x + 1] 
Group 0 
Instructions 6,7 

Note: x is determined by AddresslO:9] 

Fig. 6. The meaning of checker 
board address lines Left[11] and 
Right[11]. 

52 June 1997 I lewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Timing Flexibility 

Microprocessor  des ign  i s  a  t ime-consuming  and  expens ive  p rocess .  
Idea l l y ,  a  des ign  shou ld  sca le  th rough  severa l  fab r i ca t ion  p rocess  genera  
t ions amort ize low-investment algor i thmic artwork shrunk to help amort ize 
the  cos t  o f  the  or ig ina l  des ign .  

A l t hough  i t  i s  r e l a t i ve l y  s t ra igh t f o rwa rd  t o  i nc rease  the  p rocesso r  f r e  
quency ,  the  f requency  o f  i n te rconnec t  to  the  res t  o f  the  sys tem is  more  
or  less  f i xed .  Typ ica l l y  the  base processor  des ign  has  the  capab i l i t y  fo r  
a  range  o f  co re -p rocessor - f requency- to - in te rconnec t - f requency  ra t ios .  

The  PA 7300LC has  th ree  in te r faces  tha t  a re  to le ran t  o f  inc reases  in  the  
p rocessor  f requency :  the  I /O  bus  in te r face ,  the  ma in  memory  in te r face ,  
and the  second- leve l  cache in te r face .  

The  cyc le  t ime o f  the  genera l  sys tem connec t  (GSC)  I /O  bus  can  be  con  
f igu red  to  some mu l t ip le  o f  the  p rocessor ' s  cyc le  t ime.  The  I /O  con t ro l le r  
suppor ts  ra t ios  f rom th ree  to  n ine .  The  second- leve l  cache con t ro l le r  can  
be  conf igured  to  suppor t  a  var iab le  number  o f  CPU cyc les  per  second-  
leve l  cache cyc le .  The cont ro l le r  suppor ts  two,  th ree,  or  four  CPU cyc les  
per  cache  cyc le .  S im i la r l y ,  the  ma in  memory  con t ro l le r  can  con f igure  the  

se tup  and  ho ld  t imes  o f  the  DRAMs to  be  two ,  th ree ,  o r  fou r  CPU cyc les .  
Add i t i ona l l y ,  seven  key  DRAM t im ing  pa ramete rs  can  be  i nd i v idua l l y  
p rog rammed  

As  the  p rocessor  ge ts  fas te r ,  pe r fo rmance  may  improve  bu t  on ly  as  a  
sub l i nea r  f unc t i on  o f  p rocesso r  f r equency  s ince  memory  and  I /O  pe r fo r  
mance 7300LC constant .  The la rge f i rs t - leve l  caches on the  PA 7300LC 
he lp  i nsu la te  t he  p rocesso r  f r om the  e f f ec t s  o f  t he  re l a t i ve l y  s l ow  mem 
o ry  accesses ,  a l l ow ing  the  pe r fo rmance  to  sca le  we l l  w i th  i nc reas ing  
c o r e  t h e  f r e q u e n c y .  T h e  i n i t i a l  f r e q u e n c y  t a r g e t  f o r  t h e  P A  7 3 0 0 L C  
was  132  MHz,  bu t  des ign  ra t i os  suppor t  co re  p rocessor  f requenc ies  up  
to  360  MHz.  

T w o  a d d i t i o n a l  b e n e f i t s  a r e  d e r i v e d  f r o m  t h e  t i m i n g  f l e x i b i l i t y  o f  t h e  
P A  7 3 0 0 L C .  T h e  i n c r e a s i n g  a v a i l a b i l i t y  o f  h i g h e r - s p e e d  D R A M s  a n d  
S R A M s  m a k e s  i t  a  s i m p l e  m a t t e r  t o  c o n f i g u r e  t h e  t i m i n g  g e n e r a t o r s  
t o  t a k e  a d v a n t a g e  o f  t h e s e  n e w  c o m p o n e n t s .  A l s o ,  t i m i n g  f l e x i b i l i t y  
d e c o u p l e s  t h e  d e s i g n  e f f o r t  f r o m  u n c e r t a i n t i e s  t h a t  d e v e l o p  a s  R A M  
c o m p o n e n t  v e n d o r s  t r a v e r s e  t h e i r  o w n  d e v e l o p m e n t  c y c l e s .  

cache line to the instruction cache. Four cycles are required 
because the memory controller can only deliver 64 bits per 
cycle and a cache line contains 256 bits. The memory con 
troller will return the pair of instructions originally intended 
to be fetched first, regardless of the pair's position within 
the cache line. As each pair of instructions is returned from 
memory, it is written into a write buffer. The instructions can 
be fetched directly from this buffer before they are written 
to the cache, with t ho first pair's arrival causing the pipeline 
to resume execution. This capability is commonly referred 
to as Nlri'/ini h///. In effect, the write buffer forms a third way 
of associativity. After the last pair of instructions arrive from 
memory, the write buffer contents are written to the cache 
in one cycle. 

Unified Translation Lookup Table. Since the instruction fetch 
address is a virtual address, it must be mapped into a corre 
sponding physical address at the same timo the instruction 
cache arrays are being accessed. Normally, a full instruction 
translation lookaside buffer, or ITLB, is used to perform this 
function. On the PA 7300LC, as on all recent PA-RISC proces 
sors, we felt that the performance improvements achieved 
with a separate ITLB and DTLB (for data accesses) did not 
warrant the increased chip area costs. Instead, we opted 
for a unified TLB that performs both instruction and data 
translations. 

Instruction Lookaside Buffer (ILAB). Because both an instruc 
tion and a data translation are required on many cycles, a 
smaller structure called an instruction lookaside buffer, or 
ILAB, is used to translate instruction addresses, while the 
larger unified TLB is free to translate data addresses. The 
four-entry ILAB is a subset of the unified TLB and contains 
the most recently used translations. This strategy is quite 
olTeetive because instruction addresses, unlike data ad 
dresses, tend to be highly correlated in space in that they 
generally access the same page, a previous page, or the next 
page. 

When an instruction address does miss the ILAB, normally 
because of a branch, the pipeline will stall to transfer the 

desired translation from the unified TLB to the ILAB. We 
designed in two features to mitigate these ILAB stalls. On 
branch instructions that are not bundled with a memory 
access instruction (such as a load or store), the unified TLB 
will of accessed in parallel with the ILAB, in anticipation of 
an ILAB miss. If the ILAB misses, the normal ILAB stall pen 
alty will be reduced. The second feature we added was ILAB 
prefetching. Every time the CPU begins executing on a new 
instruction page, the TLB will take the opportunity to trans 
fer the translation for the next page into the ILAB. This can 
completely avoid the ILAB misses associated with sequential 
code execution. 

Data Cache and TLB 
We designed the data cache array to be very similar to the 
instruction cache arrays. Like the instruction cache, the data 
cache is two-way set associative, virtually indexed, and 
physically tagged. It is composed of three arrays: 
A data array, which has the same checkerboard organization 
as the instruction cache data array 
A tag array, which is almost identical to its instruction 
cache counterpart 
A dirty bit array, which has no counterpart in the instruction 
cache. This array keeps track of whether a data cache line 
has been modified by the instruction stream. 

Although organized in a way similar to the instruction cache, 
the data cache's internal operation and effect on the CPU 
pipeline are quite different. The data cache and TLB operate 
in the A and B stages of the pipeline. A load instruction 
causes a data address to be generated in the first half of the 
B stage. The data cache word line decoders operate on the 
second half of the B stage. On the first half of the A stage, 
the arrays drive their values out. Based on the comparison 
between the physical address and the output of the tag 
arrays, the way multiplexer then selects the proper data 
value. This word or double-word value is then driven to the 
integer and floating-point units during the second half of the 
A stage. 

ewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Address 

Fig. 7. The store queue. 

A store instruction generates a data address in the same 
manner as a load instruction. That address is used to read 
from the tag array as described above. Instead of using the 
store address to read from the data array, however, the ad 
dress from the head of a two-entry store queue (Fig. 7) is 
used to index into the data array on the second half of the 
B stage. The data from the head of the store queue is written 
into the data array on the first half of the A stage. The data 
from the store instruction is driven from the integer or 
floating-point units to the data cache on the second half of 
the A stage where it is written into the tail of the store queue. 

Store Queue. A load can retrieve data directly out of the store 
queue if it is to the same address as the store. The necessity 
of the store queue is twofold: 
The floating-point unit cannot drive store data in time to 
write the data array during the proper pipeline stage. The 
store queue, therefore, provides the time to transfer the 
data from the execution units to the data cache. 
Memory cannot be modified until it is known that the store 
instruction will properly finish execution. If the store in 
struction is going to trap, say, because of a TLB fault, any 
architected state, such as memory, must not be changed. 

The disposition of the store instruction is not known until 
the R stage of the pipeline, well after the data array is to be 
written. The store queue serves as a temporary buffer to 
hold pending store data. If a store that writes into the store 
queue subsequently traps, that store queue entry is merely 
invalidated. Also, by using a store queue, we are able to use 
a single bidirectional bus to transfer data between the exe 
cution units and the data cache. The store queue allows data 
to be transferred on the second half of the A pipeline stage 
for both load and store instructions, preventing conflicts 
between adjacent loads and stores in the instruction stream. 

Semaphore Instructions. The data cache performs other mem 
ory operations besides load and store instructions. It handles 
semaphore instructions, which in the PA-RISC architecture 
require a memory location to be read while that location is 
simultaneously zeroed. In operation, a semaphore is quite 
similar to a store instruction with zeroed data, except that 
the semaphore read data is transferred on the second half of 
the A stage. In cases in which the semaphore is not present 
or modified in the data cache, the load and clear operation 
must be performed by the memory controller. 

Flush and Purge Instructions. We must also execute flush in 
structions, which cause a given memory location to be cast 

out of the data cache. Related is the purge instruction, which 
at the most privileged level causes a memory location to be 
invalidated in the data cache with no cast out, even if the 
line is modified. 

Reducing Miss Latency. Data cache misses are detected on 
the first half of the A stage of the pipeline. To reduce miss 
latency, the physical address being read from the data cache 
is forwarded to the memory controller before the data cache 
hit-or-miss disposition is known. This address is driven to 
the memory controller on the first half of the A stage. A "use 
address" signal is driven to the memory controller on the 
first half of the R stage if a cache miss occurs. 

Copyin Transaction. A number of transaction types are sup 
ported between the CPU core and the memory controller. 
The most common type is a copyin transaction. 

After receiving a copyin request, the memory controller re 
turns the requested cache line, one double word at a time. 
As with instruction misses, the memory controller returns 
the data double word that was originally intended to be 
fetched first. 

On load misses, when the critical double word arrives, it is 
sent directly to the execution units for posting into the regis 
ter files. On integer load misses, the critical data is bypassed 
before error correction to reduce latency even further. 

In the extremely rare event that the data contains an error, 
the CPU is prevented from using the bad data and forced to 
wait for corrected data. As each double word arrives from 
the memory controller, it is placed into a copyin buffer. 

When all the data has arrived, the contents of the copyin 
buffer are written to the data cache data array in a single 
cycle. There are actually two copyin buffers to ensure that 
two data cache misses can be handled simultaneously. 

Fig. 8 shows a block diagram of the copyin and copyout 
buffers. 

Copyout Transaction. A data cache line can contain modified 
data requiring posting or writing back to memory when cast 
out. To this end, another transaction type is implemented â€” 
a copyout transaction. A copyout is necessary under two 
circumstances. The first case is when a data cache miss is 
detected and the existing cache line selected for replacement 
has been modified. This is the most common case. 

The second case is when a flush instruction is executed and 
hits a modified line in the data cache. The data cache sup 
plies both a physical address and 32 bytes of data on a copy 
out. The data cache uses the checkerboard organization, so 
the full cache line read for the copyout takes only one cycle. 

Reducing Cache Miss Penalties. In the PA 7300LC, we have 
taken a number of steps to reduce the penalty caused by 
cache misses. As mentioned above, we have reduced cache 
miss latencies. We have also continued to adopt a "stall-on- 
use" load miss policy pioneered on earlier PA-RISC designs.4 
In this policy a load miss stalls the CPU pipeline only long 
enough to issue the copyin transaction and possibly a copy 
out transaction. In many cases, the delay lasts for only one 
cycle. The CPU will then only stall when the target register 
of the load instruction is subsequently referenced. If the 

54 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Program 
C o u n t e r  I L A B  

1  1  
Instruction 

Cache 
Tag Array 

Instruction 
Cache 

Data Array Fetched 

Return Data (from MIOC) 

64 

Load and Store 
A d d r e s s  T L B  

1  I  
Data Cache 
Tag Array 

Data Cache 
Dirty Bit 

Array 

Copyout Buffer 
( in MIOC) 

Copyout Address 
(to MIOC) 

critical data returns from memory fast enough, the pipeline 
will not stall at all. 

Because memory data is not needed by the CPU on a store 
miss, the CPU only stalls once, again for only one cycle in 
many cases, to issue the copyin and copyout transactions. 

A Scoreboard keeps track of which words have been stored 
so that the copyin write will not overwrite more recent data. 
Since high-bandwidth writes to I/O space can be critical 
to graphics performance, under most circumstances the 
PA 7300LC will not stall on a store to I/O space. This opti 
mization is possible because an I/O space access is guaran 
teed to miss the data cache, so there is no need to stall the 
CPU to perform a copyout read. 

Cache Hints. The PA-RISC architecture defines cache hints to 
allow the programmer or compiler to communicate informa 
tion that can be used by the hardware to improve perfor 
mance.5 We have implemented two of these hints on the 
PA 7300LC: 
Block copy store. Hints are used to indicate that software 
intends to write an entire cache line. In this case, there is 
no need to perform a main memory read on a cache miss. 
With this hint specified, upon detecting a store miss, the 
PA 7300LC simply zeros out a copyin buffer and continues 
without issuing a copyin transaction. 

Fig. 8. A block diagram of the 
copyin and copyout buffers. 

' Coherent operation semaphore hint. This optimization im 
proves semaphore performance by not forcing the load and 
clear operation to the memory unit if the data is present in 
the cache. 

TLB Access. All memory reference instructions are guaranteed 
access to the unified TLB containing both instruction and 
data translations, during the B and A stages of the pipeline. 
The TLB is fully associative and contains 96 page transla 
tions. The TLB receives a virtual data address on the first 
half of the B stage and drives a translated physical address 
on the first half of the A stage. This physical address goes to 
the data cache to perform hit comparison and to the memory 
controller in anticipation of a data cache miss. 

In addition to containing 96 page entries, each of which 
maps to a 4K-byte page, the TLB also contains eight block 
entries used to map larger memory ranges. These block 
entries are managed by the operating system. 

CPU Summary 
Although the CPU core of the PA 7300LC is not dramatically 
different from its predecessors, several noteworthy features 
that improve performance and allow more cost-effective 
system designs include: 

June 1997 Hewlett-Packard Journal 55 

© Copr. 1949-1998 Hewlett-Packard Co.



â€¢ A simple pipeline and a capable superscalar core that 
increased our operating frequency to 160 MHz. 

â€¢ Substantial primary caches integrated directly onto the 
processor chip 

â€¢ Most important, cache controllers that take advantage of 
integrated caches, resulting in features designed into the 
CPU core to increase the competitiveness of PA 7300LC- 
based systems. 

Memory and I/O Controller Design 

The memory and I/O controller (MIOC) is responsible for 
interfacing the CPU core to the memory and I/O subsystems. 
Integrating the MIOC on the same chip as the CPU core pro 
vides a tight coupling that results in outstanding memory 
and I/O performance. The memory controller includes a 
main memory controller and a controller for an optional 
second-level cache. The I/O controller interfaces the CPU 
core to HP's general system connect (GSC) I/O bus and han 
dles direct memory access (DMA) requests from I/O devices. 

CPU to MIOC Interface 
The CPU core transmits four basic types of request to the 
MIOC: 

â€¢ Copyins. These requests occur during first-level cache 
misses and are used by the CPU core to read a cache line 
from the memory subsystem. 

â€¢ Copyouts. A copyout is a cache line from the CPU core that 
must be written to the memory subsystem because it was 
modified in the first-level cache by a store instruction. 
Copyouts are only issued when a modified cache line is 
replaced or flushed from the first-level cache. 

â€¢ Uncached loads and stores. An uncached load or store 
request is a read or write to either memory or I/O for an 
amount of data that is less than a cache line. 

â€¢ Load-and-clears. This request is an indivisible request to 
read a location and then clear it. This operation is needed 
to implement PA-RISC's semaphore mechanism. Requests 
that have addresses located in memory address space are 
processed by the memory controller, and all others are sent 
to the I/O controller. 

The PA 7300LC has a four-entry copyout buffer. Copyouts 
are posted to memory as a background operation, allowing 
copyins to be processed before copyouts. New copyin re 
quests are checked for conflict within the copyout buffer. 
If there is no conflict, the copyin is processed before all 
copyouts to help minimize load use stalls. 

Second-Level Cache Control 
Even though first-level caches on the PA 7300LC are rela 
tively large for integrated caches, many applications have 
data sets that are too big to fit into them. The second-level 
cache (SLC) implemented for the PA 7300LC helps solve this 
problem. Logically, the SLC appears as a high-speed memory 
buffer; other than its performance improvement, it is trans 
parent to software. The SLC is physically indexed, is write- 
through, has unified instructions and data, and is direct 
mapped. 

The SLC becomes active after an access misses the first- 
level cache. The first-level cache miss indication becomes 
available after the TLB delivers the real address. As a result, 
there is little advantage to virtually indexing the SLC and 

real indexing avoids the aliasing problems associated with 
virtual caches. 

Multiway Associative Cache Comparison. Multiway associative 
caches enjoy better hit rates because of fewer collisions. 
However, multiway caches are slower because of way selec 
tion, and for a given cache size, are much more expensive 
to implement with industry-standard components. For most 
applications, it is more advantageous to trade off size for 
ways of associativity. 

Write-Back Cache Comparison. Write-back caches generally 
have better performance than write-through caches. How 
ever, sharing the data bus with main memory alters this situ 
ation. If the SLC were write-back, lines copied out of the 
SLC would have to be read into the PA 7300LC, the error- 
correcting code (ECC) would have to be computed, and the 
line would have to be written back to main memory. This 
operation would be quite expensive in terms of bus band 
width. Instead, dirty lines cast out by the first-level cache 
are written to the SLC and to main memory simultaneously. 

Any valid line in the SLC always has the same data as its 
corresponding location in main memory. Writing simulta 
neously to main memory and to the SLC is slightly slower 
than simply writing to the SLC SRAM, but produces a good 
performance and complexity trade-off when compared to a 
write-back design. 

DMA Interface. DMA reads and writes from I/O devices are 
typically sequential and do not exhibit the access locality 
patterns typical of CPU traffic. Entering DMA traffic into the 
SLC tends to pollute the SLC with ineffective entries. Instead, 
buffering and prefetching inside the DMA interface are better 
ways of improving DMA performance. To maintain consis 
tency, an SLC check cycle is run for DMA writes, and if it 
hits, the line is marked invalid. DMA write data is always 
written to main memory and DMA reads are always satisfied 
from main memory. Because of the write-through design of 
the SLC described above, data in the SLC never becomes 
stale. 

SRAM Components. The PA 7300LC is optimized for both 
price and performance. Relatively early in the design pro 
cess, it became necessary to select the static random access 
memory (SRAM) components used to build the SLC. SRAM 
components are frequently used in cache construction be 
cause they offer high speed with moderate cost and capaci 
ties. Given the relatively long design cycles necessary to 
produce a complex microprocessor and the uncertainties of 
the semiconductor marketplace, it was impossible to predict 
which components would be most attractive from a price 
and performance perspective when the PA 7300LC entered 
full production. Instead of selecting a single component, the 
decision was made to support a broad range of SRAM types. 
This allowed component selection to be made late in the 
development cycle and even upgraded at some point during 
the production phase. 

Second-Level Cache Size. Most popular computer benchmark 
programs have relatively small working sets and are not 
particularly sensitive to the performance of the memory 
system beyond the first-level cache. On the other hand, 

* In a writ ten cache design (also cal led copy-back), data is wri t ten only to the cache on 
a write, write- is not written to main memory until the cache line is invalidated- In a write- 
through cache design, data is written to both the cache and mam memory on a write. 

56 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



application programs have widely variable working set 
sizes. Some are small and fit well in the first-level cache 
and some exhibit little reference locality and don't fit in any 
reasonably sized cache. Hence, no single SLC size is appro 
priate. The PA 7300LC SLC controller supports cache sizes 
ranging from 256K bytes up to 64M bytes. Although a IÃ4M- 
byte SLC is expensive, it might be cost-effective for some 
applications. 

The SLC data array width can be programmed to either 64 or 
128 bits plus optional ECC. However, the width must match 
the width of main memory. 

Memory Arrays. The SLC consists of two memory arrays: the 
data array and the tag array. The data array shares the data 
bus with main memory. As an option. ECC bits can be added 
to the data array, and the full single-bit correct and double- 
bit detect error control invoked for SLC reads. The tag array 
includes a single optional parity bit. If parity is enabled and 
bad parity is detected on a tag access, an SLC miss is sig 
naled, the failing tag and address are logged, and a machine 
check is signaled. 

Main Memory Control 
DRAMs. Dynamic random access memory (DRAM) technol 
ogy is used to construct main memory because of its high 
density, low cost, and reasonable performance levels. The 
main memory controller supports industry-standard DRAMs 
from 4M-bit to 256M-bit capacities. Systems can have up to 
16 slots and total memory can be up to 3.75G bytes, the 
maximum possible with the PA-RISC 1.1 architecture. 

Data Bus Width. Data bus width can be either 64 or 128 bits 
plus optional ECC. The 128-bit data bus width significantly 
improves memory performance. The 64-bit option supports 
lower-cost systems. 

Main Memory Controller. The PA 7300LC main memory con 
troller is very flexible and is able to support most types of 
asynchronous DRAMs. The controller is intentionally not 
SIMM DIMM ( single or double inline memory module) spe 
cific. This allows use of the PA 7300LC in a wide variety of 
system configurations. The main memory can support ex 
tended data out (EDO) DRAMs. which are similar to other 
DRAMs but use a slightly modified protocol that pipelines 
the column access. 

Fig. 9 shows the timing diagrams of read accesses, emphasiz 
ing the improved data bandwidth of EDO DRAMs compared 
to standard page-mode DRAMs. 

Error-Correcting Code. The state of DRAM memory cells is 
susceptible to corruption from incident energetic atomic- 
particles. Because of this, the PA 7300LC main memory con 
troller optionally generates and checks an error-correcting 
code. The code is generated over a 64-bit data word. Any 
single-bit error within the 64-bit data word can be corrected. 
All double-bit errors and all three- or four-bit errors within an 
aligned nibble can be detected. The aligned nibble capability 
is useful since memory systems are typically built with four- 
bit-wide DRAMs. The nibble mode capability allows detection 
of the catastrophic failure of a single four-bit-wide DRAM. 
Whenever an error is detected, data and address logging 
registers are activated to support efficient fault isolation and 
rapid field repair. 

Shared SLC and Main Memory Data Bus 
From a cost perspective, it was desirable to share the large 
data buses needed for the SLC and main memory, thereby 
lowering the pin count of the PA 7300LC. However, sharing 
the large load from main memory DRAM cards would have 
significantly impacted the speed of SLC operations. The 

Add ress  

RAS 

CAS 

OE 

DATA 

Address  

RAS 

CAS 

OE 

DATA 

Ibl 

Fig. 9. D R A M  t i m i n g  d i ; i M n n i i s .  ( a )  l  ' a f Ã  ' 1  m o d e  r e a d  ( h )  K M  e n d e d  d a l a  m i l  ( K I ) O )  m o d i '  r e a d .  

Data 

.lime 1997 Hewlett-Packard Journal 57 
© Copr. 1949-1998 Hewlett-Packard Co.



Fig. switch. PA 7300LC block diagram showing the position of the FET switch. 

solution to this problem resulted in using an FET switch to 
isolate the main memory load from the SLC bus when the 
SLC is driving the bus, but to allow the bus to be shared 
when main memory is being accessed (see Fig. 10). The FET 
switch is a relatively inexpensive industry-standard part, 
which has a propagation delay of less than 1 ns when in the 
on state. 

FET Switch. The FET switch also enabled us to connect the 
PA 7300LC to legacy 5-volt DRAM cards. The PA 7300LC 
operates at 3.3 volts and is not tolerant of the 5-volt logic 
swing of many existing DRAM cards. Biasing the gate of the 
FET switch to a voltage lower than 5 volts effectively limits 
the voltage swing from DRAM cards to 3.3 volts when seen 
by the PA 7300LC. 

Chip Layout Challenges 
Although the MIOC is a small part of the PA 7300LC, it con 
trols nearly all of the I/O pins. Because the pins are located 
at the chip perimeter, long signal routes from the MIOC to 
some pins are unavoidable. Separating the MIOC into several 
blocks that could be placed near the chip perimeter and con 
trolled remotely helped manage this problem. In particular, 
the data flow across the shared SLC and main memory data 
bus is completely predictable (because there are no slave 
handshakes from the memories), making the memory data 
interface the ideal block to be controlled from the other side 
of the chip. 

Cache Miss Data Flow 
The MIOC is highly optimized for satisfying CPU cache 
misses. Although DMA transaction processing is handled 
efficiently, system performance is more sensitive to CPU 
cache miss performance than DMA performance. 

When idle, the SLC and main memory controllers pass 
through physical addresses that are coming directly from 
the TLB and going to the SLC and main memory address 
pads. On the cycle following each address, the CPU core 
indicates whether that address resulted in a miss in the first- 
level cache. If a miss occurred, then an access is initiated 
and a cycle is saved by having passed along the physical 
addresses to the SLC and main memory. 

For copyins, the SLC begins an access. The tag and data 
array are accessed in parallel. If there is an SLC hit, then 
data is returned to the processor. 

On an SLC miss, the SLC data array data drivers are disabled, 
the FET switch is closed, and control is transferred to the 
main memory controller. 

When a transaction is received by the main memory control 
ler, it endeavors to activate the correct DRAM page. This may 
be as simple as issuing a row address strobe (RAS) with the 
proper row address, or may require deasserting RAS, pre- 
charge, and a new RAS. The memory controller sequences up 
to the point at which it is ready to issue a column address 
strobe (CAS) command, waits there until the SLC misses, and 
switches control over to complete the CAS command. How 
ever, if the SLC hits, it will wait for the next transaction and 
start the cycle again. Performance is improved by starting 
the DRAM access in parallel with the SLC access. 

In the case of an SLC miss, once the main memory controller 
has control, it issues the proper number of CAS cycles to 
read the data. As the data passes the SLC, it is latched into 
the SLC data array. At the end of the cycle, the FET switch is 
opened, the SLC drivers are enabled, and the next transaction 
is processed. 

58 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Reducing Low-Miss Latencies. Much of the work described 
above concerns reducing miss latencies. This is important 
because even though the PA 7300LC CPl" core has a non- 
blocking cache, load use stalls still develop quickly for many- 
instruction sequences. Low-miss latencies minimize the 
impact of these stalls, which results in better overall perfor 
mance. At CPl" clock rates of 160 MHz. the PA 7300LC. as 
seen by the CPl" pipeline, is capable of SLC hit latencies 
of three cycles with industry-standard 6-ns asynchronous 
SRAM. Main memory latencies can be as low as 13 cycles 
with Ã±O-ns DRAM. Many single-cycle latency reductions 
have been implemented in the PA 7300LC; each by itself 
would not have much impact on overall memory access la 
tency, but taken together, they make a significant difference. 

I/O Interface 
The PA 7300LC contains interface logic that allows direct 
connection to HP's high-speed GSC I/O bus. This interface 
processes I/O requests from the CPU core and DMA re 
quests from GSC I/O bus devices. 

Programmed I/O. Programmed I/O allows load and store in 
structions from the CPU core to communicate with the I/O 
subsystem. From a performance perspective, programmed 
I/O writes to graphics devices are important for many work 
station applications. The improvements made for graphics 
performance in the PA 7300LC are described later in this 
article. 

DMA Interface Controller. The DMA interface controller is 
designed to minimize main memory controller traffic and 
to reduce DMA read latency. The DMA interface controller 
employs three 32-byte line buffers. When servicing any DMA 
read, the controller requests 32 bytes from main memory 
and puts the data into one of the buffers. DMA requests on 
the GSC bus may be 1. S. Hi. or :}'2 bytes long. Since most 
DMA requests an- to sequential addresses, requests less 
than 32 bytes can probably be satisfied from data contained 
in the buffer without issuing another request to the main 
memory controller. The DMA controller is also able to pre 
fetch the next sequential line of information to increase the 
chances that DMA read requests are serviced from the DMA 
buffers. 

GSC Write Requests. Writes are collected by the DMA hard 
ware and passed on to the main memory controller. GSC 
write requests of':i2 bytes are sent directly to the controller, 
but when possible, smaller-sized writes are collected into 
.'i2-byte chunks by the DMA controller to allow the main 
memory controller to access memory more efficiently. 

Improvements for Graphics Applications 
Graphics performance depends on many aspects of the 
system design. In addition, graphics workloads are sensitive 
to the system architecture. For the PA 7300LC, we chose to 
optimize the design for engineering graphics, where the typi 
cal workload involves rendering an object to the display 
device. 

From a high-level point of view, the process of rendering an 
object can be divided into three steps: 

1. Traversing the display list that describes the object 

2. Clipping, scaling, and rotating the object with the current 
 ieu point 

3. Transforming the object from primitive elements, such as 
polygons, into pixels on the screen. 

This process can be partitioned in different ways. With 
today's powerful CPUs, the most cost-effective method is to 
store the display list in the computer system's main memory. 
The host CPl" performs the display list traversal and the 
clipping, scaling, and rotation steps, and then passes primi 
tives to dedicated graphics hardware for conversion into 
onscreen pixels. 

Graphics Requirements. Several different models, including 
specialized CPU instructions and DMA engines, have been 
used to extract data to be rendered from main memory. 
While these approaches work, they incur the undesirable 
cost of specialized driver software that doesn't port well 
between processor generations. Starting with the PA 
7100LC, the philosophy has been to support the graphics 
requirements within the existing architecture as much as 
possible. For example, the PA-RISC' architecture defines a 
set of 32-bit integer unit general registers and another set of 
64-bit floating-point unit general registers. Loads and stores 
from either set can be made to memory space, but only inte 
ger register loads and stores were architecturally defined to 
I/O space. 

Starting with the PA 7100LC, floating-point register loads 
and stores to I/O space have been implemented. This has 
yielded improved performance because a single load or 
store can now move 64 bits and because more registers are 
available for operations that communicate with I/O space. 

In contrast with specialized operations, extensions within 
the architecture are generally applicable and carry forward 
into future generations. These optimizations can also be 
used to benefit workloads other than graphics. 

Graphics Optimizations. Several of the optimizations made in 
the PA 7300LC to further improve graphics performance 
include: 
A large I/O store buffer 
A relaxation of the load and store ordering rules 
The elimination of a CPU hang cycle previously needed 
for I/O stores 
Improvements to the GSC I/O bus protocol. 

The structure of industry-standard graphics libraries leads 
to bursty graphics I/O traffic. The bursts are of many differ 
ent sizes, but the most common burst is a write of 26 words. 
The PA 7300LC CPU core-to-I/O interface implements a large 
write buffer and can accept up to 19 double-word writes 
without stalling the CPU pipeline. This allows Â¡he CPU core 
to burst, up to 19 double-word writes to the I/O subsystem, 
and then continue with its next task while the I/O interface 
is sending this data out to the graphics hardware. 

Graphics Ordering. PA-RISC! is a strongly ordered architecture. 
Strongly ordered means that all elements of the system must 
have a consistent view of system operations. In the case of 
graphics performance, this means that all buffered I/O stores 
must be observed by the graphic's device before the CPl I can 
access a subsequent piece of data in main memory. Hence, 
an I/O store and a following memory read are serialized. 
A loophole to the ordering requirement was created for 
graphics. I/O stores within a programmable address range 
are allowed to be out-of-order with respect to the memory 

.Imir IIÃœITIlcwIclt-l'Ã¼ckiird.IoiiriKil 59 

© Copr. 1949-1998 Hewlett-Packard Co.



accesses. The graphics software takes responsibility for 
ordering when necessary. 

Hang Cycle. Previous PA-RISC processors always incurred a 
minimum of one hang cycle for an I/O store. Extra logic was 
added to the data cache controller on the CPU core to elimi 
nate this hang cycle. 

Graphics Transfer Size. HP's high-speed GSC bus is used to 
connect graphics adapters to the PA 7300LC. The CPU sends 
data to the graphics device with I/O stores. In the PA-RISC 
architecture, I/O stores are 64 bits or less. The GSC is a 
32-bit multiplexed address and data bus. Stores of 64 bits 
turn into an address cycle followed by two data cycles. At 
best the payload can be only two thirds of the maximum bus 
bandwidth. As mentioned above, the average transfer size to 
graphics is 26 words. Since these transfers are sequential, 
sending an address with every two words is unnecessary. 
Some form of address suppression or clustering of sequential 
writes was desired. Thus, the write-variable transaction was 
created. 

Write-Variable Transactions. A new write-variable transaction 
type was created for the GSC bus. Write-variable transactions 
consist of an address and from one to eight data cycles. Since 
the PA 7300LC must be compatible with existing cards that do 
not implement the write-variable cycle type, the PA 7300LC 
only generates them in configurable address spaces. 

With this protocol, the I/O controller blindly issues write- 
variable transactions for enabled I/O address regions. Start 
ing with the initial write, as each write is retired from the 
I/O write queue, the I/O controller performs a sequentiality 
check on the next transaction in the queue. The process 
repeats for up to eight GSC data cycles. Maximum perfor 
mance is achieved by allowing the I/O controller to begin 
issuing the write when the first piece of data becomes 
available. 

The length of the transaction is limited to eight data cycles. 
Choosing eight data cycles is a good compromise between 
flow control issues and amortizing address cycle overhead 
with payload. The write-variable enhancement increased 
maximum CPU-to-graphics bandwidth from two thirds of 
the GSC raw bandwidth to 8/9 of the raw bandwidth. The 
PA 7300LC can easily saturate the GSC bus at 142 Mbytes 
per second compared with the 50 Mbytes per second 
achieved by the PA 7100LC with careful coding. 

MIOC Summary. The MIOC implemented a number of features 
that improve system performance while keeping costs low, 
including: 

â€¢ The second-level cache and main memory controllers are 
optimized to reduce the latency of copyin requests from the 
CPU core. 

â€¢ The I/O controller improves graphics bandwidth and sup 
ports efficient DMA accesses through the use of buffers and 
prefetching. 

â€¢ The MIOC is designed to be flexible, supporting a range of 
second-level cache sizes, a variety of industry-standard 
memory components, two different memory widths, and an 
optional error correction scheme. 

Conclusion 
The PA 7300LC design builds on the success of past proces 
sor designs and offers significant improvements in key areas. 
It features a superscalar CPU core, a large, efficient on-chip 
cache organization, tightly coupled second-level cache and 
main memory controllers, and bandwidth improvements for 
graphics. These features combined with frequency increases, 
extensive configurability, and high chip quality make the 
PA 7300LC attractive for a wide range of computer systems. 

Acknowledgments 
A large number of people were responsible for the success 
ful design of the PA 7300LC, especially the design teams from 
the Engineering Systems Lab in Fort Collins and from the 
Integrated Circuits Business Division's Fort Collins Design 
Center. Many important contributions were also made by 
individuals from the Fort Collins Systems Lab, the Systems 
Performance Lab in Cupertino, the Computer Technology 
Lab in Cupertino, and other organizations within HP. 

References 
1. P. PA- et al, "HP's PA 7100LC: A Low-Cost Superscalar PA- 
RISC Processor," Proceedings of IEEE CampeÃ³n, February 1993, 
pp. 441-447. 
2. S. Work et al, "A VLSI Chipset for Graphics and Multimedia Work 
stations," IEEE Micro, Vol. 14, no. 2, April 1994, pp. 10-22. 
3. G. Kurpanek, et al, "PA 7200: A PA-RISC Processor with Inte 
grated High-Performance MP Bus Interface," Proceedings of IEEE 

Compcon, February 1994, pp. 375-382. 
4. E. DeLano, et al, "A High-Speed Superscalar PA-RISC Processor," 
Proceedings of IEEE Compcon, February 1992, pp. 116-121. 
5. R. 1, "Precision Architecture," IEEE Computer, Vol. 22, no. 1, 
January 1989, pp 78-91. 

6. R. Lee, J. Beck, L. Lamb, and K. Severson, "Real-Time Software 
MPEG Video Decoder on Multimedia-Enhanced PA 7100LC Proces 
sors," Hewlett-Packard Journal, Vol. 46, no. 2, April 1995, pp. 60-68. 
7. M. Bass, T. Blanchard, D. Josephson, D. Weir, and D. Halperin, 
"Design Methodologies for the PA 7100LC Microprocessor," Hewlett- 

Packard Journal, Vol. 46, no. 2, April 1995, pp. 23-35. 

60 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



High-Performance Processor Design 
Guided by System Costs 
To minimize time to market and keep costs low, the PA 7300LC design was 
leveraged from a previous CPU, the chip area was reduced, cache RAM 
arrays with redundancy were added, and high-speed, high-coverage scan 
testing was added to reduce manufacturing costs. 

by David C. Kubicek, Thomas J. Sullivan, Amitabh Mehra, and John G. McBride 

While designing the PA 7300LC processor, the CPU team had 
to make design trade-offs between time to market, perfor 
mance, and manufacturing costs. Occasionally these seem 
ingly contradictory goals worked together to drive the team 
to a decision. More often, however, the team had to make 
hard decisions, weighing the benefits of each of the design 
goals. 

This paper discusses the strategies used by the PA 7300LC 
physical design team to implement the design goals for the 
PA 7300LC. 

Design Goals 
One of the factors driving the design process was the desire 
to bring the product to market as fast as possible. To accom 
plish this goal, we employed three major strategies: 
Leverage as much as possible from the previous HP proces 
sors, including hardware, software, and methodologies for 
design and test 
Design quality into phase one, or the presilicon design 
stage, so that there would be fewer iterations of the design 
during phase two, after the first tape release 
Monitor project progress, avoiding any obstacles that might 
seriously impact or threaten our schedule. 

Keeping the cost of the system as low as possible was an 
other important goal of the project. Systems based on the 
PA 7300LC are meant to position HP in the low-to-midrange 
workstation market where prices are set by compel ition, not 
system cost. Therefore, savings in the system cost have a big 
impact on profit. To meet these aims, the team decided to: 
Integrate the first-level cache, a major system cost, into the 
processor, which had never been done before in an HP 
microprocessor 
Integrate the memory and I/O controller (MIOC), creating a 
system on a chip 
Reduce chip area to lower cost 
Add redundancy to the SRAM arrays on the chip, allowing 
some process defects to be repaired, thereby saving chips 
that would otherwise be thrown out 
Provide high-coverage, high-speed scan testing to lower the 
manufacturing cost of the processor. 

Designs Leveraged to Minimize Time to Market 
To reduce the time to market for the PA 7300LC, the CPU 
physical design team decided to leverage as many circuits 

as possible from the PA 7100LC. Except for the process 
shrink from CMOS26 to CMOS14, much of the superscalar 
integer data path on the PA 7300LC was leveraged from the 
PA 7100LC unchanged. Also, many of the cells used in the 
integer data path were used in other data path blocks on 
the chip. Although some of the circuits were reworked for 
speed improvements, the floating-point unit was also highly 
leveraged from the PA 7100LC. Furthermore, the floating 
point unit was used in the geometry accelerator chip for t he 
Visualize 48XL graphics product. This leverage strategy not 
only helped reduce time to market, but also split the design 
costs associated with the circuit between the ASIC and the 
CPU. 

Control Blocks 
While all of the control blocks leveraged from the PA 7100LC 
required some changes, much of the original control logic 
remained intact or was at least similar to the original code. 
This provided the opportunity to start the physical design 
early, providing the designers with the chance lo work the 
bugs out of the tool flow, begin composition, and provide 
early feedback on difficult timing paths to the control 
designers. 

For physical circuit layout, the control physical team ini 
tially used data scaled from the PA 7100LC in the CMOSiiii 
process to the CMOS14 process. In several cases, the final 
artwork was almost entirely based upon the floor plan 
scaled from the PA 7100LC. In other cases, the control equa 
tions were either vastly different (memory I/O control) or 
entirely new (the cache controllers), so we were unable to 
take advantage of earlier work. 

In the case of the three main integer control blocks, the 
timing information and a significant portion of the control 
equations were usable. However, a study of interconnect 
between the three blocks indicated that they could be com 
bined into a single block to simplify the design from a timing 
standpoint and to use global routing resources efficiently. 
By moving several hundred signals away from the center of 
the die into a more localized area near the integer data path, 
we also saved significant area. 

Core Logic Library. While much of the logical design of the PA 
7:Â¡(I()LC was leveraged from the PA 7100LC, most of the slan 
dard cell libraries were borrowed from the PA 8000 project. 

June [997 Hewlett-Packard Journal (il 

© Copr. 1949-1998 Hewlett-Packard Co.



The PA 8000 was fabricated using the same 1C process tech 
nology as the PA 7300LC, but was farther along in the design 
cycle. The PA 7300LC team was able to use almost the entire 
PA 8000 core logic library unchanged. Unfortunately, a dif 
ferent clocking strategy meant that the driver library needed 
significant rework. 

Standard Cell-Based Control Block Design. The use of a stan 
dard cell-based design for the control blocks, which was 
leveraged from the PA 7100LC, allowed great flexibility 
when fixing functional bugs, both in phase one (presilicon) 
and in phase two (postsilicon). During phase one, the stan 
dard cell approach permitted fairly quick turnarounds of a 
control block for rather complex changes. Often all that was 
required of the physical designer was to rerun the synthesis 
and routing tools, apply a few hand changes, and verify the 
design. 

Use of Spare Gates. During the very late stages of phase one 
and all of phase two, the use of spare gates in the standard 
cell blocks allowed the physical designers to make logical 
changes by changing only the metal layers. One very late 
bug fix was made between the time the lower-level masks 
(e.g., diffusion, well, polysilicon) and the higher-level metal 
masks were released to the mask shop. Additionally, when 
phase two bugs were found, we were able to use the spare 
gates for metal-only changes. Because a number of wafers 
were held in the fabrication shop before Ml (the lowest 
level of metal) was placed, metal-only changes were run 
through the fabrication shop very quickly since the lower 
layers were already processed. 

FIB Process. Another advantage of the metal-only changes 
was exploited during phase two. As control bugs were un 
covered, we were able to rewire the logic using spare gates 
and the FIB (focused ion beam) process. The FIB process 
uses an ion beam to cut and expose various metal lines on 
a functional chip and to deposit platinum, reconnecting the 
gates into a new logic structure. A typical FIB repair is illus 
trated in Fig. 1. Use of the FIB process allowed the design 

Fig. 1. The photomicrograph 
shows a typical FIB (focused ion 
beam) repair. For this FIB repair, 
port ions of the circuit of interest 
were located under a metal four 
power bus. Therefore, openings 
had to be cut through the power 
bus to access the circuits below. 
Notice how the platinum depos 
ited by the FIB runs over top 
of the metal four, separated by 
passivation. 

team to verify bug fixes in a system that often ran at full 
operating speed. This resulted in a more complete functional 
verification, since tests run much faster in real silicon than 
in simulation. 

New Tools. While the synthesis tool (Synopsys) and routing 
tool (CellS from Cadence Systems) were the same as on the 
PA 7100LC project, newer versions of these tools with addi 
tional features and problems were employed. The ability to 
work with the tools at an early stage allowed the physical 
control design team the chance to learn the strengths and 
weaknesses of the tools, so that they could be exploited or 
compensated for once full functionality was reached in the 
control equations. Even though new versions of these tools 
presented a few new problems, the basic method of opera 
tion was the same as for the PA 7100LC. Thus, use of these 
tools helped reduce our time to market by leveraging our 
previous experience with them. 

Phase One Quality Equals Reduced Phase Two Debug 
Time 
In addition to leveraging designs and methodologies, correct 
balance between the time and resources spent ensuring 
phase one quality and the time and resources spent finding 
functional problems in phase two can also reduce time to 
market. In this project, we gave great weight to ensuring 
phase one quality, since this would make debugging much 
easier in phase two. In return for our investment, the 
PA 7300LC had one of the shortest and smoothest phase 
two periods of all CPUs designed by HP. 

Debugging Trade-offs 
In phase one of the design cycle, simulation, emulation, and 
hand analysis are the key tools of the designer. With these 
tools, the designer can examine every detail of the design at 
any chip state and under any conditions. 

In phase two, tests can be run much faster on a real chip 
than in simulation, accelerating bug detection. However, 

62 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



root-cause analysis of problems is a slow and difficult pro 
cess because \irtually all signals are hidden from the scru 
tiny of the designer. In addition, the signals that are avail 
able for the designer to examine are either chip I/Os, or are 
only indirectly available through scan paths. Hence, electrical 
phenomena such as glitches and power supply droops are 
not easily observed. Therefore, phase one debugging is a 
much simpler process because of the availability of detailed 
data about the internals of the chip. 

Cross-Checking Designs to Improve Phase One Quality 
To ensure phase one quality, each design on the PA 7300LC 
was subjected to a series of computerized automatic design 
checks, and then a set of manual checks was performed by 
designers who were not involved with the original design. 
These checks looked at: 

â€¢ Circuit topologies 
â€¢ FET size and connections 
â€¢ Wire size 
â€¢ Power routing 
â€¢ Clock signal routing 
â€¢ Signal coupling 
â€¢ Signal types and timing. 

Automated and Human Checks 
For automated tests, the computer applied the same rules to 
each node on the chip quickly, without the bias that a human 
may have had. However, the computerized checks often 
generated spurious error messages and required significant 
human intervention to identify the real problems. Also, many 
rules were beyond the scope of computer algorithms and 
required human checks. 

An example of a simple computerized check used on the 
PA 7300LC is a signal edge rate check. Every signal on the 
chip was checked against a set of criteria that depended on 
the signal context. The computer program blindly reported 
any signal that violated the specification set for that type of 
signal. It was the job of the designers to determine which 
errors flagged by the computerized check were real prob 
lems. The designers then fixed real errors and waived all 
others. Obviously, with this and all other automatic checks, 
a certain amount of skill and experience is needed to judge 
what constitutes a potential problem and whal does not. 

Because some quality checks do not lend themselves easily 
to computerized checking, each cell, subblock, and major 
block of the CPU had to be examined by an experienced 
engineer who was not the designer of the block. The cross 
checking engineer had a list of guidelines to follow for 
checking each design, and any variance from these guide 
lines was discussed with the designer. This checklist was 
broken into categories so that the cross-checking engineer 
could focus on one particular area at a time, such as sche 
matics, artwork, test, and so on. 

An example of a check that is not automated is an artwork 
check, which ensures that all circuits have very solid power 
and ground networks. The subjective nature of this check 
makes it very difficult to implement with a computer check. 
Also, because of the subjective nature, the checking engineer 
must be very diligent about what constitutes a solid supply 
net and what does not. 

Circuit Timing 
When operating with a clock period of only a few nanosec 
onds, timing is of utmost importance as a phase one quality 
issue. Several different tools were used to this end. most 
notably Cadence's Yeritime. EPIC s Pathmill. and HP SPICE 
(see Fig. i 

Chip Model Tools. A Yeritime model was generated and main 
tained for the top level of the chip. This model included 
either gate-level descriptions of blocks (generally for the 
standard cell blocks) or black box descriptions of blocks 
(for the custom data path blocks), as well as models for the 
delay due to the interconnects between blocks. On a regular 
basis, the timing team updated the model and performed 
timing analysis. The results were then given to the various 
block owners, who redesigned slow portions of critical 
timing paths. 

HP SPICE and EPIC's Pathmill were used by a number of 
the custom data path designers to generate black box mod 
els of their blocks for the global Veritime model. Also, some 
designers analyzed larger standard cell blocks with Veritime. 
Additionally, a tool was developed that estimated the delays 
of all signal routes, which could then be hand-checked for 
anomalies. 

Finally, HP SPICE was used extensively to simulate the 
timing of all major buses, many top-level routes, and other 
timing-critical paths. All elements of the standard cell 
libraries were also characterized with HP SPICE, using 
conservative parameters. While this approach caused a few 
more phase one headaches for the control designers, we 
uncovered no timing issues for standard cell blocks during 
phase two characterization. 

Chip Composition Focused on Minimizing Cost 
One of the ways that, we were able to drive down the cost of 
systems that incorporate the PA 7300LC was to reduce the 
die size, thereby allowing more die per wafer in fabrication 
and improving yield. This was a key focus of the physical 
design group, and resources were dedicated to monitoring 
the impact of all changes on the manufacturing cost of the 
chip. We took several steps during phase one to ensure that 
the PA 7300LC was as small as we could reasonably expect. 

Global Floor Planning. We started global floor planning and 
routing early in the design phase. Our initial floor plans, 
although they bear little resemblance to the final chip floor 
plan, provided the groundwork for early estimates on die 
size and feasibility. One of the early decisions was whether 
we would use three layers of metal, as on the PA 7100LC, or 
add a fourth metal layer. After extensive analysis, we con 
cluded that, with only three metal layers, our stepper size 
would limit us to a very small first-level cache, which would 
not meet our performance targets. So, we added the fourth 
metal layer. As it turned out, the fourth metal layer was 
essential to the success of the project for many other 
reasons, even though the decision was made over a year 
before tape release. 

As the design matured, the floor plan and routes kept up 
with the changes and provided feedback on die size and 
potential timing problems. Fig. 3 shows the final floor plan. 
We made several major compositional changes early solely 

June 1ÃI07 Ik'wlell-Puckanl Journal 63 

© Copr. 1949-1998 Hewlett-Packard Co.



1C Process 
Parameters from 
Fabrication Shop 

FET-Level Gate 
Descriptions 

List of Timing-Critical Signals for Redesign 
Fig. 2. The chip modeling tools 
used for the timing simulation. 

to remove congestion on the top metal layer and to compact 
the die area. These compositional changes included move 
ment of a block in the data cache and changing the aspect 
ratio of our pad-ring bitslice. 

D B  =  D e b u g  
ECC =  Er ror  Cor rec t ing  Code  
MIOC = Memory and I /O Control ler  

DRAM Inter face 

S R  =  S p a c e  R e g i s t e r s  
TLB =  T rans la t ion  Lookas ide  Buf fe r  

Fig. 3. The final PA 7300LC floor plan. 

Using the "Dirty Trick." One of the opportunities we saw was 
in the composition of the data cache. Originally the data 
cache was designed to be completely symmetrical, with a 
right side, a left side, and a data path in the middle to merge 
the data from the two sides. The design essentially had three 
blocks on each side stacked from bottom to top: the data 
RAM array, the tag RAM array, and the dirty block array. 

As we started routing the chip in its early phases, we saw 
that we had much more routing congestion in the channels 
above the right side of the data cache than above the left 
side. The channels above the right side led to the integer and 
floating-point units, while those above the left ran towards 
the memory and I/O controller (MIOC) (see Fig. 4a). The 
congestion on the right side of the data cache would have 
increased the height, while leaving unused area above the 
left side. 

To deal with this congestion problem, we employed what we 
called the "dirty trick." The dirty bit block in the data cache 
is used to store one bit of information for each line in the 
cache. This bit tells the processor whether the information 
contained in that cache line has been modified by the CPU 
and is therefore dirty. In our original conception, each side 
of the cache had its own dirty block, which consisted of one 
bit of information per cache line and an address-to-cache- 
line decoder, the latter being ten times larger. 

By putting both dirty data bits on the left side of the data 
cache and sharing one address decoder, the left side of the 
data cache grew by one bit of information, but the right side 

64 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Instruction Cache 

Sparse Channel Congested Channel 

Sparse Channel 

Data Cache 

Congested Channel 

Integer 
Units 

F loa t ing -Po in t  
Un i t  

Instruction Cache 

MIOC 

Instruction 
Cache 
Control 

D  Data Cache 
Control 

TLB 

ECC 

^ \ \ W V \ X X \ \ \ N  

Area Affected by Applying 
the "Dirty Trick" 

-  Grew by 
One Bit 

-Shrank  by  
One Bit 

Data Cache 

shrank by one bit of information and one address decoder 
(see Fig. 4b). This was a big win as it allowed the die size to 
be shrunk by the height of the dirty block. If we had not 
floor planned and routed early in the design phase, we 
would not have seen this opportunity in time to act on it 
and reduce the die size. 

Outer Ring of Pads Limited. We were not in the clear yet, how 
ever. After all of this work on driving down the die size, we 
entered an interesting situation. Even though we were able 
to shrink the core dimensions, we were now limited by the 
outer ring of pads that connect the die to its package. This 
was not an issue earlier, since we had fewer pads and a 
larger core, but as the project progressed we added pads 
and shrank the core until we reached this predicament. 
However, the I/O ring team elongated our bit slice in the ring 
slightly and narrowed the width considerably, allowing us to 
reduce our die size until we were once again limited by the 
size of the core. Again, this trade-off on the bit slice dimen 
sions was not readily apparent at the outset of the project, 
but was obviously a big win when we analyzed the situation. 

Integer 
Units 

F loa t ing -Po in t  
Un i t  

Fig. 4. (a) The floor plan before 
applying the dirty trick, (b) The 
floorplan after applying the dirty 
trick. 

Metal-Four Routing. The last obstacle came after we finished 
automated signal routing. The router we used, HARP, was 
designed for the three-metal-layer process used on the 
PA 7100LC and so it was unable to automate the fourth metal 
layer. It was a channel-based router, which allowed the block 
designers to use all three metal layers within their block 
boundaries, but required us to leave areas free between the 
top-level blocks for the interconnect. We used HARP to con 
nect signals between top-level blocks, but we left major 
buses, power connections, clocks, and speed-critical signals 
for the hand-routed fourth metal layer. This meant, however, 
that any layer-four metal used within the blocks could inter 
fere with the global metal four, which we planned to run 
over the blocks on the chip, not merely in the channels. 
Therefore, from the outset of the project, metal four was 
under the ownership and control of the composition team. 

HARP (Hewlett-Packard Automatic Routing Program) is an internal routing tool that was 
leveraged from the PA 7100LC toolset. 

June 1997 Hewlett-Packard Journal 65 
© Copr. 1949-1998 Hewlett-Packard Co.



The cache array designers were given full control of layer- 
four metal in their areas, but all other block designers pro 
ceeded as if they only had three metal layers. As the global 
metal-four floor plan matured, metal four was released to the 
block owners to reduce area in places that did not conflict 
with the global route. In all other cases, the block owners 
were constrained to use the lower three metal layers instead 
of placing obstructions to the global metal-four route, even 
if it meant growing their blocks. 

This stingy allocation of metal four became very important 
as new buses and timing-critical signals were promoted up 
to the metal-four "superhighway." Near the end of the proj 
ect, the connection of the metal-four power buses to the 
top-level blocks became more and more challenging, and 
would have been impossible if not for the freedom retained 
by keeping metal four clear of obstacles. 

Leaving the flexibility to make last minute changes was criti 
cal to meeting our die size commitment. Since, at that point 
in the project, our packages had been ordered with a speci 
fied die cavity, changing would have had serious financial 
and schedule implications. 

Practice Runs 
The PA 7300LC team used several techniques to ensure that 
the project would proceed as smoothly as possible. These 
techniques included building an SRAM test chip and doing a 
mock tape release. 

Using a Prototype Chip. Before the PA 7300LC, HP had never 
produced a CPU with any significant amount of on-chip 
memory. How could we ensure that the cache would work 
in first silicon? Without a working cache, running test code 
in an actual system would not be practical. To help ensure 
a working cache in first silicon, we designed and built an 
experimental memory chip, featuring various RAM cell 

topologies. This test chip provided a large amount of visibil 
ity into the workings of the RAM cells. It also proved to be 
an excellent tool for analyzing the workings of the on-chip 
cache. Because the RAM design was effectively "phase two 
verified" during phase one of the CPU design cycle, the 
PA 7300LC on-chip cache worked in first silicon, greatly 
easing the time and resources required for phase two debug 
ging of the rest of the CPU. 

Mock Tape Release. Tape release of a CPU is quite a compli 
cated process, involving several steps of database copying, 
verification, translation, and data transmission. Also, it does 
not lend itself to leveraging. Any one of these steps could 
cause a delay of several days in fabricating the chip. There 
fore, we performed a mock tape release in which each step 
was executed as if it were part of an actual tape release. The 
only exception was that the data used was not the final, fully 
designed CPU. When the time came to do the actual tape 
release, the process went very quickly and smoothly. 

SRAM Redundancy Improves Yield 
With about eight million of the nine million transistors on 
the PA 7300LC, the cache is the most likely block on the 
chip to fall victim to a fabrication defect. Therefore, we 
added redundant blocks of four columns each in the SRAM, 
so that a block that contains a fabrication defect can be re 
placed with a functional block via a set of multiplexers. 
Fig. 5 illustrates the shifted-block method used to replace 
the defective block with a redundant block. 

The select logic on the multiplexers shown in Fig. 5 is con 
trolled by a fuse that can be blown with a laser to deselect 
the failing block of columns and select an adjacent block. 
The adjacent block's multiplexer must also be programmed 
to select the next block. This ripple continues until one of 
the redundant blocks has been substituted into the RAM 

Bit[0] In Bit[1] In Bit[2] In 

Redundant 
Block 

Defect Free 
Block 

Defect ive 
Block 

Defect Free 
Block 

Four Columns Four Columns Four Columns Four Columns 

Bit[0] Out B i t [1 ]0u t  Bit[2j Out 

Fig. 5. The shifted-block column 
replacement method. 

66 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



f*Â» 

Fig. above Two of the serial number fuses in the photomicrograph above 
have been blown by the laser. The other two are left intact. 

array. By substituting an adjacent block rather than immedi 
ately substituting the redundant block for the defective 
block, timing changes are minimized. 

Adding a Serial Number 
One of the new features incorporated on the PA 7300LC is a 
serial number individually programmed onto each die by the 
same laser that programs the redundancy selection multi 
plexers for the on-chip cache SRAM. As wafers are put on 
the laser for cache redundancy programming, we are able to 
blow the serial number fuses at the same time. The serial 
number feature was added to the production flow with very 
little overhead. Fig. 6 shows a set of serial number fuses. 
The serial number was added to the PA 7300LC because: 
It provides the ability to track any given die back to its origi 
nal lot, wafer, or die designation, so we can analyze informa 
tion gathered on the die at wafer test and at initial package 
test. On previous microprocessors, we were unable to track 
backwards in this fashion. 
It allows the design team to select specific dice off a wafer 
without having to remove the whole wafer from the produc 
tion flow. This makes it much easier to grab interesting parts 
for further characterization. 
It provides a convenient way to refer to and classify produc 
tion parts. The serial numbers became an invaluable part of 
the phase two debug effort, because we were able to know 
the history of the part we were debugging. 

High-Speed, High-Coverage Testing Reduced 
Manufacturing Cost 
Both broadside parallel and serial scan tests were used to test 
the PA 7100LC. Many of these tests were leveraged for use 
with the PA 7300LC. Some tests were simply copied from 

the PA 7100LC test suite and reformatted for use with the 
PA 7300LC. These tests included legal PA RISC assembly 
code for parallel vectors and serial scan tests of highly lever 
aged blocks, such as the integer data path. 

Other tests required small changes. For instance. TLB tests 
on the PA 7100LC involved writing and then reading a variety 
of values for each TLB entry. Then the test simply looped 
through this process for each of the 64 entries in the TLB. 
Thus, to test the PA 7300LC's 96-entry TLB. we merely 
changed the loop value from 64 to 96 entries and refor 
matted the test. 

Automated Test Generation. While many of the highly leveraged 
custom data path blocks could use scan tests leveraged from 
the PA 7100LC. this was not the case for the logic-synthesized 
standard cell blocks because any logic change rendered the 
old tests useless. Fortunately, the use of an automated test 
generation tool allowed the PA 7300LC team to have a signifi 
cant portion of the serial tests written before we received 
first the Shortly thereafter, we completed the rest of the 
serial tests, with high fault coverage. The control block test 
efforts were also helped by widespread use of state memory 
latches which were controllable and observable via serial 
scan testing. 

Manual Test Generation. For custom data path blocks that 
were not leveraged, such as those in the MIOC and cache 
controller blocks, block designers wrote tests by hand, en 
suring that each transistor in their design would be tested. 
Often, this daunting task was aided through the use of Perl 
scripts to help generate the test vectors. Thus, many circuit 
designers found themselves becoming part-time software 
developers until their block tests were written. 

Verifying Block Tests. As block designers began generating 
serial tests, the ability to verify these tests became an issue. 
Simulating a single block test on a model of the chip would 
take anywhere from a few minutes to several hours. How 
ever, a real chip could run even the largest test injust a few 
seconds. Therefore, a way to verify the block tests on an 
real chip could save a lot of simulation time without com 
promising test quality. 

However, the testers used to test these chips in manufactur 
ing were not readily available. Furthermore, they were too 
expensive to use for this purpose. Since we were running 
serial block tests, we only needed to control the chip's serial 
test port pins. The other chip I/O pins could be tied to 
ground. 

Fortunately, we had decided to make our serial test port 
comply with the JTAG (IEEE 1 149.1) industry standard. This 
meant that a relatively inexpensive test port interface was 
readily available. We purchased a JTAG Industries PM 3720 
and built what we called a "bench tester" around one of 
these interfaces. Fig. 7 shows a block diagram of the bench 
tester. 

We fed the chip power and controlled the reset pins with a 
couple of old HP 6002A dc power supplies. The system clock 
was provided by an HP 8131A pulse generator. Finally, all of 
these components were controlled via the HP-IB and con 
nected to the lab's computer network through an HP 9000 

1 Perl (Practical Extraction Report Language) is designed to handle a variety of UNIXâ„¢' system 
administrative functions. 

June- l!l!)7 Hewlett-Packard Journal 67 

© Copr. 1949-1998 Hewlett-Packard Co.



HP-IB 
Interface 

Lab 
Computer 
N e t w o r k  HP 9DOO Series 745 

Industrial 
Workstat ion 

JTAG Industries 
PM 3720 Boundary 

Scan Tester 

HP 6002A 
DC Power  

Supply 

HP6002A 
DC Power  

Supply 

HP 8131 A 
Pulse 

Generator 

J T A G - C o m p l i a n t  
Serial Test Port 

Chip Power 

Chip Reset 

Fig. 7. The JTAG serial port bench 
tester. 

Model 745 industrial workstation. The network connection 
allowed designers to run tests and monitor results from 
their desks, or even from home. 

Many block designers pushed the bench testers well beyond 
their original intended use. By the end of the project, they 
could be used to create voltage-versus-frequency shmoo 
plots as the tests were executed over a range of power supply 
and clock frequency values. We even engineered a way to 
execute a loop of code in the instruction cache with no 
other system support logic, proving that the PA 7300LC is 
truly a system on a chip. 

Summary 
In conclusion, the PA 7300LC design team owes much of its 
success to previous project teams. Our aggressive time-to- 
market goals were met not only because of circuit leverage, 
but also because of methodologies from previous projects. 
Also, an early focus on quality prevented a lot of rework at 
the end of the project. Excellent performance from this 
highly integrated processor gives HP a competitive advan 
tage in the cost-sensitive, performance-hungry market for 
which it was designed. 

UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively 
through X/Open Company Limited. 

X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited 
in the UK and other countries. 

68 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Verifying the Correctness of the 
PA 7300LC Processor 
Functional verification was divided into presilicon and postsilicon phases. 
Software models were used in the presilicon phase, and fabricated chips 
and real systems were used in the postsilicon phase. In both phases the 
goals get the same â€” to find design bugs and ensure that customers get 
the highest quality part possible. 

by Duncan Weir and Paul G. Tobin 

Ensuring the correctness of the complex PA 730ULC design 
required an extensive verification effort. We wanted to en 
sure that no customer would ever encounter a design bug. 
To reach this goal, we set out to exercise the design more 
extensively than is done with user software. Previous HP 
processors have maintained a well-earned reputation for 
quality, and we wanted the PA 7300LC to meet or exceed 
the quality of its predecessors. 

This paper discusses the methodology used to verify the 
correctness of the PA 7300LC and the diagnostic hardware 
incorporated into the design to support debugging. 

Functional Verification 

The functional verification effort was divided into presilicon 
and postsilicon phases. The presilicon phase involved creat 
ing a software model of the chip and an environment in 
which the model could be thoroughly tested and debugged. 
The modeling environment provided many features to aid 
verification including the ability to initialize the machine 
state, inject stimuli, and see into all portions of the design 
for debugging. One major drawback of the modeling envi 
ronment was the slow simulation speed. 

Complementing the presilicon effort, an extensive post- 
silicon verification program was completed that took advan 
tage of Hie lest throughput available when running on an 
actual computer. 

Extensive testing of the physical circuit design of the 
PA 7300LC was done in presilicon and postsilicon environ 
ments to ensure that the circuits would meet frequency, 
voltage, and temperature targets. This topic is covered in 
the article on page 61. 

Presilicon Verification 
KOI belter efficiency, we chose to divide the design of the PA 
7:'.I)OL( ' into two components: the CPU core and the memory 
and I/O controller (MIOC). These two portions of the design 
were logically separated by a well-documented interface that 
enabled us to verify each component independently. Verifying 
the two components independently provided several benefits: 
Smaller and faster models 
Precise control over the stimuli at the CPU-MIOC interface 

' Simpler model management (because less coordination was 
needed) 

' Reduced debugging time (since it was known which portion 
of the design contained the bug). 

As the design neared completion and both the CPU and MIOC 
had been extensively verified, we created a single merged 
model that included both components. This provided a thor 
ough check of the interface between the components and 
was a double check of the independent verification work. 
In addition, the MIOC was incorporated into a model with 
external I/O devices to ensure that the PA 7300LC design 
would work with the components needed for a complete 
computer system. 

The presilicon verification environment consists of three 
parts: modeling environment (model), test case environment 
(stimuli), and checking environment (checks). 

Modeling Environment 
We modeled llu- PA 7300LC design using the Verilog hard 
ware description language. The design was primarily modeled 
at the logic gate level with connectivity extracted from the 
physical design. Some key portions of the design like the 
caches, TLBs, and floating-point execution units were 
modeled at a higher level to improve the size and speed of 
the model. 

Fig. 1 shows the CPU and MIOC modeling environments. 
Software emulators were connected to the model interfaces 
to provide input and respond to output from the model. The 
programmable nature of the emulators allowed test cases to 
exercise the interfaces fully. 

New Modeling Process. Managing the modeling environment 
of a large design is a time-consuming task requiring coor 
dination among all team members. Problems with a model 
build could lead to downtime that would stall the verifica 
tion effort. To minimize these problems, a new model build 
ing process was implemented for the PA 7300LC design. All 
blocks of the modeling environment were placed under revi 
sion control. Any changes had to be included in a process 
change order that documented the purpose of the change, 
the blocks affected, the dependencies exist ing between this 
and other process change orders, and the testing needed to 
verify the change. In addition, an automated model build 

June 1997 Hewlett-Packard Journal 69 
© Copr. 1949-1998 Hewlett-Packard Co.



CPU 
Emulator 
or  Model  

Ma in  
Memory  
Emulator 

Second-Level  
Cache 

Emulator 

I/O Bus 
Emulator 

(b) 

Fig. CPU Presilicon verification modeling environments, (a) CPU 
modeling environment, (b) Memory and I/O controller (MIOC) 
modeling environment. 

procedure was put in place to allow designers to integrate 
their changes into a private copy of the model and verify 
them in isolation before submitting a process change order. 
Finally, before a model was released to the verification team, 
it would undergo regression testing to eliminate blatant 
errors. Using the new system resulted in a consistently stable 
model that accelerated the verification effort. 

Test Case Environment 
Test cases control the stimuli applied to a model, thereby 
providing the event interactions that stress the design. Having 
an efficient way for test cases to stress the entire design is 
an important factor for improving quality. The strategy used 
for the PA 7300LC was largely leveraged from the successful 
PA 7100LC effort.1 It provided a simple way to initialize 
machine-state resources like registers, caches, TLBs, and 
memory. It also allowed high-level coordination of instruc 
tions executed by the CPU along with transactions occurring 
at the model interfaces. 

Test cases for the PA 7300LC came from three sources: 
cases leveraged from the PA 7100LC, new cases focused on 
the PA 7300LC, and randomly generated cases. 

Thousands of cases that were written to cover the PA 7100LC 
design were leveraged to run on the PA 7300LC. Most cases 
needed no modifications to be effective because of similari 
ties in the designs of the two chips. For the portions of the 
PA 7300LC design that were different, new cases were pro 
duced. Some of these cases were written to focus on partic 
ular aspects of the design such as instruction-cache misses, 
the CPU-MIOC interface, and the second-level cache. Other 
cases were produced using random code generators that 
were designed to stress the PA 7300LC. 

Random code generators are mainly employed for postsili- 
con verification, but the PA 7300LC team also emphasized 
their use for presilicon testing. Although challenges were 
encountered, the results were positive. Many subtle bugs 
that might not have been found until postsilicon testing 
were discovered early in the design process. Random code 
generators also provided an efficient way of achieving broad 

coverage with fewer engineers than other testing methods. 
See "Random Code Generation" on page 71 for more on this 
topic. 

Checking Environment 
A modeling environment and interesting stimuli are only two 
pieces of the verification puzzle. The other critical piece is 
verifying the model's response to stimulation. On a complex 
design like the PA 7300LC, with many designers and tens of 
thousands of test cases, it would have been impossible to 
verify correct model behavior without aids to automate the 
process. As a result, a significant part of the PA 7300LC veri 
fication effort was spent creating software modules that auto 
matically verified the model's response to events created by 
test cases. 

Modules were compiled into the model to check that the 
MIOC followed the proper I/O bus protocol and to ensure 
that both the CPU and the MIOC followed the protocol at 
the CPU-MIOC interface. Checkers were also written to en 
sure that the memory controller obeyed proper timing proto 
col on the main memory and second-level cache buses. 

CPU Testing. For the CPU core, we linked a PA-RISC archi 
tectural simulator to run synchronously with the model to 
ensure that instructions were executed as the architecture 
requires. When an instruction finished executing, the results 
were compared between the model and the simulator. A 
special module called a depiper was written to translate 
internal CPU signals into architectural events that could 
be checked by the simulator. After a test case finished, the 
model's final machine state was compared against the simu 
lator's final machine state. 

New Transaction Checker. Logically, the MIOC converts in 
bound transactions on one interface to outbound transac 
tions on a different interface. For example, the CPU core 
might initiate a cache line copyin that the MIOC converts to 
a read on the memory port. When the memory supplies the 
data, the MIOC returns the cache line to the CPU. A special 
transaction checker, called the metachecker, was written to 
verify that proper transaction conversions occurred. The 
metachecker matched inbound transactions with their asso 
ciated outbound transactions. Mismatched transactions were 
reported as failures. 

New Cache Checker. The cache controllers for the PA 7300LC 
are among the most complex portions of the design. As a 
result, a checker was written to verify their operation. It 
monitored the instruction pipeline, the cache read and write 
ports, and the CPU-MIOC interface. Any incorrect behavior 
was detected and reported. 

Ad Hoc Checks. Finally, a collection of small, ad hoc checks 
were included in our presilicon testing to cover things that 
might otherwise be missed. Some were signal-level checks 
(for example, checking that a set of signals were mutually 
exclusive), others were special checks required by test 
cases. Some checked that performance features such as the 
superscalar pipeline were operating correctly. 

Together, the checkers formed a seamless net to ensure that 
incorrect model behavior would be detected. There was 
some overlap between the checkers. Many times a design 

70 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



flaw would get flagged by several of the checkers, but divid- 
ing the work between multiple checkers was an effective 
way to reduce the risk of a design flaw escaping detection, 
while allowing verification engineers to work in parallel. 

Model Matches Physical Design. Once the physical design and 
the verification effort stabilized, we verified that the Yerilog 
model matched the physical design. This was done by deriv 
ing a switch-level model from the actual chip artwork and 
running thousands of tests on both it and the Verilog model, 
comparing key signals on every clock phase of simulation. 

Postsilicon Verification 
Once the design is fabricated, the nature of the verification 
effort changes completely. The goals are still the same â€” 
to find the design bugs and ensure that customers get the 
highest-quality part possible, but the tools and the approach 
are different. 

Test Systems. The environment for testing the design shifted 
from software models to real computer systems that in 
cluded PA 7300LC chips. We set up a number of test sys 
tems, each of which could be controlled remotely from a 
host workstation using remote debugger software. The re 
mote debugger provided us with the ability to load and run 
programs on the test system and to examine portions of the 
machine state. It also gave us complete control over the 
machine without any operating system layers obstructing 
our access to system resources. 

Because the PA 7300LC is designed to work in a number of 
different system configurations, we set up systems that had 
different clock frequencies, cache configurations, and mem 
ory timing. To ensure that the design would work with a 
variety of different I/O cards, exercisers for the GSC I/O bus 
were created that could change their behavior If) mimic any 
type of I/O card. 

Random Code Generation. Random code generators are an 
efficient way to take advantage of the speed of postsilicon 
testing. With a small amount of human control, these pro 
grams can create millions of unique tests to exercise every 
nuance of a complex design. We used random code genera 
tion extensively on the PA 7300LC by employing six differ 
ent generators. One targeted the floating-point design, one 
was directed at the MIOC, and four covered the entire chip 
operation. 

Extensive Suite of Tests. We supplemented the random testing 
with an extensive suile of tests using I/O exercisers to stress 
the MIOC design. Many tests were leveraged from post- 
silicon testing of the PA 7100LC and were modified for the 
PA 7300LC. Additional tests were written to provide better 
coverage, especially for areas where the PA 7300LC design 
differed from the PA 7100LC. 

Self-Checking Tests. The elaborate checking methodology 
from presilicon verification was of no use in postsilicon test 
ing because it was not possible for the checking software to 
observe the design now embedded on a VLSI chip running in 
a system. To compensate, all of the postsilicon tests were 
self-checking. The generators that created the random tests 
also ensured that the chip responded properly to them. 

Random Code Generation 

The complexity of processor designs has increased dramatically in an 
effort to improve performance, reduce system cost, and allow processors 
to be used in more system configurations. The increasing complexity 
makes it almost impossible to identify the specific event cross-products 
that code to be tested to ensure that a design is correct. Random code 
generation is an effective method for testing a design without having to 
identify exactly what needs to be tested. A random code generator 
creates legal, random sequences of machine states and instructions that 
exercise a design more thoroughly than application software. 

The term random is somewhat misleading â€” generating completely ran 
dom machine states and instructions would result in uninteresting tests 
as far on stressing the design is concerned. Instead, generators focus on 
key aspects of the design while preserving an element of randomness. 
Accelerating rare events, hitting boundary conditions, and concentrating 
on instructions that exercise complex parts of the design are among the 
ways to focus a generator. The probabilistic distribution of random num 
bers creates interesting combinations of these focused events. 

Although random code generation has higher coverage in postsilicon 
testing where the design can be tested at high speeds, it can also be 
effective in presilicon testing. When running on relatively slow presilicon 
models, the effectiveness can be improved by adding more elaborate 
checking strategies and focusing the generators on smaller portions of 
the design. 

Some elements of a quality random code generator include: 
â€¢ Coverage of the entire design 
> Focus on complex portions of the design 
â€¢ Low occurs) latency (i.e., a failure gets noticed soon after it occurs) 
â€¢ Reproducible test cases 
â€¢ Aids for debugging failing tests. 

Random testing techniques can also be applied to designs other than 
microprocessors. Memory or I/O controllers can use these techniques to 
randomly generate machine state and transactions that will stress the 
controllers. Designing special-purpose bus exercisers that are controlled 
by random test generators can extend such testing into the postsilicon 
environment. 

System Test. A final element of the postsilicon testing was 
verifying that operating systems and application programs 
ran properly on computer systems built around the 
PA 7300LC. A large amount of testing was done by several 
different organizations within HP and included operating 
system reliability tests, benchmark programs, and key user 
applications. 

Verification Results 
The PA 7300LC verification work was a success. Presilicon 
testing eliminated over 800 design bugs, and more than 
1200 process change orders were added to the model in one 
year. The quality of the first revision of the chip was very 
high. Only eight functional bugs were found in postsilicon 
testing. Of these, only one affected our design partners, and 
it had a simple workaround. The HP-UX operating system 
was booted shortly after first revision parts arrived. Our 

.lime l!l!)7 Ili'wlcll-I'iu-kard Journal 71 
© Copr. 1949-1998 Hewlett-Packard Co.



postsilicon testing was far more extensive than what we had 
previously done with the PA 7100LC or its predecessors. 
The verification effort ensured that the PA 7300LC will main 
tain HP's reputation for quality processors. 

Debug Support 

The high level of integration on the PA 7300LC reduces the 
visibility into chip operation that aids in debugging proto 
type silicon. In particular, moving the primary caches onto 
the chip removed a valuable source of debug data while also 
introducing a new source of potential functional and electri 
cal problems. 

Since the MIOC, floating-point coprocessor, and TLB are also 
contained on the same die, the only external pads visible to 
debuggers were for the I/O bus and the memory interface. At 
the same time, the PA 7300LC had new challenges such as a 
large primary on-chip cache, a new 1C process, higher oper 
ating frequencies, and a second-level cache. Debug support 
was important to improve the signal visibility and to reduce 
the risks associated with the new technology. 

Debug Mechanisms 
Signal visibility is of primary importance when debugging 
a failure, so several techniques were used to make internal 
signals accessible. 

â€¢ Idle cycles on the GSC I/O bus were used to drive debug 
information. 

> Seventeen special chip pads are dedicated to driving real 
time debug information. To reduce cost, these pads are not 
bonded in production parts. 

> Thorough implementation of IEEE 1149.1 and sample-on- 
the-fly (a scan technique invented for the PA 7100LC)1'2 
allowed a very broad, but only one-cycle-deep, snapshot of 
the chip state to be reported. Custom data capture hardware 
was designed to gather the debug traces and present them 
to a logic analyzer. 

New Pattern Mapping Failure Isolation Technique 
Traces captured from the debug ports can be overwhelming 
in size, making it difficult to isolate the failure. The PA 
7300LC addressed this problem by implementing circuits to 
recognize internal chip state patterns. The patterns are pro 
grammed from software using special instructions imple 
mented on the PA 7300LC, and the capture of debug traces 
can be predicated on a state pattern match. Debug traces are 
thus shortened to an interesting region. It is also possible to 
alter the program flow upon a pattern match, allowing a 
branch to diagnostic software to probe for a failure. By 
providing a flexible scheme for programming repeatable 
patterns, the task of isolating a failure and performing ex 
periments to determine its root cause was greatly simplified. 

Target Applications For Debug 
Functional and electrical verification were the primary 
applications for which the debug circuitry was designed, but 
the debug features were general enough that they could be 
used to diagnose processor problems encountered during 

bringing up the operating system, firmware development, 
and benchmarking. 

Electrical verification relies more extensively on debug hard 
ware because failures cannot be reproduced in our software 
model of the CPU. Engineers working to verify a chip's ther 
mal and electrical margins use debug features to investigate 
and understand failures occurring at extreme operating 
points. 

Debug Features 
The PA 7300LC debug features are intended to work in any 
environment used to test the CPU â€” wafer test, package test, 
and system test. The debug features are operable and porta 
ble across these environments. In addition, debug circuits 
were designed to tighter specifications than the rest of the 
PA 7300LC. This ensured that they functioned properly well 
into the operating regions where the CPU core is expected 
to fail. We achieved this through the use of simple logic and 
conservative timing budgets. 

Although no major problems were found during qualification 
of the PA 7300LC, debug features were relied upon to help 
fix the problems that arose, helping us to achieve quick time 
to market for PA 7300LC-based systems. 

Conclusion 
The extensive verification of the PA 7300LC design was 
based on the successful strategy used for the PA 7100LC. 
Improvements were made in the model building process and 
in the extensive use of random code generation in the presi- 
licon and postsilicon phases. Many features were added to 
the PA 7300LC design to allow efficient debugging of post- 
silicon failures. Together, these efforts ensure that customers 
get the highest quality part possible. 

Acknowledgments 
Many people contributed to the verification effort of the 
PA 7300LC including members of engineering systems labo 
ratory in Fort Collins and the Integrated Circuits Business 
Division at the Fort Collins design center. Key contributions 
were also made by individuals from the Fort Collins systems 
laboratory, the computer technology laboratory in Cuper 
tino, and the UNIXÂ® development laboratory in Fort Collins. 

References 
1. M. Bass, T. Blanchard, D. Josephson, D. Weir, and D. Halperin, 
"Design Methodologies for the PA 7100LC Microprocessor," Heiolett- 

Packant -Journal, Vol. 46, no. 2, April 1995, pp. 23-35. 
2. IEEE Standard 1149.1-1990, IEEE Standard Test Access Port 

and Boundary-Scan Architecture, IEEE Standards Board, May 
1990. 

HP-UX 9. and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93 
branded products. 
UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively 
through X/Open Company Limited. 
X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited 
in the UK and other countries. 

72 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



An Entry-Level Server with Multiple 
Performance Points 
To address the very intense, high-volume environment of departmental 
and branch computing, the system design for the D-class server was 
made flexible enough to offer many price and performance features at 
its introduction and still allow new features and upgrades to be added 
quickly. 

by Lin A. Nease, Kirk M. Bresniker, Charles J. Zacky, Michael J. Greenside, and Alisa Sandoval 

As the computer industry continues to mature, system sup 
pliers will continue to find more creative ways to meet 
growing customer expectations. The HP 9000 Series 800 
D-class server, a new low-end system platform from HP, 
represents a radically different approach to system design 
than any of its predecessors (see Fig. 1). 

The Series 800 D-class server comes at a time when server 
systems priced below U.S. $20,000 are at a crossroads. 
Commodity technologies are upsizing, enterprise customers 
are enjoying choices of product families that offer thousands 
of applications, open computing and networking have blurred 
the distinctions between competitors' offerings, and finally, 
indirect marketing and integration channels can offer com 
pelling value bundles that were once the exclusive domain 
of big, direct-marketing computer system suppliers. These 
trends have created an environment of very intense, high- 
volume competition for control of departmental and branch 
computing. 

To address this environment, the system design for the D- 
class server had to be flexible enough to offer many price 
and performance features at its introduction and still allow 
the addition of new features and upgrades to the system 
quickly. The server's competitive space, being broad and 
heterogeneous, also demanded that the system be able to 
accommodate technologies originally designed for other 
products, including technologies from systems that cost 
more than the D-class server. 

System Partitioning Design 
In designing the D-class entry-level servers, one of the pri 
mary goals was to create a new family of servers that could 
be introduced with multiple performance points without 
any investment in new VLSI ASICs. The servers also had 
to be capable of supporting new advances in processors 
and memory and I/O subsystems with minimal system 
reengineering. 

The server family would cover a span of performance points 
that had previously been covered by several classes of serv 
ers which, while they were all binary compatible with the 
PA-RISC architecture, had very different physical implemen 
tations. The lower-performance-point designs would be 

drawn from uniprocessor-only PA 7100LC-based E-class 
systems. The upper-performance-point designs would be 
drawn from the one-to-four-way multiprocessor PA 7200- 
based K-class systems. The physical designs of these systems 
varied widely in many aspects. Issues such as 5.0V versus 
3.3V logic, a single system clock versus separate clocks 
for I/O and processors, and whether I/O devices would be 
located on the processor memory bus or on a separate I/O 
bus had to be resolved before the existing designs could be 
repartitioned into compatible physical and logical subsys 
tems. Tables I and II list the key performance points for the 
HP 9000 E-class, K-class, and D-class servers. 

Fit; .  1- The D-class server system cabinel.  The dimensions ol ' t l i is  
(â€¢Â¡iliinei are in.:! in CÂ¿('< en i) \vicle. J.'i.K iii (lid. 4 cm) hiMh, and 'Â¿'Â¿. '2 in 

(56. I cm) deep. 

June L997 Hewlett-Packard Journal 73 
© Copr. 1949-1998 Hewlett-Packard Co.



T a b l e  I  

K e y  P e r f o r m a n c e  P o i n t s  f o r  H P  9 0 0 0  K -  a n d  E - C l a s s  S e r v e r s  

T a b l e  I I  

K e y  P e r f o r m a n c e  P o i n t s  f o r  H P  9 0 0 0  D - C l a s s  S e r v e r s  

* HP-PB slots = 0 and disk capacity = 5 Tbytes. 

* 1M bytes of second-level cache. 

Additional constraints on the design were a direct result of 
competitive pressures. As the presence of Industry Standard 
Architecture-based systems has grown in the entry-level 
server space, the features they offer became D-class require 
ments. These requirements include support for EISA 
(Extended Industry Standard Architecture) I/O cards and an 
increase in the standard warranty period to one year. Both 
of these requirements were new to the Series 800. Also new 
to the Series 800 was the desire to design a system enabled 
for distribution through the same type of independent dis 
tribution channels used by other server vendors. Add to 
these constraints the cost sensitivity of products in this 
price range, and we have a system that uses as many indus 
try-standard components as possible, is extremely reliable, 
and is capable of being assembled by distributors, all with 
out compromising any performance benefits of current or 
future PA-RISC processors. 

Feature List. The first step in the process of partitioning the 
system was to detail all possible features that might be 
desired in an entry-level server. This list was compiled by 
pulling features from our development partners' requirements 
analysis and from knowledge of our competitors' systems. 
Once this feature list was developed, each feature was evalu 
ated against all of our design goals (see Fig. 2). Each feature 
was then ranked in terms of its relative need (must, high 
want, want) and technical difficulty (high, medium, low). 
Determining the possible feature list was the first goal of the 
partitioning process; the list was continually updated during 
the entire process. 

Once the initial feature list was created, a small design team 
consisting of a mechanical engineer, an electrical engineer, a 
firmware engineer, a system architect, and a system manager 

began analyzing the list to see how each feature would affect 
the physical partitioning of the system. The goal of this 
process was to generate a fully partitioned mock-up of the 
physical system. Successive passes through the feature list 
led to successive generations of possible designs. With each 
generation, the list was reevaluated to determine which fea 
tures could be achieved and which features could not. 

Physical Partition. After the first few generations it became 
clear that a few critical features would drive the overall 
physical partitioning. The physical dimensions would be 
determined by the dimensions of a few key subsystems: the 
disk array and removable media, the integrated I/O connec 
tors, the I/O card cage, and the power supply (see Fig. 3). 
All of these components were highly leveraged from existing 
designs, like the hot-swap disk array module developed by 
HP's Disk Memory Division, and the industry-standard 

F e a t u r e  N e e d  D i f f i c u l t y  

F r o n t  p a n e l  d i s p l a y  M u s t  L o w  
H P  1 0 0 L X  P a l m t o p  f r o n t - p a n e l  d i s p l a y  W a n t  H i g h  
T w o - l i n e  L C D  d i s p l a y  H i g h  W a n t  M e d i u m  
1 6 - c h a r a c t e r  d i s p l a y  M u s t  L o w  
B a c k l i t  d i s p l a y  W a n t  M e d i u m  
H e x a d e c i m a l  s t a t u s  i n f o r m a t i o n  M u s t  L o w  
E n g l i s h  s t a t u s  i n f o r m a t i o n  H i g h  W a n t  M e d i u m  
L o c a l i z e d  l a n g u a g e  s t a t u s  i n f o r m a t i o n  W a n t  H i g h  
D i s p l a y  s u s p e c t e d  f a i l u r e  c a u s e s  a f t e r  f a u l t s  M u s t  M e d i u m  
I n c l u d e  p o w e r - o n  L E D  i n d i c a t o r  M u s t  L o w  
I n c l u d e  d i s k - a c c e s s  L E D  i n d i c a t o r  W a n t  M e d i u m  
I n c l u d e  b l i n k i n g  " B o o t  i n  p r o g r e s s "  i n d i c a t o r  W a n t  M e d i u m  
R e s e t  s w i t c h  H i g h  W a n t  M e d i u m  
R e s e t  s w i t c h  w i t h  k e y  a n d  l o c k  W a n t  H i g h  

Fig. display. The feature list for the D-class server's front-panel display. 

74 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Eight I/O Slots 

Processor Carrier 

Hinged Door 

Power Supply 

Power  Swi tch  Mount  

Display Mount 

A i r f low 
Direction 

Mini -F lexible  Disc 

Removable Media Slots 
(Two 1/2- inch-High Devices)  

Disk Cavity 
{Hot Swap Optional)  

Fig. 3. the disk for the Series 800 D-class server. The features that determined the overall size of this chassis were the disk cavity, the 
removable media slots, the power supply, I/O slots, and processors. 

form-factor power supply. The first major design conflict 
arose when we realized that these components could not be 
integrated in a package short enough to fit under a standard 
office desk, and yet narrow enough to allow two units to be 
racked next to each other in a standard rack. Numerous 
attempts to resolve these two conflicting demands only 
succeeded in creating a system that would violate our cost 
goals or require more new invention than our schedule 
would allow. 

In the end, it was determined that the desk-height require 
ment and cost goals were more important than the rack 
requirement, so the package was shortened and widened to 
accommodate all the critical components in a package that 
would fit under a standard office desk. Once this was de 
cided, the system mock-up came together quickly, and the 
second goal was reached. The system partitioning shown 
in Fig. 3 provides several benefits necessary to achieve our 
goals. The standard PC-type power supply helped us to 
achieve new lows in cost per watt of power. The division of 
the box into the lower core I/O and disk array volume and 
the upper expansion I/O slot and processor area helped to 
simplify the design of the forced-air cooling system since it 
separates the large interior volume of the box into two more 
manageable regions. 

Printed Circuit Assemblies. The next goal in the process was to 
repartition and integrate the disparate design sources into 
logically and physically compatible printed circuit assemblies, 
while maintaining all of our design constraints on cost, 
expandability, and design for distribution. Again, a single 
crucial design decision helped to quickly partition the system: 

1 The and sources were parts from E-class and K-class servers and the J-class workstations 
that were combined to form the D-class servers. 

the D-class would not use any high-speed, impedance-con 
trolled connectors. This decision was made as a direct result 
of the K-class development process and the success of the 
Series 800 G/H/I-class Model 60 and 70 systems. The K-class 
development process showed that although high-speed im 
pedance-controlled connectors can add excellent flexibility 
and expandability to midrange systems, they require a great 
deal of mechanical and manufacturing infrastructure. 

The processor modules for the G/H/I-class Models 60 and 70 
are the uniprocessor and dual-processor versions of the 
same board (see Table III). The same printed circuit board is 
loaded with either one or two processors at the time of man 
ufacture. To increase the number of processors in a system, 
the entire processor module must be replaced with a new 
printed circuit assembly. Other systems, like the K-class 
servers, allow for the incremental increase of the number of 
processors in the system with just the addition of new pro 
cessor modules. Even though the board swap is a less desir 
able upgrade path than an incremental upgrade, the success 
of the Models 60 and 70 systems led us to believe that it was 
quite acceptable to our customers. 

This decision simplified repartitioning the design sources, 
since it meant that the high-speed processor and memory 
clock domains and their data paths could remain on a single 
printed circuit assembly, while the moderate-speed I/O do 
main and its data paths could cross multiple printed circuit 
assemblies. It was determined that both the dual I/O bus 
architecture of the K-class and the single I/O bus of the E- 
class would be supported in the system. To do this, the con 
nector technology used in the D-class is modular, allowing 
the designs to load only those portions of the connector that 
are supported. 

June 1997 Hewlett-Packard Journal 75 

© Copr. 1949-1998 Hewlett-Packard Co.



T a b l e  I I I  

K e y  P e r f o r m a n c e  P o i n t s  f o r  t h e  H P  9 0 0 0  S e r i e s  8 0 0  
G / H / l - c l a s s  M o d e l  B O  a n d  7 0  S y s t e m s  

* Processor = PA 7000, clock speed = 96 MHz, Cache per CPU (Instruction/Data! = 1 M byte/1 M 
byte, and HP-HSC slots = 0. 

This lowers both the material and assembly costs. To further 
lower the material cost, the PA 7100LC-based processor and 
memory module is fabricated on a smaller printed circuit 
board than the PA 7200-based processor module. The differ 
ence in the size of the modules is accommodated by attach 
ing them to a sheet-metal carrier that adapts the modules to 
a common set of card guides. Not only is the sheet metal 
cheaper than the corresponding printed circuit material 
would have been, but it is also stronger and easier to insert 
and remove. 

A secondary benefit of this strategy is that it allows new 
investment to be made as needed. Historically, I/O subsys 
tems and technology are much longer-lived than processor 
and memory technologies. The partitioning strategy we used 
helped to decouple the I/O subsystem from the processor 
and memory. As long as they remain consistent with the 
defined interface, processor modules are free to exploit any 

technology or adapt any design desirable. This also enables 
D-class servers to excel in meeting a new and growing re 
quirement â€” design for reuse. A customer is able to upgrade 
through many performance points simply by changing pro 
cessor modules. As some countries are investigating forcing 
manufacturers to accept and recycle old equipment, keeping 
the return stream as small as possible is highly desirable. 

Once the printed circuit assembly board outlines were com 
plete, the process of adapting the various design sources 
to the new partitioning was time-consuming, but relatively 
straightforward. Fig. 4 shows the the various design sources 
that were pulled together to form the PA 7200-based proces 
sor module. As portions of designs were merged, altered, and 
recombined, the possibility of transcription errors grew. The 
original designs were executed by three different labs and 
many different design teams. All designs were fully func 
tional as designed, but we were extending designs as well as 
integrating them. In an effort to minimize the possibility of 
errors being introduced during the adaptation process, the 
schematic interconnect list was extracted and translated 
into a simulation model. This model was then added to the 
models used to verify the original designs to ensure that no 
new errors had been introduced. 

System Partitioning and Firmware Design 
Because of the partitioning scheme used for the D-class 
entry-level servers, the firmware design was a critical factor 
in achieving the overall program objective of low cost. The 
firmware design addressed cost issues in support of the man 
ufacturing process, field support, and the upgrade strategy. 
In addition, although the underlying hardware is dramati 
cally different depending upon which processor module is 
installed in the system, from the customer's perspective, the 
external behavior of each performance point should be the 

PA 7200 Module K-Class Memory Extender 

K-Class Motherboard 
Fig. 4. The various design sources 
that were pulled together to form 
the PA 7200 D-class module. 

76 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



same. For the firmware design team, that meant that regard 
less of the underlying hardware, the entire D-class had to 
have the look and feel of a single product. 

D-Class Subsystems. From a firmware perspective, the D-class 
is partitioned into two subsystems: the system board and the 
processor modules (see Fig. -5). The system board contains 
all of the I/O residing on or hanging off the HSC (high-speed 
system connect) bus. This includes optional I/O modules 
that plug into the HP-HSC slots, such as the fast-wide SCSI 
and graphics cards. It includes core I/O built into the system 
board, which provides serial interfaces, single-ended SCSI, 
Ethernet LAN, a parallel interface, a mouse and keyboard 
interface, and a flexible-disk interface. The EISA bus, which 
is connected at one end to the HSC bus, is also found on the 
system board. The Access Port/MUX card," which contains 
its own HSC-to-HP-PB I/O bus converter, also plugs into an 
HSC slot. In addition to these I/O buses and devices, there 
is an EEPROM and two hardware dependent registers that 
hold I/O configuration information. This nonvolatile memory 
and the configuration registers are critical to the partition 
ing and upgrade strategy for the D-class server. 

' HP Access Port is a tool for providing remote support for HP servers. 

The core of each processor module houses the CPU. instruc 
tion and data caches, and memory subsystems. Also on the 
processor board is an EEPROM and two more hardware 
dependent registers. The PA 7100LC uses the HSC as its 
native bus. so its connection to the system board is rela 
tively straightforward. However, the PA 7200 requires a bus 
converter between its native bus and the HP-HSC bus. Thus, 
to have one system board common between the two proces 
sor modules, the PA 7200 processor board was burdened 
with carrying the bus converter circuitry. One other signifi 
cant difference exists between the two processor modules: 
scratch RAM. The inclusion of 32K bytes of static RAM on 
the PA 7200 module meant that system variables and a stack 
could be set up very early in the boot process. The lack of 
this scratch RAM on the PA 7100LC limited the amount of 
code that could be common between the two platforms. 

Consistent Look and Feel. The goal of having the same look 
and feel for the entire product line could be met by having 
one common code base for all performance points, but 
because of the significant hardware differences mentioned 
above, this was not possible. The primary differences he in 

' The PA 7300LC and the PA 8000 also include scratch RAM. 

P r o c e s s o r  
M o d u l e s  

P A  7 2 0 0  B o a r d s  P A  8 0 0 0  B o a r d s  

P A  7 1 0 0 L C  B o a r d  

C o m b i n e d  
I  a n d  D  
C a c h e  

P A  7 3 0 0 L C  B o a r d  

E x t e r n a l  
1  M  B y t e  

C a c h e  
( O p t i o n a l )  

I 
H S C O  

C o m b i n e d  
I  a n d  D  
C a c h e  

T 
H S C O  H S C O  H S C 1  

H S C O  H S C 1  

S y s t e m  B o a r d  

H S C O  H S C 1  

A c c e s s  
P o r t / M U X  

H S C O  
S l o t s  

T u r b o  H P - H S C  
S l o t  

E I S A  
S l o t s  

Fig. 5. A firmware perspective of the D-class subsystems. 

June 1997 Hewlett-Packard Journal 77 

© Copr. 1949-1998 Hewlett-Packard Co.



the processors themselves. There is no commonality in the 
control and status registers of the two processors, caches 
are accessed differently, and the memory subsystems are 
too different to share code. These differences, along with 
other hardware incompatibilities, meant that each processor 
module needed to have its own separate and distinct code 
base. However, because the primary differences between 
the two PA 7100LC processor versions (75 MHz or 100 MHz) 
and the two PA 7200 processor modules are processor speed 
and cache size, all performance points that use a common 
CPU can be supported by one common code base. 

The three areas needed to give the product line a consistent 
look and feel included a common feature set, similar strate 
gies for handling and reporting errors, and a common user 
interface. To ensure consistency in this regard, one engineer 
was given responsibility for the same functional area of each 
platform. For example, the engineer who worked on memory 
code for the PA 7100LC also had responsibility for the mem 
ory code on the PA 7200 platform. Taking advantage of this 
synergy paid off especially well in the design and implemen 
tation of the user interface, where differences between plat 
forms could easily lead to confusion. 

System Configuration. Partitioning the EEPROMs between the 
processor board and the system board is a key enabler of the 
upgrade strategy. Since an upgrade consists of replacing the 
processor module, I/O configuration information must remain 
with the system board. The EISA configuration, graphics 
monitor types, and LAN MAC address are stored on the sys 
tem board. Additional control information is used to check 
for consistency between the two EEPROMs. The firmware 
expects the format of the system board EEPROM to be the 
same, regardless of which processor module is installed. 
With all I/O configuration information and control variables 
in the same location and sharing the same set of values, pro 
cessor modules can be freely swapped without changing the 
I/O configuration. 

Dynamic configuration of the system is used to support the 
upgrade strategy, the manufacturing process, and field sup 
port. When a D-class server is powered on, state variables in 
the processor module's and system board's nonvolatile mem 
ories are tested for a value that indicates whether or not they 
have been initialized and configured. If they fail this test 
(which is always the case for initial turn-on during the man 
ufacturing process) the system's hardware configuration is 
analyzed and the corresponding state and control variables 
are set. Much of this information is available via the hard 
ware dependent registers located on each board. The proces 
sor frequency, system board type, and other details concern 
ing the I/O configuration can be read from these registers. 

The state variables, which are set as a result of examining 
the hardware configuration, include the system's model 
identifier (e.g., HP9000/S811/D310), hardware version 
(HVERSION), and paths to the boot and console devices. 
The boot path can be either the built-in single-ended SCSI 
device or a hot-swappable fast-wide SCSI device. The firm 
ware checks for the presence of a hot-swappable device 
which, if present, becomes the default boot path. Otherwise 
a single-ended SCSI device is configured as the default boot 
path. The actual hardware configuration is also examined to 
select an appropriate console path. The default console path 
can be either the built-in serial port, the HSC Bus Access 

Port/MUX card, or a graphics console. Depending upon the 
presence of these devices and their configurations (e.g., a 
graphics device must also have a keyboard attached), a con 
sole path is selected according to rules worked out in coop 
eration with the manufacturing and support organizations. 

The same sequence of events occurs when upgrading or 
replacing a processor module. In this case, the system board 
is already initialized and only the processor module requires 
configuration. On every boot, information such as the model 
identifier is checked against the actual hardware configura 
tion and any mismatch will invoke the appropriate configu 
ration actions. Likewise, because some information is kept 
redundantly between the processor module and the system 
board, they can be checked for a mismatch. This redundancy 
means that the system board can also be replaced in the 
field with a minimal amount of manual reconfiguration. 
Because a D-class server can consist of any combination 
of two system boards and several different processor mod 
ules, and because further enhancements will double the 
number of processor modules and include two new CPUs, 
dynamic configuration has obviated the expense of develop 
ing external configuration tools, reduced the complexity of 
the manufacturing process, and simplified field repairs and 
upgrades. 

System Packaging 
Mechanical packaging is one of the key variables in maintain 
ing a competitive edge in the server market. The challenges 
involved in the system package design for the HP 9000 D- 
class server included industrial design, manufacturability, 
EMI containment, thermal cooling, and acoustics, while 
having the design focus on low cost. 

The D-class low-cost model was based on the high-volume 
personal computer market. However, unlike personal com 
puters, server products must support multiple configurations 
with an easy upgrade path and high availability. This meant 
that the D-class package design had to be a highly versatile, 
vertical tower with the ability to be rack-mounted in a stan 
dard EIA rack (see Fig. 6). It allows for multiple processors 
and power supplies, and can support up to eight I/O slots for 
EISA and GSC cards. The design also supports up to five hot- 
swappable or two single-ended disk drives and two single- 
ended removable media devices with one IDE (Integrated 
Device Electronics) mini-flexible disk (Fig. 7). This diversifi 
cation provides the entry-level customer with a wide range 
of configurations at various price/performance points. 

Manufacturing and Field Engineering Support. Concurrent engi 
neering was a key contributor to the design for assembly 
(DFA) and design for manufacturing (DFM) successes of the 
D-class server. Since we are very customer focused, we take 
the disassembly and repair of the unit just as seriously as the 
manufacturability of the product. The D-class mechanical 
team worked closely with key partners throughout the pro 
gram to ensure the following assembly and manufacturing 
features: 
A single-build orientation (common assemblies) 
Multiple snap-in features 
Slotted T-15 Torx fasteners (Torx fasteners are used for 
HP manufacturing, and the slot is for customers and field 
engineers.) 
System board that slides into the chassis 

78 Juno 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Door Lock 

Fig. 6. A front and back view of the D-class server. 

1 Quick access to all components 
Manufacturing line for high-volume production. 

EMI. Design for EMI containment was a considerable chal 
lenge for the D-class server program. The package goal was 
to contain clock rates up to 200 MHz. This required a robust 
system design and two new designs for the EISA bulkheads 
and core I/O gaskets. 

The system EMI design is based on a riveted sheet-metal 
chassis using a slot-and-tab methodology for optimum man- 
ufacturability. A cosmetic outer cover with a hinged door 
completes the EMI structure. EMI is contained using contin 
uous seams and EMI gaskets with small hole patterns for 
airflow. 

The EISA bulkhead gaskets required a new EMI design. The 
new design is a slotted pyramid that forms a lateral spring 
element with a low deflection force but a high contact force 

Power  Swi tch  
Cover 

Display 

Mini -F lex ib le  Disk 

Removable  Media  

Hot Swap Disks (5) 

Fig. 7. The D-class cabinet with the door removed. 

(see Fig. 8). The new design for the I/O gasket includes a 
foam core wrapped with a nickel-over-copper fabric, which 
provides a 360-degree contact around each connector (see 
Fig. 9). These new designs produced excellent results. 

Thermal Design and Airflow. The thermal design for the D-class 
server also had some interesting challenges. The design 
strategy had to encompass multiple configurations and 
multiple processor chips and boards. Some of these options 
were in development, but most were future plans. A thermal 
analysis program, Flotherm, was used to develop the thermal 
solution for the system. 

The Flotherm models and tests resulted in the package being 
separated into two main compartments. The top half, which 
includes the I/O and the processors (see Fig. 3), is cooled by 
a 12-mm tubeaxial fan. The processor chips are located side- 
by-side directly behind the front fan, giving an approximate 
air velocity to the processors of about 2.5 m/s. Heat sinks 
are used for processor chips that consume under 25 watts. 
For chips over 25 watts, a fan mounted in a spiral heat sink 
is used. 

The bottom half of the package includes the peripheral bay 
and power supply and components. It is cooled using a 
120-mm tubeaxial fan. However, when the hot-swap disks 
are in use, a separate cooling system is installed. The hot- 
swap bay is a sealed subsystem that uses a small blower to 
pull air through the disks. Any disk can be pulled out and 
the airflow to the other disks remains relatively unchanged. 
The power supply has its own 92-mm fan. 

Acoustics. The acoustical goal for the D-class server was 
designed to be 5.4 bels at the low end, which was the same 
as for earlier server products. This package has a higher 
power density than previous products, more versatility, 
higher-speed discs, and an off-the-shelf power supply rather 
than a custom one. The fan in the power supply ended 
up being the loudest component of the system. Still, the 
system came in at 5.4 bels at the low end by custom tuning 
sheet-metal parts, baffles, and fan speeds. 

June 1997 Hewlett-Packard Journal 79 
© Copr. 1949-1998 Hewlett-Packard Co.



I /O Frame 

Magnif ied View of  Contacts 

Gasket Over I /O Frame 

EISA Bulkhead Fig. 8. The EISA bulkhead gaskets 
for the D-class server. 

High Availability and Ease of Use 
Hot-Plug Internal Disks. An important feature that the D-class 
server has brought to the Series 800 product line is hot- 
pluggable internal disk drives. While commodity servers had 
once provided forms of internal hot-pluggable disks, these 
solutions were deemed too likely to cause data corruption 
for use in Series 800 systems. For example, the commodity 
hot-plug solutions evaluated for use in Series 800 systems 
had the issue of "windows of vulnerability" in which sliding 
contacts from a swapping disk on a SCSI bus could cause 
data bits to actually change after parity had already been 
driven, causing undetected data errors. With a low probabil 
ity of corruption, this approach may have made sense for a 
workgroup file or print server. However, Series 800 servers 
are expected to operate in mission-critical environments. 

Thin Gauge 
Stainless Steel  

Copper-Nickel  
Mesh Over Foam 

Point Contacts 
360-Degree 
Contact 

Old Design 

Poor EMI and 
ESO Results 

New Design  

Excel lent  EMI and 
ESO Results 

Fig. 9. A comparison between the new and old core I/O gasket 
designs. The new design provides a 360-degree contact around 
each connector. 

Therefore, a more robust approach to hot-swapping disk 
drives had to be developed for these products. 

The approach used for the D-class server was to provide a 
hot-swap solution using logical volume management (LVM) 
and mirroring middleware facilities, and to offer a disk-drive 
carrier common to the standalone enclosure disk carrier 
being separately developed for the rest of the Series 800 
product line. The common carrier approach would allow 
the field to learn only one solution and guarantee a higher 
volume of parts. In addition, solutions for the data corrup 
tion problem, the use of sequenced SCSI resets, and an auto 
mated swap script could be shared by both the enclosure 
team and the D-class server team. 

Mission-Critical ServiceGuard and EISA I/O. HP's MC/Service- 
Guard product (portions of which were previously called 
Switchover/UX) has been an unofficial standard in the 
application-server industry for several years now. This 
middleware product allows Series 800 systems to operate as 
standby servers for one another, transferring mission-critical 
workloads from a failed system to its standby. This feature 
requires that a system and its standby host transactions on 
the same mass storage buses, enabling the standby system 
to have access to all of the primary system's data. Multiple 
hosting (known as multi-initiator) on mass-storage intercon 
nects the significant design attention. In addition, the 
LANs that allow these systems to communicate with one 
another must offer special capabilities in the areas of error 
handling and reporting. 

A significant challenge for the D-class design was merging 
the workstation, PC, and I/O infrastructures with the Series 
800 infrastructure. This requires supporting MC/Service- 
Guard capabilities, higher slot counts, more extensive error- 
handling, and a remote support infrastructure. Before the 
D-class server, all Series 800 systems that supported MC/ 
ServiceGuard were HP Precision Bus (HP-PB) based. 

1 LVM relatively of that allows the number of file systems to be relatively independent of the 
number one physical devices. One file system can be spread over many devices, or one device 
can have many file systems. 

80 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



The D-class server's use of EISA and HP-HSC ( with the EISA 
fornÃ factor) required the team to implement, debug and 
verify MC/SeniceGuard functionality on these new I/O 
buses. In the process, various I/O implementations had 
to be modified, such as special EISA bus operating modes. 
SCSI adapter functionality, periodic EISA cleanups, guaran 
teed arbitration for core LAN, queueing transactions on HP- 
HS< . extra buffering of data signals, and slot configurations. 
These modifications made the HP-HSC and EISA I/O infra 
structure more robust in a highly available departmental 
branch server. 

In addition. HP's Access Port product, which is used for 
remote support of HP servers, only existed on the HP-PB. 
Without HP-PB slots, the D-class server would have had to 
either forego remote support or develop a new card. The 
answer was not to develop a new card, but to leverage exist 
ing logic by supplying a buried HP-PB on the new Access 
Port card. To the user, the D-class server's Access Port is 
an HP-HSC card. However, to the operating system and 
response center engineer, the D-class server's Access Port 
looks like the familiar, compatible HP-PB card found on all 
the other server products. 

Pushbutton Graceful Power Shutdown 
The D-class server is the first Series 800 system to offer push 
button graceful power shutdown. Basically, when a D-class 
system is up and running, the power button is equivalent to 
the command reboot -h, which causes the system to synchro 
nize its buffer cache and gracefully shut down. This feature 
is most useful in a branch office or department where the 
server is minimally managed by local personnel. Single-user 
HP workstations had introduced this feature to PA-RISC 
systems. 

Built-in Remote Management 
With an emphasis on remote server management, the D- 
class server team decided to offer the same robust, world 
wide-usable internal modem as the K-series products. This 
modem offers support for transfer rates well beyond those 
used by today's HP response centers and is integrated with 
the remote support assembly in D-class systems. The prod 
uct also offers a special serial port for controlling optional 
uninterruptible power supplies (UPS), as well as pinout defi 
nitions for future direct control of internal power-supply 
signals. 

The D-class server team also accommodated "consoleless" 
systems, whereby a D-class server can be completely man 
aged remotely without a local console at all. In addition, 

graphics console customers can still take advantage of 
remote console mirroring (formerly reserved strictly for 
RS-232 consoles) by merely flipping a switch on the product. 

Conclusion 
The system partitioning design for the first release of the 
D-class servers helped to achieve all of our introduction 
goals. We were able to introduce both PA 7100L('-based and 
PA 7200-based processor modules, integrate the industry 
standard EISA I/O bus into the Series 800 hardware for the 
first time, and achieve our cost and schedule goals without 
any investment in new VLSI ASICs. 

In the end, the D-class design had leveraged from all current 
entry-level and midrange Series 800 servers and many Series 
700 workstations. Because of the care taken during the 
adaptation process, performance enhancements made to 
the original design sources were made available in the latest 
D-class module quickly and with very little investment. As 
an example, only two weeks after a larger-cache, higher- 
speed PA 7200 K-series processor module was released, the 
corresponding D-class PA 7200 processor module had been 
modified and released for prototype. This module provides 
four times the cache and a 20% increase in frequency over 
the initial D-class PA 7200 module. 

Table IV summarizes the leverage sources for the various 
subsystems that make up the D-class servers. 

T a b l e  I V  
L e v e r a g e  S o u r c e s  f o r  t h e  D - C l a s s  S u b s y s t e m s  

D - C l a s s  S u b s y s t e m  

EISA I/O 

HP-HSC I/O 

Clocking 

PA7100LC Proccssoi 
Modules 

PA 7200 and PA 8000 
Processor Modules 

PA 7300LC Processor 
Modules 

Power Supply 

Hot Swap Disk Array 

L e v e r a g e  S o u r c e  

HP 9000 Series 700 Workstations 

K-class server and J-class and 
HP 9000 Series 700 Workstations 

E-class and K-class Servers 

E-class Server 

K-class Server 

C-class Server 

Industry-Standard Suppliers 

HP's Disk Memory Division 

June KÂ«i7 Hewlett-Packard Journal 81 
© Copr. 1949-1998 Hewlett-Packard Co.



A Low-Cost Workstation with 
Enhanced Performance and I/O 
Capabilities 
Various entities involved in product development came together at 
different times to solve a design problem, evaluate costs, and make 
adjustments to their own projects to accommodate the cost and 
performance goals of the low-cost HP 9000 B-class workstation. 

by Scott P. Allan, Bruce P. Bergmann, Ronald P. Dean, Dianne Jiang, and Dennis L. Floyd 

The design and development of the HP 9000 B-class work 
station is a good example of cooperative engineering. 
In cooperative engineering, the various entities involved in 
product development come together at different times to 
solve a problem or make adjustments to their own projects 
to accommodate a common need. Examples of this co 
operation for the B-class workstation include coordination 
between system designers and firmware developers, the 
addition of new functionality without impacting the develop 
ment of close ties with manufacturing, evaluation of 
implementation based on detailed cost models, and simplifi 
cation of the PA 7300LC design by moving clocking functions 
onto a small chip on the system board. 

Design Objectives 
The design objectives for the B-class workstation were low 
cost, quick time to market, performance, functionality, lon 
gevity, and modularity. In addition to these objectives, the 
development team's main goal was to produce a workstation 
based on the PA 7300LC processor that would be compar 
ably priced to the HP 9000 Model 715 workstation, but with 
superior performance and I/O capabilities. This goal and the 
design objectives remained the same throughout the project. 

With low cost as the primary objective, any feature that was 
perceived as too costly or of limited value to our customer 
base was not included. Leveraged subsystems were reviewed 
in search of creative ways to reduce cost. This led to reduc 
tions in the cost of the clock circuitry and firmware inter 
face and elimination of some legacy I/O interfaces. From a 
cost/performance perspective we were able to justify the 
addition of a PCI (Peripheral Component Interconnect) bus, 
a higher-speed memory technology, a second-level cache, 
and a higher-performance processor and graphics subsys 
tem. Fig. 1 shows the B-class workstation. 

Features and Capabilities 
Based on the objectives for the B-class workstation, the 
following features are included in the product: 
PA 7300LC high-performance, low-cost microprocessor with 
two on-chip associative caches with 64K bytes for data and 
64K bytes for instructions 
1M bytes of ECC (error-correcting code) directly mapped 
second-level cache for additional performance 

HP VISUALIZE graphics technology from HP VISUALIZE-EG 
(entry-level graphics) 
HP VISUALIZE-rVX graphics on the B132 workstation 
(optional) 
Six memory slots that support up to 768M bytes of ECC 
memory, including fast-page mode (FPM) and extended- 
data-out (EDO) DRAM dual inline memory modules 
(DIMMs) 
General system connect (GSC) bus for high-speed I/O 
bandwidth 
Flexible I/O that includes two I/O slots, which can be 
configured as: 
o Two PCI slots 
o Two GSC slots 
i One EISA slot 

Optional fast-wide SCSI (20-Mbyte/s) card that supports 
internal and external disks without using an I/O slot. 

Fig. 1. The B-class workstation. 

82 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



B a c k p l a n e  

Memory Subsystem 

Second-Level  
Cache (Optional) 

Ma in  Memory  

Each DIMM is  72-bi ts  wide.  

D I M M  =  D u a l  I n l i n e  M e m o r y  M o d u l e  
G S C  =  G e n e r a l  S y s t e m  C o n n e c t  
P C I  =  P e r i p h e r a l  C o m p o n e n t  I n t e r c o n n e c t  
P D H  =  P r o c e s s o r  D e p e n d e n t  H a r d w a r e  

Fig. 2. The system block diagram for the B-class workstation. 

PA7300LCCPU 

System and Backplane 
Boards 

June 1997 Hewlett-Packard Journal 83 

© Copr. 1949-1998 Hewlett-Packard Co.



In addition to these features, the B-class workstation's mod 
ular use, provides simple installation, flexibility of use, 
and easy servicing. This is accomplished through design 
features such as: 

â€¢ Simple tray design 
â€¢ Built-in expandability 
â€¢ Plug-in memory modules. 

Fig. 2 shows a block diagram of the components that make 
up the B-class workstation. 

Processor and System Design 

Since the processor chip used in the B-class products is 
the PA 7300LC, one of the main areas of cooperation was 
between the PA 7300LC processor design team and the 
B-class system design team. 

The previous-generation processor used in HP workstations 
of a comparable price was the PA 7100LC. The PA 7100LC 
was an extremely versatile processor, and many of its 
best points were leveraged into the PA 7300LC design 
(see the articles on pages 43, 48, 61, and 69). However, 
the PA 7100LC was not without its challenges, such as 
the difficulty in synchronizing the processor clock with 
the GSC (general system connect) bus. 

Clock Frequency 
The GSC bus is a general-purpose synchronous bus used to 
communicate between the processor and I/O. Its phase is 
determined in relation to a nonexistent GSC clock. This 
imaginary clock runs at half the frequency of the clock sync 
signals driven to each GSC device. Its rising edge is defined 
by the rising edge of reset during initialization, and each 
GSC device is responsible for keeping track of the current 
phase of the GSC clock starting from initialization. 

On the PA 7100LC, the GSC bus was only permitted to oper 
ate at fixed ratios of the processor clock frequency, including 
some odd clock ratios such as 1.5:1 (see Fig. 3). All of the 
clock syncs and the resets used to initialize the GSC clock 
were external to the chip. Designing circuitry to maintain 
these ratios and timing margins with minimal clock skew and 
noise immunity became increasingly problematic. In addition, 
every frequency point of operation required a special clock 
design to ensure maximum performance. This limited our 
ability to select the frequency of operation based upon yield 
at a later point in the design process. For the PA 7300LC, the 
situation became more critical because the final processor 
frequency was still uncertain, and the final ratio between the 
processor frequency and the GSC clock was also undecided. 

The first approach investigated was to bring the entire clock 
ing solution into the PA 7300LC. It would be much easier to 
adjust the delays and control the skew within an ASIC rather 
than in discrete circuits. The proposal was to incorporate a 

PCLK = Processor Clock 
GSCSYNC = General System Connect Sync Signal 

Fig. 3. The PA 7100LC clocking scheme. 

phase-locked loop circuit within the PA 7300LC to generate 
the processor clocks from a low-frequency external crystal. 

The GSC syncs could then be created by dividing the 
phase-locked loop output internally in the PA 7300LC. The 
PA 7300LC would also drive out the reset used to initialize 
the GSC phase. Upon further investigation, the PA 7300LC 
design team became concerned about the risk associated 
with the phase-locked loop. The phase-locked loop was con 
sidered a major component of the PA 7300LC design. This 
was significant because all post-fabrication verification and 
debugging of the chip would be dependent upon a functional 
phase-locked loop. 

At this point, the B-class system designers and the PA 7300LC 
design team began to look at a mixed solution. The phase- 
locked loop was scrapped to avoid risk, and its die area 
recovered for other uses. The PA 7300LC would continue to 
drive the primary synchronizing reset to eliminate the need 
to synchronize the asynchronous power-on reset to the GSC's 
syncs. The generation of the syncs and the maintenance of 
their skew requirements would be moved to an external 
ASIC. Any necessary turns to a small ASIC would be quicker 
and less expensive. In addition, the clocking solution could 
be completely bypassed to allow continued verification and 
debugging of the PA 7300LC if necessary. 

Working with Motorola, the PA 7300LC design team, and our 
materials organization, the system designers specified the 
device that became the Motorola MPC992 (the clock genera 
tor in Fig. 2). This device uses a phase-locked loop and an 
external low-frequency crystal to generate differential clocks 
that provide clocking to the processor and the other GSC 
devices. As an added benefit, its cost is relatively low in 
relation to the external clock oscillator and ECL devices 
used in previous products. The USYNC signal, which comes 
from the PA 7300LC processor, is the synchronizing signal 
that is responsible for aligning the GSCSYNC with the proces 
sor clock signal. 

Memory and I/O Controller 
The proximity and working relationship between the 
PA 7300LC and B-class system design teams allowed us 
to communicate design specifications with relative ease. 
This working environment allowed us to view the product 
as a whole rather than designing the system around an 
existing chip. 

The design of the memory and I/O controller (MIOC) was 
the first area affected by this arrangement. The PA 7300LC is 
designed to support optional second-level caches of different 
technologies and sizes. When the PA 7300LC chip design 
tfeam began investigating each of these second-level cache 
options, the B-class system designers were able to check 
the appropriateness of their solution with the design. One of 
the first decisions under this arrangement was to make the 
second-level cache optional and locate it on a DIMM (dual 
inline memory module) on a separate board. This provides 
the B-class workstation with several benefits: 
Lower-performance systems are not burdened with the cost 
of the second-level cache. 
Systems with and without a second-level cache can share 
system boards, reducing development and verification time. 

84 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



â€¢ The exact configuration of the second-level cache can be 
altered at a later date if market conditions warranted. 

â€¢ Less space is required on the board, permitting a lower-cost 
system board. 

It was important for the PA 7300LC design team to know 
that a DIMM solution was being considered since it would 
have a big impact on the I/O pad design of the PA 7300LC. 

Another area of concern within the MIOC involved the 
impact of the expanded data bus on the PA 7o(K)L( ( 144 bits) 
compared to the PA 7100LC ( 72 bits). This would require 
additional pins and incur additional packaging costs. The 
PA 7300LC design team wanted to share the memory data 
bus with the second-level cache data bus to reduce the num 
ber of external I/O pins. However, the additional load associ 
ated with the memory would degrade the response of the 
second-level cache. The PA 7300LC design team suggested 
FET switches, which could be dynamically opened and 
closed to isolate the second-level cache from main memory. 

The B-class system designers were able to verify using 
FET switches in a system environment. However, the only 
devices available that met the enable/disable speed require 
ments were 8-bit devices. This was viewed as an unwieldy 
and expensive solution in the B-class system. Working with 
our materials organization and Texas Instruments, the B-class 
system designers were able to make minor specification 
changes to an existing 24-bit Texas Instruments part to im 
prove this speed parameter and cut the quantity and cost of 
the FET switches significantly. The B-class system designers 
verified the signal quality of the memory data and second- 
level cache data of these devices in a system environment. 

As the configuration of the second-level cache solidified, the 
B-class system designers were able to provide the PA 7300LC 
design team with specific information concerning the electri 
cal environment in which the PA 7300LC would be operating. 
With this information they were able to run simulations of 
their I/O pad drivers operating within the actual system. 
This led to some changes in their pad designs, eliminating 
potential problems later. 

Memory 
As with most projects, the PA 7300LC design team and the 
B-class system designers had their share of resource short 
ages. One such issue involved the memory family. The 
PA 7300LC is designed to support both fast-page mode and 
extended-data-out DRAMs. In fast-page mode, sequential 
data is driven from the DRAMs on successive column ad 
dresses following a single row address, rather than requiring 
both the row and column address to be driven on each data 
access. Extended-data-out DRAMs are an enhancement to 
fast-page- mode DRAMs in which the data remains valid until 
the column address changes or a new column address strobe 
occurs, rather than becoming invalid when the column 
address strobe disappears. This allows a longer time period 
over which lo latch incoming data and saves processor 
states in memory accesses. 

Unfortunately, resource eunllicts and schedule constraints 
made it impossible for the PA 7300LC design team to verify 
functionality of the chip for both memory technologies. 

The PA 7300LC design team wanted to qualify the extended- 
data-out DRAM technology because it would provide a higher- 
performance memory technology. The B-class system design 
team wanted the fast-page mode DRAM technology qualified 
to be compatible across the workstation family, rather than 
having a unique memory component for the B-class systems. 
The compromise solution was to have the PA 7300LC design 
team qualify the fast -page mode DRAM technology for first 
release. At a later point in the design phase, the B-class 
system designers would qualify the operation of extended- 
data-out mode DRAMs to be introduced as a performance 
enhancement. 

Data Capture 
Resource balancing was also evident in the development 
of a data capture board for the PA 7300LC. A data capture 
board is a device that is attached to a system board and is 
used to observe the high-frequency signals between the 
processor, second-level cache, and memory for debugging 
purposes. Since the B-class system designers were more 
familiar with board design tools and the board design envi 
ronment, the B-class system design team developed the data 
capture board for debugging the PA 7300LC. 

Hardware and Firmware Trade-offs 
Design teams frequently look at trade-offs between optimiz 
ing resources and meeting the goals of the team. For the 
B-class workstation, the hardware and firmware teams 
fostered a close working relationship, allowing trade-offs to 
be made on a broader scale. 

A most unusual but significant outcome of this close work 
ing relationship was the development of an unplanned ASIC 
for interfacing to the processor dependent hardware (PDH). 
The PDH consists of components such as the boot ROM, 
nonvolatile memory, and configuration registers. Although 
there was already a way to connect to the PDH functionality 
through part of the core I/O logic- being leveraged from pre 
vious lower-end workstations, this interface did not provide 
the level of functionality that was implemented in the higher- 
end workstations. The firmware team could save significant 
resources by leveraging portions of code from the C-class 
workstation and the higher-end members of the D-class 
server family. Many of the basic- I/O and graphics functions 
were similar between these platforms. However, the code 
leverage was predicated on having certain PDH functionality 
that could not be provided with the low-end solution. In 
addition, the high-end solution provided superior debug ca 
pabilities. These better debug capabilities were very attrac 
tive to help ensure a speedy startup of the new PA 7300LC 
processor, and hence help meet our time-to-market goals. 

The key capability missing from the PDH interface used in 
previous lower-end workstations was the ability to perform 
word-wide write accesses to PDH devices. The PDH inter 
lace was optimized for reads, with only byte-write capabili 
ties provided. The new PDH ASIC added the word-write 
capability to support a scratch RAM. This seemingly inno 
cent, scratch RAM was key, because in high-end workstation 
code it is used as a stack in the early stages of the boot pro 
cess before main memory is initialized. The scratch RAM is 

June I!KI7 I Irwlrtl-l'arkard. Journal 85 
© Copr. 1949-1998 Hewlett-Packard Co.



also used for global information such as tables of I/O and 
graphics configuration information. It would have been very 
difficult to leverage code with the word-write capability to a 
platform without this capability. 

The new PDH ASIC also provided additional address decode 
and the appropriate flexibility in timing to allow the direct 
connection of a serial port into the PDH hardware. This 
direct connection to a serial port, in conjunction with the 
capabilities offered with the scratch RAM, allowed a debug 
ger to be operational even with hardware that was minimally 
functional. This serial port aided code and hardware debug 
ging by allowing the hardware status to be monitored and 
the hardware configuration to be modified early in the boot 
process. 

The risk for the new PDH ASIC was minimized by incorpo 
rating it into system simulation efforts and by keeping the 
design focused on the needed functionality and disallowing 
any unnecessary features. 

Product Definition 

The B-Class system was originally defined alongside the 
C-class workstations. The B-class system is essentially a 
smaller version of the C-class workstation. Our original 
intention for the B-class implementation was to use the 
same modular philosophy of separate I/O, CPU, disk inter 
face, and human interface subsystems used in the C-class 
machines. However, when the time came to implement the 
B-class product, cost goals had become more important. 
When preliminary costs were evaluated, it became clear that 
we were not meeting the cost objectives with the existing 
product definition. 

Many alternatives were generated and evaluated against 
product objectives. Finance and R&D reviewed their cost 
models to see where costs could be saved. Manufacturing 
reviewed the design alternatives for manufacturability and 
analyzed the supply chain for issues associated with parts 
procurement, assembly, material, and structure. Service was 
consulted to review serviceability and warranty implications 
of the various options, as well as issues with potential future 
upgrade products. The result of this analysis was a single- 
board integrated computer (see Fig. 4). The design, which 

was initially spread out over four separate boards in the 
C-class system for the sake of modularity, was now inte 
grated onto one system board. 

Single-Tray Concept 
Like the C-class workstation, the B-class workstation uses 
a tray concept. However, instead of two trays (one for the 
disks and one for the boards), there is one tray that holds 
everything (see Fig. 5). For this reason, during the design 
phase it was important to consider keeping the weight 
down. Holes were added in the tray wherever possible to 
reduce the overall product weight. 

EMI 
The tray assembly slides into a metal can. With this approach, 
the EMI (electromagnetic interference) interface is limited 
to the perimeter of the rear panel. Once the tray is removed, 
there is easy access to the option boards, memory modules, 
second-level cache modules, optional fast-wide SCSI interface 
board, power supply, disk drives, speaker, fans, and the CPU 
chip. The system board is accessible by removing the disk 
bay, which is secured by only one screw and a few cables. 

Disk drives can be accessed without removing the disk bay 
from the main tray simply by removing the snap-on cover. 
The disks are mounted using plastic brackets so that they 
can be changed without tools (Fig. 6). A fan was added to 
the bottom of the disk bay to provide enhanced disk cooling 
since successive generations of disks consume more power. 
Removing the backplane is slightly more difficult, requiring 
all modules to be removed first. 

Manufacturing 
Working with manufacturing included performing a supply 
chain analysis1 as part of the total system cost analysis. 
Design efforts produced detailed material lists that were 
used to determine an overall system cost. Several design 
scenarios were developed with mechanically exploded 
models and material lists. The cost model for the B-class 
workstation was not limited just to the material content of 
the product, but also included system interconnect costs, 
parts procurement costs, part placement costs, printed cir 
cuit and electrical and system functional testing costs, and 
system support costs. 

DRAMs 

Optional  VRAM 

To Disk Bay 

To Backplane 

Optional  Second-Level  Cache 

To Backplane 

Power  Swi tch  
Power LEDs 

Diagnostic LEDs 

Microphone 
Headset 

Volume Control 
Mute  Swi tch  

Fig. 4. The B-class system board 
and its components. 

86 Juno 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Power Supply, PCI. EISA, 
and GSC Boards 

System Board 

Disk  Bay  

Fig. 5. The main tray assembly. 

Manufacturing and field-support representatives were in 
volved in defining the system for manufacturability, inven 
tory control, and configurability to reduce the system cost. 
Design scenarios were then evaluated against each design 
objective. 

Initial prototypes were assembled and disassembled by 
manufacturing personnel to provide a hands-on critique of 
the designs. These inputs were fed back into the design in 
the early stages of development. 

Serviceability 
One of the challenges of this single-board solution was to 
make the system board accessible for service. We wanted to 
have the board slide in and out, but there were connectors 
and switches on both edges of the board. In addition, the 
connectors had to be accessible through the rear panel. 
To allow the board to slide into the package we added a 
small tray to the bottom of the system board that could slide 

Flexible Disk 

CD ROM 

Hard Disk 

Fig. 6. The disk bay. 

along card guides. One of the design requests from service 
representatives was to be able to service the system board 
without removing the rear panel. To accomplish this, the 
rear-panel connectors were recessed and a separate small 
bulkhead attached with a sliding EMI interface to the rear 
panel. This bulkhead remains attached to the board in a 
board replacement. 

Another serviceability concern was the alignment of the 
power button, mute button, volume knob, audio jacks, and 
LEDs located on the front of the product. In the chassis, the 
main tray engages alignment pins, which serve to lock the 
tray to the chassis during \ibration and shock. Because of 
the tolerance stackup from the front panel through the can. 
tray, backplane, system board, and all the connectors and 
buttons, we were concerned that the cosmetics at the front 
would be unacceptable. To improve alignment, we mounted 
these connectors on a long, thin section of the printed cir 
cuit board that would flex and be supported by a metal 
brace so that the front section could move relative to the 
rest of the board. We added aligning forks to the front panel 
to position just that section of board. With this method, we 
were able to locate these connectors accurately. 

Manufacturing also assisted in improving the design through 
their participation in design reviews. One suggestion lead us 
to abandon the captive rear-panel fasteners that we had 
been planning to use. If the captive screws are not properly 
aligned, they can be cross-threaded and stripped, or the 
captive nut on the chassis may be damaged. Consequently, 
the whole tray would need to be replaced just for a simple 
nut or screw. Instead, we designed custom thumbscrews 
with an unthreaded nose section to align the screw before 
the threads engage. This minimizes cross-threading. To save 
labor costs we also used a coarse thread to reduce the num 
ber of rotations necessary to remove and install them. 

Another goal was to reduce the number of screw types. We 
tried to standardize on a single screw used in our earlier 
option boards because this was the one screw that we could 
not change. We used it to attach the power supply and the 
disk bay. To reduce screw count, the main fans and speaker 
snap in place. The backplane slides in place with keyhole 
standoffs and forks in the main tray. When the power supply 
is installed, two pins from the power supply trap the back 
plane in place. The power supply is supported with two 
screws and the two pins that are routed through the back 
plane into the backplane support. The power supply has 
floating connectors so that stresses from vibration and shock 
are not transmitted between the backplane and the power 
supply via the connectors. 

One of the primary objectives was upgradability. Upgrades 
can be easily accomplished by a simple swap of the system 
board. Since everything is on one board, there are no issues 
with incompatibilities between different versions of the I/O 
and CPU. The small I/O bulkhead stays with the board so the 
main tray assembly need not change. Sufficient extra height 
remains where the CPU and memory are located so that 
future high-power CPUs have room for larger heat sinks 
or even small daughter boards if more board real estate is 
needed. 

June 1997 llowlelt-I'arkard Journal 87 
© Copr. 1949-1998 Hewlett-Packard Co.



Processor and System Verification 

The verification effort for the PA 7300LC and the B-class and 
C-class products was also a joint effort. Shmoo tests were 
conducted simultaneously on both the B-class and C-class 
workstations. 

A shmoo test is designed to verify the product under volt 
a g e ,  t o  a n d  f r e q u e n c y  e x t r e m e s .  I t s  i n t e n t i o n  i s  t o  
electrically stress the system under test to within and be 
yond its operating limits. This process is part of our electri 
cal characterization of the processor and system. A shmoo 
test is an important part of our product development cycle. 
By pushing the system to its electrical extremes, we hope to 
reveal any design weaknesses that could affect the operation 
and performance of the system under extreme operating 
conditions. It often uncovers weaknesses in both chip and 
board designs. These might include signal cross talk, chip- 
d r ive  or  s low-speed  pa ths  a t  h igh  tempera tures ,  o r  
board-level clocking problems. 

To achieve superior product quality, both processor and 
system shmoo tests were performed on B-class systems. The 
processor shmoo test focused on the core processor, caches, 
memory, and GSC bus. The system shmoo test emphasized 
peripherals and I/O, including the expansion I/O on the GSC, 
EISA, and PCI buses. 

Since the PA 7300LC was designed to work in both B-class 
and C-class systems, it was tested in both systems. Proces 
sor characterization was performed in the C-class systems 
by the PA 7300LC design team. Simultaneously, the B-class 
system design team completed the processor shmoos in a 
B-class system. Both the B-class and C-class system design 
teams completed system shmoos with the PA 7300LC in 
their respective environments. 

The parallel verifications of the PA 7300LC in the B-class 
and C-class systems complemented each other, providing 
opportunities for leveraging and making the debug process 
go smoother. One of the issues discovered during the pro 
cessor shmoo test was the limited operating frequency of 
the GSC bus. This was caused by the length and load on the 
bus and a threshold problem on the PA 7300LC. The com 
bined efforts of the PA 7300LC processor and B-class system 
design teams extended the operating frequency of the GSC 
bus in our systems and provided the desired performance. 
The PA 7300LC design team corrected the threshold problem 
and the B-class team shortened the GSC bus, which slightly 
changed its characteristic impedance and helped to alleviate 
the problem. 

Processor-level electrical verification has three main goals: 
uncover electrical (nonfunctional) bugs in the system, find 
critical speed paths that limit the maximum frequency of the 
processor, and provide correlation between the 1C tester 
frequency and the eventual system frequency. The third goal 
had the biggest impact on costs. As development progressed, 
it became obvious to the PA 7300LC and B-class teams that 

the frequency mix (132 MHz to 160 MHz) between the 1C 
tester and the system was not meeting marketing require 
ments. The correlation effort between the teams uncovered 
ways to enhance the system electrical and thermal environ 
ments to bring the yield mix and market demand together. 
The close cooperation between the two teams enabled 
the quick identification of a solution to the problem. We 
made alterations to the system's thermal cooling environ 
ment, allowing us to run the PA 7300LC at a higher fre 
quency, something we could not do in the original cooling 
environment. 

Over the years, many efforts have been made to address and 
improve the shmoo test process at both the processor 
and system level. While processor shmoo testing reveals 
many system level problems, its primary focus is still the 
processor, cache, and memory subsystems, rather than the 
I/O subsystems. As I/O bus speed and peripheral interface 1C 
complexity has increased, it has become more important to 
address the I/O subsystems in shmoo testing. The PA 7300LC 
was designed to make complete system shmoos more prac 
tical for this reason. The clock circuitry for the PA 7300LC 
was designed to permit overriding the nominal clock fre 
quency while maintaining the correct synchronous relation 
ship between the processor and I/O clocks. This allowed us 
to vary the frequency of operation more easily over a larger 
range of operation than in past products. 

One of the challenges for system shmoo testing in B-class 
systems was the range of new system components that had 
to function correctly together during testing. As with the 
processor shmoo, system testing attempted to stress the 
electrical design of the new components by operating them 
under extremes of temperature, voltage, and frequency. In 
addition to the core I/O components, various expansion I/O 
cards were selected to verify complete system functionality. 

The extensive system shmoo testing of the B-class system 
led to the optimization of several circuits and resulted in a 
higher-performing, more robust system. We have come to 
believe that shmoo tests are an indispensable part of our 
product development. Besides helping to catch potential 
problems before introduction, shmoo tests also make post- 
product support and maintenance easier. 

Conclusion 
Cooperative efforts between many functional areas such as 
manufacturing, service and support, marketing, firmware 
development, and the PA 7300LC chip development team 
together with the electrical and mechanical system designers 
have produced the B-class workstations. The closely coupled 
system design approach has yielded a workstation that pro 
vides significant value to our customers. 

References 
1. G. A. Kruger, "The Supply Chain Approach to Planning and 
Procurement Management," Heiclett-Packard Journal, Vol. 48, 
no. 1, February 1997, pp. 28-38. 

88 June 1997 Hewlett-Packard .Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Testing Safety-Critical Software 
Testing safety-critical software differs from conventional testing in that 
the test design approach must consider the defined and implied safety of 
the software at a level as high as the functionality to be tested, and the 
test software has to be developed and validated using the same quality 
assurance processes as the software itself. 

by Evangelos Nikolaropoulos 

Test technology is crucial for successful product develop 
ment. Inappropriate or late tests, underestimated testing 
effort, or wrong test technology choices have often led 
projects to crisis and frustration. This software crisis results 
from neglecting the imbalance between constructive software 
engineering and analytic quality assurance. In this article we 
explain the testing concepts, the testing techniques, and the 
test technology approach applied to the patient monitors of 
the HP OmniCare family. 

Patient monitors are electronic medical devices for observ 
ing critically ill patients by monitoring their physiological 
parameters (ECG, heart rate, blood pressure, respiratory 
gases, oxygen saturation, and so on) in real time. A monitor 
can alert medical personnel when a physiological value 
exceeds preset limits and can report the patient's status on 
a variety of external devices such as recorders, printers, and 
computers, or simply send the data to a network. The moni 
tor maintains a database of the physiological values to show 
the trends of the patient's status and enable a variety of 
calculations of drug dosage or ventilation and hemodynamic 
parameters. 

Patient monitors are used in hospitals in operating rooms, 
emergency rooms, and intensive care units and can be con 
figured for every patient category (adult, pediatric, or neo- 
nate). Very often the patient attached to a monitor is uncon 
scious and is sustained by other medical devices such as 
ventilators, anesthesia machines, fluid and drug pumps, and 
so on. These life-sustaining devices are interfaced with the 
patient monitor but not controlled from it. 

Safety and reliability requirements for medical devices are 
set very high by industry and regulatory authorities. There is 
a variety of international and national standards setting the 
rules for the development, marketing, and use of medical 
devices. The legal requirements for electronic medical 
devices are, as far as these concern safety, comparable to 
those for nuclear plants and aircraft. 

In the past, the safety requirements covered mainly the hard 
ware aspects of a device, such as electromagnetic compati 
bility, radio interference, electronic parts failure, and so on. 
The concern for software safety, accentuated by some widely 
known software failures leading to patient injury or death, is 
increasing in the industry and the regulatory bodies. This 
concern is addressed in many new standards or directives 
such as the Medical Device Directive of (he European Union 
or the U.S. Food and Drug Administration. These legal 

requirements go beyond a simple validation of the product; 
they require the manufacturer to provide all evidence of 
good engineering practices during development and valida 
tion, as well the proof that all possible hazards from the use 
of the medical instrument were addressed, resolved, and 
validated during the development phases. 

The development of the HP OmniCare family of patient moni 
tors started in the mid-1980s. Concern for the testing of the 
complex safety-critical software to validate the patient mon 
itors led to the definition of an appropriate testing process 
based on the ANSI/IEEE software engineering standards pub 
lished in the same time frame. The testing process is an inte 
gral part of our quality system and is continuously improved. 

The Testing Process 
During the specifications phase of a product, extended dis 
cussions are held by the crossfunctional team (especially 
the R&D and software quality engineering teams) to assess 
the testing needs. These discussions lead to a first estimation 
of the test technology needed in all phases of the develop 
ment (test technology is understood as the set of all test 
environments and test tools). In the case of HP patient mon 
itors the discussion started as early as 1988 and continues 
with every new revision of the patient monitor family, refin 
ing and in some cases redefining the test technology. Thus, 
the test environment with all its components and the tools 
for the functional, integration, system, and localization test 
ing evolved over a period of seven years. Fig. 1 illustrates 
the testing process and the use of the tools. 

The test process starts with the test plan, a document de 
scribing the scope, approach, resources, and schedule of the 
intended test activities. The test plan states the needs for 
test technology (patient simulators, signal generators, test 
tools, etc.). This initiates subprocesses to develop or buy the 
necessary tools. 

Test design is the documentation specifying the details of 
the test approach and identifying the associated tests. We 
follow three major categories of test design for the genera 
tion of test cases (one can consider them as the main direc 
tions of the testing approach): white box, black box, and 
risk and hazard analysis. 

The white box test design method is for design test, unit 
test, and integration tests. This test design is totally logic- 
drivcn and aims mainly at path and decision coverage. Input 

Junr 1!)97 I Icwlrtl-I'uckanl. Journal 89 
© Copr. 1949-1998 Hewlett-Packard Co.



Product 
L i f e  C v c l e  T e s t i n g  P r o c e s s  

Phase: 

Specif icat ions 

Design 

Implementation 

Val idation 

Test 
Documentation 

Regression 
Test  Package 

Shipment 

Fig. 1. The software testing pro 
cess for HP OmniCare patient 
monitors. 

for the test cases comes from external and internal specifi 
cations (design documents). The test design for algorithm 
validation (proof of physiological measurement algorithms) 
follows the white box method, although sometimes this is 
very difficult, especially for purchased algorithms. 

The black box test design method is for functional and 
system test. This test design is data-driven and aims at the 
discovery of functionality flaws by using exhaustive input 
testing. Input for the test cases comes from the external 
specifications (as perceived by the customer) and the in 
tended use in a medical environment. 

Risk and hazard analysis is actually a gray box method that 
tries to identify the possible hazards from the intended and 
unintended use of the product that may be potential sources 
of harm for the patient or the user, and to suggest safeguards 
to avoid such hazards. Consider, for instance, a noninvasive 
blood pressure measurement device that may overpump. 
Hazard analysis is applied to both hardware (electronic and 
mechanical) and software, which intemperate and influence 
each other. The analysis of events and conditions leading to 
a potential hazard (the method used is the fault tree, a cause- 
and-effect graph) goes through all possible states of the 
hardware and software. The risk level is estimated (the risk 
spectrum goes from catastrophic to negligible) by combining 
the probability of occurrence and the impact on health. For 
all states with a risk level higher than negligible, appropriate 
safeguards are designed. The safeguards can be hard or soft 
(or in most cases, a combination of both). The test cases 
derived from a hazard analysis aim to test the effectiveness 
of the safeguards or to prove that a hazardous event cannot 
occur. 

Test cases consist of descriptions of actions and situations, 
input data, and the expected output from the object under 
test according to its specifications. 

Test procedures are the detailed instructions for the setup, 
execution, and evaluation of results for one or more test 
cases. Inputs for their development are the test cases 
(which are always environment independent) and the test 
environment as defined and designed in the previous phases. 
One can compare the generation and testing of the test pro 
cedures to the implementation phase of code development. 

Testing or test execution consists of operating a system or 
component under specified conditions and recording the 
results. The notion of testing is actually much broader and 
can start very early in the product development life cycle 
with specification inspections, design reviews, and so on. 
For this paper we limit the notion of testing to the testing 
of code. 

Test evaluation is the reporting of the contents and results 
of testing and incidents that occurred during testing that 
need further investigation and debugging (defect tracking). 

While test design and the derivation of test procedures are 
done only once (with some feedback and rework from the 
testing in early phases, which is also a test of the test), test 
ing and test evaluation are repeatable steps usually carried 
out several times until the software reaches its release 
criteria. 

Various steps of the testing process also produce test docu 
mentation, which describes all the plans for and results of 
testing. Test or validation results are very important for doc 
umenting the quality of medical products and are required by 
regulatory authorities all over the world before the product 
can be marketed. 

The regression test package is a collection of test procedures 
that can be used for selective retesting of a system or compo 
nent to verify that modifications have not caused unintended 
effects and that the system or component still complies with 
its specified product and legal requirements. 

90 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



From the Test Plan to the Testware 
Ten or fifteen years ago it was perhaps enough to give a 
medical instrument to some experts for clinical trials. 
algorithm validation, and test. The instrument had a simple 
display, information placement was not configurable, and 
the human interface was restricted to a few buttons and 
knobs. All the attention was on the technical realization of 
the medical solution (such as ECG monitoring), and software, 
mainly written by the electrical engineers who designed the 
hardware, was limited to a few hundred statements of low- 
level languages. 

Today the medical instruments are highly sophisticated open- 
architecture systems, with many hundreds of thousands lines 
of code. They are equipped with complex interfaces to other 
instruments and the world (imagine monitoring a patient over 
the Internet â€” a nightmare and a challenge at the same time). 
They are networked and can be remotely operated. This 
complexity and connectivity requires totally new testing 
approaches, which in many cases, are not feasible without 
the appropriate tooling, that is, the testware. 

Discussion of the test plan starts relatively early in the prod 
uct life cycle and is an exit criterion for the specifications 
phase. One of the major tasks of the testing approach is the 
assessment of the testing technology needed. The term tech 
nology is used here in its narrow meaning of process plus 
hardware and software tools. 

The testing technology is refined in the next phases (design 
and implementation) and grows and matures as the product 
under development takes shape. On the other hand, the test 
ing tools must be in place before the product meets its im 
plementation criteria. This means that they should be imple 
mented and validated before the product (or subproduct) is 
submitted for validation. This requirement illustrates why 
the test technology discussion should start very early in the 
product life cycle, and why the testware has a "phase shift 
to the left" with respect to the product validation phase (see 
Fig. 2). 

Test Tool (Testware) Development 
Testware development follows the same product life cycle 
as the product under development. The phases are: 
Requirements and Definition Phase. The test needs are 
explained according to the test plan and the high-level test 

design. Alternatives are discussed and one is selected by the 
software quality team. 

1 Specifications Phase. The tool is described in as much de 
tail as possible to enable the testers to start work with their 
test cases and test procedures as if the tool were already 
available. These specifications are reviewed (or formally 
inspected) by the product development and test teams, 
approved, and put under revision control. 

1 Design and Implementation Phase. Emphasis is on the rapid 
development of engineering prototypes of the tools, which 
again are the object of review. These prototypes are used by 
the test team for low-level test design and first test trials. 

â€¢ Validation Phase. The test tool is validated against its speci 
fications. The most up-to-date revision of the patient moni 
tor under development is used as a test bed for the tool's 
validation. Notice the inversion of roles: the product is used 
to test the test tool! Our experience shows that this is the 
most fruitful period for finding bugs in both the tool and 
the product. A regression package for future changes is 
created. First hardware construction is started if hardware 
is involved. 

1 Production Phase. The tool is officially released, hardware 
is produced (or bought), and the tool is used in the test envi 
ronment. After some period of time, when the tool's maturity 
for the test purposes has been assessed, the tool is made 
public for use by other test departments, by marketing for 
demos, by support, and so on. 

Fig. 2 demonstrates the main difficulty of testware develop 
ment: the test tool specifications can be created after the 
product specifications, but from this point on, all of the test- 
ware development phases should be earlier than the product 
development phases if the product is to be validated in a 
timely manner. 

Besides the shift of the development phases, there is also 
the testware dilemma: as the progress of the product's de 
sign and the test design leads to new perceptions of how 
the product can be tested, new opportunities or limitations 
appear that were previously unknown, and influence the 
scope of the test ware. The resulting changes in the testware 
must then be made very quickly, more quickly than the 
changes in the product. Only the application of good hard 
ware and software engineering processes (the tester is also 
a developer) can avoid having the wrong test tool for the 
product. 

Product 
Phase 

Requirements Specif icat ion Paper Design I m p l e m e n t a t i o n  I m p l e m e n t a t i o n  
of Prototype 

Production 
and Init ial  
Shipments 

Tes tware  
Phase 

R e q u i r e m e n t s  S p e c i f i c a t i o n  P r o t o t y p e ,  V a l i d a t i o n  P r o d u c t i o n  
a n d  D e s i g n  a n d  a n d  

D e f i n i t i o n  I m p l e m e n t a t i o n  C o r r e c t i o n s  

Fig. 2. KVIalionship of pmducl lo tcstwinv (Irvrlopiiiriil pluiscs. 

June HIÃI7 Hewlett-Packard Journal 91 
© Copr. 1949-1998 Hewlett-Packard Co.



Another Approach to Testing: 
Inspections 

Inspections have proved to be a very powerful white box testing method. 
Inspections are performed in all phases of the product life cycle starting 
with the product specifications. (External specifications inspections are 
an exit are for the specifications phase). The inspection goals are 
100% (for specifications (exit criterion), 50% for product design (for the 
most hazard parts according to the results of the risk and hazard analysis 
and the product architecture), and 20% for code (most critical parts). 

Although there is no defined goal for test design inspections, in practice 
about 75% of test design (high-level and test procedures just before 
automation) is inspected formally. Code inspections are performed by 
two or three engineers. Specifications inspection teams are larger â€” the 
crossfunctional team as well as R&D experts are participants. The in 
spection process has the following steps: 

â€¢ Kickoff. Distribution of inspection material and logging meeting logistics. 
â€¢ Logging. All items are logged. Short explanatory discussions are allowed 

(less than three or four minutes). A moderator and a scribe are always 
assigned to facilitate the logging meeting. However, there is no chief 
moderator assigned in our laboratory. 

â€¢ Follow-up and Rework. This step ensures that all of the fixes and clarifi 
cations that were identified as necessary in the logging meeting are 
done and all items are addressed. In an informal message to all partici 
pants for the logging meeting, all fixes are explained and the reasons for 
the unfixed issues are discussed. 

After extensive training and with massive management support, this 
inspection process works very well and is a fixed part of the product life 
cycle. 

AutoTest 
The test technology assessment for the patient monitors led 
us to the development of a number of tools that could not be 
found on the market. This make instead of buy decision was 
based mainly upon the nature of the patient monitors, which 
have many CPUs, proprietary operating systems and net 
works, proprietary human interfaces, true real-time behav 
ior, a lot of firmware, and a low-level, close-to-the-machine 
programming style. Testing should not be allowed to influ 
ence the internal timing of the product, and invasive testing 
(having the tests and the objects under test on the same 
computer) had to be avoided. 

The first tool developed was AutoTest,1 which addressed 
the need for a tool able to (1) simulate the patient's situation 
by driving a number of programmable patient simulators, 
(2) simulate user interactions by driving a programmable 
keypusher, and (3) log the reaction of the instrument under 
test (alarms, physiological values, waves, recordings, etc.) 
by taking, on demand, snapshots of the information to send 
to the medical network in a stnictured manner. 

AutoTest was further developed to accept more simulators of 
various parameters and external non-HP devices such as ven 
tilators and special measurement devices attached to the HP 
patient monitor. AutoTest now can access all information 
traveling in the internal bus of the instrument (over a serial 
port with the medical computer interface) or additional infor 
mation sent to external applications (see article, page 103). 

AutoTest is now able to: 
â€¢ Read a test procedure and interpret the instructions to 

special electronic devices or PCs simulating physiological 
signals 

â€¢ Allow user input for up to 12 patient monitors simultaneously 
over different keypushers (12 is the maximum number of 
RS-232 interfaces in a PC) 

â€¢ Allow user input with context-sensitive keypushing (first 
search for the existence and position of an item in a menu 
selection and then activate it) 

â€¢ Maintain defined delays and time dependencies between 
various actions and simulate power failure conditions 

Â» Read the reaction of the device under test (alarms, physio 
logical values and waves with all their attributes, window 
contents, data packages sent to the network, overall status 
of the device, etc.) 

â€¢ Drive from one PC simultaneously the tests of up to four 
patient monitors that interact with each other and exchange 
measurement modules physically (over a switch box) 

â€¢ Execute batch files with any combination of test procedures 
â€¢ Write to protocol files all actions (user), simulator commands 

for physiological signals (patient), and results (device under 
test) with the appropriate time stamps (with one-second 
resolution). 

AutoCheck 
The success of AutoTest and the huge amount of data pro 
duced as a result of testing quickly led to the demand for an 
automated evaluation tool. The first thoughts and desires 
were for an expert system that (1) would represent explicitly 
the specifications of the instrument under test and the rules 
of the test evaluation, and (2) would have an adaptive knowl 
edge base. This solution was abandoned early for a more 
versatile procedural solution named AutoCheck (see article, 
page 103). By using existing compiler-building knowledge 
we built a tool that: 

â€¢ Enables the definition of the expected results of a test case 
in a formal manner using a high-level language. These for 
malized expected results are part of the test procedure and 
document at the same time the pass-fail criteria. 

> Reads the output of AutoTest containing the expected and 
actual results of a test. 

> Compares the expected with the actual results. 
â€¢ Classifies and reports the differences according to given 
criteria and conditions in error files similar to compiler 
error files. 

AutoCheck has created totally new and remarkable possibi 
lities for the evaluation of tests. Huge amounts of test data 
in protocol files (as much as 100 megabytes per day) can be 
evaluated in minutes where previously many engineering 
hours were spent. The danger of overlooking something in 
lengthy protocols full of numbers and messages is eliminated. 
AutoCheck provides a much more productive approach for 
regression and local language tests. For local language tests, 
it even enables automatic translation of the formalized pass- 
fail criteria during run time before comparison with the 
localized test results (see article, page 109). 

92 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



ATP 
The next step \vas the development of a sort of test generator 
that would: 

â€¢ Be able to write complex test procedures by keeping the 
test design at the highest possible level of abstraction 

â€¢ Enable greater test coverage by being able to alter the entry 
conditions for each test case 

â€¢ Eliminate the debugging effort for new test procedures by 
using a librarÂ» of validated test primitives and functions 

â€¢ Take account of the particularities and configurations of 
the monitors under test by automatic selection of the test 
primitives for each configuration 

â€¢ Produce (at the same time as the test setup and the entry 
conditions) the necessary instructions for automated 
evaluation by AutoCheck. 

The resulting tool is called ATP (Automated Test Processor, 
see article, page 95). Like AutoCheck, ATP was developed 
by using compiler-building technology. 

Results 
Good test design can produce good and reliable manual 
tests. The industry has had very good experience with sound 
manual tests in the hands of experienced testers. However, 
there is no chance for manual testing in certain areas of 
functionality such as interprocess communication, network 
communication, CPU load, system load, and so on, which 
can only be tested with the help of tools. Our process now 
leaves the most tedious, repetitive, and resource-intensive 
parts of the testing process for the automated testware: 

â€¢ ATP for the generation of test procedures in a variety of 
configurations and settings based on a high-level test design 

â€¢ AutoTest for test execution, 24 hours a day, 7 days a week 
with unlimited combinations of tests and repetitions 

â€¢ AutoCheck for the automated evaluation of huge amounts 
of test protocol data. 

One of the most interesting facets is the ability of these tools 
to self-document their output with comments, time stamps, 
and so on. Their output can be used without any filtering to 
document the test generation with pass-fail criteria, test 
execution with all execution details (test log), and test eval 
uation with a classification of the discrepancies (warnings, 
errors, range violations, validity errors, etc.). 

Automated testware provides us with reliable, efficient, and 
economical testing of different configurations or different 
localized versions of a product using the same test emiron- 
ment and the same test procedures. By following the two 
directions of (1) automated testware for functional, system, 
and regression tests (for better test coverage), and (2) inspec 
tion of all design, test design, and critical code (as identified 
by the hazard analysis), we have achieved some remarkable 
results, as shown in Fig. 3. 

Through the years the patient monitor software has become 
more and more complex as new measurements and inter 
faces were added to meet increased customer needs for 
better and more efficient healthcare. Although the software 
size has grown by a factor of three in six years (and with it 
the testing needs), the testing effort, expressed as the num 
ber of test cycles times the test cycle duration, has dropped 
dramatically. The number of test cycles has dropped or re 
mained stable from release to release. 

The predictability of the release date, or the length of the 
validation phase, has improved significantly. There has been 
no slippage of the shipment release date with the last four 
releases. 

The ratio of automated to manual tests is constantly improv 
ing. A single exception confirms the rule: for one revision, 
lack of automated testware for the new functionality â€” a 
module to transfer a patient database from one monitor to 
another â€” forced us to do all tests for this function manually. 

The test coverage and the coverage of the regression testing 
has improved over the years even though the percentage of 
regression testing in the total testing effort has constantly 
increased. 

Conclusion 
Software quality does not start, and surely does not end with 
testing. Because testing, as the term is used in this article, is 
applied to the final products of a development phase, defect 
discovery through testing always happens too late in each 
phase of product development. All the experience gained 
shows that defect prevention activities (by applying the ap 
propriate constructive software engineering methods during 

R a t i o  o f  A u t o m a t i c  
t o  M a n u a l  T e s t i n g  

A p r i l  O c t o b e r  
1 9 8 9  1 9 8 9  
A T  A T  

M a y  
1 9 9 0  

A T  

D e c e m b e r  
1 9 9 0  

A T  1 . 0  

F e b r u a r y  
1 9 9 3  

A T  2 . 0  
A C  

A u g u s t  
1 9 9 4  

A T  3 . 0  
A C  

I n s p .  

T o o l s  i n  P l a c e :  A T  =  A u t o T e s t  
A C  =  A u t o C h e c k  
A T P  =  A u t o m a t e d  T e s t  P r o c e s s o r  
I n s p .  =  I n s p e c t i o n s  

M a r c h  
1 9 9 5  

A T  3 . x  
A C  

A T P  
I n s p .  

J u l y  D e c e m b e r  
1 9 9 5  1 9 9 5  

A T  3 . x  A T  3 . 9 7  
A C  A C  

A T P  A T P  
I n s p .  I n s p .  

Fig. 3. Trends <>Hcsliiif> metrics 
i monitors. 

June 1ÃœÃI7 I lewleit-l'aekanl. Journal 93 
© Copr. 1949-1998 Hewlett-Packard Co.



product development in all phases) is more productive than 
any analytic quality assurance at the end of the development 
process. 

Nevertheless, testing is the ultimate sentinel of a quality 
assurance system before a product reaches the next phase 
in its life cycle. Nothing can replace good, effective testing 
in the validation phase before the product leaves R&D to go 
to manufacturing (and to our customers). Even if this is the 
only and unique test cycle in this phase (if the defect preven 
tion activities produced an error-free product, which is still 
a vision), it has to be prepared very carefully and be well doc 
umented. This is especially true for safety-critical software, 
for which, in addition to functionality, the effectiveness of 

all safeguards under all possible failure conditions has to be 
tested. 

In this effort, automated testwarc is crucial to ensuring reli 
ability (the testware is correct, validated, and does not pro 
duce false negative results), efficiency (no test reruns be 
cause of testware problems), and economy (optimization of 
resources, especially human resources). 

Reference 
1. D. Goring, "An Automated test Environment for a Medical Patient 
Monitoring System," Heirlrlt-I'tickard Journal, Vol. 42, no. 4, 
October 1991, pp. 49-52. 

94 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



A High-Level Programming Language 
for Testing Complex Safety-Critical 
Systems 
Dealing with an enormous amount of data is characteristic of validating 
complex and safety-critical software systems. ATP, a high-level 
programming language, supports the validation process. In a patient 
monitor test environment it has shown its usefulness and power by 
enabling a dramatic increase in productivity. Its universal character allows 
it to migrate validation scenarios to different products based on other 
architectural paradigms. 

by Andreas Pirrung 

This article concentrates on the specific problem of trans 
forming a test design into concrete automatic test proce 
dures. For a systematic overview and context the reader 
is referred to the article on page 89. As described in that 
article, the test design identifies and documents the test set 
for a given product. It is derived from external and internal 
specifications, software quality engineer expertise, and risk 
and hazard analysis results. A test design is normally infor 
mal and describes test cases and test data on a high, abstract 
level, independent of the test environment. On the other 
hand, an automatic test procedure has to deal with all the 
details of the test environment and reflects the abstraction 
capabilities of the existing tools. 

hi our software quality engineering department the automatic 
test environment is based upon two major tools: AutoTest1 
and AutoCheck. The first is a test execution tool and the 
latter is responsible for test evaluation (see article, page 103). 
AutoTest is very close to the devices it controls and requires 
detailed commands on a low abstraction level. AutoCheck 
has to cope with the detailed low-level information produced 
by AutoTest and therefore also requires input on a detailed, 
low abstraction level (see Fig. 1). The strengths of the low- 
level interfaces are their flexibility and adaptability to various 
different test situations. 

Level of 
Detail 

Automatic Test Environment 

Abstraction 
Level 

Manual  Task 
Automatic Task 

Fig. 1. I'liucnl monitor test pro 
cess. 

June L997 Hewlett-Packard Journal 95 

© Copr. 1949-1998 Hewlett-Packard Co.



There are some difficulties with the process shown in Fig. 1. 
The test engineer spends a lot of time transforming test de 
signs into automatic test procedures. There is a large gap in 
abstraction level between the test design and the test proce 
dure. The detail level is low in the test design, but very high 
in the test procedure. It is an error-prone, time-consuming 
task to bridge this gap manually. Because resources are 
always restricted, the software quality engineer has less 
time for a more intensive test design. 

Because the test procedures have a high explicit redundancy, 
it is difficult to maintain and evolve test procedures. The 
explicit redundancy is high because Auto Test and Auto- 
Check do not support data and functional abstraction, nor 
do they offer control flow elements. A piece of code may 
exist in many copies scattered over the test procedures. If 
the test requires a change in the code pattern, for instance 
because of changes in the timing behavior of the system 
under test (in our case a patient monitor), the test engineer 
has to update numerous copies of this code pattern. The risk 
of forgetting one pattern or introducing an error in a test 
procedure increases with the number of update steps. It is 
very resource-consuming to adapt test procedures to a 
change in system behavior. 

The test procedure describes a static test scenario. There 
fore, the test engineer has to document the test setup com 
pletely. Every parameter that influences the test environ 
ment and consequently the test execution must be carefully 
controlled before starting the automatic test. Our test envi 
ronment consists of so many simulators, forcing devices, and 
sensing devices that sometimes tests need to be repeated 
because the initial conditions are wrong. The problem is that 
the automatic test procedure describes only one specific 
test situation. It is not possible to use parameters for the 
test procedure and to feed in the actual start parameters at 
the beginning of the test execution to get more general and 
robust test procedures. Even a slight change in the start con 
dition may require an adapted or nearly new test procedure. 

The test coverage is limited because the test data is coded 
within the test procedure. The repetition of a test case with 
other test data requires a modified duplicate of the test pro 
cedure. Again, it would help if a test case were able to profit 
from data abstraction and parameters, enabling the test 
engineer to formulate more general test procedures. 

AutoTest and AutoCheck do not support the statistical struc 
tural testing approach. It is therefore not possible to select 
test data randomly (see "Structural Testing, Random Testing, 
and Statistical Structural Testing" on page 97). 

The following section illustrates the above problems by pre 
senting a practical example to demonstrate the transforma 
tion of a high-level test design to an automatic test procedure. 

A Practical Example 
Patient monitors are electronic medical devices used to 
monitor physiological parameters of critically ill patients in 
intensive care units or operating rooms. They alert the medi 
cal staff when physiological parameters exceed preconfig- 
ured limits. In this example, we will concentrate on a well- 
known physiological parameter, the heart rate. The nurses 

50 

High Alarm Domain 

Normal HR Domain 

Low Alarm Domain 

Time 

Fig. 2. Heart rate (HR) alarm test principle. 

and doctors want to get an immediate alarm when the heart 
rate falls below a given lower limit or exceeds a given higher 
limit. A malfunction of the monitor may result in the death 
of a patient, so this functionality is safety-critical and must 
be validated very carefully by the vendor of the patient mon 
itor. The example illustrates a test design for heart rate 
alarm testing and the transformation process to the appro 
priate automatic test procedure. 

Fig. 2 shows the upper and lower alarm limits for the heart 
rate parameter. The data space can be divided into three 
subdomains (equivalence classes): 

â€¢ The normal heart rate domain â€” the interval between the 
alarm limits. The monitor should not alarm for data points 
taken from this area. 

â€¢ The lower alarm domain. All data here produces a low limit 
alarm. 

â€¢ The upper alarm domain. All data here produces a high limit 
alarm. 

A classic method of testing the alarm behavior is to select 
representatives from each of the three areas and check that 
the monitor reacts as expected. Fig. 2 shows the selected 
data points and their order in time. 

This graphical representation of the heart rate (HR) alarm 
test leads to the following test design: 

â€¢ Test Case 1: 
o Action(s): Configure HR alarm limits to 50/80. Apply 

signal HR 45. 
o Expected: Low limit alarm with text "**HR 45 < 50". 

â€¢ Test Case 2: 
o Action(s): Apply HR signal 49. 
o Expected: Low limit alarm remains with text "**HR 49 

< 50". 
â€¢ Test Case 3: 

o Action(s): Apply HR signal 50. 
o Expected: Low limit alarm disappears. 

â€¢ Test Case 4: 
o Action(s): Select 5 different HR values between 50 and 80 

and apply them. 
o Expected: No HR alarm for each of the selected values. 

These few test cases are enough to demonstrate the prin 
ciples of test design. The appropriate automatic test proce 
dure description for test case 1 on the AutoTest and Auto- 
Check level then looks like: 

96 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



/ /    T e s t  C a s e  1 :    

// Adjust alarm limits to 50-80. 

merlin param 

merlin "HR" 

merlin f2 

merlin f7 

merlin f3 -n48 

merlin f6 -n!2 

merlin f4 -n34 

merlin f5 -n5 

// Apply HR signal 45 (normal sinus beat). 

simi NSB45 

// Delay 10 s : after that time the alarm must 

/ / be announced . 

wait 10 

// Check if low limit alarm " HR 45 < 50" is 

// present. 

A Verify begin 

" Alarm "HR" < al min; 

// Low alarm active. 

" sound is c yellow; 

// Limit alarm sound audible. 

A Verify end 

mecif tune HR 10 

// Tune 10 the HR numeric of the patient 

// monitor. 

This example demonstrates the difference in abstraction 
between a test design (high abstraction) and an automatic 
test procedure (low abstraction) and gives an impression of 
the difficulties noted above. An automatic test description 
language designed to alleviate these difficulties should offer 
abstraction capabilities to hide details and to compose com 
plex functions from simpler functions. Like every high-level 
programming language, it should bridge the abstraction gap 
automatically. In the following section a solution is presented 
that meets these needs. 

The ATP Programming Language 
Often specific problems need basic processors like AutoTest 
or AutoCheck to perform some operation such as pushing 
keys, simulating patient signals, simulating powerfail condi 
tions, and so on. A straightforward solution might extend 
the command interfaces of AutoTest and AutoCheck to sup 
port data and functional abstraction, provide control flow 
elements like conditions and loops, and allow further proba 
bilistic data generation. This would probably eliminate the 
difficulties mentioned above. However, redundant effort 
would have to be spent implementing an abstract command 
interface again and again. 

Our solution is ATP (Automated Test Procedure), a high-level 
programming language that offers the abstraction facilities 
and makes it possible to integrate basic processors smoothly. 
ATP allows the integration of many different basic proces 
sors, so the coordination of the basic processors is much 
easier than with separate control. 

The following is a typical ATP routine representing the auto 
matic test procedure for the heart rate alarm test: 

Structural Testing, Random Testing, 
and Statistical Structural Testing 

Random testing is one of the more common test strategies. It does not 
assume or knowledge of the system under test, its specifications, or 
its internal design. This technique is insufficient for validating complex, 
safety-critical or mission-critical software. 

The structural testing approach systematically derives the test proce 
dures from the external and internal specifications. Therefore, the term 
test design best describes the mental activity behind this method. The 
structural testing approach divides the input data space into subdomains. 
The criteria for this partitioning are given by the external specification of 
the system. Each subdomain is an equivalence class which is tested by 
choosing some representatives. But what if the subdomain is heteroge 
neous, has unknown side effects, or includes errors if executed in a par 
ticular order? (A heterogeneous subdomain includes both good and bad 
data whereas Good means that the system works as specified, whereas 
bad data leads to system failure. For example, in the heart rate alarm 
test described in the accompanying article, the high alarm limit domain 
may contain data points that, when applied to the patient monitor, pro 
duce no high limit alarm. Other data points may behave as expected). 
Unfortunately, the subdomains are seldom homogenous or disjoint. 

Waeselynck & ThÃ©venot-Fosse1 showed that a statistical component has 
to be included to provide a sufficient test data set for a subdomain. This 
approach is known as statistical structural testing. Our experience has 
shown that this strategy leads to the best results. 

Reference 
1 .  H .  w i t h  a n d  P .  T h Ã © v e n o t - F o s s e ,  " A n  E x p e r i m e n t a t i o n  w i t h  S t a t i s t i c a l  
T e s t i n g , "  P r o c e e d i n g s  o f  t h e  2 n d  E u r o p e a n  I n t e r n a t i o n a l  C o n f e r e n c e  o n  S o f t w a r e  
T e s t i n g  A n a l y s i s  &  H e v i e w ,  1 9 9 4 .  

DEFINE AlarmTest ( IN PatientSize CHECK IN { 

"ADULT", "PEDIATRIC", "NEONATE" 

}, 

IN Category CHECK IN {"OR", "ICU"} 

DESCRIPTION 

PURPOSE : 

This routine demonstrates some of the 

ATP features. It is an automatic test 

procedure testing the HR alarm 

capabilities . 

SIGNATURE : 

AlarmTest ( <PatientSize>, <Category> ) 

END DESCRIPTION 

LOCAL HRValue,/ selected HR Value 

AL, / HR low alarm limit 

AH, / HR high alarm limit 

walk / repetition counter 

*/ 

*/ 

*/ 

*/ 

Initialize the Repository 

LINK Repository <- "$PatientMonitorRepository" 

Repository : Init (PatientSize, Category) 

/ Declare the use of a function 

repository and initialize the 

repository link. This gives 

context-specific access to all 

June 1997 Hewlcll-l'ackanI Journal 97 
© Copr. 1949-1998 Hewlett-Packard Co.



available functions for the 

given PatientSize and Category. 

SIGNATURE : 

RandomAlarmTest ( <repetitions> ) 

END DESCRIPTION 

/    T e s t  C a s e  1    

Action(s): Configure HR Alarm Limits to 50/90. 

Apply Signal HR 45. 

Expected: Low limit alarm with text 

"**HR 45<50". 

LOCAL AL, 

AH, 

walk, 

HRValue 

/ low alarm limit 

/ high alarm limit 

Initialize the Repository 

HR:SetAlarmLimits (50, 90) 

HR:SimulateValue (45) 

HR:CheckAlarm (10, " HR 45 < 50") 

/ Check for limit alarm after 

delay of 10 s. 

/    T e s t  C a s e  2    

Action(s): Apply Signal HR 49 

Expected: Low limit alarm remains with text 

"**HR 49<50" (alarm string is 

updated without delay) . 
  * /  

HR:SimulateValue (49) 

HR : CheckAlarm (0, " HR 49 < 50") 

LINK Repository <- "$PatientMonitorRepository" 

Repository :Init (CHOOSE ( {"ADULT", "PEDIATRIC" , 

"NEONATE") ) , 

CHOOSE ({"OR", "ICU"}) 

) 

Declare the use of a function 

repository and initialize the 

repository link. Choose 

patient size and category 

randomly. This gives context- 

specific access to all avail 

able functions for the given 

PatientSize and Category. */ 

/    T e s t  C a s e  3    

Action) s) : Apply Signal HR 50. 

Expected: Low alarm limit disappears. 

  * /  

HR:SimulateValue (50) 

HR:CheckNoAlarm (5) 

/ No HR alarm present after 5s. */ 

/ * - -  -  T e s t  C a s e  4    

Action(s): Select 5 different HR values 

between 50 and 80 and apply them. 

Expected: No HR Alarm for each of the 

selected values. 

walk <- 1 

/ Randomly choose some HR values 

in the range 50/80, i.e., no 

alarm condition exists and 

therefore no HR alarm must 

be visible and audible. */ 

WHILE walk <= 5 DO 

HRValue <- RANDOM (50, 80, 1) 

HR:SimulateValue (HRValue) 

HR:CheckNoAlarm (0) 

walk <- walk + 1 

ENDWHILE 

/    * /  
/ Randomly select valid HR 

alarm limits, then randomly 

select an HR value and check 

if the monitor reacts as 

e x p e c t e d .  * /  

walk <- 1 

WHILE walk <= repetitions DO 

HR:RandomSelectAlarmLimits (AL, AH) 

/ randomly select valid alarm 

l i m i t s  * /  

HR:SetAlarmLimits (AL, AH) 

HRValue <- RANDOM (20, 180, 1) 

/ select HR values between 20 

and 180 with step width 1. */ 

HR:SimulateValue (HRValue) 

IF HRValue < AL THEN 

HR:CheckAlarm (10, " HR " + HRValue + "<" 

+ AL) 

E L S I F  H R V a l u e  >  A H  T H E N  

HR:CheckAlarm (10, " HR " + HRValue + ">" 

+ AH) 

ELSE 

HR:CheckNoAlarm (5) 

ENDIF 

walk <- walk + 1 

ENDWHILE 

END RandomAlarmTest 

END AlarmTest 

An automatic test procedure for a random heart rate alarm 
test in ATP might look like the following: 

D E F I N E  R a n d o m A l a r m T e s t  (  I N  r e p e t i t i o n s  )  

DESCRIPTION 

PURPOSE :  

R a n d o m  H R  A l a r m  T e s t  

Even without familiarity with the syntax and semantics of 
the ATP language, it can be recognized that the abstraction 
level is higher than with plain code for the basic processors 
(in our case, AutoTest and AutoCheck). It is also worth 
noting that the automatic test procedures are not restricted 
to a specific patient monitor. They describe in a general and 
abstract way a heart rate alarm test for any patient monitor 
with a limit alarm concept. The differences between specific 

98 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



patient monitors are in the basic processor interfaces and in 
the primitive functions. 

The ATP Concept 
ATP consists of two major functional elements (see Fig. 3): 
a set of tools to maintain a function repository and an ATP 
language interpreter. 

The tools give the user adequate access to the function re 
pository, which contains well-documented, well-tested ATP 
functions that can be reused. This effectively reduces redun 
dancy and increases producthity (see the next section, 
"Working with the Function Repository"). The tools can be 
grouped into: 

1 File-oriented tools. Check functions into and out of the 
function repository, compare two versions of a function, 
etc. 
Repository query functions. Obtain information about avail 
able functions, about an interface of a function, etc. 
Repository administration functions. Administer and main 
tain the structure of the repository. Allow archival and re 
trieval of the repository. These functions are only accessible 
by the repository administrator. 

With these tools and a text editor, a programmer writes ATP 
functions by reusing existing functions from the repository. 
When the function repository is well-structured and offers 
reliable functions on an adequate abstraction level, it is easy 
even for an inexperienced programmer to write functions, 
as shown in the example above. 

Interpreter 

The core of the system is the ATP language interpreter. The 
interpreter requires an input file and an output file. The 

input file is an ATP function. In contrast to other common 
high-level languages. ATP requires one file per function. One 
advantage of this approach is that each ATP function is exe 
cutable. There is no explicit syntactical distinction between 
a main routine and a subroutine. Any function can be the exe 
cution starting point and can call any other function. There 
is no explicit function hierarchy. The hierarchical structure 
is provided independently by the repository structure. 

Another advantage is that, because each file contains only 
one function, it is much easier to administer the functions in 
the function repository. To fulfill structural requirements the 
functions can be grouped by any criteria. The heart rate 
example above uses functions that all belong to the logical 
functional group HR. 

The interpreter output data can be written into an output 
file. A powerful feature of the language is its ability to intÃ© 
grate/orÃÂ»Â»/ processors. A format processor is a problem- 
domain-specific process (a basic processor) that can be 
integrated into the interpretation process, hi the patient 
monitor testing example, AutoTest and AutoCheck are for 
mat processors. The ATP language offers syntactical ele 
ments to establish a communications channel to a format 
processor so that within the ATP code the user can send 
any information to the processor. The format processor can 
send back information to the ATP interpreter, which then 
can be sent to another format processor or logged to the 
output file. The creation of this ATP adapter interface is an 
easy task, thanks to an API that enables a programmer to 
implement this communication interface with ATP. If an 
integrated format processor is general-purpose, it can be 
offered to all ATP programmers. A good example is KSH, a 
format processor that enables ATP programmers to inte 
grate Korn shell commands within ATP code. The format 
processor concept and the abstraction facilities of the ATP 
language offer the programmer the means to model the 
problem domain in an adequate and flexible way. 

Working with the Function Repository 
The following short tour illustrates some of the tools that 
are available to handle function repositories. Suppose that a 
programmer wants to know which functions in the repository 
are available for dealing with heart rate operations. Typing: 

Liblndex 

Group : "HR" 

will, for example, produce the output: 

CheckAlarm 

CheckNoAla rm 

SimulateValue 

SetAlarmLimits 

RandomSelectAlarmLimits 

To get information about the interface of the SetAlarmumits 
function, the programmer can type: 

TellMe 

Group: "HR" 

Functions: "SetAlarmLimits" 

and will get: 

Fig. 3. ATP concept overview. 

' L997 Hewlett-Packard Journal 99 
© Copr. 1949-1998 Hewlett-Packard Co.



HR : SetAlarmLimits 

* purpose: configure the Heart Rate lower and 

* upper alarm limits. 
* 

* signature: SetAlarmLimits (<lower alarm limit>, 

*  < h i g h e r  a l a r m  l i m i t > )  

The heart rate test example above uses this and other func 
tions. At the beginning of the function a LINK statement 
declares an access path to a given function repository. Then 
the function repository is initialized. This initialization func 
tion introduces all available functional groups given a spe 
cific system context. At that point the programmer is able 
to call the functions, for example HR:SetAlarmLÂ¡mÂ¡ts, without 
knowing implementation details or physical locations. It is 
possible to check out a function for enhancement or mainte 
nance purposes. It is also possible to check a function into 
the repository so that all test engineers can use the new 
function. 

Format Processors 
Fig. 4 presents the possibilities and the flexibility of format 
processors. Each format processor consists of two parts: a 
basic processor and an ATP adapter. The basic processor is 
a proprietary part, that is, any executable code written by a 
programmer. Typically the basic processors are on a low 
abstraction level. The ATP adapter is the interface to ATP 
that allows data to be sent to ATP and received from it. This 
functionality is encapsulated and offered as an API. 

A format processor can be used within ATP in the following 
way: 

F O R M A T  M y F o r m a t P r o c e s s o r  < -  " $ M Y _ F P _ E X E C U T A B L E "  

/  D e c l a r e  t h e  u s e  o f  a  f o r m a t  p r o c e s s o r .  * /  

B E G I N  [  M y F o r m a t P r o c e s s o r  ]  

E N D  [  M y F o r m a t P r o c e s s o r  ]  

/  u s e  t h e  f o r m a t  p r o c e s s o r ,  

i n g  i n f o r m a t i o n .  * /  

s e n d i n g  a n d  r e c e i v -  

First, a specific syntactical construct introduced with the 
keyword FORMAT is used to declare the use of a format pro 
cessor. It is then the task of ATP to control and to communi 
cate with the format processor. All information enclosed in 
the syntactical bracket BEGIN [MyFormatProcessor] and END 
[MyFormatProcessor] represents a code template for the named 
format processor. ATP generates the actual code block from 
this code template by substituting the actual parameter val 
ues for the code template parameters. Then this code block 
is sent to the format processor for immediate execution. The 
format processor receives the code by calling API functions 
provided by the ATP adapter. The proprietary part of the 
format processor processes the received information. The 
format processor can send back information to ATP. ATP 
receives this information and logs it to the output file or 
redirects it to another format processor. 

Remote Format Processor. If a programmer needs to integrate 
a format processor on another machine, for example on a 

PC running WindowsÂ® NT, this can be specified in the FOR 
MAT declaration. No additional effort is required for the 
programmer to establish a remote format processor. The 
adaptation for remote control is done by ATP automatically 
by adding a distribution adapter. 

Concatenated Format Processor. Another feature of the ATP 
language is the ability to concatenate existing format 
processors. 

FORMAT X <-   

FORMAT Y < -   

FORMAT Z <- X I Y 

/ Concatenate format processors X and Y to Z. 

This is similar to UNIX pipes. */ 

BEGIN [ Z ] 

END [ Z ] 

The code block between BEGIN [Z] and END [Z] is first sent to 
format processor X. The output of format processor X is 
sent to format processor Y. For format processor Y it makes 
no difference where the information comes from, that is, the 
concatenation is mediated by ATP automatically. Format 
processor Y sends its output back to ATP. 

ATP in the Patient Monitor Test Environment 
The concept behind ATP eased its integration into the pa 
tient monitor test environment. The impetus to develop this 
concept came from our experience with the test environ 
ment, as described at the beginning of this article. But the 
concept is more general. It is not resticted to the patient 
monitor test environment. ATP can be used to attack many 
different problems. 

Basic 
Processor 

Fig. 4. Format processor functional blocks. 

100 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Level of 
Detail 

Automatic Test Environment 

Abstraction 
Level 

Manual  Task 
Automatic Task 

Fig. 5. Current ATP integration 
in the patient monitor test envi 
ronment (phase I). 

The integration of such a tool into an existing environment 
is a challenging task. ATP, like every tool, requires some 
effort to build up the necessary infrastructure, to support 
the tool, and to learn the new language. A step-by-step, three- 
phase integration of ATP in the test process was planned. 

Phase I. Develop a patient-monitor-relevant repository struc 
ture that is easy to use and maintain. In parallel, implement 
a set of primitive functions to fill the repository. Then test 
the structure on new patient monitor functionality. In this 
phase ATP does not specify any format processor execut 
able, that is, AutoTest and AutoCheck are not integrated as 
format processors. ATP writes the code block immediately to 
the output file. The generated code is then processed in a 
postprocessing step. 

Phase II. Enhance AutoTest and AutoCheck with ATP adapt 
ers so that they can be integrated as format processors. 
Then the same functions used in phase I can be executed 
immediately without the postprocessing steps needed in 
phase I. The test tools are invoked by ATP. 

Phase III. Complete the function repository and migrate, step 
by step, the existing test package to ATP functions. Then the 
testing package can be used again for new patient monitor 
products simply by replacing the format processors by new 
ones and by substituting some primitive functions. 

Currently the phase I integration is completed (see Fig. 5). 
A repository structure has been proposed and evaluated in 
some projects. In these projects test engineers use ATP to 
automate the tests. ATP generates AutoTest and AutoCheck 
code, which is then passed to AutoTest and AutoCheck for 
execution. For phase II integration, only the declaration of 
the AutoTest and AutoCheck format processors will change. 

They will then specify integratable AutoTest and AutoCheck 
format processors. This phase is currently in progress. 
Phase III has been started. 

ATP Integration in Phase I: An Example 
The following ATP function illustrates how ATP generates 
AutoCheck code. This function is the CheckAlarm function 
called in the heart rate alarm test used in the example 
presented earlier. 

DEFINE CheckAlarm ( IN AlarmDelay TYPE IN 
{ " R E A L " ) ,  

IN AlarmString TYPE IN 

("STRING") 

DESCRIPTION 

PURPOSE : 

Check if alarm is present after a specified 

delay. 

SIGNATURE :  

C h e c k A l a r m  (  < A l a r m D e l a y > ,  < A l a r m S t r i n g >  )  

END DESCRIPTION 

F O R M A T  A u t o T e s t  < -  "  "  
F O R M A T  A u t o C h e c k  < -  "  "  

/  A t  t h e  m o m e n t  A u t o T e s t  a n d  A u t o C h e c k  
a r e  n o t  r e a l l y  f o r m a t  p r o c e s s o r s .  T h e  
d e c l a r a t i o n  o f  A u t o T e s t  a n d  A u t o C h e c k  
d o e s  n o t  s p e c i f y  a n y  f o r m a t  p r o c e s s o r  
e x e c u t a b l e .  I n  t h i s  c a s e  A T P  w r i t e s  
t h e  c o d e  b l o c k  i m m e d i a t l y  t o  t h e  
o u t p u t  c h a n n e l ,  i . e .  A T P  g e n e r a t e s  
A u t o T e s t / A u t o C h e c k  c o d e .  * /  

June 1 997 Hewlett-Packard Journal 101 

© Copr. 1949-1998 Hewlett-Packard Co.



LOCAL sound 

IF Â«***Â« __ AlarmString [1, 3] THEN 

/  I s  i t  a  r e d  a l a r m ?  * /  

sound <- "red" 

ELSE 

/  N O  = = >  y e l l o w  a l a r m  * /  

sound <- "c_yellow" 

END I F 

/ Very critical alarms are announced as 

red alarms whereas less critical 

alarms are announced as yellow alarms. 

Parallel to the visible colored alarm 

string a corresponding sound is 

audible, i.e. for red alarms a red 

alarm sound is audible and for yellow 

alarms a c_yellow alarm sound is 

a u d i b l e .  * /  

BEGIN [ AutoCheck ] 

" Verify begin 

Alarm 0(1, AlarmString) within 

(@(1, AlarmDelay) ,NaN) ; 

sound is 0(1, sound) ; 

A Verify end 

END [ AutoCheck ] 

/ AutoCheck code generation. 

The code template includes ATP 

variables, which will be evaluated 

a t  r u n  t  i m e  .  *  /  

END CheckAlarm 

Discussion 
Although the current ATP integration is only the first phase, 
ATP has proved to be a powerful tool for attacking and solv 
ing complex testing problems that otherwise would not have 
been solved in the same time frame. Like every new tool, at 
the beginning some effort is required to learn the language. 
Also, the test engineers have to implement a set of primitive 
functions to build a powerful function repository. Neverthe 
less, our experience has shown that productivity increased 
significantly and that ATP helped to ensure the predictability 
of product releases. 

After a few days of use the test engineers felt comfortable 
enough to develop their first automatic tests with ATP and 
were able to use the function repository. 

Tests are much more sophisticated and effective than before. 
The same tests written directly in Autotest/AutoCheck code 
would have probably required three times more development 
time without reaching the same degree of reliability, flexibil 
ity, and maintainability. The test engineers using ATP used 
the increased productivity to think about better test designs. 

Failures have been found earlier because of higher test cover 
age, especially from the use of random test data generation. 
These failures would not have been detected in the valida 
tion phase with the existing static test. The risk of missing a 
failure is therefore reduced by ATP. 

The redundancy of the tests is much lower. Test engineers 
are now able to adapt their test procedures rapidly to 
changed system behavior. In most cases they just have to 
update some constants. 

The higher abstraction level of the test procedures enables 
the test engineer to use the same test procedures to test 
new patient monitor products. The adaptation requires the 
substitution of some low-level primitive functions and the 
format processors. 

Implementation 
The ATP interpreter is implemented in C on a workstation 
running the HP-UX operating system. Most of the repository 
tools have been written in the ATP language itself. This illus 
trates that ATP is not only a language for formulating test 
procedures. 

The architecture follows the classical compiler architecture. 
The front end with lexical analysis, syntactical analysis, and 
semantic analysis is similar to other compilers for high-level 
formal languages. The back end consists of the code genera 
tion module and the communication module, which manages 
the format processor communication and other functions. 

Conclusion 
The new ATP language bridges the gap between high-level 
test design and low-level automatic test procedures. The 
integration of ATP into the test environment has increased 
productivity and reduced redundancy. More important, the 
quality of the testing process has increased with the use of 
this of high-level programming language. Migration of 
the test procedure set to new products is now much easier 
because most of the code can be reused. 

Reference 
1. D. Goring, "An Automated test Environment for a Medical Patient 
Monitoring System," Hewlett-Packard Journal, Vol. 42, no. 4, 
October 1991, pp. 49-52. 

Windows is a U.S. registered trademark of Microsoft Corporation. 

HP-UX 9." and 10 * for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93 
branded products. 

UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively 
through X/Open Company Limited. 

X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited 
in the UK and other countries. 

102 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



An Automated Test Evaluation Tool 
The AutoCheck program fully automates the evaluation of test protocol 
files for medical patient monitors. The AutoCheck output documents that 
the evaluation has been carried out and presents the results of the 
evaluation. 

by JÃ²rg Schwering 

The AutoCheck program extends the automated test environ 
ment the in this journal in 1991. 1 It fully automates the 
evaluation of the test protocol files generated by the AutoTest 
program. 

Fig. 1 is a brief summary of the 1991 system. The main part 
of the figure shows the main elements of the AutoTest pro 
gram and its environment. The AutoTest program reads and 
interprets commands line-by-line out of a test script (a test 
procedure). Basically there are three types of commands: 

' Commands to simulate user input on the monitor under test 
(keyp usher) 

â€¢ Commands to control the signal simulators, which play the 
role of a critically ill patient 

â€¢ Commands to request and log output data from the monitor 
under test (reactions to keypresses and signals applied). 

The execution of all commands and the data received from 
the monitor are logged into a protocol file. Fig. 2 is an exam 
ple of a test protocol file (one test case only). 

Testware  

External 
Reference 

Specif icat ions 

Automated Verif icat ion 
and Evaluation 

Test 
Design 

Specif icat ions 

Test 
Procedures 

AutoCheck 

Patient Simulators Generate 
P h y s i o l o g i c a l  S i g n a l s  C 0 2  

Monitor Output 
â€¢ Waves 
â€¢ Numerics 
â€¢ Alarms 
â€¢ Inops (Technical Alerts) 
â€¢ Patient Admin 
â€¢ Monitor Status 
â€¢ Task Window Content 

NBP, Resp. C.O 
Sv02, FiO; 

Fig. 1. AutoCheck, test environment for medical patient monitoring systems. AutoCheck, the automatic verification and evaluation tool 
shown in the upper right corner, is a recent addition. 

June 1997 Hewlett-Packard Journal 103 

© Copr. 1949-1998 Hewlett-Packard Co.



:35 // 

:35 // Tetit Udue 6) 

HR alarm limits to 50-80 

param 

0 8 : 5 7  

0 8 : 5 8  

0 8 : 5 9  

0 8 : 5 9  

0 9 : 0 0  

0 9 : 0 0  

0 9 : 0 0  

0 9 : 0 0  

0 9 : 0 0  

0 9 : 0 0  

0 9 : 0 0  

0 9 : 0 0  

9 Merlin f3 -n48 

33 Merlin f6 -n48 

28 Merlin f 4 - 

36 MerTrrnâ€” f5̂ Ã̂ 

15 // Set HR to 120 

NSB120 

15 // delay 

~ 

35 / / ? ? ? ??Z? ?????? Â£ J ?????????????????????????????????????????????????? 

35^T^fÃ©rify that: 

3Ã‡ // HR = 120; 

35 // alarm "HR 120 > 80" ; 

Tuned 

09:00: 

09:00: 

09:00: 

ADAT1 : 

@ 

09:00: 

09:00: 

09:00: 

ADAT1: 

@ 

09:00 

09:00 

09:00 

AD ATI 

09:00 

: PR -NU, ECG-CH1 -WS, 

36; A " HR 120 > 80 

-16/ 

3 7  H P  1 2 0  

E x t r e m e  B r a d y :  " 0 0  

O R  

:38] (WlT~Ã¯l 16/ 

: 3 8  H F  1 2 0  

: "Extreme Brady: "00 

:38 A " HR 120 > 80 

:39 (Wl) II 16/ 

: 3 9 V H F  1 2 0  

33 ECG-CH1 -WS p=   ovY- 40 

27_52___1492___my_ â€” p^---u--^-EC5^CHl 

/ 8 0  3 0  / 2 5 0  p =    o v Y -  / m i n  H R  

33 ECG-CH1 -WS p=   ovY- 40 4 

2 7 5 2  1 4 9 2  m V  p =    o    E C G - C H 1  

5 0  / 8 0  3 0  / 2 5 0  p =    o v Y -  / m i n  H R  

20 

O R  3 3  E C G - C H 1  - W S  p =    o v Y -  4 0  4  

2 7 5 2  1 4 9 2  m V  p =    o    E C G - C H 1  

5 0  / 8 0  3 0  / 2 5 0  p =    o v Y -  / m i n  H R ,  

"Extreme Brady: 

40 EOT 

O  O  2 0  

0 9 : 0 0 : 4 0  / /  

Comment 

Time Stamp 

Keypusher commands to 
set alarm limits to 50-80 

Simulator command to set 
heartrate to 120 

Addit ional  AutoTest 
command (wai t )  

Expected output (for 
human evaluator) 

Command to gather data 

Numeric value (heart  rate)  

Alarm string 

Data blocks read 

Besides the alarm string and 
the HR numeric,  much related 
data such as units or the 
alarm l imits is received.  Most 
of these attributes should also 
be checked. 

Fig. 2. An example of a test protocol file for one test case. 

The upper left block in Fig. 1 indicates how the test scripts 
are derived from the product specifications. More informa 
tion on the testing process can be found in the article on 
page 89. A test script consists of a startup configuration 
block, which configures the monitor to a defined startup 
condition, and the test cases. Each test case consists of 
three parts: 

â€¢ The actions (keypusher and simulator commands) 
â€¢ The description of the expected results 
â€¢ The AutoTest data request commands. 

The upper right corner in Fig. 1 shows the automatic evalua 
tion tool, which is the subject of this article. 

Manual Evaluation 
In the test environment of Fig. 1, the test engineer had a tool 
that ran sequences of test scripts in batch mode, completely 
unattended, overnight or on weekends. With the introduction 
of AutoTest, the main effort for the test engineer shifted from 
test execution to test evaluation, which was done with the 
help of an editor. The protocol files generated by AutoTest 

(see Fig. 2) are ASCII text files that are very often larger 
than one megabyte (some large tests have reached a size of 
more than 100 megabytes). 

The evaluation task was not only tedious and time-consuming 
but also error-prone and dependent on the knowledge, expe 
rience, and even the mental alertness of the evaluator. As a 
consequence, the manual checks were restricted to a mini 
mum for each test case, which typically meant that unex 
pected attributes were not detected. Furthermore, for tests 
that needed to be repeated, the evaluation was normally 
restricted to a few (one to three) selected repetitions. 
Statistical tests, such as adjusting an alarm limit randomly 
and checking the alarm string, generate particularly large 
protocol files that are difficult to evaluate manually, leading 
the test engineer to reduce the number of test cases to a 
minimum. 

104 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Automated Test without AutoCheck 
I "  

Test Script 

Verify 
Statement 

Error Messages Evaluation Check 

Fig. 3. The use model for Auto- 
f'heck replaces manual evaluation 
with the automatic evaluation tool. 

Goals for an Automatic Test Evaluation Tool 
Because of these problems, an investigation was started on 
a tool that could replace the human evaluator. The goals for 
this automatic evaluation tool were: 

â€¢ To relieve the test engineer of tedious, time-consuming 
manual evaluation and thereby increase efficiency 

â€¢ To avoid overlooking discrepancies 
â€¢ To get the test results faster by quicker evaluation 
â€¢ To increase test coverage through side-effect checks 
â€¢ To make evaluation more objective (not tester dependent ) 
â€¢ To allow conditional checks (flexibility) 
â€¢ To automate local language regression tests (see article, 

page 109). 

Use Model 
The basic use model (see Fig. 3) is the replacement of manual 
evaluation with the automatic evaluation tool. The evaluation 
of the protocol file runs after the test has finished. The test 
files already contain the expected results coded in a formal 
language readable by AutoCheck. 

Test execution and evaluation now consists of the following 
steps: 

1. Write the AutoTest test script including the expected 
results in AutoCheck format. The basic test script layout as 
described above stays the same. The only differences are 
that some AutoCheck definitions such as tolerances (see 
"AutoCheck Features and Syntax" below) are added to 
the startup block and that the description of the expected 
results has to follow the AutoCheck format. 

2. Run this test script through the AutoCheck syntax check 
to avoid useless AutoTest runs. 

3. Execute the test script with AutoTest as usual. The ex 
pected results (AutoCheck statements) are treated by Auto- 
Test as comments, which means that they are only copied 
into the protocol file together with a time stamp. 

4. Run the protocol file through the AutoCheck evaluation 
check, which includes a syntax check. AutoCheck generates 
a diff file reporting the deviations from the expected results 

(errors) and warnings for everything that couldn't be evalu 
ated or is suspicious in some other way (for details see 
"AutoCheck Output" below). 

5. If and only if AutoCheck reports errors or warnings, 
check the protocol file to find out whether the deviation is 
caused by a flaw in the test script or a bug in the patient 
monitor under test. 

Architecture 
We first conducted a feasibility study, which investigated 
different architectural approaches and implementation tools. 
The first approach was in the area of artificial intelligence, 
namely expert systems and language recognition (this would 
be expected for an investigation started in 1991). It soon 
became apparent that protocol file evaluation is basically 
a compiler problem. The languages and tools investigated 
were Prolog/Lisp, sed/UNIXÂ® shell, lex/yacc, C, and a C-style 
macro language for a programmable editor. We came to the 
conclusion that a combination of lex/yacc and C' would lead 
to the easiest and most flexible solution. 

Fig. 4 shows the AutoCheck architecture. The protocol file 
is first run through a preprocessor, which removes all lines 
irrelevant to AutoCheck, identifies the different AutoTest 
interfaces, and performs the local language translations. 
Thereafter it is analyzed by a combination of a scanner and 
a parser. We implemented specialized scanner/parsers for 
the AutoCheck metalanguage and the data provided by the 
different patient monitor interfaces. The AutoC'heck state 
ments and the AutoTest data are written into separate data 
structures. A third data structure holds some control param 
eters such as the accepted tolerances (see "AutoCheck 
Features and Syntax" below). After each data package, 
which is the answer to one AutoTest data request command, 
the compare function is started. The compare function 
writes all deviations into the error file. 

Basically, AutoTest and AutoCheck recognize two types of 
data requests: shii/lc tunes, which respond with exactly one 
data set for each requested message, and continuous tunes, 

which gather data over a defined time interval. 

.lime ÃœlÃrnicwlrlt-I'ackanl. Journal 105 

© Copr. 1949-1998 Hewlett-Packard Co.



Fig. 4. AutoCheck architecture. 

In the monitor family under test all important data has an 
update frequency of 1024 ms. AutoTest groups all data mes 
sages received within a 1024-ms frame into one data block 
and AutoCheck treats each data block of a continuous tune 
like a data package of a single tune. 

All AutoCheck statements are then verified against each 
data block. The AutoCheck statements remain valid and 
are applied to the next data block until they are explicitly 
cleared or overwritten by a new AutoCheck block. 

AutoCheck Features and Syntax 
The AutoCheck features and syntax are best described using 
the example shown in Fig. 5. The numbers below corre 
spond to the numbers in the left column of Fig. 5. 

1. All AutoCheck statements are preceded by a caret (A) and 
are treated as comments by AutoTest. As mentioned above 
under "Architecture," AutoCheck statements are grouped 
into blocks. Each block is enclosed by the two statements 
Verify Begin and Verify End. 

2. There is a set of AutoCheck statements that enables the 
user to verify all data that can be read by AutoTest (numerics, 
alerts, sound, wave data, task window texts, etc.). An exam 
ple of a numerical value is temperature, including all of its 
accompanying attributes such as units (Â°C) and alarm limits. 
In this example the value of the temperature numeric is 
expected to be 37.0Â°C. 

3. Verify statements can be combined with: 
â€¢ A negation, for example to check the absence of an alarm 
â€¢ Timing conditions, for example to verify that an alarm delay 

is within its specified range. 

In this example it is expected that in the time interval from 
5 seconds to infinity (NaN) there is no alarm for blood pres 
sure. This is a typical test case in which there was an alarm 
and the simulated measurement has been reset between the 
alarm limits, the object being to check that the alarm disap 
pears within a defined time. 

4. For all numerical values (measurements), including those 
in the alarm string, a tolerance can be defined to compen 
sate for simulator tolerances. The tolerances are defined 
outside the Verify block in an additional block. Although the 
user can change the tolerances as often as desired, they are 
typically defined once at the beginning of a test procedure 
and then used for the whole test procedure. In this example, 
all values in the range from 1% below 37.0Â°C to 1% above 
37.0Â°C (36.7 to 37.3Â°C) would be accepted as correct for the 
Tempi parameter. 

5. There are special combinations, such as a numeric value 
and an alarm string. For instance, in the monitor family 
under test an alarm message typically indicates that the 
alarm limit has been exceeded. The alarm limit is also in 
cluded in a numeric message along with its attributes. The 
command alarm "HR" > al_max allows the tester to compare the 
alarm limit in the alarm message with the alarm limit in the 
numeric message (as opposed to checking both messages 
against a fixed limit). This feature is mainly useful for statis 
tical tests. 

6. Simple control structures (if, and, or) can be used to define 
different expected results for conditions that are either not 
controllable by the test environment or are deliberately not 
explicitly set to expand the test coverage. In the monitor 
family under test some settings are dependent on the config 
uration (e.g., patient size). The simple control structures 
allow configuration-dependent evaluation 

7. As a condition in an if statement, either flags, which have 
to be defined earlier in the test procedure, or an ordinary 
AutoCheck statement can be used. 

( 4 )  A  T o l e r a n c e  D e f i n i t i o n  
( 4 )  A  " T e m p i "  :  1 % ;  
( 4 )  A  E n d  T o l e r a n c e  D e f i n i t i o n  

( 1 )  A  V e r i f y  B e g i n  
( 2 ) ( 4 )  A  " T e m p l " - > v a l u e  =  3 7 . 0 ;  
( 2 )  A  " T e m p l " - > u n i t  =  C ;  
(3) A not alarm for "Pressl" 

(3) A within (5,NaN); 

(5) A alarm "HR" > al_max; 

(6)(7) A if Neonate 

(6) A then 

(6) A "HR"-> al_min = 30; 

(6) A endif; 

(6)(7) A if value of "Pat. Size" is "Adult" 

( 6 )  A  t h e n  

(6) A "HR"-> al_jnin = 15; 

(6) A endif; 

(8) A write "Check user input"; 

(1) A Verify End) 

Fig. 5. An example of expected results written in the AutoCheck 
language. The numbers at the left refer to the paragraphs in the 
article that describe these statements. 

106 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



File cut nÂ» OK** 

AutoCheck: 2.82, Jan 3 1996, 17:61:89 
Error: 34, 42 > "HR"->Value isn't correct 
E r r o r :  3 4 ,  4 5  >  " H R " -  -  c o r r e c t  
Error: 36, 48 > Alarm "HR" doesn't exist in interval (S.NaN', 
Error: 35, 51 > "HR"->unit: "unit" <-> "bpÂ»" 
Warning: 34, 55 > numeric "HR" doesn't exist 
Warning: 35, 55 > numeric "HR" doesn't exist 
W a r n i n g :  3 6 ,  5 5  >  N o  A l a r m !  . . a b l e  f o r  " H R "  
E r r o r :  - V a l u e  i s n ' t  c o r r e c t  
Error: 36, 62 > incorrect alarm: measurement 

/ u s e r s /  j o e r g s / d o c / h p j o i  

0 8 : 3 7 : 5 9  -  T o l e r a *  D e f i n i t i o n  
" : 3 7 : 5 9  -  t f  :  1 \ :  

: 3 7 : 5 9  "  t e d  l o l e r a i c e  D e f i n Ã   

: 4 0  -  - Â « - - m i n e  â € ¢  1 2 0 :  
i Â » : i . : 4 0  -  - M - - ) Â « B i t  -  ' b o Â » - ;  
08:40:40 - *UrÂ» 'â€¢>â€¢ 120 > Â«l_i 
0 8 : 4 0 : 4 0  *  T e r i f f  l a d  
0 8 : 4 0 : 4 1  Â « e c i f  t i n  H K  E C C - t H l  

08:40:44 (VI) U 16/ 

0 8 : 4 0 : 4 4  K  1 0 7  

t 

08:40:45 (U) n 16/ 

0 8 : 4 0 : 4 5  W  1 1 7  

5 

08:40:46 (U) II IS/ 

0 8 : 4 0 : 4 6  n  1 1 3  

S 

06:40:47 A â€¢ â€¢â€¢ HR 120 > 80 

08:40:47 (Â¥1) U 16/ 

08:40:47 HR 120 

Ã 

08:40:40 A "" HR 120 > 99 

08:40:48 (W) II 16/ 

I 

08:40:49 A " HR 121 > 88 

08:40:49 (U) U 16/ 

0 8 : 4 0 : 4 9  m  1 2 3  

S 

08:40:50 A " " HR 123 > 80 

08:40:50 (Â«1) II 16/ 

88:40:50 HR 120 

8 

08:40:51 A â€¢ " HR 120 > 80 

08:48:51 (ML) U 16/ 

08:40:52 HR 120 

S 

88:40:52 A "" HR 120 > I 

88:40:52 (VI) U 16/ 

08:40:52 HR 120 

e 
08:40:53 A â€¢" HR 120 > 80 
08:40:53  (Â«1)  I I  16 /  
0 8 : 4 0 : 5 4  H R  1 2 0  

3 3  E C 8 - C H 1  - K  p =    o v Y -  '  
1 8 0 8  2 0 4 8  

1 / 8 0  _    ,    

3 3  E C e - a Q  - S S  p Â «    o v Y -  f  '  
1 8 0 8  2 8 4 8  Â « V  L  

3 3  E C 6 - C H 1  - V S  y    O V Y -  4 0  Ã   
1 8 0 8  2 0 4 8  

I  / 8 0  â € ž    ,  . . .  _ , _  

3 3  E O S - C H I  - * S  p -    O V Y -  4 B  4  
1 8 0 8  2 0 4 8  Â « v  

I  / m  3 0  / 2 5 0  p Â »    o v Y -  

33 EC6-GH1 -B5 p=   ovY- Ã 

1 8 0 8  2 0 4 8  Â » Ã ¯  p -    o    E C S -  

I  / M )  3 0  / 2 5 0  p -    o v Y -  b p r  

33 EC6-CH1 -VS p=   ovY- 40 4 

1 8 8 8  2 0 4 8  Â « T  p =    o    E C S -  

I  / 8 0  3 0  / 2 S O  p -    o v Y -  b p Â »  

33 ECD-ran -IS p-   OVY- 40 4 

1 8 0 8  2 0 4 8  Â » V  p -    o â € ”  E C S -  

I  / 8 0  3 0  / 2 5 0  f    o v Y -  b j Â »  

Fig. 6. An ('xami)lp of AutoCheck output. 

8. AutoCheck provides a command to write a comment into 
the output file. This can be used to instruct the user to check 
something manually (e.g., a user input string). 

AutoCheck Output 
Fig. 6 is an example of AutoCheck output. AutoCheck gener 
ates seven different output types: 

â€¢ Evaluation Error. The expected data and the received data 
don't match. 

â€¢ Evaluation Warning. AutoCheck couldn't determine whether 
the data is correct (e.g., data missing). 

â€¢ AutoTest Error. Errors reported by AutoTest are mirrored 
in the output file to make them visible to the test engineer, 
who only looks at the protocol file in case of reported 
errors. 

â€¢ Syntax Error. The interpretation of the AutoCheck syntax 
failed. 

â€¢ Syntax Warning. The AutoCheck syntax could be interpreted, 
but is suspected to be incomplete or wrong. 

â€¢ Data Error. The AutoTest data couldn't be interpreted cor 
rectly. This indicates either a corrupted protocol file or an 
incompatibility of AutoCheck and AutoTest versions. 

â€¢ Write. This is a user-defined output. It enables the user to 
mark data that should be checked manually, such as user 
input at a pause statement. 

The user can choose between four different warning levels 
for the syntax and evaluation warnings and can switch 
individual warnings on or off. 

The output generated by AutoCheck has the following format: 

E r r o r T y p e  :  s t a t e m e n t  l i n e ,  d a t a l i n e  >  
d e s c r i p t i v e _ t e x t  

Thus, both the line containing the AutoCheck statement and 
the line containing the data are indicated. 

If the output is written into a file, each line is preceded by 
the filename(statementline). This is the same format as used by 
many compilers, and therefore the built-in macros of many 
programming editors can be used in combination with Auto- 
Check. This means that errors can be reviewed in much the 
same way that a source file is debugged after compilation 
using an editor pointing to the source code errors. 

At the end of the evaluation, AutoCheck gives the test engi 
neer a quick overview of the result by providing a table 
showing how many output messages of each type have been 
generated. Whereas the evaluation errors indicate bugs 
either in the product or in the test script, the other output 
messages indicate potential problems in the test execution 
or evaluation process. 

The AutoCheck output documents both that the evaluation 
has been carried out and the result of the evaluation, which 
for medical products are important for regulatory approvals 
and audits. 

Juno KM)? Ilcwloll-I'arkurd Journal 107 

© Copr. 1949-1998 Hewlett-Packard Co.



Platforms 
AutoCheck and Autotest run on different platforms. Auto- 
Test runs on a DOSÂ®-based PC, which is very appropriate as 
a test controller because of the inexpensive hardware, an 
operating system that doesn't require dealing with tasking 
conflicts, and the availability of interface cards (the inter 
face to the medical network is available as a PC card only). 
AutoCheck runs on a UNIX-based workstation because of 
the availability of lex/yacc and the greater resources (memory 
and processing power). However, both tools work on the 
same file system (a UNIX-based LAN server). The user 
doesn't have to worry about the different file formats, 
because AutoCheck automatically takes care of the format 
conversions. It accepts both DOS and UNIX formats and 
generates the output according to the detected protocol file 
format. Having different machines for execution and evalua 
tion has also not proved to be a disadvantage for the test 
engineer. 

Expandability 
The basic architecture of AutoCheck has proven to be flex 
ible for enhancements over time. Since the first release of 
AutoCheck we have implemented many enhancements 
because of new product features and because AutoTest 
provides additional data structures. 

Validation 
The risk of the AutoCheck approach is that, if AutoCheck 
overlooks an error (false negative output), the tester won't 
find the error. An automatic evaluation tool is only useful if 
the tester can rely on it, since otherwise, even if no errors 
were reported, the tester would still have to look at the pro 
tocol file. Therefore, the validation of an automatic evalua- 
tion tool is crucial to the success of such a tool. For this 
reason a thorough test of the tool was designed and every 
new revision is regression tested. Changes and enhancements 
undergo a formal process similar to that used for customer 
products. 

Results 
The manual evaluation time for an overnight test of around 
one to two hours has been reduced by the use of AutoCheck 
to less than a minute. This means that the additional effort 
for the test engineer for writing the expected results in the 
AutoCheck syntax is compensated after three to five test 
runs. This depends on the experience of the test engineer 
with AutoCheck (the normal learning curve) and the nature 
of the test. 

A positive side effect is that it is much easier for another 
test engineer to evaluate the test. 

AutoCheck also leads to bigger tests with an increased num 
ber of checks for each test case, such as checks for side 
effects. Such an automatic evaluation tool is also a prerequi 
site for statistical testing. It would take too much time to 
evaluate all these test cases manually. In other words, Auto- 
Check leads to higher test coverage with lower effort for the 
test engineer. 

Once relieved of a great deal of the more mechanical test 
execution and evaluation activities, the test engineer has 
time to work on new and better test approaches or possibili 
ties for an increased automation level. Over time this has led 
to enhancements of both AutoTest and AutoCheck and to 
new tools like ATP (see article, page 95). 

Acknowledgments 
I wish to thank Pascal Lorang for the creation of the proto 
type and all students involved in the development of Auto- 
Check. 

Reference 
1. D. Goring, "An Automated test Environment for a Medical Patient 
Monitoring System," Hewlett-Packard Journal, Vol. 42, no. 4, 
October 1991, pp. 49-52. 

UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively 
through X/Open Company Limited. 
X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited 
in the UK and other countries. 
MS-DOS is a U.S. registered trademark of Microsoft Corporation. 

108 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Effective Testing of Localized 
Software 
Testing localized software is a complex and time-consuming task. With 
the help of the testing tools developed for HP patient monitors, local 
language validation for these products is fully automated. 

by Evangelos Nikolaropoulos, JÃ²rg Schwering, and Andreas Pirrung 

Localization plays a very important role in the successful 
marketing of software all over the world. For medical de 
vices there are legal requirements to provide instruments 
and accompanying documentation in the language of the 
healthcare personnel who use them (as is the case in the 
European Union). It is often forgotten that localized soft 
ware is different software from the original (most probably 
in English) that was used for system integration and final 
validation. Localized software undergoes a proper integra 
tion cycle (integration of software and translated strings) 
and must be validated separately. The complexity of this 
validation is obvious if one considers the efforts required 
to check all error conditions and the corresponding error 
messages (and to understand them) for software in every 
language where the product is marketed. 

The most common errors in localized software, assuming 
that the translation is done by a professional translator for 
this language and is correct, are: 
Missing strings (empty messages, parts of screen text 
missing, menu selection items missing) 
Strings with wrong attributes (maximum length exceeded â€” 
a possible crash cause) or strange characters filling up the 
remainder of a field 
Wrong strings (not reflecting the intentions of the author 
for this particular context) 

> Various misspellings or violations of grammar mies applied 
to the language produced through the combination of trans 
lated strings by the software 

â€¢ Strings not properly cleared in a text field before a new- 
string is displayed. 

Local language testing in our laboratory is composed of two 
steps: the verification of the translation and the validation 
(regression testing) of the localized software. 

To verify the translation, a translator goes over all possible 
screens, messages, help texts, printouts, and so on to check 
for translation errors. The difficulty here is that in most 
cases the translator is not a frequent user of the device 
under test, and needs assistance in operating the medical 
instrument and generating all possible string combinations. 

The aim of validation (regression testing) of the localized 
software is to prove that the localization has not negatively 
affected the functionality and performance of the instru 
ment. Additional attention must be paid to typical localiza 
tion errors (overflows or garbage generation). 

Automated Local Language Validation 
With the help of the testing tools developed for our patient 
monitors (see Fig. 1 and the accompanying articles in this 
issue), local language validation is a fully automated process: 

Softkey Table 
(Menu Select ions)  

Nat ive Language 
Support (Text Strings 

of All  Languages) 

Test Procedure 
(English plus 

Localized Softkeys) 

Text String Tables 
(English and Local) 

Fig 1. Local liiMfiiiiiMc validation 
process I'nr palicnl monitors. 

June 19ÃJ7 Hewlett-Packard Journal 109 

© Copr. 1949-1998 Hewlett-Packard Co.



( a )  E x t r a c t  o f  a  T e s t  P r o c e d u r e  f o r  B l o o d  P r e s s u r e  a s  i t  I s  U s e d  f o r  T e s t s  o f  E n g l i s h  S o f t w a r e  

* alarm suspended -> alarms not suspended 

merlin mainscrn 

mecif skey -kalarmvol 

merlin "SwitchOnAlarms" 

Verify begin 

INOP "NBP EQUIP MALF" 

Sound is hard inop ; 

V e r i f y  e n d  

Press a hardkey 
Make a selection from a menu 

Verify statement (AutoCheck) 

Verify begin 

twprompt is 

Verify end 

'Problems with the pneumatic are detected" Verify statement (AutoCheck) 

( b )  T h e  F i n n i s h  a f t e r  T r a n s l a t i o n  o f  S o f t k e y s  ( M e n u  S e l e c t i o n s )  t o  F i n n i s h  

* alarm suspended -> alarms not suspended 

merlin mainscrn 

mecif skey -kalarmvol 

merlin "HÃ lytPÃ Ã lle" 

* = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = Ã¯==::5 = = 5= = = = = = = = = = = = = = 

A Verify begin 

A INOP "NBP EQUIP MALF" ; 

A Sound is hard inop ; 

A Verify end 

Press a hardkey (no translation) 
Make a selection from a menu 

(translated) 
Verify statement (AutoCheck) 

Verify begin 

twprompt is 

Verify end 

'Problems with the pneumatic are detected" Verify statement (AutoCheck) 

( c )  P r o t o c o l  F i l e  a f t e r  T e s t  R u n  w i t h  S o f t w a r e  i n  F i n n i s h  

23:35:14 * alarm suspended -> alarms not suspended 

23:35:14 merlin mainscrn 

23:35:17 mecif skey -kalarmvol 

23:35:21 merlin "HÃ lytPÃ Ã lle" 

23:36:11 

23:36:11 

23:36:11 

23:36:11 

23:36:11 

Verify begin 

INOP "NBP EQUIP MALF" ; 

Sound is hard inop ; 

Verify end 

23:36:11 * ========================================== 

Filter: NBP -NU, @ 

23:36:13 (hard inop sound ARec : CS) 

23:36:13 I "NBP LAITEVIRHE " O - 1 NBP -NU p=   O--H String translated 

23:36:23 

23:36:23 

23:36:23 

23:36:23 

23:36:23 

Tuned 

Verify begin 

twprompt is "Problems with the pneumatic are detected" ; 

Verify end 

====================================================== o 

TWPROMPT , 

23:36:26 F " NBP "8, 15 

23:36:26 P "NBP last calibration done 16 KES 94 15:32 " W 

23:36:29 P "Pneumatiikassa on havaittu ongelmia " W 3 T 

23:36:31 EOT 

3  T  
Combined string only partly 

translated 
String translated 

Fig 2. Example of the steps of the local language test process. 

110 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



1. Translation tables called local language tables are prepared 
from the native language support database containing all the 
English strings and their corresponding translations. 

2. A test package, a subset of the test procedures designed 
for the regression testing of the original English version, is 
compiled. 

3. A copy of each test procedure out of this package is trans 
lated into the local language by a tool developed by software 
quality engineering called skey. The intention here is to re 
place in the test procedures the selection menu items (soft- 
keys) with the corresponding localized terms. Of course, a 
test can be executed by passing the position of a selection 
item (e.g., "press the second selection on the third menu") 
to the test execution tool, but this approach has proved to 
be ineffective. The issue here is not to test that the "second 
selection of the third menu" works, because this was already 
tested in English, but to prove that the "second selection of 
the third menu" is translated correctly, and if selected, pro 
duces exactly the same behavior as its English counterpart. 
By calling the selections by their values and not by their 
positions we achieve higher test coverage and we test func 
tionality and translation at the same time. Another argument 
for this approach is that the "second selection on the third 
menu" may be configuration dependent (even local configu 
ration dependent) and therefore not accessible by a position 
dependent test (e.g., it is still on the third menu but in the 
sixth place). Thus, calls by value make test procedures more 
robust. 

4. The translated test procedure is passed to AutoTest1 and 
is run on the localized software. The results are saved in 
protocol files containing English verify statements (the 
expected results), localized softkeys (selections), and local 
ized actual results (see the example in Fig. 2). 

5. The protocol files are submitted to AutoCheck (see 
article, page 103). First, the AutoCheck preprocessor takes 
over the task of translating the verify statements. It uses the 
local language tables to replace the English text in the verify 
clauses with the localized text. On the second pass these 
translated expected results are compared with the localized 
actual results. Discrepancies are reported in the normal way 
but with localized content. 

A special solution is also provided for Asian languages 
(simplified and traditional Chinese and Japanese), which 
use 16-bit codes. For these languages the hexadecimal 
equivalent for each character is used in the test procedures 
instead of the "drawn" character. This enables us to keep 
such characters in ASCII files (like the test procedures and 
the protocol files) and use them with the test execution and 
evaluation tools. 

The automated local language validation has dramatically 
improved the process of localized software release. It has 
reduced the effort for local language testing for a new 
patient monitor release from twelve to four weeks and has 
significantly increased the test coverage compared with the 
traditional manual testing approach. 

Acknowledgments 
The authors wish to thank Gerhard Tivig for his support 
during the development of the local language test tools. 

Reference 
1. D. Goring, "An Automated test Environment for a Medical Patient 
Monitoring System," Hewlett-Packard Journal, Vol. 42, no. 4, October 
1991, pp. 49-52. 

.June 1ÃœÃI7 I Irwlrit Packard. Journal 111 
© Copr. 1949-1998 Hewlett-Packard Co.



Authors 
June 1997 

6  H P  D e s k J e t  8 2 0 C  P r i n t e r  

David J .Shel ley 

Dave Shelley is the R&D 
program manager for new 
printer products at HP's 
Vancouver Division and 
managed the development 
of the HP DeskJet 820C 
printer. Previously he worked 
as a quality engineering 
section manager, and earlier 

as the R&D section manager for the QuietJet family 
of printers. Dave received a BSEE degree from the 
University of Washington in 1973. After graduating 
he joined HP's San Diego Printer Division and did 
electrical engineering and design for several printers 
and plotters. He then transferred to HP's Corvallis 
site, worked on calculator peripherals, and was the 
R&D project manager for the HP ThinkJet printer. 
Born in Seattle, Washington, Dave is married and 
has three sons. He is a ham radio operator and works 
with the local county's emergency services. His other 
interests include outdoor activities such as cycling, 
racquetball, camping, and boating. 

James  Ma jewsk i  

An R&D project manager 
at HP's Vancouver Division, 
James Majewski was 
responsible for the analog 
ASICs and the electronic and 
mechanical product design 
for the HP DeskJet 820C 
printer. Previously he worked 
on the electronic product 

design for the DeskJet 850 printer. He received a BSEE 
degree in 1980 from the University of Illinois. After 
graduating he joined HP's Colorado Springs Division 
and worked on the HP 64000 family of emulators, 
providing customer support as a product marketing 
engineer. Later he did electronic hardware and firm 
ware design for various HP 68xxx emulators. He 
earned an MBA degree from the University of Colo 
rado at Colorado Springs in 1988. Born in Chicago, 
Illinois, James is married and has two children. He 
enjoys spending his free time playing sports, espe 
cially golf, and supporting children's sports activities. 

Mark R. Thackray 

Mark Thackray is an R&D 
project manager at HP's 
Vancouver Division and is 
currently located in Barce- 
lona, Spain, where he is 
managing an R&D team 
designing a new DesignJet 
large format printer. For the 
last fifteen years he has 

worked as an engineer and ASIC designer developing 
several generations of printers leading up to the HP 
DeskJet 820C, including the HP DeskWriter 550, HP 
DeskJet 560, and HP DeskJet 640. He is named as 
an inventor in a patent involving automatic clock-rate 

switching for microprocessor controllers. Mark re 
ceived a BSEE degree in 1981 and an MSEE degree 
in 1987, both from Washington State University. 

John L. McWMIiams 

Author's biography appears elsewhere in this section. 

1 2  S o f t w a r e  D r i v e r  D e s i g n  

David M. Hall  

A software engineer at HP's 
Vancouver Division since 
1993, David Hall worked on 
the software driver for the 
HP DeskJet 820C printer. 
Born in Chico, California, he 
earned a BSEE degree in 
1991 from California State 
University at Chico. He is 

professionally interested in object-oriented design. 
Before joining HP, he held a summer student position 
at the Chevron Oil Field Research Center. David is 
married and enjoys restoring MGs. 

Lee W. Jackson 

A software engineer at HP's 
Vancouver Printer Operation, 
Lee Jackson is responsible 
for the development of firm 
ware for the next-generation 
inkjet printer. He contributed 
to the design of the printer 
driver for the HP DeskJet 
820C. He received a BS 

degree in computer science from the University of 
Washington in 1986. After graduating he joined HP's 
Logic Systems Division and has held a variety of soft 
ware and firmware positions working on embedded 
development tools and inkjet printers. Lee is married 
and has one child. His hobbies include juggling and 
hiking. 

Katrina Heiles 

Katrina Heiles is a software 
engineer at HP's Vancouver 
Division. She worked on the 
swath manager for the HP 
DeskJet 820C printer, focus 
ing on the PPA data format 
ting and servant architecture. 
Previously she worked in 
computer integrated manu 

facturing on the automation of inventory storage and 
delivery for the DeskJet manufacturing process. She 
is professionally interested in object-oriented design 
and is a member of the HP e-mail mentor program. 
She received a BS degree in the political economy of 
natural resources in 1 987 at the University of Califor 
nia, Berkeley. She then received a secondary math 
teaching certificate in 1989 and a BS degree in com 
puter science in 1 993, both from Portland State Uni 
versity. Before joining HP she worked at United Tele 
phone doing inventory accounting and econometric 
forecasting. Born in Princeton, New Jersey, she is 
married and enjoys outdoor sports such as windsurf 
ing, skiing, running, and soccer. 

Karen E. Van der Veer 

Karen Van der Veer has been 
an R&D software engineer 
at HP's Vancouver Printer 
Division since 1992. Initially 
she implemented the I/O 
architecture for the first 
DeskJet printer with bidirec 
tional communication. She 
went on to become the soft 

ware designer for the PPA status and I/O stack for 
the DeskJet 820C and designed the new PPA I/O data 
link protocol. She worked as the technical product 
team lead for the HP DeskJet 690 printer. She is 
currently working on daisy chain and I/O industry 
standards and is named as an inventor in a pending 
patent for the Vlink I/O protocol. Karen earned a 
BS degree in computer science from the California 
Polytechnic State University in 1992 and is currently 
working on an MS degree in computer science at the 
California State University at Chico. 

Thomas J. Halpenny 

A software development 
engineer at HP's Vancouver 
Printer Division, Tom Hal- 
penny worked on the PCL 
emulator and DOS redirector 
for the HP DeskJet 820C 

I printer driver and is currently 
I doing firmware development 

^ ^ ^  '  f o r  t h e  n e x t - g e n e r a t i o n  i n k -  
jet printer. Since joining HP in 1973 he has developed 
software and firmware for numerous inkjet printers 
and plotters. He is professionally interested in video 
engineering and is named as an inventor in two pat 
ents, one involving the sorting and reordering of vec 
tors plotted in a vector pen plotter and the other con 
cerning the monitoring and controlling of the quality 
of pen markings on plotting media. He earned a BS 
degree in engineering from Harvey Mudd College in 
1973 and an MSEE degree from Stanford University 
in 1 975. Tom is married and has two daughters. His 
hobbies include taking care of more than twenty acres 
of forest and meadowland on his property. 

2 2  P P A  P r i n t e r  F i r m w a r e  

Erik Kilk 

A development engineer at 
HP's Vancouver Division, Erik 
Kilk worked on the I/O and 
general architecture for the 
HP DeskJet 820C printer and 
is the firmware technical 
lead for the next-generation 
printer. Since joining HP in 
1986 he has worked as a 

firmware engineer on the HP 70000 Series spectrum 
analyzers and on several earlier DeskJet models. 
He is a member of the American Association for the 
Advancement of Science and is named as an inventor 
in three patents involving I/O protocols and user 
interface improvement on instrumentation. Erik 
received a BS degree in physics from the University 
of California at Berkeley in 1984 and an MS degree in 
computer science from the California State University 
at Chico in 1990. Born in Baltimore, Maryland, Erik 
enjoys dancing (including swing, country, and ball 
room), skiing, and traveling. 

112 June 1997 Hewlett-Packard Journal 
© Copr. 1949-1998 Hewlett-Packard Co.



31 Cont ro l le r  ASIC Des ign 

John L. McWilliams 
John McWilliams has been 
an engineer at HP's Van 
couver Division since 1993 
and recently worked on the 
ASIC design for the HP 

Ã*  DeskJet 820C printer. He is 
^~~~ m&3 a memDer Â°f tne 'EEE and 

&ÃI nas authored a paper on 
"*â€¢'â€¢ integrated circuit design 

for low-cost, high-volume consumer products. He 
received a BSEE degree in 1991 from Lafayette Col 
lege and an MSEE degree in 1993 from the University 
of California at Berkeley. Born in Grove City, Penn 
sylvania, he enjoys sports such as kayaking, wind 
surfing, snowboarding, and backpacking. 

Leann M. MacMillan 
Leann MacMlllian Â¡s a hard 
ware design engineer at 
HP's Vancouver Division and 
worked on 1C design for the 
HP DeskJet 820C printer and 
previously for the HP Laser 
Jet 4 and 4V printers. She 
earned a BSEE degree in 
1989 from the University of 

Idaho and an MS degree in electrical and computer 
engineering in 1992 from Carnegie Mellon University. 
She joined HP in 1989. Leann was born in Scotts Bluff, 
Nebraska, is married, and has one infant daughter. In 
her free time, she enjoys skiing, fitness, and spending 
time with her family. 

Bimal Pathak 
Bimal Pathak has been a 
hardware design engineer 
at HP's Vancouver Division 
since 1992. He worked on 
ASIC development for the 
HP DeskJet 540 printer and 

I  ^  ^  I  I  r e c e n t l y  o n  t h e  H P  D e s k J e t  
4 ^ " -  |  8 2 0 C ,  w h e r e  h e  w a s  r e s p o n -  

* sible for the I/O DMA, DRAM 
controller, and I/O circuits. He started his career at 
Texas Instruments in 1 984, working on custom 1C 
designs for fast SRAM memories and for high-speed, 
floating-point digital signal processors and coproces 
sors. Bimal earned a BSEE degree in 1 984 from 
Cornell University and an MSEE in 1987 from Rice 
University. In 1992 he received a Master of Manage 
ment of Technology from Portland State University. 

HarÃan A. Talley 

HarÃan Talley Â¡s an engineer/ 
scientist at HP's Vancouver 
Division and was the ASIC 
development lead for the 
HP DeskJet 820C printer. 
Previously he worked as the 
electrical engineering lead 
on the HP DeskJet 850 
printer. HarÃan received an 

MSEE degree in 1 970 and an MSCS degree in 1 989. 
In his free time, HarÃan enjoys traveling, photography, 
and environmental advocacy. 

38 Pr in thead Dr ive Elect ron ics  

Huston W. Rice 
An R&D engineer at HP's 
Vancouver Division, Hugh 
Rice worked on the analog 
system design, carriage 

*^_ board design, and head drive 
^ â € ¢ B ^ ^ l  A S I C  d e s i g n  f o r  t h e  H P  

I  j  B ^ B  D e s k J e t  8 2 0 C  p r i n t e r .  H e  i s  
I professionally interested in 

analog and digital system 
design for printers and in teaching the fundamentals 
of electronics and printer operation to new employees. 
He Â¡s named as an inventor in three pending patents 
on switching power supply design and pen control 
circuits. He received a BSEE degree in 1984 from 
Rensselaer Polytechnic Institute and an MSEE degree 
in 1992 from Stanford University. Since joining HP's 
Santa Clara Division (SCO) in 1984, his projects have 
included acting as the production engineering manager 
for the frequency counter product line at SCO and 
working as an R&D engineer on digital communica 
tion ICs at HP's Communications Components Division. 
Born in Cupertino, California, Hugh is married and has 
four sons. He is active in his church and in his free 
time enjoys shotgun trap shooting, soccer, ultimate 
frisbee, and automotive repair and maintenance. 

43 PA 7300LC Microprocessor  

Terry W. Blanchard 
An R&D section manager 
at HP's Systems Technology 
Division, Terry Blanchard 
manages the team responsi 
ble for providing CAD tool 
solutions for HP CPU designs, 
including PA-RISC and the HP 
and Intel joint architecture. 
Recently he was responsible 

for the PA 7300LC core microarchltecture design, 
architectural verification and behavioral modeling of 
the CPU core, and FET level simulation to analyze 
electrical properties. Earlier In the project, he also 
managed the memory and I/O controller verification 
and the cache datapath physical design. He is profes 
sionally interested in computer architecture, functional 
verification, CAD tools, and external partnerships and 
Â¡s a member of the IEEE. He earned a BS ECEN degree 
In 1989 from Brigham Young University. He joined HP 
that same year and some of his favorite projects 
since then Include working on the PCXS CPU and 
memory controller for the Series 700 workstations, 
the PA 7100LC CPU, and briefly on the PA 8000 CPU 
before moving to the PA 7300LC. He coauthored an 
article on the design methodologies used in the 
PA 7100LC. Terry Â¡s married and has four daughters. 
He enjoys spending time with his family. He Â¡s also 
Interested in music (vocal, piano, and compositionl, 
landscaping, woodworking, hiking, and fishing. 
His civic activities include being an assistant scout 
master, an HP e-mail mentor, a science fair judge for 
a local school district, and an active member of his 
church. 

Paul G.Tobin 
An R&D project manager 
at the Engineering Systems 
Laboratory at HP's Systems 
Technology Division, Paul 
Tobin is currently managing 
CAD software development 
for high-performance micro 
processor design. He re 
cently worked on the HP PA 

7300LC microprocessor contributing to the floating 
point control design, debug enhancements architec 
ture and implementation, and functional verifications. 
Previously he worked as a design engineer on the HP 
PA7100LC microprocessor, doing functional verifica 
tion of the CPU core and memory and I/O controller. 
He Â¡s named as an inventor in five pending patents 
on debug hardware for the PA 7300LC and has coau 
thored an article explaining how the PA 7300LC pro 
cessor integrates cache while considering cost and 
performance factors. He is professionally interested 
in high-speed simulation, formal verification, and 
CAD frameworks and Â¡s a member of the IEEE. He 
received a BSEE degree in 1987 from the University 
of Notre Dame and an MSEE degree in 1 988 from 
the University of Illinois. Before joining HP In 1988, 
he worked at the David Sarnoff Research Center in 
Princeton, New Jersey, doing software prototyping of 
wide area network designs. Paul is married and has 
two children. He enjoys photography, snow skiing, 
water skiing, and playing with his kids. He also plays 
trumpet In a local concert band. 

48  Func t i ona l  Des ign  

Leith Johnson 
Leith Johnson Â¡s a member 
of the technical staff at HP's 
Systems Technology Division 
and is currently working on 
the next-generation mid- and 
high-end core electronics 
complexes. He recently 
worked on the memory and 
second-level cache controller 

design for the PA 7300LC CPU. Since joining HP in 
1978, his memorable contributions Include working 
on the bit-slice processor for the HP 9845 desktop 
computer, the processor board design for the HP 3000 
Model 825 and HP 9000 Model 925 computer systems, 
the memory controller design for the original HP 9000 
Series 700, and the memory and I/O controller design 
for the PA 7100LC. He Â¡s professionally interested in 
computer system design with an emphasis on memory 
controllers and Â¡s named as an inventor in five patents 
related to high-speed computer bus design and in 
two patents pending for his work on the PA 7300LC. 
Born In Seattle, Washington, Leith was awarded a 
BSEE degree In 1978 from the University of Nevada 
at Reno and an MSCS In 1988 from Colorado State 
University. In his free time, he enjoys outdoor sports 
such as back country skiing and bicycling and also 
likes to play pinball. 

June 1997 Hewlett-Packard Journal 113 

© Copr. 1949-1998 Hewlett-Packard Co.



Stephen R. Undy 

An engineer/scientist in the 
engineering systems labora 
tory at HP's Systems Tech 
nology Division, Steve Undy 
recently worked as the 
microarchitect on the data 
cachefortheHPPA7300LC 
processor and is currently 
responsible for the instruc 

tion cache on a future microprocessor He is profes 
sionally interested in computer architecture, caches, 
and microprocessor verification and coauthored sev 
eral articles on these subjects for the HP Journal, 
CompCon conferences, and the IEEE, of which he is 
a member. Steve received a BSE degree in electrical 
engineering and a BSE degree in computer engineer 
ing, both from the University of Michigan in 1 983. He 
then earned an MSEE degree in 1985 from Purdue 
University. He joined HP's Information Hardware 
Operation that same year and his two favorite projects 
since then include designing the instruction and data 
cache for the PA 7100LC and working on the HP 9000 
Series 700 computer, designing the CPU cache control 
and verifying the custom memory and I/O controller 
chip. Steve was born in Detroit, Michigan and is 
married. He enjoys outdoor activities such as sailing, 
scuba diving, cycling, astronomy, and woodworking. 
He also enjoys theater and reading. 

6 1  P r o c e s s o r  D e s i g n  

David C. Kubicek 

^ ^ j j ^ ^  I  D a v i d  K u b i c e k  h a s  b e e n  
f j p  W L Â ·  a  m e m b e r  o f  t h e  t e c h n i c a l  

staff in the engineering sys 
tems laboratory at HP's Sys 
tems Technology Division 
since 1994. He recently 
worked as a designer on the 
HP PA 7300LC processor, 
where he was responsible 

for the composition of the instruction cache controller 
and the system-to-tester correlation for the processor. 
Professionally interested in high-speed circuits and 
design-for-test, David received a BSEE degree with an 
emphasis in VLSI circuits from Iowa State University 
in 1994. He was born in Waterloo, Iowa, is married, 
and has a one-year-old daughter. He enjoys being a 
father and participating in outdoor sports such as 
mountain biking and skiing. He also plays music and 
before attending college he played guitar and sang in 
a heavy metal band. 

Thomas J. Sullivan 

A member of the technical 
staff at HP's Systems Tech 
nology Division since 1994, 
Tom Sullivan recently 
worked on the control physi 
cal design, library develop 
ment, and synthesis support 
fortheHPPA7300LC. He is 
currently part of the floating 

point design team for future microprocessor products. 
He is professionally interested in VLSI and DSP appli 
cations and is a member of the IEEE. Tom received a 
BSEE and BSCS in 1983, an MSEE degree in 1984, 
and a D.Sc. degree in electrical engineering in 1993, 

all from Washington University in St. Louis. As a 
research associate at Washington University, he 
worked on custom VLSI development for DSP applica 
tions, researched SIMD and MIMD processor arrays, 
and taught several classes. He also worked as a VLSI 
designer at McDonnel-Douglas before coming to HP. 
He is named as an inventor in three patents related 
to custom VLSI used in digital hearing aid design. 
He coauthored several papers on VLSI as applied to 
hearing aids and on massively parallel SIMD archi 
tectures. Tom is married and has a son. His hobbies 
include softball, black and white photography, wood 
working, and following baseball. 

Amitabh Mehra 

Amitabh Mehra has been 
a member of the technical 
staff in the engineering sys 
tems laboratory at HP's Sys 
tems Technology Division 
since 1994. He has worked 
on the global composition 
for the PA 7300LC micropro 
cessor and is currently doing 

this kind of work for the PA 8500 microprocessor. 
Amitabh received a BSEE degree in 1 993 from the 
California Institute of Technology and an MSEE 
degree in 1 994 from Stanford University. Born in 
Green Bay, Wisconsin, one of his interests can be 
summed up in two words, "Go Packers." 

John G. McBride 

A member of the technical 
staff in the engineering sys 
tems laboratory at HP's Sys 
tems Technology Division, 
John McBride is currently 
writing netlist quality tools 
for custom VLSI designs. 
Recently he worked on the 
physical design of the in 

struction cache for the HP PA 7300LC and is named 
as an inventor in four pending patents about his 
work. Other memorable projects since joining HP in 
1988, include being a printed circuit board designer, 
product engineer, and test engineer for the HP 
C2204A disk drive, and later, a test engineer on the 
LaserJet 4ML and an ASIC designer on the LaserJet 
5P. He has authored an article analyzing BAID perfor 
mance and is named as an inventor in a patent on 
disk array implementation. Born in Vernal, Utah, he 
received a BSEE degree in 1987 from Brigham Young 
University and an MSEE degree in 1991 from Stanford 
University. While in school he had summer intern 
ships with IBM, the U.S. National Forest Service, and 
the Dakin5 Corporation. John is married and has one 
son, two daughters, and will soon have a newborn. 
His hobbies include home improvements, white 
water rafting, and tinkering with cars. He is also 
active in the Boy Scouts of America and is president 
of the Sunday school program at his local church. 

6 9  F u n c t i o n a l  V e r i f i c a t i o n  

Duncan Weir  

Duncan Weir has been an 
engineer at HP's Systems 
Technology Division since 
1 986, after graduating with 
a BSEE degree from Wash 
ington University in St. Louis. 
Since joining HP he has 
done design verification 
work on a variety of HP pro 

cessors and other chips, including the HP PA 7100, PA 
71 OOLC, and PA 7300LC processors. He coauthored 
an article on the design methodology used for the PA 
71 OOLC. He is named as an coinventor in a patent for 
the hardware TLB handler for the PA 7100 and in a 
pending patent for his recent work on the PA 7300LC 
random code generation, an area of professional 
interest to him. Duncan was born at Clark Air Base 
in the Philippines. He is married and likes to run and 
enjoys taking his dogs out. He also enjoys playing 
indoor soccer. 

Paul G.Tobin 

Author's biography appears elsewhere in this section. 

7 3  D - C l a s s  W o r k s t a t i o n  

Lin A. Nease 

Lin Nease is a project man 
ager for the system design 
team at HP's Enterprise Sys 
tems Division and recently 
was a system architect on 
the D-class server. He earned 
a BS degree in computer 
science from Arizona State 
University in 1986. While 

in school he did database development for the Uni 
versity's career center and for SCS/Compute, Inc., a 
tax processing service. After graduating he joined the 
information technology group at HP's Entry Systems 
Operation. Memorable projects include doing firm 
ware design and performance characterization for the 
HP 9000 G-, H-, and l-class servers, early system defi 
nition for the HP 9000 K-class server, and firmware 
design for the HP 9000 8x2-class servers. In 1994 Lin 
received an MBA from California State University at 
Sacramento. Born in Hendersonville, North Carolina, 
Lin served as a Sergeant in the US Air Force for four 
years. He is married and has three children. 

114 June 1997 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



KÃrk M. Bresmker 

A hardware design engineer 
at HP's Enterprise Systems 
Division, Kirk Bresniker re 
cently worked on the electri 
cal engineering design, par 
titioning of hardware, and 
processor module design for 
the HP 9000 Series 800 D- 
class server. He is currently 

working on the design of the enhanced HP PA 8000 
D-class processor upgrade. He is professionally inter 
ested in high-speed digital design and design tool 
environments. He authored an article in the HP Jour 
nal in June 1994 on PA-RISC symmetric multiprocess 
ing in midrange servers. He joined HP's Systems 
Technology Division Â¡n 1989 after receiving a BSEE 
degree from Santa Clara University. Some of his 
responsibilities have included doing the processor 
board design for the HP 9000 and HP 3000 G-, H-, and 
l-class servers and working on the initial electrical 
engineering design for the HP 9000 D-class processor 
and I/O hardware. Born Â¡n Hayward, California, Kirk is 
married and is a new father. In his free time, Kirk en 
joys cooking, savoring micro- and home-brewed beer, 
and collecting and reading classic literature. 

Charles J. Zacky 

A software development 
engineer at HP's General 
Systems Division, Charles 
Zacky was the team leader 
for the development of the 
server firmware for the HP 
9000 D-class server and is 
currently responsible for 
follow-on products. He 

joined HP in 1988 at the Boblingen Medical Products 
Division, where he worked on ultrasound obstetrical 
scanners. In 1990, he transferred to HP's General Sys 
tems Division and since then has been doing firmware 
development for the HP 9000 Series 800 products. 
Charles received a Master of Music degree in music 
composition in 1983 and an MS degree in computer 
science in 1987, specializing Â¡n software engineering 
methodology, both from the University of Montana. 
He worked as an instructor at the University of 
Montana Â¡n the music department teaching electronic 
music and in the computer science department he 
developed a noninvasive, continuous-wave blood 
pressure monitor. In his free time, Charles pursues his 
interest Â¡n primitive living skills and has taken several 
trips, including one to the Utah desert, where he sup 
plemented his diet with grasshoppers and another to 
Northern Alberta, where he slept Â¡n a snow cave Â¡n 
40-degree temperatures. 

Michael J. Greenside 
Mike Greenside is a me 
chanical engineer Â¡n the 
product design group at HP's 
Enterprise Systems Division 
and was the lead engineer 
for the HP 9000 D-class 
server. He is currently re- 

^.â€¢V- sponsible for future high-end 
â€¢ server product definition and 

design. He received a BS degree Â¡n mechanical engi 
neering and material science in 1981 from the Uni 
versity of California at Davis. He has been at HP for 

fifteen years and some of his favorite projects include 
designing the peripheral bay for the HP 9000 K-class 
server, codesigning the mechanical assembly for the 
HP Windows Client PC, and designing the I/O expan 
sion enclosure for the HP 9000 T500. He is profession 
ally interested in design for manufacturability. Bom in 
Spokane, Washington, Mike is married and has two 
sons. Golf and volleyball are his favorite sports. 

Alisa Sandoval 

Alisa Sandoval is a mechani 
cal engineer in the product 
design group at HP's Enter- 

  p r i s e  S y s t e m s  D i v i s i o n .  S h e  
Ã‰l recently worked as a ther- 

I mal lead engineer on the 
*JM| product definition for the 

dl I HP 9000 D-class server and 
^^ is responsible for future 

high-end server definition and design. She is profes 
sionally interested Â¡n plastics design, thermal design 
and heat transfer, and project management. In her 
thirteen years in design and manufacturing at HP, two 
of her favorite projects include codesigning and stan 
dardizing HP's EIA rack family and codesigning the 
mechanical assembly for the HP Windows Client PC. 
She received a BS degree in mechanical engineering 
from the University of Reno at Nevada Â¡n 1982. After 
graduating she worked at Becton Dickinson for a year 
in R&D and plastics design. Alisa was born Â¡n Walnut 
Creek, California and has three children. She is actively 
involved Â¡n the visiting scientist school program and 
in Little League baseball. Her hobbies include motor 
cycles, camping, baseball, and swimming. She also 
enjoys arts and crafts. 

8 2  B - C l a s s  W o r k s t a t i o n s  

Scon P. Allan 

Scott Allan recently worked 
as a systems architect on 
the B-class workstations at 
HP's Workstation Systems 
Division. He also defined a 
clocking strategy and de 
signed an ASIC to control 
the processor dependent 
hardware interface. He is 

currently responsible for the memory control architec 
ture for the next-generation workstations. Scott re 
ceived a BSEE degree, specializing Â¡n computer sci 
ence, from the University of Colorado Â¡n 1982. The 
next year he joined HP's Desktop Computer Division 
and spent three years working Â¡n manufacturing on 
HP 9000 Series 200 desktop computer products. He 
has spent the last eleven years doing primarily ASIC 
design and system architecture on HP's workstation 
products, including designing all, or portions of, six 
ASICs ranging Â¡n functionality from the memory con 
troller and ECC chip for the HP 9000 Series 300 and 
400 families of workstations, to a bus bridge for VME 
embedded workstations and a serial port megacell 
used Â¡n more than ten ASICs at HP. Scott is currently 
working on an MSEE degree from Stanford University 
and hopes to graduate in June 1998. Scott is married 
and has two stepdaughters. He has spent his life 
along the Colorado front range enjoying outdoor acti 
vities such as skiing, road and mountain biking, and 
triathlons. He also scuba dives anywhere it's warm. 

Bruce P.  Bergmann 

A member of the technical 
staff at HP's Workstation 
Systems Division. Bruce 

plane and the fast-wide 
SCSI option boards for the 
3-class workstation. He is 
now the system architect 

and system board designer for a two-way SMP (sym 
metrical multiprocessorl workstation. He earned a 
BSEE degree in 1975 from the Case Institute of Tech 
nology and an MS degree in electrical engineering 
and applied physics Â¡n 1976 from Case Western 
Reserve University. After graduating he joined HP's 
Calculator Products Division. He worked as an electri 
cal design engineer for many of the HP 9000 Series 
300, 400, and 700 workstations. His favorite projects 
include, designing a graphics controller chip for the 
HP 9000 Models 310 and 320 workstations, designing 
a DMA control chip for the Models 330, 350, and 
follow-ons, and designing the CPU board for the 
Model 382. Bruce is married and has two children. 
He has been a certified aerobics instructor for seven 
years and enjoys walleye fishing as a master angler, 
fine woodworking, and downhill skiing. 

Ronald P. Dean 

Ron Dean is a development 
engineer at HP's Workstation 
Systems Division and 
recently worked on the 
mechanical definition and 

â€¢ design of the B-class work- 
"3^^ s ta t ion 's  enc losure,  main 

tray, and power supply. He 
is named as an inventor Â¡n 

three pending patents on the heatsink design, card 
guide, and alignment mechanism. He is currently 
working on upgrades to the B Series and J Series 
workstations. He earned a BSME degree in 1977 and 
then joined HP's Calculator Products Division. He 
worked on the HP 9000 Series 300 doing mechanical 
product design, including the case parts and cooling 
subsystems, and published an article about his work 
in the HP Journal. He then went on to work on the HP 
9000 Series 500 workstations and was responsible 
for the overall interconnection strategy, case parts, 
cable, and boards. He also contributed to the HP 9000 
Series 700 industrial computers, developing case parts, 
boards, interconnect, card cages, and backplanes. 
Born in Dearborn, Michigan, Ron is married and has 
four children. He is a licensed engineer and in his 
free time enjoys cross-country skiing, woodworking, 
and bridge. 

June 1997 Hewlett-Packard Journal 115 
© Copr. 1949-1998 Hewlett-Packard Co.



Dianne Jiang 

An R&D engineer at HP's 
Workstation Systems Divi 
sion, Dianne Jiang worked 
on the processor and system 
verification for the HP 9000 
B-class workstation. Born in 
Jilin, China, Dianne received 
a BS degree in 1984 and an 
MS degree in 1987, both in 

solid state physics from Nankai University in China. 
She went on to earn a MSEE degree in 1 995 from 
Texas A&M University, where she worked as a re 
search assistant in the electrical engineering depart 
ment on a semiconductor laser signal processing sys 
tem and in the physics department doing research on 
electronic transport of high-temperature supercon 
ducting materials. She joined HP in 1 995 and one of 
her favorite projects since then includes designing an 
ASIC turn-on board for the HP B-class workstation. 
Dianne is married and has a son. In her free time she 
enjoys reading, music, walking, and family activities. 

Dennis L Floyd 

A hardware design engineer 
at HP's Workstation Systems 
Division, Dennis Floyd was 
recently responsible for the 
design of the system board 
for the B-class workstation. 
He is currently responsible 
for verifying a memory and 
I/O controller ASIC design. 

Dennis joined HP in 1 988 after earning an MSEE 
degree from the University of Minnesota. He spent 
the first five years at HP's Computer Manufacturing 
Division, introducing workstations and industrial con 
trollers into the production process. He then spent 
two years working on the test and verification of 
VME-based embedded controllers. Born in Danville, 
Kentucky, he received a BSEE degree from the 
University of Kentucky in 1 986. Dennis is married and 
enjoys outdoor sports such as skiing, bicycling, and 
hiking. 

8 9  T e s t i n g  S a f e t y - C r i t i c a l  S o f t w a r e  

Evangelos Nikolaropoulos 

A software quality engineer 
at HP's Patient Monitoring 
Division, Evangelos Nikola 
ropoulos was the software 
quality lead for the latest 
patient monitor in the HP 

"â „¢ *  ^ ^^  Omn iCare  f am i l y .  He  i s  p ro -  
^ ^ i - s c ^ V ^ ^ f c  f e s s i o n a l l y  i n t e r e s t e d  i n  

'  qual i ty systems, ver i f icat ion 
and validation methods, and product generation pro 
cesses. Evangelos joined HP in 1986 and initially 
worked on the design and implementation of order 
processing systems, then began doing software qual 
ity engineering for medical products. He is now re 
sponsible for software quality assurance and pro 
vides guidance for product development. He earned a 
master's degree in economics from the University of 
Athens in 1 976 and a Diploma in computer science 
and operations research in 1981 from the University 
of Fribourg in Switzerland. After graduating he worked 
as a research assistant at the University doing statis 
tical modeling. He then worked on logistic systems 
for the Greek Army, and later designed databases for 
the National Hellenic Research Foundation in Athens, 
Greece. Evangelos was born in Athens. In his free 
time he likes to read and learn foreign languages. 

9 5  A T P  L a n g u a g e  

Andreas Pirrung 

Andreas Pirrung is an R&D 
engineer at HP's Patient 
Monitoring Division and is 
working on the design and 
implementation of the upper 
layer protocol software for 
LAN communication Â¡nan 
HP patient monitor. He is 
professionally interested in 

artificial intelligence, machine learning, and software 
engineering. Andreas was born in Neustadt/Wein 

strasse, Germany and received a Diploma in com 
puter science from the University of Karlsruhe. He 
joined HP in 1993 as a software quality engineer. In 
his free time, Andreas enjoys swimming, paragliding, 
and reading. 

1 0 3  A u t o C h e c k  P r o g r a m  

Jorg Schwering 

A software quality engineer 
at HP's Patient Monitoring 
Division since 1991, JÃ²rg 
Schwering develops and 
provides consultations on 
product generation guide 
lines. He is professionally 
interested in product gen 
eration processes and soft 

ware testing techniques. He joined HP in 1 988 and 
worked half-t ime while attending college unti l  he 
received a Diploma in computer science in 1991 from 
Berufsakademie in Stuttgart, Germany. Jorg was born 
in Steinfurt, Germany, is married, and has an infant 
son. 

1 0 9  T e s t i n g  L o c a l i z e d  S o f t w a r e  

Evangelos Nikolaropoulos 

Author's biography appears elsewhere in this section. 

Jorg Schwering 

Author's biography appears elsewhere in this section. 

Andreas Pirrung 

Author's biography appears elsewhere in this section. 

June 1997 Volume 48 Â«Numbers 

Techn ica l  In format ion  f rom the  Labora tor ies  o f  
H e w l e t t - P a c k a r d  C o m p a n y  

H e w l e t t - P a c k a r d  C o m p a n y ,  H e w l e t t - P a c k a r d  J o u r n a l  
3 0 0 0  H a n o v e r  S t r e e t ,  P a l o  A l t o ,  C A  9 4 3 0 4 - 1  1 8 5  U . S . A .  

H E W L E T T '  
P A C K A R D  

TO: KAREN R LEWIS 
CORPORATE OFFICES 
ENT: OQOO M/S: 2OBBA 

5965 -591  7E  

© Copr. 1949-1998 Hewlett-Packard Co.


	A Lower-Cost Inkjet Printer Based on a New Printing Performance Architecture
	PPA Printer Software Driver Design
	PPA Printer Firmware Design
	PPA Printer Controller ASIC Development
	Next Generation Inkjet Printhead Drive Electronics
	The PA 7300LC Microprocessor:  A Highly Intergrated System on a Chip
	Configurability of the PA 7300LC
	Functional Design of the HP PA 7300LC Processor
	Timing Flexibility
	High-Performance Processor Design Guided by System Costs
	Verifying the Correctness of the PA 7300LC Processor
	Random Code Generation
	An Entry-Level Server with Multiple Performance Points
	A Low-Cost Worksation with Enhanced Performance and I/O Capabilites
	Testing Safety-Critical Software
	Another Approach to Testing: Inspections
	A High-Level Programming Language for Testing Complex Safety-Critical Systems
	Structural Testing, Random Testing, and Statistical Structural Testing
	An Automated Test Evaluation Tool
	Effective Testing of Localized Software

