
TECHniCAl
j o u m n i

Volume 5 Issue 3 May 1987

P ublished by
INTERNATIONAL COMPUTERS LIMITED

at
OXFORD UNIVERSITY PRESS

iCL
TECHniCRljouRnfli

The ICL Technical Journal is published twice a year by
International Computers Limited at Oxford University
Press.

E d i to r
J. Howlett
ICL House, Putney, London SW15 ISW, UK

E d i t o r i a l B o a r d

J. Howlett (Editor) F.F. Land
H.M. Cropper (F International) (London School of Economics &
D.W. Davies, FRS Political Science)
G.E. Felton K.H. Macdonald
M.D. Godfrey M R. Miller
C.H.L. Goodman (British Telecom Research
(Standard Telephone Laboratories)
L a b o r a to r ie s a n d W a r w ic k J .M . P in k e r to n
University) E.C.P. Portman

All correspondence and papers to be considered for publication should be
addressed to the Editor.

The views expressed in the papers
necessarily represent ICL policy.

are those of the authors and do not

1987 subscription rates: annual subscription £32 UK, £40 rest of world, US
$72 N. America; single issues £17 UK, £22 rest of world, US $38 N. America.
Orders with remittances should be sent to the Journals Subscriptions
Department, Oxford University Press, Walton Street, Oxford 0X2 6DP,
UK.

This publication is copyright under the Berne Convention and the Interna
tional Copyright Convention. All rights reserved. Apart from any copying
under the UK Copyright Act 1956, part 1, section 7, whereby a single copy of
an article may be supplied, under certain conditions, for the purposes of
research or private study, by a library of a class prescribed by the UK Board
of Trade Regulations (Statutory Instruments 1957, No. 868), no part of this
publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means without the prior permission of the copyright
owners. Permission is, however, not required to copy abstracts of papers or
articles on condition that a full reference to the source is shown. Multiple
copying of the contents of the publication without permission is always
illegal.
© 1987 International Computers Limited

Printed by H Charlesworth & Co Ltd, Huddersfield ISSN 0142-1557

(CLTecHmcflijouRmi
Contents

V olum e 5 Issu e 3

The ICL Fifth Generation Programme

Guest Editorial
B.W. Oakley 357

Foreword
J.M. Watson 359

What is Fifth Generaton?-the scope of the ICL programme
B. J. Proctor and C.J. Skelton 360

APPLICATIONS

The Alvey DHSS Large Demonstrator Project
E.C.P. Portman 371

PARAMEDICL: a computer-aided medical diagnosis system for
parallel architectures
M.G. Cutcher and M.J. Rigg 376

S39XC-a configurer for Series 39 mainframe systems
C. W. Bartlett 385

The application of knowledge based systems to computer capacity
management
M. Small 404

APPLICATIONS ENVIRONMENT

On knowledge bases at ECRC
J.-M. Nicolas 421

Logic languages and relational databases: the design and implementa
tion of Educe
J. Bocca 425

ICL Technical Journal May 1987 I

The semantic aspects of MMI
J.M. Pratt 451

LANGUAGES

Language overview
E. Babb 471

PISA-a Persistent Information Space Architecture
M.P. Atkinson, R. Morrison and G. Pratten 477

Software development using functional programming languages
J. Darlington 492

Dactl: a computational model and compiler target language based on
graph reduction
J.R.W. Glauert, J.R. Kennaway and M.R. Sleep 509

PARALLEL DECLARATIVE SYSTEMS

Designing system software for parallel declarative systems
P. Broughton, C.M. Thomson, S.R. Leunig and S. Prior 541

Flagship computational models and machine architecture
I. Watson, J. Sargeant, P. Watson and V. Woods 555

Flagship hardware and implementation
P. Townsend 575

GRIP: A parallel graph reduction machine
S.L Peyton-Jones, C. Clack and J. Salkild 595

Notes on the authors 600

ii ICL Technical Journal May 1987

Guest Editorial

The Japanese announcement of their “Fifth Generation” co-operative project
in the autumn of 1981 was the trigger for a rush of other Fifth Generation
programmes to emerge in the USA and Europe. In the USA this has partly
taken the form of new co-operative ventures, such as the Microelectronics
and Computer Corporation (MCC) at the University of Texas, supported by
over 20 firms in the industry. This centre is far larger than the Japanese
ICOT research centre, established by MITI using staff seconded from the
eight large Japanese firms engaged in the programme. And the MCC is by no
means the only US Fifth Generation programme. Of course defence money is
helping to speed up the work in the USA, notably through the Defence
Advanced Research Project Agencies (DARPA) Strategic Computing Pro
gramme - not to be confused with Star Wars.

In Europe the UK’s Alvey Programme, and the EEC’s ESPRIT programme
are the most visible sign of work on the Fifth Generation. But, as in Japan
and the USA, all the main computer firms have work going on on aspects of
the Fifth Generation, almost by definition of the next generation of
computing. And it is often forgotten that the European Computer Industries
Joint Research Centre at Munich (ECRC) is a Fifth Generation research
centre somewhat larger than ICOT, even if far less visible. This centre is
funded by ICL, Bull, and Siemens, and houses a team of high quality. Some
of its work is featured in this volume.

If it was the Japanese announcement that triggered the Fifth Generation
programmes of the Western World, or at least gave publicity to them, it was
the recognition that the applications of Artificial Intelligence will lead to
large new markets that has led to their funding by firms and governments.
Expert Systems are going to become a feature of every considerable walk of
life. And the eventual solution of the difficult problems of general purpose
speech recognition and Natural Language understanding is going to unleash
a whole new range of applications of computers as it becomes easier to
“converse” with one’s system.

Since the days when Alan Turing was the unsung prophet on the use of
computers for symbolic and logical manipulation, not just for the solution of
mathematically based algorithms, the UK has had an honourable place in
the vanguard of the development of the techniques of Artificial Intelligence
computing that lies at the heart of the Fifth Generation. Edinburgh
University and other UK research centres have provided a steady stream of

ICL Technical Journal May 1987 357

workers in the field, and have pioneered many of the functional and logical
language techniques. ICL with its DAP was one of the first computer
manufacturers to pioneer the use of parallel computers, which will be
essential if the power required to handle all but the most simple of
Knowledge Based Systems is to be available. The significance of the DAP is
probably more widely recognised abroad, where it has been flattered by
being copied, and it probably remains the parallel machine for which the
most software has been written.

So it is nice to see the leading part that ICL has played in both the Alvey and
ESPRIT programmes. This volume brings together articles on a whole series
of projects in which the company is engaged. Seen together it makes a most
striking collection, both for its breadth and for its quality. The way in which
ICL have developed their close links with the excellent work of the British
Universities is clear from the list of authors. Is there any other firm in Europe
who could put together such a record of their work for the Fifth Generation?
It must give the Japanese food for thought!

Brian Oakley
Director, The Alvey Programme

358 ICL Technical Journal May 1987

Foreword

Every industry evolves by a process of steady development - interspersed
with major discontinuities. These occur when technology, industry and
customer understanding and the economics of business coincide to cause a
jump forward to the next plateau of development.

The so called Fifth Generation potentially represents such a discontinuity in
the Information Technology industry and in this issue of the ICL Technical
Journal we examine some facets of this against the background of the
overview of the ICL programme in this area as outlined in the first paper.

The real and valuable result of any discontinuity will be the impact these
technologies have on systems applications. It is in this area that Fifth
Generation techniques demonstrate the economic value over alternative
systems approaches. The first set of papers describe some current applica
tions using these new techniques.

To achieve this, some radical rethinking will be required in the applications
environment - the way the system and the user interact. The set of papers
from the European Computer Industries Research Centre (ECRC) describe
the basic research goals being explored in this area.

The key technology streams of new language types and the development of
more powerful and parallel machine architectures provide the underpinning
technical capability and the papers in this area draw heavily on the work
carried out under the UK co-operative research programme - Alvey.

We are making no predictions as to when Fifth Generation technology in
total will have major user impact, however what is clear is that the
ingredients for a substantial step forward in the quality and usability of
information systems are now coming together.

J.M. Watson
Director, ICL Marketing and Technical Strategy

ICL Technical Journal May 1987 359

What is Fifth Generation? - the scope of
the ICL programme

B.J. Procter and C.J. Skelton
Mainframe Systems Division, ICL, West Gorton, Manchester

Abstract

The scope, motivation and modus operandi of the ICL Fifth Genera
tion programme is outlined to provide a context for the remaining
papers in this issue of the ICL Journal.

1 Introduction

The single chip microprocessor has brought a computer-based revolution to
the 1980s. In human terms, however, the applications we run on these
processors are extremely simple. In the 1990s we will take for granted the
ability to readily use wide ranging knowledge bases. This knowledge will be
accessed from our offices, factories, shops, homes, transport vehicles and used
in our business, social and leisure activities. Information will be easy to
obtain and it will be possible to get answers which are inferred from rather
vague questions. By today’s standards the applications required to provide
these knowledge-based systems will be complex and they will require very
powerful but low cost machines to give acceptable response times. The ICL
Fifth Generation programme seeks to provide the software and hardware
technology which will bring this new computer based revolution to the
1990s.

2 Fifth Generation

Strictly speaking “Fifth Generation” is the name that the Japanese coined for
their ambitious “Fifth Generation Computer System” programme. The name
is now in common use but without a commonly accepted definition. It will be
used here with the context and scope of the ICL programme.

Fifth Generation (5G), like its predecessor generations, is a technology for
developing and delivering user solutions, and consists of a set of techniques,
languages, tools and machines. From a practical standpoint it is important to
appreciate that many of these components can be used individually. It
therefore becomes possible to introduce them incrementally and users can
adopt an evolutionary exploitation path to fit their organisational, cultural
and configuration needs. The broad structure and relationship of the parts of

360 ICL Technical Journal May 1987

the technology is depicted in Fig. 1, and the next few paragraphs provide a
very short introduction to each of the main areas and illustrate the scope of
the ICL programme. Later papers in this issue treat these subjects in greater
depth.

3 Applications

The object of the technology is the construction and execution of applica
tions and it is useful to start by considering just where it can be used or, since
the theoretical field of application is very wide, where it can be first applied to
best effect. Within the fields of interest of ICL’s customers this suggests two
broad classes - applications which would be very difficult to produce or
maintain using conventional techniques and those which have very heavy
processing requirements.

Examples of the former class are applications containing significant amounts
of knowledge, those required to make decisions where qualitative or
judgemental factors need to be taken into account and those which support
deep or adaptive human-computer interaction. These types of application
are often termed “AI” (because the techniques are derived from those
developed in the field of research known as “artificial intelligence”) or simply
“intelligent”, or “knowledge-based”. This class is broadened to a much wider
set if there is also a requirement for the application to be subject to a high
rate of change - for example the support of operational procedures where the
procedures themselves change frequently. Fifth Generation languages en
courage a clear separation of data, the rules for interpreting the data and the
rules for applying it. This separation makes it much easier to update

e.g. A factory scheduling system

e.g. An expert system shell

e.g. Hope, a functional language

e.g. Interfaces with VME or UNIX,
with databases and with terminals

e.g. The FLAGSHIP parallel machine

Fig. 1 Components of Fifth Generation technology

Application

Application Environment

Declarative Language

System Environment

Machine

ICL Technical Journal May 1987 361

applications to accommodate changing requirements. The usual nomencla
ture used to describe the combinations is:

Data The set of raw fields (e.g. in a database).
Inform ation....... Data + a set of descriptions to define its meaning

(i.e. what is being represented and in what form).
Knowledge......... Information + a set of rules governing its applica

tion.

The other main class of application - with high processing loads - is most
frequently encountered by ICL users in database operations, where the
processing load is often accompanied by high disc rates. This latter class is
expected to grow quickly as more use is made of “fourth generation” tools
such as Quickbuild, Querymaster and relational databases to accelerate the
production of applications.

4 Application environment

The Application Environment provides the immediate facilities for the
development of new applications and for their execution. The facilities
may consist of a highly packaged tool which provides a very effective
development route for a particular type of application (such as a domain-
specific expert system shell), or a more comprehensive set of tools and
languages which vastly widen the application scope at the expense of more
work in building the application (such as an AI toolkit). Even in this latter
case the Application Environments are designed to be highly productive,
providing methods and representations chosen for the directnesses with
which they can represent the knowledge model of the application. The
nearest analogy is with databases and dictionaries, which provide a ready
way of representing the data used by an organisation and which allow the use
of fourth generation languages to build applications which model the
processes built upon the organisation’s data-flow. The Application Environ
ment aims to provide the same capabilities for the knowledge within an
organisation.

5 Declarative languages

Declarative languages are high level languages in which solutions are
described by a set of logical rules. Contrast these languages with traditional
imperative programming languages in which the solution is described in
terms of a “recipe” which will yield the desired result when run on a
computer - in other words, the methodology for solving the problem and the
mapping of this solution on to a sequential von Neuman computer have got
mixed together.

Several benefits arise from separating these two concerns: programmer
concentration is directed to the more important global aspects of the
solution, leaving compilers to supply the lower level implementation; the

362 ICL Technical Journal May 1987

program strategy is more directly relatable to the problem, simplifying
understanding, reducing errors and easing maintenance; because the lan
guages have (mathematically) simple semantics, it is practicable to build
powerful transformation and reasoning tools to improve application life-
cycle quality and efficiency; and because the programmer has not unneces
sarily constrained the implementation, the program can be ported across a
range of implementations including parallel machines.

The historical objection of the loss of runtime efficiency which can arise
through the use of a high-level language can be olfset by compiler and
transformation optimisations which are a one-time investment. In fact,
because these languages have, to a greater or lesser degree, abstracted away
from strictly sequential semantics, they make it possible to exploit the great
cost-performance advantage of parallel machines without throwing yet more
burden on the application programmer.

6 System environment

Interaction with the outside world, and particularly with existing databases,
applications and networks, is vital to allow the fifth generation components
to be smoothly integrated into existing systems. The System Environment
complements the declarative languages by providing the set of primitives
through which all higher layers of software interact with the rest of the
system. As with the declarative languages, the aim is to match the function
ality of these primitives to the problem and to hide unnecessary implemen
tation detail. This is the point in the system where any temporal constraints
essential for the correct solution to the problem are explicitly introduced. By
exposing only the essential problem dependencies at this coarse level, the
understandability of the solution is preserved and the minimum constraints
are placed on parallel execution.

The system environment must deal with all the system management jobs
required to run a secure, reliable, multi-user, mixed workload system. For the
foreseeable future this task will be accomplished in part by software in the
declarative system and in part by the operating system (VME or UNIX) of
the host system. The Fifth Generation system is therefore implemented as a
sub-system within a classical host environment, where the sub-system
consists of 5G software components which execute directly on the host, or in
a special purpose (parallel) machine attached to the host. In the case of
dedicated workstations the host environment may be invisible to the user.

7 Machines

A parallel machine is one in which a number of identical processing nodes
operate on a single job to improve the response time within the job. By
contrast, in a present day multiprocessor, the processing nodes are applied to
separate jobs within a workload to improve the overall throughput and
reduce job queueing. Whereas multiprocessor configurations rarely exceed

ICL Technical Journal May 1987 363

four processing nodes, parallel machines can be configured up to hundreds.
It therefore becomes possible to choose the most cost-effective technology
and architecture for the individual processing nodes and to achieve the
desired level of system performance by replication.

There are many different forms of parallel processor suited to differing tasks.
Some, like the search engine in CAFS1, have a specialised architecture
dedicated to one particular task whilst others, like the Distributed Array
Processor, DAP2, belong to a class of machine known as “single instruction
multiple data”. Within the ICL 5G programme, most attention is focussed on
“multiple instruction multiple data machines” with globally accessible stores.
Their ability to deal with the dynamic problem topologies encountered
where operations are data dependent makes them most suitable for declara
tive languages and for AI applications.

For the present, parallel machines are not freestanding - a conventional
system acts as a host and provides the overall operating system and external
communications. An existing database will probably already be accessible to
the host, but for some applications the parallel machine will generate a very
large database traffic requirement. In these cases it may be appropriate to
attach parallel disc channels directly to the parallel machine, which then
assumes the role of a database or knowledge base machine.

8 The ICL 5G programme

In summary, therefore, the ICL fifth generation programme includes the
following components:

- Application development using expert system shells, a modelling tool and
an AI toolkit.

- Acquisition and development of an Application Environment.
- Development and porting of declarative languages, compilers and tools.
- Development of a system environment.
- Development of parallel machines.
- Development of object managers which are used to hold information and

knowledge bases.

It was not possible to arrive at the fifth generation systems technology by a
simple process of evolution. ICL needed to rapidly build up expertise in an
interlocking jigsaw of new techniques and to develop new skills. Fortunately,
encouraged by earlier SERC programmes, the UK has built up a solid
academic base in these techniques. When the ICL University Research
Council was formed, one of its major aims was to provide a two-way transfer
of technology and techniques between ICL and academia. The contacts and
relationships built up through this route have been instrumental in helping
ICL to shape and implement its 5G programme.

The UK’s response to the Japanese Fifth Generation Programme has been
the establishment of the Alvey Programme to promote and help fund

364 ICL Technical Journal May 1987

projects under the themes of VLSI, Software Engineering, Intelligent Knowl
edge Based Systems (IKBS), Human Computer Interaction (HCI), Computer
Architectures and a number of Large Scale Demonstrators. An important
and fruitful prerequisite of these projects has been collaboration between
university research groups and industrial project teams.

Within ICL, the Marketing and Technical Strategy Directorate has taken the
lead in setting up a 5G programme through its centrally funded Group
Technical Strategy (GTS). A set of interlocking projects has been chosen for
its closeness to ICL’s needs in the late 80s and early nineties. To date, these
projects are mostly joint projects within the Alvey programme. There is space
here only to mention those most relevant to the new computer systems
architectures, which form the theme of this issue of the journal.

9 The ICL Alvey projects

The DHSS Large Demonstrator, led for ICL by Charlie Portman, aims to
provide decision support systems to assist in a variety of tasks arising in
large, legislation based organisations. These include:

- The application and maintenance of large volumes of legislative condi
tions.

- Application of conditions which require interpretation, including the
identification of relevant case law.

- The provision of advice to potential claimants both on their eligibility for
benefits and how to make a claim.

- The formulation of changes in policy and the exploration of their possible
effects.

The DHSS Demonstrator team includes ICL, Logica, the University of
Lancaster, the University of Surrey, Imperial College London and the
DHSS.

The IPSE 2-5 Project is led by Mike Tordoff and Brian Warboys. It is a joint
project between ICL, STC and Manchester University, and seeks to provide an
advanced Integrated Project Support Environment of a generic nature, which
supports the use of rigorous approaches to mainly software system development
based on formal methods and highly integrated management tools.

The High Speed Multi-User Prolog Data-Base Machine project has a team
at Heriot-Watt University led by Professor Howard Williams and Professor
Fred Heath. The ICL leader is Michael Quinn. It is building a large Prolog
database and is applying the ICL CAFS engine to speed database searching.

The Persistent Information Space Architecture (PISA) project is led by Nick
Capon and Graham Pratten for STL, with work at the Universities of
Glasgow and St. Andrews led by Professor Malcolm Atkinson and Professor
Ron Morrison. The team is designing an object-oriented system that allows

ICL Technical Journal May 1987 365

data to be treated in a consistent manner regardless of where it is actually
stored or who is referring to it.

The DACTL project is spearheaded by a team at the University of East
Anglia led by Professor Ronan Sleep and Dr. John Glauert. Imperial College
and the University of Manchester are also collaborating and the ICL co
ordinator is Nic Holt. DACTL defines a graph reduction model of computa
tion and an associated language to be used as a portable compiler target
standard. DACTL is used as an intermediate language within the FLAG
SHIP project.

Parlog is a logic language developed at Imperial College which is very well
suited to parallel execution. The Parlog on Parallel Architectures project is
developing compilers from Parlog to DACTL and to the High Speed Prolog
Database machine. The academic partners are Imperial College, led by Dr.
Keith Clark, and the Heriot-Watt team. The ICL leaders are Michael Quinn
and Ken Watts. The route via DACTL makes Parlog available for the
FLAGSHIP and GRIP machines.

The Graph Reduction in Parallel (GRIP) project is being implemented at
University College, London, by a team led by Dr. Simon Peyton-Jones. It is
led for ICL by Phil Broughton with High Level Hardware Ltd. as industrial
partner, and is a rapid implementation of a graph reduction parallel
processing machine, exploiting the powerful 68020 microprocessor on a bus
architecture.

Flagship is Alvey’s largest project and forms the basis for many of the articles
in this issue of the journal. It covers the Hope functional language, program
transformation tools, a parallel processing machine hosted by VME and
UNIX systems and an operating environment. The consortium is led by
Colin Skelton and Brian Procter for ICL and includes teams at Imperial
College London, led by Professor John Darlington, Hugh Glaser and Mike
Reeve; and at the University of Manchester, led by Dr. Ian Watson, Dr. Viv
Woods and Professor Warboys.

10 The ICL motivation

The present 5G programme has been designed to respond to a number of
pressures, some recent and some visible within the industry for many years.
The main drivers have been:

The high cost and unpredictability of software development and mainte
nance, coupled with the shortage and mobility of trained programming staff.
This has been a constant problem within the industry for two decades in spite
of significant advances in software engineering methodology and more
recently with the widespread adoption of fourth generation systems. It used
to be called the “software crisis”, but the word “crisis” seems inappropriate

ICL Technical Journal May 1987

for a phenomenon of such longevity. “Limit to growth” is a more durable
phrase which better captures the effect of this problem.

The advent of the cheap PC has brought much closer the ideal of a computer
to each person. It has also thrown into sharp focus the minimal availability
of applications for anything other than rather mechanistic or clerical tasks.
Quality and productivity aids for managers and professionals are of strategic
value to organisations in an increasingly competitive world. Unfortunately
they are extremely difficult to build using conventional software technology.
Fourth generation systems have helped with some types of application but
their stylisation limits their range. More wide-ranging tools are needed to
build systems which can adapt and respond to people and to human
organisations (rather than the other way around). Such tools are now
emerging from research into the commercial world.

Historically, the workhorse of the information technology industry has been
the single processor, or at most a multi-processor usually not exceeding four
processors. As the user demand for performance (at constant cost) has risen,
the computer industry has met these demands by producing faster unit
processors, exploiting developments in the semiconductor industry to
achieve the speed-up. Whilst there is still active growth and considerable
scope for further developments at the lower performance end of both
industries, there are signs that the cost of maintaining performance improve
ments of the very high performance circuits is escalating. With this back
ground, there is worldwide activity to find a convenient way of achieving the
required very high performance by harnessing a mutiplicity of processors
from the fast-developing cost-effective technologies. The crucial word is
“convenient” since it is not generally acceptable to achieve performance at
the expense of more complicated programming.

The exciting prospect offered by fifth generation technology arises from the
way in which its constituents assist each other to overcome these problems.
The new software power tools, needed to build the intelligent applications of
the future, provide opportunities for the improved software engineering
methodology which will itself be required to maintain quality in such
complex applications. A new way of providing the large computing power
required by intelligent applications is enabled by the very languages needed
to express the applications in the first place. Big improvements in the cost-
performance of high-speed computers will allow more extensive computer
assistance in the application development process and further development
of languages and tools towards the problem domain. The components of the
fifth generation can be said to form a true symbiotic relationship.

Whereas the points mentioned above present an argument for innovation, it
is recognised as crucial to protect the investment in existing technology of
ICL’s customers and of ICL itself. This investment is in databases, in
applications, in the skills of the data-processing staff, in equipment and in
product lines. Major themes running within each project and throughout the

ICL Technical Journal May 1987 367

whole 5G programme are integration and evolution. The aim is to allow the
technology to emerge from the development labs into products in an
incremental fashion, and to allow the increments to be integrated with
existing installations and product lines. “Revolution by evolution” is the
slogan.

The papers that follow in this issue of the Technical Journal, whilst not
aiming at an exhaustive coverage of the programme, will give an indication
of the innovative work that is being done.

References

1 The ICL Content Addressable File Store(CAFS),ICL Tech. J. 19854(4) 351-506(12papers).
2 HOWLETT, J., PARKINSON, D , SYLWESTROWICZ, J.: ‘DAP in Action’, ICL Tech. J.

1983. 3(3) 330-344.

368 ICL Technical Journal May 1987

APPLICATIONS

The emphasis of the entire Fifth Generation programme is on the solution of
problems, and the problems that are presenting themselves are becoming
more and more complex and increasingly of the knowledge processing type.
The papers in this section describe a small number of applications; at this
stage in the attack on a problem attention is concentrated on assembling the
knowledge on which the solution must be based.

The Alvey DHSS Large Demonstrator
Project

E.C.P. Portman
ICL Knowledge Engineering Business Centre, Manchester

Abstract

The paper describes a 5-year collaboration being undertaken by ICL,
Logica Ltd., the universities of Surrey and Lancaster, Imperial College
London and the Department of Health and Social Security and
supported under the Alvey scheme. It is in the field of Intelligent
Knowledge Based Systems and its aim is to help members of the
general public in making claims under the UK Social Security pro
visions and staff of the Department in assessing the eligibility of these
claims.

Introduction

The Alvey Large Demonstrators are intended to bring state-of-the-art
technology in a number of chosen areas to bear on practical problems, in
order to demonstrate the ability to provide solutions in previously difficult
or even impossible areas. The chosen technological areas are those of
Intelligent Knowledge Based Systems (IKBS), Software Engineering (SE),
Man-Machine Interface (MMI) and Very Large Scale Integration (VLSI).
The DHSS Demonstrator, in its pilot systems for benefit administration in
the Department of Health and Social Security (DHSS), makes direct use of
all but VLSI of these. It is expected that delivery vehicles for these systems
will rely heavily on the continuing rapid fall in hardware costs and, to some
extent, on the novel architectures being made practical by the capabilities of
VLSI.

The 5-year project, started in April 1984, has been exploring problem areas
and the relevance of techniques and is now concentrating on specifying and
building exemplar systems for demonstration and evaluation. It is being
conducted by a consortium with 35 staff drawn from ICL, Logica, the
universities of Surrey and Lancaster, Imperial College London and the
DHSS itself; the consortium is investigating five promising representative
application areas of the activities of the DHSS, which is seen as an example of
a large legislation-based organisation.

ICL Technical Journal May 1987 371

The areas being studied are chosen for their importance to the DHSS and for
the difficulty of applying classical Information Technology (IT) methods to
them in a satisfactory way; they concern the following activities:

1 The work of the DHSS Policy Branches, which is in formulating and
maintaining the legislation and regulations controlling eligibility for
benefits.

2 The claiming of benefits: potential claimants are often confused
about the benefits available and about the choice of those applicable
to their own case; and can find this a major deterrent to claiming.

3 The process of making an application for benefit: this also is often
seen as a major difficulty.

4 Assessing eligibility: the DHSS officers have to apply, in each
particular case, the appropriate sub-set of a very large volume of
rules and regulations, and in many cases their decisions must be
guided by those made in previous cases drawn from a large quantity
of historical material.

5 Training: in an organisation as large as the DHSS the training
problems are formidable; systems with the capabilities we envisage
should be of great benefit to the trainers as well as to their pupils.

Demonstrations

Four demonstration sub-systems are being designed and built to gain
practical experience of building on this scale, to provide demonstrations of
capability and to allow experimental use in friendly environments, real or
simulated. These will be evaluated in various ways, and rebuilt and re
evaluated once more before the project completes in early 1989; they are

- the Policy Advice System
- the Claimant Advice System
- the Forms Helper
- the Local Office System

aimed respectively at the activities of formulation and maintenance of rules
and regulations, selection of benefits by the claimant, making an application
for benefit and assessment of entitlement.

We shall show how such systems will enable the staff responsible for
formulation and upkeep of rules and regulations to be aided in evaluation of
alternatives, in consistency checking and in elimination of certain undesir
able features such as the “traps” described in the next section. We shall show
also that many potential claimants will be able to select benefits appropriate
to their circumstances and to make successful claims more easily than is
possible at present. Finally we shall be able to support the decision-making
of the officers who have to evaluate the claims, by helping them select rules

A pplication a r e a s

372 ICL Technical Journal May 1987

and cases relevant to the application being considered and by recording the
basis for each decision in case of future query. By use of IKBS and MMI
techniques we shall be able to develop these systems with relatively small
amounts of effort and to make them easy to use and to up-date when changes
in regulations have to be made: such systems can be efficiently and reliably
built by proper use of SE techniques.

It must be borne in mind that present large DP systems are not only costly to
develop and validate but also are almost impossible to change quickly
without introducing errors. This makes it very difficult for legislators to act
quickly to meet changing circumstances and causes major problems for the
DHSS, for example, in introducing changes. It is expected that a stable core
of software will exist in the systems that we are proposing and that changes
will be incorporated by making changes to the knowledge base: this will be
much easier, both for writing and for checking, than changing computer code
and also will be amenable to various automatic checks for consistency and
completeness.

We see these four systems working as parts of a whole, with much of the
knowledge that is used being drawn from common sources; this will improve
consistency across the different areas.

Results to date

Listed below are some of the results we have achieved so far; some have led
to blind alleys, others are being incorporated in our current and future work.

We have built a number of pilot systems to explore the application of various
IKBS techniques to the problems identified in our analysis. These have
included various schemes for knowledge representation and for inference; an
architectural scheme using standard tokens and having some of the
properties of a “blackboard” system; and the use of entity/relation modelling
to support a semi-automatic way of generating some of the code and data.
These pilots have been assessed for effectiveness, in some cases by further
detailed studies. The pilots are as follows.

(i) A pilot in the claim-assessment area, to address the “income” and
“requirements” aspects of Supplementary Benefit. This was used also
to explore an entity/relation tool for modelling the interfacing to
“browsers” and to large DHSS databases.

(ii) One early pilot explored a technique dubbed “gentle evaluation”, for
allowing changes of mind to be made when filling a form without
demanding a complete return to the start. This was seen as impor
tant in allowing a more natural interaction with the machine than is
common in current expert systems.

(iii) The “Forms Helper”, designed and built by the group at Surrey, has
been the subject of formal study, with tests made by potential
claimants and a comparison of paper and electronic form filling; the

ICL Technical Journal May 1987 373

results will be of great value in designing the final Claimant
Information System. The Forms Helper attempts to aid clients by
guiding them to answer all the relevant questions and steering them
away from irrelevant ones on the claims form; it does this by
providing explanations and giving examples of expected answers for
each box on the form, and in some cases checking that the claimant’s
answers conform to expectations. The user can go back and change
answers if desired.

(iv) An experimental forms toolkit was devised to provide a base on
which to build forms interfaces. This allows fields to be expanded if
the volume of data entered is too great for the pre-assigned space;
and also gives pop-up detail fields for questions with compound
answers, like “Your address ...”

(v) The first Policy pilot explored the detection of “traps” in the
legislation, for example claimants being prevented from moving to
higher levels of benefit as a result of choosing more attractive initial
benefits. It explored also the effects of proposed changes in legisla
tion on the classes of claimant endangered by such traps.

(vi) The selection of relevant case history was explored in two different
“browser” developments; these differed in their methods but both
aimed to make it possible for the user (a DHSS officer) to select
relevant sub-sets from a large set of cases, using re-formulations
of selection criteria to focus in on a small number of relevant
examples.

(vii) One pilot system explored a possible basis for training staff in the
application of rules to cases.

We have also developed and explored

- the use of an analysis tool to assist in extracting and classifying material
from transcripts of interviews

- an interactive planning tool to assist in managing the project
- numerous representation and inference methods, to support our needs.

In addition we have implemented a method for bi-directional inferencing
that not only enables one representation of rules to be used both to deduce
consequences from given facts and to seek facts that will support a desired
consequence, but also, because it supports explicit representation of bi
conditionals, allows inference of disjunctive and negative conclusions and the
use of disjunctive and negated premises. We have integrated this reasoning
capability with the ability to handle arithmetic relations, which we believe to
be a novel achievement.

In this work we have been exploring both the “frame” techniques used in
some early expert systems and also the logic programming concepts used by
other researchers and from which the PROLOG programming language was
developed. Our present view is that both techniques are relevant and we are
defining a toolkit that will make use of both.

374 ICL Technical Journal May 1987

The results obtained in these pilot studies, together with other recent results
published in the general literature or developed in other Alvey projects, will
be used in building our application demonstrations.

Other results

There are other outputs of this project that are as important as the
demonstrations to the overall purpose of the Alvey programme of improving
the potential competitiveness of the UK.

We are developing an “engineered and measured approach” to building
systems of this type that will give others who follow a basis for estimating the
time and effort needed for the task and for the development and the delivery of
the machines that the systems will need. We are writing a “methodology
portfolio” of techniques for each stage in the process, using our own experience
in creating these demonstrations to validate each step. In particular we intend
to describe analysis techniques for defining the area to be covered and the
potential value to the target organisation; elicitation techniques for defining
and categorising the various groups of knowledge needed to operate the
systems; and the building techniques that are used to define the software
environments in which the knowledge will be held and used. We shall describe
also the project-management techniques that we have used in this unusual
distributed project, which reaches across six organisations, across academia,
industry and public administration, across numerous disciplines and physi
cally across seven sites distributed around the UK.

In this work we are growing a group of experienced application designers
who will be of great value to any organisation intending to create systems of
this type for sale. During the coming years we shall publish papers on the
detailed experience of defining these systems, and on our evaluations of their
potential value to the DHSS.

Acknowledgements

The work described in this paper was carried out as part of the DHSS Large
Demonstrator Project, supported by the Science and Engineering Research
Council and the Alvey Directorate of the UK Department of Trade and
Industry. The views expressed are those of the author and are not necessarily
shared by his collaborators.

ICL Technical Journal May 1987 375

PARAMEDICL: a computer-aided medical
diagnosis system for parallel

architectures

Martyn G. Cutcher
Systems & Architectures

Malcolm J. Rigg
Public Services Business, ICL Industry Systems, Reading, Berkshire

Abstract

The paper describes, in general terms, an expert system loosely
modelled on MEDICL (AAP) and written in the parallel logic language
PARLOG and intended for running on parallel architecture computers,
notably the Flagship machines. This work was carried out as part of
the UK Alvey Flagship Project; PARAMEDICL being the proposal made
by Public Administration Business Centre (PABC) - now the Public
Services Business (PSB) - and chosen by a selection panel from many
Applied Systems submissions. PABC made the proposal because of
its experience in this area (marketing the Clinical Support System
MEDICL (AAP)) and also because there has been much published
work on expert systems in the field of medical diagnosis. A prototype
version of PARAMEDICL in a mixture of PARLOG and the sequential
logic language PROLOG was implemented on the ICL PERQ (it was
completed in December 1985).

1 Background

The field of medicine was chosen for the exemplar for this Fifth Generation
prototype because there exists a considerable amount of published matter in
this field, and there is a wide acceptance of the advantages of medical expert
systems, of which a number have already been built. Indeed the International
Health Unit, which is a part of Public Services Business, is marketing a
clinical decision support system MEDICL (AAP).

The system described in this report was built in order to quantify the
parallelism obtainable in an application. It was designed to be as flexible as
possible and have in-built mechanisms for knowledge acquisition, and
therefore methods of adding, modifying or deleting rules in a hierarchical
structure of knowledge-bases. However, there was not sufficient time to
design or implement a mechanism for modification, addition or deletion of
rules based upon system analysis of the existing rules together with a

376 ICL Technical Journal May 1987

database of symptoms and final diagnoses of existing patients. Such an
heuristic system would be a more ambitious and perhaps a future area of
basic research.

2 MEDICL and PARAMEDIC!.

PARAMEDICL is an expert system written in a parallel logic language and
intended to address the same application area as MEDICL (AAP).

MEDICL (AAP) - MEdical Diagnosis and Computer Learning (Acute
Abdominal Pain) - is a computer based clinical decision support system
designed to help hospital doctors in the diagnosis and management of
patients with acute abdominal pain. It is not intended to replace the doctor
in any way. It provides decision support teaching and feedback facilities.

Benefits of use include improved initial diagnostic accuracy leading to
reduction in negative laparotomies (i.e. reduction in unnecessary surgery),
reduction in perforated appendices and reduction in admissions and bed-
nights.

MEDICL (AAP) is the most recent implementation of the project carried out
by the Clinical Information Science Group at St. James Hospital, Leeds,
under Mr. F.T. de Dombal, and results from a collaboration between ICL
and the University of Leeds Industrial Services Ltd (ULIS). The database of
6000 previous cases and the teaching programmes used in this system were
created by the World Organisation of Gastro Enterology (the OMGE) which
has granted ICL a licence to use the database and has encouraged ICL in the
development of MEDICL (AAP).

PARAMEDICL is so called to indicate that it is written in a parallel logic
language and took as its inspiration MEDICL (AAP). However the proto
type implementation is not based on the Bayesian matrix of probabilities
used by MEDICL (AAP), nor is the internal design of the two systems
related. The numbering system of symptoms as specified by the OMGE
(Organisation Mondiale Gastro-Enterologie) and described in “Diagnosis of
Acute Abdomen Pain” by Mr. F.T. de Dombal was used to facilitate a
comparison of the two systems. (In the event, this comparison of systems
never took place.) Apart from this common base of knowledge the two
systems are very dissimilar. The prototype version of PARAMEDICL was
implemented on the ICL PERQ, in which the parallel operations are
simulated. The MEDICL (AAP) product runs on a DRS and is available as a
supported product from ICL.

MEDICL is written in COBOL and uses Bayesian methods for calculating
probabilities in order to arrive at its tentative diagnosis. Its database is a
matrix of probabilities, constructed after careful analysis of a large number of
case histories by the World Organisation of Gastro Enterology (OMGE),
that gives the probabilities of a number of different symptoms being

ICL Technical Journal May 1987 377

associated with a number of different diseases - for example, of a patient with
appendicitis experiencing pain in various sites. Given the symptoms observed
in a patient and information and medical history obtained by interviewing
the patient, the computer calculates the probabilities of the different diseases.
The doctor can then use the computer system to confirm his own diagnosis,
to look at crucial differences between his diagnosis and the computer’s (if
they differ), and at rare conditions which could possibly cause the patient’s
symptoms.

PARAMEDICL in contrast is rule-based and is written in the parallel logic
language PARLOG. The set of rules that it uses are derived from published
medical knowledge; it is not static, and rules can be added, deleted or
changed.

For example, a pain-movement rule for appendicitis might be

if pain_present_site is RightLowerQuadrant and
pain initial site is CENTRAL then score 8

where “scores” are accumulated to give a measure of the likelihood that the
patient is suffering from the illness in question, here appendicitis. In
PARAMEDICL these scores were assigned intuitively by the authors and
not based upon expert medical knowledge. In a real system the mechanism
for favouring a medical diagnosis would have to derive from medical
statistics.

PARAMEDICL’s diagnosis proceeds by a question-and-answer process that
can be conducted along any of three lines which we have called Normal,
Specific and Opportunistic. These can best be explained by considering a
hypothetical situation of a houseman and a number of specialist consultants
ALL clustered around a patient’s bed while the symptoms of the patient are
elicited. This is modelled by representing each consultant as a knowledge
base-manager wherein reside a variable number of expert systems, in which
each of a set of rules is represented in Horn-clause logic. The parallelism of
the model is achieved by the “simultaneous” processing of symptom-
messages by all knowledge-base-managers in parallel. Moreover all the
expert systems in each knowledge-base-manager may process the symptom-
messages in parallel with each other. The “real-world” situation is that all
consultants consider all ramifications of every symptom in parallel with each
other.

Only for a true parallel machine, or in the hypothetical situation of a set of
specialist consultants clustered around a patient’s bed, does the word
“simultaneous” apply to the discussion here of “in parallel”.

The three modes of operation of the model are described below, both in
terms of the computer model and the hypothetical cluster of specialist
consultants around the patient’s bed.

378 ICL Technical Journal May 1987

The Model

A set of independent knowledge bases

Specialist
Consultants

Patient

\
i \Houseman

Fig. 1 Illustration of the model

Normal: This mode represents elicitation of symptoms sequentially by the
houseman while the specialist consultants take a passive role listening for the
indicators favourable or not favourable to the diagnoses for which they are
the acknowledged experts.

The system presents an ordered sequence of questions to the clinician, and
gives with each a set of possible answers. As each response is given to the
computer it may initiate the application of rules for one or more expert systems
in one or more knowledge-base-managers and result in the recalculation of a
“score” for each disease under consideration. These “scores” are accumulated
as the questioning proceeds and at the end of the session the doctor uses the
final scores in whatever way he or she thinks appropriate. A very important
feature - of MEDICL also - is that an explanation of any response can be
asked for, so the doctor can always check or query the line of reasoning.

Specific: This mode represents following the choice of questions determined by
a chosen knowledge-base-manager (consultant) considering only those fac
tors, or symptoms, which are indicative of the disease(s) over which the
specialist consultant is the acknowledged expert.

The computer offers to the doctor a choice of diagnoses so that the line of
questioning may proceed with the aim of supporting the diagnosis that the
doctor thought worth investigating (when the requested symptom is
confirmed by the patient) or casting doubt upon the diagnosis (when the
requested symptom is absent in the patient).

Opportunistic: In this mode the line of questioning follows that required to
most effectively support the currently favoured diagnosis.

The computer questioning follows the sequence as for Normal but as soon as
the scoring favours one diagnosis more than all others - which can be very

ICL Technical Journal May 1987 379

early on in the process - the system will nominate the knowledge-base-
manager for that diagnosis to decide the subsequent questions. Subsequent
responses may result in favouring a different diagnosis, in which case the
selected knowledge-base-manager and therefore the line of questioning will
change.

3 User view of PARAMEDIC!.

The PERQ prototype implementation was achieved in under three months.
The system runs on a 2 Mbyte ICL PERQ with an A3 landscape screen.
The current rule base contains about 1700 clauses coded in about 9300 lines
of either PROLOG or PARLOG which are interpreted by the system - the
PERQ does not have a PARLOG Compiler. The speed of execution on
PERQ - on which all parallel operations are performed serially - is about
1600 logical inferences per second (1-6 Klips). If PARAMEDICL were run
on a machine with a PARLOG compiler, the speed of execution would
be an order of magnitude faster, and the mainstore requirement for
PARAMEDICL would be significantly reduced.

For the question-and-answer process the screen is organised into a maxi
mum of 13 windows showing

- the current question, with the possible answers
- the patient’s history, accumulated as questioning proceeds
- a display for each of up to 11 knowledge-base-managers.

The mode of operation of the system is by selection from a menu. Thus
initially a Patient History window is displayed in the top left corner of the
PERQ screen which is empty. Each menu from which a selection may be
made is displayed in the upper centre of the screen and a selection made
therefrom using the puck. As each selection is made a representation of that
symptom is added to the Patient History window which maintains the case
notes of the patient. An example of a menu from which a selection is made is
the “Pain-initial-site” menu from which a selection may be made of “Central”
or “Right-Lower-Quadrant” or other locations as displayed in the menu
window. This menu mechanism was chosen as an efficient mechanism for
choosing only one selection from a set. Some symptoms can be found in
combinations and a special multi-selection menu system had to be created
for these.

Each consultant is represented as a knowledge-base-manager (kbm) which
has its own window and position on the screen and into which information
relevant to the diagnosis is displayed.

There are a number of system options. These allow the interruption of the
normal flow of question and answer to facilitate the functions of adding,
deleting, or modifying rules in any part of the system, or of obtaining
explanation text from any expert system. There is also the option to change

380 ICL Technical Journal May 1987

mode from Normal to Opportunistic or Specific. (These modes of operation
were explained in section 2.)

During the consultation with PARAMEDICL each kbm continually dis
plays its status. Thus it is always possible to see the relative likelihood of each
disease. Medical preference may dictate the hiding of this information until
the user (who should be a responsible clinician) has independently come to a
diagnosis. PARAMEDICL is a prototype which has not been subject to
validation or to a clinical trial and was implemented as an open information
system. No development of the prototype has taken place since the end of
1985 when the subject of this paper was completed.

4 Language issues

The obvious choice for building an expert or diagnosis system was Prolog.
With it we considered we could build a working prototype in the time
available. However, Prolog is a language based upon sequential evaluation
and is therefore not wholly suitable for parallel implementation.

PARLOG is also one of the target languages for the Flagship machine. There
were three good reasons for choosing PARLOG as the language of
implementation:

1 It is a “pure” declarative language very suitable for implementation on
parallel architectures.

2 Our use of PARLOG would be among the first to exploit an extremely
new language and any results which we had would be useful.

3 The implementation of PARLOG was on top of Prolog so we could
always drop down into Prolog in the event of difficulty.

Our choice was therefore to use PARLOG as the language of implementa
tion to establish the intercommunicating structure of the set of modules
which comprised PARAMEDICL. A modular structure was considered
crucial to the implementation of the protype within the proposed timeframe.
Considerable advantage was obtained by designing for and using replicable
shells for expert systems in this modular structure. Thus the system became
dynamically modifiable because:

1 No assumptions were necessary about the order of execution of rules
(whether interdependent or not).

2 Any rule could be dynamically altered in any way (including deletion)
without affecting any other existing rules.

A measure of potential parallelism of the system could be calculated from the
defined concurrency.

A single message representing a patient symptom and received by a
knowledge-base-manager typically triggered around 20 concurrent pro

ICL Technical Journal May 1987 381

cesses. Each kbm acted concurrently with all the other kbms; thus a
parallelism of around 200 was not unusual. In addition, sets of messages
could themselves be processed concurrently and these sets were typically of
size 20. Despite the possibility of a parallelism of around 4000 we feel that
PARAMEDICL is a small system and that future systems could exhibit far
greater parallelism.

5 Knowledge acquisition

An aspect of PARAMEDICL not noticed as it was developed was its
emergence as an effective knowledge acquisition tool. This was mainly due to
the development of tools to facilitate faster development, the module
structure, and common empty expert shells.

In a day-long session with a medical consultant from London we were able
to evaluate the Human Computer Interface and both add new rules and
modify existing rules in the system. The framework to support this activity
allowed extremely rapid progress to be made to tune the system. The tuning
of the PARAMEDICL prototype is facilitated by the ability to modify rules.
This feature has considerable value in building up a system from nothing but
would have to be used in a very controlled environment if a released system
was able to be modified while in the middle of a diagnosis session.

The interactive nature of the system encourages its use for knowledge
acquisition. It is extremely easy to modify or add rules as soon as the need for
such change becomes evident. When developing rules a typical session would
enter the details of patients whose eventual diagnosis was known, and then
modify the rules to produce the expected profile of results.

6 System view of PARAMEDICL

The representation and organisation of the knowledge was very much the
result of the iterative nature of the development method. Compared to a
traditional Prolog system much more effort was put into how to structure the
knowledge that was entered into the system.

This database was hierarchical. The top level system consisted of a number of
smaller knowledge-bases, each of which was controlled by a knowledge-base-
manager process. Each of these kbms knew about and controlled a number
of small expert systems. The hierarchical nature of the system allowed for a
far greater scalability, and any enhancement to the system could exploit this
to encapsulate more detailed knowledge.

The system provided an interaction mechanism with which the user could
interact with the different objects in the system. As the knowledge-bases and
expert-systems were all identical in their classes, so were the interaction
mechanisms enabling a simple but very effective interface to be developed.

382 ICL Technical Journal May 1987

Stereotypical Knowledge Representation

Many similar knowledge bases and small expert systems

- all with default behaviour

Fig. 2 Stereotypical knowledge representation. Many similar knowledge bases and small
expert systems - all with default behaviour

The control of the various knowledge-bases was realised by treating them as
separate processes with which the interaction process communicated. The
process model developed was fairly limited due to the overhead of the
interpreted PARLOG by Prolog. The design, however, allowed for the entire
system to be represented as a network of communicating processes.

7 Future developments

We feel that the model provided by PARAMEDICL is extremely interesting
because of the way it is possible to interactively and iteratively increase the
amount and accuracy of the knowledge represented in the system. The
iterative refinement of this knowledge might be a very time-consuming
process. However, at present we do not have any data as to how “accurate”
systems developed within this model could become.

The “output” of PARAMEDICL is a tailored knowledge-base about an
individual patient with respect to a number of potential diagnoses. The
measure of the system is the suitability and effectiveness of this knowledge
base to provide assistance in the diagnostic process.

The model on which PARAMEDICL is based could clearly be used for other
diagnosis systems. The prototyping of any new system could be extremely
rapid since the framework would be already in place - EPARAMEDICL
(Empty PARAMEDICL).

A future development could be a many-level hierarchy of knowledge-bases
and expert-systems. This would facilitate the structuring of knowledge-bases.

ICL Technical Journal May 1987

For example classifying a superset of diseases presenting themselves as
appendicitis.

More efficient implementations of parallel logic languages are now becoming
available. These provide potential for new advances in the development of
highly interactive knowledge-based systems.

Acknowledgements

We should like to thank David Parry and Norman Brown for their
encouragement and support, Mr. F.T. de Dombal (the originator of the
MEDICL system specification and the author of “Diagnosis of Acute
Abdominal Pain” on which much of the framework of PARAMEDICL is
based) for several useful consultations, Dr. Chris Kibbler for a valuable
knowledge acquisition session, and from Imperial College London, the
PARLOG group and in particular Ian Foster for technical support.

Reference

1 DE DOMBAL, F.T.: ‘Diagnosis of acute abdominal pain’. Churchill Livingstone,
Edinburgh, 1980.

2 BURSTALL, R.M., McQUEEN, D.B., and SANNELLE, D.T.: HOPE: An Experimental
Applicative Language, Department of Computer Science, University of Edinburgh, 1980.

3 TURNER, D.A.: The Semantic Elegance of Applicative Languages, pp. 85-92, Proceedings
of the ACM Conference on Functional Programming Languages and Computer Architec
ture (Portsmouth, NH), 1981

4 CLOCKSIN, W.F. and MELLISH, C.S.: Programming in Prolog, Springer-Verlag, New
York, 1981.

5 CLARK, K.L. and GREGORY, S.: “PARLOG: Parallel Programming in Logic,” Research
Report DOC 85/5, Department of Computing, Imperial College, London, May 1983.

6 GREGORY, S.: “Design, Application and Implementation of a Parallel Logic Program
ming Language,” Phd Thesis, Department of Computing, Imperial College, London, 1985.

7 HOARE, C.A.R.: “Communicating Sequential Processes,” Communications o f the ACM 21,
8, pp. 666-677, 1978.

8 KAHN, K., MILLER, M.S. and BOBROW, D.G.: Objects in Concurrent Logic Program
ming Languages, ACM Conference on Object-Oriented Programming Systems, Languages
and Applications, Portland, Oregon, September 1986

9 SHAPIRO, E.: Object Oriented Programming in Concurred Prolog, pp. 25-48, New
Generation Computing 1, 1983.

10 UEDA, K.: “Guarded Horn Clauses,” Technical Report TR-103, ICOT, Tokyo, 1985.
11 FURUKAWA, K., TAKEUCHI, A. and KUNIFUJI, S.: “Mandala: Knowledge Program

ming and System in the Logic-type Language,” Institute o f New Generation Computer
Technology, vol. ICOT TR-043, February 1984.

384 ICL Technical Journal May 1987

S39XC - A configurer for Series 39
mainframe systems

C.W. Bartlett
ICL Knowledge Engineering Business Centre, Manchester

Abstract

In July, 1986, ICL Mainframe Systems released a rule-based system
(S39XC) for the configuring of Series 39 Mainframes. This paper is
concerned with the history of S39XC’s development, its functionality,
the methodology involved (both for development and delivery), its
internal structure, and the general applicability of the techniques
involved to other configuring problems.

Introduction

During recent years, starting with Rl/XCON1-2 and followed by OCEAN3,
ISC4, MAPLE5 and SYSCON6, there has been a growing realisation that
the problems of computer system configuration represent a fertile and
profitable territory for the application of Knowledge Based System (KBS)
techniques. Computer system configuration problems are instances of selec
tion problems where the task is that of describing a single set of parts and
connections, out of typically billions of “legal” combinations, and where this
description meets user requirements which have been presented in compara
tively high level terms.

The advantages to the supplier of computer systems of automating the
process of configuration are several. For example:

There is a direct saving of effort, ratios of 16:1 being typical.

Bottlenecks due to shortages of human skilled effort can be reduced.

The quality of the computed configuration is many times better than
that produced by hand.

The answering of “what i f ’ questions becomes feasible, hence proposals
can be much more closely adjusted to the customer’s needs.

Losses due to incomplete configuring can be avoided (if the equipment
supplied to a user is inadequate then the supplier bears the cost of
making it good).

ICL Technical Journal May 1987

The possibility of lost orders due to over-quoting can be minimised.

In competitive situations, the supplier who can rapidly and accurately
respond within hours to changing views of the user requirement has an
obvious advantage.

The make-up of computer systems is subject to a high rate of innovation
and product change. Problems arise in the accurate and timely commu
nication of these changes to the sales force. There is also the problem of
reworking the make-up of those systems which have been registered but
not yet delivered.

Forward procurement and manufacturing can be based on high quality
detailed information.

Cumulatively, these advantages can represent annual savings of several
million pounds for the computer system supplier. Whilst the need for
automatic configuring has always been known, attempts to meet this in the
past by using conventional programming techniques have been largely
unsuccessful, the main difficulty being that the time required to implement
such systems is large in comparison with the rate of change and the duration
of the product life cycle. It was only with the arrival of KBS, with its immense
gains in productivity and reduction in timescales, that mechanisation of the
configuring process became practical.

It was against this technical and financial background that the decision to
implement such a computer system configurer, S39XC, was taken. The
domain of S39XC is that of ICL Series 39 Mainframes7 with their associated
networks and bulk storage devices.

S39XC is intended for direct use by salespeople; it produces minimal, costed,
detailed parts lists suitable for immediate input to ICL’s Proposals and
Contracts System.

History

In July 1984 a start was made on a prototype of a configurer for Series 39
Systems. This was initially written in ICL SAGE8 and was worked on by
several people. During this period no rigorous attempts were made to ensure
that the knowledge contained was accurate, complete or up-to-date, the main
objective being to demonstrate the potential and viability of the techniques.
By February 1985 work had progressed to the point where an adequate
demonstration of the possibilities of KBS was available to ICL management.
This led to a decision to proceed with a full scale working version.

Initially work was confined to translating the original prototype to the newly
available ADVISER14 language and to some experimentation with the form
and style of the Human Machine Interface (HMI). This early work was

386 ICL Technical Journal May 1987

conducted on an informal basis and led to an improved understanding of the
nature of the problem. In October of 1985 ICL’s Knowledge Engineering
Business Centre entered into a formal commitment with Mainframe Systems
for the production of a full-scale working version suitable for direct use by
the sales force. Work on the final version, S39XC, commenced early in
November of 1985.

An initial re-examination of the structure of the problem led to a decision
to re-implement the whole system rather than take the prototype as a
starting point. There were three main considerations behind this: first, the
packaging of the basic core components of Series 39 Systems had been
radically changed (with the beneficial effect of rendering the problem
monotonic); the structure of the prototype was not suitable for the incorpo
ration of various features which had been identified as required in the final
version; and the prototype had been converted from SAGE to ADVISER -
as a consequence full use was not being made of the facilities of the
ADVISER language.

With these issues settled, writing of the actual code for the system started in
mid-November 1985. By mid-April 1986 S39XC was made available to a
restricted set of (relatively informed) users on a field trial basis. During this
period the only criticism received was in the area of the HMI and the
facilities available. No cases of errors in the configuring process were found
during this field trial. By this time S39XC contained some 2750 rule
equivalents (this term is used since some of the ADVISER single constructs
are equivalent to several standard “If ... Then ...” rules) expressed in about
9500 lines of source. This had been written in 90 working days and had taken
about 150 mandays of combined Knowledge Engineer (KE) and Domain
Specialist (DS) effort.

Early in July 1986, with the final points arising from the field trial attended
to, S39XC went live for general use by the ICL sales force. By late-November
1986 the system was being used on a regular basis by some 400 people and
some 1000 configurations had been registered. It is estimated that these 1000
configurations represent about 4000 uses of the system. None of the users of
the system were given any documentation or training in the use of the system
other than minimal instructions on how to access the service and a guide to
what it did. So far there have been no confirmed instances of mis-
configuration.

With the first release Mainframe Systems assumed formal Design Control
Authority for S39XC; much of the subsequent updating of the system has
been by the DS himself, with the KE and the Knowledge Engineering
Business Centre taking a subordinate consultancy role.

Since the first release there have been a number of further issues extending
the coverage of the system. S39XC now has about 4600 rule equivalents
contained in some 15 500 lines of source.

ICL Technical Journal May 1987 387

Functionality

Role

S39XC acts in a number of roles. During the initial stages of order taking
S39XC performs as an adviser, allowing the salesperson to describe alterna
tive systems and have them evaluated as to content, cost and technical
suitability. The results of these investigations are immediately available on
paper.

Once a firm requirement has been reached S39XC acts as a technical sales
clerk, taking the high level description of the requirement, expanding it to an
accurate, complete low level description and automatically entering it into
the Proposals and Contracts System. Quality is assured during this stage by
preventing the salesperson from, in any way, modifying the expanded
description.

Subsequent to an order being placed S39XC may act again in the role of a
technical sales clerk if, for example, changes occur in the details of the various
parts and the relationships between them. In this case S39XC is run in batch
mode to reprocess the requirement without any further interaction with the
salesperson.

Further, experience gained with running S39XC shows that it also to some
extent acts in the role of a trainer. This in fact was not a preconsidered role
but probably comes about from the ease of use and the copious explanation
and help available.

Scope

S39XC is concerned with configuring ICL Series 39 Mainframe Systems. In
respect of this, the following areas are covered:

Node requirements: Concerned with the selection of the basic type and
numbers of OCPs, the amount of storage, the location of the system’s CAFS-
ISP9 and the requirements for basic (bundled) software.

FDS300 requirements: Covering the requirements for FDS300 Controllers
and Drives, dual connections and the numbers of extra CAFS-ISP required.
Additionally, the implications of adding MDSS type disc systems are
investigated in this stage.

FDS2500 requirements: Similar to FDS300, covering requirements for
Controllers, Drives, dualling and CAFS-ISP.

Retained discs: Disc systems which derive from ICL 2900 and ME29 ranges
are potentially transferable to Series 39 Systems. This area is concerned with
selecting the appropriate parts relevant to such transfers.

388 ICL Technical Journal May 1987

Series 39 Magnetic Tapes: Catering for the attachment of Series 39
Magnetic Tapes.

Retained Magnetic Tapes: As with Discs, it is possible to transfer existing
Magnetic Tapes to Series 39. Suitable interfacing parts need to be specified.

MACROLAN: The MACROLAN10'11 is the method by which the processing
nodes and the bulk storage devices are interconnected as a network. This
area is concerned with identifying the parts and cables required to make
these interconnections.

Specific communications requirements: This area is concerned with iden
tifying those parts related to supporting various mandatory (e.g. Teleservice)
and specific (e.g. X25) services.

General communications requirements: This is primarily concerned with
those parts required to support communication with other systems.

Printer requirements: A wide range of Printers is available for Series 39.
Associated with each type of printer is a range of options concerned with the
character set size and make-up, including Language Variants.

Siow-speed retained devices: Certain slow equipment (e.g. printers, card
readers) may be retained from previous ICL ranges. Special interfacing parts
are required to allow their attachment to Series 39.

OSLAN: The OSLAN11 is the network which interconnects the various
communications outlets and slow devices. OSLAN networks can be of
considerable size and complexity. At the time of writing S39XC configures
only the small and simple requirements, the salesperson being advised to seek
expert human assistance for the more difficult cases. However, even in these
cases S39XC will provide the minimum subset of the parts required.

Mandatory software: The set of requirements described by the user needs a
minimum set of microcode and Operating System software to complement it.
This is evaluated by S39XC.

Optional software: Over and above the software required to make the
system work, the salesperson is able to specify requirements for various
enhancements and options.

Main functions

S39XC is a selection system. It selects that system configuration, out of some
1000000000000000000 possibilities, that most closely meets the require
ments. In contrast to some systems1,2, S39XC does not perform any physical
layout functions. Problems of physical layout in Series 39 systems were
attended to at the design stage, and anyway are not particularly troublesome
in a distributed system.

ICL Technical Journal May 1987 389

S39XC also provides “expert criticism” of the user’s intentions. For example
if there is a mismatch between the amount of bulk storage and the processing
capability of the system then the user would be advised:

“You have specified more Disc and Magnetic Tape controllers than
would be expected for a node with this level of power. You need to do an
overall sizing of your I/O requirements to ensure that the system will
cope with the projected workload.”

These annotations become attached to the order and the order may be
blocked until they are cleared or specific Marketing approval obtained.

Additional features

During the process of determining the configuration S39XC is able to deduce
that the user is intending to supply other equipment which is outside the
scope of S39XC. The user is reminded of the need to attend to these extra
requirements and this reminder is also attached to his order. Orders which
have these reminders attached require specific confirmation that the extra
requirements are being attended to.

An important feature of S39XC is its Help System. Following a proposal
arising out of the Eurohelp project1213, this is structured into three
components:

The “Librarian”;
The “Butler”;
The “Guardian”.

The Librarian is an information provider covering such topics as:

How to answer questions;
The boundaries of the system;
Known restrictions;
Content of standard Series 39 packages;
Teleservice requirements;
Bug reporting;
Contacts for expert human assistance.

Additionally, the Librarian is able to offer advice and explanation in respect
of all questions asked of the user. To a limited extent, i.e. restrained to the
context of the conversation up to the time of invocation, some of these
explanations may have been tailored to match the individual consultation.
Note that whilst the underlying systems used to construct S39XC provide the
conventional How and Why facilities these are regarded as being of primary
interest only to the DS and KE. Thus they are not provided as part of the
Librarian service and are in fact masked off from access by the normal
user.

390 1CL Technical Journal May 1987

The system, ICL ADVISER14, used to implement S39XC, provides a
comprehensive range of low level commands for the control of the consulta
tion. Whilst invaluable to the DS and KE, their use by the salesperson would
be difficult since it would involve a high degree of understanding of the way
in which ADVISER and S39XC work. Hence access to these functions is
masked off and instead the Butler is available to perform the following
actions on the user’s behalf:

Begin the consultation all over again;
Restart the consultation at a previous point;
Quit the consultation;
Save the current state of consultation.

The “Save” facility is particularly important. It allows the user to store the
point in the consultation reached when there is, for example, a telephone
interruption. On re-entry to S39XC the Help system will notice the presence
of a stored position and offer the user the option of resuming from the point
of interruption.

At the end of a complete run, the Butler automatically offers the user the
possibility of saving the (high level) details of the consultation. On subse
quent entry to S39XC, if the presence of any such saved details is noted then
the Butler will offer the user the option of selecting one of these files for
restoration. In this case, the user is then offered the option of having his
responses processed immediately to the low level expansion or of stepping
through them question by question. In this latter case, whenever a question is
asked the previous reply is retrieved and the user may, if so desired, change it
before sending it back. Note that if changes are made then some of the
previous session’s replies may be rendered invalid by the propagation of any
relevant constraints. This will lead to S39XC automatically requiring the
user to also change these further invalid replies - thereby maintaining the
integrity of the generated parts list.

A further facility offered by the Butler is an option for the user to examine the
“cost tree” associated with the total configuration price. This option is
automatically offered if the user has asked for a costed configuration.

The Guardians are a set of pro-active agents which continually monitor the
internal state of the consultation for constraint violation. When such a
violation is detected the consultation is immediately interrupted and an
informatory message is displayed indicating the root cause of the problem.
On resumption, the user is taken back in the question sequence to a point
relevant to recovery from the problem. There are some 25 of these pro-active
agents in S39XC, covering a range of problems from simple cases like
attempts to dual an odd number of data channels to the more exotic
constraint violations which may occur during, for example, configuration of
the OSLAN.

ICL Technical Journal May 1987 391

Also conceptually part of the Guardian system, but not explicitly identified
as such to the user, are a set of provisions whereby the acceptable boundaries
on the reply to any question seeking a numeric response are adjusted to
match the constraints of the configuring process and the state of the
consultation to date. To avoid “cueing” the user, these boundaries are not
initially visible and are only made visible should a violation be detected. If
the reply to a question lies outside the relevant boundaries then the question
is immediately re-asked, this time with the boundary values being made
visible to the user.

Delivery

S39XC is available to its users as a MAC Service on a single central service.
Users connect to the service either by direct dial-in or by using the facilities of
ICL’s Network. The majority of the users use a One Per Desk as their
terminal - much of the rapid take-up of S39XC can be attributed to the
widespread availability of OPDs amongst ICL’s salespeople.

Methodology

Knowledge elicitation

Contrary to the industry folklore1516,17, elicitation of the knowledge
required for successful configuring was not particularly difficult or time
consuming. That it was successful is evidenced by the high quality obtained
in the final product.

However, there were a number of special factors mitigating the elicitation
task:

The KE was already reasonably informed as to the general details of
Series 39 make-up and architecture;

It was possible to structure the problem into agreeably sized areas which
could be tackled essentially independently of each other, with little
recapitulation being required;
The problem was clearly defined and did not involve any uncertain
reasoning.

During the course of the development of S39XC the DS was given a
condensed version of the ADVISER Language Course. Whilst primarily
intended to prepare the DS for the time when S39XC was handed over to
Mainframes, this training had the noticeable side effect of changing and
improving the nature of the dialogue between the DS and KE. As a follow on
to this training and in order to reinforce his understanding of the ADVISER
Language, the DS undertook the writing of the initial version of one of the
areas himself without any intermediate elicitation. The DS also directly
inserted all of the explanatory text associated with each question.

392 ICL Technical Journal May 1987

An important function performed by the DS was to act as a single focus for
knowledge being passed to the KE, thereby freeing the KE from any need to
resolve disputes between conflicting DSs. It did however put some of the
burden of knowledge elicitation on the DS himself.

Rather than attempt the mammoth task of eliciting the whole of the
knowledge in one session, the strategy adopted was to work through the
various hardware areas one by one. The typical pattern for any one area
was for the DS and KE to interact over a period of one to two days
concerning the requirements for the area. Following this, over a period of 5
to 10 days the KE would encode these requirements and perform a
thorough test to ensure that this formal description accurately represented
his (i.e. the KE’s) understanding of the requirement. Once confidence was
achieved at this level, the area was formally passed to the DS for further
testing, this time to ensure that the area performed as required to solve the
problem. This cycle was repeated until both the KE and the DS were
satisfied. In practice, the cycles for individual areas were overlapped, thus
e.g. whilst the DS was testing the FDS300 area the KE was working on the
FDS2500 area.

Although rarely mentioned in the literature, the importance of this extensive
testing by the DS cannot be over-emphasised.

Construction

From the start, it was realised that the main issue relevant to the construc
tion of S39XC was that of quality. It was realised that with KBS techniques
being totally new to the main body of users any initial failures could easily
prejudice them against the whole concept of KBS. Issues concerned with
coverage and implementation timescales, whilst important, were therefore
treated as subordinate to quality. In the event, implementation timescales
were not a problem; and with one of the consequences of the emphasis on
quality being a careful attention to the internal structure of S39XC,
expansion of the coverage has not caused any problems.

The methods used to achieve quality were no different from the industry
standard techniques of software engineering: careful partitioning and sub
division of the problem; a rigorous, planned testing schedule; control of the
interfaces between partitions; detailed written (double entry) book-keeping;
and controlled debugging.

Although the initial prototyping of S39XC had been conducted in ICL
SAGE, before fully committing to use of ICL ADVISER some thought was
given to development methods based on LISP or PROLOG, with (possibly)
later conversion to a more suitable delivery route. Other issues considered at
this time were concerned with whether ICL ADVISER was adequate as it
stood or would its functionality need extending by significant amounts of
conventional program.

ICL Technical Journal May 1987 393

Quality was the main issue in deciding this question. Whilst it would have
been possible to deliver applications written in ICL LISP or ICL PROLOG
given the size of the application it was fairly obvious that the performance
would not match the user requirement and hence some sort of conversion
exercise would be required. This however would have led to serious problems
with respect to establishing and proving the quality of the conversion route.
In contrast to this, applications developed using ICL ADVISER require no
conversion before delivery. Further, there was good evidence from the
prototype that the functionality of ICL ADVISER was adequate. In the
event, only some 40 or so lines of conventional code were required - in an
area concerned with handling external files.

Development of ICL ADVISER applications is a two stage process. Source is
first processed by the Builder into a computationally efficient representation
of the inference net. During this Building phase, extensive syntax and certain
semantic checks are applied. Having passed this phase, the Interpreter is used
to animate the knowledge and present it to the user.

Knowledge is represented in ICL ADVISER by Facts and Rules. Facts are
typed, with Assertions, Integers, Objects, Strings, Records and Arrays being
available. Rules in ICL ADVISER are inferences, with Facts becoming
instantiated once and once only. For control purposes there is a facility to
return a Fact to the unevaluated state, but the value of a Fact cannot be
directly changed without this intermediate stage. Inference in ICL ADVISER
is primarily by means of backward chaining, with forward chaining being
used to control the dialogue sequence and the cohesiveness of interim and
final reports.

ICL ADVISER supports the structuring of problems by providing an Area
construct. An Area is similar in concept to the Module of conventional
programming and is provided with formal Interface Definition constructs.

The achievement of high quality was very much eased by the declarative,
single assignment style of programming supported by ICL ADVISER.
Although there were some control issues to be faced in the implementation -
and these are well known danger areas - they were very few and, since they
were not confused with the actual process of configuring, could be concen
trated on in depth.

As illustrated in Fig. 1, S39XC is divided into a number of distinct ADVISER
Areas. This division is primarily organised to enable the required control
facilities and options to be easily implemented. Secondary to this is a desire
to achieve a clean functional distinction between the various parts of S39XC.
Note, though, that these two aims are not necessarily contradictory.

The Configurer Area (1) is concerned with:

(a) Collecting general user and run details;

394 ICL Technical Journal May 1987

Fig. 1 The structure of S39XC

(b) Offering restart from interrupted sessions or from old cases;
(c) Setting up the required type of run;
(d) Activating (indirectly) the technical areas;
(e) Offering the opportunity to Save the last case;
(f) Offering various end-of-run options.

The Parts Definition Area (2) acts as a depository for facts concerning the
parts available for selection and their prices. It is also able to acquire these
prices from an external file if so required.

The Consultation Control Area (3) is concerned with the sequencing of entry
of individual technical areas, interspersing these entries with advisory/help
text as required.

The Price Area (4) offers browsing facilities with respect to the details of how
the total price of the configuration is derived. It is activated only if a priced
configuration is being generated.

The Final Report Area (5) is where the results of the whole consultation are
summarised and presented to the user. This area also contains the heuristics
used to generate the “stylistic” criticism of the composite configuration. If
required, the user is also given practical advice on such topics as how to take
a screen copy of the output of the run.

The Individual Technical Areas (6) are where the actual configuration work
is performed. S39XC contains eleven such areas each with quite varied sets of
rules dependent on the nature of the specific technical problem. However,
each Area in this set also conforms to a common thematic structure of
conducting the specific conversation, evaluation of the relevant part counts,

ICL Technical Journal May 1987

production of an Area summary, and presentation of an option to re-run the
Area again. Closely similar mechanisms are used to achieve these effects in
each individual Technical Area.

The Help Area (7) may be entered at any time. It contains the Librarian and
Butler facilities. The construction of the Help system was a little unusual, a
fair proportion of it consisted of the KE encoding his own knowledge of the
internal structure of S39XC - an interesting example of self-reference18.

Future

The next stages in the development of S39XC are likely to be concerned with
its extension into superstructure software and the generation of French and
German language variants.

In the area of mainframes, the process of selecting configurations is likely to
be enhanced by a precursor which is able to size the customer’s requirements,
possibly along the lines of DRAGON19, and provide direct input to S39XC
in respect of many of its required values.

Taking a broader view within ICL, it has been decided to include a
configuring system as part of the basic development requirements for new
products.

Future work within the Knowledge Engineering Business Centre will include
an examination of the case for the development of tools systems20 specifically
targetted at the production of KBS configurers. Such a tools system would be
aimed at configuring problems in general, e.g. conveyor systems, power drive
systems, electrical distribution systems21, rather than at the relatively narrow
domain of computing.

Conclusions

S39XC has been a remarkable success. The reasons for this success are of
relevance to most KBS projects. To summarise:

(a) A highly geared business case could be made out;
(b) It could be demonstrated that conventional techniques were not suitable;
(c) There was an existing community of needful users;
(d) The domain was eminently suitable in that it was clearly bounded, was

of a suitable “grain” size and did not involve inexact reasoning;
(e) The technical means for delivery to a large community were already in

place;
(f) Given that the problem was to be tackled by the use of KBS techniques

then it was possible with only two people involved. Thus many of the
difficulties caused by multiple communication channels were avoided;

(g) A suitable “shell” was available. Its use meant that all of the intellectual
effort of the KE and DS was focussed on the main issue;

ICL Technical Journal May 1987

(h) Finally, the lessons of software engineering so painfully learned in
conventional programming are just as applicable to KBS applications -
though they may need some re-interpretation.

Acknowledgements

Many people contributed to the success of the S39XC project, not least
amongst these being the ADVISER implementation team (Dave Mitcalf and
Linda Hughes) whose painstaking devotion to quality so much eased the
construction of S39XC. Thanks are also due to those GIS people whose
enthusiasm paved the way for a rapid introduction of the service to a world
wide user base. That the project was ever started at all is due to the visionary
encouragement and risk taking of the management of Mainframe Systems
and of the Knowledge Engineering Business Centre. Credit is also due to
Derek Sayers, Ken McLauchlan, Alan Pooley and Karen Morley whose
early prototyping demonstrated the possibilities for the construction of
S39XC.

It almost goes without saying that but for the remarkable enthusiasm and
devotion of the Domain Expert, A. (“Sandy”) W. Smith, S39XC could not
have existed at all.

References

1 McDERMOTT, J.: *R1: A Rule-based Configurer of Computer Systems’. Technical Report
CMU-CS-80-119, Carnegie Mellon University, Pittsburgh, PA.

2 McDERMOTT, J.: ‘Rl: An Expert in the Computer Systems Domain’. Proc. First Nat.
Conf. AAAI, 269-271.

3 SZOLOVITS, P. and CLANCEY, W.: ‘Case Study: OCEAN’. Tutorial 8, IJCAI, 1985.
4 WU, H., VIRDHAGRISWARAN, S„ CHUN, H.W. and MIMO, A.: ‘ISC - An Expert

System for the Configuration of DPS-6 Software Systems’. 9th Annual Honeywell
International Computer Sciences Conference, 1985.

5 BOWEN, J.: ‘Automated Configuration using a Functional Reasoning Approach’. Proc.
AISB-85, U. Warwick, April 1985.

6 ROLSTON, D.: ‘An Expert System for DPS 90 Configuration’. 9th Annual Honeywell
International Computer Sciences Conference, 1985.

7 SKELTON, C.J.: ‘Overview of the ICL Series 39 Level 30 System’. ICL Tech. J., Vol. 4, Iss.
3, May 1985, 225-235.

8 ‘ICL SAGE User Guide’. ICL Publication RPO480.
9 MACPHAIL, N.: ‘Development of the CAFS-ISP Controller Product for the Series 29 and

39 Systems’. ICL Tech. J , Vol. 4, Iss. 4, May 1983, 393-401.
10 STEVENS, R.W.: ‘Macrolan: A High-Performance Network’. ICL Tech. J., Vol. 3, Iss. 3,

May 1983, 289-296.
11 BROUGHTON, P.: ‘Input/Output Controller and Local Area Networks of the ICL Series

39 Level 30’. ICL Tech. J., Vol. 4, Iss. 3, May 1985, 260-269.
12 HARTLEY, R J. (U. Leeds, Dept. Comp. Based Learning): T he Rationale of Explainer’.

Eurohelp Project, CBLU-ULE/EUROHELP/024, lune 1986.
13 BREUKER, J. and DE GREEF, P. (U. Amsterdam, Dept. Social Science Informatics):

Deliverabe 12.1, ESPRIT Project P280, ‘EUROHELP’, December 1985.
14 ‘ADVISER User Manual’. ICL Publication R30008/02, 1985.
15 HAYES-ROTH, F„ WATERMAN, D A. and LENAT, D.B.: ‘Building Expert Systems’.

Addison Wesley, 1983, 129.

ICL Technical Journal May 1987 397

16 DUDA, R.O. and SHORTCLIFFE, E.H.: ‘Expert Systems Research’. Science, 1983, 220,
265.

17 WILKINS, D.C., BUCHANAN, B.G. and CLANCEY, W.J.: ‘Inferring an Expert’s
Reasoning by Watching’. Proc. Conf. Intelligent Systems and Machines, 1984, 1.

18 HOFSTADTER, D.: ‘Godel, Escher, Bach: an Eternal Golden Braid’. Penguin Books.
19 KEEN, M.J.R.: ‘DRAGON: The Development of an Expert Sizing System’. ICL Tech. J.,

Vol. 3, Iss. 4, November 1983.
20 WU, H„ CHUN, H.W. and MIMO, A.: ‘ISCS - A Tool Kit for Constructing Knowledge-

Based System Configurators’. Proc. Fifth Nat. Conf. Art. Int., Philadelphia, Aug. 1986,
1015-1021.

21 BORGHESI, M., GIORGESI, R. and DECIO, E.: ‘An Application of Knowledge-Based
Systems Technology to Configuration Problems’. Proc. First Int. Expert Systems Conf.,
London, Oct. 1985, 99-118.

Appendix A - example S39XC source

Rules

ICL ADVISER offers a powerful syntax for expressing rules, allowing the
clustering together in a compact form the rules concerned with a particular
concept. Thus each rule in the following example has the structure:

(If ... Then (If ... Then ...
Else (If ... Then ...

Else ...)

INTEGER extra mpsu:
“The number of extra mpsu required to form the network.”

RULE set_extra_mpsu_l_node: “for the single node case”
PROVIDED no of_nodes = I

extra_mpsu IS 0
PROVIDED 5 * mpsu_ct > controller ct

ALSO
extra_mpsu IS (controller_ct - 5 * m psuct) DIV 4
PROVIDED (controller_ct - 5 * mpsu_ct) MOD 4 = 0

ALSO
extram psu IS (controller_ct - 5 * mpsu ct) DIV 4 + 1

RULE set_extra_mpsu_2_node : ” ”
PROVIDED no_of_nodes = 2

extra_mpsu IS 0
PROVIDED 4 * mpsu_ct > controller_ct
ALSO

extra mpsu IS (controller_ct - 4 * mpsu_ct) DIV 4
PROVIDED (controller_ct - 4 * mpsu_ct) MOD 4 = 0
ALSO

extra mpsu IS (controller_ct - 4 * mpsu_ct) DIV 4 + 1

The above example captures the count of the number of extra MPSUs
required to allow the construction of the network, over and above those

398 ICL Technical Journal May 1987

required for the connection of controllers. There are two main cases,
dependent on the number of processing nodes present in the system.

Demons

The mechanism by which the pro-active elements of the Guardian are
implemented is the ADVISER Demon. The following example illustrates
this:

First we have an Assertion (a fact which can have gradations of values
between True and False) which has an associated rule which expresses
the illegal condition of interest. In this case, this is where the user has
specified a number of drop cables which is incompatible with previous
requests.

ASSERTION illegal da_cable_ct:
“the number of da cables is incorrect”

RULE set illegal da cable c t :
“if the number of cables does not match the equipment count”
illegal_no_da_cables IS TRUE

PROVIDED
(SUM(da_cables_required) < (transceiver_ct

+ devices_via_concentrator
+ repeater_cable_count))

OR (SUM(da_cables_required) > 2 * (transceiver^
+ devices_via concentrator
+ repeater_cable count))

Watching this Assertion we have a Demon which is triggered if, and
only if, the Assertion becomes instantiated to True.

DEMON watch_da_cable_ct: “for inconsistency”
WHEN illegal_da_cable_ct
ADVISE “ I N C O N S I S T E N C Y ”

, “ You must specify at least ” , (transceiver^
+ repeater_cable_ct
+ devices_via concentrator)

, “ and no more than ” , 2 * (transceiver ct
+ repeater_cable_ct
+ devices_via_concentrator)

, “ Drop Cables. Please try again. ”

ALSO WIPE ask_da_cables_required
, da_cables required
, illegal_da_cable_ct

ALSO CONSIDER da_cables_required

ICL Technical Journal May 1987

If the Demon is activated it informs the user the nature of the problem,
returns the relevant facts to the Unevaluated state and then causes the
user to be asked to resupply the requirement for Drop Cables.

Appendix B - example run

Although written as a MAC application, use of S39XC gives much of the
appearance of a TP application - both in its speed of response and in its total
use of a screen mode of presentation. Note though, the majority of the
screens have a content which is a function of the foregoing progress of the
interaction.

The following extract from a run of S39XC shows the dialogue and interim
report concerned with the selection of FDS300s. First the user is asked to
specify the number of banks of FDS300 required. If none the user may type 0
or merely press (SEND). In the latter case a default value will be supplied by
S39XC.

S E R I E S 3 9 EXPERT CONFIGURER T y o e 'H E L P f o r h e l o
T y o e !E X P f o r c l a r i f i c a t i o n

TASK 2 : C o n f i g u r i n g t h e MACROLAM

F D S 3 0 0 REQUIREMENTS

NO TE : F D S 3 0 0 ’ s a t t a c h e d t o MOSS c o n t r o l l e r s a r e c o n f i g u r e d
l a t e r a s p a r t o f R e t a i n e d D i s c C o n f i o u r i n o .
DO NOT INCLUDE THESE REQUIREMENTS HERE

A b a n k o f F D S 3 0 0 i s a o r o u o o f i n t e r c o n n e c t e d d r i v e s
e x c l u d i n g t h e c o n t r o l l e r . I t i s t h e r e f o r e a s e t o f d r i v e s
a t t a c h e d t o a n F D S 3 0 0 M a s t e r M o d u l e i n c l u d i n g t h e t w o
d r i v e s h o u s e d w i t h i n t h e M a s t e r M o d u l e .

How m a n y b a n k s o f F D S 3 0 0 d o y o u r e o u i r e ? > 6 <
P l e a s e t y o e t h e n u m b e r y z-.\ r e o u i r e a n d o r e s s <SEND).

I f y o u d o n ’ t u n d e r s t a n d w h a t i s m e a n t b y " b a n k " t h e n
t y o e EXP t h e n <SEMD> f o r a n e x o l a n a t i o n .

Next the user is asked to specify the number of drives for each Bank. Note
that the number of lines in the menu matches the previous reply.

400 ICL Technical Journal May 1987

T y p e !EXP f o r c l a r i f i c a t i o n
TASK 2 s C o n f ig u r in g t h e MACROLAN

SERIES 3 9 EXPERT CONFIGURER Type ! HELP f o r h e lp

FDS30O REQUIREMENTS

P le a s e s u o p ly y o u r r e o u ir e m e n ts f o r FDS30O d is c s .
You can h a v e a Minimum o f 2 discs and maximum o f S on any b a n k .

F i l l i n t h e nu m b er o f d is c s y o u w an t a g a in s t e a c h b a n k ,
th e n press <HOME>, th e n <SEND>

B ank l s >3 <
B ank 2 « >4 <
Bank 3 “ >3 <
Bank 4 : >5 <

The user is next questioned regarding the requirements for dualling the
Banks of FDS300. Note the user is given a reminder of the number of drives
selected for each Bank.

S E R IE S 3 9 EXPERT CONFIGURER T yo e ! HELP f o r h e lp
T y o e !EXP f o r c l a r i f i c a t i o n

TASK 2 s C o n f i g u r i n g t h e MGCROLftN

FD S 300 REQUIREMENTS

P le a s e i n d i c a t e w h ic h banks a r e t o have d u a l a c c e s s .
NOTE : You m ust c h o o s e an e v e n num ber o f b a n k s .

M ake y o u r c h o ic e s by t y p in g Y a g a in s t th e banks
yo u w is h t o h a v e d u a l a c c e s s and
th e n p r e s s (HOM E!, th e n <SEND>.

Bank 1 < 3 d is c s) t > Y <
Bank 2 (A diset) t) <
Bank 3 < 3 d is c s) t > <
Bank a < 5 d is c s) 1 > Y (

In the next screen, a simple yes/no response is used in respect to the
requirement for MDSS. A reply of “Yes” would lead to a set of screens
relevant to this requirement.

•CL Technical Journal May 1987 401

T y p e !E X P f o r c l a r i f i c a t i o n
TASK 2 5 C o n f i g u r i n g t h e MACROLAN

SERIES 39 EXPERT CONFIGURER Type ! HELP f o r h e lp

F D S 3 0 0 REQUIREMENTS

Do y o u w a n t t o a d d a n y MDSS d r i v e s t o F D S 3 0 O ? >N0 <
P l e a s e t y o e Y o r N a n d p r e s s (SEND)

Here, the user is reminded that the basic package selected already contains
one CAFS and is asked to supply the requirement (if any) for further units.

S E R I E S 3 9 EXPERT CONFIGURER T y o e !H E L P f o r h e l o
T y o e !E X P f o r c l a r i f i c a t i o n

TASK 2 s C o n f i g u r i n g t h e MACROLAN

F D S 3 0 0 REQUIREMENTS

NOTE : Y o u h a v e a l r e a d y s e l e c t e d CAFS
a s D a r t o f y o u r b a s i c c o n f i g u r a t i o n .

How m a n y a d d i t i o n a l CAFS u n i t s d o y o u r e o u i r e ? > 2 <
P l e a s e t y o e t h e n u m b e r y o u r e q u i r e a n d p r e s s (SEND)

The area concludes with a summary of the parts selected to meet the FDS300
requirement. If the user had previously selected pricing then this screen
would also contain details of the Sales Price and Quarterly Engineering
Service Charge, together with their totals.

402 ICL Technical Journal May 1987

F D S 3 0 0 C O N F I G U R A T I O N

4

1
12
1
4

x 0 0 3 6 3 1 / 0 4 - F D S 3 0 0 MASTER TYPE 2
x F 0 3 6 5 4 / 0 5 ~ F D S 3 0 0 C A F S - I S P
x 0 0 3 6 3 2 / 0 1 - F D S 3 0 0 MODULE 1
x 0 0 3 6 3 2 / 0 2 - F D S 3 0 0 MODULE 2
x 0 0 3 6 3 2 / 0 3 - F D S 3 0 O MODULE 3
x F 0 3 6 5 4 / 2 1 ~ F D S 3 O 0 2ND COUPLER
x F 0 3 6 5 4 / 3 4 - F D S 3 0 0 DA CBL DR 1 - 6 (X 2)
x F 0 3 6 S 4 / 3 1 - F D S 3 0 0 SA CBL DR 3 - 6

A r e y o u s a t i s f i e d w i t h t h e F D S 3 O 0 s p e c i f i c a t i o n ? > YES <

(I f y o u a n s w e r N y o u w i l l b e a s k e d t o r e s p e c i f y t h e F D S 3 0 0)

At the end of each area, the user is given the opportunity to re-enter the area
at the start and re-answer the questions. It is thus possible to cycle round
until the area is acceptable. When a “Yes” reply is given to the final question
the FDS300 parts are transferred to the final total selection and any
constraints generated are carried forward to the next area.

ICL Technical Journal May 1987 403

The application of knowledge based
systems to computer capacity

management

M. Small
ICL Knowledge Engineering Business Unit, Manchester

Introduction

Capacity Planning is very much like budgetary planning in that its objective
is to share out the resources of the computer system both by quantity and by
timescale though possibly to a timetable calculated in hours as well as in
weeks and months.

Just like any plan it is reliant upon the data supplied by those participating in
the plan as much as or probably more than those supplied by outsiders. So
for instance just as most budgetary plans rely upon reasonable estimates of
the exchange rate and the bank rate, capacity plans rely upon the capabilities
of processors and routes. However, just as incorrect sales revenue forecasts
are likely to have far reaching implications on the budgetary plans, so too
have incorrect demand forecasts on any capacity plans.

In building a capacity plan an expert practitioner goes through a systematic
process. This process is one of collecting and assessing the information
concerning the existing and proposed demands made on the computer
system together with their impact on that system. This process is usually
called sizing.

Sizing is not an exact mathematical science although it may involve the use
of mathematical and statistical techniques. Successful sizing involves the use
of practical experience and expert knowledge. Not everyone is equally skilled
at sizing and indeed there are recognised experts in this field. However the
knowledge used by these experts, whilst complex, is highly specialised. These
factors taken together indicate that computer systems incorporating this
specialist knowledge could be produced, using knowledge engineering
techniques.

Three systems, relevant to this area, have been produced by ICL using
knowledge engineering techniques and technology. These systems are:

DRAGON - an expert system for sizing new workloads.

404 ICL Technical Journal May 1987

S39XC - a n expert system for configuring Series 39 systems. This is
described in another paper in this journal5.

VCMS - a Capacity Management System for VME.

What is knowledge engineering?

Knowledge engineering has its roots in that branch of computer science
known as “artificial intelligence”, which can be summarised as an attempt to
develop computer systems which in some way mimic human intelligence.
Experience gained in following these goals, and the advances in power of
computer systems, have now led to the point where it is possible in many
fields to create systems with a problem solving capacity as good as (and in
some cases better than) that of a human expert in that held.

Such systems are known, appropriately enough, as “Expert Systems” (other
names used are Knowledge Based Systems or even Knowledge Based Expert
Systems). An early aim of researchers in artificial intelligence was the
construction of general purpose problem solvers; in contrast Expert Systems
represent the realisation that the best way to solve real-world problems with
computers is to incorporate the knowledge and experience of human experts.
An Expert System therefore solves problems (or provides guidance or
training) in a particular area by making available to the computer the skills
of an expert in that area.

KNOWLEDGE ENGINEERING, then, is concerned with

• providing means of storing or representing human knowledge - this is
usually known as the “knowledge base”

• providing techniques for getting knowledge out of the expert and into
the knowledge base in an appropriately structured form - this is called
“knowledge acquisition”

• providing the means by which the user can state or examine his problem
and arrive at the solution by reference to the knowledge base - in the
jargon of the industry this is known as the “inference engine”

• doing all this in an easy-to-use, “user friendly” manner.

Why not use traditional methods?

It would be possible, given enough time, to construct an expert system
program in almost any computer language from BASIC to COBOL,
FORTRAN to PASCAL. But the problems would be enormous. First of all,
there would be no real computer assistance in the knowledge acquisition - it
would be a matter of pencil and paper. Then that knowledge would have to
be turned into code in a program, a difficult task requiring programming
expertise. If the knowledge was right and the code was accurate the program
would work (it might not have a very easy user interface, but that is another
matter), and it could be tested on real problems. If it was then realised that
the knowledge was wrong, the whole structure of the program might have to

ICL Technical Journal May 1987 405

be changed - an extensive re-coding of the program. And when the program
was complete and working properly it would be a program capable of
solving only one problem area - to construct another expert system for
another area, even a related one, would involve starting from scratch again.

Contrast that with the Knowledge Engineering approach. The vital differ
ence here is that the knowledge is held as “data”, not as “code”. The person
constructing the system starts off with an empty expert system “shell”. Into
this shell he can put expert knowledge piece by piece as he acquires it, and
can test it and if necessary correct it as he goes along, until he is satisfied that
he has all the knowledge he needs from his expert and that it has been
correctly put into the system.

The VCMS Capacity Management System embodies the Knowledge Engi
neering approach; but before describing this we give a short account of its
precurser DRAGON, the first ICL sizing system to be based on these
principles.

Dragon

In the late summer of 1982, consideration was being given to producing a
sizing system for use by ICL sales staff. Such a system would start by
establishing the customer’s future workload by asking a series of questions,
adapting the questioning to the type of workload and the level of information
available. Like the human expert, the system would need to change its line of
questioning if one course was found to be unproductive. Where the user was
uncertain of the answer to a question, the system would need to be able to
give advice and make helpful suggestions based on what was already known
- again like the human expert. The system would need to insist on certain
minimum levels of information being provided and should then fill in the
gaps where the user had been unable to answer less significant questions by
taking knowledgeable defaults. Once the customer’s workload had been
defined, its computer resource requirements would be “costed” and this
mapped onto a suitable hardware configuration. This would be modelled to
ensure performance constraints - such as response time targets would be
met. The system would need to produce a summary report for inclusion in
sales proposals.

Such a system, as described above, would need to be highly flexible with a
well engineered user interface that enabled it to be responsive to different
levels of user skills. The ability of the system to explain its advice and lines of
questioning would be crucial to its acceptance by those who have to use its
advice as the basis for significant commercial decisions.

In October 1982 work started on an evaluation prototype - subsequently
named Dragon1,2, using the ADVISER expert system shell. To provide a
fairly complete picture of the problems to be handled in an expert sizing
system, it was decided that Dragon would need to take a vertical slice

406 ICL Technical Journal May 1987

through all the main steps in the sizing process, while at the same time
restricting the range of products to be covered, to speed development.

By the end of March 1983 a fairly complete version of Dragon was running
and demonstable. This performed the following functions:

- detailed evaluation of the resource requirements of a TPMS/IDMS system
- gross evaluation of MAC (multi-access) and batch resource requirements
- combining TP, MAC and batch workloads
- selection of suitable 2900 series configuration to run the combined

workloads
- calculation of response times (using a priority network queuing model

written in Pascal)
- report production.

The successful development of DRAGON showed that not only was such a
system possible but also that the use of expert system techniques enabled a
totally practical, robust, usable system to be created; and that this could
reflect many of the attributes of the human expert, for example

- a flexible approach of questioning
- the ability to explain answers to questions
- the ability to offer alternatives
- the ability to fill in gaps in the client’s information, by making knowledge

able assumptions.

For the beginner to knowledge engineering the use of the ADVISER package
enabled knowledge to be encoded rapidly without the need to worry about
data structures, user interfaces, etc. The very high level declarative language
used to specify knowledge to ADVISER enabled rapid development to be
made with few coding errors. ADVISER’S ready acceptance by non
programmers made it possible for the expert system to be created directly by
the person with the knowledge, rather than by working through an
intermediary.

VME capacity management system

After considering the lessons learnt from DRAGON and in view of the report
produced by the Performance Working Party of the Large Systems User
Group6, it was decided to develop a knowledge engineered capacity manage
ment tool as a product. This posed a particular challenge since the tool
envisaged would provide the extraction, storage and reporting of relevant
performance data as well as the more knowledge intensive analysis and
modelling facilities. This tool, the VME Capacity Management System
(VCMS), will now be described.

At its simplest, predictive sizing is no more complex than simple arithmetic
and in fact such an approach would benefit the majority of computer

ICL Technical Journal May 1987 407

installations and would totally satisfy substantial numbers. In such an
approach the units of resource demand are estimated for each unit of work in
terms of OCP seconds to be used, number of transfers to each device which
must be completed and the mainstore required. It is then necessary that the
minimum numbers of each unit of work be processed, the minimum rate of
processing each such unit and the required level of concurrency of processing
each unit be identified for the periods to be sized. Simple calculations allow
the total resource demands of the workload to be quickly quantified and
these demands can be compared with the levels of demand which can be
reasonably supported by the system while providing an acceptable level of
response. This level of sizing is ideally suited to spreadsheet techniques and
the use of simple resource usage data such as that provided by the VME
Accounting and Budgeting Option and its use is recommended wherever
mixed and volatile workloads exist or minimal resource is available for
sizing.

Obviously once spreadsheet techniques are applied, additional sophistication
is possible. For instance analysis of the sensitivity of the results to errors in
frequency or rate of work unit processing can be undertaken and thus the
efforts in determining the demand characteristics can be concentrated on
particular work units. Furthermore the relative priorities of the different
units or work can be taken into account so allowing higher loadings to be
evaluated as safe when mixed workloads are being evaluated.

The approach can be further enhanced by increasing the level of detail in
which the work units are specified thus allowing more of the configurational
characteristics to be evaluated. For instance it would be possible to specify
for each unit of work the number of transfers and of bytes transferred to each
file. This taken with a mapping of file to disc, simple with good spreadsheet
software, allows individual disc and controller loadings to be evaluated.

In fact, except for complex queuing models the use of spreadsheets to
estimate network traffic and loadings is the only reasonable approach.

To exploit the use of spreadsheet techniques and to bring knowledge based
systems to the support of configuring and workload planning decisions ICL
has developed a system called VME Capacity Management System. This
system, known as VCMS for short, provides facilities for constructing
capacity plans for VME installations and monitoring actual usage trends
against these plans.

The system is based on REVEAL a knowledge based modelling tool.
REVEAL offers facilities for the development of models which may include
rules and judgements as well as conventional algorithms. These facilities have
been used by ICL to provide enhanced exception reporting and workload
specification facilities. The VCMS system which is illustrated in Fig. 1
comprises the following components:

408 ICL Technical Journal May 1987

ICL Technical Journal M
ay 1987

ICL’ REVEAL REPORTER

& APPLICATION ,
KNOWLEDGE /

PLANNER______________________
VME Capacity Management System

Fig. 1 VME capacity management system VCMS

VCMS MONITOR which extracts performance data from various
sources in VME and builds up a performance database.
VCMS REPORTER which enables the user to produce his own reports
and graphs from this performance database.
VCMS PLANNER which enables the user to build up capacity plans.
This incorporates the lessons learned from the DRAGON system.
VCMS REVEAL which further extends the facilities available to include
business planning and knowledge engineering.

Reveal and VCMS

The REVEAL system can be used to program conventional algorithmic
operations in the normal way, using procedural programming techniques
and the standard arithmetic, boolean and character string operations, loops
and conditions. It enables complex problems to be modelled and it provides
a wide variety of special functions including:

• data handling
• mathematical functions
• other special functions, such as the ability to operate on character

strings.

The unique power of REVEAL, however, lies in its facilities for the
representation of imprecise human knowledge. A REVEAL program, follow
ing the conventional procedural pattern, may also include a set of rules,
written in a purely declarative form (without any particular order of
execution being implied). Such a set of rules might, for example, define that:

if response.time is above about 5 then response.measure is unacceptable
if response.time is close to 5 then response.measure is quite acceptable
if response.time is well below about 5 then response.measure is very
acceptable.

These rules include:

- linguistic variables (e.g. response. time and response. measure). Each linguis
tic variable has a name and a domain of applicability (e.g. from 1 to 100).

- qualifiers expressing a concept, for example “acceptable” or “about 5”
which applies to a linguistic variable. Each qualifier is represented by a
truth function, indicating the degree to which, for example, any response
time in the range is considered to fit the concept. This representation is on
a scale of numeric values from 0 to 1. These concepts can be further
modified by hedges (e.g. “quite”) which strengthen or weaken the force of
the qualifier.

- noise words (e.g. our, should be, that of) to improve the readability of the
statements without affecting their logical meanings.

410 ICL Technical Journal May 1987

When the model is executed the relevant rules are applied to the given set of
input values.

Concept definitions

Concepts such as “maximum” and “acceptable” mentioned above are defined
by the user for the particular purpose relevant at the time. These concepts once
defined are retained in a vocabulary for future use. The definitions of the
concepts are held as fuzzy sets and manipulated according to the rules of fuzzy
logic. This simulates the process of normal human reasoning, in that it allows
data to be viewed in terms of the various shades of possibility and uncertainty
which almost always exist between the two poles of “true” and “false”.

While conventional computer logic (and classical set theory, or two-value
logic) allow for only two values (true and false), in reality human perception is
able, by adding the factors of judgement, experience and expert knowledge to
the situation, to realise that there is a range of values between true and false -
the shades of grey between the black and white. Let us consider an example:

If the maximum acceptable response time for a service were considered to be
5 seconds, binary logic would accept a response of 4-99 seconds without
qualification. Defining maximum acceptable response time using a fuzzy set
allows grading to be performed so that acceptability may be qualified for
times close to the maximum. This is illustrated in the graph shown below. This
also illustrates how concepts are changed by the words “above” and “below”.

VCMS knowledge base

Using the facilities provided by REVEAL expert knowledge has been

Fig. 2 “Fuzzy” concepts

ICL Technical Journal May 1987 411

incorporated into the VCMS Monitor, Reporter and Planner modules. The
Monitor and Reporter contain a performance evaluation knowledge base
which may be used to monitor the health of the system. The Planner contains
knowledge of the structure of 2900 and S39 hardware and system software
which may be used for modelling purposes.

The performance evaluation knowledge base consists of rules which may be
used to analyse the monitored data taken in by the system. These rules check
for abnormal or excessive response times, OCP, mainstore and disc usages,
and disc unbalance.

The data concerning the processor utilisation by the different classes of work
is analysed to check that the following are reasonable for the class of work:

total usage
interactive usage
TP usage
system usage
control usage.

The rules used are fairly complex taking into account amongst other things
peaks and sampling periods.

The data concerning MAC usages are used to determine whether there is
sufficient mainstore for the workload being process. The rules check for

store occupancy
excessive Roll in Roll out operations (RIROs)
excessive VSIs
VSI service times are reasonable.

The measured mainframe response times are compared with that which
would be expected for the work being processed, assuming reasonable disc
response times.

Data concerning the individual discs for which data has been collected is
evaluated to check that:

the transfer rate is reasonable
the transfer rate is not unduly above the average for the system
the transfer rate is consistent
user/Kernel transfers to the same disc are suitably balanced.

An example of a VCMS performance evaluation report is given in the
Appendix: this reproduces exactly what is output by the system. Some of the
graphs referred to in this output are given in Fig. 3.

VCMS Planner owes much to Dragon, in particular it includes the FAST
(Football Analogy of System Throughput) network queuing model software

412 ICL Technical Journal May 1987

developed by Conway Berners Lee3,4. The module helps the user to construct
and evaluate capacity plans for ICL 2900 and Series 39 systems, in two parts
concerning workloads and configurations respectively. The first, workloads,
represents the way in which the demands of different users or usages for the
services of different types (TP, MAC, Batch) are planned to occur over the time
period being considered. The second, configurations, represents possible
ways of satisfying these demands. The two parts can be linked as required.

Workloads are held as tables in which demands are given against time, with a
table for each use and each component of demand; these may be derived
directly from VCMS Monitor data, as measured workloads, or input
manually for new applications. Workloads may be aggregated so that
combinations can be evaluated against a given configuration, thus enabling

Interactive OCP exception graph for Thursday 11/12/86
Function Char Minimum Maximum

Interactive OCP • 4.76827 111.069
guideline = 100 100

125f ' > 1 '----1----'----'----'----1 ' 1 r—i—-i---1---- 1----1----1 1 1----1--- 1—~

112.5

_ ioo.............................. ..

j j 87.5 .• •

I 75- . r ::

B, 6 2 . 5 - . . . ••

1 '1.
| 50- :
a. ;
8 37.5 .1'

25 -:.
12.5 • ” ;..........

0 0800 1000 1200 1400 1600 1800 2000 2200 0000 0200 0400 0600
Time

Response exception graph for Thursday 11/12/86

Function Char Minimum Maximum
MAC response/expected response 41.6519 111.86

guideline 100 1°0

0800 1000 1200 1400 1600 1800 2000 2200 0000 0200 0400 0600
Time

ICL Technical Journal May 1987 413

MAC VSIS exception graph for Thursday 11/12/86
Function Char Minimum Maximum

MAC VSIS/guideline. 44.2436 135.699
guideline = 100 100

130

120

S- 110

Ig 100
e
I 90 S

60 ” " :

50

4 0 1— .— i— i— i— i— i— «— i— i— i 1 1— .— i 1 1 1— i 1— i— *— *—
0600 1000 1200 1400 1600 1800 2000 2200 0000 0200 0400 0600

Time

Fig. 3 VCMS performance evaluation report: examples of graphical output

the user to plan schedules (short term plans) and the phasing of projects (long
term plans). Detailed evaluations giving breakdowns by individual compo
nents can be obtained, enabling the user to plan individual applications in
the context of the overall capacity plan.

Configurations, which also may vary with time, are defined in terms of the
names, labels or other identifiers used for ICL hardware equipment, and are
input through form-type screens. Planner contains knowledge of the service
characteristics of the relevant OCPs, discs, and disc controllers which is used
to set up an appropriate network description for input to the queuing model
and to perform conversions between different types of OCP. Knowledge of
how VME system demands are incurred is used to include such demands as
and when necessary.

Conclusions

This paper has described two expert systems for capacity planning. The
nature of the problem demands a high degree of integration of solution
methodologies and software technologies. These encompass:

- efficient processing and analysis of large volumes of computer performance
data

- mathematical queuing theory models of system throughput
- heuristic knowledge of acceptable limits of demands applied to configurations
- transformation knowledge necessary to formulate real world questions

into input to the queuing models.

The REVEAL System upon which VCMS is based has proved its value as a
development tool for such integrated systems. The primary benefits of such a

414 ICL Technical Journal May 1987

tool are in the reduction of the development effort requirements and
timescales. It has been estimated that, compared with conventional program
ming methods, REVEAL will reduce timescales by a factor of up to 4 for
complete system development. Further benefit comes from the ability to
build systems using REVEAL where the prototype is used as the specifica
tion. This enables an increase in quality of the final system produced in terms
of usability and closeness of fit to user requirements.

Simple interfaces are provided to facilitate the inclusion of modules written
using conventional language systems such as COBOL and the Data
Dictionary System in systems developed using REVEAL. These were used
to program efficient input of the volume performance data by VCMS Monitor.
Also possible are links to modules written in the scientific languages
FORTRAN and PASCAL. VCMS-Planner uses mathematical queuing
software which already existed and had been written in PASCAL.

The REVEAL facilities for processing tabulated data according to rules as
well as algorithms have enabled the inclusion into VCMS of the heuristic
knowledge which is essential to the capacity management process.

It is expected that, by providing easy access to this knowledge, VCMS will
prove useful to managers and technical support specialists responsible for
ICL VME installations.

Acknowledgments

Acknowledgment is made to the many people who contributed to the
development of the systems described in this paper. In particular M.J.R.
Keen who initially developed DRAGON, and to R. Bayly for his contribu
tion to VCMS.

References

1 KEEN, M.J.R.: “Dragon: the development of an expert sizing system”. Eleventh European
Conference on Computer Measurement, October 1983.

2 KEEN, “Dragon: the development of an expert sizing system”. ICL Technical
Journal, 1983, 2 (4), 360-372.

3 BERNER-LEE, C.M.: “System Modelling - where we are and where we have to go”.
Seventeenth Annual Technical Symposium of ACM, 1987.

4 BERNER-LEE, C.M.: “Network models of system performance”. ICL Technical Journal,
1979 1 (2), 147-171.

5 BARTLETT, C.W.: “S39XC - A Configurer for Series 39 Mainframe Systems”. ICL
Technical Journal, 1987.

6 “Large Systems User Group”. Report of the Performance Working Party, March 1985.

Appendix

Performance evaluation: System Monitor

Evaluation of System Monitor data for THU861211 found in file LATEST.

ICL Technical Journal May 1987 415

Processor subsystem

Evaluation of the usage of the processor subsystem has identified that the
following guidelines are being exceeded:

Total OCP demand

The total OCP demands on the system are excessive for the type of work
being processed during 1 hour. These guidelines are approximately:

95% utilisation over one hour for wholly BATCH work
67% utilisation for interactive work.

Exceeding these guidelines is likely to lead to a significant amount of queuing
for the OCP. This will adversely affect the interactive response times and
batch turnaround times.

The periods of the day when these overloads occur and their extent are
shown in the associated graph entitled ‘TOTAL OCP EXCEPTION
GRAPH’. This graph plots total OCP, (charged and uncharged), as a
percentage of the recommended limit for the mixture of work being processed.
Thus the periods of day where this percentage is above 100% should be
investigated.

Excessive interactive OCP demand

The demand for OCP by interactive work in total exceeds the recommended
guideline of 67% during 1 hour. This is likely to lead to a significant amount
of queuing for the OCP, particularly by the lower priority (MAC) work.

The periods of time and extent to which this guideline is exceeded is shown in
the associated graph entitled ‘INTERACTIVE OCP EXCEPTION RE
PORT’. This graph plots the OCP usage excluding batch as a percentage of
the recommended limit. Thus the periods of the day where this percentage is
above 100% should be investigated.

Excessive system OCP demand

The demand for OCP by system policies and the kernel is excessive
considering other work being processed during 13 hours. This is likely to
lead to poor response times for interactive work.

The periods of time and extent to which this guideline is exceeded is shown in
the associated graph entitled ‘SYSTEM OCP EXCEPTION REPORT’.
This graph plots the OCP used by the system policies and the kernel as a
percentage of the recommended limit. Thus the periods of day where this
exceeds 100% should be investigated.

416 ICL Technical Journal May 1987

Excessive Policy 8 OCP demand

The demand for OCP by Policy 8 (Control) is excessive considering other
work being processed during 2 hours.

The periods of time and extent to which this guideline is exceeded is shown in
the associated graph entitled ‘CONTROL OCP EXCEPTION REPORT.
This graph plots OCP used in Policy 8 as a percentage of the recommended
limit. Thus the periods of day where this percentage is above 100% should be
investigated.

Mac response analysis

Evaluation of the MAC response times determined from the System Monitor
data for THU861211 loaded from file LATEST shows that the response
times experienced were longer than would be expected for a well balanced
system for 1 hour. The MAC response is related to ALL work in VME
scheduling Policy 2. The response does not include delays due to communi
cations systems.

The periods of the day when this occurs and the extent to which the response
times are excessive are shown in the associated graph entitled ‘MAC
RESPONSE EXCEPTION GRAPH’. This graph plots measured response
time as a percentage of expected response time. Thus the graph expresses
response quality irrespective of the size of interactions being processed. If the
measured response times are much greater than 100% of the expected times
then the cause of this should be investigated.

Malnstore analysis

Evaluation of the usage of the mainstore subsystem has identified the
following guidelines are being exceeded:

Excessive VS Is

The demand for VSIs by the MAC workload exceeds that which would be
expected for the kind of work being undertaken for 2 hours. This is evidence
that some adjustment to the workload would be beneficial.

The periods of the day when the overload is occurring and its extent are
shown in the associated graph entitled ‘MAC VSI EXCEPTION GRAPH’.
This graph plots the VSIs per interaction as a percentage of the recom
mended limit. Thus the periods of the day where this percentage is above
100% should be investigated.

Disc subsystem

The data for individual discs found in the System Monitor data has been
evaluated in respect of the following:

ICL Technical Journal May 1987 417

discs carrying an above average proportion of total traffic.
discs with very high transfer rates.
discs with high peak to average transfer rates.

Where results were obtained which could indicate any of the above a graph
illustrates the periods of concern.

Volume Comment
BACCAT has a very high transfer rate and is potentially limiting.
BACCAT has a very high peak to mean transfers.
ICL706 analysed OK.
ICLSSO analysed OK.
ICLSS1 analysed OK.
ICLSS2 analysed OK.
ICLSS3 is a possible cause of poor VSI service times.
ICLSS4 analysed OK.
ICLSS5 analysed OK.

416 ICL Technical Journal May 1987

APPLICATIONS ENVIRONMENT

To deal with more complex problems that are arising, better tools are needed
than have been available previously so as to make the resources of the system
more easily available to the user. There has been a continuing effort over the
whole history of computer use to reduce the amount of knowledge of the
technicalities of the system that is needed for effective and efficient use of
these resources.

On knowledge b ases at ECRC

Jean-M arie Nicolas
ECRC*, Munich, FRG

Abstract

The purpose of this short note is to give a brief introduction to ECRC
activity in the field of Knowledge Bases, while providing a summary of
some of the software prototypes which have been developed so far in
this context. A companion paper by Jorge Bocca presents in more
details one of these, the Logic/Database programming system Educe.

1 On the context and the objectives

To quote a recent ICOT publication, “The 5th Generation computer is
aimed at the realisation of Knowledge Information Processing ...” then
software development in most areas will be viewed essentially as knowledge
base construction. What else is needed to be said to indicate the importance
of the knowledge base research with regard to the 5G project...?

In such a context, the objective of the ECRC Knowledge Base Group is to
contribute to the emergence and to the development of the technology on
which will rely the construction of information management systems that will
permit an intelligent and efficient manipulation of large knowledge or data
bases. The idea is to achieve systems which combine the high-level informa
tion modelling features, the deductive capabilities and the flexibility of AI-
based systems together with the efficiency and the control facilities provided
by database systems over large sets of information. It is worth emphasising
that such systems have to be viewed not only as extended database
management systems but also as knowledge programming systems to be
used as high-level programming tools in the development of knowledge-
based systems in, say, software engineering, business, diagnostic, medical or
CAD applications....

In order to achieve the above objectives, the ECRC-KB Group has chosen to
analyse and to investigate, both on a theoretical and on a practical basis (i.e.
via system prototypes construction), the various technical issues which are
concerned with:

*The European Computer-Industry Research Centre is a joint Research Centre established by
Bull, ICL and Siemens in January 1984.

1CL Technical Journal May 1987 421

• conceptual knowledge modelling, i.e. how to logically represent, struc
ture, and organise knowledge in a powerful and natural way;

• physical knowledge representation, i.e. how to physically represent,
structure, organise and access knowledge efficiently;

• extensions of information retrieval capabilities by effectively using
deductive techniques either to enhance the user view of the knowledge
base or to improve the responsiveness of the system;

• formal techniques to check for various properties of knowledge such as
validity of factual knowledge with regard to integrity constraints or
consistency of rules, so as to obtain more secure systems.

2 Approach and current software prototypes

Our approach to the development of Knowledge Base Systems, as intro
duced above, aims at taking advantage, as much as possible, of a smooth
integration of Artificial Intelligence and database technologies, along the
lines which have been drawn up by research on deductive databases9. This
approach to KBMS building seems to become nowadays the common rule
(e.g. see 5); it is not fortuitous. Indeed, it is in the AI world that one finds the
inference mechanisms that provide the bases for an intelligent manipulation
and control of information and it is in the DB world that one finds efficient
and secure management techniques for large sets of information4.

One of the key issues in the development of such knowledge base systems is
that of defining a harmonious (efficient) cooperation between inference
techniques and database querying techniques so that deductive manipulation
of large knowledge bases, stored on secondary devices, becomes computa
tionally tractable. We have addressed this problem by taking two different
but complementary approaches, one investigating various kinds of connec
tions which can be set up between two given systems, the other aiming at the
extension of the query/answering component of a DBMS, with a specific
deductive unit, to support (recursive) derived relations (or views).

Our work on the first approach has culminated in the realisation of a system
termed Educe* 2,3; which offers, in an integrated way, both a loose coupling
and a tight integration between the inference system (and programming
language) Prolog and the relational DBMS Ingres. Educe is certainly not
the first Prolog/DBMS interface which has been developed; but, to our
knowledge, it is the first to support both clauses and facts on disc, and to fully
and efficiently handle Prolog recursive clauses. It is worth noting that
depending on the emphasis which is put on either one of these two
connections, Educe can be viewed and used in two different ways. It is a
DBMS extension in the sense that it provides the database application
programmer with Prolog as host language for the DBMS query language. It
is a logic/database programming system in the sense that it permits, say, the
knowledge engineer to write huge Prolog programmes whose clauses are
efficiently managed on secondary devices.

*See the paper by Jorge Bocca in the same issue.

422 ICL Technical Journal May 1987

The prototype which has been realised in the context of the second approach
is a deductive query/answering database system developed, via Educe, as an
extension to a relational DBMS. According to a more conventional database
terminology, this system, termed DEDGIN11, can be referred to as a “view”
(derived relation) handling mechanism which supports recursive “view”
definitions. DEDGIN is based on a newly designed algorithm (QSQ)12,13
which, for any kind of recursion, guarantees termination of the query
evaluation process, ensures answer completeness and restricts access to those
data which are effectively needed to answer the query. If various methods for
recursive query evaluation have been recently proposed (e.g. see 1 for an
overview), only a few of them are general in the sense that they offer the
above mentioned properties for any kind of recursion and of database.
According to 2, QSQ is the general method which offers, on average, the best
performances. As a last point, because the view definition language which has
been retained in DEDGIN is based, like Prolog, on Horn clauses, DEDGIN
also appears as an “optimiser” for recursive clause handling. As such, it is at
present being integrated in a new version of Educe in order to provide an
alternative evaluator for (unordered) recursive clauses.

Efficient deductive manipulation of large sets of knowledge is one but not the
single key issue in building KBMSs. Powerful information modelling-features
and efficient semantic integrity enforcement mechanisms are also needed. In
order to tackle these problems, an Educe-based KB system has been realised.
This system, called KB214, offers a semantic information model which is
broadly an Entity-Relationship model extended with the “generalisation”
logical structuring feature (IS-A hierarchy in the AI parlance) and its
integrity subsystem, termed SOUNDCHECK, implements an efficient con
straint enforcement technique we have defined7 which reduces as much as
possible the set of information to be checked for controlling update validity.
An essential characteristic of this system lies in its versatility and flexibility of
use provided by adequate schema manipulation facilities and by a smooth
interconnection between the implementation language (Prolog/Educe), the
(logic based) query and rule definition languages, and the knowledge
manipulation language (Prolog again).

3 Conclusion

The three system prototypes we have introduced above certainly represent
significant steps forward in the integration of AI and DB technologies for the
development of KBMSs. However, if each of them is a useful system per se,
none of them (even KB2) constitutes a full fledged KBMS. They are
components of such a system and other functionalities need to be introduced.
Thus, the development of these prototypes has been complemented with
other studies which either focus on new functionalities (e.g. consistency
checking for rules and constraints6), or on techniques to improve the
efficiency (e.g. specific file organisation for KBs8, negation by constraint15) or
on more basic problems such as query compilation10. The results of these
studies should give rise to extended versions of the systems.

ICL Technical Journal May 1987 423

R e feren ces

1 BANCILHON, F., RAMAKRISHNAN, R.: ‘An amateur’s introduction to recursive
query processing strategies’. In: Proc. ACM-SIGMOD conference. May, 1986. Held in
Washington DC, USA.

2 BOCCA, J.: ‘On the Evaluation Strategy of EDUCE’. In: Proceedings of the ACM-
SIGMOD Int. Conf. on the Management of Datas. May 28-30, 1986. Washington DC,
USA.

3 BOCCA, J.: ‘EDUCE - A Marriage of Convenience: Prolog and a Relational DBMS’. In:
Proceedings of the 3rd Symp. on Logic Programming. Sept., 1986. Salt Lake City, USA.

4 BOCCA, J., DECKER, H., NICOLAS, J.-M., VIEILLE, L. and WALLACE, M.: ‘Some
Steps towards a DBMS based KBMS’. In: Proceedings of the 10th World Computer
Congress IFIP. Sept., 1986. Dublin, Ireland.

5 BRODIE, M., MYLOPOULOS, J., eds.: ‘On Knowledge Base Management Systems,
Integrating Artificial Intelligence and Database Technologies’. In: Springer Verlag. 1986.
New York, USA.

6 BRY, F. and MANTHEY, R.: ‘Checking Consistency of Database Constraints: a Logical
Basis’. In: Proceedings of the 12th Int. Conf. on Very Large Data Bases. August 25-28,
1986. Kyoto, Japan.

7 DECKER, H.: ‘Integrity Enforcement on Deductive Databases’. In: Proceedings of the 1st
Int. Conf. on Expert Database Systems. April 1-4,1986. Charleston, South-Carolina, USA.

8 FREESTON, M.: ‘Data Structures for Knowledge Bases: multi-dimensional file organisa
tions’. In: ECRC TR-KB-13. August, 1986, partly published under the title “BANG file: a
new kind of grid file” in Proc. ACM-SIGMOD Conference, May 27 29, 1987, San
Francisco, USA.

9 GALLAIRE, H. MINKER, J. and NICOLAS, J.-M.: ‘Logic and Databases: a deductive
approach’. In: ACM Computing Surveys. June, 1984.

10 DE ROUGEMONT, M.: ‘Theory and practice of intentional compilation of queries’. In:
ECRC IR-KB-22. 1986.

11 VIEILLE, L.: ‘Recursion in Deductive Databases: DEDGIN, a recursive query evaluator’.
In: ECRC TR-KB-14. November, 1986.

12 VIEILLE, L.: ‘Recursive Axioms in Deductive Databases: The Query-Subquery Ap
proach’, In: Proceedings of the 1st Int. Conf. on Expert Database Systems. April 1-4,1986.
Charleston, South-Carolina, USA.

13 VIELLE, L.: ‘Recursion in Deductive Databases: a db-complete proof procedure based on
SLD-Resolution’. In: ECRC TR-KB-15. November, 1986, also published in Proc. 4th Int.
Conf. on Logic Programming, May 25-29, 1987, Melbourne, Australia.

14 WALLACE, M.: ‘KB2: a Knowledge Base System embedded in Prolog’. In: ECRC TR-
KB-12. August, 1986.

15 WALLACE, M.: ‘Negation by Constraints’. In: ECRC IR-KB-25. June, 1986.

424 ICL Technical Journal May 1987

Logic languages and relational
databases: the design and
implementation of Educe

Jorge Bocca
European Computer Industry Research Centre, Munich

Abstract

The design and implementation of a logic programming system
capable of handling large knowledge bases is presented. This system,
known as Educe, has been constructed by fully integrating the logic
programming language Prolog and the relational database manage
ment system Ingres.

1 Introduction

Recently, there has been an upsurge of interest in the techniques for the
construction of large Knowledge Base Management Systems (KBMS)9,10. A
number of proposals have been made in order to implement a logic
programming system capable of handling large knowledge bases. M. Stone-
braker groups these proposals into three categories16.

The first case consists of the integration of a suitable file system into a rule
manager such as a Prolog interpreter. Examples of this approach are K.U.L.
Prolog19 and Mu-Prolog13. A second approach is to extend a database
management system (DBMS) to support rules and inference2,16. The last
case, the full integration of a DBMS and a rule manager such as Prolog, is
generally acknowledged as the best possible solution of the three cases16,18.
The main objection to a logic system constructed on these lines has been the
predicted difficulty of its implementation. However, this objection has not
halted the development of some experimental systems based on the integra
tion of Prolog and a DBMS2,6’8’19'18. Although these developments have
produced significant progress, an acceptable logic programming system with
the required capabilities has not previously been achieved18'22. In our
opinion this is due to the very weak form of integration of the deductive and
the external database (EDB) components of the proposed systems9.

Initially, Educe used a coupling between a Prolog interpreter and a relational
DBMS for the implementation of the loose DML. Because of the problems

ICL Technical Journal May 1987 425

that the evaluation of recursive queries causes3 in a coupled system, the
close DML was implemented by integrating the low level access mechanism
of the DBMS into the Prolog interpreter. Although these two approaches
might be thought antagonistic to each other, in Educe they co-exist and co
operate.

At the top level, Educe offers users two different languages: one following the
non-procedural style of data manipulation language (DML) for relational
database management systems (RDBMS) and one with a style close to
Prolog. We refer to these languages as loose DML and close DML,
respectively. Expressions in these languages can be freely mixed in Educe
programs. In terms of implementation, there is a close correlation between
these languages and the evaluation strategies outlined in the previous
paragraph. It seems natural to use the sets retrieval strategy for the loose
DML and the one-tuple-at-a-time strategy for the close DML.

This paper attempts to bring together the main ideas and techniques used in
the design and implementation of Educe. Some of these ideas have been
discussed in detail somewhere else and adequate references are given,
throughout the paper.

This paper is divided into seven sections. Section 1 is this introduction. In
section 2, the concepts for a logic programming system for KBMS are
examined. Section 3 describes Educe’s user interface and the reasoning
behind it. Sections 4 and 5 deal with the general design and the particular
implementation techniques used in the construction of Educe. Section 6
discusses significant problems found in the development of Educe and
presents the adopted solution (if any). Conclusions are presented in section 7.

2 The solution’s levels

The integration of Prolog and a DBMS, as the deductive and the external
database (EDB) components, respectively, could have taken a number of
forms. In order to discuss them, we separate logical issues from the physical
implementation itself. At the physical level, it is important to distinguish
whether the logic system is the result of a coupling of the two components or
a proper integration. In the case of a coupling, the individual components
remain as two independent processes with a capability to communicate with
each other. In the case of integration, the two components become one unit
with a blurred interface. The logical level is concerned with the user’s
interface and its effects on the overall design of the logic system.

Depending on the degree of physical integration of the two components, we
use the terms, coupling and integration, to refer to a rather loose coupling of
the two components or to the convergence of the two components into one
fully integrated system, respectively. At the logical level and based on the
degree of mimetisation with Prolog of the data manipulation language
(DML), we again distinguish two cases: close and loose. The former term

426 ICL Technical Journal May 1987

refers to a DML that follows the notation and conventions used by Prolog,
while the latter designates a DML with syntax and conventions similar to
DMLs in relational DBMSs. In what follows, we also use the term coupling
in a generic sense, i.e. whenever the context makes it unnecessary to specify
whether the physical interface between the components is a coupling or
integration.

2.1 The logical level: loose vs. close

Perhaps the most obvious advantage of a close DML to the Prolog
programmer is its complete transparency. This transparency makes a close
DML a very attractive choice. In particular, prototype systems can be
implemented in the first instance without a DBMS facility, and at a later
stage, when the amount of data exceeds certain limits, the DBMS facility can
be added. This should not cause changes to the programs on account of the
DBMS addition.

Unfortunately, the advantages of close coupling are not exempt from some
serious drawbacks. Consider the following definition of p and the base
relations employee, q and r:

p(Name, Salary, Other) :- /* (1) */
employee(Name, Salary) ,
funny(Salary, Other) ,
Salary = 100 .

employee(a, 20) .
employeefa, 100) .
employee(b, 100) .

q(10, xx) .
q(100, xx) .
q(100, yy) .
r(xx, aa) .
r(yy, bb) .

In the evaluation of ?- p(Name,...), the use of definition (1) determines that
every tuple in employee has to be retrieved and tested. Even to satisfy this
goal once, a number of tuples proportional to the cardinality of employee
would have to be retrieved. Worse, if there were no employee with
salary = 100, all the tuples in employee would still be retrieved and tested. In
order to satisfy the goal p more efficiently, it is tempting to “optimise” the
body of p, by its logical transformation into the “equivalent

p(Name, Salary, Other.) :- /* (2) */
employee(Name, 100) ,
funny(Salary, O ther) ,
Salary = 100 .

which unfortunately is not equivalent if funny was defined by:

ICL Technical Journal May 1987 427

funny(S, 0) :-
q(S, A) ,
! ,
r(A, 0) .

Clearly, to a Prolog programmer (1) and (2) are not equivalent. But to a
user thinking in a “non-procedural” way, e.g. a user of a relational DBMS,
(1) and (2) appear to be equivalent forms of expressing a query.

The alternative, a loose DML, can be seen as the embedding of a high level
non-procedural DML (QUEL15) into a logic programming language
(Prolog). In this case the atomic unit of access between control statements is
the relation and not individual tuples. Hence problems such as (1) above
never arise. The programmer is forced to express explicitly what he/she
wants. For instance, in the case of rule (1), the programmer would have to
write the rule unambiguously as either:

p(Name, Salary, Other) :- /*(1’) */
retrieve([employee.name = Name ,

employee.salary = Salary] ,
employee, salary = 100

funny(...) .

or

p(Name, Salary, Other) :- /* (1") «/
retrieve! [employee.name = Name ,

employee.salary = Salary] .
true /* all qualify */

funny(...j ,
Salary = 100.

2.2 The physical level: coupling vs. integration

At first it appeared that physical coupling of Prolog and the EDB could
produce better and faster solutions than integration. A coupling could
quickly and easily be implemented by running two intercommunicating
processes: one for Prolog and one for the EDB. This sort of coupling could
also greatly benefit from the performance advantages of data base machines.

However, it should be noticed that a solution at the physical level is not
independent of the decisions made at the logical level. For instance, take a
close coupling of Prolog and an EDB, and then consider a query on equality
over the relation employee which is stored as a hash file. In this case, the
correct strategy would be to use the hash function to get the right tuple(s)
instead of searching the file sequentially. By the same token, if the relation
employee was stored using index sequential access method (ISAM) on salary,
and highpaid was defined by:

428 ICL Technical Journal May 1987

highpaid(Name) :- /* (3) *1
employee(Name, Salary) ,
.. . , Salary >100.

then to evaluate the goal: ?- highpaid(N). one would like to make use of the
ISAM structure of employee. Unfortunately, because of the problem with
control predicates, one would be “forced” to retrieve sequentially the relation
employee.

To avoid these situations, we extended the syntax of Prolog (close). Thus, the
above definition can be written in Educe, as:

highpaid(Name) :- /* (3’) */
employee(Name, Salary >100) ,

To further illustrate this interplay between the logical and the physical
levels, consider once more a loose coupling. For instance, some versions of
Mu-Prolog13. In these implementations whenever a relation is opened a
new process and two pipes are set up. In terms of the operating system’s
resources, this slows the overall response time of the local UNIX17 system
by consuming a considerable amount of its limited resources. Gains in
time, obtained by a very efficient access mechanism in Mu-Prolog14
are thus almost completely lost in the communications between the
processes.

2.3 Some related work

Couplings of a close type have reached a significant level of refinement. In
addition to the work of L. Naish and J.A. Thom in Mu-Prolog, another
interesting but partial implementation of close coupling is the one by
Vassiliou et al.18. This implementation assumes that answers returned by the
DBMS are always small enough to be kept as assertions in main memory.
This approach probably works very well in applications with a relatively
small number of facts, but in the general case it gives rise to some questions.
For instance, in recursive searches often all the tuples of a relation are
retrieved. Obviously, the main memory restriction limits the size of the
databases.

As for loose coupling, a few systems have been reported which are capable of
converting a Prolog goal into an equivalent query to a database manage
ment system (DBMS)6,11’1. The main restriction in nearly all of these systems
is that they are not capable of handling recursion on base relations.

More recently, Faget et al.8 reported the implementation of Frog. Although
Frog does not attempt a full integration of Prolog and a DBMS, its overall
design meets almost the same problems. In Frog, a number of the problems
discussed above have been solved but issues of control are avoided.

ICL Technical Journal May 1987 429

Unfortunately, as far as we are aware, Frog fails to provide general recursion
on relations, despite the fact that the syntax allows it.

Very few attempts have been made to integrate (as oppose to couple) Prolog
and a DBMS. Except for current work on a newer version of Mu-Prolog12,
work on integration has been restricted to proposals to add deductive
features to existing DBMS2,10.

More significatively most of the work reported so far only deals with
querying a DBMS in single user mode. General DBMS facilities such as
concurrent queries/updates are not supported. Of course, the proposals to
extend existing relational DBMS2,16 are exempt from this restriction.

As for systems which have attempted integration, they hardly exist8'19,18.
Hence the difficulty in drawing conclusions in this respect.

3 A user’s view

From the user’s point of view, Educe can be seen as an extended Prolog
system. Although most of the extra features are transparent to users, a
number of built-in predicates had to be added to explicitly manipulate the
underlying DBMS. Facts and rules can be stored in the EDB. Facts are
stored in base relations according to their semantic while all rules are stored
in one relation: rulerel. Rules can be added, updated, retrieved, etc. just like
the facts stored in ordinary relations. Once a rule is stored in the EDB, it can
be used like any other rule. No explicit syntax is required to access and/or
execute a rule stored in the EDB. The access to facts stored in the EDB can
also be made transparent to users (close access). However, if users so prefer,
facts (and rules) in the EDB can be retrieved by using the retrieve predicate.
This predicate uses non-positional expressions to refer to relations, attributes
and retrieval conditions (loose access). To convey the flavour of Educe’s user
interface, a small sample of built-in predicates is discussed in this section. For
a full user’s manual, see 1.

A first group of built-in predicates allows users to set up, destroy and connect
to databases. An example in this group is the predicate db:

?- db(refs) .

to activate the database refs.

A second group of built-in predicates provides information about the
catalogues of the database. The predicate helpr is typical of this group. The call

?- helpr(paper) .

prints details about the relation paper. The information printed includes the
names of the attributes, their types, storage structure, etc.

430 ICL Technical Journal May 1987

Then there is the group of predicates to manipulate the database schema, i.e.
to create new relations, destroy existing ones, etc. An example in this group is
the predicate create. For instance,

?- create(
paper(number = i2, rating = 11,
author = c20, title = c30,
source = c10
)

)•

creates the relation paper with attributes number, rating, author, title and
source.

Predicates to add, delete and update facts are also provided. A boolean
condition is used to specify the set of tuples to be deleted or updated. An
example of this is the predicate erase:

?- erase) paper,
(paper, rating = 0) or
(paper, source = unknown)

) •

deletes all tuples of relation paper such that the rating is 0 or the source is
unknown.

Three forms of retrievals are presented below. The loose DML retrieval is
exemplified with the query:

?- retrieved paper.num ber = N,
paper.rating = R] ,

(paper.author = ’Brown, John’)
and (paper.rating > Min)) ,

Min = 5.

which produces:

N = 5
R = 10
Min = 5 ;

N = 9
R = 7
Min = 5

i.e. it retrieves the paper.number and the paper.rating of papers with a
paper.rating higher than 5 that Brown, John has written. Notice that Prolog
variables can be used in the Condition part of the retrieve. Answers are
obtained by the instantiation of variables in the Atts part of retrieve. This
mechanism allows for the definition of (virtual) relations which behave just
like a Prolog fact.

ICL Technical Journal May 1987 431

Another form of a loose retrieval is provided by the predicate save. This is a
set retrieval which facilitates the storage of results (ResRel). An example of its
use is

?- save([employee] ,
highpaid(name = employee.name ,

sal = employee.sal) ,
employee.sal > 4000) .

to silently retrieve all the employees (from relation employee) who earn more
than 4000 and store their names and salaries in the relation highpaid.

The built-in predicate retr(Rel) is the primitive form for retrievals based on
close access to the DBMS. The format, order and number of attributes in
relation Rel must correspond exactly to the physical relation in the database.
Transparency of access is achieved by the definition of a rule which has only
the call to retr in its body. For example, to successfully evaluate

?- anc(X, Charles) .

anc should be defined by

/* interface to the physical relation */
parent(X, Y) :-

retr(parent(X.Y)) .

/ * recursive call */
anc(X, Y) :-

parent(X, Y) .
anc(X, Y) :-

parent(X, Z) , anc(Z, Y) .

To make the use of retr implicit would cause a number of problems. This is
discussed later on.

For large relations, the use of indexes is strongly recommended to improve
performance. For this, facilities to create and maintain indexes have been
provided in the Educe system. An instance of this kind of predicate is index.
Its use is illustrated with the call

?- indexf x2parent, parent, [father]) .

which creates the secondary index x2parent for the relation parent on
attribute father.

Also in Educe, a large number of miscellaneous predicates are provided. A
couple of examples to demonstrate the facilities provided by the predicates in
this group are

?- attributes(paper, Atts) .

432 ICL Technical Journal May 1987

which produces the list

Atts = [number, rating, author,
title, source]

and the goal

?- ftor(’/usr/mark/ppp’, like) .

to copy the like facts in file /usr/mark/ppp to the already existing relation like.
As already stated, rules can be stored in the EDB. A number of predicates
exist for the manipulation of these rules. It should be noticed that, due to the
ordering contradiction between Prolog and the relational model, users are
asked to specify the order in which rules should be consulted. Prolog has an
implicit order of evaluation, from top to bottom, while tuples in a relation
(and hence rules in ruler el) by definition are not ordered. Also, because of the
potentially large numbers of rules in a definition, more selective predicates
have been added for listing rules in the EDB. A couple of examples to
illustrate the use of these predicates are given below,

?- nrule(1,
’anc(X.Y) :- parent(X,Y) .’) .

?- nrule(2,
’anc(X.Y) :- parent(X,Z), anc(Z,Y) .’) .

to store the two rules for anc(X,Y) in the external database. To evaluate the
predicate anc(A,B), Educe will try first the non-recursive rule (rule-1) and
then the recursive rule (rule-2);

?- irule(anc) .

prints the two rules and their order of evaluation,

1. anc(X.Y) :-
parent(X.Y) .

2. anc(X,Y) :-
parent(X.Z) ,
anc(Z.Y) .

4 Architecture

In this section, an outline of the chosen architecture for Educe and the
motivations behind it are presented. A detailed discussion of possible
alternative architectures for Educe can be found in 3.

From the point of view of the implementor, loose coupling presents itself as
an obvious method for implementation. Provided that recursion is not
allowed, a simple way to construct a loosely coupled system is by setting up
two processes: one for the deductive component and one for the EDB

ICL Technical Journal May 1987 433

component. These two processes exchange messages, i.e. queries and replies,
through a channel of communication. Educe follows this approach for loose
coupling, setting up one process for Prolog, as the deductive component, and
one process for Ingres as the EDB component. Communication between the
Prolog and the Ingres processes is by means of two pipes17, one for queries
and one for replies.

Unfortunately, the two processes in loose coupling would be very inefficient
for an implementation of the close DML in Educe. This is apparent in
systems that have adopted this as a solution8,13. Because of this, we chose to
integrate the deductive and the EDB components into one monolithic unit to
handle the close DML. For this, the access methods module of the DBMS
was detached from it and attached to Prolog.

This allowed the multiple process configuration of loose coupling to be
merged with the close integration configuration in a particularly coherent
way. To explain this, let us start by considering two concurrent processes,
each of which runs the DBMS on a common database.

Prolo9

R eplies

DBMS
Quer ies

Access Methods
“3

| Data Base

Fig. 1

When this last configuration is merged with the two previous ones, it
produces Educe’s architecture (Fig. 1). In the two DBMS configurations one
of the occurrences of the DBMS is replaced by the Prolog + AM configura
tion. This is possible, since the Access Methods module of the Prolog + AM
and the DBMS are identical replicas. In other words, Educe appears as two
concurrent DBMSs sharing access to a common database.

It is important to note that this architecture does not impose any restrictions
on recursion. On the contrary, it provides an efficient mechanism for the
evaluation of multiple and recursive queries in either of the two languages,
close and loose. Recursive definitions which include expressions in loose
form are evaluated by a hybrid strategy. An evaluator has been implemented
for this purpose. The evaluator uses loose coupling for the non-recursive part
of the definition, and then, for the recursive part, it uses the route provided by

434 ICL Technical Journal May 1987

close integration for retrievals from the intermediate results. Recently, a
module which performs mappings from expressions in loose form into close
form and vice versa, has been built. This module allows Educe to select a
route, either coupling or integration, entirely on the basis of expected
performance.

5 Implementation

The description of the implementation of Educe here presented follows the
historical development of the system. In order to avoid dismantling the
deductive and the EDB components, loose coupling was implemented in
the first instance. The integration phase was postponed until we had gathered
sufficient detail of the construction of these components. Rule storage and
the transformation of expressions can be seen as important extensions of the
basic capabilities of Educe.

5.1 Loose coupling

Let us begin with the discussion of a relatively simple part of the implementa
tion: the part that deals with loose coupling without recursion. This part of
Educe was implemented as two related processes. One process acting as a
master runs the Prolog interpreter, while the second process, the server, runs
the DBMS. The Prolog interpreter used is a derived product of the Mu-
Prolog interpreter13. The Ingres DBMS15 was chosen as the EDB compo
nent. Thus, in this set-up, whenever the evaluation of a goal requires access to
the EDB, all expressions requiring some form of syntactic analysis are
parsed, and code is generated for them by the Prolog interpreter. The code
generated is the equivalent QUEL expression. This QUEL expression, the
query, is sent via a pipe to Ingres. Ingres in turn evaluates the query and
produces a reply. This reply is piped back to Prolog which further processes
it to bind variables to their respective values. In this part of the implementa
tion, the control of processes and communication between them was written
in C, while the parsing of queries and code generation was all done in Prolog.
This scheme permits a more refined and efficient control of synchronisation
and communication between the processes.

The predicate helpdb is perhaps the simplest example of the theory of
operation described above. This predicate is defined by the Prolog clause:

helpdb :-
query(' help ') .

The predicate query (anlngresQuery) takes the atom anlngresQuery and
sends the string of characters forming the name of the atom down a pipe to
Ingres. Then it waits for the evaluation of the query by Ingres and on
completion returns true. Thus, by means of this mechanism, any arbitrary
Ingres query can be sent to the server for evaluation. The predicate query was
written in C and has been integrated into the Prolog interpreter.

ICL Technical Journal May 1987 435

A more complex situation develops when the mode of operation of Prolog
differs from the mode of operation of the EDB. Take the case of retrieve:

retrieve! Atts, Boolean) :-

send_query(Reis, Atts, Boolean) ,

repeat,
rel(P) ,
(P = E,

(E = continue,
!,
fail

P = ., | OutAtts],
value(Atts, O utA tts)

Following the parsing of Atts, a query is sent to Ingres via send query.
Typically, Ingres produces a whole relation as an answer to the query. Since
Prolog requires only one tuple at a time, some adjustments have to be made.
Basically, Ingres pipes the result relation to Prolog while Prolog takes one
tuple each time from the pipe. In other words, the pipe acts as a queue. To
take one tuple from the pipe, rel(P) is called. P is compared against the atom
continue to check for the end of reply from Ingres. If it is not the end of reply
(continue), then the tuple P is passed in suitable form to value which binds
variables to attribute values.

It should also be mentioned that the syntax of retrieve allows uninstantiated
variables in the conditions (Boolean) argument. Because of this, it is desirable
to delay evaluation of the retrieve until the search criteria have been clearly
established, so avoiding retrieval of unnecessary data.

5.2 Close integration

It is not only for syntactic convenience that variables are necessary in the
condition part of retrieves. Without them, it would be impossible to express
recursion. Take for example the relation parent(X, Y), defined by:

parent! X, Y) >
(var(X), var(Y), !,

retrieve!! father.is_ = X,
father.of_ = Y] ,

true)
)

(atom(X), atom(Y), !,

436 ICL Technical Journal May 1987

)•

parentf X, Y) :-

retrieve([m other.is_= X,
mother.of_ = Y] ,

true)

Then we could define the derived relation ancestor (X, Y) recursively by:
ancestor(X, Y) :-

parent(X, Y) .
ancestor(X, Y) :-

parent(X, Z) ,
ancestor(Z, Y) .

Unfortunately, the introduction of recursion and multiple queries brings new
problems. It becomes necessary to relate replies to their originating queries.
In order to evaluate a recursive definition such as ancestor, Educe first
generates the relation parent (if virtual) and then proceeds to evaluate the
recursive clause by using close access. But, before we discuss the details of
how this is done in Educe, a description of the implementation of close
integration is needed. The particular reasons for having close integration in
Educe are discussed in 3.

Because of its linkage to the low level access methods, the close DML is
implemented mainly in C. At the top level, the Prolog predicate retr binds the
C implemented parts together. The implementation of this predicate is
presented below:

retr(R) :-
R = .. [Rel | Attsl] ,
openr(D, 0 , Rel) ,
setsearch(D, Atts) ,
repeat,
getvals(D, Atts, NewTuple) ,
((/* failed */

NewTuple = 0 ,
closer(D),
!, fail

)

true
)■

An example of the use of retr is ?- retr(employee(john, Salary)). In this
example, the relation employee is searched for john’s Salary.

The programe above starts by transforming the (only) argument of retr into a
list. The head of the list is instantiated to the name of the relation (Rel) and
the tail is instantiated to a list of attributes (Atts), some as variables and the

ICL Technical Journal May 1987 437

others as constants, according to the particular retrieval condition. In our
example, this list becomes [employee, john, Salary]. Once this is done, the
relation Rel is opened by openr and the searching keys are set by setsearch.
Only then the first tuple (if any exists) is retrieved by a call to getvals. The call
to repeat is necessary to handle backtracking. The predicates openr, set-
search, getvals and closer are all implemented in C. The call to openr opens
the file which contains the relation Rel and it also creates a descriptor, D. If
the file for relation Rel was already open (for reading) then only the new
descriptor D is created.

Descriptors not only keep static information about a relation, e.g. file name,
degree, cardinality, etc., but they also maintain information of a dynamic
type. In particular, information about the last tuple accessed is kept by the
descriptors (TID of last tuple15). This is essential for an efficient implementa
tion of backtracking. Otherwise, Educe would need to re-access old tuples to
get the next tuple. This use of descriptors is essential in recursive cases.
Without the descriptors, recursive queries on a given relation would be
restricted to as many levels of recursion as the numbers of files that the host
operating system allows to keep opened at any particular time. As an
additional bonus to the scheme of operation described here, the overhead of
opening and closing files is greatly reduced. In fact, for recursive queries, this
overhead is reduced to practically nothing.

5.3 Rules

Once the ability to handle large numbers of facts by the EDB component had
been installed in Educe, the next logical step was to introduce facilities to
store and maintain large numbers of deduction rules in the EDB. Thus a
mechanism to serve this purpose was implemented. In Educe, deduction rules
are stored like the schema of the database, in a relation. This relation is
named rulerel.

Obviously, the storage of rules in the EDB is not in itself enough to achieve
the desired effect. Rules stored in the EDB must also be executed just like any
other rule in main memory. For this, the top level Prolog interpreter was
modified. Thus if, during the evaluation of a goal, an appropriate clause head
is not found for it in main memory, then the rulerel relation is searched for it.
If a rule with such a head is found in the EDB, then Educe executes it. If
however the rule is not found in rulerel then Educe looks for a base relation
to match the goal. If such a relation is found then the rule

Relation :-
retr(Relation) .

is asserted. More formally, to evaluate a given goal G the algorithm is:

1 Search for rule/fact in main memory.

438 ICL Technical Journal May 1987

2 If 1 fails then search for rule in relation rulerel.
3 If 2 fails then search for base relation with matching name and

degree. If such a relation is found then assert the rule G :- retr(G).

The algorithm above effectively makes the EDB component of Educe
transparent to users of the close DML.

Unfortunately, this scheme of operation is not free of some (minor) side
effects. The above algorithm implies an order of evaluation for rules and
facts. In this implied order of evaluation, rules precede facts. However, since
facts are a special case of rules (no body), they can be treated like a rule if so
wanted by the user.

Still on the subject of evaluation precedence, a more important point is to
note that Prolog inspects facts in a program in a top-down manner. In
relational database terms, this implies an ordering in the tuples of a given
relation. This contradicts the definition of a relation. To avoid the problem,
Educe adopts the semantic of assert when inserting tuples in a relation.
Equivalences for asserta and assertz are purposely excluded from Educe.
However, this is not sufficient in the case of general rules. To keep close to
Prolog semantic, users are asked to specify an order of evaluation for the
rules kept by the EDB. For example, to add the definition of anc to the EDB
component of Educe, one should proceed as follows:

?- nrule(1,
’anc(X,Y) :- parent(X.Y) .’) .

?- nrule(2,
’anc(X.Y) :- parent(X.Z), anc(Z.Y) .') .

Once this is done, the EDB component of Educe becomes transparent to
those users accessing the derived relation anc.

Finally, a point that has some bearing on efficiency and integrity: the
evaluation algorithm described above retrieves rules from rulerel not only
when the rule is activated for the first time, but also when backtracking takes
place. From an efficiency point of view this is a serious drawback. Also from
the point of view of integrity, backtracking can cause some problems. In
particular, the answers to a query would not be correct if another user were
allowed to update part of the necessary definitions while they were still being
used. Educe solves these two problems by pre-processing the top level query.
Thus, given a goal to evaluate, Educe builds the whole evaluation tree for this
query. Rules are then retrieved from the rulerel and the necessary retr’s rules
are also asserted. Only when all this information has been obtained from the
EDB, Educe proceeds to evaluate the query. Effectively, the EDB is only
consulted once for the necessary rules, and all the definitions needed are
frozen during the evaluation of the goal. Notice that with this scheme other
users are not prevented from updating the non-factual knowledge. For the
factual knowledge (base relations) the EDB uses normal database techniques
for concurrent access to relations.

ICL Technical Journal May 1987 439

5.4 Mappings

Now we can go back to our example ancestor and see how recursive (and
multiple) queries in loose form are handled in Educe. First, let us examine
the program $slowretr below. This programme is a preamble to a simple
but not very efficient implementation of a query evaluator for the loose
DML. However, this program is capable of handling multiple and recursive
queries.

/* Sslowretr -
it uses same syntax as retrieve
in Atts and Boolean

*/
$slowretr(Reis, Atts, Boolean) :-

/* Reis list is obtained
from Atts and Boolean */

$q_and_s(IntRes, Reis,
Atts, Boolean) ,

!, /* never backtrack »/
$quickretr(IntRes, Atts) .

In this program, once the list of base relations Reis has been extracted from
Atts and Boolean the call to $q_and_s prepares a query in loose form and
executes it, saving the result in the intermediate relation IntRes. We do not
want to backtrack past this point, hence the cut (!). It is now up to %quickretr
to produce the answer(s), one tuple at a time. This is done by $quickretr by
querying the intermediate relation IntRes using the close DML. Finally,
$quickretr matches the values in the returned tuple (close DML) to the non-
positional projection specified by Atts.

The first and obvious problem in this strategy of evaluation is one of
efficiency. In the case of recursive definitions, each time we backtrack on the
non-recursive part of a definition a new intermediate relation will be
generated. This is easily solved though, by labelling the queries already
answered with the name of the intermediate relation generated for it. Thus
before proceeding to generate a new intermediate relation we check whether
the intermediate relation has been generated for the (intermediate) query.
The program for this version of retrieve is given below. To stress the fact that
this program also handles multiple relations and recursive definitions, we call
it mretrieve.

/* mretrieve -
handles multiple relations and
recursive definitions in the
loose DML.
It uses sam e syntax as retrieve */

mretrieve(Atts, Boolean) :-
$evaluated(Res, Atts, Boolean)

-> $quickretr(Res, Atts)
; $slowretr(Res, Atts, Boolean) .

440 ICL Technical Journal May 1987

As can easily be imagined there are occasions when the above strategy to
evaluate recursive queries can produce very slow responses.

5.5 Efficiency

As was pointed out in 3, users expect in the context of a Prolog interpreter to
obtain a reply quickly. This reply normally corresponds to just one tuple in a
relation (base or derived). During backtracking the same still holds true. By
contrast, in a relational DBMS users expect a whole relation, i.e. a set of tuples,
to be generated as an answer. This dichotomy between the two types of system
leads to two different types of evaluation strategy for queries.

In loose coupling, queries are handed to the EDB component for evaluation.
This is in effect an evaluation of queries by a DBMS. In all cases of queries
involving several relations and/or recursion, and in many cases of queries
involving a single relation, e.g. aggregation, a number of intermediate relations
are generated during the evaluation of these queries. It is the creation and
manipulation of these intermediate relations that is the cause of major
overheads in the evaluation of queries in loose form, particularly in the
recursive case. Even if large buffers in main memory were used for these
intermediate relations, it would still be necessary to use secondary memory
(slow) to store considerable parts of these relations. Also there is an overhead
attached to the creation and maintenance of the schemas for these relations.

The one-tuple-at-a-time strategy of Prolog does not need to create intermedi
ate relations. All intermediate results are kept at all times in main memory.
This is only possible because of the relatively small size of the intermediate
results required by the one-tuple-at-a-time strategy. In other words, retrieval of
data from secondary memory only occurs when base relations are consulted.

However, as was discussed in 3, there are good reasons for using a loose
DML to express queries. Also, there are situations where the sets retrieval
strategy of DBMSs outperforms the one-tuple-at-a-time strategy of Prolog. In
Educe, all of these reasons are considered to be important and hence queries
in loose form are supported. Moreover, a number of optimisation techniques
are applied to queries in loose form, in order to improve performance. In
addition to the optimisation techniques of the DBMS, Educe uses its own
techniques. Particular attention is given to the recursive case, since this is an
area outside the scope of conventional DBMSs. Four significant cases are
here discussed.

The first case arises in queries involving one base relation and the boolean
condition true. For example, consider the relation employee with attributes
name, address and dept, and the goal

?- retrieve! [employee.name = Name,
employee.dept = Dept] ,

true) .

ICL Technical Journal May 1987 441

employee(Name, Dept) :-
retr(employee! Name, Dept, _)) .

?- employee! Name, Dept) .

This example is generalised to the case of any base relation being queried
with the boolean condition set to true. The built-in predicate $whole_base_r
makes the appropriate tests to decide on the applicability of this transfor
mation rule. Although the case described seems trivial and unlikely to be
presented to Educe by users, it often arises as an intermediate step in the
evaluation of a recursive definition.

The second case for efficiency improvements occurs again very frequently in
recursive queries. This is the case of intermediate queries that have already
been evaluated. Although this situation often arises during the evaluation of
recursive queries, it is not exclusive to them.

The third case of importance occurs in conjunctive queries on a single
relation. Again, this is a very common situation during the evaluation of
recursive queries (top level). In this case the conjunctive query is first
transformed into a normal form and then, from this normalised form, an
equivalent query in close form is generated and evaluated.

The last but certainly not the least major optimisation step takes place
during the transformation of loose form into close form and during the
instantiation of variables at the top level. For both of these processes it is
necessary to access the schema of the relation involved. These accesses are
speeded up by maintaining the database schema in buffers in main memory.
Obviously, some synchronisation with the copies in secondary memory is
necessary. This is a common solution in a conventional DBMS and Educe
has adopted it. More seriously though, whenever a tuple is retrieved from a
base relation, a number of variables have to be instantiated. To do this, the
list of values in the retrieved tuple has to be matched with a list of variables
(typically, the variables in the projection part of a retrieve). The list of
variables is normally shorter than the list of values and their sequences do
not match. For instance, a typical tuple in our relation employee might be
/John, munich, toys] and the goal might be retrieve ([employee dept = Dept,
employee .name = Name]...). Obviously, the order and the length of the lists
[Dept, Name] and [John, munich, toys] do not match. In general, to match the
two lists every time a new tuple is retrieved is unnecessary. The problem is
avoided by, firstly, creating a bogus list of variables, say [X I, X2, X 3] then
matching this list only once to the projection list in the retrieve, and finally,
each time a tuple is retrieved from secondary memory, this bogus list is used
to instantiate the real variables. A lot of unnecessary sorting is eliminated at
a stroke!

The optimisation steps described above have in fact led to a new strategy, the
Educe method. This method integrates all the above optimisation steps into a

This query is transformed into the equivalent “query” in the close DML:

442 ICL Technical Journal May 1987

harmonised strategy of evaluation for queries expressed in loose form. The
improvements obtained by the application of this method go well beyond the
recursive case. In fact, the Educe method always give a performance close to
the best of the other two methods (DBMS and Prolog).

6 Some problems

As already mentioned earlier on, the use of control predicates, such as “cut”
in Prolog, causes serious problems to the optimisation of queries. Because of
this we provided users with a loose DML so that interactions with the EDB
appear boxed into logical units. In this scheme, optimisation by query
transformation is left to the underlying DBMS. However, because of the
preferred usage of the close DML by Prolog programmers, the question of
goal re-ordering in the close DML had to be reviewed21. Ideally, we would
have liked to be able to transform a goal such as

?- employee(Name, D ept).......
otherpredf.., Dept, ..) ,
. . . , Dept = production.

into the “equivalent” form

?- Dept= production, employee(Name, Dept) ,
otherpred(.., Dept, ..) ,

so that the early instantiation of Dept could be used on an indexed search of
those employees in the production department. This sort of transformation
would allow us to make full use of the data structures and the access methods
used by Educe. Unfortunately, because of the likely occurrence of control
predicates in otherpred, the suggested transformation is not possible. How
ever, we thought that it was still possible to make an effective use of Educe’s
access methods (AM). The obvious case is the one where the arguments are
grounded on an indexed attribute. For example, to evaluate

?- employee(Name, production) .

Educe can make use of an index on the Dept attribute. In order to take full
advantage of Educe’s AM, we stretched the previous idea to deal with range
queries in the close DML. For this, we extended the Prolog syntax to
accommodate these cases. Thus, expressions like

?- earns(Name, Salary) , Salary > 1000.

should be written as

?- earns)Name, Salary > 1000) .

ICL Technical Journal May 1987 443

in order to take advantage of the performance benefits of an indexed search.
However, the former expression is still valid, although expensive to evaluate.

Another apparently trivial problem is the correspondence of data types in
Prolog and the underlying DBMS. In Educe we chose to map

DBMS Prolog
* * * * ******
character string atom
integer integer
real real

Unfortunately, regardless of the particular components (DBMS and Prolog
interpreter) the match is not always perfect. A common problem is that while
the Prolog interpreter/compiler uses tags in the internal representation of
values and their data types, this same information is normally kept by the
schema maintenance mechanism of the DBMS. The consequence of this is
that although the DBMS and the Prolog interpreter might use one word (in
the machine) to represent integers, because of tags in the Prolog interpreter
fewer bits are available to store values. The same holds true for string-atom
and real-real, although with slight variations. This might not seem a serious
problem for completely new applications, but it is a rather serious problem
when a new application attempts to use an existing database.

The question of data types leads into one more problem. Since we decided to
store the intensional part as well as the extension of relations in the EDB, we
needed a way of storing rules in the EDB. This sort of structured data type is
not normally supported by a relational DBMS. In Educe, we solved the
problem by creating a relation (rulerel) to store rules. The rules are stored as
character strings and two new built-in predicates are used to map the rules
into character strings (swrite) and vice versa (sread). Rules stored in the EDB
are automatically used if no matching definition is found in main memory
during evaluation of a goal. Extensions of relations kept in the EDB can be
made transparent to Prolog users by defining a rule in rulerel.

The use of a relation to store rules in the EDB brings to the fore the
incompatibility of the procedural evaluation of goals in Prolog with the
concept of a relation as an unordered set. While the order of unit clauses
would only alter the order in which answers are produced, the order in which
general program clauses are chosen for evaluation might produce completely
different answers, if any at all. For instance, choosing the recursive rule first
for the evaluation of the classical ancestor definition, could lead to an infinite
loop, while choosing the non-recursive rule first would produce the correct
answer(s). To get around this problem, users of Educe have to specify the
order in which rules stored in the EDB should be used during evaluation of
queries.

Still on the subject of rules in the EDB, two additional problems. As already
mentioned, once rules are stored in the EDB they can be used like any other

444 ICL Technical Journal May 1987

rule. A simple way of achieving this is to modify the top level of the Prolog
interpreter, so that whenever no matching definition for a goal G can be
found in main memory, the following programme is executed:

interprete(G) :- /* evaluate G */
functor(G, Label, N) ,
/* find rule in EDB */
rulerel(Label, N, _, RuleinChars),
/* convert string into rule */
sread(RuleinChars, Rule) ,
(Head :- Body) = Rule,
G - Head,
call(Body) .

Imagine that, among the several clauses defining G, at least one is recursive.
The first problem is one of efficiency. In order to evaluate G, it is necessary to
retrieve the recursive clause several times. The second problem is even more
serious in a multi-user environment. Consider the case where one user is
evaluating G, while a second user is modifying the recursive clause. This
leads to a situation where, during the evaluation of G, two different recursive
clauses are used. This evaluation of G might thus produce seriously wrong
results. In order to solve these two problems, we decided to pre-load all the
necessary definitions into main memory before starting the evaluation of the
top goal. On return to the top level interpreter, and when no more answers
are required-or no more answers can be found, the pre-loaded definitions can
be erased from main memory. This scheme effectively freezes definitions until
the evaluation of the goal(s) at the top level is completed. In addition, it
solves the efficiency problem, since now only one access to each required
clause in the EDB is made.

However, the above scheme is not enough. It would fail to evaluate correctly
queries like

?- nrule(1, ’p(X) :- q(X) . ’) , p(Z) .

even if the internal/external DB contained

q(a) .
q(b).

The reason for the failure is due to the attempt to pre-load the definition for
p, before the new rule (nrulef..)) is added to the EDB. Our eventual solution
was to incrementally load the definitions from the EDB as they are required.
This solves both of the above problems, efficiency and concurrent access,
and at the same time it maintains the order of evaluation prescribed by
Prolog.

ICL Technical Journal May 1987 445

7 C o n clu sion s

Although a number of very significant problems have been solved with the
implementation of Educe, we can still see some fundamental shortcomings.
These we believe are inherent in any system constructed by the coupling/in-
tegration of Prolog and a DBMS.

A primary goal in the implementation of Educe was to provide users with a
logical programming system for the construction of large KBMSs21. We
want to keep the external appearance of this system as close to Prolog as
possible. This was dictated by the early development of other prototype
systems within our research group. These prototypes were all originally
implemented in Prolog5. Thus, in the particular case of the close DML we
wanted Educe to be transparent to Prolog users. Let us start by examining
the extent to which this proved possible.

The first case we examine is one of semantics. The Prolog user can use asserta
to add a new fact or rule at the beginning of the clauses for a predicate,
assertz to add them at the end, and ‘assert’ if it doesn’t matter. For example if
one writes in Prolog

?- asserta(r(1)) .
?- asserta(r(1)) .
?- assertz(r(2)) .
?- assertz(r(3)) .
?- assert(r(a)) .
?- assert(r(b)) .

?- r(X) .

the answers 1,2, 3 will be returned in order, but one does not know when the
answers a and b will be returned, either before, after or amongst the other
answers. In Educe, if a user wants to impose a specific ordering on any set of
facts in the EDB they must be held as rules. This is because relations by
definition are an unordered set.

The second problem is caused by the differences and limitations in data types
supported by the component sub-systems (Prolog and EDB). Even if there is
a unary relation r in the Educe database, the user cannot insert into it the fact
?- r(head(a)) because head(a) is a compound term. There is no database
type structure in which to store Prolog structures. The reason for this is that
the types provided by Educe are precisely the Ingres types. When an Educe
relation is created, its definition is passed directly to Ingres. This avoids the
more serious problem of having to maintain duplicate schemas, one in
Prolog and one in the EDB. One possible solution that we have considered is
to have intermediate Educe types which can map onto the underlying Ingres
types. This can be implemented by adding a new system relation for this
purpose to the EDB.

The third is the insertion and deletion problem. When a Prolog clause is

446 ICL Technical Journal May 1987

asserted it can be either at the beginning of the clauses for a particular
predicate (asserta), at the end (assertz), or its position may be unspecified
(assert). To insert a rule into Educe it is necessary to give it a number (distinct
from all the other rules for the same predicate). To retract a rule the user
must either supply this number, or take the textual representation of the rule,
append a full stop, convert it to an atom and then do the deletion from the
database. Clearly insertion/deletion of facts and rules into the Educe
database cannot be transparent since Educe must still support the standard
semantics of assert and retract. However the only reason for requiring the
user to assign a number to each rule is because it is used to force an order in
the otherwise unordered relation rulerel. This is one more example of the
contradiction between the procedural nature of Prolog and the unordered set
concept of relational DBMSs.

Unlike the three previous ones, the last problem is not about transparency. It
does not affect ordinary Prolog calls. However, we feel it is a related issue
and hence it has been included here. The extension to Prolog in the close
DML allows a call of

?- retr(r(A,B)), B>20 .

for example, to be expressed as

?- retr(r(A,B>20)) .

In general any comparison can be expressed in the embedded form. In order
to gain the efficiency advantage that Educe provides for such queries, the
user needs to use the extended syntax. Unfortunately, the syntax used by
Educe in the extension is ambiguous. For example, to store two clauses for
the predicate r, one in the relation r, and one in the rule relation (rulerel), we
might add the fact r(fred,20) in the relation r, and the rule r(X,50) :-
manager(X), in the rule relation. To make the close syntax transparent we
can add an extra rule r(X ,Y) :- retr(r(X ,Y)). Now the query

?- r(X,Y).

will succeed, returning {X = fred, Y = 20} and {X = M, Y = 50} for every
manager M. Suppose the user wishes to take advantage of the extended
syntax. He can ask

?- r(X, Y>10) .

and this will call the subgoal

?- retr(r(X,Y>10)) .

which will efficiently return the answer {X = fred, Y = 20}. It will not,
however, return {X = M, Y = 50} for any manager M because the other rule
for r has head r(X,50), which will not unify with r(X ,Y >10).

ICL Technical Journal May 1987 447

Thus the user has to express the rule as:

r(X,Y) :- var(Y) , !, manager(X) , Y = 50.
r(X,Y) :- integer(Y) , !, Y = 50, manager(X) .
r(X,Comp) :- comparison(Comp,Y,Op,V) ,

Y = 50, call(Comp) ,
manager(X) .

comparison(X>Y,X,'> ' ,Y) .
comparison(X> = Y,X,’> = ’,Y) .

to resolve this particular problem.

Two more problems worth mentioning are debugging and error handling.
Usual Prolog facilities for debugging are just not satisfactory in the context
of large knowledge bases. Just imagine trying to detect a loop involving a few
thousand tuples in a relation which is used in a recursive definition of a
predicate. Spying and tracing are too primitive for such a problem. The error
handling problem is due to the different treatment and recovery techniques
that the two components (Prolog and EDB) use. In Educe we tried to be
consistent by adopting the Prolog treatment. Unfortunately, this is not
always possible, particularly in the case of the coupling, where there is little
control over what is generated by the internal modules of the EDB.

From the discussion on transparency, it is clear that although Educe is
a close approximation to Prolog it is not an extended Prolog system which
can store facts and goals on disc. However, it is indeed an efficient
logic programming system for constructing large KBMSs, as 20,21,5
demonstrate.

In this paper, we have undertaken a critical revision of our work on Educe, a
logic programming language for the development of KBMSs. The version of
the system here described has been successfully tested with the implementa
tion of KB-221. We have also tested the performance of Educe with queries
on reasonable large relations and several levels of recursion4. Response time
for the first answer and for backtracking answers is never more than a few
seconds. We do not expect any significant deterioration in performance on
very large knowledge bases.

Based on our past experience we have decided that the next version of Educe
will move towards logic programming, and not towards Prolog. This is a
departure from our previous adherence to Prolog. The new system, Educe* is
modular, uses new evaluation strategies and aims for completeness in the
recursive case20. Also, in this new system we are relying much more upon our
own access methods, so that we are less dependent on the underlying DBMS.
All of this, plus the addition of structured data types, should resolve the main
incompatibilities between the EDB and the Prolog component. Indeed,
Educe* is no longer a marriage of these components, but a self standing
system.

448 ICL Technical Journal May 1987

I would like to express my gratitude to all the members of the Knowledge
Base Group at ECRC, for their many helpful comments and discussions.

References

1 NICOLAS, J.-M. and YASDANIAN, K.: ‘An Outline of BDGEN: A Deductive DBMS’.
Information Processing 83. Elsevier Science Publishers B.V. (North-Holland), 1983,
711-717.

2 BOAS, H., BOAS, P. and DOEDENS, C.: ‘Extending a Relational Database with Logic
Programming Facilities’. Technical Report, IBM INS- Development Center - The
Netherlands, 1984.

3 BOCCA, J.B.: ‘EDUCE - A Marriage of Convenience: Prolog and a Relational DBMS’.
Internal Report KB-9, European Computer-Industry Research Centre, Munich,
September, 1985.

4 BOCCA, J.B.: ‘On the Evaluation Strategy of EDUCE’. In: Zaniolo, C. (editor), Proc. 1986
ACM-SIGMOD International Conf. on Management of Data. ACM, Washington, D.C.,
USA, May, 1986.

5 BOCCA, J.B., DECKER, H., NICOLAS, J.-M., VIEILLE, L. and WALLACE, M.: ‘Some
steps towards a DBMS based KBMS’. In: Kugler, H.-J. (editor), Proc. 10th World
Computer Congress. IFIP, Dublin, Ireland, September, 1986.

6 CHANG, C.L. and WALKER, A.: ‘PROSQL: A PROLOG Programming Interface with
SQL/DS’. In: Proc. of the First Int. Workshop on Expert Database Systems. Kiawah
Island, South Carolina, USA, October, 1984.

7 BOCCA, J.B.: ‘EDUCE - User Manual (Internal KB Report)’. ECRC, Arabellastr. 17,
Munich, W. Germany, 1986.

8 DUCASSE, M., FAGET, J. and GUMBACH, A.: ‘FROG - Implementation of a Language
merging Functional Relational Programming Styles, via an Object Type Driven Evalu
ation’. Laboratories Marcoussis, 1985.

9 GALLAIRE, H.: ‘Logic Programming: Further Developments’. In: Proc. 1985 Symposium
on Logic Programming. Boston, USA, July, 1985, 88-96.

10 KUNIFUYI, S. and YOKOTA, H.: ‘PROLOG and Relational Data Bases for Fifth
Generation Computer Systems’. CERT Workshop, France, 1982.

11 LI, D.: ‘A PROLOG Database System’. Research Studies Press Ltd., 1984.
12 UNIX’s notes (file). Announcement of ‘near’ availability, 1985.
13 NAISH, L.: ‘MU-PROLOG 3.0 reference manual’. Melbourne University, Computer Sc.,

Melbourne, Australia, 1983.
14 RAMAMOHANARAO, K. and SACKS-DAVIS, R.: ‘Recursive Linear Hashing’. ACM

Transactions on Database Systems 3(9), September, 1984.
15 STONEBRAKER, M., WONG, E., KREPS, P. and HELD, G.: The Design And

Implementation Of Ingres’. ACM Transactions on Database Systems 1(3), September,
1976, 189-222.

16 STONEBRAKER, M.: ‘Inference in Data Base Systems Using Lazy Triggers’. In: Proc. of
the Islamorada Workshop on Large Scale Knowledge Base and Reasoning Systems,
Islamorada, Florida, USA, February, 1985, 295-310.

17 Unix Programmer’s Manual. 4.2 Berkeley Software Distribution (copyright 1979, Bell
Telephone Laboratories, Inc.) edition, Dept, of Electrical Engineering and Computer
Science, University of California, Berkeley, California, USA, 1983.

18 VASSILIOU, Y„ CLIFFORD, J. and JARKE, M.: ‘Access to Specific Declarative
Knowledge by Expert Systems: The Impact of Logic Programming’. Decision Support
Systems 1(1), 1984.

19 VENKEN, R.: ‘The Interaction between Prolog and Relational Databases’. Unpublished,
Early, 1985. Report on ESPRIT Pilot Project 107

20 VIEILLE, L.: ‘Recursive Axioms in Deductive Databases: The Query-subquery approach’.
In: Proc. First International Conference on Expert Database Systems, Charleston, South
Carolina, USA, April, 1986.

A ck n ow led egm en t

ICL Technical Journal May 1987 449

21 WALLACE, M.G.: ‘Reconciling Flexibility and Efficiency In A Knowledge Base Imple
mentation’. Internal Report KB-8, European Computer-Industry Research Centre, Mun
ich, September, 1985.

22 WARREN, D.H.D.: ‘Logic Programming and Knowledge Bases’. In: Proc. of the
Islamorada Workshop on Large Scale Knowledge Base and Reasoning Systems, Islamo-
rada, Florida, USA, February, 1985, 69-72.

450 ICL Technical Journal May 1987

The semantic aspects of MMI
"So advanced, it’s got to be simple. ”
Advertisement for Canon T70 camera

John M. Pratt
European Computer-Industry Research Centre GmbH, Munich, West Germany

Abstract

The factors improving the comprehension by a user of a domain of
knowledge, when assisted by a computer based decision support
system, are analysed. The classification of the domain into a model,
the presentation of the model to the user, and the relevance of Fifth
Generation techniques are discussed.

1 The context

1.1 Introduction

ECRC has been established to investigate Computer-assisted Decision Mak
ing techniques. In the most complex cases such CADM needs powerful
reasoning techniques, and therefore is a challenging application of the most
advanced computer systems. Topics such as knowledge representation and
manipulation, logic programming, and inference crunching are common
factors to all the work at ECRC, and have a lot in common with the “5G”
programme.

The MMI dimension of the work is that the users, who are the decision
makers, may not have the ability to access or comprehend such knowledge
without assistance. It is important to recognise that humans should make
decisions, not machines. In spite of all the claims about the potential power
of computer-based systems, background knowledge of educated users is still
essential to achieve optimal decisions. The MMI group aims therefore to
investigate methods of providing and promoting such assistance, and to
measure the effectiveness of CADM in terms of the improvement in decisions
made by the users.

Thus, users are expected to be motivated to understand and manipulate
some domain of knowledge relevant to their current situations. Individuals
do not wish to be aware of the workings of the tools they are using, except
when the tools are being used beyond their designed limits. For example,
persons driving a car are normally concerned with their situations on the
road and not by the operation of the car. But if they ask too much of their car

ICL Technical Journal May 1987 451

they expect to be made aware of the danger by an exception report in sound,
vibration, reaction of the steering wheel, or warning lights.

Therefore, it is argued that MMI is concerned with three aspects:

• The domain, which contains the problem which the user is attempting to
understand.

• The model, which is the representation of that domain in a machine.
• The presentation, which is the image of that model, and is the means

whereby the user is communicating his wishes.

The prime measure of the success of MMI is that of the degree of
transparency with which users comprehend the operation of the domain.
That transparency is provided by the model and the presentation.

1.2 The domain

This is defined as the body of knowledge which users wish to comprehend. In
some professions, accounting for example, the domain is built around
precisely specified and systematic concepts. In many other domains this is
less evident, and the difficulty users face is grasping the real nature of the
imprecise nature of the domain. Clarification of the concepts lies firmly in the
domain of human researchers and tutors, who ought to extract the essence of
the domain for other users. Of course, it is not always possible for that
extraction to be uniquely prepared and the domain then exists as a volume of
prior examples from which users are expected to extract their own interpreta
tion. The knowledge about the domain will be recorded in some language,
which is normally capable of ambiguity and contradiction.

It is evident that the ambiguity of natural language is a valuable feature of some
domains. The art of politics relies heavily on multiple interpretations, and the
legal profession is built on the idea of new interpretation of old law. Human
expressions, such as “thin”, “very thin”, “next to”, “east o f’, are all logically
imprecise, and yet can convey significant meaning in appropriate contexts.

However, there is increasing recognition of the power of Formal language to
capture such knowledge, and in some cases, knowledge about a domain can
be expressed only in formal terms. For example, knowledge about dynamics
of motion can best be properly expressed with calculus, and thus that
particular branch of mathematics should properly be classed as the language
of that domain. It should be noted in this case that the knowledge was not
created until that language was available.

A further example is the use today of languages based on set theory to
describe the world of “office automation”. In this case, users need to be able
to precisely express the movement of information in an office and need a
language which provides the concept of membership of a group. Thus the
idea of a domain is closely associated with that of a particular language.

452 ICL Technical Journal May 1987

Ideally we should include many branches of mathematics as languages, and
encourage users to use them when relevant.

Where a group of users have a need to share knowledge then it is important
that they use a common language. That language evolves within their
domain, and records the extent of the knowledge of the domain. In his book
titled Thith and Method the philosopher Gadamer (1975) proposed that
language and the understanding of a domain are mutually dependent in that
individuals, in understanding their world, are continually involved in acts of
interpretation based on previous understanding, which includes assumptions
implicit in the language that individuals use. That language, in turn, is
learned through activities of interpretation. Individuals are changed through
use of language and the language changes through its use by individuals.

1.3 The model

A model is conventionally defined as the representation of a domain, defined
in the language of that domain. As such, it is an approximation of the
domain, and has limits to the represented knowledge. Ideally, users compre
hend the domain through the model without being aware of the implementa
tion of the model. The model may have been created by system designers,
rather than end-users, and the former should be aware of the approximations
they have made, and should try to anticipate the alternate sets of approxima
tions that users might wish to apply.

The model will evolve as the users interact and refine their understanding.
Such evolution needs to be managed such that old instances of the model are
not prematurely discarded. For example, a model of a document, i.e. the files
of text, will evolve through many issues. The discarding of old issues should
be under users’ control. Therefore, from users’ perspectives, models should be
manageable and flexible.

In order to have a focus for the research we have attempted to clarify the
term “Complexity”. In human terms we propose that such complexity can
result from:

• Structural characteristics, as represented in the schema of an Entity-
Relation database.

• Quantity of entities, such as a large set of geographic data.
• Value interdependence, where the relative importance of the values and

their interaction are significant.
• Question characteristics, where the problem to be solved is not easy to

comprehend.

A characteristic of the model is that of multiple dimensions, which mutually
interact. Users would obviously prefer a simple one or two dimension view of
the domain, which can be simply expressed as a table of numbers or a
Cartesian graph, However we have assumed that in the applications of

ICL Technical Journal May 1987 453

interest such simplicity of extraction is not possible, and that three or more
dimensions of comprehension are desirable. Our challenge is to find ways of
helping the user find such comprehension.

1.4 The presentation

This is the interface with the users. Many different communication methods
can be used, and the success of a particular method is measured in terms of
the accuracy and efficiency with which users can manage and manipulate
models, and thereby comprehend the domain.

This interface is built to take advantage of the abilities of the users, which are
both physical and mental. Direct manipulation of objects on a visual display
screen, in the manner of Macintosh, creates a communication channel which
is limited to visible objects. In contrast, the expression of commands fitting
an abstract model, in the manner of UNIX, makes maximum use of the
mental abilities of users, but, therefore, has greater scope. In both cases, the
interface should be maximally transparent and ideally users should not be
aware that they are operating the interface.

1.5 Reversibility

In some domains reversing of action may be impossible, because potential for
catastrophic changes exists in the domain. In such circumstances models
ought to provide reaction to users’ actions which indicates that they are
“driving dangerously close to the limit”. This implies that the model of the
domain needs to be testable without commitment. In this respect, the model
is more manageable than the real world.

1.6 Some examples

To illustrate these aspects, let us review some examples.

1.6.1 A spreadsheet calculator application: Here the domain is typically
that of a business world. The user is concerned about quantities of resources
and money. The complexity of the domain results from the manner in which
those values interact.

The language of expression is mathematically quite simple, with algebraic
expressions sufficing to represent the relations and quantities. The user is
also aware of time as a dimension in the domain, with each year’s results
progressing from the previous year.

Algebraic expressions, or equations such as:

Gross Margin — Production Costs = Profit
Labourcost[this year] * Inflation = Labourcost[next year]

can be used directly to build a model.

454 ICL Technical Journal May 1987

The grid of cells on the visual display form the presentation, and for
convenience the names of the resources are often assigned to lie on rows and
time is represented by the columns. Generation of other types of presenta
tion, such as graphs of sets of the values, is normally available. The rows and
columns also provide obvious grouping of values, which can then be the
subject of further expressions, such as “average value of a group”.

Thus the domain, the model, and the presentation all fit smoothly together,
and users are able to directly appreciate what their domain is doing. It is not
surprising that such facilities are popular, given such directness.

However, as their horizons expand, users will become aware of the problems
of managing bigger models, where the quantity of values and expressions
increases to the point when they cannot be easily managed. Integration then
becomes a limitation.

Observation of users has shown that, even with such simple models, users
understand the domain better if the operation of the model is “explained”.
For example, the machine can compute the values which satisfy the
equations in any direction. Given some values, it can therefore automatically
deduce the remaining values, and the most significant flows of value, and
highlight them for users. In such cases users report a significant improvement
in the transparency of the machine and their understanding of the domain.

1.6.2 A structured database: Here we have a domain which is the world of
objects and their relationships. The complexity of the domain is that it is very
difficult to classify objects and relations in a way which is equally applicable
to all uses. A small example of the difficulty is “What is one object”, for there
is no precise point at which reality can be divided into discrete objects. An
object at one scale is really a set of objects at another scale. That is reality.

An example of such an application would be the representation of the social
and public activities in a locality. Figure 1 below shows a pictorial view of a
section of such information. Here the language of the domain is that of the
general public, but note that the comprehension of the meaning of simple
words such as “stage” is highly subjective. Thus the classification of items
into the structure shown is not unique, and other classifications would have
been equally valid. The figure also shows that the model has a structure, and
emphasises the relations which have been recorded between objects.

A presentation of that model could be abstract, tabular, or the graphical
diagram shown. In the first case users would need to have learnt a particular
query language, which would possibly extend to include symbolic manipula
tion and logical expressions. They would need to have a mental image of the
model to form sensible queries, such as “Find events at place X, and retrieve
list of nearby restaurants”.

In the second case users directly operate on the items in a predigested list,

ICL Technical Journal May 1987 455

which does not give them a view of the model or the reality behind it. This
would often be the case when the users consulted printed literature, where the
information has already been grouped by the publisher. If it is presumed that
the relations between objects are relevant to a user’s problem, then such a
presentation is obviously less than helpful.

In the third case users interact with a view of the structure of the model as
shown in the figure. This gives a more transparent view of the model, and

456 ICL Technical Journal May 1987

enables users to directly manipulate the objects and the relations between the
objects and queries can be expressed by the selection of combinations of
objects and relations. In addition it should be noted that the visibility of the
overall arrangement should provide insight into the way reality has been
classified.

1.7 Summary of the context

Thus MMI is concerned with helping human users to comprehend a
particular domain. In such a context machines, and in particular computers,
act as communication agents. These should ideally be as transparent as
possible, and where their design is limited users should be able to manage
their characteristics to expand their limits. The language of communication
should be chosen to best express the character of the domain.

Since the domain knowledge has previously been gathered by a human act,
in the limit the interaction is limited to that knowledge. “MMI” could then
be interpreted as “Man to Man Interaction”.

2 Characteristics of the components

A total system can be divided into three sections, namely the human user, the
model of the domain, and the presentation (which is the communication
medium between the first two sections). The essential semantic aspects of
these are as follows.

2.1 The human

The objective of MMI research in general is to find the methods which allow
users to achieve the greatest accuracy in the shortest time, and with the most
satisfaction and deepest comprehension. In the particular case of decision
support we are concerned with situations where the cognitive demands of
“thinking about the problem” dominate the more automatic activities such
as reading values from a graph. We are therefore concerned with finding
consistent measures of cognitive processes, both objectively in terms of
the accuracy of decisions, and subjectively in terms of the feelings of users.
The following characteristics of users have been found to be important to the
decision making process.

2.1.1 Perception of the whole: Humans have the ability to best perceive
detail by using its context in a whole picture. For instance, the perception of
the colour of an object is known to be determined by reference to the colour
of all the surroundings, and thus not to be dominated by the colour of the
incident light. This is known as “colour constancy”, and implies that the
brain does not process individual items in isolation. One also could note that
the comprehension of the meaning of a name is helped by noting its relation
to neighbouring names, and forming a view of the boundary between them.
This ability is the foundation of the success of whole screen interaction.

ICL Technical Journal May 1987 457

2.1.2 Abstraction: Humans operate primarily by recognition of patterns
and structures. Since structures within a domain may be naturally multi-
dimensioned, it is not always possible to make an appropriate visual image of
structures. In some cases users can operate better with a memorised image of
the model they are manipulating. An example could be that of the players of
“adventure” games who are navigating in a world more complex than a
visual image could convey. Alternatively, consider that skilled users of UNIX
seem to prefer an abstract environment, which offers more flexibility than a
direct visual representation.

It also seems to be common for problem solvers to think better about a
problem whilst not actively looking at anything, and this could suggest that
the act of observing inhibits analytical thought.

2.1.3 Satisficing: Previous work by H.A. Simon proposed that users will,
when presented with a complex problem which is beyond their power of
analysis, make a decision which they feel is likely to be satisfactory, without
being able to rationally argue a justification. The term “satisficing” attempts
to capture this human quality. Such decisions, made by rules of thumb or
intuition, are one of the strengths of humans. Whilst this ability is potentially
very valuable, and could even be taken as the reason for allowing humans to
make decisions, the decisions thus made can sometimes be non-optimal or
lead to catastrophic situations. Users should therefore be encouraged to
explore models to find surprising interactions.

2.1.4 Satisfaction: Users have subjective feelings about their work, and
“satisfaction” is a quality which can be measured by a questionnaire. Users
appear to gain more satisfaction from making the “right decision” than from
the style of the interface. Experiments have shown that subjects report
greater satisfaction when the operation of the model is explained, even
though they do not at the same time achieve greater accuracy of decision.

The quality of documentation of the system is also an important contributing
factor to the user’s satisfaction.

2.1.5 Information overload: We are expecting users to be capable of
operating in a challenging environment, but one of the biggest dangers they
face is that of information overload. In such situations, human decision
making can sometimes degenerate. (They can’t see the wood for the trees.)
We have found that when users are presented with an optimum amount of
information they report that (1) they feel the problem space to be more
visible, (2) they feel more satisfied with their work, and (3) they attribute their
performance to themselves rather than the machine. If the amount of
information presented is either more or less than this optimum all these
measures degenerate.

We must therefore include in our system design some control on the quantity
of information being made visible in order to prevent non-optimum situa

458 ICL Technical Journal May 1987

tions arising. A current example could be that a large screen, multi-window
display can hinder some types of structured tasks which do not need multiple
sets of information simultaneously.

2.1.6 Training and experience: The level of users’ experience will obvi
ously affect their use of the system. They may have prior experience of the
domain and be skilled in the particular language of that domain. In such a
case, it would be frustrating for them to communicate in any other manner.
On the other hand, if the domain is novel to users, a vital aspect of the system
ought to be the training of users to learn the language of the domain.
However, in neither case should the internal characteristics of the machine
dominate the communication, and the domain language should be as visible
as possible. That ideal may not be reachable without some training of users
in the techniques of communicating via a machine. The exact mechanism of
communication, be it keyboard, mouse or speech, is not relevant to this
discussion, but a willingness to learn a reasonable level of skill is essential.

The new power of analysis that the machine provides introduces the need to
properly express and control the analysis. For instance, the concept of taking
a group of objects and forming the average of their individual values implies
several manipulative and expressive skills. Such skills could be exercised by
direct manipulation of visible objects, or by a symbolic expression referring
to the objects and functions by name. The latter technique offers more
flexibility, but is a linguistic skill which needs to be learnt, and it is
unfortunate that such skill is normally associated with the full complexities of
mathematics. Whilst most people would be confident that they could use
arithmetic signs, such as in:

Profit = Sales — costs

it is unpopular to propose that they should use “brackets” to express the idea
of a group:

Members are (joe, fred, jim, george)

Such primitive linguistic skills should be encouraged, they are “mental tools”,
and the alternative is that man will remain in a world of manual tools.

2.1.7 Personality: It is possible to measure personality characteristics of
users, and these sometimes correlate with the best means of interaction with a
decision support system. For instance, by subjecting users to a prepared
questionnaire the following characteristics can be estimated:

• The preference of the users for “learning by studying”, rather than
“learning by doing”.

• The goal-orientation strength of the users.
• Their attitude about the use of plans. {Planfulness.}

Such estimates can then be used to optimise the style of the interaction.

ICL Technical Journal May 1987 459

Further, personality measures of the individual users are possible and could
be consulted along with a record of the actual use exhibited by users, and any
measures of their level of experience, to formulate a “User Model”. This
model can then guide the presentation in terms of style of presentation and
the level of detail, and thereby optimise the communication. The degree to
which this is practised is a matter of current research and debate, and it leads
to the concept of a tailored environment, as distinct from a canonical, or
average one.

2.2 Characteristics of models

Although well known to information scientists, the following concepts about
models need to be understood by users, since they determine their abilities to
systematically comprehend their domain.

2.2.1 Entities - the subdivision of reality: Entities (or objects) are a
human concept used to define a model of reality. Different people will often
use different categorisations in forming their model. Since reality is a
continuum and entities are discrete, a set of entities can never be the only
unique model, but is often a usable approximation. The psychologist Jaensch
stressed in 1930 that there is a need for tolerance in allowing different
viewpoints, and that a closed, rigid system would generate a false sense of
security.

The model designers identify the particular choice of categorisation, and give
names to the entities thus conceived. However, the meaning of the individual
names is not always clear, and is best understood by the users by seeing the
whole picture, i.e. the total set of names. They then perceive the boundaries
between the categories. Further, a long description of the meaning of the
name could be recorded along with the name, to help clarify the scope of the
name, and this may then help the designer and the user communicate their
concepts. Note that this would even be desirable in the case of a spread-sheet
calculator application, where the user and the designer are probably the
same person, for the use of a short-form name of an entity could result in
inaccurate classification in a later re-use of the application.

2.2.2 Attributes: The identification of attributes, or properties, of an entity
is an important step for users, for in taking this action multi-dimensionality is
introduced to the model. It is natural for users to wish to form groups of
entities with similar values of attributes, but of course the membership of
such groups differs from one attribute to another. The subdivision of the
total reality according to the value of a particular attribute has in effect
created a further model.

There are many different ways in which a given set of things can be grouped,
including by spatial, temporal, and abstract concepts, such as ownership and
inheritance. In some of these cases the value of the attribute is implicit in the
order of entities along that attribute, and as such is not explicitly recorded.

460 ICL Technical Journal May 1987

The concept of precision is also often overlooked. It is common in physical
science to record not only a value but also the accuracy to which it is known.
Such a concept should ideally be included in any model with numeric values.
In models of logical relations one could also expect a value selected from
(true, false, not-relevant, unknown) to be used.

2.2.3 Order: The concept of order is an essential part of the users’
comprehension. Given any particular attribute it is often just as important to
conceive of the relative positions of two entities along that dimension as it is
to know the actual value. The concepts of lists, queues, and number rely on
that understanding. Thus the model should record the relative positions of
entities along each particular attribute dimension, either explicitly by value,
or implicitly by reference to another entity.

For efficiency of expression it is also possible to record rules, such as Every
tree is made of wood. This declaration is then understood to be true within the
reality modelled, and creates an automatic inherited value for an attribute,
generated by being a member of the group “trees”.

2.2.4 Interaction with models: Some users can gain significant compre
hension by active manipulation and exploration of the model. This is a result
of their ability to learn by observing the consequences of their actions, rather
than by study of a static image. In general such manipulation takes the form
of users modifying existing structures or values, and then allowing the model
to adjust any dependent values. A colloquial expression for this is “what i f ’
interaction. Naturally, users are a lot more exploratory if they are confident
that such interaction will not result in any loss of information and that they
are able to reverse, or undo their action.

Users also need to be able to select a subset of a model called a view which
then narrows the field of comprehension. A more precise selection, or a query
can then be matched by the model. In the case of numeric models it is also
valuable for the system to be able to search for values which allow the result
of the evaluation of a model (a goal) to be satisfied.

2.2.5 Evolution: Naturally, a model will become in time an inappropriate
description as the needs of the user evolve. The model must therefore be
flexible and capable of growing to match the users’ needs. One advantage of
the “spread-sheet” calculator is its ability to be extended by users as the
problems evolve. Its weakness is in the limited scope of expression, and the
consequent inefficiency.

2.2.6 Summary of model characteristics: The points above are the con
cepts about models which users must understand, since they represent the
manner in which they or someone else described their reality. The issues
discussed are fundamental to the act of modelling a domain, and are not
characteristics of the machine itself.

ICL Technical Journal May 1987 461

Given that users have a need to interact with a model, the presentation or
interface mechanism has the goal of providing that interaction in as
transparent a manner as possible. A good interface should not be noticed!
The following issues are relevant to the choice of a presentation style.

2.3.1 Views: If we assume that the models are large and complex, then we
cannot avoid the suggestion that users need to reduce their problem space by
the selection of “views”. These are selections out of the total space,
determined by the expressed context of users. They are in general abstract
selections, expressed in terms of categories of entities, or by range of value of
the attributes. More than one view is permissible at a time, but interaction
with one of the views should be reflected in the others simultaneously, if
relevant.

2.3.2 Predictability: Users should be expected to change their focus of
attention without warning, and consequently the interface needs to follow
their focus, from object to object, and from view to view. This has important
implications to the construction of the interface, since it prohibits the use of
traditional “dialogue sequences”. The interface should instead be thought
of as a mechanism which is capable of recognising the meaning of the actions
of the user in as flexible a sequence as possible.

2.3.3 Direct versus indirect manipulation: There appear to be two con
trasting styles of manipulation. First, the directly manipulated visual inter
face and, second, the indirectly manipulated symbolic interface. Much has
been said and written about the advantages of direct manipulation, and
products like the Macintosh exhibit its virtues and vices.

The concept of direct manipulation is that the model of the domain is
presented in a visual form, and that users can express their wishes by
selection, movement and placement of the images. Selection normally implies
pointing with a mouse, although other forms of pointing at an image could
be used. The important characteristic of such pointing is the precision of the
positioning, and given typical users’ coordination abilities the quantity of
objects that one can see and manipulate is limited.

Such an interface is also bound to be limited to those aspects of a domain
that can be visualised. Although this need not merely be limited to physical
objects, when a model contains multiple dimensions of grouping the task of
drawing an image may be impracticable. In turn, designing the model by
such an interface could limit the scope of the model for adequately
representing the reality.

The transparency of such an interface is high in simple models, but decreases
rapidly as the models become more difficult to visualise because of their
complexity and size.

2.3 Characteristics of presentation

462 ICL Technical Journal May 1987

In contrast, an interface which relies on symbolic expression has a much
wider scope. Symbolic pointing is unlimited in scope, and all entities and
attributes can be referred to by name, and abstract actions such as “sort” can
be activated. In fact, one could note that over the last two thousand years we
have been evolving an increasing skill in symbolic expression, and it would
be unfortunate if this skill was not utilised. It may also be relevant to note
that users who are attempting to comprehend a domain need finally to have
an abstract comprehension, and good examples of symbolic manipulation
should be used as a stimulus to clearer thought.

Transparency is enhanced by the appropriate use of both approaches, with
direct manipulation being one of the tools available to manipulate symbolic
ideas. The choice of the mixture of the two styles therefore needs to be
carefully balanced, taking into account the abilities and preferences of the
user.

2.3.4 Speech, voice, and sound: The use of sound and speech is mainly
not relevant to the semantic aspects, except that one must be aware of its
limitations.

Voice input of individual words is in effect a form of manipulation, where the
objects selected may, or may not, be visible. The exact sound used is not
relevant to its meaning, as long as it is distinguishable. The objects selected
must however exist for the selection to be meaningful, and this implies that
the interface may need guidance from the model as to the context of the
communication, in order to correctly decode the input.

The use of sound or speech for output is limited by the sequential nature of
the communication. It requires humans to remember a group of sounds, and
then form an abstract model of the meaning.

The use of “Natural Language” can only be discussed in the context of the
domain. Even human to human communication can only be given meaning if
the context is known by receivers. Therefore the designer of the model of the
domain must identify the domain specific language which is appropriate for
the domain. Any form of language which is less precise than the model
implies is not likely to help users comprehend the domain.

2.3.5 Users' preferences: Users’ style will vary, and there is increasing
evidence that an interaction controller could make choices on presentation
detail, according to measurable actions and attitudes of the user. The choice
between use of a symbolic command language and a menu based selection is an
example. Further choices could be made between the use of graphical charts or
numeric lists, where there is evidence that users exhibit varying success of
perception of value according to their personality and the style of presentation.

2.3.6 Summary of characteristics: The combination of the above seman
tic features of humans and machines should result in a total system of great

ICL Technical Journal May 1987 463

power, where the human abilities of pattern recognition and abstraction are
amplified by the ability of machines to accurately manipulate large volumes
of detail. One should view a Man-Machine System as a symbiotic combina
tion, drawing on the strengths of both components. In contrast, to expect the
machine to emulate the strengths of a human is an approach likely to
fail.

Both the Man and the Machine should be expected to evolve as the
understanding of the domain increases. Flexibility of structure and language
is therefore one of the most valuable features, and yet is the most difficult to
manage. The communication between man and machine needs transparency
of interface, and should permit multiple concurrent views to be active.

3 The relevance of Fifth Generation techniques

3.1 System design

The concept that has been used throughout this discussion is that an
“application” naturally divides into two differing specialities. Namely, model
design and interaction design. The former is concerned with the use of
increasingly powerful methods of knowledge representation, and the latter is
concerned with the construction of real-time interactive control mechanisms.

3.2 Knowledge bases

The implementation of the domain models will be assisted by the availability
of knowledge base techniques, particularly those using logic programming as
the means of manipulating the structures. The concepts of entities, attributes,
relations, and rules all map directly on to the emerging techniques. Naturally,
all the techniques needed to maintain the consistency and efficiency of the
structure are also needed, even though normally they are not visible to the
users.

3.3 Interaction design

The complexity of interaction design comes from two sources. Firstly, there is
the huge variety of human types. A programmer has previously had to make
assumptions about the users, and only by following prior examples made the
variety manageable. This has resulted in mediocre interfaces. One can easily
improve this. One can cater more for the lowest common denominator,
which assumes the least capability of users (e.g. the Macintosh - the ultimate
User Friendly System), but at the expense of making the environment of
more experienced users less efficient. Alternatively, one can construct an
adaptive interface, which ideally is built to grow naturally on top of a good
minimum, offering different levels of abstraction to suit all users. Such
adaptive interfaces are naturally more complex in internal structure, but
force the designer to distinguish between the semantic and syntactic aspects
of the interface.

ICL Technical Journal May 1987

Secondly, computers have to allow humans to be humans, to make mistakes,
do unpredictable things out of sequence, and still optimise the overall
interaction. That is, machines need to adapt to humans, not the converse.
This implies an interface control structure which is driven by the actions of
users, and yet has some sense of the most appropriate reaction at any
particular point in the application. Whereas traditionally, a state of a system
is implicit in the history of the interaction, ideally the state of the system must
be explicitly recognisable by the interaction control.

3.3.1 The design of control: Obviously, such stress on the importance of
recognition indicates that future machines should contain recognition, or
pattern matching mechanisms as primitives. Prolog language is currently
being used to good effect, but it normally implies a particular search strategy
(depth first - left to right), and this can be inefficient in some circumstances.
Breadth first matching by coarse criteria is much more useful to interaction
control, where matching is basically a matter of successive refinement of
match. For instance, if a cursor is not within a window bound then all the
detail within that window can be safely ignored during the search.

Optimising compilers would normally try to find a correct implementation of
search sequence, but since they can only act at the time of compilation they
are not applicable to interaction control, where the control structures are
changing during an interaction.

Functional languages offer an interesting alternative, partly because of the
self optimising mechanisms implied by combinator manipulations, and
partly because such code is referentially transparent, and therefore safely
managed by optimisation activities. One must not forget though that a
continuous interactive system is basically transforming infinite input streams
into infinite output streams, and thus lazy evaluation of those streams is a
fundamental requirement.

So the current issue of significance to interaction design is that of control
expression. The designer needs to be able to efficiently determine the flow of
control and such matters cannot be delegated to a general purpose language
and compiler. For instance, an interface designed in Prolog often contains
the frequent use of “cut” to limit the backtracking, because it is not relevant
to the task, and this is an indication of an inappropriate language for the
task. On the other hand, the complete lack of high level control expressions
in a conventional language allows the designer to create many different
control strategies, with the result that the program becomes more opaque
and difficult to maintain. Our requirement is therefore to be able to declare
control strategies, which are easily understood by the designer, and yet have
a degree of adaptability to the task, during execution.

3.3.2 Data structures for control: The data structures which are required
to represent the interaction states are themselves more complex than a simple
hierarchy, with the simplest extension being that of allowing parts of the

ICL Technical Journal May 1987 465

structure to cross refer to each other. An example of such cross linkage is the
need to express, in a visual image, that two images must be coordinated, i.e.
change in one should change the other, since they are both representing the
same thing. Traditionally, such coordination has been contained in an
“application program” which in turn modified an external data structure,
which in turn redrew the picture. In contrast, our proposition is that the data
structure should contain both the definition of the image and the coordinat
ing logical pointers. In other words, those portions of an application which
control visual interaction should be delegated to a purpose made interaction
controller and expressed in an appropriate language.

A more general view of the interaction data structure is that each item in it is
allowed to contain multiple attributes, some visible and some not, which can
be grouped with different hierarchies according to the class of attribute. Such
data structures are known in databases, but remember we are defining the
interaction control structure, which is at the heart of an interactive interface,
where performance and flexibility are more important than size. LOOPS
provides an interesting example of this type of complexity, with the “active
value” mechanism, which could be used to maintain a co-relation between
two objects. However, a system with many such links could become
unmanageable.

An important feature of the data structure is that access to it should be
constant for all items in the structure. This implies that one should not build
it with list structures, which require sequential access down a list. Instead,
random access to elements of the structure is needed, which in turn implies
the dynamic management of access paths. This may conflict with the ideas of
functional programming, which to date has relied heavily on list concepts to
build data structures, and this matter needs careful investigation.

Thus, to summarise, the task of interaction design requires a declarative
environment which can efficiently manipulate and search multi-dimensional
structures. Safe re-usability of code is essential to reduce the large volume of
design, and ideally the system itself should be able to compose new varieties
of interface automatically as it adapts to the user. The designer should be
able to design by expression of constraints and functions, and should be able
to consult predefined bodies of expertise on presentation technique.

3.4 Efficiency and performance

Naturally, all the above generality is required without sacrifice of interactive
performance. There is ample evidence of the importance of response times in
the usability of a system. Some research even suggests that with a response
time of less than a third of a second the performance of skilled users makes a
significant improvement. Assuming this to be so, how can we afford the
richness of data and control structure discussed above? Sometimes the
simplest of actions of users can cause significant rearrangement of the
structure and delay of response is most unacceptable.

466 ICL Technical Journal May 1987

We have experimented with some of the ideas outlined above, on a PERQ,
and found the performance to be inadequate. (Naturally, we could have
removed some of the generality and optimised the code, but the purpose of
the experiment was to find tools which reduce programming effort, not
increase it.) The latest workstations based on the 68020 should be better, but
the power will still probably be borderline. Given that the time is consumed
on pattern matching and structural manipulation, the use of current VLSI
graphic controllers will not contribute a great deal either.

There is a possibility that “lazy evaluation” of the result of actions will help
contain the visible performance within acceptable bounds. In the case of
selecting items on a screen (picking), the search space is restricted by visible
extent of the data structure. In general, the consequential changes resulting
from an action need to be scheduled according to a precomputed depen
dency graph so that the fastest possible reaction is provided. It is also
important to schedule action at level of detail which has the result of saving
execution time. For instance, there is generally little value in deciding
whether or not to redraw an individual line, since the time needed to draw
the line is small compared to the time needed to evaluate the choice. On the
other hand, the redrawing of a large set of lines is well worth evaluating.

So taking these requirements, of complex data structures and high level
expression of search and control, all at high peak performance, it is highly
likely that MMI can make use of many of the techniques being developed for
the Fifth Generation, provided that a single user can afford their cost.

4 Conclusions

This document has attempted to review the aspects of human-computer
systems from the point of view of users and particularly their resulting
comprehension of their domain. It is not a simple story, and never will be,
because humans are highly complicated and adaptable. It is important that
we let computers evolve to be increasingly helpful tools and that we
encourage humans to become expert masters.

Technology appears to be evolving in a useful direction, but the urgent need
is to educate users to think carefully about the real nature of the problems
they are tackling. In order to think better they need to make better use of
appropriate languages, according to the domain they are comprehending.

ICL Technical Journal May 1987 467

LANGUAGES

Appropriate languages are needed in which knowledge can be expressed in a
form that is convenient and natural for the user. These languages must be so
structured that they can be transformed from high level statements down to
efficient machine running code and are suitable for parallel execution. The
Flagship architecture, for example, is based on declarative style programming.

Language-overview

E. Babb
ICL, Systems Strategy Centre, Bracknell, Berks, Great Britain

Abstract

A step back is made from the usual close view of just programming
languages and consideration is given to a more general interpretation
of computer language to include non-programming and engineering
languages. Pure mathematical logic is one extreme method of commu
nicating with a machine without program control. The other extreme is
cell design languages used to design solutions in VLSI. Some brief
conclusions are drawn about these different languages and what the
future may hold.

1 Introduction

Computer languages form a spectrum going from the totally non-procedural
based on mathematical logic to the engineering languages, such as those used
to design VLSI. Database query languages are based on mathematical logic,
whilst VLSI engineering involves detailed considerations of physical layout
and behaviour of VLSI. Despite the attractions of the low levels to engineers,
the end user doesn’t want to be involved in these technicalities. He ideally
wants to specify his problem in a familiar notation with the machine
providing a solution at a reasonable cost. He only resorts to lower levels of
language in desperation if the higher level does not provide him with
sufficient performance.

On this spectrum Pure Mathematical Logic describes problems not methods
and is technology independent. At the other extreme VLSI engineering
describes how to get a piece of VLSI to perform operations such as arithmetic.
It is therefore highly technology dependent. In general, the lower the level, the
more options available to the designer as the following list illustrates:

TECHNOLOGY
Pure mathematics
Declarative languages
Programming languages
Circuit Engineering
VLSI Engineering

DESIGN OPTIONS
No design options
Instruction sequence
Store & instruction control
Copper track layout
VLSI layout and Physics

This increase in the number of options at the lower levels is the key to getting
closer to optimal performance, but makes the design process more compli

ICL Technical Journal May 1987 471

cated and therefore more expensive. Low level options also tend to interfere
with global optimisation. This is the reason people prefer to use general
purpose computers, rather than designing their own hardware.

2 Pure mathematical logic

Mathematical descriptions at their purest level aim to say nothing about how
a problem is to be solved. They are a method of stating a problem in a
manner that is technology independent. At the human level they match
natural language much better than any procedural language. Even designers
drawing electronic circuits, factory layouts or mechanical structures are in
reality writing the equivalent of a large set of differential equations plus rules
in logic. They would like these designs to come alive. Currently, they rely on
intuition, rules of thumb and the occasional computer program to provide
partial animation.

2.1 An example

Here is a request for information on the parts that weigh more than 3 pounds.
In Logic it would look like:

query: 3 (weight) (weight > 3 & <part, weight > epart-weight))

answer: part = 'pi or part = ’p2

The answer is all the part substitutions (pi and p2) that would make the
query true. The query is technology independent because it makes no
attempt to say how the machine should solve the problem. Thus it is quite
distinct from the search algorithms or hardware that are designed for fast
calculation. Because of the technology independence, the user can concen
trate on specifying his problem rather than worrying about a particular
solution technique.

2.2 Executing logic

Executing logic is best done by representing all mathematics in a formal logic
such as predicate calculus. To execute the above example:

query: 3 (weight) (weight > 3 & <part, weight > epart-weight))

we eliminate the existential quantifier 3 (weight) by making weight a local
variable:

query: local-weight > 3 &<part, local-weight > epart-weight)

We then try to execute local-weight > 3 but trap the fact that an infinite set of
substitutions (e.g. 4,5,6,...) would make this true - and it is therefore non

472 ICL Technical Journal May 1987

terminating. Provided we have managed to trap this non-termination we can
employ a suitable equivalence theorem to change to an equivalent terminat
ing formula:

query: <part, local-weight > epart-weight) & local-weight > 3

The term <part, local-weight > epart-weight) when mapped to a suitable
algorithm generates a finite set of substitutions which become input to the
now finite test local-weight>3.

Thus the execution of logic involves:

1 A set of termination theorems which can detect non-termination of a
problem or sub-problem prior to execution.

2 A set of transform-theorems to transform our non-terminating problem
to equivalent terminating sub-problems.

3 A set of basic algorithms which can solve these sub-problems quickly.

Usually all this is done by designers and engineers or alternatively as with
database and knowledge systems by specialised end user packages.

3 Declarative languages

3.1 Functional languages

Functional languages give more control because usually the functions are
executed as written. Therefore, because we execute the equations in a fixed
manner, the programmer must make sure the statements are ordered to give
a reasonably fast algorithm. These languages often have very little control
over storage which is usually dynamically allocated as required. Some
functional languages provide no destructive assignment and so the oppor
tunity for the programmer to control the allocation of storage almost
disappears and depends on. the cleverness of the compiler. Some of these
languages have no type checking (i.e. declaring variables to belong to some
general class such as the set of integers), the languages ML and Common
Lisp being exceptions.

Example: suppose we are given a function f-weight-part that generates
weight-part pairs. From these pairs we must filter those with weight less than
3. Therefore we can ask the earlier query in functional notation:

query: (f-filter-greater-3 (f-weight-part))

answer: ’(p i p2)

Functional languages usually use fixed computation rules and so queries can
be difficult to modify.

ICL Technical Journal May 1987 473

3.2 Logic programming languages

Logic languages such as PROLOG currently use deterministic execution
strategies such as left to right and so are algorithmic. Thus if we attempt to
execute the following in PROLOG an error will occur because the term
weight > 3 cannot finitely generate all the bindings for the variable weight:

query: weight > 3 & <part, weight > epart-weight

By manually reordering the terms a terminating algorithm is obtained:

better query: <part, weight > epart-weight & weight >3

PROLOG occupies an important position below a pure logic language and
provides a good way of specifying non-numerical algorithms where perfor
mance is not of prime concern.

3.3 Combined logic and functional language

There are times when the functional notation is best, particularly for
scientific computation, and other times, as in the earlier parts example, where
logic notation is preferred. Ideally they both should be available and map to
a common internal form perhaps along the lines being pursued in Hope.

4 Programming languages

Traditional programming languages such as C, Fortran, Pascal, COBOL,
etc. essentially aim to provide almost direct control over the computer but in
a friendly notation. They may include type checking of variables to provide a
crude validation that all is well. Assembler level languages aim to provide the
full power of the machine to the user. Sometimes they can be easier to use
than high level languages because the semantics of each instruction is more
precisely defined. However, in general this is not the case, since the
programmer may be expected to deal with different levels of physical store
and other details.

5 Circuit engineering

Design of the printed circuit board provides further scope for improving
machine speed. At this level parallelism appears in the design language, since
many gates are operating in parallel. There are many examples where ICL
designers have identified critical algorithms and moved them into special
hardware. For example CAFS is the hardware embodiment of search and
selection algorithm, whilst the DAP originally embodied algorithms for
solving differential equations and matrix manipulation.

6 VLSI engineering

This level of design offers considerable flexibility via silicon compilers or cell
compilers. These offer the ability to define the behaviour, physical arrangement,

474 ICL Technical Journal May 1987

structure and geometry of a piece of VLSI. The behavioural definition says what
should happen in terms of input output relationships. The structural representa
tion links the behavioural description to the geometrical definition. At the
geometrical and physical level, knowledge of power distribution, block
interconnection and packaging must all be used in the design process.

7 Conclusion

As these sections show, lower levels of design, such as VLSI, require more
effort because of the larger number of design options available. Of course, by
using these lower levels we could get massive performance benefits. However,
designers of end user systems usually carefully balance the cost of this design
effort against the cost benefits of extra performance. Usually only if an end
user artifact is to be used by large numbers of people does a large low level
design effort make economic sense.

Interlace

cost of each gate

(VLSI) (transistors) (vacuum tubas)

Fig. 1 Gate cost - language level

ICL Technical Journal May 1987 475

The coarse options available to a designer are summarised by Fig. 1. We can
see that VLSI, with its low gate cost, whilst still sustaining “hand wired”
solutions for complete CPUs or special graphics functions, is not usually
used directly to build end user systems. Using cheap VLSI gates, the trend is
toward using Mathematical Logic, in some friendly form, to build our end
user systems - actually making it easy for end users to build their own
system. Contrast this with vacuum tubes, with their high gate cost, where end
user systems were actually built by special hand wiring. Thus in those early
days, as the figure shows, the upper economic interface limit was very low;
now it is potentially very high.

Now that the Pure Logic level is becoming economic we can imagine many
of the operations required by such an interface being performed by special
VLSI architectures - effectively giving a further cost reduction than just a
crude gate cost reduction would imply. So we see that, just as the viability of
Logic is fuelled by cheap VLSI gates, so Logic will fuel the production of
special VLSI technology to help execute Logic operations.

Logic is not just an end in itself; it offers the advantage of closeness to natural
communication, with its emphasis on problems rather than solutions. It also
offers the crucial technical advantage of being able to reason easily about
itself and any algorithms used. It is this ability to reason, especially about
algorithms, that may distinguish the next generation of computer systems. It
may be the most significant technological advance in the next decade.

476 ICL Technical Journal May 1987

PISA - A Persistent Information Space
Architecture

Malcolm Atkinson
Department of Computing Science, University of Glasgow

Ron Morrison
Department of Computational Science, University of St Andrews

Graham Pratten
STL North West, STC Technology Ltd, Newcastle under Lyme, Staffordshire

Abstract

This paper describes the work of the PISA Project. The project is
concerned with the development of Persistent Languages and the
Persistent Information Space Architectures which support these Per
sistent Languages. The Persistent Languages are called persistent
because they provide a consistent language view of all data and
functions of whatever persistence, including short lived data tradition
ally held in program workspaces or appearing at human computer
interfaces and long lived data traditionally held in databases. Persis
tent Languages are now developing beyond this initial aim. They will
ultimately provide application developers with a simple and consistent
view of all relevant system capabilities including concurrency, sharing
and distribution. They will insulate application developers from
changes in the implementation of these underlying capabilities and
allow independent and easier evolution of applications and underlying
capabilities. This paper decribes the PISA Project’s approach to the
design of Persistent Languages and Persistent Information Space
Architectures and its relationship with other projects, in particular
Flagship and IPSE 2.5.

1 Introduction

This paper describes the work of the PISA Project, a collaborative project
funded by Alvey, ICL and SERC and involving the University of Glasgow,
the University of St Andrews and STL North West.

If we examine existing computer systems we find dichotomies in their
design and in that of their user interfaces. Some of these dichotomies were
deliberately introduced during the 1960s and 1970s to satisfy perfectly
reasonable performance constraints. Others are there simply because they
reflect the order in which the basic design concepts of computer systems
emerged over a period of twenty or thirty years. In referring to the

ICL Technical Journal May 1987 477

dichotomies in existing computer systems we have in mind those between
languages and interfaces, programming languages and database languages,
database languages and human computer interfaces (hci), virtual memories
and databases, workspaces and databases, programming languages and
operating system interfaces, etc. We contend that these dichotomies make
the development and use of computer systems much more costly than
they should be. They greatly increase the cost of evolving and enhancing
the computer systems and the cost of developing applications based
on them. They are seriously delaying the development of the Knowledge
Based Systems and Integrated Project Support Environments of the
future.

Because of the dramatic shift in the relative costs of hardware and software it
has now become both feasible and timely for us to reconsider these
dichotomies and remove those that cannot be justified. This has provided the
broad context for the PISA Project. Within this broad context the project
has started by considering the dichotomy between programming languages
and database languages and has then gone on to consider the dichotomy
between programming languages and hci interfaces. Application developers
are now beginning to develop applications which store hci images (and the
functions which generate these images) in databases. So the PISA project is
also concerning itself with that third dichotomy, the dichotomy between
database languages and hci interfaces. It has been estimated that in any
application program only ten per cent of the program is concerned with the
problem the application is trying to solve: the remainder is concerned with
the conversion between the different views of data supported by program
ming languages, database languages and hci interfaces. The aim of the PISA
Project is to investigate ways of reducing this overhead.

The PISA Project’s approach is to develop Persistent Languages. These
languages provide the same view of objects irrespective of whether the
objects are held in a program’s workspace, or are held in a database, or are
seen at an hci interface. By our use of the term ‘objects’ we mean functions,
procedures, etc. as well as data. By our use of the expression ‘same view of
objects’ we mean the rules for constructing the objects out of other objects
and the sets of operations which can be applied to the objects. The languages
are called Persistent Languages because they provide the same view of
objects irrespective of whether the objects exist (or persist) for a long time
(i.e. objects normally held in a database) or exist (or persist) for a short time
(i.e. objects normally held in a program’s workspace or seen at the hci
interface). A program written in a Persistent Language does not have the
workspace and the interfaces to databases and hci possessed by a program
written in a conventional language. Instead it exists in the context of one
Persistent Information Space which contains all objects accessed by all
programs. The Persistent Information Space Architecture which supports
the Persistent Information Space is responsible for the secure storage of the
long-lived parts of the Persistent Information Space, for the display at the hci
interface of relevant parts of the Persistent Information Space and for the

478 ICL Technical Journal May 1987

control of concurrent access to the Persistent Information Space by many
processes and many human users.

It might seem from the above discourse that the objective of the PISA project
is to produce one super, general, all-purpose language, a la PL 1 or Ada. This
is not so. The project accepts that application developers need different
languages in order to reflect the needs of different types of application
(although for the purposes of its research the project will only investigate one
or two languages). What the project does not accept is that application
developers need different types of language to reflect the needs of different
types of support system, i.e. database system, operating system, etc. So the
PISA Project is investigating how we can design and support languages
which reflect the needs of application developers rather than the needs,
idiosyncrasies and divisions in the systems which support the languages.

There has been considerable reference recently to the desirability of ‘object
oriented language systems’. This interest began in the late 1960s with the
development of the Simula language system and was greatly stimulated in
the 1970s by the development of the Smalltalk system and in the 1980s by the
creation of Lisp based, object oriented, systems such as Loops and Flavors.
The aim of object oriented language systems is the same as the aim of the
PISA Project: to provide one coherent homogeneous view of all objects
which are of interest to the application developer. Although there has been
much interest in object oriented language systems it has become apparent
recently that the meaning of the term ‘object oriented’ varies considerably
from system to system. The variations depend on issues such as granularity
of objects, range of objects, typing of objects, etc. These are the issues which
are of concern to the PISA Project.

2 The issues of concern to the PISA Project

In developing the very simple Persistent Language and Persistent Information
Space image for the application developer the PISA Project has had to deal with
a range of issues. Some of these have already been tackled by the PISA Project in
developing the PS-algol Persistent Language system, available on 3900, VAX,
SUN, Perq and Apple Macintosh hardware and on VME and Unix operating
systems. Other issues have been tackled in experimental extensions to the PS-
algol language, in a major development from the PS-algol language known as
the Napier language, and in various design proposals. Some issues will be
tackled in later stages of the PISA Project; some have been identified by the
PISA Project but are considered to be beyond its scope.

2.1 Host and guest languages

When an application developer uses a conventional programming language
system to develop an application he does not simply use the programming
language supported by the system. He also uses the set of procedures which
have already been implemented in the language. We could think of the

ICL Technical Journal May 1987 479

programming language as the ‘host’ language of the system and the
programming language together with the set of procedures as a ‘guest’
language. It is the guest languages which are used by the application
developers in developing their applications. The procedure call mechanism
provides the extensibility feature in the host language which allows guest
languages to be developed. These guest languages have proved the Achilles
heel of the application development process. They have not been thought of
as languages, have not been designed as languages and have been allowed to
become incoherent and cumbersome.

In principle this situation has not been changed by the advent of Persistent
Languages. Although the Persistent Languages now provide the host
languages for application developers, guest languages still have to be
developed on top of these host languages. However by their very nature the
persistence capabilities in the new host languages must simplify at least some
of the features of guest languages. In particular they obviously simplify those
features which are concerned with access to resources such as databases, hci,
etc. In addition the new host languages provide much more powerful bases
for the development of guest languages than their predecessors. The new host
languages do not simply provide the limited extensibility features of earlier
languages, they provide the type algebra and abstract data type mechanisms
discussed below. The guest languages can be built using these features.

We are providing a host language for the application developer (PS-algol
now, Napier later) as part of the development of the PISA system. We are
also providing the lowest level of guest language. In developing the PISA
System we are faced with the choice as to which features should be included
in the host language and which features should be included in guest
languages. In making this choice we can appeal to a number of guidelines. If
a system feature (say distribution) can be made entirely transparent to the
application developer or if it needs to appear the same to all application
developers then we can deal with that feature in the host language. If a
system feature (say configuration management) needs to be protected from
abuse by the application developer then we should deal with that feature in
the host language or in the lowest levels of guest language. If we feel that the
exact presentation to the application developer of a particular feature (say
concurrency or interfaces to existing databases) needs further research or
might vary from application developer to application developer then we can
provide that feature in its simplest form in the host language and in a more
powerful form in guest languages.

2.2 Naming view of objects

In our definition of Persistent Languages in section 1 we stated that
Persistent Languages provide the same view of objects irrespective of
whether the objects exist (or persist) for a long time (i.e. objects normally held
in a database) or exist (or persist) for a short time (i.e. objects normally held
in a program’s workspace or seen at the hci). We now need to consider in

480 ICL Technical Journal May 1987

more detail what we mean by the expression ‘same view of objects’. The view
of objects seen via Persistent Languages is largely determined by the naming
system of the language which we will discuss in this section and the type
system which we will discuss in section 2.4.

Consider first the view of objects which is seen by a procedure written in a
conventional language. The procedure sees and accesses objects via three
mechanisms. Firstly there are objects (e.g. local variables) which are created
when the procedure is invoked and which are destroyed when exit is made
from the procedure. Secondly there are objects which are passed as param
eters to the procedure when the procedure is invoked or which are returned
as results by the procedure when exit is made from the procedure. An object
passed as a parameter to the procedure may be modified in some way by the
execution of the procedure (e.g. the value of a variable may be updated). If the
object is modified then it is the modified version of the object which persists
after exit is made from the procedure, not the original version. (We are
talking here of languages with store semantics and not of applicative
languages.) Thirdly there are files or databases held in the file system; the
procedure always accesses these files or databases by invoking special sets of
procedures such as created, read, write, etc. These special sets of procedures
are said to encapsulate the files or databases because they provide surround
ing interfaces which must be used when accessing the files or databases.

Now assume that an application developer wants to implement an applica
tion procedure which accesses a large structured collection of objects. Given
the scenario presented in the previous paragraph the application developer
would expect to be able to use either the second or the third mechanism to
gain access to this structure from the application procedure. If he used the
second mechanism then, when the application procedure was invoked, a
pointer to the structure would be passed as a parameter to the procedure.
The formal name of the parameter within the procedure would effectively be
the local name of this pointer. The procedure could then select objects within
the structure just as it selects elements within an array. It could assign these
objects within the structure as values to other variables. The names of the
variables would then effectively provide local names for pointers into the
total structure. Thus using the normal language mechanisms of selection and
assignment the procedure would be able to select any object within the
structure. We could say that it could use these mechanisms to navigate its
way around the structure just as it can use the interface to a conventional
network database system to navigate its way around a network database.
This process of navigation using selection and assignment provides the
procedure with a contextual naming mechanism which enables it to reach
any object within the total structure. Objects can only be selected or named
in the context of the objects containing them within the structure. Objects do
not need to be provided with names which are unique within this total
structure. Having reached any object within the structure using the contex
tual naming mechanism the procedure can use the assignment mechanism to
modify that object.

ICL Technical Journal May 1987 481

However with a conventional language the second mechanism can only be
used for accessing objects held in the workspace of an application, i.e. the
objects which exist only while the application is running. So if the application
developer wants to implement an application procedure which accesses a
large structured permanent (or long lived) collection of objects he is forced to
use the third mechanism described above, even though the second mechan
ism may be more appropriate.

Persistent Languages still support the three mechanisms described above.
However they allow the second mechanism to be used for accessing long
lived or permanent data. So any part of the total Persistent Information
Space can be accessed using the second mechanism. The third mechanism is
therefore not required any more as a mechanism for encapsulating perma
nent data held in files and databases. Instead it is seen as a mechanism for
building new views or abstractions on top of the objects available in the
Persistent Information Space, i.e. as a mechanism for building abstract
objects, i.e. the mechanism known as the Abstract Data Type (ADT)
mechanism. In some circumstances the abstract objects will be required
because they provide richer, simpler or just different views of the underlying
objects in the Persistent Information Space. In other circumstances they will
be required because they provide privacy checks which control access to the
underlying objects. The third mechanism is in fact built on top of the second
mechanism. The procedures which encapsulate the abstract objects sup
ported by the third mechanism are themselves objects supported by the
second mechanism.

The discourse above on the second access mechanism described the essentials
of the contextual naming mechanism provided in conventional and Persis
tent Languages. This mechanism was described as the means by which a
procedure could navigate to objects within a large structure of objects. The
same mechanism can now be used as a means by which a procedure
implemented in a Persistent Language can navigate to objects within the
total Persistent Information Space. So the scope and usefulness of the second
mechanism has been increased enormously.

The problems of configuration management and version handling are closely
related to the problems of contextual naming and typing. We expect
solutions to these problems to make use of the capabilities described here
and in section 2.4. However these problems are not officially within the scope
of the PISA Project.

In this section we have been discussing the interaction between a procedure
written in a Persistent Language and the run time environment of that
procedure as provided by the Persistent Information Space. We have not
talked about the interaction between the procedure and its compile time
environment, i.e. the set of type declarations for objects used in the
procedure. It is important to recognise that the introduction of Persistent
Languages and Persistent Information Space Architectures has enabled us to

482 ICL Technical Journal May 1987

hold the compiler and the compile time environments of procedures in the
same Persistent Information Space as the running versions of the procedures.
Hence the Persistent Information Space Architecture provides a powerful
base for the development of partial evaluation schemes which remove the
sharp distinction between compilation and run time and replace it with
incremental partial evaluation. Although partial evaluation was not within
the original, official, objectives of the PISA project it has proved to be
inseparable from those objectives.

2.3 Addressing objects and distribution

The previous section described the contextual naming mechanism as the
means by which a procedure could navigate through the Persistent Informa
tion Space to the objects it requires. The routes through the Persistent
Information Space to the objects provided the contexts for the objects within
the space.

Now in fact the same object may appear in two contexts within the Persistent
Information Space. This creates two problems. Firstly, how can an object in
one context be incorporated into another context? Secondly, how do we
recognise that two objects selected through two contexts are in fact the same
object? The answer lies in the nature of the pointers referred to in the
previous section.

If he likes, the user of the Persistent Language can think of these pointers as
holding the unique addresses of the objects pointed at. In fact as the
Persistent Information Space is unbounded in size we cannot have unique
addresses as these would be unbounded in length. This is a problem for the
implementer of the Persistent Information Space Architecture rather than for
the user of the Persistent Languages. However we will describe briefly one
approach to this addressing problem.

The store underlying the Persistent Information Space is organised into
localities. A locality is normally the storage system of one machine. A pointer
which points to an object in the same locality as the pointer is stored as an
address within that locality. A pointer which points to an object in another
locality is stored as an address within the other locality together with a
means of communicating from the locality containing the pointer to that
containing the object pointed at. Thus the pointer is effectively supported by
a contextual addressing system. The pointer is unique within the addressing
context formed by the locality holding the pointer and the set of communica
tion links stemming from that locality but is not unique beyond that
addressing context. Pointers have to be converted when they are moved from
one addressing context to another, i.e. from one locality to another. This
conversion is performed by the Persistent Information Space Architecture.

When a request is made in one location for an operation to be performed on
an object in another location the system has a decision to make: should it

ICL Technical Journal May 1987 483

move the object to the location requesting the operation or should it move
the software requesting and/or supporting the operation to the location
containing the object? As both the objects to be operated on and the software
requesting and supporting the operations are held in the same Persistent
Information Space the choice between the two options is not as stark as it
would be in a conventional system. Ideally the application developer should
not be expected to make this choice; it should be made by the Persistent
Information Space Architecture.

If the Persistent Information Space Architecture is to be truly effective it
must be capable of supporting its Persistent Information Space on un
bounded distributed heterogeneous storage systems because these are the
storage systems available to application developers. If it is to do this it must
provide a solution to some of the problems outlined in this section. Ideally
the solutions to these problems should make the problems completely
invisible to application developers, who should simply see the view of the
Persistent Information Space described in sections 2.2 and 2.4. However,
more research is required to fully achieve this objective.

2.4 Typing of objects

In early languages, such as Fortran and Algol, the type system of the
language played a limited role. At compile time the user of the language
could define the types of variables in terms of a limited set of base types (e.g.
integers, reals,...) and a very limited and predefined set of type constructors
(e.g. arrays,...). The compiler could then check the use of the variables in a
program against the type definitions of the variables and could detect a
limited set of program errors.

The theory of type systems and the type algebras they support has developed
very rapidly over the last few years. The PISA project has developed the
language Napier to incorporate the most advanced state-of-the-art type algebra
into a Persistent Language. The type system of Napier includes conventional
primitive types such as integer, real, boolean, string,.... It also includes primitive
types suitable for use in hci interface designs, e.g. pixel, picture and image. It
provides a rich set of type constructors such as vector, structure, union,
procedure, abstract data type,.... The type constructors can be parameterised
by type thus providing parametric polymorphism. This enables the application
developer to define new type constructors such as set, stack, relation, etc. which
can be applied to any type to create new types. The type system is capable of
defining the types of functions, procedure interfaces, database structures and hci
images as well as more conventional data types. The PS-algol Persistent
Language is an older language than the Napier Persistent Language and
therefore does not support the full type algebra capabilities of Napier. However
it does support a very useful subset of these capabilities.

The type algebra is used in the support of the second access mechanism
described in section 2.2. The Abstract Data Type (ADT) capability within

484 ICL Technical Journal May 1987

this type algebra is used in the support of the third access mechanism
described in section 2.2.

The main objective of the developers of Persistent Languages has been to
bring together in one language view objects normally accessed via a
programming language and objects accessed via database languages. This
implies that the type systems of programming languages and of database
languages need to be brought together in the type systems of Persistent
Languages. We believe that the type algebra and the ADT capability of
Persistent Languages provide more than adequate capabilities for new
databases. We also believe they can be used to simulate the interfaces to
existing database systems.

2.5 First class persistent procedures

We stated in section 1 that Persistent Languages aim to provide a coherent
homogeneous language view of all objects which are of interest to the
application developer. By this we mean that they aim to treat all objects as
‘first class citizens’, that is to treat all objects in exactly the same way. They
aim to allow each of the objects to be held in the Persistent Information
Space, passed as a parameter, declared with a type declaration, etc. just like
any other object.

Procedures are treated as first class citizens by the Persistent Languages and
the Persistent Information Space Architecture. As we noted in section 2.2 this
means that the procedures which are used to support the ADT mechanism
can be held in the Persistent Information Space and treated like any other
objects. Furthermore it means that the procedures which support program/
procedure libraries can also be treated in this way. With this capability the
existing PS-algol Persistent Language system is able to load procedures
incrementally, type checking their bindings, when they are called by other
procedures. This has two important implications. Firstly in a system built in
this way the supplier does not need to implement and maintain separate
library and linkage editing software. Secondly the application developer does
not need to learn about, understand or explicitly use such software.

2.6 Concurrent sharing of objects

The existing PS-algol Persistent Language system has limited facilities for
concurrent sharing of objects. It divides the Persistent Information Space up
into databases, each of which can be concurrently accessed by many users in
read mode or accessed by one user in write mode. Thus the capabilities of PS-
algol databases are similar to those of Codasyl areas. The existing PS-algol
Persistent Language system supports a one-level model of transactions based
on implicit start and abandon transaction operations and an explicit commit
transaction operation.

A transaction capability is useful even in a single user, single process system.

ICL Technical Journal May 1987 485

It enables the single process to have points within its operation where it
decides whether or not to commit to changes in the Persistent Information
Space made since it last committed. If it chooses not to commit then the state
of the Persistent Information Space is rolled back to the state when the
process last committed. One can even justify nested transactions in the
context of a single user, single process system.

The approach of the PISA Project in its research on transaction capabilities
has been to provide a very simple transaction capability in the Persistent
Languages and Persistent Information Space Architectures and then to build
more powerful capabilities on top of the Persistent Languages, i.e. in the
guest languages referred to in section 2.2. We feel this approach is necessary
at this stage because we observe that different application areas still require
different transaction capabilities.

We believe that the model of concurrency eventually adopted by the PISA
Project will be derived from the theories and languages being developed
elsewhere in projects not concerned with the problems of persistence.
Persistence will add a new dimension to these theories and languages
because it will introduce the problems and benefits of persistent processes.
Again we believe that the applications developers may require different
flavours of concurrency. So the approach of the PISA Project in its research
on concurrency has been to start with a minimum concurrency capability
within the Persistent Languages and Persistent Information Space Architec
ture and experiment with richer capabilities at higher guest language levels.

2.7 Range of objects

Many systems claim to be object oriented. However when one examines
these systems in detail one finds an enormous variation in the granularity
and range of objects supported by the systems. In some of them the word
‘object’ is really used as a ‘with it’ alternative to the word ‘file’. In these
systems the granularity is coarse (i.e. effectively the file) and the range of
objects is small (i.e. one object, the file). In language systems such as
Smalltalk, Lisp/Loops and PS-algol the granularity is fine and the range of
objects large because the latter includes any objects visible in the languages.

In choosing the range of objects which will be supported by its Persistent
Languages and Persistent Information Space Architecture the PISA Project
has been faced with an increasingly difficult sequence of decisions. As we said
in section 2.5 the objective has been for the language and architecture to
support each object in the range as a ‘first class citizen’. Incorporating
support for primitive data types such as integer, real, etc. and the set of type
constructors for these types was a state-of-the-art activity. Incorporating hci
objects such as pixel, etc. was also fairly straightforward although very
beneficial. Incorporating functions and procedures was harder but again very
beneficial. Treating processes, transactions, locks, etc. as first class citizens is
the next hurdle. Treating types as objects with the same rights as any other

486 ICL Technical Journal May 1987

objects presents real theoretical and practical difficulties. The approach on
the PISA Project has been to give the compiler special capabilities for
handling types as objects and to withhold most of these capabilities from
other software.

2.8 Multiple languages

The issues discussed above have been researched by the PISA Project in the
context of the PS-algol and Napier Persistent Languages. If the research is to
be widely exploited it will need to be applied in the context of the other
languages which are now becoming of interest to application developers and
software engineers, e.g. Smalltalk, Lisp, ML, and even C. However in order
to do this effectively it may be necessary to make substantial changes to these
languages, for instance in the area of type systems.

3 Relevance to other projects

There are two major Alvey Projects with which the PISA Project has close
contact. These are the Flagship Project and the IPSE 2.5 Project.

3.1 The Flagship Project

Several papers in this issue deal with different aspects of this project;
references are given at the end of this paper.

The core objective of the Flagship Project is to develop a parallel processor
machine capable of efficiently supporting functional programming lan
guages. Beyond this core objective the Flagship Project has the additional
objectives of developing functional programming systems on its parallel
processor machine and demonstrating that other declarative languages can
also be supported on the machine.

However these objectives will only produce a parallel processor system
providing efficient support for declarative language systems. If such systems
are to achieve widespread commercial use an evolutionary path must be
demonstrated which allows application developers to move to these systems
from their existing application development systems, which must include
fourth generation language systems, Lisp/Loops-like systems and IPSEs. It is
this objective which takes Flagship beyond the objectives of a declarative
language crunching engine development project.

In fulfilling this last objective the Flagship Project is adopting an approach
consistent with that of the PISA Project. It is attempting to provide
application developers with a Persistent Language view of the system
capabilities they require, so for instance application developers using a
functional language such as Hope will see the system capabilities they require
through a Persistent Language extension to that language. The work on the
Flagship PRM (Program Reference Model) has identified the set of system

ICL Technical Journal May 1987 487

capabilities which must be supported in this way in each Persistent Language
supported by the Flagship machine.

The PISA Project is interfacing with the Flagship Project at three levels.
Firstly the two projects are collaborating at the research level by exchanging
ideas and research contacts on subjects such as type systems, storage systems,
etc. This research collaboration has been particularly close in the context of
the PRM design activity. Secondly Flagship is relying on PISA to help
provide support on the prototype Flagship machine for Flagship’s own
Persistent Language (i.e. Hope plus PRM capabilities). It will do this using
the version of the PISA Persistent Information Space Architecture currently
available with the PS-algol Persistent Language system together with some
interfacing glue written in PS-algol. Thirdly if the ideas of the PISA and
Flagship Projects can be converged sufficiently then Flagship will be able to
make use of all or part of the PISA Persistent Information Space Architec
ture in the final version of the Flagship machine.

3.2 The IPSE 2.5 Project

The mnemonic IPSE was coined by the Alvey Directorate to stand for
Integrated Project Support Environments. It was envisaged that there would
be three stages of IPSE: IPSE Is comprising a set of autonomous tools
interfacing with each other via a Unix-like file system, IPSE 2s comprising a
set of tools integrated around a shared database, and IPSE 3s providing the
ultimate knowledge base orientated IPSE. In the ultimate IPSE 3 the
separation of tools and data would have completely disappeared as both
would have been integrated into the knowledge base. The IPSE 2.5 Project
was given the name IPSE 2.5 because it was seen as researching the steps
going immediately beyond the state-of-the-art database-oriented IPSE 2s
towards the ultimate IPSE 3s.

The objective of the IPSE 2.5 Project is to provide support for all stages of
the software development process used in a software development project. At
the core of an IPSE 2.5 system will be an information space containing a
model of the total software development process. This will represent the
subprocesses within this total process, the information used by these sub
processes and the flow of information between the subprocesses. The
subprocesses represented will include tools and humans performing software
development activities.

Ideally the IPSE 2.5 Project would not need to concern itself with the support
of the information base at its core, but solely with the way the software
development process was used and was represented in the information base. It
would concern itself with the various subprocesses of the total software
development process, such as formal methods, management support, etc.

So ideally the IPSE 2.5 Project would like to have available to it a Persistent
Information Space Architecture and a Persistent Language to interface with

488 ICL Technical Journal May 1987

this architecture. It would like the Persistent Language to provide a language
view of the system capabilities it requires. These capabilities would have to
include a Persistent Information Space large enough to contain all informa
tion required by a software development project, a capability for storing
processes as well as data in the Persistent Information Space, shared
concurrent access to the Information Space by many humans and tools,
security of the Information Space, etc.

So the aims of the PISA Project are highly compatible with the aims of the
IPSE 2.5 Project. The only problem is the short timescales of both projects.
At this point in time there are various language systems which are of interest
to the IPSE 2.5 Project for historical and technical reasons. ML is of interest
to the people concerned with the program-proving parts of the project, Meta
IV and functional languages to the people working on formal methods,
Smalltalk to those working on hci issues, Lisp/Loops to the project as a
whole because of the wealth of AI tools built on them in the USA, PS-algol
because it is already supported by a Persistent Information Space Architec
ture, etc. It is difficult in the timescales of the PISA and IPSE 2.5 Projects to
bring all of these language systems together with the Persistent Language
approach. However this reconciliation will be needed if we are to move
forward on a longterm IPSE development path.

3.3 Other projects

Space does not permit us to consider in detail all projects which have
interests in common with PISA. However in an ICL context we should be
considering the relevance of PISA research to ICL’s database strategy,
application architecture, mainframe architecture and standards activities.
The relationships of the PISA Project to the PCTE and ANSA Projects is
important because these projects are being used as standards foci within
Europe and Britain.

The aim of the PISA Project is to provide application developers with a
coherent homogeneous language view of the objects they require, in particu
lar the objects traditionally supported by language systems, database systems
and hci. It must initially provide this view on top of the heterogeneous
collection of storage, processing and communication mechanisms available
at present. The effect of this work should be to insulate or decouple the
application developer from these underlying storage, processing and commu
nication mechanisms. This should in turn allow more flexibility in the
development of both applications and underlying mechanisms.

Acknowledgments

We wish to acknowledge the financial support provided by Alvey, ICL and
SERC and the encouragement and interest we have received from individuals
in those organisations.

ICL Technical Journal May 1987

We wish to acknowledge the work of the members of the PISA Project team,
who have produced the existing versions of the PISA system. They have also
produced numerous papers describing various facets of the PISA Persistent
Languages and the Persistent Information Space Architecture. A list of these
papers can be obtained from the manager of the PISA Project, Nick Capon,
STL North West, STC Technology Ltd, STC.

References

A The following papers introduce the IPSE 2.5 and Flagship Projects:
1 SNOWDON, R.A.: ‘Advanced Support Environment Study Final Alvey Report’.

ICL/STC.
2 TOWNSEND, P.: ‘Flagship Hardware and Implementation’. ICLTJ, 1987 Vol. 5, No. 3,

575-594.

B The following papers add to the limited outline of the PISA Project given in this paper or
represent the evolution of ideas in the project:

1 ATKINSON, M.P., MORRISON, R. and PRATTEN, G.D.: ‘A Persistent Information
Space Architecture’. Dublin, 1986.

2 MORRISON, R., DEARLE, A., BROWN, A. and ATKINSON, M.P.: ‘An Integrated
Graphics Programming Environment’. Computer Graphics Forum, 1986, Vol. 5, No. 2,
147-157.

3 ATKINSON, M.P. and MORRISON, R.: ‘Integrated Persistent Programming Systems’.
19th Annual Hawaii International Conference on System Sciences, 1986, Vol. IIA, Western
Periodicals Co.

4 ATKINSON, M.P. and MORRISON, R.: ‘Procedures as Persistent Data Objects’. ACM
TOPLAS, 1985, Vol. 7, No. 4, 539-559.

5 COCKSHOTT, W.P., ATKINSON, M.P., CHISHOLM, K.J., BAILEY, P.J. and MOR
RISON, R.: ‘POMS: A Persistent Object Management System’. Software Practice and
Experience, 1984, Vol. 14, No. 1, 49-71.

6 ATKINSON, M.P., BAILEY, P.J., CHICHOLM, K.J., COCKSHOTT, W.P. and MOR
RISON, R.: ‘An Approach to Persistent Programming’. Computer Journal, 1983, Vol. 26,
No. 4, 360-365.

7 ATKINSON, M.P.: ‘Programming Languages and Databases’. Proceedings of the 4th
International Conference on Very Large Databases, Berlin, IEEE, 1978, 408-419.

C The following papers are some of the papers which have provided technical inspiration to
the PISA Project:

1 CARDELLI, L. and WEGNER, P.: ‘On Understanding Types, Data Abstraction and
Polymorphism’. ACM Surveys, 1986.

2 WEGNER, P.: ‘Language Paradigms for Programming in the Large’. St Andrews
University Easter Lecture Course.

3 ALBANO, A., CARDELLI, L. and ORSINI, R.: ‘Galileo, a Strongly Typed Interactive
Conceptual Language’. ACM Transactions on Database Systems, 1985, Vol. 10, No. 2,
230-260.

4 BURSTALL, R. and LAMPSON, B.: ‘A Kemal Language for Abstract Data Types and
Modules’. Proc. Int. Symposium Semantics of Data Types, 1984.

5 LISKOV et al: ‘Preliminary ARGUS Reference Manual’. Programming Methodology
Group, MIT, 1983.

6 ICHBIAH et al: ‘The Programming Language Ada Reference Manual’.
7 SCHMIDT, J.W.: ‘Some High Level Language Constructs for Data of Type Relation’.

ACM Transactions on Database Systems, 1977, Vol. 12, No. 3, 247-281.
8 TENNANT, R.D.: ‘Language Design Methods Based on Semantic Principles’. Acta

Informatics 8, 1977, 97-112.
9 HOARE, C.A.R.: ‘Monitors: An Operating System Structuring Concept’. CACM, 1974,

Vol. 17, No. 10, 549-557.

490 ICL Technical Journal May 1987

10 ARDEN, B.W., GALLER, B.A., O’BRIEN, T.C. and WESTERVELT, F.H.: ‘Program and
Addressing Structure in a Time-Sharing Environment’. JACM, 1966, Vol. 13, No. 1.

11 DENNIS, J.R.: ‘Segmentation and the Design of Multiprogrammed Computer Systems’.
JACM, 1985, Vol. 12, No. 4, 589-602.

A more conplete list of references can be obtained from the manager of the PISA Project.

ICL Technical Journal May 1987 491

Software development using functional
programming languages

J. Darlington
Department of Computing, Imperial College of Science and Technology

Abstract

Functional programming languages offer radical solutions to many of
the problems currently met in software development and maintenance
and if adopted could lead to dramatically different programming
methodologies. This paper introduces some of the ideas behind
functional programming languages and outlines the software technol
ogy research being undertaken within the Flagship project at Imperial
College.

1 Declarative languages

The heart of any Fifth Generation project involves the adoption of one or
more declarative languages and their associated software and hardware
technologies. Declarative languages represent a radical departure from the
conventional languages in widespread use today such as Pascal or Ada. Such
conventional or imperative languages are intimately tied to the von Neumann
model of computation which, it is claimed, imposes serious limitations on their
effectiveness both in terms of software productivity and execution efficiency.

A major task of a programmer using a conventional language is to organise a
linear sequence of side effect-inducing operations to achieve the desired overall
effect. This style of programming has several undesirable consequences. (i)

(i) The organisation of operations in the correct temporal sequence is very
burdensome to the programmer. Programming is thus tedious and
error prone and the resulting programs are unnecessarily complicated
and verbose.

(ii) The resulting languages are not amenable to conventional mathemati
cal manipulations. Programming is therefore carried out via an
unscientific process of testing and debugging. As programmers we very
much lack the ability to build formal models and prove that our
solutions are correct before testing which can be found in more mature
engineering disciplines.

(iii) Because the languages used and the underlying model of computation
are inherently sequential it is very difficult to achieve improvements in
execution efficiency by employing parallel or concurrent evaluation.

492 ICL Technical Journal May 1987

In contrast the declarative languages trace their origin to mathematical
formalisms developed independently of any computing machinery. They
therefore inherit the desirable properties of such formalisms and avoid the
limitations listed above.

(i) The task of a programmer using a declarative language is to denote
which values should be computed rather than organise the computa
tion to produce the answer. Thus the languages are more concise and
expressive and the burden to the programmer is much less.

(ii) By their nature the declarative languages are mathematically tractable.
Thus the rigour and accuracy of mathematics can be applied to the
programming process with the potential for large improvements in
programmer accuracy and productivity. As many of the operations
involved in programming can now be formally and concretely ex
pressed there is the possibility of automating much more of the
program development and maintenance process.

(iii) As declarative language programs do not require a precise evaluation
order parallel evaluation is possible.

Within the declarative languages, at the moment, there are two main schools.
The functional languages are based on the lambda calculus and equational
systems while the logic programming languages are based on the First
Order Predicate Calculus. Both styles of languages share the basic benefits of
being declarative listed above but there are important differences between
them.

By our definition, Flagship is a classic Fifth Generation project, aiming to
develop the software and hardware technology made possible by declarative
languages to a point where they can support commercial application
development. In this paper we will introduce the software technology work
being pursued by the Functional Programming Group in the Department of
Computing at Imperial College as our main contribution to Flagship.

2 Introduction to functional programming languages

The Functional Programming Group at Imperial College has centred its
work around the functional language Hope. Hope was first designed and
implemented at Edinburgh University1 and is a good representative of a
modern functional language.

A Hope program is a set of equations defining functions. Separate equations
can be written for separate cases of the input variable. For example

— fib(0) <=1
- - fib(l) <^1
- - fib(n + 2) <= fib(n+l)+fib(n)

defines the Fibonacci numbers.

ICL Technical Journal May 1987 493

Hope is strongly typed. Before being defined a function must have its type
declared; this is achieved using the dec statement

dec fib:num->num

Hope employs polymorphic type checking so that type declarations can
involve type variables, e.g.

typevar alpha
dec f :alpha->num
— f(a) <= 0

is the stubborn function that returns 0 whatever you give it. Data structures
in Hope are represented as terms built up from constructor functions, i.e.
functions having no equations. These are introduced using the data state
ment. Thus

data listnum = = nil + + cons(num § listnum)

defines the data type list of numbers built up using the constructors nil (the
empty list) and cons. Data statements can also be parameterised thus

data list(alpha) = = nil + + cons(alpha jf list(alpha))

now defines a type constructor list such that list(num) is equivalent to the
type listnum defined earlier.

Thus

dec length :list(alpha)->num
— length(nil) <= 0
— length(cons(a/)) «t= 1 + length^)

calculates the length of any list whatever its components.

Hope allows the normal shorthand for lists thus [1,2,3] is shorthand for
cons (l,cons(2,cons(3,nil)))

Running a Hope program involves reducing an expression until it is totally
composed of constructor functions, i.e. no more equations apply so
length([l,2,3]) reduces to 3.

Infix operators are widely used in Hope, thus we can define :: as an infix
operator for cons and the above equations become

494

— length(nil) <= 0
— length(a::^) <= 1 + length(Z)

ICL Technical Journal May 1987

Being higher order Hope allows functions to be passed as parameters and
returned as values. Thus

typevar alpha, beta
dec * : (alpha->beta) # list(alpha)->list(beta)
infix * : 6
— f * nil <= nil
— f * (a::/) <= f(a) :: (f * i)

defines an operator * that applies a function to every element of a list, thus

fact * [1,2,3] evaluates to [1,2,6]

Higher order functions are especially useful as they allow many recursive
definitions to be rendered by a single function application. Of particular use
are functions over sets and Hope has borrowed the traditional set compre
hension schema, thus

primesquares: set(num)->set(num).
primesquares(S) <= {n2|n in S : isprime(n)}

is the set of squares of all primes contained in a given set.

3 Flagship software developments

The software work being undertaken for Flagship in the Functional Pro
gramming Section at Imperial College has two main aims: the development
of a more powerful and commercially viable functional programming
language and the design and construction of a prototype program develop
ment and maintenance system based on the ideas of formal correctness
preserving program transformations.

Within the language area there are three main axes along which research is
progressing

(i) Language expressibility. Staying within the basic functional framework
we are seeking ways to increase the expressive power and applicability
of the languages. Two ways of achieving this, incorporation of logic
programming capability and temporal synchronisation, are examined
in more detail below in 4.1 and 4.2.

(ii) System architecture. To date it has perhaps been a legitimate criticism
that the majority of functional languages are fine in isolation but do
not interact well with the rest of the non-functional world. Within
Flagship we are seeking to rectify this by developing a more sophisti
cated system architecture and expressing the capabilities thus provided
via the language. In particular we are incorporating into the language:
(a) Persistence. The view that any object created during computation

persists and can be accessed as long as it is named fits very nicely

ICL Technical Journal May 1987 495

with the functional view and is actually easier to accommodate
than the current character-based input/output systems.

(b) Language interworking. The ability to use procedures written in
other languages will greatly extend the useability and acceptabil
ity of functional languages.

(iii) Program forms and programming in the large. Functional language
research abounds with innovative ideas, particularly in the areas
affecting the static semantics of the languages, e.g. typing regimes and
module structures. These will be evaluated and incorporated into the
new language if they prove practical, particularly when applied to large
scale applications.

4 Language developments

4.1 Logic programming extensions of functional languages

A comparison between logic programming and functional programming
reveals that languages from the former camp possess two attributes not
available to functional programmers. Firstly because a logic program makes
no commitment as to which variables in a relation are considered as inputs
and which as outputs, a logic relation once defined can be used in several
different modes. For example given the append relation defined in Prolog thus

append(nil, (, ()
appendix :: (l , (2, x :: (3) :- append(/l, (2, (3)

it can be used in a ‘functional’ way to join lists together by means of a goal
statement such as

append([l, 2], [3, 4], ()

which will succeed binding (to [1, 2, 3, 4], But it can also be used
‘backwards’ via a goal statement such as

append^l, (2, [1, 2, 3, 4])

which will produce all the values for (\ and (2 that when appended give
[1, 2, 3, 4] viz.

□ , [1, 2, 3, 4]
and [1], [2, 3, 4]
and [1, 2], [3, 4]
and [1, 2, 3], [4]
and [1, 2, 3, 4], []

In contrast, functional programs are committed as to what they regard as
inputs and what they regard as outputs. Consequently the append function
cannot be used to split a list as above; a separate function would have to be
defined.

496 ICL Technical Journal May 1987

Another capability found in logic programming but not in functional
programming is that the results produced need not be totally ground, i.e. they
may involve variables. For example given the length relation defined thus

length(nil, 0)
length(x :: / , n l) :- length(/, n), plus(n, 1, nl)

a query of the form

length(/, 2)

would succeed producing a binding for / of the form u l :: (u2 :: nil) where ul
and u2 are variables. Such a data structure is a skeleton representing all lists
of length 2. This ability to embed variables in data structures and, perhaps,
later constrain them leads to an elegant and powerful program style that is
not immediately available to functional programmers.

Thus, it would seem, functional languages have something to gain from logic
programming languages. However, conversely, it seems to us that the
functional style also has several advantages over the logic style, for example,
functional notation, typing, higher order capability, determinism and the
existence of safe and efficient evaluation strategies in the sequential and
parallel context. Our approach has therefore been to seek to extend the
functional languages to achieve the capabilities outlined above without
changing their nature fundamentally.

The way we have sought to do this is by introducing a programming
structure into Hope termed absolute set abstraction. This construct is similar
to the simple use of sets for iteration seen earlier (that was relative set
abstraction) but much more powerful. Absolute set abstraction allows the
programmer to specify sets of values by conditions, given as equalities
between functional expressions, that the members of the set must satisfy.

For example given the append function defined normally

infix < > : 5
dec < > : list alpha § list alpha -> list alpha
— nil < > / <= /
— (x :: /1) < > /2 x :: (/1 < > /2)

using absolute set abstraction we could use it to split a given list, say [1, 2],
using the expression

{(/1, /2) | /1 < > /2 = [1, 2]}

which reads ‘the set of all /1, /2 such that /1 appended to /2 equals [1, 2]’.
This expression would evaluate to

{ (□ , [1, 2]), ([1], [2]), ([1, 2], []) } : set(list num # list num)

ICL Technical Journal May 1987 497

Absolute set abstraction allows the introduction of logical variables into a
functional language. The evaluation of such expressions entails an extension
of the normal functional evaluation mechanism. The technique employed is
known as narrowing but it is intuitively close to the resolution/unification
process underlying logic programming. Thus for example in trying to find
values for /1, /2 which satisfy the condition /1 < > /2 = [1, 2] in the above
expression we can make progress by unifying the condition against the
equations of the program. Thus we can unify against the first equation
for < > .

{ (/ 1, / 2) 1/1 < > /2 = [1, 2] }
nil < > / = /

and the substitutions

Input substitution Output substitution
/ -> [1, 2] /1 -> nil

/2 -> [1, 2]

make the condition true. Thus, the expression is equivalent to

{(nil, [1, 2])}

There is another unification possible with the second equation for < > .
Matching

{(/1, / 2) | /1 < > /2 = [1, 2]}

with

(x :: /1) < > /2 = x :: (/1 < > /2)

gives the substitutions

Input substitution Output substitution
x -> 1 /1 -> 1 :: /1
/1 < > / 2 - > [2] /2 - > /2

The last input substitution is, of course, not a strict match. The way to read
this is that the other substitutions make the two equations equal for any /1,
/2 that satisfy the condition /1 < > /2 = [2]. Finding such values involves a
recursive call and allows us to refine the above expression to

{(1 :: / 1, / 2) [/1 < > /2 = [2]}

The two disjoint elaborations constitute independent contributions to the
final answer and are to be unioned together; the exact analogue of or-
parallelism in logic programming. Thus we have

498 ICL Technical Journal May 1987

{(/l, n) | n < > n = [i, 2]}

=> {(□, [1, 2])} u {(1 :: n , n) \ n 0 /2 = [2]}

Further, recursive, elaboration of the second component produces the result
given earlier.

This extension to functional languages gives, we would claim, all the
expressive power available in pure logic programming without doing
violence to the rest of the language.

For example structures with embedded variables can be generated

{ / 1 length / = 2}

{u :: (v :: nil)} : set(list alpha)

and all the programming styles that this allows in logic programming are
now available to functional programmers.

As a final example we will recreate the traditional ‘families database’ example
from logic programming in extended Hope.

data names = = kate + + heather + + john + + emma + + bill + +
annie + + maurice

dec mum, dad : names -> names
— mum heather <= kate
— dad heather <= john
— mum kate <= annie
— dad kate <= maurice
— mum john <= emma
— dad john <;= bill
dec parents : names -> set names
— parents c <= {mum c, dad c}
dec grandparents : names -> set names
— grandparents c <= {gp | p is_in parents c, gp is_in parents p}
grandparents heather
{maurice, annie, emma, bill} : set names
c st (kate is in parents c)
heather: names
{(f,p) | f heather = p }! at the moment limited higher order unification is

allowed

ICL Technical Journal May 1987 499

{ (mum, kate), (dad, john), (parents, {kate, john}),
(grandparents, {maurice, annie, bill, emma })} : set (names -> alpha //

alpha)

The extended Hope language is currently implemented by an interpreter,
itself written in Hope, developed at Imperial College. As we shall see later in
5.1 we adopt a different approach to the compilation of these new constructs
than conventional logic programming implementations and further work
remains to be done on the integration of these features with the standard
language and its implementation. We can report, however, that the extended
language is proving very popular with its present user community.

4.2 Imposition of temporal ordering

As mentioned previously functional languages gain much of their power by
allowing the programmer to abstract from notions of time. For many
applications this lack of concern with the sequence of events occurring during
the execution of the program is a boon to the programmer but there do exist
application areas where concern with such orderings is central to the
correctness of the solution. An example of such an application area is real time
control, where the controlling program is not so much required to produce a
value as organise a series of actions in the correct temporal sequence.

Our solution to the problem of applying functional languages to these areas
is to stay with the basic pure functional language but to develop a separate
language that allows a programmer to specify any temporal constraints that
he requires imposed on the execution of his program. The program together
with the temporal constraint is then automatically transformed to produce a
single, augmented, functional program guaranteed to satisfy the temporal
constraints under any evaluation regime.

Thus, for example, say a programmer had defined the following function to
merge two lists

dec merge : list alpha # list alpha -> list alpha
— merge(nil, y) <= y
— merge(x, nil) <= x

ml: — merge(c :: x, y) <= c :: merge(x, y)
m2: — merge(x, c :: y) <= c :: merge(x, y)

Unconstrained evaluation could, correctly, produce any interweaving of the
argument lists. Say, however, the programmer wanted the two lists to be
merged alternately. Using our approach he would specify this requirement
via a temporal statement referring to the events ml, m2 involved in the
program’s execution (an event is the application of a named equation). The
temporal statement required would be

ml -> Tomorrow(m2) and m2 -> Tomorrow(ml)

500 ICL Technical Journal May 1987

which, roughly, should be read ‘if at any point in the execution a rewrite
using m l is performed then Tomorrow, i.e. at the next rewrite, a rewrite using
m2 should be performed and vice versa’.

Our implemented transformation routine is able to take the above and
produce the augmented merge program

dec merge : state § list alpha § list alpha -> list alpha

— merge(s, nil, y) <= y
— merge(s, x, nil) <= x
— merge(ST(false, v2), c :: x, y) <= c :: merge(ST(true, false), x, y)
— merge(ST(vl, false), x, c :: y) <= c :: merge(ST(false, true), x, y)

Thus any initial call to merge of the form merge(ST(false, false), /1, /2) would
allow any of €1, or <?2 to be passed on first but thereafter they would be
merged alternately as required. Note that our method involves only the
minimum necessary partial ordering being imposed on the events rather than
the total ordering imposed when an imperative language is used.

Observant readers will have noted that our equations for merge have
overlapping left hand sides and therefore specify a non-deterministic system
and not a proper function. Indeed they do and there are many ramifications
to our approach that we do not have space to go into here but we feel that it
does represent a route whereby the functional style can be applied naturally
to areas such as real time control, transaction processing and operating
systems while still retaining the pure declarative spirit.

5 Program transformation

Program transformation is the process of converting a program into an
alternative form, one that is semantically equivalent to the original, i.e. it
computes the same function, but differs in some quantitative aspect, e.g.
execution time or space utilisation. As developed, program transformation
aims to be a constructive process, as much as possible we look for
manipulation rules or operations that can be applied to programs systemati
cally to produce new versions which will be guaranteed equivalent to the
original rather than inventing new versions and then verifying that they are
equivalent to the original.

Transformation also aims to make order of magnitude improvements in the
efficiency of programs. Thus, in contrast to conventional compiler optimisa
tion, it attempts to formalise and systematise the process of program design
or algorithm invention. Thus the starting point could be some very high level
specification of the problem to be solved and the end result an efficient
program to accomplish the specified task. Transformations are normally
source to source, i.e. the original and transformed program are in the same
language, in our case extended Hope. Transformation has been applied to

ICL Technical Journal May 1987 501

imperative languages but, in our opinion, the greater mathematical tractabil-
ity of the declarative languages affords much better prospects for successful
application of transformation techniques.

Transformation operations can be divided into two types: the automatic and
the non-automatic. For operations in the former category static analysis of
the program can reveal safe opportunities for transformation, whereas in the
latter category the desired transformations have to be accomplished via the
composition of smaller guaranteed safe operations and there are no auto
matic procedures guaranteed to produce the required composition. In this
case theorem proving or user guidance is required, but as we shall see later
the process is often sufficiently systematic or intuitive for this not to be too
daunting a prospect. As it is the intellectual process of program design that
we are attempting to formalise it should be clear that full automation will
only be realised with the advent of genuine artificial intelligence capabilities.

We will give brief examples of both styles of transformation.

5 .1 Non-decidable transformations: removal of unification

Definitions employing absolute set abstraction tend to be succinct and
expressive, as we saw above, however, this expressive power is often at the
cost of inefficient execution. These inefficiencies arise for two reasons: firstly
the abstract machine operations required to support absolute set-abstrac
tion, unification and exploration of an AND-OR search space are more
complex than those required for standard functional evaluation; and sec
ondly the expressive power of absolute set abstractions encourages a style of
description that is inherently inefficient. We do not regard this as a
disadvantage but seek to get the best of both worlds by encouraging free use
of absolute set abstractions and then using transformation to convert these
definitions to equivalent definitions employing only standard functional
apparatus.

Traditionally, formally based transformation systems, such as the unfold/fold
system2, have been presented as a set of rules allowing systematic manipula
tion of program equations. The close affinity between many of these rules
and the manipulations carried out during actual program execution has long
been observed and the term symbolic evaluation coined to describe the
‘execution’ of programs on symbolic rather than actual data. With the
introduction of unification into the language which allows the run time
support of logical variables this affinity between symbolic and actual
execution becomes an identity, resulting in a pleasing simplification.

For example, using absolute set abstraction we can define a function front
that returns the initial segment of a list of given length by

dec fro n t: num # list alpha -> list alpha
— front(n, /) <= /1 st (/1 < > /2 = / , length /1 = n)

502 ICL Technical Journal May 1987

The st (read ‘such that’) construct is used when we know that the set defined
by the conditions is a singleton.

In 2, we saw how narrowing would allow us to evaluate the right hand side of
front with / and n bound to some value (ground term) producing instantia
tions for the variable /1. There is nothing to stop us, however, from executing
front with all the variables non-ground.

Matching the first condition of

— front(n, £) <= £\ st (/1 < > /2 = / , length /1 = n)

with

nil < > / = /

using exactly the same process as before allows us to rewrite it to

— front(n, /) <= nil st length nil = n

Matching the remaining condition with

length nil = 0

instantiates n to 0. Note that in this case we are instantiating a bound
variable so the new equation produced is

— front(0, /) <= nil

Returning to the starting definition of front

— front(n, /) <= /1 st (/1 < > /2 = / , length /1 = n)

and matching with

(x :: /1) < > /2 = x :: (/1 < > /2)

gives us

— front(n, x :: /) <= x :: /1 st (/1 < > /2 = / , length(x :: /1) = n)

matching with

length(x ::/) = 1+ length /
gives us

— front(n + 1, x :: /) <= x :: /1 st (/1 < > /2 = 1 , length /1 = n)

The conditions on the right hand side of the above equation are now

ICL Technical Journal May 1987 503

identical with the conditions of the original definition. So rather than
continue the execution we can replace them with a call to front getting

— front(n + 1, x :: /) <= x :: /1 st { 1 = front(n, /)

or more succinctly

— front(n + 1, x :: <f) <= x :: front(n, t)

Thus by simple evaluation and recognition of a recurrence we have produced
two new equations for front

— front(0, /) <= nil
— front(n + 1, x :: f) <= x :: front(n, f)

which are in the form required and constitute a much more efficient program
for front than the previous definition.

5.2 An automatic transformation: memoisation

Memoisation is a simple, appealing, program improvement operation that
was suggested some while ago3 but only recently have developments4,5,6
made it practical.

The idea behind memoisation is that programs are often inefficient because
they repeat computations unnecessarily. In functional languages this can
arise when a function is applied to an argument equal to one it has been
applied to previously. Because of the lack of side-effects any function is
guaranteed always to return the same value when applied to the same
argument, so why not remember the value and the result in a table and
simply look it up if it is subsequently needed?

The trick of course is knowing when and what to remember and, less
obviously, knowing when to discard entries from the table. Work at
Imperial6, part of the Flagship research programme, solves these problems. A
set of theorems have been proven that allow static analysis of Hope
programs not only to establish when memoisation is possible and beneficial,
but also to automatically produce a method that will maintain the memo
table in the optimal manner. The maintenance of the memo-table is
performed by a function, called the table manager and syntherises for each
function to be memoised, which when applied to a value about to be stored
in the table returns the values whose entries can now be deleted as the logic
of the algorithm implies they will never be required again. These methods
have been implemented and can automatically synthesise the appropriate
table manager functions.

Memoisation can produce startling results. Consider the traditional Fibo
nacci function

504 ICL Technical Journal May 1987

dec fib : num -> num
— fib 0 <= 1
— fib 1 <= 1
— fib (n + 2) <= fib(n + 1) + fib n

This function is beloved of transformationists because it exhibits exponential
redundancy. Applying our memoisation technique produces the table man
ager function, TBM say,

dec TBM : num -> num
— TBM n <= n-2

Thus if we trace an application of a version of fib, augmented with a memo-
table represented as a list of pairs, initially empty, to 5 we get

Expression being evaluated

fib 5
11

•
11

((fib 2 + fib 1) + fib 2) + fib 3
11

•
11

(3 + fib 2) + fib 3
11

(3 + 2) + fib 3
11

5 + fib 3
11

5 + 3
11

8

Memo Table

D

□
Recursive evaluation provides memo-
table entries for fib 3 and fib 2

[(3, 3), (2, 2)]
fib 2 is evaluated by table look-up
rather than recursive evaluation

[(3, 3), (2, 2)]
The completion of the evaluation for
fib 4 results in its entry in the table
and the deletion of the entry for
TBM(4) i.e. 2

[(4, 5), (3, 3)]
fib 3 is evaluated by table look-up

[(4, 5), (3, 3)]
The value for fib 5 is added to the
table and the entry for TBM(5) i.e. 3
is deleted

[(5, 8), (4, 5)]

ICL Technical Journal May 1987 505

Thus the memo-table for fib never grows larger than two entries and the
exponential algorithm has been converted to a linear one with dramatic
improvements in efficiency.

5.3 Range of transformation operations

The transformation work aims to provide a complete program development
methodology. That is any correct implementation of a specification should
be achievable via some transformation sequence. Furthermore it is desirable
that transformation corresponds to some intuitive program design process.
To meet these ends transformation techniques have been applied to the
following areas amongst others

(i) non-automatic, partial evaluation
• loop combination
• introduction of parallelism
• removal of unification
• abstract data type implementation
• conversion to iterative form

(ii) automatic
• memoisation
• imposition of temporal constraints
• synthesis of function inverses
• strictness analysis
% structure overwriting
• mode analysis
• linearisation

In the non-automatic cases the underlying methodology for each application
is the same (unfold/fold or partial evaluation) but the domain of application
provides heuristic guidance for the process and, as we will see later, gives
structure to the transformation.

5.4 Transformation based programming environments

The goal of the transformation work within Flagship is the development of a
prototype program development and maintenance system where the under
lying program development methodology is formally-based transformation.

Most transformation work has involved the development of systems to assist
the transformation process. The question is what sort of system should we
aim for? As we stated earlier full automation is a long way off. The other
extreme, where all the guidance is provided by the user and the system simply
checks the applicability of the indicated transformation and performs the
appropriate book-keeping, is easy to implement and certainly represents an
advance on purely pen and paper use of transformation but would prove too
tedious and painstaking for everyday use.

506 ICL Technical Journal May 1987

The style of system we, in Flagship, are aiming for is one where the user
provides the strategic guidance but is able to convey his intentions to the
system in a high level and structured manner and the system is able to take
over and implement these plans by producing, from them, a complete
transformation to achieve the desired effect.

The route we are adopting to such a system uses the ideas of meta-
programming pioneered by the ML-LCF project7. A programmer designing
a transformation concentrates his attention on developing a meta-program
which when applied to the object program (the specification) produces the
desired efficient version.

We are, not surprisingly, using extended Hope for our meta-programming
language. The operations, functions, defined in the meta-language corre
spond to transformation operations. The lowest level functions correspond
to the lowest level, meaning-preserving, transformation operations, i.e.
decidable operations such as memoise or storage-overwrite, or single partial
evaluation steps. Out of these, higher level transformation operations can be
created using the normal function definition apparatus. The beauty is that
because the defined operations inherit the meaning-preserving nature of the
base operations there is no way the meta-programmer can produce an
incorrect transformation. A meta-program may fail, indicating that the
intended transformation is inappropriate, but if it succeeds the produced
program is guaranteed equivalent to the input program.

For example we can define meta-functions removejunification and memoise

dec remove_unification : hope_program # additional_information ->
hopeprogram

dec memoise : hope_program § additional_information - > hope_
program

that when applied to our previous examples would produce the results
obtained earlier.

The meta-programmer can build further on these to produce specific
structured meta-programs for a particular transformation or more powerful,
generally applicable, transformation tactics.

Thus the programmer’s development activity is focussed on creating the
system specification and the appropriate meta-program. When this has been
successfully accomplished he has a concrete, structured and executable
representation of the complete system design which can be stored, queried
and modified.

We need to ensure that the system designer has sufficient expressive power
via the meta-language to achieve any implementation he can conceive even
at the cost of some tedium. This is achieved by the general-purpose nature of

ICL Technical Journal May 1987 507

the lowest level transformations. Having established this bottom line we are
then at liberty to attempt to give the (meta) programmer as much expert
assistance from the system as possible. For example, tactics such as the
remove unification tactic can exist in two forms. One, where enough
information is given via the second parameter to ensure a successful
transformation without any searching; and another where no help is given
and the system has to engage in some theorem-proving or searching activity
to attempt the desired transformation, producing, if successful, the informa
tion that will make the re-play automatic.

Thus the system will work in an exploratory manner assisting the designer in
producing the meta-programs and in a direct manner implementing a fully
defined transformation plan.

The same ideas of meta-programming can be applied to formalise the non
meaning preserving transformations used in system development, i.e. the
operations of specification creation and modification. Thus, for example, we
would like to express module linking and program modification or enhance
ment not as textual operations on the object program but as application of
meaningful meta-language operations. Thus all aspects of system develop
ment could be recorded in a formal concrete object, the meta-program.

6 Conclusions

Functional programming technology offers many advantages to the com
puter industry. One task of Flagship is to make these promises actualities.

References

1 BURSTALL, R.M., MACQUEEN, D.B. and SANNELLA, D.T.: ‘HOPE: An experimental
applicative language’. Proc. 19S0 LISP conference, Stanford, California, 136-143.

2 BURSTALL, R.M. and DARLINGTON, J.: ‘A transformation system for developing
recursive programs’. JACM 1977, 24, 1, 44-67.

3 MICHIE, D.: ‘Memo functions and machine learning’. Nature 1968, No. 218, 19-22.
4 HUGHES, J.: ‘Lazy memo-functions’. Proc. ACM Conference on Functional Program

ming Languages and Computer Architecture, Nancy, France, 1985, 129-145.
5 KELLER, R.M. and SLEEP, M.R.: ‘Applicative caching: Programmer control of object

sharing and lifetime in distributed implementations of applicative languages’. Proc. ACM
Conference on Functional Languages and Computer Architecture, Wentworth, Mass.,
1981.

6 KHOSHNEVISAN, H.K.: ‘Memoisation as a practical alternative to program transfor
mation’. Internal report, Functional Programming Section, Department of Computing,
Imperial College.

7 GORDON, M.J., MILNER, A.R.J. and WADSWORTH, C.: ‘Edinburgh LCF’. Report
CSR-11-77, 1977, Dept, of Computer Science, University of Edinburgh.

508 ICL Technical Journal May 1987

Dactl: A computational model and
compiler target language based on graph

reduction

J.R.W. Glauert, J.R. Kennaway, M.R. Sleep
Declarative Systems Project, University of East Anglia, Norwich NR4 7TJ, England

Abstract

The Alvey programme has adopted a model of computation based on
Graph Reduction as a focus for UK work on New Generation
Languages and Architectures. The development of this model is being
undertaken by an Alvey-sponsored project at the University of East
Anglia (UEA) at Norwich entitled Dactl (Declarative Alvey Compiler
Target Language), Collaborative partners in the Alvey project are ICL,
Imperial College, and Manchester University.

The motivations and design goals for Dactl are presented. Both
Language and Architecture design influences are discussed. DactIO -
the current release of Dactl - is described.

The major changes envisaged in DactU are discussed. The design of
DactU has been heavily influenced by the collaboration between the
authors and the Dutch Parallel Reduction Machine project.

1 Introduction: motivations and design goals for Dactl

1.1 Motivations

The main motivation for work on the Declarative Alvey Compiler Target
Language (Dactl) is to develop a computational model which can act as a
bridge between the designers of new generation languages (e.g. Hope, ML,
Parlog) and appropriate new generation parallel architectures (e.g. Flagship,
GRIP, ZAPP). Such a bridging model of computation provides several
major benefits:

(a) It acts as a focus for language and architecture developments at a time
when both are changing fast.

(b) It offers an increasingly secure interface between many languages and
many parallel architectures, giving a strong entry card to discussions on
international collaboration.

ICL Technical Journal May 1987 509

(c) It provides new insights into parallelism via theoretical and simulation
studies.

Because declarative languages and architectures are evolving so rapidly, and
attempts to stabilise at either the language or architecture level appear
premature, the above motivations are particularly strong.

1.2 Design goals

These and other considerations led the Alvey directorate to set up a design
team for Dactl in July 1984. The following requirements were identified:

(a) Support for languages with a strong declarative flavour, e.g. Hope, LISP,
Prolog.

(b) Wide scope for exploring novel hardware designs.
(c) The ability to express details of evaluation order, and whether a result is

shared or copied. However, Dactl explicitly abstracts from lower level
details such as processor scheduling or memory management.

(d) An underlying formalism which supports both human and mechanical
efforts to reason about both the results and the performance of
programs.

(e) The ability to interface to existing software and hardware, and take
advantage of special purpose processors.

1.3 Releases of Dactl

Three versions of Dactl were planned, DactlO, Dactl 1 and Dactl2. Each
represents a stage in our increasing understanding of the key issues, both
practical and theoretical.

DactlO has been on limited release since 1985 to elicit feedback. It
represents a guess at subsequent and future developments in the
Declarative Systems area.

Dactl 1 is intended to involve a significant revision of DactlO which takes
account of available feedback, and also the active collaboration
which has taken place between the UEA design team and the Dutch
Parallel Reduction Machine Project.

Dactl2 will be based on the experience gained with Dactl 1, and take
account of the possibility of harmonising with similar work else
where with international collaboration in mind.

1.4 Organisation of the paper

Section 2 describes some technical background to the development of Dactl.
Section 3 gives a detailed overview of DactlO. Section 4 discusses the major
changes envisaged in Dactl 1. The annexe to the paper is an edited version of
the original DactlO report7.

510 ICL Technical Journal May 1987

2 T ech n ica l background

A computational model must be both thinkable and do-able. This means we
must consider both language and architecture influences if we are to devise a
successful model. However, there were no clear winners on either the
language or architecture front when Dactl work was started. Consequently,
the Dactl design team identified key features from the best available work in
declarative languages and declarative architectures. The following sections
record the principal influences.

2.1 Language considerations

Declarative languages have dual readings. On the one hand a program can
be read as a set of constraints which determine what is computed by the
program. On the other hand, a program can be read as a set of rewrite rules
which govern how the computation is performed.

A declarative programmer needs to keep in mind both readings to produce
programs which are both correct and efficient. A functional programmer will
rely on the lambda calculus for his declarative reading, and on some
reduction model of computation for his operational reading. A logic
programmer will use the predicate calculus for his declarative reading, and
some theorem-proving model of computation, such as resolution, for his
operational reading.

Interestingly, the operational readings for both logic and functional pro
grams are both based on viewing the clauses or equations as rewrite rules.
Work by Reddy14 and others suggests there may be an underlying model of
computation which supports both styles of declarative programming.

Like Reddy, we are interested in computational models which bring together
previously distinct worlds. Unlike Reddy, we have taken the expression of
control information in such a model as being of paramount importance. We
start with a Term Rewrite model of computation10 and generalise it in a
number of ways:

(a) In the Dactl model, rewrites take place on graphs rather than trees.
(b) These rewrites may be done in parallel.
(c) Explicit control over evaluation order can be expressed.
(d) Explicit control over whether rewrites are performed using copying or

sharing techniques, or both, can be expressed.

2.2 Architecture considerations

In the most successful model of computation to date, that proposed by von
Neumann, a single processing element repeatedly shuffles a single word of
information between a set of local registers and a large global memory with

ICL Technical Journal May 1987 511

serialised access. Each instruction, except the last, appoints exactly one
successor instruction.

New Generation architectures will generalise the von Neumann model in a
number of ways of which the following are particularly notable:

(a) Concurrent access to memory by many processing elements.
(b) Instructions may appoint an arbitrary number of successors.

In principle we may generalise the von Neumann memory to support parallel
access by attaching to each word its physical address. This allows us to
regard the memory as an unordered set (or pool) of packets, each of which
contains an explicit representation of both the address (name) of a packet,
and its contents (which may of course include the addresses of other packets).
There will be one packet for each word in the corresponding von Neumann
memory, and all operations on the pool of packets must maintain this property.

Having thus decomposed the von Neumann memory, it is possible to envisage a
large number of processing elements (PEs) operating concurrently on the set of
packets. Each PE has the right to temporarily remove any available packet from
the pool, and return it with possibly modified contents. During the period of
removal, the packet is unavailable, and PEs attempting to access it are blocked.
Different packets can be operated on simultaneously. Note that a PE can never
change the address field of a packet in this model. Parallel architectures which
adopt this view are called Packet Communication Architectures (PCA).

The Manchester Dataflow Machine18 is an early example of how hardware
might support such concepts efficiently. The recently commissioned ALICE
machine4 supports a more general notion of Packet Communication. The
influence of the Packet Communication model on the design of DactlO can be
seen in the operational description of DactlO semantics in the Annexe.

2.3 Level of the Dactl interface

The level of Dactl is intended to lie somewhere between the murky world of
low-level resource scheduling and much more abstract worlds such as the
lambda calculus or mathematical logic. A compiler which produces Dactl is
intended to employ sophisticated transformations aimed at, for example,
minimising the number of Dactl rewrites during a computation. Similarly,
the code generator which translates Dactl to code for a particular machine
may employ advanced optimisation techniques.

Note that there is an underlying assumption that Dactl will provide metrics
for guiding code generators. A suitable evolution of Dactl should ensure that
the compiler writer loses very little in efficiency if he aims at code which will
minimise some application dependent function of the space/rewrite metrics
of Dactl. Conversely, a machine designer should work towards minimising
the real time/space requirements of some synthetic Dactl computation.

512 ICL Technical Journal May 1987

3 Introduction to DactIO

In this section we outline the m ain features o f DactlO. Readers requiring
m ore detail are referred to the annexe, which contains the syntax and
operational sem antics o f DactlO as originally circulated to a lim ited audience
in the 1985 report7. The annexe also contains m any exam ples o f DactlO
programs.

3.1 Rule based computation

DactlO is a notation for describing how sets o f rules m ay operate in parallel
on som e expression to com pute a result. Rule-based program m ing will be
familiar to those working with functional and logic languages. For exam ple,
the equations:

fib (0) = 1
fib (1) = 1
fib (n) = fib(n - 1) + fib(n - 2)

specify the well-known fibonacci function using a priority rule system 1 in
which earlier rules take precedence over later rules in case o f conflict. N ote
that som e such notion of priority m ust be present, since otherwise the
expression fib(0) w ould m atch both the first and the third o f these rules, and
the intention is that only the first rule should apply.

M ost im plem entations o f functional languages are based on using the
equations as rewrite rules which (at least notionally) repeatedly operate on
m atching com ponents o f the expression until no m ore rules apply, and any
such resulting form (a normal form) is the result o f the com putation. Apart
from disam biguating meta-rules (e.g. textual priority as illustrated above,
and DactlO’s specificity described in section 2.4, annexe), a rule-system does
not specify any order o f rewriting co-existing redexes. N o r does it specify the
representation o f expressions: in principle either string or graph reduction
m ay be em ployed. A m ajor property o f DactlO is that such decisions can be
m ade explicit.

3.2 DactlO terms

T w o styles for defining terms appear in the literature11. In the functional
style, each term has tw o attributes: a function sym bol, and an (ordered) list o f
subterms. In the applicative style, there is a set o f function sym bols o f arity 0,
and a single functional sym bol o f arity 2, called application, and denoted by
juxtaposition. For exam ple, the term representing a list consisting o f head h
and tail t w ould be represented as cons(h,t) in the functional style, and (cons
h t) in the applicative style.

Terms written in the applicative style can be translated into the functional
style sim ply by m aking the im plicit binary application operator explicit. The

ICL Technical Journal May 1987 513

functional representation o f an applicative term such as (cons h t) is
Ap(Ap(cons,h),t). But the distinction between the tw o styles is not merely a'
m atter o f taste, as the translation does not go the other way. For exam ple,
the applicative term (cons h t) has as a subterm the applicative term (cons h),
w hose functional representation is Ap(cons,h). But there is no corresponding
subterm o f the functional term cons(h,t).

DactlO lies som ewhere between the applicative and functional styles, and we
call it polyapplicative. Its representation o f terms is based on tuples of
arbitrary size. A DactlO term is either an atom (which we may think o f as a
nullary function sym bol), a variable, or a tuple of terms. Considered
functionally, there is an infinite num ber o f tuple constructors, one for
each size o f tuple. Textually, tuple terms are denoted by grouping
together im m ediate subterms w ith angle brackets. Thus the DactlO term
< cons 1 nil > is a 3-tuple, w hose im m ediate subterms are the atom s cons, 1
and nil. In the functional style, the representation o f this term m ight be
Tuple3(cons,l,nil). N o te that the first position in a tuple is not special in
DactlO.

3.2.1 Expressing sharing: T o describe DactlO terms which involve sharing
or cycles, identifiers and where definitions are used. Identifiers are textually
distinguished from atom s by beginning with the sym bol Thus the (graph)
term:

ccons $x $x> where $x:<cons 1 nil>

denotes a graph, the root o f which is a triple w hose first com ponent is the
atom “cons”, and w hose second and third com ponents are references to
another node, a triple < cons 1 nil > . There is only one copy o f that second
node in the graph, which both the occurrences o f $x refer to. Such a graph can
be used to represent the (tree) term < c o n s c c o n s 1 n il> c c o n s 1 n i l » ,
sharing the occurrences o f the repeated subexpression.

Cyclic graphs m ay be written. The term $x: c cons 1 $x > specifies a cyclic
graph which m ight be the representation o f an infinite list o f l ’s, in the
translation o f som e language to DactlO. N ote that DactlO itself is simply a
language for expressing parallel graph m anipulation, and has no such
interpretation built in.

C onditions under which a graph representation o f term rewriting is both
sound and com plete are given in2.

3.2.2 Matching: DactlO patterns are required to contain at m ost one
occurrence o f any variable (this is the left-linearity condition). Thus all
patterns in DactlO are trees. A m atching o f a DactlO pattern to a DactlO
program graph consists o f a structure-preserving m any-one m apping from
the pattern to the program graph. The subgraph identified by the m atching is
called the contraetand.

514 ICL Technical Journal May 1987

A (DactlO) redex consists o f a contraband together with an arc pointing to
its root. U nlike a redex in Term Rewriting, a DactlO redex m ust specify a
particular in-arc (called the firing arc in what follows).

3.3 Expressing control flow

Arcs in a DactlO graph m ay be marked with a ! to indicate a firing.
Syntactically, this is done simply by allow ing all term references to be
preceded by a !. Semantically, it is im portant to note that such a firing is in
fact attached to an arc in the graph and not the root node o f a term.
Informally, a firing is a request to the evaluator to attem pt a single rewrite at
the root node o f the term indicated, and report the result back to the parent
tuple containing the fired arc.

As an exam ple, the term ! < + ! < * 3 4 > ! < * 5 6 » specifies all the firings
necessary to evaluate the expression 3 * 4 + 5 * 6 to the integer result 42,
assum ing that suitable rules for the atom s + and * have been defined.

Each firing corresponds to a bounded am ount o f work for the architecture.
This provides a basis for reasoning about performance. But it also m eans
that careful attention m ust be paid to m arkings if the expected norm al form
is to be obtained. In DactlO, a term with no firings is in normal form.

Control is expressed in tw o ways in DactlO. Firstly, the arcs in the graph to
be rewritten m ay be m arked with (initial) firings. Secondly, terms specified on
the right hand sides o f rules m ay contain zero or m ore firings.

3.4 DactlO model of computation

The DactlO m odel o f com putation uses ideas from three previously distinct
schools, nam ely reduction, dataflow, and Petri net m odels o f com putation.

- As with Petri net m odels, the state o f a com putation is described by
markings (such as !) on the arcs o f a graph.

- As with reduction m odels, a fired node (that is, one which has a firing on
one or m ore input arcs) is m atched against a set o f rules, and a m atching
rule is executed to m odify the graph.

- As with dem and driven dataflow m odels, a firing leads to a (reference to a)
result flowing back up the firing arc into a ‘hole’ in the node responsible for
the original firing. The D actl term inology for this last process is redirec
tion, since another way o f describing the operation is to say that the fired
arc is redirected to point to the result.

3.4.1 Rewriting in DactlO: As can be seen by exam ining the exam ples in the
annexe, apart from syntactic details DactlO rules look very m uch like the
rules encountered in the equational style o f program m ing13. They usually
have just one right hand side. H owever, to express concepts such as sharing

ICL Technical Journal May 1987 515

versus copying, and state dependent com putations, the general form o f a rule
is as follows:

LHS : = OVERWRITE => REDIRECTION

The general form o f a DactlO rule allows tw o right-hand sides, one which
specifies how the root node o f the contractand changes, and one which
specifies the subgraph to which the firing parent is redirected. If only the
overwrite part is given, no redirection at all takes place. If only the
redirection part o f a rule is given, rules which copy rather than share can be
written.

As an example, consider the function from(n) which is frequently used in
functional programs to specify the infinite list o f integers (n ,n + l ,n + 2 ,.....).
The DactlO rule:

<from $n> := <cons $n <from !< + $n 1 » >

expresses a sharing version o f the from function, in which evaluation causes a
change o f form which benefits other users. O n the other hand, such sharing
m ay force an im plem entation to m aintain references to arbitrarily large
terms, and it m ay be preferable to recom pute to save space. The DactlO rule:

<from $n> => <cons$n <from !< + $n 1 > »

om its the overwrite step, creates a new subgraph, and redirects the firing
parent to it; only the firing parent experiences the benefit o f the evaluation.

We now explain how rules which use both the overwrite and redirection
options work. First recall that a redex in DactlO consists o f a subgraph (the
contractand) and a fired arc pointing to its root. The tw o right hand sides in the
general form of a rule say what the rewrite does to the contractand and the
fired arc respectively. The O VERW RITE section specifies a term to replace
the contractand. This replacement is done by overwriting the root node o f the
contractand by the root node o f the O VERW RITE term. Thus - with the
possible exception o f the firing arc - the effect o f the rewrite is shared. The
R E D IR E C T IO N section specifies a term to which the firing arc alone is
redirected, possibly with a firing. Operationally, the redirection is performed
by overwriting the relevant field in the tuple which has as an im m ediate
subterm the fired arc. If the R E D IR E C T IO N section is m issing, the firing arc
remains, picking up any firing associated with the O VERW RITE term. If the
O V ERW RITE section is m issing, redirection alone takes place.

Example: Use o f rewriting and redirection to implement a selector function.

The well-known law defining the head of a list can be implemented in DactlO as:

<head <cons $h $ t » := <ind $h>=> $h

516 ICL Technical Journal May 1987

where ind is user defined (e.g. by the rule < in d $ i> => $i).

T o take a specific instance o f the rule for head, which is illustrated in Fig. 1,
suppose we have a DactlO graph containing a part which looks like:

$parent:<+ 1 !$sub:<head <cons$hd:<+ 2 3> $tl:nil»>

where the nam es Sparent and $sub are introduced for reference, identify the
root o f the w hole graph, and the root o f the m atching subgraph respectively.
Inform ally, both are pointers, as are $hd and $tl. The m atching process
identifies a contractand consisting o f the fired arc which is the second
com ponent o f the tuple identified by Sparent, and the subgraph identified by
Ssub. The m atching also identifies the binding $h = $hd, and St = Stl.

Fig. 1

H aving established the redex, the DactlO rewrite now proceeds. First, tw o
new graphs are constructed according to the REW RITE and R ED IR EC T
portions respectively. Appropriate bindings replace variables.

N ext, the root o f the REW RITE term so constructed overwrites the root o f
the redex. In this case, the effect o f the REW RITE step is to cause < head $ >
to be overwritten with < ind $ > where $: < + 2 3 > .

Finally, the redirection is performed by replacing the fired arc by a reference
to the new R ED IR E C T term. Redirection is used both to reactivate the
parent and also to return a result associated with the firing. It is the basis for
synchronisation in DactlO.

Considerable control m ay be exercised over firing order if desired. This is
done by marking the arcs on the right-hand side o f a rule with a !,
representing a firing. Strict operators, such as + , require both their
arguments to be evaluated, suggesting parallel firings. For exam ple, the
rule:

<parsum $e1 $e2> := !< + !$e1 I$e2>

will fire $ e l and $e2 concurrently. W hen their evaluation terminates, the rule
for + (which expects both its argum ents to be evaluated) will com e into play.

ICL Technical Journal May 1987 517

The ability to fire m ore than one subterm removes the von N eum ann
constraint which requires each instruction to appoint a unique successor.

3.5 Examples

W e now consider som e familiar exam ples and the various form s they might
take in DactlO.

3.5.1 Sequential summation of a tree of integers: W e begin with a DactlO
program which sums the leaves o f a tree o f integers, enforcing sequential
execution:

program sumtree;
Imports arithmetic:
atom sum; sum1; pair; leaf;
rule
<sum < p a i r $ h $ t» ;= !<sum1 !< su m $ h > < s u m $ t» ;
<sum <leaf $ t » =- !$t;
<sum $t> := !<sum !$t>;
<sum1 $lnum $t> := !< + $lnum !$t>;
rewrite
!<sum < pair <pair < leaf 2 > <leaf 3 » <pair d e a f 4 > <leaf 5 » » ;
endprogram sumtree;

The imports statem ent im ports from outside the program atom s and rules
which im plem ent integers and som e standard arithmetic operations. Such a
m odule looks to the program like another piece o f DactlO code, though it
m ay be im plem ented (as will alm ost certainly be the case for integer
arithmetic) by som e hardware device. W e anticipate that it will be possible to
make m uch existing software (and for that matter special purpose hardware)
look like DactlO modules.

In the graph to be rewritten in this exam ple only the root node has been fired.
(M ore precisely, the firing is placed on a notional arc leading from the
evaluator to the root node.) This is because we want to describe the usual
sequential control flow, starting at the root. Any marking o f the initial graph
is allowed in DactlO.

W hen this program is run, a graph is constructed corresponding to the term
(expression) specified in the rewrite part. The general idea is that the machine
exam ines all fired nodes in the graph, to see if the terms they represent can be
m atched against the left-hand sides of the rules specified in the rule section of
the program. Where a match is detected, the changes specified by the rule
which m atches are made. A fundam ental property of DactlO is that only the
root node of a m atching term is overwritten, and the action is atomic.

As the com putation proceeds, activity may spread to other nodes in the
graph. In the exam ple run shown below we indicate with a # those nodes
whose further firing is held up awaiting replies from children. Such nodes are
reconsidered for m atching when replies are received. The state transitions

518 ICL Technical Journal May 1987

involved in the exam ple are as follow s. W e have om itted trivial events
connected with firing o f integers and + operations.

!<sum <pair <pair < lea f2 > < le a f 3 » < p a i r < lea f4 > < l e a f 5 » »
:= #<sum1 !<sum <pair < lea f2 > < le a f 3 » > <sum <pair < lea f4 > < l e a f 5 » »
:= #<sum1 #<sum1 !<sum <leaf 2 » <sum < le a f 3 » > <sum <pair < lea f4 > <leaf 5 » »
:= #<sum1 !<sum 12 <sum < l e a f 3 » x s u m <pair < leaf4> < l e a f 5 » »
:= #<sum1 § < + 2 !< sum < l e a f 3 » x s u m <pair < lea f4 > < l e a f 5 » »
:= #<sum1 !< + 2 3 > <sum <pair < lea f4 > < l e a f 5 » »
:= !<sum1 5 <sum <pair < lea f4 > < l e a f 5 » »
:= # < + 5 !< sum <pair < iea f4 > < l e a f 5 » »
:= # < + 5#<sum 1 !<sum < l e a f 4 » <sum < l e a f 5 » »
:= § < + 5!<sum 1 4 <sum < l e a f 5 » »
:= # < + 5 § < + 4 !< sum < l e a f 5 » »
:= § < + 5 ! < + 4 5 »
:= !< + 5 9 >
==-14

3.5.2 Parallel summation of a tree of integers: A lthough our first exam
ple leads to purely sequential com putation, this is entirely a property of the
particular rule system. DactlO allows us to write rules which cause parallel
firings. W e can take advantage o f this to write another version o f the above
exam ple which allows a suitable architecture to exploit parallelism:

program parsumtree;
imports arithmetic;
atom sum; pair; leaf;
rule
<sum < p a i r $ h $ t» := !< + !< su m $ h > ! < s u m $ t » ;
<sum <leaf $ t » =- !$t;
<sum $t> := !<sum !$t>;
rewrite
!<sum <pair < pair < leaf 2> <leaf 3 » <pair <leaf 4 > < leaf 5 » » ;
endprogram parsumtree;

Each tim e the first rule for sum is activated, tw o child arcs are fired
(nom inated), and a suitable architecture could execute these firings concur
rently. N o te that the parallel version has fewer rules than the sequential ones.
This is because the parallel version delegates decisions regarding evaluation
order to the architecture, and therefore does not need to specify them.

The relevant state transitions are show n below , again using the # to indicate
nodes w hose firing is suspended aw aiting replies (as redirections) from their
children.

!<sum <pair <pair < lea f2 > < l e a f 3 » < p a ir< le a f4 > < l e a f 5 » »
:= § < + !<sum <pair <leaf 2> <leaf 3 » > !<sum <pair d e a f 4 > d e a f 5 » »
:= # < + # < + !<sum < le a f2 » !<sum < le a f3 » > #<+ ! < s u m < le a f4 » !<sum d e a f 5 » »
= § < + !< + 2 3 > !< + 4 5 »
:= !< + 5 9 >
=>14

This exam ple can be seen as constructing a dataflow tree from the top down,
and integers flowing up the tree from the leaves to be com bined by + nodes.

ICL Technical Journal May 1987 519

The first tw o rules assum e that firing an arc will result in either a reference to
an integer or a pair o f integer trees. The third rule for sum deals with the case
where neither rule applies. It simply fires its argument, assum ing that this will
yield a result with which the earlier rules can deal. This allows quite general
expressions to be accom m odated, providing they guarantee to return either
an integer leaf node or a pair o f integer trees. G eneralisation o f such
reasoning m ay lead to useful proof rules for DactlO.

3.5.3 A simple unique identifier server: It is possible to write state
dependent rules in DactlO, for exam ple a sim ple unique identifier server which
changes its state on each firing:

< newname $n > := < newname ! < + $n 1» = > $n

The firing parent sees $n as the reply. Other references to the newnam e node
see an incremented version o f the newname. N ote that if m any firings exist on
a given node, the DactlO virtual m achine will select only one at a time, so
atom icity is achieved.

The presence o f state m akes it m ore difficult to reason about com positions of
such rules. In H ewitt’s terms they describe impure actors9. However, there are
situations where they may represent just what the im plem entor intends to
express. For exam ple, the newnam e rule expresses the notion o f a counting
register which increments on each firing, and responds with the old value.
Every firing client will receive a distinct integer as a reply.

3.5.4 Synchronisation: The usual rule for DactlO m atching is that the
matching process is delayed when it encounters a fired arc. For example,
given the term:

!<sync f !<computalion1> !< com putation . . . »

and the rule:

<sync $f $c1 $c2> := !< $f $c1 $c2>

replies m ust be received (i.e. redirections must occur) for both com putation l
and com putation! before the sync rule will fire, invoking f with the results of
the tw o com putations as arguments.

N ote however that the m eaning o f receiving a reply is entirely in the hands of
the generator o f DactlO code. At one extreme, receiving a reply could mean
that the result is in som e ground form. At the other extreme, it could mean
that just one rewriting has taken place. In DactlO the m eaning o f a reply is
entirely a property o f the rule system and its markings.

Certain com putations - for exam ple bottom -avoiding merge - require a non-
determ inistic form o f synchronisation which operates even when one o f the

520 ICL Technical Journal May 1987

com putations is still in progress. DactlO supports such concepts by allow ing
firings to be associated with the anonym ous variable on the left hand side o f
a rule. Thus !$ m ay be used in a pattern in DactlO. It is the only pattern which
m atches a fired arc. Its anonym ous nature avoids the problem o f defining the
m eaning o f a firing in progress.

This com pletes the introductory section. A m ore com plete description o f
DactlO, together with further exam ples, occurs in the annexe.

4 DactM influences

At the time of writing D a ctll is still at the design stage. However, this stage is
nearing com pletion and we can at least list the major influences which are
leading to change. These influences can be classified as follows:

(a) Intensive collaboration with the D utch Parallel Reduction M achine
Project. This has considerably increased our understanding o f graph
reduction. For exam ple, the soundness and com pleteness o f graph
reduction has been dem onstrated for weakly regular term rewrite
system s2. In addition, a new notation for expressing graph reduction has
been designed called L E A N (Language East Anglia - Nijm egen). D actll
will be directly based on LEAN.

(b) D a ctll will contain som e direct support for the logic variable.
(c) Experience has been gained with the translations o f both functional and

logic languages. G eorge P apadopoulos has exam ined the translation of
Parlog3 to DactlO, and K evin H am m ond has designed a translator from
a lazy version o f S M L 12 to DactlO. These efforts have provided valuable
feedback which has influenced D a c tll design decisions.

(d) DactlO firings for expressing control are very primitive, and consequently
hard to reason about. M ore abstract m eans o f expressing strategy are
desirable, but we see research in this area as leading to tools for m apping
higher level specifications o f strategy on to DactlO-like markings. C onse
quently firings will be retained in D a ctll.

(e) Certain features o f DactlO are inelegant. An exam ple is the need to
introduce a user-defined notion o f indirection to express sim ple selector
functions, as in section 3.4.1. A lthough the concept o f an indirection
node is frequently used in graph rewriting, im plem entors usually use
every possible trick to hide their existence, for reasons o f efficiency.
DactlO at present forces them to be program m ed in over-specific detail,
and restricts possible im plem entation techniques. D a ctll is likely to
support m ore powerful graph rewriting operations which will avoid
this.

(f) DACTLO used a disam biguating m eta-rule called specificity (described
in section 2.4, annexe). Explicit disam biguation using pattern operations
will be required in D ACTL1.

(g) M odule structure in DactlO is primitive and needs further elaboration.
(h) D esign rules should be developed for translating functional languages

into Dactl.

ICL Technical Journal May 1987 521

5 Acknowledgements

The considerable contributions o f N ic H olt, M ike Reeve, and Ian W atson,
who together with the present authors constitute the original D actl design
team are gratefully acknowledged, as is also the support o f the Alvey
directorate. The com m ents of the ICL team at Kidsgrove, led by Martin
Pixton, proved m ost helpful. Kevin H am m ond m ade m any useful com m ents
on the later drafts of this paper, and helped debug the examples.

ANNEXE: Syntax, operational semantics, and examples of DactIO

This annexe contains the original specification o f DactIO as delivered to
Alvey in 19857. Som e corrections - particularly to the exam ples which were
written w ithout the benefit o f a reference interpreter - have been made.
H owever, the editorial intent has been to reveal the state o f our understand
ing at the time the specification was delivered.

1 DactIO syntax

This section introduces the formal syntax for DactIO and explains the
constraints satisfied by a valid DactIO program unit.

1.1 Description of DactIO syntax

W e use a version o f B N F to describe the syntax. Terminal sym bols are shown
in bold face. Alternative productions appear on separate lines. Where it is
necessary to continue a production over the end o f a line, subsequent lines
are indented. O ptional parts o f productions are enclosed in braces. Parts o f
productions which may be repeated zero or m ore times are enclosed in
braces follow ed by an asterisk. A plus character follow ing a m atched pair of
braces specifies repetition one or m ore times.

1.2 Character set

A DactIO program is represented using the printable ASCII character set
with space, tab, and newline characters as separators. The escape sequences
used in the C Program m ing Language15 m ay be used to introduce other
characters into tokens.

Com m ents m ay be included in a DactIO program. All characters from a %
character to the end of the line are ignored.

1.3 The context-free syntax

The sym bol T O K E N stands for any sequence o f alphanumeric characters
and other printable characters except those used for special purposes in the
rest o f the syntax. The C Language escape conventions are allowed within
T O K E N s and m ay be exploited to allow a T O K E N to be any ASCII
character sequence. The case o f characters in a T O K E N is significant.

522 ICL Technical Journal May 1987

K eywords are shown in bold face, and character case w ithin keywords is not
significant. It is possible to construct a T O K E N containing the same
characters as a keyword by using the character escapes.

The productions o f the syntax are introduced individually and a brief
explanation o f the purpose o f each feature is given.

UNIT ::= PROGRAM
MODULE

PROGRAM ::= program TOKEN ; { ITEM }* rewrite { MARKING } TERMREF
{ where DEFS } ; endprogram TOKEN ;

A P R O G R A M consists o f a num ber o f IT E M s which define the set o f rules in
the graph rewrite system to be m odelled. The final elem ent o f a PR O G R A M
describes a m arked term which is to be constructed and rewritten according
to these rules. Each program is given a nam e which m ust be repeated
follow ing the endprogram keyword.

MODULE ::= module TOKEN ;{ MODITEM }* endmodule TOKEN ;

The other form o f DactlO program unit is a M O D U L E which defines a set o f
rules along with the patterns and atom ic tokens used in the rules. Each
m odule is given a nam e which m ust be repeated follow ing the endm odule
keyword. M odules m ay be im ported by other program units but the only
features o f the im plem entation visible are those declared public by the
defining m odule.

ITEM ::= Imports { TOKEN ; } +
atom { TOKEN ; } +
pattern { PATTDEF ; } +
rule { RULE ;} +

The definitions provided in a program or m odule take one o f four forms: the
rewrite rules and public tokens defined by a DactlO m odule m ay be imported;
a number o f atom ic tokens m ay be declared; tokens representing patterns
m ay be declared; and finally, rewrite rules m ay be given.

MODITEM ::= ITEM
public { TOKEN ; } +

The constituents o f a M O D U L E are basically ITEM s as defined above. O nly
the atom s and patterns declared public are m ade available to a program unit
im porting the m odule.

PATTDEF ::= TOKEN = TERM

Pattern definitions nam e patterns which m ay be used during m atching
on the left-hand side o f a rule. Som e patterns can be used to construct
terms.

ICL Technical Journal May 1987 523

RULE ::= TERM RHS { where DEFS }
RHS ::= { := TERM } => { MARKING } TERMREF

:= { MARKING } TERM
:=> { MARKING } TERM

The R U L E s in a PR O G R A M or M O D U L E are rewrite rules for transform
ing graphs. The T ER M form ing the left-hand side o f a R U L E is a pattern
which m ay m atch a subgraph o f the graph being executed. Execution o f rules
is described in detail in section 3.

The second and third styles o f the RH S o f a R U L E are syntactic sugaring for
versions o f the first. A rule o f the form lhs : = mark trm is equivalent to: lhs
: = trm => mark @ (where @ is a special identifier referring to the root o f the
lhs) while lhs :=> mark trm is equivalent to one o f the form s lhs : = mark trm
and lhs => mark trm, the choice being decided by the im plem entation.

DEFS ::= DEF { and DEF }*
DEF ::= IDENTIFIER : TERM

Definitions appearing on the left-hand side o f a R U L E are used to bind
ID EN TIFIER S to the nam es o f nodes encountered during m atching o f an
enabled term. In an RHS, and in where clauses, ID EN TIFIER S are bound to
nodes under construction.

IDENTIFIER ::= ${ TOKEN { TOKEN }* }
@
@ @

For an ID E N T IF IE R o f the first form, no spaces are allowed between the $
and the first T O K E N . The ' is a field-selection operator, w hose use is
explained below. The special ID E N T IFIE R @ refers to the root node o f the
term being re-written. @ @ identifies the parent node which causes the
current firing o f the term being considered.

TERM ::= < { { MARKING } TERMREF }*>
■{‘ TERM { , TERM }*
TOKEN
IDENTIFIER A

The form using braces m ay be used only on the left-hand side o f a RULE,
either directly, or im plicitly, through use o f a defined pattern. It indicates a
pattern which will m atch terms conform ing to one o f a number o f candidate
patterns.

The T O K E N form indicates a defined atom or pattern. In the final form, the
term denoted is a copy o f the root o f the term named by the ID E N T IFIE R .

TERMREF ::= IDENTIFIER
DEF
TERM

524 ICL Technical Journal May 1987

T o specify the subterms o f a term and the redirection caused by rule
application, a reference to a term is required, rather than a term. TER M s
m ay be considered as the nodes in a graph, and T E R M R E Fs as arcs, or
references to nodes. W hen a T ER M appears as a TER M R E F, a node is to be
constructed and a reference to it used.

MARKING ::= !

M arkings are attached to references to terms. The marking ! indicates that a
firing should be associated w ith the appropriate arc in the graph referencing
the term. The node concerned will therefore be a candidate for rewriting.
Absence o f a m arking indicates that firing will not take place, while ? m eans
it is im plem entation dependent whether or not the arc carries a firing.

1.4 Patterns and matching

Before a rule can be applied to a fired node, the pattern form ing the LH S o f
the rule m ust m atch the subgraph rooted at that node. As m atching proceeds,
ID EN TIFIER S within the T ER M representing the pattern are bound to
references to the appropriate nodes.

If such an ID E N T IF IE R appears on the R H S follow ed by A, a copy o f the
node referenced will be required when building terms for overwriting or
redirection. This copy reflects the state o f the node as encountered during
m atching. In particular, @ A refers to a copy o f the root node when m atching
starts, and, similarly, @ @ A gives a copy of the distinguished parent node.

The ID E N T IF IE R $ (with no follow ing T O K E N) will match any term
found. It m ay not be used on the RH S but m ay occur several times on the
left-hand side, different occurrences m atching different nodes in general.

It is intended that m odules should export patterns to provide an im plem en
tation-independent m eans o f identifying terms o f a given type. An exam ple
m ight be:

pattern pair= c co n s $hd $tl>;

A rule using this m ight be:

rule ch ead $p:pair> => $p'hd;

The m odule defining pair need not export anything m ore than the pattern
name. In particular, if the atom cons is kept private, there is n o m echanism
for creating objects o f type pair, w ithout using the m odule. By default, the
subterms o f a pair term m ay not be named, so the rule for head above could
not be written outside the m odule. A declaration o f the form:

public pair; pair'hd; pair'tl;

ICL Technical Journal May 1987 525

m akes the subterms available using the syntax illustrated in the rule for head.
However, the actual layout of a pair term is not revealed.

The notation generalises so that, given the follow ing pattern definition:

pattern pat= <foo $bar:pair> ;

if a declaration binds Sx to a pat then the subfield $x bar'hd will denote the
$hd field o f the $bar field of the node bound to $x. A public declaration may
include item s such as pat'bar'hd.

If the atom nil has been declared then a pattern introduced by:

pattern list = {pair,nil};

will match either a pair or nil. The com plete term matched by list m ay be
identified, but no field selectors m ay be used.

Atom s may appear on the right-hand side o f rules as m ay constant patterns.
A pattern is constant if it is m ade up by tupling of subterms which are all
either atom s or constant patterns.

1.5 Definitions

Definitions appearing on the left-hand side o f a R U L E cause the ID E N T I
FIER to be bound to the root o f the corresponding subterm, if m atching of the
rule is successful. Any other occurrence of an ID E N T IF IE R on the left-hand
side is also, in effect, a defining occurrence. It will match, and be bound to, any
node.

D efinitions appearing in the RH S o f a rule are used to bind the ID E N T I
FIER to the root o f a term under construction. Every ID E N T IF IE R
appearing in a rule m ust have exactly one defining occurrence. M ultiple
occurrences o f an ID E N T IF IE R in the R H S o f a R U L E denote references to
a shared term so that true graph structures m ay be built.

There is no prohibition o f recursive definitions. Such definitions will build
cyclic graphs. A node must be constructed for each definition and each
unnamed tuple. The com ponents o f a node form ed by tupling are references
to the node com prising the subterms. T o determ ine the com ponents o f a
node form ed by copying a referenced node, it is necessary that the com po
nents o f that node are determined first. In som e cases this is not possible, and
the RH S is badly formed. A trivial exam ple o f an illegal D E F w ould be:

$ 3 ! $ 3 A

1.6 Modules

The m odule structure in DactlO is an attem pt to address the need for
partitioning o f software developm ent. It is also intended that the m odule

526 ICL Technical Journal May 1987

m echanism should be used to encapsulate special hardware m echanism s and
im plem entation techniques which are not o f concern at the D actl level.

By providing standard interfaces in the form o f DactlO rules, atom s, and
patterns, the actual im plem entation o f the low est level o f facilities m ay be
hidden. C onceptually, a standard m odule declares patterns such as int, real
and boolean in the norm al way. Constant values are just atom s and the
patterns are sim ply the union o f the appropriate atom s. The boolean pattern
m ight be declared by:

atom true; false; pattern boolean = { true, false };

All the rules defined in a m odule and any it im ports are exported, but a
program cannot create terms which will m atch these rules unless it can use
the atom and pattern sym bols involved. A tom and pattern tokens to be made
available outside a m odule m ust occur in a public declaration. T okens
im ported from other m odules remain hidden unless re-exported. All the
tokens used in a program unit m ust be declared as atom s or patterns in the
unit, or declared public in an im ported m odule.

The design o f the DactlO m odule structure is orthogonal to the m ain design
issues in the language. It does not reflect the best research in this area and it
is hoped that suggestions for im provem ents will be forthcom ing.

1.7 The complete syntax

UNIT := PROGRAM
MODULE

PROGRAM = program TOKEN ; { ITEM }*
rewrite { MARKING } TERMREF { where DEFS } ;
endprogram TOKEN :

MODULE := module TOKEN ; { MODITEM }* endmodule TOKEN
ITEM : = imports { TOKEN ; } +

atom { TOKEN ; } +
pattern { PATTDEF ; } +
rule { RULE ; } +

MODITEM := ITEM
public { TOKEN ; } +

PATTDEF := TOKEN = TERM
RULE ::= TERM RHS { where DEFS }
RHS := { := TERM } => { MARKING }

TERMREF := { MARKING } TERM
:=> { MARKING } TERM

DEFS := DEF {and DEF}*
DEF := IDENTIFIER : TERM
IDENTIFIER := $ { TOKEN { 'TOKEN }* }

@
@@

TERM := < { { MARKING } TERMREF }* >
■{■ TERM { , TERM }*
TOKEN
IDENTIFIER A

ICL Technical Journal May 1987 527

TERMREF ::= IDENTIFIER
DEF
TERM

MARKING ::= I
?

2 Operational semantics of DactIO

In this section we describe an execution m odel for DactlO.

2.1 Expression graphs

A DactlO program defines a graph rewriting system (GRS) together with an
expression graph to which the rewrite rules are to be applied.

Ignoring markings for the m om ent, a TERM represents a directed graph.
A TO M s m ay be thought of as leaf nodes, and tuple TERM s as interior
nodes. An arc proceeds from each interior node to each o f the nodes
represented by the com ponents o f the tuple. Sharing - i.e. arcs pointing to the
same node - is expressed by repeated use of the same ID E N T IFIE R .

2.2 The three-clouds model

As a graph is executed, firings m ay be attached to or removed from the arcs.
The presence of a firing on an arc from a node N to a node N' signifies that N
requires N' (m ore precisely, the subgraph rooted at N') to be further executed.
N ' will eventually be executed and will signal to N that som e work has been
done by rem oving the firing from the arc. W e will also speak o f N ' being “fired”
by N.

The R U LEs in a DactlO program specify how firings are attached and removed
by m eans o f the m arkings on their right-hand sides. The m arkings are
considered to be attached to arcs o f the graph. The presence o f a ! against a
TERM T which is an im m ediate subterm o f a TERM T' signifies that when this
arc is created by an execution o f the rule, it is to be fired.

The DactlO programmer may use the marking ? when he does not wish to
specify whether the arc is to be fired. W hen a rule is executed it must not
contain ?’s - the choice m ust have been resolved by then.

To explain graph execution we partition the nodes o f the graph into three
classes, or “clouds”. As com putation proceeds, nodes m ove between the
clouds. The three clouds are called Inactive, Enabled, and Blocked.

A node is Inactive when it has not been fired by any o f its parents. N o-on e is
currently dem anding any work to be done on that node, and it is not
considered for rule-matching.

W hen a node is fired, the m achine tries to match the subgraph rooted at that

528 ICL Technical Journal May 1987

node against the left-hand side o f each rule. If any pattern m atches, the node
becom es Enabled. The rule w hose left-hand side m atched (or any one o f such
rules, if m ore than one matches) will be executed. For a rule o f the form

P := 0 => R

if the pattern P m atches the subgraph rooted at node N , then the graphs O
and R are constructed, and the root o f O overwrites N . Arcs in O or R
marked with ! are fired. That is, the nodes they point to becom e candidates
for rule m atching and execution. The arc along which N was fired is
redirected to point to the root o f R. That arc receives any firing attached in
the rule to the root o f R. If it is not fired then the firing parent o f N is notified
that its dem and has been satisfied. That parent is then once m ore a candidate
for rule matching.

N o te that the only parts o f the graph which are updated when a rule is
executed are the root o f the subgraph m atched by the left-hand side of the
rule and the arc along which it was fired. The only other effect o f rule-
execution is to create new nodes and arcs.

W hen a node is fired it is possible that no rule matches. The node becom es
Blocked. It will only be reconsidered as a root node for rule m atching if it has
at least one fired arc to an im m ediate descendant, and (as a result o f applying
rewrites to that descendant) the firing is later removed.

W hen a node is Blocked, it is possible that som e indirect descendant o f that
node m ay get overwritten in such a way that an attem pted rule m atch at the
Blocked node w ould now succeed. Nevertheless, the node remains Blocked,
even if som e other node attem pts to fire it. Thus a Blocked node with n o fired
arcs to any o f its descendants m ust remain Blocked forever, or, as we m ay
term it, Dead.

W e m ight invoke som e default action to handle this case, causing a D ead
node, for exam ple, to fire all o f its descendants. H owever, we exclude “default
options” from DactlO, since it is not clear that there is a uniform ly sensible
default action. For exam ple, the above suggestion m ight merely replace
deadlock by livelock. The provision o f defaults is the responsibility o f the
DactlO programmer or his program m ing tools.

This description is summarised in Fig. 2. C stands for node creation, F for a
node being fired, R for redirection o f an arc to a descendant, M X for
m atching and execution o f a rule, and ~ M for failure to find any m atching
rule.

2.3 Matching

The patterns which m ay occur on the left-hand sides o f R U L E s are a subset
o f the TER M s, those which are constructed only from A T O M s, ID E N T IF I-

ICL Technical Journal May 1987 529

Inactive I Enabled Blocked
(not fired) | ^ MX (fired, awaiting matching) * R (fired, no match)

MX

Fig. 2

ERs, and tupling, and which satisfy certain other constraints. An ATO M
matches only itself. A tuple m atches a node w hose descendants match the
respective com ponents of the tuple.

An ID E N T IFIE R o f the form $ or $x is a “wild card”, m atching any node. In
the case of $x, the same ID E N T IFIE R can be used on the right-hand side to
refer to the same node. $ may be used when the programmer does not wish to
refer to the node again. An ID E N T IFIE R $x cannot be repeated on the left-
hand side, and if different identifiers $x and $y appear, it is possible for them
to be bound to the same node. Thus the m atching process is not influenced
by the presence or absence o f sharing in the graph. There is no identity test
on nodes. The reasons for this are m ore fully explained in 6.

The ID ENTIFIERS @ and @ @ m ay only appear in TER M s in the RH S o f a
RULE. @ is a reference to the node matched by the root o f the pattern on the
left-hand side. @ @ is a reference to that parent o f @ which fired it,
provoking execution o f the rule. N o te that the TERM @ A, used in an RHS,
denotes the contents o f the root o f the matched subgraph at the tim e o f
m atching (i.e. before performing the overwrite).

The overwrite portion o f a RU LE must specify the contents o f a node, while
the redirection part m ust specify a reference to a node. This accounts for the
slight differences in their syntax. An identifier is a reference to a node, and
m ust therefore be dereferenced by the A operator if it is to appear as an
overwrite. (A nother m ethod is illustrated in the functions head and tail in the
lists m odule exam ple below.) A tuple represents the contents o f a node; its use
as a T E R M R E F im plies the creation o f a node to hold it.

A pattern is only allowed to m atch a subgraph containing fired arcs in a very
restricted way. An arc has been fired because its source node has requested its
target node to be further evaluated. It is inappropriate to look at the contents
o f the target while this is happening. For this reason, the only cases where
markings can usefully occur are on the anonym ous identifier $, since
whatever the state o f the arc concerned, its existence, which is all that $
detects, cannot be in doubt.

530 ICL Technical Journal May 1987

Thus $, like $x, does not match a node at the end of a fired arc. !$ matches
only such nodes, and ?$ matches either.

A rule which performs an overwrite, and not just a redirection, may not have
a left-hand side able to match a subgraph whose root has outgoing fired arcs.
An overwrite in effect cuts all the outgoing arcs of the root. Only the source
of an unfired arc needs to know of its existence, but a fired arc is also known
to its target. Cutting a fired arc would require notifying its target node, and in
a system as loosely coupled as we envisage running Dactl, this could pose
difficulties.

The restrictions described above are made in the interests of flexibility of
possible implementations and the desire to retain good mathematical
properties of the execution model, rather than because we believe that
implementation of DactlO might otherwise be difficult. Indeed, most of the
implementation methods that the authors can imagine would, for most of the
restrictions, have no such difficulty. But we do not wish to lift them until we
discover strong reasons for requiring greater expressive power. The reader is
encouraged to provide us with such reasons.

2.4 Ordering of rules

Rather than assuming that rules are considered in the order in which the
programmer gives them, it is convenient to require that rules with more
specific patterns will be tried before those with less specific patterns. That is,
if the set of graphs which one rule is capable of matching is a superset of those
which another rule can match, then the latter rule will be tried before the
former. This defines a partial ordering on rules; an implementation may or
may not refine this to a total ordering. Later versions of Dactl may allow the
programmer to override or modify the specificity ordering.

2.5 Parallel execution

Parallel execution of rewrite rules raises questions of exclusive access by
processing agents to parts of the graph. A DactlO pattern can be arbitrarily
large. If we were to assume that every processing agent acquires exclusive
access to the whole graph when attempting a pattern match, much potential
for parallelism would be lost. If we instead allowed an agent to perform
matching by acquiring exclusive access to the relevant subgraph one node at
a time, this could easily result in deadlock. It turns out, however, that pattern
matching can be performed on the basis of much weaker mutual exclusion
postulates. We assume that:

(a) An agent wishing to attempt rule-execution at some node may acquire
exclusive permission to do so. This does not exclude any other agent
from reading the contents of the node, only from attempting pattern
matching rooted at that node.

(b) Reading a node, overwriting a node, reading an arc, and overwriting an

ICL Technical Journal May 1987 531

arc are atomic operations. We do not assume that arcs are represented as
pointers to their target nodes, contained in their source nodes. They
might (or might not) be separate objects: nodes would contain references
to arcs, and arcs references to nodes.

An agent with these capabilities can inspect the subgraph rooted at a node,
one node or arc at a time. When it discovers that some pattern matches, it
then constructs the overwrite and redirection graphs. The original node is
overwritten and released by the agent, and the redirection graph is linked to
the node which fired the node being matched.

Since the agent never has simultaneous access to all the nodes of the
subgraph being matched, it is possible that while it is exploring that graph,
other agents are changing it. The nodes which it sees may in fact never have
existed simultaneously. How then, can we reason about this method of
execution of GRSs? The problem is less serious than it may appear. We can
show that for a system of DactlO rules generated by translation into DactlO of
a conventional rewrite system satisfying certain conditions (such as those of
Hoffmann and O’Donnell8 or Staples16), executing a graph by DactlO will
give the same result as the original rewrite system. We are investigating
extensions of this result to more general systems of rewrite rules.

3 Examples

For comparison, some of the following examples of DactlO are also written in
SASL17.

3.1 A simple example

SASL:

fib 0 = 1
fib 1 = 1
fib n = fib(n - 1) + fibfn - 2)

DactlO:

program fib;
imports arithmetic;
atom fib;
rule
<fib 0> := 1;
<fib 1 > := 1;
< fib $n:int> := ! < + ! <fib ! < - $n 1» ! < fib
<fib $n> := !<fib !$n>;
rewrite !< fib < fib 5 » ;
endprogram fib;

!< - $n 2 » > ;

Note that DactlO requires the fourth rule to deal with the case where the
argument to fib is not yet in the form of an integer and needs further
evaluation.

532 ICL Technical Journal May 1987

3.2 Illustration of control over evaluation order

SASL:

head a:b = a
tail a :b = b
listeval () = ()
listeval a :b = scons a (listeval b)
scons a () = a :()
scons a b:c — a :b :c

Listeval is the identity function on lists, but forces the whole of the list to be
evaluated. In DactlO we can define two versions of this function. Seqevallist
expands the whole list, and replies when this has been done. Parevallist also
expands the whole list, but replies as soon as the list has been brought to the
form of nil or a cons. The remainder of the list continues to be evaluated in
parallel.

DactlO:

module lists;
atom nil; cons; head; tail; scons; seqevallist; parevallist;
pattern pair= < cons $hd $tl> ; list = {nil,pair};
public nil; cons; pair; list; head; tail; seqevallist; parevallist;
rule
nil =► @;
cco n s ?$?$> => @;

<head <cons $h ? $ » => !$;
ch ead $x> := !<head !$x>;

ctail cco n s ?$ $ t » => !$t;
c ta il $x> := !< tail !$x>;
cseqevallist nil> := nil;
cseqevallist cco n s $h $ t » := ic sco n s $h I cseqevallist $ t » ;
cseqevallist $x> := !cseqevallist !$x>;

csco n s $h $ t> := cco n s $h $t> ;
c parevallist nil> := nil;
cparevallist c co n s $h $ t » := cco n s $h Icparevallist ! $ t» ;
Cparevallist $x> := Icparevallist !$x>;

endmodule lists;

We can also define a version of the function which not only expands the list
structure, but also fires the elements of the list. All that is necessary is to add
another firing to the second rule for parevallist:

cparevallist cco n s $h $ t » := cco n s !$h Icparevallist ! $ t» ;

3.3 Quicksort

SASL:

quicksort () = ()
quicksort (h:t) = split h t () ()

ICL Technical Journal May 1987 533

split x 0 a b = append (quicksort a) (x:(quicksort b))
split x (h:t) a b = (x < h) - > (split x t a (h:b))

; (split x t (h:a) b)
append () 1 = 1
append (h:t) 1 = h:(append t 1)

DactlO:

program quicksort;
imports lists;
imports logic;
imports arithmetic;
atom quicksort; split; append;

rule
<quicksort nil> := nil;
< quicksort < cons $h $ t » := !<split$h !$t nil nil>;
< quicksort $x> := !< quicksort !$x>;

<split $x nil $a $b> := !<append
!< quicksort !$a>
<cons $x !< quicksort $ b »

>;
< split $x <cons $h $t> $a $b> := !<ifthenelse !< lt !$x !$h>

< split $x $t $a <cons $h $ b »
< split $x $t <cons $h $a> $b>

>;
<split $x $y $a $b> := < split $x !$y $a $b> ;
< append nil $x> => !$x;
< append ccons $h $ t> $x> := < cons$h !< append $t $x» ;
< a p p e n d $ a $ b > := !< append !ab> ;

rewrite !< quicksort c co n s 3 cco n s 4 cco n s 1 cco n s 5 cco n s 2 n i l » » » ;
endprogram quicksort;

The Dactl version is deliberately only partly lazy. The recursive calls of
quicksort in the definition of split are both fired. The result is that with
unbounded parallelism, the list is on average sorted in time proportional to
the logarithm of its length.

3.4 Higher-order functions

SASL:

twice f x = f (f x)

DactlO;

« twice $f> $x> := !c!$f c $ f $ x » ;
ctw ice $x> => @;
twice => @;
c $ x $ y > := !c !$ x $ y > ;

Here is an example. We assume that succ is the successor function on
integers. Blocked nodes are indicated by a #.

534 ICL Technical Journal May 1987

! « twice < twice s u c c » 0>
:= #<!$f < $ f O » where $f: c twice succ>
:= !<$f <$f 0 » where $f: < twice succ >
: = § < isucc <succ « twice succ > 0 » >
:= !<succ < succ « tw ic e s u c c > 0 » >
:= # c su cc !<succ « twice succ > 0 » >
:= § < s u c c # c su c c ! « twice succ> 0 » >
:= § < succ § < succ # c isu cc <succ 0 » »
:= #<succ # c su cc !<succ <succ 0 » »
:= j f < succ § < succ § < succ !< succ 0 » »
:= § < succ # < succ !< succ 1 » >
:= #<succ !<succ 2 »
:= !<succ 3>
=> 4

3.5 Bottom-avoiding merge

Bottom-avoiding merge is a non-deterministic function of two lazy lists. It
produces a list which is some merging of the two lists. If one of the two lists
produces its first element and attempted evaluation of the other never yields
any of its elements at all, then the bottom-avoiding merge is required to yield
the elements of the list which could be evaluated without waiting for
evaluation of the other. The classic example where this is required is the
merging of input streams from two terminals. From within the programming
language a terminal can be regarded as a lazy list, which turns into an actual
list of characters as and when someone types on the terminal’s keyboard.
Attempting to evaluate the head of such a list makes the program wait until
something is typed. It is a non-trivial problem in parallel declarative
programming to ensure that a program attempting to read from each of two
terminals is able to use input from either, even if nothing is ever typed on the
other, and to do this without busy waiting.

Bottom-avoiding merge cannot be expressed in SASL.

module bam;
Imports lists;
atom bam; bamO; bam1;
public bam;
rule
<bam $x $y> := !<bam 0 !<bam1 !$x !$y $x $ y » ;
<bam 0 <bam1 $?$ $x:pair $ y » : =
cco n s $x'hd <bamO c b a m l !$x'tl !$y $x'tl $ y » > ;
cbamO <bam1 ?$ $ $x $ y :p a i r» : =
c co n s $yhd cbamO c b a m l !$x !$y'tl $x $y t l » > ;
c b a m l $?$ pair $ > => @;
c b a m l ?$ $ $ pair> => @;
c b a m l $?$ $x $y> =- !cbam 1 !$x !$y $x $y>;
c b a m l ?$ $ $x $y> => !cbam 1 !$x !$y $x $y>;
endmodule bam;

The last two rules for baml could be omitted if the programmer guarantees
that bam will only be applied to list expressions which, when fired, do not
reply until they have turned into the form of a pair. For simplicity, the two

ICL Technical Journal May 1987 535

arguments are assumed to be infinite lists, but the definitions could easily be
extended to deal with finite lists as well.

3.6 Assignment

DactlO can model non-declarative concepts such as assignment. We can
program a cell with read and write operations on it. The cell uses @@ to find
out what operation is being performed and in the case of a write, to read the
value being written.

module cell;
atom cell; celM; read; write; write"!; swap; swapl;
public read; write; swap; cell;
rule
ccell $n> := !<cell1 $n @ @ >;
cce lll $n <write1 ! $ $ m » := < cell $m >;
< celll $n <swap1 ! $ $ m » := < cell $m > => !$n;
< cell 1 $n $> := < cel I $n>;

c re a d < cell $ n » => !$n;
< read $c > => I < read !$c >;

< write $c: < cell $n> $m> := !<write1 !$c $m >;
< write $c $m > := !< write !$c $m >;
cw rite l $c: ccell $> $> => $c;

csw ap $c: cce ll $> $n> := Icsw ap l !$c$n> ;
c s w a p $ c $ n > := Icsw ap !cn>;
c swapl $c $n> => !$c;

endmodule cell;

3.7 Semaphores

Semaphores are a tool with which one may implement mutual exclusion
constraints on concurrent processes5. We can program a semaphore in
DactlO and use it to ensure that certain terms are never fired simultaneously.

module sema;
atom mutex; go; done; sema; sem al; sema2;
public mutex; sema; done;
rule
cm u tex $ x $ y > := !c g o !$ x $ y > ;
e g o e s e m a > $y> => !$y;
e s e m a > := Ic se m a l @ @ >;
e se m a l $ x : e g o ? $ $ y » := !csem a2 $x !$y>;
csem a2 $ $> := e se m a > ;
endmodule sema;

We illustrate the use of this module by the following example, which uses the
cell module given earlier:

c ! c mutex $s $x1 > ! c mutex $s $x2 »
where $ s :c s e m a >
and $x1: c read c write $c 1»

536 ICL Technical Journal May 1987

and $x2: < read < write $c 2 »
and $ c :< ce llO > ;

$xl and $x2 are, in effect, two processes, each of which writes an integer to
the cell $c and then reads it. The semaphore ensures that $xl and $x2 are
never simultaneously in the fired state. Thus each of the processes will read
the same value it wrote. It is impossible for the two processes to both write,
and then both read, as can happen with the term:

<!$x1 !$x2>
where $x1: <read < write $c 1»
and $x2:< read < w r i t e $ c 2 »
and $ c:< ce llO > ;

References

1 BAETEN, J.C.M., BERGSTRA, J.A. and KLOP, J.W.: ‘Priority rewrite systems’. Report
CS-R8407, Department of Computer Science, Mathematical Centre, Kruislaan 413, 1098
SJ Amsterdam.

2 BARENDREGT, H.P., VAN EEKELEN, M.C.J.D., GLAUERT, J.R.W., KENNAWAY,
J.R., PLASMEIJER, M.J. and SLEEP, M.R.: Term Graph Rewriting’. University of East
Anglia, October, 1986.

3 CLARK, K. and GREGORY, S.: ‘PARLOG: Parallel Programming in Logic’. ACM
TOPLAS, Vol. 8, No. 1, Jan., 1986.

4 DARLINGTON, J. and REEVE, M.: ‘ALICE: A Multi-Processor Reduction Machine for
the Parallel Evaluation of Applicative Languages’. Proc. ACM Conf. on Functional
Programming Languages and Computer Architectures, New Hampshire, Oct., 1981.

5 DIJKSTRA, E.W.: ‘Cooperating sequential processes’. In: Genuys, F. (editor), ‘Program
ming Languages’, Academic Press.

6 GLAUERT, J.R.W., HOLT, N.P., KENNAWAY, J.R., REEVE, M.J. and SLEEP, M.R.:
‘An active term rewrite model for parallel computation’. Internal Report, School of
Information Systems, University of East Anglia, Feb., 1985.

7 GLAUERT, J.R.W, HOLT, N.P., KENNAWAY, J.R., REEVE, M.J., SLEEP, M.R. and
WATSON I.: ‘DACTLO: A Computational Model and an associated Compiler Target
Language’ Internal Report, School of Information Systems, University of East Anglia,
May, 1985.

8 HOFFMANN, C.M. and O’DONNELL, M.J.: ‘Implementation of an interpreter for
abstract equations’. In: ACM Conference on Computer Science, 1983.

9 HEWITT, C.: ‘Viewing control structures as patterns of message passing’. Artificial
Intelligence, Vol. 8, 1977, 323-364.

10 HUET, G. and OPPEN, D.: ‘Equations and rewrite rules: a survey’. Report CSL-111, SRI
International, 1980.

11 KLOP, J.W.: ‘Combinatory Reduction Systems’. Mathematical Centre Tracts 127, Kruis
laan 413, 1098 SJ Amsterdam.

12 MILNER, A.J.R.G.: ‘A Proposal for Standard ML’. Internal Report CSR-157-83, CSD,
University of Edinburgh.

13 O’DONNELL, M.J.: ‘Equational Logic as a Programming Language’. MIT Press, 1985.
14 REDDY, U.: ‘On the relationship between logic and functional languages’. In: DeGroot, D.

and Lindstrom, G. (editors), ‘Functional and Logic Programming’, Prentice-Hall, 1985.
15 RITCHIE, D.: ‘C Reference Manual’. Bell Telephone Laboratories, Murray Hill, 1974.
16 STAPLES, J.: ‘Optimal evaluations of graph-like expressions’. Th. Comp. Sci., Vol. 10,

1980, 297-316.
17 TURNER, D.A.: ‘SASL language manual’. University of St. Andrews, 1976.
18 WATSON, I. and GURD, J.: ‘A Practical Data Flow Computer’. IEEE COMPUTER,

Vol. 15, No. 2, Feb., 1982.

ICL Technical Journal May 1987 537

PARALLEL DECLARATIVE SYSTEMS

Hardware parallelism makes it possible to achieve high performance eco
nomically by exploiting the availability of cheap, high-powered microproces
sors, themselves made possible by advances in VLSI technology. This final
section describes two parallel systems, both using the principle of graph
reduction, and the system software needed to support one of these.

Designing system software for parallel
declarative systems

P. Broughton, C.M. Thomson, S.R. Leunig and S. Prior
(Members of Flagship System Software Team) ICL Mainframe Systems, West Gorton,

Manchester

Abstract

The aim of this paper is to give an overview of the work being carried out
by Flagship project to design system software for parallel hardware. The
software will provide a computing environment within which programs
which are mainly declarative can be designed and run. The paper is a
snapshot of the early stages of the design process. It discusses some of
the issues being addressed and our approach to design.

1 Introduction

Hardware which will exploit the inherent parallelism of declaratively ex
pressed programs and applications opens up the exciting prospect of almost
limitless performance1,2. The larger the application or the more users a
system has, the greater the potential for parallelism and the greater is the
number of parallel processors which can devour the work. At the same time
declarative languages allow the programmer to express his problem to the
computer without the confusion of worrying simultaneously about how to
make the computer solve it3. However, no matter how powerful the
hardware or attractive the languages, these systems will be used only by the
devout few unless they are capable of providing an attractive programming
environment, of managing themselves and their resources to a level expected
in the 1990s and of adaptation to meet the rapidly advancing ideas and
languages of the declarative world. The responsibility for all these lies with
the system software.

Our research will take advantage of ICL’s existing VME operating system
and also of UNIX by adopting a policy of hosting FLAGSHIP with these
systems. By this means we shall avoid designing a new operating system and
be able to concentrate on the issues posed by the declarative parallel system;
so producing code which is sufficiently robust and timely to be used by other
researchers.

This strategy of hosting will allow us to produce more quickly, systems for
research which are largely or even completely running on the sequential host.

ICL Technical Journal May 1987 541

Tactically however, we must first understand the design of the system
targetted to our parallel hardware and develop a minimal system to run on
our early prototypes. This is a vital contribution to the design and validation
of the FLAGSHIP hardware.

The structure of Flagship overall system is given in Fig. 1. The architectural
style of the system as viewed by language users and compilers is guided by
the Programming Reference Model (PRM). A concrete realisation of the
ideas contained in the PRM will be the Common Machine Interface (CMI);
the provision of this interface on target parallel hardware and under both
VME and UNIX is the task of the system software. This consists of a
“library” of system functions in the parallel hardware plus functions provided
by the host. The host also provides system management. The PRM is
discussed in more detail later in this paper.

Besides provision of the CMI the system software has other duties such as
management of system resources and provision of a secure multi-user
environment. A great majority of these duties require support from the
hardware or underlying system and will be defined in the Implementation
Specific Interface (ISI) particular to the parallel hardware or UNIX/VME
host system. These issues are covered in more detail later.

For the system software ultimately to run efficiently on parallel hardware it
must itself exploit the parallelism available. We must therefore implement
our code in a declarative style. Declarative languages are designed so that the
programmer does not need to think about the state of his program at any
point during its execution. This lack of control of state in the languages and

USERS

EXPERT SYSTEM SHELLS &
APPLICATION DEVELOPMENT ENVIRONMENTS

LANGUAGE COMPILERS, TOOLS
&

RUN-TIME ENVIRONMENTS

user interface -.

LIMIT OF
■ • • FLAGSHIP

PROJECT

common machine interface (CMI) — PRM • ••

ENVIRONMENT LIBRARY + HOST SYSTEM

DACTL
HOPE PLUS

implimentation specific interface —

DACTL
' MODEL

• IRM •

MICROCODE & HARDWARE

Fig. 1 Overall Flagship system

542 ICL Technical Journal May 1987

their use in writing system software (where the task is to control hardware
and process state) presents another problem to be solved by the team. This is
addressed by our choice and design of implementation languages and by the
Declarative Alvey Compiler Target Language (DACTL).

To begin a more detailed discussion of all these issues let us consider our
approach to getting a correct design of this first ever declarative, parallel
operating system.

2 The design approach

The principal aim of the design methodology is to adopt a rigorous approach
to the development of the system software. Such a strategy places emphasis
on the design and specification stages of the software life cycle. The intention
is to reduce the number of design faults - the most expensive to repair - and
to provide a solid foundation of the rest of the development cycle.

The approach being adopted has the following characteristics:

- Formal specification
- Executable model in declarative style
- Transformation of specification and program
- Fagan inspection

The method of creating formal specifications of the major Flagship
components is relatively untried outside academic circles and needs a
careful approach to ensure expectation does not outweigh investment. The
feasibility of using the Vienna Development Method (VDM)4 is being
investigated.

VDM embodies the concept of transformation (called reification in VDM) to
progress from abstract specifications to concrete implementations. Each
transformation is accompanied by an operation called a retrieve function.
The retrieve function is used to demonstrate that all the information in the
abstract version is still available in the more concrete form, i.e. correctness
has been preserved.

The main components of the system software are being modelled using the
functional language Hope, to provide rapid feedback on ideas and establish a
declarative style for implementing state-based software systems. Initially the
modelling activity will precede formal specification, so that some practical
degree of confidence is achieved before devoting effort to more theoretical
issues. It is expected that as experience grows, a formal treatment will be the
first step in the development cycle. However, in practice the specification and
modelling activities should be viewed as iterative rather than sequential
steps.

Program transformation is a feature of declarative language research at

ICL Technical Journal May 1987 543

Imperial College as part of the Flagship project. It is hoped to exploit this
research by making it part of the systems software development route. As
with VDM, the idea is to use meaning-preserving transformations to produce
efficient programs from inefficient ones. These techniques are in their infancy,
but eventually it should be possible to use them to help transform our Hope
models into efficient programs.

The specifications and models will be subject to Fagan-style inspections to
provide further verification of the design activities. Inspecting formal specifi
cations is a more precise process than inspecting natural language documen
tation, hence inspections should be more effective.

The design of the Flagship system software is presented as a layered
architecture, commonly represented as an onion-ring structure or a tower
structure. Each layer is constructed using facilities offered by lower layers.
The innermost layer uses facilities provided by the hardware. The interfaces
between layers are collections of abstract data types.

An abstract data type (ADT) consists of a data type description together with
a set of operations; these allow the user to create objects of the specified type
which can be manipulated using the operations provided. For example, a
STACK could be represented as an ADT with operations like PUSH and
POP to manipulate it. Thus an ADT hides irrelevant implementation details
from the user. For example, the user of a STACK does not need to know
whether it is implemented as a list or a vector.

A pilot implementation of the system software will be developed to run on a
software simulation of the Implementation Reference Model (IRM) - the
hardware architecture - running on a host system. This simulator will enable
some of the design to be validated before Flagship hardware is available. The
pilot system will play an important role in validating the IRM and in
establishing our design methods but will necessarily fall a long way short of
the target PRM implementation.

3 The Programming Reference Model (PRM)

The Programming Reference Model (PRM) provides a common framework
for language systems and applications, capturing the architectural philos
ophy of the Flagship system. It aims to provide a common set of high-level
concepts (and associated mechanisms) which can be used by all language and
application environments, so that interworking between applications and
between software components constructed using different languages is
facilitated; as a consequence, it must specify in abstract form a large part of
the user interface to the Flagship system software. The high-level concepts
chosen to be represented in the PRM are intended to enable application
programmers and designers to take a more abstract view of application
design than in third and fourth generation systems, so that the cost of
application development is reduced.

544 ICL Technical Journal May 1987

3.1 Objects and transactions

The PRM supports a largely declarative style of programming, but not a
totally declarative one; the view is taken that in a world where the majority of
applications include amongst their objectives the update of large shared
databases the architecture should cater for this directly, rather than conceal
the issues of update and shared storage behind an obscure functional
programming trick like stream processes5. The mechanism for looking at and
updating an object should be the same whether the object is in main store or
on a disc or other mass storage mechanism, so that application developers
need not concern themselves with the mechanics of handling mass storage.
Non-declarative actions require synchronisation, which would severely
impair the effectiveness of parallel working if it occurred frequently, so the
PRM must arrange for these actions to be packaged up into large-grain
operations. Also, uncontrolled updating of store makes it very difficult to
reason effectively about program behaviour. Update of shared data intro
duces non-determinism into the system, since the result of an operation will
depend on when it happens to be done, and it is necessary to constrain this
non-determinism to avoid unwanted results; interactions between programs
operating on shared data require a concept of atomic action so that
consistency of the shared data can be maintained and partially updated
versions of the data are avoided. Rather than provide low level mechanisms
like explicit locks or semaphores to address these issues, the PRM provides a
single high level concept: a (typed) persistent object store8 which can be
interrogated and updated only by an atomic transaction operation. As well
as atomicity of transactions, non-determinism can be limited by use of the
Strict operator which when applied to a function forces evaluation of an
argument before application of the function, so that the order in which
operations are carried out is fixed by the order of functional composition.

Atomicity of transactions requires that the evaluation of the various
parameters to the transaction proceeds sufficiently far that all non-determin
ism is resolved before the transaction is committed; and that where a
transaction makes multiple references to the same object it will see the same
object value each time. As a result evaluation of object store references within
the arguments to a transaction operation will not commence until the
transaction is started, but computation must then proceed at least far enough
to resolve any non-determinism. The PRM takes no view on whether
computation within the transaction should continue beyond the minimum
required to eliminate non-determinism; a Normalise operator is provided to
force reduction to normal form (i.e. to ensure that all computation of new
values is completed) before an update is performed.

Nesting of transactions is permitted in order that the provider of an abstract
interface can use transactions within his program independently of the
context (possibly within a transaction) in which the interface is invoked. A
nested transaction commits its result independently of any enclosing transac
tion, while an enclosing transaction may depend on values returned to it by

ICL Technical Journal May 1987 545

nested transactions. No nested transaction may update any object visible to
any enclosing transaction, else the consistency of the object store seen by the
enclosing transaction would be violated. The updates (if any) derived in an
enclosing transaction do not affect the object store seen by a nested
transaction. The “nested top level transaction” of 12 is provided, but PRM
terminology does not call this case “nested”. The coordinated commitment
form of nested transaction (called Dependent Sub-Transaction13), where
subtransaction results are visible within the enclosing transaction but are not
committed until the outermost transaction completes, is not provided.
Coordinated commitment of transactions which are necessarily separate, and
hence not nested (as arises in a federated system14), is achieved by communi
cation at the “secure” phase of the transactions.

3.2 Types, values and expressions

To facilitate mixed language working the PRM specifies the base values and
value constructors available in the system, together with a very general type
system. The type system aims to be sufficiently general to cope with a wide
range of language-level type systems, and provides universal polymorphism9
both as subtype (set inclusion) polymorphism (i.e. a value can have many
types) and as parametric polymorphism (e.g. a function can operate on
arguments of different types by having extra arguments to specify the types of
the “real” arguments). Types are first class values, and both a universal type
and the type of all types are provided. Values are self-typing and there are
operations to convert from implicitly typed values to explicit dependant
pairs. The structural aspects of typing can be checked by the system, so that
high level language compilers can invoke the PRM type system to check
parameters/results at module boundaries. Base types include integer, “real”
(floating point), character, string, truth-value, type (type of all types), value
(universal - everything is of this type), and unit (type containing only a
special distinguished value). Type constructors include:

- product, function, enumeration, set, array, fixed-point,
- map (finite function),
- union (disjoint, i.e. the values are labelled to say which component of the

union they come from),
- dependent product (for pairs the type of whose second component depends

on the value of the first),
- dependent function (for functions where the type of the result depends on

the values of the arguments),
- dependent map.

The last three type constructors form the basis for parametric polymorphism
instead of the more usual quantifers. Record types, lists, and ordinary unions
can easily be constructed from this set. The enumeration construction
permits any constructible set of values to be treated as a type, that is the
values in an enumeration type are not just formal labels as in many systems -
label enumerations can be built as disjoint unions of the unit type with itself.

546 ICL Technical Journal May 1987

Consequently the type system is more expressive for inheritance relationships
than that of Cardelli11. Like any type system of similar power, the PRM type
system is undecidable.

As well as straightforward values, the PRM allows names to be constructed
and expressions containing them to be manipulated, and provides mechan
isms for binding names and building contexts; the name constructor can
construct names of any type. Expressions also arise in the context of object-
values, since anything which refers to operations is necessarily an expression
rather than a pure value and the only way one object-value can depend on
other object-values is by referring to the operations which look them up.

The value construction system includes a method for constructing error
values, with system defined error values embedded in each type; erroneous
computations will in general deliver error values rather than result in the
computation being aborted, whether the error arises from a fault in
application software, system software, or a hardware component. These error
values are first class values and may be manipulated in much the same way as
any other values, so that resilience to various classes of failure may be achieved
by in-line programming rather than by complex asynchronous exception
handling as in conventional error handling systems like that of ML or Ada.

3.3 Protection

Static access controls similar to those found in any modem operating system
(e.g. to protect one user’s files from improper use by other users) are defined,
based around the idea of permission for a “principal” (the system representa
tion of a person accountable for his or her actions) to use an object in various
ways; this is augmented by dynamic security provision based around the US
DoD “orange book” standard15 (and capable of achieving certification to at
least B2 level) since it is estimated that any serious commercial (e.g. banking)
application will require this level of security in Flagship timescales. Security
is treated as an architectural issue since attempts to build a secure system on
top of an architecture which does not address security are likely to fail.

3.4 Processes

Explicit parallelism is a concept needed by many applications. Processes can
fire olf subprocesses or new processes, and specify appropriate scheduling,
budgeting, and security constraints for them. Since the new process (or
subprocess) can share values with the original process, inter-process commu
nication using shared lists is available; the processes can also communicate
using shared objects and the transaction mechanism; so no other concept of
inter-process communication is needed in the PRM. Within a (sub-)process
the implicit parallelism of the underlying graph-reduction machine applies.
Thus the process and transaction concepts are completely orthogonal, so
that a transaction may be carried out by an arbitrary set of process nests,
while a process may contain an arbitrary set of transaction nests.

ICL Technical Journal May 1987 547

3.5 Further work

Much work remains to be done on the PRM; many issues have not yet been
addressed; evaluation by users of the PRM (and its implementation in
Flagship system software) may lead to some surprises; work on a formal
description of the PRM has not progressed far - we have neither a formal
mathematical model for the value/type component (but Cartwright10 is a
reasonable starting point) nor a mathematical description for the computa
tional model which can handle the controlled non-determinism of the object
store and transactions. However sufficient is known about the major issues
to allow design of the Flagship system software to proceed - and this design
process will in turn help us to complete the PRM definition.

4 Design issues

While provision of an introductory system running on current sequential
hardware will be an important factor in obtaining research feedback, the
design of the target parallel Flagship system must be the basis for commercial
products into the future and this paper will concentrate on this system. In
order for these products to be competitive they will need to be able to
provide facilities equivalent to those of conventional systems. The objectives
for the target parallel system are as follows:

• It will be a general purpose, multi-user system, either in the form of a
hosted system under VME and UNIX, or as a free-standing system.

• It will provide the PRM/CMI as the major interface between the
language systems and applications and the underlying system.

• It will provide security at least to the “DoD B2” standard.
• It will be scalable over a wide range of configuration sizes (say 8 to 100

processing elements initially, but potentially many more).
• It will provide the basis of a wide range of system types, e.g. from a single

user system to a large multi-user system providing large databases.
• It will provide the basis for high availability systems.

Clearly these are very ambitious objectives and the initial systems will be
only steps on the way. In particular a host will be required to provide most of
the system management functionality. The need to move from the initial
system to the target system imposes one of the most demanding requirements
on the system software; it must allow for both the movement of functionality
from the host to the Flagship machine, and for the enhancement of the
system software to provide extra facilities, and especially to allow the
tracking of the changes to the hardware.

So far very little research has been done on the design and implementation of
operating systems for highly parallel graph reduction systems such as
Flagship. This means that there are a number of important design issues
which will need to be addressed during the lifetime of the Flagship project.
These are as follows:

548 ICL Technical Journal May 1987

- the construction of the system software
- the evolution of the software towards the target system
- the interface with the host
- the persistent object store
- the interface with the hardware, and
- the performance of the system.

These issues are expanded below.

(i) The construction of the system software
The system software for Flagship will be implemented mainly in a functional
language. This presents the problem of representing the state of the system
and of composing the code implementing the different components of the
system’s state. Some work has been done on building operating systems
using stream functions, with parts of the system composed using a non-
deterministic merge5. This suffers from a number of disadvantages. Particu
lar problems are the difficulty in handling dynamic systems where processes
are created and deleted dynamically, the difficulty of handling complex
scheduling of the processing of interactions and the necessity of manipulating
explicitly the tags on messages in the streams.

Another method of handling the state of the system is that of guardians. This
technique builds a stream processing function from a state transition
function, and then hides the stream from the interface seen by users of the
interface. This allows the software to be written as a set of state transition
functions which are then converted to the required form by a “make-
guardian” function. Guardians have been described in Denis7, and are
closely related to the concept of managers described in Arvind and Brock6. It
is proposed that guardians are used as the basis of Flagship’s system
software.

(ii) Evolution of the system
The need to allow for major evolutionary changes in the system software is
an extreme case of the usual problem of large scale software development.
The techniques which will be used to alleviate the problems arising from the
change will be simply those of good software engineering. The layered
architecture will provide a stable framework in which change can take place.
In addition the layer interfaces will be the subject of the main modelling
exercises carried out during the development of the system, hopefully giving
confidence in the design of the layers. The techniques of modularisation and
“information hiding” will be used. The hardware dependent parts of the
system will be isolated to a small kernel of the system. Also it will be an
objective of the design of the system to build as much as possible using a set
of replaceable components. The main technique for doing this will be to place
as much as possible of the functionality above the CMI. This will have the
additional advantage that such functions will be able to take advantage of
the power of the CMI. Lastly, an important factor in allowing the easy

ICL Technical Journal May 1987 549

movement of functionality from the host to the Flagship machine will be the
choice of the interface between the host and Flagship. This is discussed
below.

(iii) The interface with the host
There are two main styles of interface which could be used between the host
and Flagship: a message passing style, and a remote procedure call style. The
latter will be used for Flagship. The reason for choosing to use remote
procedure call mechanism is that it is very close to the style of interface used
in both the host and in Flagship, making the movement of functionality from
the host to Flagship very much easier. In addition it will be relatively simple
to develop aids for automating the process of transition.

(iv) The persistent object store
The major cost in providing the CMI will be the provision of the persistent
object store, especially as the construction of a persistent object store is a
major research project in itself. Fortunately there is another Alvey project
called the PISA project which is investigating just this area, and which will be
implementing a persistent object store with the characteristics required by
the Flagship project. This persistent object store will be used to provide the
persistent object store of the CMI.

(v) The interface with the hardware
This is one of the main areas of research in the development of the system
software. Particularly important areas of investigation are as follows:

Process scheduling. The problem of scheduling the work amongst the
processing elements is clearly central to the success of Flagship.
Hardware support is being developed for the distribution of work
between the processing elements and for controlling the growth of
parallelism in the system. However mechanisms for scheduling at higher
levels need to be developed in order to be able to support user level
facilities such as “break-in”, “quit”, and “continue”.

Store management. There are many aspects of store management that
are currently being investigated. Firstly the question of whether or not a
virtual store mechanism should be included in Flagship is being
addressed. Other issues include how to limit the amount of store a
process can consume, and how the responsibilities of store management
should be split between the hardware and the software.

Protection. An important area being investigated is the provision of
some form of protection. This is necessary both to support secure multi
user processing and for the containment of the effects of errors.
Support for persistent objects. The hardware will need to provide
support for persistent objects in a number of ways. For example the
mechanism used for copying packets must avoid copying packets

550 ICL Technical Journal May 1987

representing objects (it is permissible to copy the value of an object but
not the object itself). Similarly the hardware garbage collection mechan
ism must avoid garbaging objects but should inform the system software
so that the object can be copied to stable store if necessary.

Performance. One of the main requirements on the system software is
to provide feedback into the design of Flagship and its successors.
Particularly important areas are the performance of the languages, the
granularity of parallelism and the amount of concurrency in the system.
Also very important is the performance of the load distribution mechan
isms.

Having examined some of the issues arising in the design of the system
software, it is appropriate to give a brief description of the first Flagship
system. The main objective of the initial system will be to validate the main
architectural concepts of the system, and in particular the hardware interface
and the CMI. There will be two main steps towards this goal. The first step
will be a pilot system which allows applications to be run on the Flagship
hardware. Only a small subset of the CMI will be supported at this stage, in
particular the persistent object store may not be provided. This system will
allow investigations into the performance of the hardware to be carried out
and to test the basic design of the system software.

The second system will provide full support of the CMI, including the
persistent object store. This system is illustrated in Fig. 2. The diagram shows
an application in Flagship being called from the host via the Remote
Procedure Call mechanism. The application will be loaded into Flagship by
the loader in Flagship accessing the persistent object store on the host -
probably the Persistent Object Management System to be developed by
PISA project (PISA POMS). The application will have access to the
persistent object store, the host’s operating system interfaces as well as the
Environment Library in Flagship.

5 Implementation language issues

The Flagship system software will be implemented using several program
ming languages. The main one will be a high-level declarative language. At a
lower level, DACTL will be used to implement efficient state-manipulating
functions. At the lowest level, a machine code assembler is available for
achieving effects not possible at higher levels. Although the strategy is to use
the highest level wherever possible, it will be necessary to use lower levels and
this cannot be ignored.

Initially the high-level language will be Hope-1- (pronounced Hope plus),
which is based on the research language Hope16, with some extensions to
provide for large-scale programming activities. In the longer term this will be
replaced by a new declarative language, specifically designed to exploit the
Flagship architecture.

ICL Technical Journal May 1987 551

host-Flagship link

Fig. 2 Initial Flagship system

The extra features of Hope + can be summarised as follows:

- The basic type Num has been extended to include negative integers.
- A basic type Real has been added to support positive and negative real

numbers.
- An 8-bit ISO character set has been adopted as the internal character set.
- A standard module to handle Vectors has been included.
- Hope modules are supported, to allow separate compilation.
- Lazy evaluation is introduced for all data constructors. Function arguments

are evaluated eagerly until a constructor exists at the outermost level.
- Partial parameterisation of function calls is supported to facilitate work

with higher-order functions (this is a generalised form of “currying”).
- Local mutual recursion is supported.
- Rule selection using pattern matching has been enhanced to permit

overlapping patterns, resolution is based on a tightest-fit strategy.
- Exception handling is supported by means of a special value “error” which

is a member of every type’s value space.

The implementation model presented so far is fairly straightforward, since
the languages considered are closely related; Hope + compiles into DACTL

552 ICL Technical Journal May 1987

and DACTL compiles into the Flagship machine code. However the
situation is complicated by the need to develop the system software on host
machines. This requires inter-working between the “Flagship” languages and
the “Host” native languages (S3 for the VME host and C for the UNIX host).
A further complication arises concerning the persistent object store; initially
this will be provided by a system developed by the PISA project which offers
PS-Algol and the PISA Persistent Object Management System (POMS).
This system will run on the host and act as the stable store for Flagship, so
inter-working with PS-Algol will be necessary. The detailed requirements are
being evolved, but a good deal of work is necessary to ensure that all the
required combinations of language inter-working are possible.

6 Conclusion

Some important themes have recurred throughout this paper; themes
fundamental to our task:

- We are designing our system to meet the challenge and complexity of
1990s applications.

- We are basing much of our implementation on the use of existing (UNIX
and VME) operating system functions to allow us to concentrate on the
research and development of the declarative system.

Our task is a difficult one with so much that is novel and unknown, but the
PRM, CMI and other system characteristics are being very carefully
specified to provide a sound underlying design. We are adopting design
methods such as the use of formal specification and functional languages. All
of this aims to give a quality system which meets the needs of its users,
supplies the demands of the 90s, and is right first time.

References

1 WATSON, I.L., SARGEANT, J., WATSON, P. and WOODS, V.: ‘Flagship computa
tional models and machine architecture’. ICL Technical Journal 5(3), 555-576, May 1987.

2 TOWNSEND, P.: ‘Flagship hardware and implementation’. ICL Technical Journal 5(3),
575-594, May 1987.

3 DARLINGTON, J.: ‘Software development using functional programming languages’.
ICL Technical Journal 5(3), 492-508, May 1987.

4 JONES, C.B.: ‘Systematic Software Development Using VDM’. Prentice Hall Interna
tional, 1986.

5 JONES, Simon B.: ‘A Range of Operating Systems Written in a Purely Functional Style’.
Programming Research Group Technical Monograph PRG-42, Oxford University,
September 1984.

6 ARVIND and BROCK, J.D.: ‘Streams and managers’. Proc. 14th IBM Comp. Sci. Symp.,
Lecture Notes in Comp. Sci., Springer-Verlag, New York, 1982.

7 DENIS, J.B.: ‘Data should not change: a model for a computer system’. Lab. for Comp. Sci.
CSG Memo. 209, MIT, Cambridge, Mass., 1981.

8 ATKINSON, M.P., BAILEY, P„ COCKSHOTT, W.P., CHISHOLM, K.J. and MORRI
SON, R.: ‘Progress with Persistent Programming’. Technical Report PPR-8-84, University
of Edinburgh, 1984.

9 CARDELLI, L. and WEGNER, P.: ‘On Understanding Types, Data Abstraction, and

1CL Technical Journal May 1987 553

Polymorphism’. Technical Report CS-85-14, Brown University, Providence, Rhode Island,
August 1985.
10 CARTWRIGHT, R.: ‘Types as Intervals’. ACM 0-89791-147-4/85/0001, 22-36.
11 CARDELLI, L.: ‘A Semantics of Multiple Inheritance’. In: Semantics of Data Types,

Lecture Notes in Computer Science 173, Springer-Verlag, 1984.
12 LISKOV, B.: ‘Overview of the ARGUS Language and System’. MIT Programming

Methodology Group Memo 40, Feb. 1984.
13 KRABLIN, G.L.: ‘Building Flexible Multilevel Transactions in a Distributed Persistent

Environment’. In: Persistence and Data Types Papers for the Appin Workshop, PPRR 16,
University of Glasgow, August 1985.

14 BRENNER, J.B.: ‘A General Model for Integrity Control’. ICL Technical Journal. 1(1)
71-79, November 1978.

15 ‘Department of Defense Trusted Computer System Evaluation Criteria’. CSC-STD-OOl-83,
Department of Defense Computer Security Center, Maryland, August 1983.

16 BURSTALL, R.M., MacQUEEN, D.B. and SANNELLA, D.T.: ‘HOPE: An Experimental
Applicative Language’. Dept, of Computer Sc., University of Edinburgh (CSR 82).

554 ICL Technical Journal May 1987

Flagship computational models and
machine architecture

Ian Watson, John Sargeant, Paul Watson and Viv Woods
Dept. Computer Science, University of Manchester, Manchester M13 9PL, England

Abstract

The Flagship project aims to produce a computing technology based
on the declarative style of programming. One major component of that
technology is the design for a parallel machine whose computing
power can be increased simply by the addition of hardware resources.
This paper describes the principles of such a computer architecture.

1 The case for parallel computer structures

Many of the advances in computer design during the last decade have been a
result of the increase in scale and decrease in price of integrated circuit
components; particularly the development of CMOS VLSI. The major
impact of this has been in the personal workstation sector of the market
where machines, with computational performance previously associated only
with mainframes, are available at a very low price.

If one combines special high performance technology with sophisticated
design it is possible to achieve a performance level a few times greater than a
cheap workstation. However, it is becoming clear that the rate of increase of
performance of cheap VLSI circuits is significantly greater than that of
higher performance technology.

Networks of workstations are able to share the resources of distributed
filestore systems, providing a single user with local computing power, but
access to a global information system. The problem arises when an indi
vidual’s computational requirements are greater than can be provided by his
local workstation. A high performance mainframe can satisfy occasional
demands for individual peaks up to its performance limit, current distributed
network systems cannot harness the combined power of their individual
components.

In many cases the computing performance currently utilised by an individual
user is limited more by the resources available than his ability to make
sensible use of anything greater. As information processing increases in

ICL Technical Journal May 1987 555

complexity, particularly with the advent of knowledge based systems, users
will require performance greater than can be provided even by current
mainframes.

Given this set of conditions, there is an obvious solution. It is simply
necessary to find a way of utilising an arbitrarily large number of cheap VLSI
processors which can act as a homogeneous computing engine. The resulting
resources can be shared or pooled as necessary and the system can be
extended arbitrarily if the total performance is inadequate. The solution is so
obvious that, with the exception of a few special purpose parallel structures
suited mainly to the solution of particular types of scientific problem, it is
astounding that after forty years of computer development we are still using
single processors executing serial sequences of instructions.

It is not difficult to envisage such a parallel structure. Clearly, if the
processors are going to co-operate on the solution of problems, they are
going to need to communicate. We can guess that they may need to
communicate quite often and thus we need to provide high bandwidth
communication channels between them; but given current technology this is
not really a problem, we can provide sufficient capability to communicate
every few instructions. So the hardware is easy, what about programming?
All we need to do is to extend our languages so that we can specify when and
where communication takes place.

The first major experiments in this area were conducted over twenty years
ago. They have been repeated many times since with very similar results; it
has proved impossible to exploit the hardware potential of the machine
beyond a very small number of parallel processors.

The problem is mainly one of dynamic variation. Communication in any real
program varies both in time and place, probably as a function of particular
sets of data. It is not, in general, possible to perform a static partitioning of a
program into separate communicating serial sections in a manner which will
utilise the machine resources efficiently. To achieve efficiency it is necessary
to make use of both dynamic allocation of resources and dynamic division of
a problem into appropriately sized parallel sections.

The communicating process approach found in languages such as Ada and
Occam is unable to provide such dynamic flexibility. Apart from this there is
also an issue of software complexity. The writing of a conventional program
requires one to keep track of the order and position of data produced and
utilised by the program. Failure to manage this complexity is the major
contributing factor to software error. If one tries to introduce the additional
time variance of data production in parallel program sections, this situation
can only get worse. Given the major concern which exists worldwide over the
correctness, reliability and safety of computer software, it would seem unwise
to move in this direction.

556 ICL Technical Journal May 1987

Current computing languages have developed alongside serial computing
machines. As a result they consist of sets of serially executed instructions
which specify how data is operated upon and moved between storage
locations; in fact just a higher level encoding of the basic machine order
code.

In order to enable dynamic division of a problem into appropriately sized
parallel sections it is desirable that all parallelism which exists is available in
the problem specification. Clearly, conventional languages with their inher
ent serial structure do not have this property. However, if the specification of
parallelism adds to the complexity of programming it would be a mistake to
require every little bit to be expressed.

Fortunately there is a way out of this dilemma. The requirement that the
parallelism is available in the program does not imply that it must be
expressed explicitly. The answer lies in simple mathematical expressions.
Given something of the form

a = (b -I- c) * (d -I- e)

it is clear that the two additions can be performed in parallel (or performed
serially in any order) followed by the multiplication. We did not need to say
that there was a process which added b to c and one which added d to e and
that they then both communicated their results to a process which multiplied
them together. The parallel structure is all there but it is implicit.

In general, we know from simple mathematics that, given any arbitrary
expression, the whole evaluation process is simply one of evaluating sub
expressions repeatedly until no further simplification is possible. Remember
ing the example above, it should be clear that large expressions may have
significant amounts of parallelism in the evaluation of their sub-expressions.
If we can devise a computing machine which works wholly on the basis of
simple mathematical expression evaluation then we may be able to achieve
the desired characteristics.

The next question is clearly “can mathematical expressions constitute
computer programs?” A detailed answer to that question is outside the scope
of this paper; the simple answer is “yes”, with some reservations. Clearly there
is a similarity between conventional programs and simple expressions, we
could have written the above example directly as a FORTRAN instruction.
The major differences are:

1 In a computer programming language, we are allowed to re-use variable
names in a way which does not make sense mathematically (e.g.
x = x + 1). However, this is (mostly) just a convenience to enable us to re
use storage locations. If one prohibits the use of variable names more

2 Declarative languages and parallelism

ICL Technical Journal May 1987 557

than once on the left hand side of expressions then all simple assignments
become equivalent to expressions.

2 Conditional computation. Various control structures are available in a
programming language to modify the progress of the computation as a
result of data comparisons. All real computation makes use of this
facility. Fortunately, it is possible to introduce a conditional expression
into our mathematical notation to provide equivalent power.

3 Data structures. Simple expressions deal only with simple values such as
integers. Real programs make heavy use of facilities which enable us to
group data in various ways to form larger units which can be further
manipulated. However, it should be clear that such structuring is also
used in many branches of mathematics; for example, expressions contain
ing vectors, matrices, etc.

Programming languages based on simple mathematical expressions are
therefore possible. Indeed many believe that they are positively desirable for
reasons other than those already outlined. They are amenable to formal
reasoning about their function and are particularly suited to the expression
of highly complex computations.

The detailed structure and use of declarative languages are covered elsewhere
in this issue1-4. The remainder of this paper will concentrate on parallel
machine structures for their execution based on the principle of packet based
graph reduction which are being developed as part of the Flagship project.
Much of the early work in this area was pioneered by the Imperial College
ALICE project5.

3 Graph reduction

The program is a mathematical expression and the process of computation is
one of evaluating sub-expressions (in parallel where appropriate) until no
further evaluation is possible. If we are to construct a machine to perform
this process then it is necessary to consider how expressions can be
represented in a practical form.

On paper they are written as serial strings of characters, but they have
additional structure which is best represented graphically. For example, the
expression:

(2 + 3) * (4 + 5)

can be shown as:

2 3 4 5

558 ICL Technical Journal May 1987

This brings out both the sub-expression structure and the parallelism. The
process of evaluation is to perform the operations at the leaves of the tree
thus simplifying the graph; this process is usually referred to as reduction.
The stages of the process would be:

* ♦

A A 5 9
2 3 4 5

So far we have considered expressions only of arithmetic operations. These
are particular cases of functions which have fixed reduction rules. In general,
expressions will consist of user defined functions where the reduction rules
for the function constitute the program. For example, given the definition:

f(x,y,z) = (x + y) * z

We might start with the graph:

1 2 3

and proceed with the reductions:

1 2

The process is therefore one of applying functions to arguments according to
a set of reduction rules. A practical machine would regard these operations
as the fundamental units of computation and an appropriate physical
representation of the graph must be chosen. The computational graph is
therefore represented as “packets”, where a packet is a function together with
the arguments to which it is applied. The above example is then:

I f I 1 1 2 | 3 |

which becomes:

1* 1^31

I + I 1 I 2 |

ICL Technical Journal May 1987

then

I * I 3 | 3 |

and finally

111 9 |

the “I” being an integer “constructor function” indicating a piece of data in
minimal form. These packets are assumed to exist in a conventionally
addressable store where the links between them forming the graph are
pointers to the appropriate packets. Each field of a packet will, in general,
need to hold an amount of information equivalent to a word in a conven
tional machine; a packet is therefore a collection of words in adjacent store
locations. Parallelism can be exploited by choosing any packets which are in
a form to be reduced and performing that reduction in multiple processors.

4 Abstract machine architecture

A physical machine might have an abstract structure similar to that shown in
Fig. 1.

Fig. 1 Abstract machine structure

The processors access the store, select a packet, perform a reduction and
place any resulting packets back into the packet store. The underlying
principle of operation is hence very simple; however there are a number of
detailed issues which need further explanation. In the following sections
we will assume that the processors contain definitions of the functions and
hence know how to perform reductions for any packet which they may
encounter. The exact form of these definitions will be examined in a later
section.

4.1 Packet modes

In general, only a subset of packets in the graph will be candidates for
reduction at a particular point in time. Some will be waiting for the sub

560 ICL Technical Journal May 1987

expressions representing their arguments to reach a form where reduction is
possible. Others may already be in a state where no further reduction is
appropriate. Although it may be possible to derive the state of a packet
by examination of its contents it is clearly sensible to tag the packets with
a “mode” which indicates the current state. We will introduce three such
modes.

! Active Mode. The packet is a candidate for further reduction.
#n Suspended Mode. The packet is waiting for n of its arguments to reach a

form where reduction is possible.
- Dormant Mode. The packet is not currently a candidate for any action.

The practical use of these is best illustrated by example. Given a function
definition of the form

f(x,y)=(x + y) * (x — y)

and a call to that function:

f(4,2)

we would start with a packet in ACTIVE mode:

@a! | f | 4 | 2 |

This would be processed according to the function definition to produce:

@a#21*| | |

@b!| + | 41 2 | a . l |

@c! | - 1 4 | 2 | "a.2 |

Note that at this point we have introduced packet addresses into the picture
using the @n notation. It is also necessary to introduce an extra packet field
which indicates where the value of a function is to be returned when it is
computed. In this case the add and subtract operations will return integer
values back to the argument fields of the multiply, shown using the notation
~n.m i.e. a pointer to the packet whose address is n together with the field
number m. The evaluation of the two active packets will produce:

@a! | * | 6 | 2 1

and finally:

@a~ 111 12 |

The top packet of the graph is shown without a return address for its answer.

ICL Technical Journal May 1987 561

In this simple example this is an integer representing the complete answer of
the computation and we have simply overwritten the packet with an integer
constructor function which needs no further processing. In a practical
computing system the answer would probably be communicated via a system
“procedure” to a printer, file, etc.; the top packet would thus contain the
address of such a procedure.

4.2 "Eager" and "demand driven" evaluation

In the above example, we assumed that the processing of the first active
packet produced two further active ones, the add and the subtract, and a
suspended multiply waiting for their results. Information concerning this
must form part of the function definition code. The packet modes provide for
different evaluation schemes which can prove valuable in the implementation
of declarative languages. For example given the same function as before,
from the packet:

@a! | f | 4 | 2 |

we could have produced:

@a! | * | "b | "c |

@b~ | + | 4 | 2 |

@c~ | - | 4 | 2 |

In this case the next stage of the processing would require the reduction of
the multiply operation, but this is not possible because its arguments are not
in integer form. We must assume that the rules which the processor contains
for the reduction of the multiply function know of this requirement. They
therefore turn the multiply into a suspended form, activate the packets which
are its arguments and attach the return pointers.

@a#2|* | | |

@b! | + | 4 | 2 | "a. 1 |

@c! | - | 4 | 2 | "a.2 |

We now have proceeded to the same stage in the evaluation that we reached
during the previous example after the first reduction. This may appear as
simply an inefficient evaluation scheme, particularly for such simple integer
computation. However, it illustrates the principle of “demand driven” or
“lazy” evaluation, namely that we do not evaluate the arguments to a
function before the call takes place, but wait until the function evaluation
itself demands that evaluation.

562 ICL Technical Journal May 1987

This principle has important uses in the declarative programming style,
particularly in the handling of data structures. The expressive powers of the
languages are greatly enhanced if finite data structure sizes do not need to be
specified. In fact, we allow the expression of infinite data structures but
obviously do not evaluate elements of such an infinite object until they are
needed at run time. The simple mechanism described here is sufficient to
permit the implementation of all such features.

4.3 Data structures as graphs

A data structure is simply a collection of elements which can be viewed as
itself an element. Although data structures appear in many forms in
programming languages there are really only two fundamental concepts
involved in their construction.

The first is that of locality; given the structure as a whole it is possible
(usually by some simple indexing mechanism) to access any element. Arrays
and records are the most common example of this form of structure,
although the tuple should probably be regarded as the canonical form. It
should be clear that the concept of a packet described previously as just a
collection of related addresses in a physical store is itself a tuple data
structure and, given such a packet structure, the locality aspect of data
structures should present no conceptual problem. It does suggest, however,
that our packets may need to come in a wide variety of sizes.

The second property of data structures is a result of the recursiveness of
their definition; any element of a structure may itself be a structure. This is
already familiar from conventional programming languages which allow
arrays of arrays, etc. although there may often be particular implementation
restrictions.

In declarative languages, full recursiveness is allowed in all definitions. The
most common form of declarative language structure is the list, which
contains both principles described. It is a two position tuple, the first position
containing an element and the second containing a list. In order to
implement such structures we simply permit any element of a tuple to be a
pointer to another tuple. It should be clear that such a structure is simply a
graph of packets.

We have already mentioned the concept of an integer constructor function as
one which is simply a value which has no further reduction rules. It is in fact a
particular example of a data structure which contains a single element. We
would normally associate a constructor function name with any data
structure tuple. In general, a constructor function has no reduction rules and
therefore any graph containing only packets with constructor function
names is a stable evaluated structure.

ICL Technical Journal May 1987 563

Examples of structures are:

1(10)

! 11101

Cons(’a’,Cons(,b’,Cons(’c’,nil)))

| Cons | ’a T I
| Cons | V I* |

| Cons | ’c T |
I

I Nil |

[A,B,C,D,E]

| Array5 | A | B | C | D | E |

It should be noted that if we want to maintain consistency in our treatment
of data structures then packets of the form:

I f I 4 | 2 |

should strictly be represented as:

if r r i
/ I

111 4 | 111 2 |

However, in any practical system, it clearly makes sense to have a representa
tion for a set of common atomic values which can be embedded in place of a
pointer to their full form. Packet processing must always be easier, the less
information which needs to be obtained via separate store accesses.

4.4 Sharing - more complex graph structures

All the physical representations which we have dealt with so far are strictly
trees rather than graphs. That is they have sub-structures which are entirely
independent. However, consider an example of the form:

f(s) = g(s) + h(s)

where the argument s was passed to the function f as a pointer rather than an
embedded atomic value. This could happen either because s was some
graphical data structure or we were using demand driven evaluation and it
was, as yet, an unevaluated graph. We would therefore start with a graph of
the form:

564 ICL Technical Journal May 1987

@a! | f Ts |

@s~| etc | |

The next step in the reduction requires the argument graph to be referenced
twice from the newly created packets. There are two implementation choices,
we can either make complete extra copies of the argument graph where
necessary or we can simply copy the pointer.

The first solution is clearly inelegant and inefficient. If the graph is a structure,
then we may need to copy very large amounts of information although we will
not be able to determine how much of the copied graph will be required for
subsequent computation. If it is an unevaluated sub-expression we risk
multiple re-evaluation. If such an unevaluated graph is copied through several
stages of function call then the potential for re-evaluation will grow
exponentially.

Copying of the pointer alone is simple and elegant, it is in fact this scheme
which is correctly termed graph reduction. Its major drawback is that it
destroys the simple tree structure of the computation. Now any packet in the
store may be multiply referenced via pointers from other packets. This has
several consequences:

(a) In our simple examples, an active packet had a single field in which it
held an address to which it would return its value. Now an active packet
may need to hold a large number of such addresses. Moreover, requests
to activate a packet can originate from multiple sources and hence any
particular request may encounter a packet in a variety of modes, we need
nechanisms to cope with this.

(b) In the simple examples, we assumed that a packet which became an
integer value simply returned that integer as an embedded field and the
packet then ceased to exist. Now we must overwrite the packet with an
integer constructor in addition to the returning of a value because it may
be shared by other parts of the computation which have yet to reference it.

(c) Given that we preserve all computed packets in case they are referenced
further we introduce a storage management problem. We need to
introduce “garbage collection” mechanisms to reclaim storage when it is
certain that it will no longer be referenced. Such mechanisms can become
complex particularly in parallel systems.

(d) Our simple abstract machine picture uses a central globally accessible
store. It is clear that a practical machine structure will almost certainly
require this store to be parallel and distributed from considerations of
storage bandwidth. If we wish to maintain flexibility in the distribution
of our graphical computation across such a store it is clear that all store
must be globally addressable.

Of these, the need for garbage collection and globally addressable memory
are the most serious, particularly in parallel computer systems.

ICL Technical Journal May 1987 565

The scheme of copying all arguments is generally known as “string reduction”
as it is equivalent to the evaluation which results from the naive implementa
tion of expression evaluation using textual strings. Its most attractive feature
is that it maintains the simple tree structure of the computation in that all
sub-expressions are independent. This allows the spreading of sub-computa
tions across parallel machine structures in a simple way and without the need
for globally addressable memory space. For this reason there have been
several proposals for parallel machines based on string reduction or schemes
which are largely equivalent6. Although there may be certain classes of
problems to which it is suited, it is widely believed that, for most general
purpose computing, the cost of copying and re-evaluation will far outweigh
any advantages to be gained from string reduction.

It should be emphasised that graph reduction is the more general case and
that string reduction can readily be implemented in any graph reduction
machine structure in those circumstances where it may be worthwhile.

5 Practical machine structure

The probable need for distributed parallel store has already been mentioned.
An extensible machine structure must allow parallelism in both processing
and storage if total computing power is to be increased by the addition of
extra hardware. It is clear that a physical realisation based directly on the
abstract picture would soon reach a performance limit as processors were
added, owing to the inability of the shared store to cope with the rate of access.
Indeed, if one is considering ‘cheap’ VLSI technology, the performance of a
single processor is often limited by storage bandwidth; in these circumstances
parallel stores are essential to any multi-computer structure.

5.1 A re m o te s to r e -p r o c e s s o r s tru c tu re

It must be emphasised that all such storage needs to be accessible from any
processor in the system if we are to have a flexible implementation of full
graph reduction. The simplest way to achieve this is by using a physical
structure like that shown in Fig. 2.

Fig. 2 A simple distributed machine structure

566 ICL Technical Journal May 1987

All stores are accessible across the communication network from any
processor. If we can organise the distribution of the computation in such a
way that the store-processor access patterns are favourable, then the full
parallel bandwidth of the stores should be available. In practice the easiest
way to achieve a favourable distribution is by randomising the packet
allocation across the stores.

In a conventional serial computer the store processor interface often has a
critical effect on the machine performance. Many of the common machine
architectural principles such as internal registers, caches, instruction pre
fetching, pipelines, etc. have been developed in order to overcome store
processor bandwidth limitations. In the structure shown above the interface
includes a communication network which, however it is implemented, will
suffer a degree of latency, contention delays, etc. One of the major advan
tages claimed for the graph reduction model of computation is that
communication delays are relatively unimportant because, owing to the lack
of ordering required for sub-expression evaluation, a processor can proceed
with other work while data is being fetched. Practical experiments such as
the ALICE prototype have indicated that, although this proved true to a
limited extent, at least in comparison with more conventional multi
processors, the sheer loss of total bandwidth resulting from the remoteness of
the coupling is a serious impediment to the performance of each processor in
the system. One major argument used in favour of parallel systems concerns
the cost-performance of cheap VLSI technology. If one has to sacrifice a
significant factor in the performance of each individual component in order
to produce a total workable system, then many of those arguments are
negated.

5 .2 A c lo s e ly c o u p le d s to r e -p r o c e s s o r s tru c tu re

It is proposed that a Flagship machine will employ a closely coupled
processor-store structure as shown in Fig. 3.

Fig. 3 A closely coupled structure

Using this form of structure, the intention is that the majority of store
processor interactions will be between a processor and the local store to
which it is closely connected. In general therefore, a processor will attempt to
process only those packets which exist in that local store. In previous

ICL Technical Journal May 1987 567

descriptions of the computational process we have referred to a processor
fetching a packet and producing new packets, considering a packet operation
as the manipulation of a complete unit. In practice many packet operations
require only modification of the contents of part of the packet. In a closely
coupled structure, it is considerably easier to organise such partial modifica
tion with additional saving in store bandwidth requirement.

Remembering the requirement for global addressability of the complete
graph, we must now consider how the computational graph can be mapped
onto this structure and what happens when store accesses are not local. In
the remote storage structure, the computational graph can be spread
randomly across the parallel stores, indeed this is often desirable to minimise
network contention. However, in a closely coupled structure the requirement
is reversed. Clearly, the intention is to ensure that as many accesses as
possible are to local store during the computation process.

If a processor only takes active packets from its own store then these accesses
are always local. However other accesses take place during the reduction
process if a packet has pointers to other packets which form its arguments.
This may be because they are data structures or unevaluated pieces of graph.
What we want to achieve is a partitioning of the graph in the stores so that
the majority of argument accesses are local; however it is inevitable that some
pointers will cross store boundaries and non-local accesses will occur. We
need to examine how a favourable situation can be achieved.

5 .3 M app in g th e co m p u ta tio n a l g ra p h

The obvious strategy is to maximise the number of pointers which are
internal to a particular store. The best way to achieve this is to map the graph
across stores in such a way that locally connected clusters of packets are kept
together; this is indicated pictorially jn Fig. 4.

Fig. 4 Clustered graph mapping

ICL Technical Journal May 1987

In general it is to be expected that any one store will contain more than one
such cluster, although the aim should be to achieve a small number of large
ones.

We have already mentioned the difficulties which arise with static mappings
of parallel computation onto parallel machines. We therefore require the
boundaries of our graph mapping to be dynamic, being adjusted according
to the utilisation of resources in the system. For example, if a particular
processor runs out of active packets of its own to process, it will signal to
other processors which, if they have an excess of work, will export active
packets. The details of this mechanism are beyond the scope of this paper,
but can be found in work published by Sargeant7.

One crucial issue in the operation of such a scheme is how the packet
groupings are achieved, and whether they can be maintained during the
execution of the computation. The nature of declarative programs is that
they usually start with a single active function call and the reduction
process produces an expanding graph which will reach a maximum size and
then contract. In this regime it is clear that the spreading of the graph across
the stores must be done almost wholly at run time. The positive aspect of the
computation style is that the graph tends to expand and contract around
local centres rather than undergo total random re-connection; it is hoped
that this will tend to maintain local clusterings once they are established.
When a processor is required to export work to others, which is clearly the
process which achieves the graph distribution, the obvious strategy is to
export those packets which are already at the edges of a cluster rather than in
the centre. This whole aspect of the machine operation is one which can only
be evaluated by observing the dynamics of real programs, as is currently
being done by simulation.

5 .4 A c c e s s a c r o s s lo c a l b o u n d a r ie s

If, during the process of a packet reduction, the processor requires to know
the contents of an argument packet to perform that reduction then that
argument must be available in the store to which the processor is closely
connected. This situation occurs in the reduction of functions which have
data structures as arguments, for example a call to the function:

Tail(Cons(h,t)) = t

would appear in packet form as:

! | Tail | A |
I

~| Cons | h 111

and the processor would need to access both the active “Tail” and the “Cons”
in order to perform the reduction. If the “Cons” was not local in the store, it is

ICL Technical Journal May 1987

necessary to make a local copy. Such data will sometimes be shared by other
parts of the computation in that same processor and it would be advantage
ous if any copy made could be shared locally. This is achieved using a system
of distributed virtual memory. The local stores of the processors are regarded
as real instances of areas of a global virtual memory space. Further details of
the mechanisms involved can be found elsewhere8.

6 Specifying the reduction process

6.1 F orm o f th e c o d e

The instruction code of a graph reduction machine is the information
obtained from the program function definitions which specifies how a packet
is to be reduced; new packets to be produced, their contents and the modes in
which they are to be created. This information is then used by a single
processor. As such, it is held in the form of serially executed instructions
which specify general packet manipulations. It is not unlike conventional
machine code except that it contains instructions which are optimised for the
operations involved in packet reduction.

We have previously used simple arithmetic examples to indicate the opera
tion of packet reduction, for example the function:

f(x,y) = (x + y) * (x - y)

and a call to that function:

f(4,2)

starting with the packet

@a! | f | 4 | 2 |

and producing the set of packets:

@a#2 | * | | |

@b! | + | 4 | 2 | “a. l I

@c! | - | 4 | 2 | Aa.2 |

In a practical machine this would in most cases not be a particularly efficient
thing to do. If the reduction rules are held as relatively conventional code
then it would be possible to perform the complete function evaluation in
registers rather than create a complete computational graph for such a
simple expression. This will produce a significant saving in store processor
communication and hence more efficient run-time performance. This tech
nique will however reduce the amount of parallelism which is able to be

570 ICL Technical Journal May 1987

exploited in simple expression evaluation and experience with practical
systems is needed to determine suitable compromises.

It should be noted that such optimisation can only be performed if the
function is called with its arguments ready evaluated. Lazy evaluation is
therefore likely to introduce inefficiency and should only be used where
absolutely necessary.

6 .2 C o d e in p a c k e t form

Although the code is a set of serially executed instructions, it is divided into
sections, one for each function reduction required for the computation. The
appropriate piece of code to apply to a particular reduction is determined by
the “function name” in the first field of the packet to be reduced. In practice
that function name will be a pointer to the start of the appropriate
instruction block held in the store of the processor.

One possibility is to hold all function definitions in all processors. This
would, however, be wasteful of store. It also leads to serious organisational
problems when one considers aspects such as compilation and code loading.
In these circumstances it is necessary to treat code very much like data. If,
instead, the sections of function code are themselves held in packets and
viewed at the machine level just as other pieces of data, then a number of
distinct advantages emerge.

The writing of the sorts of system programs mentioned above is greatly
simplified. In addition if one introduces the concept of laziness in the
construction of “code data packets” using lazy evaluation mechanisms which
already exist, it becomes possible to produce, very easily, incremental
compilation systems and those sorts of programs which add to their own
program structure as part of their run-time behaviour. Such techniques,
although not always yet fully understood in a declarative programming
world, appear essential to the production of intelligent computing systems of
the future. One final advantage which is relatively mundane but nevertheless
important is the removal of the need for all processors to contain all code.
The appropriate data structures can now be copied around the machine on
demand using exactly the same mechanisms as those provided for the data.

7 Other issues

There are a number of other issues which are being investigated as part of the
Flagship machine architecture project. The detail is beyond the scope of an
introductory paper, but the areas deserve brief mention.

7.1 V ariab le s i z e p a c k e ts

It is apparent from the descriptions of various aspects of the machine
structure that a packet of information may contain anything from a very

ICL Technical Journal May 1987 571

simple machine operation with a couple of arguments through to data
structures which may be of significant size.

In practice, one can always construct graphs which behave in the appropriate
manner from packets of a small size. For example, the necessary random
access property of an array can be achieved by building a tree together with
appropriate access functions. Normally there is a penalty of efficiency to be
paid for such a technique. On the other hand the provision of arbitrarily
sized packets of information introduces complexity, particularly in the
management of storage allocation.

The ALICE machine used only one size of packet with five fields. Although
we do not want to go to the full complexity of totally variable sizes, we feel
that there are significant benefits to be gained from providing a limited set of
packets ranging from a few fields up to several hundred. We believe that this
will enable the implementation of certain necessary forms of data, e.g. arrays,
without significant loss of efficiency, whilst avoiding undue store manage
ment complexity. It is worth pointing out here that the allocation of huge
contiguous areas of store is inconsistent with the need to distribute computa
tion and data structures across any parallel machine.

7.2 G a rb a g e co llec tio n

The need to reclaim storage areas is a consequence of the graph reduction
model of computation with the sharing of graph structures. Because the rate
of usage of store is high, it is necessary to perform storage reclamation
automatically rather than leave it to the user as, for example, in heap
management systems in PASCAL. The problems and techniques of auto
matic storage reclamation have been studied for many years, particularly in
connection with the LISP language which is closely related to the declarative
languages which Flagship machines will support.

Unfortunately, many of the known techniques are not well suited to
implementation on parallel machines. The most widely used LISP mechan
isms, known as “mark-scan”, “stop and copy”, etc., require that the computa
tion is stopped and the machine resources devoted to working out which
sections of the computational graph can be reached from all useful parts of
the computation. These are preserved while all other storage is returned to a
pool which can be re-allocated. Such mechanisms are possible in a parallel
structure but more complex and probably undesirable.

Another technique known as “reference counting” is more suited to parallel
machines. Here, a count of the number of pointers which exist to a particular
packet is maintained as part of the packet structure. This count is continually
adjusted as pointers are created and destroyed and, if it reaches zero, the
store is reclaimed. The major limitation with this method is that it is unable
to deal with circular graphs in its simple form.

572 ICL Technical Journal May 1987

Two major areas of importance are the necessity of circular structures in a
Flagship environment and the possibility of alternative or related schemes
which are able to deal with them.

7.3 Virtual m e m o ry a n d d is tr ib u te d HO

The mechanism for moving data around the machine has been described as
distributed virtual memory. It is likely that in a real machine structure this
needs to be combined with secondary storage systems. With parallel stores
and machines it is probable that any physical secondary storage devices will
need to be distributed also.

We should also remember that many projected applications of future “fifth
generation" systems will, in addition to the requirement for enhanced
computational power, also involve the manipulation of large amounts of
data. It is likely that the requirement for input/output bandwidth to storage
devices holding background data will increase as a direct linear function of
computational power. In these circumstances it is inevitable that the
input/output devices must be distributed throughout the parallel machine
structure in an integrated manner. High performance computational ma
chines or high performance database machines as separate entities will have
limited applicability. This aspect of Flagship machine architecture requires
further careful consideration.

8 Conclusions

Extensible, general purpose, parallel machine structures are likely to prove
necessary in future computer designs both to use the potential of VLSI in a
cost-effective way and to provide ultimate computing power which will be
unobtainable from serial structures.

The graph reduction parallel model of computation provides a sound
framework on which to build a parallel machine structure which does not
suffer from many of the disadvantages of more conventional computing
approaches. Declarative languages which lend themselves to such implemen
tation techniques are arousing interest for separate reasons. They are claimed
to be easier to use for many complex programming tasks and they have the
advantage that their mathematical basis provides possibilities for formal
program manipulation and proofs.

Prototype parallel machines in this area have verified the basic viability of
the approach and provided a wealth of experience on which to base the
design of future systems. One critical issue in the design of a real machine is
the performance which results from computing resources in the system. Early
prototypes have suffered significant performance penalties by departing
significantly from conventional machine architectural principles.

Conventional multi-processors have failed to gain wide acceptance because

ICL Technical Journal May 1987 573

their parallel facilities proved very difficult to utilise in a conventional
programming style. However, it is now believed that parallel machines built
from closely coupled store/processor elements provide the most effective
parallel structure and that these elements can achieve efficiency from
executing relatively conventional code. That is not to say that those elements
are just conventional machines. As in all modern computer design it is
essential to provide support for particular aspects of the software system and
languages.

There are a number of other issues which need to be addressed in the design
of parallel machines of the future, probably the most important of which
concerns the way in which the computing power of the structure can be
utilised in conjunction with the large amounts of data which will inevitably
need to be accessed.

The Flagship project is pursuing all these areas of parallel machine develop
ment and hopes to produce practical machine designs within the next few
years.

References

1 BABB, E.: ‘Language overview’. ICL Technical Journal 5(3), 471-476, May 1987.
2 ATKINSON, P., MORRISON, R. and PRATTEN, G.: ‘PISA — a Persistent Information

Space Architecture’. ICL Technical Journal 5(3), 477^191, May 1987.
3 DARLINGTON, J.: ‘Software development using functional programming languages’. ICL

Technical Journal 5(3), 492-508, May 1987.
4 GLAUERT, J.R.W., KENNAWAY, J.R. and SLEEP, M.R.: ‘Dactl: a computational model

and compiler target language based on graph reduction’. ICL Technical Journal 5(3),
509-537, May 1987.

5 DARLINGTON, J. and REEVE, M.: ‘ALICE-A Multi-Processor Reduction Machine for
the Parallel Evaluation of Applicative Languages’ Proc. 1981 ACM Conference on
Functional and Computer Architecture.

6 BURTON, F. and SLEEP, R.: ‘Executing Programs on a Virtual Tree of Processors’. Proc.
ACM Conference on Functional Programming and Computer Architecture, 1981, 187-194.

7 SARGEANT J.: ‘Load Balancing, Locality and Parallelism Control in Fine Grain Parallel
Machines’. Internal Report, University of Manchester, Dept, of Computer Science, 1986.

8 WATSON, I. and WATSON, P.: ‘Graph Reduction in a Parallel Virtual Memory
Environment’. Proceedings of the MCC Graph Reduction Workshop, Santa Fe, New
Mexico, 1986, Springer-Verlag.

574 ICL Technical Journal May 1987

Flagship hardware and implementation

Paul Townsend
ICL Mainframe Systems, West Gorton, Manchester

1 Introduction: Flagship machine objectives

The objective of the Flagship hardware development is to provide an
extensible parallel machine for the early 1990s. Parallelism will allow higher
performance than conventional machines, yet it will permit cost-effective
technology to be used. This will ensure that performance is achieved more
cheaply than the current conventional approach of using more and more
complex and costly hardware technologies.

Declarative languages, both functional and logic, will be supported. The
design philosophy is one of languages first, meaning that the machine is
tailored to these languages to provide the attributes that the languages
require. Cost/performance is paramount and there should be little conflict in
efficiently providing the necessary language attributes and achieving high
system performance.

The Flagship machine will be extensible over a range of numbers of
processors. As the machine supports irregular* parallelism as well as regular
there is no reason why it should have any special number of processors: 7 or
97 could be accommodated in the design. For physical and logic partitioning
reasons we are likely to extend the machine by binary increments between 8
and 256 processors.

The Flagship machine will be packet based, its smallest discrete item being
the packet. Sub-fields within a packet can only be accessed via the packet
identifier. Graph reduction principles will be used1. A parallel distributed
operating system will be supported, with many I/O channels operating in
parallel.

Within the constraints of being declarative-language based Flagship will be

♦Irregular parallelism. Many machines exploit only regular parallelism and therefore all
processors at any one time are computing in a similar way: these are the Single Instruction
Multiple Data (SIMD) machines. Matrix multiplication, for example, would suit such regular
parallel computations. Irregular parallelism implies that though a program has many parallel
threads that could be computed in parallel, these threads may be computationally very different
in nature. Also the amounts of parallelism may change dynamically as the program progresses.
This requires Multiple Instruction Multiple Data machines (MIMD), with many processors
performing different tasks at one moment. Flagship is a MIMD machine.

ICL Technical Journal May 1987 575

“general purpose” and is not aimed at a narrow set of application domains.
For highly parallel problems the machine should approach linear speed-up
as more processors are added - meaning that if the number of processors is
doubled then the performance should almost double.

2 Flagship development route

There are many major research issues which need to be addressed by the
project; therefore the approach has been one of incremental development.
There are four main stages, as below.

S ta g e 1

The first prototype developed by the project was ALICE. In the early 1980s a
team led by John Darlington and Mike Reeve at Imperial College, London,
developed ideas for a parallel machine to support the functional language,
Hope2. In 1983 a joint collaboration between Imperial College and ICL
started, which would further develop and build three prototypes of ALICE.

ALICE (Applicative Language Idealised Computing Engine) addressed a
number of research areas:

- Based on graph reduction principles.
- Extensible hardware architecture.
- Linear speed-up as processors added.
- Support functional languages. Logic language support was added later.
- Real address memory mapped.
- Utilised simple work distribution scheme.
- Dynamic “garbaging” (or freeing) of used packets.

ALICE is a flexible research vehicle which emulates the ideal architecture.
The machine principles are described later.

S ta g e 2

The next stage was to address further issues and to look for efficiency
optimisations to produce a competitive machine. Imperial College have
within Flagship continued with an emphasis on language work and com
pilers. ALICE continues to be developed and is used to investigate program
transformations and compiler optimisations for a parallel machine, amongst
other work.

Flagship machine development continues mainly between Manchester
University, led by Ian Watson, and ICL. Manchester University have
experience of developing a number of processors including the Manchester
Dataflow Machine. This is a high-performance parallel machine, but lacks
some of the attributes required for efficient, general-purpose declarative
computation.

576 ICL Technical Journal May 1987

The first step has been to build a number o f sim ulators know n as the
Im plem entation Reference M odel (IRM); these are written in the “C”
language. Areas being addressed are:

- Graph reduction supporting D A C T L 3.
- Sophisticated m echanism for distribution o f work between processors.
- Virtual storage based on global store addressing, i.e. all processors can

address any part o f the distributed com putational store.
- Efficient copy m echanism o f data from one processor to another.
- C losely coupled processor and store pairs.
- Em phasis on efficiency and performance.
- D istributed I/O sub-system.
- Support for priority mechanisms.
- Variable length packets.
- Caching to reduce store access time.
- Support for a m ulti-user environm ent.
- Resilience to individual node failure.

In parallel with the above research an em ulator, based on the M otorola
68020 m icro-com puter, is being developed. This initially has 10 processors
with the ability to add m any V M E bus cards. The IRM sim ulators will be
m apped on to the em ulator and research continued in the above areas. A
software environm ent with selected applications will be run on the emulator.

The Flagship m achine is described later in this paper.

S ta g e 3

A third stage has now started. This is a VLSI design study investigating the
hardware im plem entation of the Im plem entation Reference M odel. Initially,
this will feedback into the IRM research and prove that the solutions to the
research issues can be implemented.

S ta g e 4

The final stage will be to finalise the VLSI design and simulate, validate and
build it.

3 Flagship forerunner - the Imperial College ALICE machine

3.1 The ALICE machine - general

The ALICE processor (Fig. 1) is hosted by an ICL 39/30 mainframe which
provides application load facilities and is used also for bulk application
output and dum p analysis. A Stride workstation provides the diagnostic
interface required to start and stop the ALICE machine. D iagnostic facilities
for interrogating the m achine state and for the interactive tracing of graphs
are also provided. The w orkstation provides the route for loading the code

ICL Technical Journal May 1987 577

ALICE
PROCESSOR

Diagnostic Workstation
Terminal

Fig. 1 The ALICE system

into the ALICE processor that programs ALICE to interpret the ALICE
architectural model.

ALICE is currently a single user system. It is first loaded with its operational
code from the Stride workstation. An application is prepared in the 39/30
host and then loaded via Ethernet into the ALICE processor. The applica
tion runs and the user can interact with it via the local I/O terminal. Any
bulk output, including dum p data, is passed via Ethernet to the 39/30 host,
where detailed analysis can take place. ALICE is a research prototype and
users are typically interested in how their applications run and perform on a
highly parallel machine.

3.2 The ALICE parallel processor

The principles behind a packet-based graph-reduction parallel processor are
described in A very brief description is given below.

3.2.1 Packets: A packet holds inform ation o f this nature:

Identifier Function Argument List Secondary Fields

Identifier:

Function:

Argument list:
Secondary

fields:

the packet’s unique address. For ALICE this is a real
address.
function associated with this packet. Functions can be
primitive such as + , —, log or more com plex user-defined
functions such as Q uicksort or Payroll,
pointers “down the graph” to other packets or values,
control inform ation for evaluation and backward pointers
“up the graph”.

3.2.2 Graphs: A functional language consists o f a number o f functional
expressions and data structures. These can be represented in graphical form.
A graph can be thought o f as having a similar topology to a tree data
structure, but it differs in that it may have data shared within the graph: for
exam ple, Fig. 2 shows packet D shared by packets B and A.

578 ICL Technical Journal May 1987

Fig. 2 Graph for packet evaluation of (9 - 4)*22 + 22 + tan(22 + 23) = ADDT{[MULT(SUB
9,4), SQ 2], SQ 2, TAN(ADD 22,23)}

An application is com piled into graphical form . Functional expressions
within the graph are transform ed by over-writing the sub-graph with the
result o f the function application. This m ay result in the graph increasing or
reducing in size - it is best explained using a sim ple example.

Graph example. This is a sim ple (and not very realistic) m athem atical
expression which reduces to a single integer w ithout the graph increasing in
size. M ore realistic exam ples w ould typically m anipulate com plex data
structures and w ould probably include the use o f recursive calls o f functions
within the graph.

The expression [(9 — 4) * 22] + 22 + tan (22 + 23) can be written

A ddt{[m ult(sub 9,4), sq 2], sq 2, tan(add 22, 23)}

where the function Addt sum s three arguments. This can be represented
graphically as in Fig. 2, where the boxes represent packets and, as defined
above, the first field is the packet identifier, the second is the function and
subsequent fields are either values or forward or backward pointers to other

ICL Technical Journal May 1987 579

packets. N ote that in this exam ple the result o f evaluating packet D is shared
by packets A and B. The argument o f the tangent function is assum ed to be
degrees.

Such an expression could be com piled into a number o f form s with all the
pointers forwards or backwards and a variety o f evaluation strategies could
be developed.

For our form of the graph an intelligent com piler m ight make packets C, D
and E available for processing and the remaining packets suspended. Three
ALICE processors could process these packets in parallel.

The graph would now be:

Fig. 3

In Fig. 3 the C and D packets have applied their functions and returned the
resulting values to packets B and A. Packet B now has all its values and it
can be made available for processing. Packet A does not have all its values
and will remain suspended. Packet E, which was processed, does not have its
value and it now dem ands packet F, which will now be processable. Packet E
is made suspended. Packets B and F can be processed in parallel. The graph
now becomes:

Fig. 4

580 ICL Technical Journal May 1987

In Fig. 4 packet B has applied its function and returned it to packet A. Packet
F has applied its function and returned it to packet E. Packet E w ould now
be m ade processable as it has its argum ent and w ould return its value to
packet A as in Fig. 5.

A ADDT 20 4 1 PTRX

Reduces to
_________ * ____

A INT 25 PTRX

Fig. 5

The answer 25 w ould be returned to packet X.

Com pleted packets which no longer hold useful inform ation are “garbaged”.
Thus packets B to F w ould all now be autom atically garbaged.

3 .3 ALICE a b s tr a c t m o d e l

A sim ple abstract m odel to perform the above task could be represented as in
Fig. 6:

Pool Pool Packets
of of either Data
Processable Free or
Packets Packets Suspended

Packet Store

Processor 1

□

Processor 2

□

Processor n

Fig. 6 ALICE abstract model

Processors w ould all have direct access to any area o f the packet store. They
could fetch packets from the pool o f processable packets, reduce them and
write new packets or m odify old ones in the packet store. An intelligent
packet store could detect when packets had all the required arguments and
make them processable. It could also detect when packets were no longer
required and mark them for garbaging.

There is no reason why the packet store should be a single entity. It can be
partitioned and distributed within the machine.

A com m unication m edium between the processors and the packet store is
required: this is the “delta network” show n in Fig. 7.

ICL Technical Journal May 1987 581

16
Processing
Agents

26
Intelligent
Stores

Fig. 7 The ALICE parallel processor

3.4 The ALICE prototype

Figure 7 shows the general topology of the ALICE processor. There is a high
bandwidth com m unication network called a delta network which can
connect any processor to any store. Also any store can be connected to any
processor. Stores and processors can com m unicate via the network to the
diagnostic system or via the Ethernet to the 39/30 host. There are 16
processing elements and 26 distributed stores.

ALICE uses the Inm os Transputer as its major building block. This is a
high-performance 32-bit m icro-com puter with 2K bytes o f internal m em ory
and 232 available addresses for external memory. It has four 1 M byte/sec
serial links that can be used to enable direct com m unication between
Transputers.

3.4.1 The processing agent: This is shown in Fig. 8; it uses five Transpu
ters, T P 1-5 in the figure.

The units ERU, E T U provide interfaces to the delta network and help de
couple the processing agent from the network, to reduce hold-ups.

The units P R U each have 64K bytes o f local m em ory and are used to re
write packets which are fetched from the distributed store. In conventional
machines the majority o f functions that the processor provides are resident in
fixed m icro-code. By contrast, in ALICE the languages that it supports
generate m any unique user-defined functions and these are fetched and
cached by the Function Definition U nit (F D U) as they are required.

3.4.2 The intelligent store: This is shown in Fig. 9; each store uses 2
Transputers and has 2 M bytes o f dynam ic memory.

582 ICL Technical Journal May 1987

TP2 TP1-5=Transputers 1 to 5

Fig. 8 The ALICE processing agent

Pool Pool Packets
of of either Data
Processable Free or
Packets Packets Suspended

TP1 TP2

PMU ETU

1

2 Mb packet store

PMU= Packet Management
Unit

ETU= External Transmit
Unit

Connecting lines between
Transputers depict
Transputer links).

Delta Network

Fig. 9 The ALICE intelligent store

The External Transmit U nit (E T U) decouples the store from the delta
network, to reduce hold-ups. The Packet M anagem ent U nit (P M U) receives
m essages from the processors, either to m odify packets within m ain m em ory
or to provide packets to the processors. It can check packet field values and
make local decisions about how processing should proceed.

3.4.3 The delta network: Ideally the com m unication network would permit
any processor to com m unicate with any store, and vice versa, w ithout any
clashes or contentions. This would require a full crossbar unit, but unfortu
nately the interconnect requirement makes this alm ost im possible to imple
ment. The means provided, the delta net, can be viewed simply as a crossbar
that allows clashes to occur. It is made up o f 4 x 4 switches, as shown in

ICL Technical Journal May 1987 583

Fig. 10 4 x 4 switch

Fig. 11

16 inputs

16 outputs
16-way network

Figs. 10 and 11; a 4 x 4 switch permits any input to connect to any output
providing that the output is not already being used for communication.

Figure 11 show s eight 4 x 4 switches used to build a delta network with 16
inputs and 16 outputs. ALICE has a 64 input and 64 output network using
the Imperial College-designed 4 x 4 ECL network chip called the XS1. It can
be deduced from Fig. 11 that generally if all 16 inputs were to attem pt to
com m unicate with all 16 outputs there would be contention for som e o f the
connecting paths. Such contention causes hold-ups and a subsequent loss in
usable network bandwidth and additional network latencies.

3.5 How ALICE works

Figure 7 showed the ALICE parallel processor. An application is com piled
into processable packets and suspended packets. The term suspended packet is
an over-sim plification and has been used here for packets not processable or
free. In practice suspended packets can have a number o f states. The user-
defined function code required to perform the function application when
packets are re-written is also com piled into packet format.

584 ICL Technical Journal May 1987

These packets are loaded via Ethernet in to the 26 intelligent stores, as
determined by the com piler. Each processing agent (PA), using a random ly-
generated intelligent store number, sends a m essage via the delta network to
that store for a packet to process.

The store, Fig. 9, takes a packet from its processable packet p oo l and sends it
via the delta network to the soliciting PA (Fig. 8). This PA then perform s the
packet re-write (or reduction) by over-writing this packet and also m odifying
packets to which this processable packet pointed. N ew packets m ay also be
generated by obtaining free packet identifiers from the free packet pool.

In the graph exam ple, Fig. 2, then if a P A had received packet C for
processing it w ould perform the subtraction function SU B and write to
packet B’s third field with the value 5 (Fig. 3). It w ould then send a m essage
to the appropriate store to say that packet C was now to be garbaged.

All PA s w ould be re-writing processable packets in parallel.

If the function code required by a packet is not cached in the Function
Definition U n it (F D U) in the Processing Agent (F ig. 8), then the F D U fetches
the code from the packet store.

An obvious flaw in the above architecture is the latency between processor
agents and stores as packets are fetched and modified. This w ould result in
processor agents waiting for stores to reply. T o overcom e this problem
ALICE has a concept o f virtual agents.

Each physical agent has 16 virtual agents. As a virtual agent awaits packet
data from store the P R U process switches to one o f the remaining virtual
agents which can then also re-write a processable packet. W hen the first store
returns its data the relevant virtual agent is put on a process queue in a P R U
(Fig. 8). Research to date shows that 16 virtual agents are adequate to fully-
utilise the P R U Transputer, providing that the application has sufficient
parallelism.

ALICE has m any m echanism s for controlling how graphs are evaluated and
for solving synchronisation problem s, and has flow control to avoid
deadlocks. It has support for both function and logic declarative languages.

3.6 The ALICE language route

The language route is show n in Fig. 12. All languages com pile in to the
ALICE Com piler Target Language (CTL), which describes how to reduce
packets for any given function. The Im plem entation Specific Language (ISL)
is CTL-com piled into a byte string for interpretation by the PR U s; these are
program m ed in Occam , the language designed for the Transputer.

ICL Technical Journal May 1987 S8S

Declarative languages:

Hope PARLOG

\ /
Compiler Target Language (CTL)

t
Implementation Specific Language (ISL)

t
INTERPRETER (written in Occam)

Fig. 12 ALICE language route

3.7 ALICE results to date

The first ALICE prototype was delivered to Imperial College from ICL,
W est G orton, in June 1986, after extensive validation in the laboratory;
research is continuing in the College.

Highly parallel applications have been found to give a linear speed-up as
m ore processors are added, to within a few per cent o f the theoretical
maximum; so the principles o f a packet-based graph reduction m achine have
been proven. As an illustration, Fig. 13 below show s the performance
increase as processors are added in the case o f a highly parallel recursive
function called NFIB; the increase is very nearly linear.

Fig. 13 ALICE performance graph

586 ICL Technical Journal May 1987

W hilst ALICE has met its objectives and proved the feasibility o f graph-
reduction and that large performance increases can be achieved as further
processing agents are added, m any further issues need to be addressed.

Issues not addressed by AL ICE

1 ALICE is real-address m apped, therefore applications cannot dynam i
cally use a com putational store larger than the RAM mainstore.

2 ALICE distributes and accesses its processable packets using simple
algorithm s - either random distribution or cyclic. M ore sophisticated
distribution m echanism s are required.

3 It w ould be better if com m unication latency was overcom e naturally
w ithout process switching between virtual agents.

4 ALICE packet store is rem ote from the processors. Processors with large
closely-coupled m ainstores w ould reap the performance advantages that
von N eum ann m achines have. The available packet address range m ay be
viewed as a global address range directly accessible by all processors, but
for efficiency local copies could be taken of packets resident in rem ote
stores such that subsequent accesses w ould be local. This im plies that an
efficient copying mechanism is needed.

5 ALICE is a single user system. A m ulti-user system requires protection,
priority and process state mechanism s.

6 For efficiency reasons m ore com pact data representations are required
than just a small number o f arguments o f fixed size per packet. Another
im provem ent would be a range o f different packet sizes.

7 A distributed I/O sub-system is required to reduce I/O bottlenecks.
8 A Flagship system uses an object-m apped persistent store m odel. H ard

ware support is necessary for this.

The abstract m odel in Fig. 6 is still a valid one w ith com putational store
containing processable packets, suspended packets and free packets, and this
global store can be addressed by any processor. For efficiency reasons, as
m entioned above, it is preferred that processing agents tend to process
packets which are in their local stores and only distribute work to other
processors when absolutely necessary. W hen work is distributed, then,
ideally, it will be to where associated graph structures live. The exam ple of
graph-reduction in Fig. 2 is also still valid for the Flagship machine though
evaluation strategies m ay differ from those utilised in ALICE. Flagship
m achine topology is shown in Fig. 14.

4.1 Flagship topology

As can be seen in Fig. 14 the Flagship m achine will have local I/O controllers
providing local disc store, etc. and also connections to a host mainframe.

Conceptually, we now have tw o networks. The I/O network connects any

4 The Flagship machine

ICL Technical Journal May 1987 587

Fig. 14 Flagship machine topology

I/O controller or the host to any processing agent, with m any connections
active concurrently; and as with ALICE there is a processor network that
enables any processor to com m unicate with any other processor-store unit.
But now each processor has an additional direct connection to a local store.

In ALICE the network made a direct connection between a processor and a
store before sending the com plete m essage transaction. This is know n as
circuit-switching. If instead fragm ents o f m essages are sent and buffered at
each switching stage within the network, contention is reduced because
network paths are freed sooner than in the circuit switch: this is called packet
switching. Flagship is likely to use hybrid circuit/packet switching in its delta
network.

4.2 Work distribution

For processors to distribute work to one another in a sensible way within the
Flagship m achine it is necessary for the “activity level” o f each processor to
be known, where this term means a measure o f the number o f processable
packets locally available in the processable packet pool o f that processor/
store pair. Processors with m any processable packets can then distribute
som e o f these to those processors with few. As the processor delta network
connects all the processors together it seem s sensible that it should be used to
distribute the activity levels so that algorithm s for sensible distribution o f the
work can be implemented.

Figure 15 show s the arrangement. Each processor sends its current activity

588 ICL Technical Journal May 1987

global activity levels

PROC 1 PROC 2 PROC 3 PROC n
t________ t___________________________

PROCESSOR DELTA NETWORK
-

PROC 1 PROC 2 PROC 3 PROC n

local activity levels

Fig. 15 Work distribution

level into the network and receives an average o f all the activity levels; it can
then detect if it has m ore or fewer processable packets than the average, and
can distribute work accordingly. Each switching node within the delta
network com putes its local global average and propagates this backwards; it
also remembers which o f the paths have the fewest processable packets, so
that work can be distributed in that direction. There are variations to the
scheme which propagate the low est rather than the average activity level
through the switch.

O ne objective o f the Flagship design is to distribute processable packets, so
far as possible, to the processor/store pairs where the data structures
associated with each packet reside. This m eans that processable packets may
be sent to processors irrespective o f their activity level. This could be
unsatisfactory, so a “strength o f feeling” is associated with a processable
packet when it is distributed and used to m odify the effect on packet routing
of the global averaging m echanism.

A further com plication is one o f priority. In a m ulti-user system processable
packets will be o f different priorities, which m eans that high priority packets
should be processed first. The activity level m echanism does not include any
recognition o f this, and therefore the priority levels at w hich processors are
currently running m ust also be propagated backwards.

4.3 Flagship processing agent!store pair

This is show n diagram m atically in Fig. 16.

4.3.1 Management o f the processable packet pool: This is taken care of
by the Executable Packet Q ueue (E PQ), the Executable Packet Scheduler
(EPS) and the H old ing Stack (H S). W e have already seen how the identifiers
o f processable packets are added to the pool, either as a result o f loading
com piled packets or dynam ically during run time.

If too m any processable packets are generated, this can use too much
com putation store as the graph grows. The E PQ queues a lim ited num ber o f
processable packets on a first in first out basis, i.e. a queue; which m eans that
the graph is explored breadthwise, generating m uch potential parallelism.

ICL Technical Journal May 1987

HS = Holding Stack
EPS=Executable Packet Scheduler
EPQ=Executable Packet Queue
FPA=Free Packet Addresses
NIF=Network Interface

Fig. 16 Flagship processing agent/store pair

W hen the E PQ is full, processable packets that are generated subsequently
are placed on the H olding Stack (H S), which provides for Last In First Out
processing. This tends to cause the graph to be explored depth first, with less
parallelism generated. The EPS schedules the m echanism. N ew processable
packet identifiers are generally passed to the E PQ and H S from the Packet
Re-write and Super-com binator unit shown in the centre o f Fig. 16; when this
unit requires the identifier of a processable packet, for processing, it requests
an identifier from the EPS.

The EPS has direct connections to the global network interface in the form o f
the global and local activity levels shown in Fig. 15. This enables it to cause
processable packets to be sent to rem ote processors to give efficient work
distribution.

4.3.2 Packet Re-write and Super-combinator Executor: This is the unit
that performs re-writes (or reductions) on processable packets. By follow ing
the rules o f the Flagship com putational m odel it can fetch, inspect, m odify

590 ICL Technical Journal May 1987

packets as well as generate new ones. The rules recognise the state o f a
packet, i.e. if it is processable, suspended (or other states not described in the
brief descriptions given), how m any arguments are still required and control
fields which control the execution strategy. These rules are independent of
the function specific to the packet.

A Super-com binator Executor inspects the packet’s function field and
performs the function application with the relevant value fields from the
packets. It then re-directs pointer fields and m odifies value fields as was seen
in the graph exam ple in Fig. 2. It can also generate new packets. The
identifiers to be used for new packets are received from the FPA , described
next.

4.3.3 Free Packet Address (FPA): This unit m aps the identifiers o f the free
packets in packet store. It provides new identifiers for the Packet Re-write
and Super-com binator Executor unit or collects the identifiers of “old”
packets which have been garbaged.

4.3.4 Copy and hasher units: As m entioned earlier a copy m echanism is
required for when packets which need to be accessed during a packet re-write
are not in the processor’s local store.

The copy mechanism causes copies o f the packets in a rem ote store to be
made into local store. The copied packet’s identifier is stored in the hasher at
an address which is a hash of the copied packet’s identifier. W hen further
accesses are m ade for the copied packet, the hasher signifies a hit in local
mainstore. This hashing m echanism m ay also be useful for virtual address
translation, rapid access to system tables and caching m echanisms.

T o avoid having the processor idle while packets are copied from rem ote
stores the graph is m odified to await the rem ote data and the processor
fetches another processable packet for re-writing.

4.3.5 Network Interface (NIF): This provides the network interface to the
delta network. M essages with packet inform ation are sent and received to or
from other processors. The unit contains m essage buffers and drives the
network protocols, including the work distribution signals previously de
scribed.

O nly one network interface is shown. Though in concept there are indepen
dent I/O and interprocessor networks, currently one physical network is
assigned for both tasks.

4.3.6 Packet Store Access Manager, Cache, Node Packet Store: The
N od e Packet Store is m ade up o f dynam ic RAM and constitutes the m ain
packet store. As accesses to the dynam ic RAM will take a number o f
processor beats, a cache m ade up o f static RAM will be included for rapid
access o f packets in one processor beat. The packet store access manager is

ICL Technical Journal May 1987 591

the store interface to the other units; it will provide address translation from
virtual to real address and som e o f the user data protection checks required
by multi-user systems.

4.4 The Flagship emulator

An em ulator has been built with the topology described in Fig. 14. It uses
M otorola’s 68020 m icro-processors with, initially, 10 m egabytes o f local
store per processor. There are 10 processor store pairs and the diagnostics
are provided by a Sun workstation. It will have an ICL 39/30 mainframe host
attached later in its developm ent. Initially it will use the propriety V M E bus
for interprocessor com m unication. A custom -built delta network is being
developed and will replace the V M E bus. Only half o f the cabinet slots are
currently used; the remaining slots will be used to provide the distributed I/O
sub-system.

By providing extensive instrum entation and tracing in the em ulator we will
be able to validate the Im plem entation Reference M odel and machine
principles with real applications and the Flagship software environm ent.
W ith 10 processors, running in parallel genuine concurrency will be obtained
at a performance above the levels which sim ulations on a conventional
mainframe could provide.

4.5 Physical implementation of the target Flagship machine

The technology currently considered for Flagship is VLSI at 1-5 m icron and
400000 transistors. It will use a high density interconnect technology. The
Packet Re-write and Super-com binator unit requires the attributes o f a RISC
processor and a propriety 32-bit RISC processor m ay be suitable. A further
two custom VLSI chips will be required.

H igh density interconnect technology will m ount approxim ately 80 chips on
a 10 cm by 10 cm substrate. The 3 VLSI chips plus 2 m egabyte cache and
associated interface chips will fit on one such substrate.

M ounting 4 m egabit dynam ic RAM chips on both sides o f another 10 cm by
10 cm substrate will provide 32 m egabytes o f m ain storage, as shown below.

10 cm 10 cm

Processor Store 10 cm

2 m egabyte 32 megabytes
cache o f dynam ic store

O ne hundred and twenty-eight such processors w ould fit in a cabinet. Two
such cabinets could be closely coupled together to utilise 256 input by 256
output delta nets.

592 ICL Technical Journal May 1987

The size o f the I/O sub-system w ould depend upon the application dom ains
at which such a processor was aimed.

A range o f system s between 8 and 256 processors w ould be possible.

Typically, these m achines w ould be hosted by an advanced workstation for
smaller system s and by a mainfram e for the larger systems. Stand-alone
system s could be built, given a com plete software environm ent with adequate
user interfaces and tools.

4.6 Flagship performance

Q uoting performance figures for parallel m achines is difficult because as yet
there are few, if any, recognised benchm arks for such machines. Benchmark
ing is itself an area o f research.

Functional language performance is often measured in Reductions Per
Second (RPS) and logic performance in Logic Inferences Per Second (LIPS).

Each Flagship processing agent will perform at greater than 150000 RPS. A
parallel processor with 256 processing agents, given applications with
sufficient parallelism, should have a system power o f greater than 40 m illion
RPS.

W hat is this in terms of M illions o f Instructions Per Second (M IPS)? M IPS
used for measuring conventional m achines can be m isleading. M icro
processor designers often claim 10 M IPS for their m achines whilst a much
m ore powerful m ini-com puter mainfram e is quoted at only 2 M IPS.

Each Flagship processing agent will be as powerful as a top-of-the-range
m ini-com puter. The total performance for a 256 processing agent Flagship
parallel com puter should be greater than 500 “m ainfram e” M IPS.

5 Conclusion

D espite progress to date there is still m uch research and developm ent work
required before viable packet-based graph reduction m achines can be made
com m ercially available.

It has been show n that new m echanism s are required for both the distribut
ing and copying o f work and data. A lso high bandwidth, intim ate com m uni
cation networks are required between processors. Functionality concerned
with parallel processing that is additional to the equivalent conventional
m achine needs to be over-lapped with the basic processor’s functionality.
This w ould m ean that a single processor w ould com pare favourably with a
state-of-the-art von N eum ann machine.

From a processor designer’s point o f view m any current techniques used by

ICL Technical Journal May 1987

mainframe and m icro-com puter designers are still relevant. Pipelining,
caching, pre-fetch o f code and data, interrupt and protection m echanism ,
stacks, etc. are all techniques that are likely to be useful in this style o f
parallel machine.

The packet-based graph-reduction architecture also lends itself towards new
optim isations. A packet can have m any argument fields and hold much type
and state inform ation. A rule-driven system follow ing the Flagship com puta
tional m odel w ould enable m any packet fields to be generated or m odified in
parallel in a single processor and in one processor clock beat. Thus new
packets could be generated in a single clock beat, including the application of
primitive functions (+ , —, etc.). This w ould be equivalent to m any von
N eum ann instructions in a conventional machine.

Research aided by sim ulation and use o f the em ulator continues. W e hope to
generate solutions to the outstanding issues and, by instrum enting our
designs running relevant applications, find where to optim ise the machine
design for cost-effective use o f the available silicon.

U nlike conventional machine designers we have a choice. For a given
performance we can have lots o f processors o f relatively sim ple design,
or go for m ore sophisticated designs with fewer processors. Overall, cost/
performance and developm ent risk will determine which option we take.

References

1 WATSON, I., SARGEANT, J., WATSON, P. and WOODS, V.: Flagship computational
models and machine architecture. ICL Technical Journal 5(3), 555-574, May 1987.

2 DARLINGTON, J.: Software development using functional programming languages. ICL
Technical Journal 5(3), 492-508, May 1987.

3 GLAUERT, J.R.W., KENNAWAY, J.R. and SLEEP, M.R.: DACTL: A computational
model and compiler target language based on graph reduction. ICL Technical Journal 5(3),
509-537, May 1987.

594 ICL Technical Journal May 1987

GRIP: A parallel graph reduction machine

Simon L. Peyton-Jones, Chris Clack and Jon Salkild
University College, London

Abstract

GRIP - Graph Reduction In Parallel - is a Fifth Generation machine
designed to execute functional languages in parallel, using graph

. reduction. Its design and construction is a project funded by the Alvey
Directorate as a collaborative project between University College
London, ICL and High Level Hardware Ltd. It is expected that a
working prototype will be completed during 1987. The paper gives a
brief outline of the principles of graph reduction and of GRIP’S
architecture.

1 Functional languages and graph reduction

Functional languages are Fifth G eneration program m ing languages which
address tw o o f the m ajor current challenges to com puter science, those o f
correctness and parallelism.

The challenge o f correctness is the difficulty we experience in writing large,
correct programs, a problem which H oare eloquently outlines in his Turing
award lecture4. Darlington gives an introduction to functional program m ing
languages2, showing how their use can alleviate som e o f these problems.

The organisation o f a number o f independent processors to co-operate in the
execution o f a single program is the challenge o f parallelism. Functional
languages contain inherent parallelism and so are a suitable m edium in
which to express parallel programs. To understand where the parallelism
com es from we will look at a functional program:

let f x = (x + 1) * (x — 1)
in f 4

The “let” defines a function “f” o f a single argument “x”, which com putes
“(x + 1) * (x — 1)”. The program executes by evaluating “f 4”, that is, the
function “f” applied to 4. W e can think o f the program like this:

ICL Technical Journal May 1987

where the “@ ” stands for the function application. Applying f to 4 gives

/ \
A A

4 4
W e m ay now execute the addition and the subtraction sim ultaneously, giving

From this simple exam ple we can see that

(i) Executing a functional program consists o f evaluating expressions.
(ii) A functional program has a natural representation as a tree, or more

generally a graph.
(iii) Evaluation proceeds by m eans o f a sequence o f simple steps, called

reductions. Each reduction performs a local transform ation o f the
graph, hence the term graph reduction.

(iv) Reductions m ay safely take place sim ultaneously since they cannot
interfere with each other.

(v) Evaluation is com plete when there are no further reducible expressions.

Graph reduction is described in detail by Peyton-Jones5.

G R IP - Graph Reduction In Parallel - is designed to execute functional
programs by performing parallel graph reduction. D espite the opportunities
for parallelism offered by functional languages, only the ALICE project at
Imperial College has so far attem pted a parallel im plem entation in custom
hardware1,3; the main features of ALICE are described briefly in the paper
by Townsend in this issue6. G R IP is intended to provide state-of-the-art
performance at m oderate cost by extracting the m axim um performance from
a fast bus. This means that within its performance range G R IP should
provide m ore power for unit cost than m ore extensible designs, such as
ALICE. Our performance target for a fully populated G R IP is one m illion
reductions per second.

2 The GRIP architecture

M ost proposals for parallel graph reduction machines look like Fig. 1. The
Processing Elements (PE) traverse the graph held in the Intelligent M em ory
Units (IM U), discovering reducible expressions and reducing them. The

5 3

Finally we can execute the m ultiplication, to get the result

15

596 ICL Technical Journal May 1987

Fig. 1 Physical structure of a parallel graph reduction machine

principle variation between different designs lies firstly in the choice of
communications network and secondly in the intelligence in the IMUs.

2 .1 The b u s

In the case of GRIP we have chosen to use a fast bus, the IEEE Futurebus,
for the communications network. A bus offers an extremely cost-effective
switch, but at the cost that only one transaction can take place between a PE
and an IMU at once, thus limiting concurrency. This places a fundamental
limit on the parallelism achievable but gives an extremely cost-effective
solution up to this limit. In the case of GRIP we expect to be able to integrate
up to 80 or so PEs, on 20 boards, before running out of bus bandwidth and
physical space.

The use of a bus allows us to address one research issue, that of parallel
reduction, at a time, rather than try to solve several difficult problems at
once. By using a bus therefore we expect to exploit a cost/performance/con-
currency “window” and to build a working prototype in the relatively short
time of 2-3 years.

2 .2 The In te lligen t M em o ry U nits

GRIP’S IMUs will each consist of 5 megabytes of RAM arranged in 40-bit
words, with a simple bit-slice microprogrammable processor on the front.
Instead of supporting just READ and WRITE commands as normal
memories do the IMUs will support an instruction set of high level
operations, chosen to support parallel graph reduction. These operations are
the unit of indivisibility supported by GRIP (all concurrent machines must
provide some indivisible operations to ensure correct synchronisation of
parallel activities). In addition, the use of high level operations reduces the
requirement for bus bandwidth for communication with the IMUs.

2 .3 The P ro c e ss in g E le m e n ts

The PEs are autonomous units responsible for performing reductions on the
graph held in the IMUs. They will be of straightforward design, based

ICL Technical Journal May 1987 597

around a microprocessor, the MC68020, and will include their own private
memory which is inaccessible to the rest of the system. The processor within
a PE executes a program held in local memory.

2.4 Physical arrangements

Although the PEs and IMUs are logically separate we shall integrate several
PEs, and one IMU on each board plugged into the bus. This maximises the
use of the bus slots, which are our scarcest resource, and also the number of
concurrent activities in the system by putting several on each board.

Most transactions between a PE and an IMU will be carried out on a split
cycle basis, to make the best use of scarce bus bandwidth. The PE will write a
transaction request into a fast transaction bulfer held in the bus interface
section. The bus interface will then acquire the bus (which may take some
time), send all pending requests to the corresponding buffer on the destina
tion board and relinquish the bus. The request will be processed by the
recipient IMU which will write a reply transaction into the transaction
buffer, and this reply will then get transferred back to the requesting PE by
the same mechanism.

Achieving an implementation of this protocol without imposing substantial
latency on transactions is one of the major hardware challenges of the
project.

3 Project status

The GRIP project is funded by the Alvey Directorate as a collaborative
project between University College London, ICL and High Level Hardware
Ltd. Three full-time Research Assistants form the main team based at UCL
and led by Simon Peyton-Jones. Work began in the late autumn of 1985;
construction of the machine is now under way and the expectation is that a
prototype will be working during 1987.

The GRIP architecture is described in more detail in Peyton-Jones7 and
Peyton-Jones et al8.

References

1 DARLINGTON, J. and REEVE, M.: ‘ALICE - a multiprocessor reduction machine for the
parallel evaluation of applicative languages’. Proc. ACM conference on functional program
ming languages and computer architecture, New Hampshire, Oct. 1981, 65-75.

2 DARLINGTON, J.: ‘Functional programming’. In: Distributed Computing, Duce, D.A.
(editor), Peter Peregrinus, 1984.

3 DARLINGTON, J.: ‘Software development using functional programming languages’. ICL
Technical Journal Vol.5, No. 3, 1987, 492-508.

4 HOARE, C.A.R.: ‘The Emperor’s old clothes’. CACM, Vol. 24, No. 2, 1981, 75-83.
5 PEYTON-JONES, S.L.: ‘Implementation of functional programming languages’. Prentice-

Hall (to be published March 1987).

598 ICL Technical Journal May 1987

6 TOWNSEND, P.: ‘Flagship hardware and implementation’. ICL Tech. J., Vol. 5, No. 3,
1987, 575-594.

7 PEYTON-JONES, S.L.: ‘Using Futurebus in a fifth-generation computer’. Microprocessors
and Microsystems Vol. 10 No. 2, March 1986

8 PEYTON-JONES, S.L., CLACK, C.D., SALKILD, J. and HARDIE, M.: ‘G RIP-a high-
performance architecture for parallel graph reduction’, Internal Note 2079, University
College London (submitted to IFIP Conference on Functional Programming and Computer
Architecture, Portland, 1987).

ICL Technical Journal May 1987 599

Notes on the authors

Professor M.P. Atkinson

Malcolm Atkinson is a Professor of Computing Science at the University of
Glasgow with previous appointments at the universities of: Pennsylvania,
Edinburgh, East Anglia, Cambridge, Rangoon and Lancaster. He began his
computing science career building language processors. He moved into
computer aided design and specialised in the provision of databases for
generic CAD applications. This led to the current work on eliminating
discontinuities in the programmer’s environment.

E. Babb

Ed Babb obtained qualifications in Electrical Engineering and Computer
Science from Imperial College. He then researched adaptive pattern recogni
tion systems at Cambridge University on secondment from Hawker Siddely
Dynamics. From about 1971, working in ICL, he researched speech recogni
tion and information retrieval. His work on CAFS covered storage struc
tures, architectures and query languages. He is now studying the application
of mathematical logic to business and is currently the manager of the logic
language project in the Systems Strategy Centre at Bracknell.

C.W. Bartlett

Clive Bartlett took a degree in Electrical Engineering at King’s College,
Newcastle and since that time has worked exclusively in the computing
industry-starting with EMI and subsequently with ICL. Initially he was
concerned with hardware design, both of logic elements and of computer
subsystems. In 1965 he moved over to software and worked on Test and
Diagnosis problems at all levels, culminating in being involved in the initial
work on Testing and Error Management for the 2900 Series and being
responsible for the overall design, at system level, of the Test and Diagnostic
Systems for several members of the 2900 Range. In 1979, turned to working
on tools systems for the numerate management of quality including a model
for the prediction of system reliability based on the use of Expert System
techniques. In 1982, became a founder member of the (then 4 strong) new
Knowledge Engineering Group. Since then has, apart from writing S39XC,
worked on a wide range of KBS topics at all levels. He has had an interest in
Artificial Intelligence and its application to practical problems since 1968,
when a friend sought advice on how to write a program to solve problems

ICL Technical Journal May 1987 601

concerned with the design of conveyor belt systems from kits of standard
parts-a problem which has only recently become solvable by the use of
techniques related to those described in his paper.

J.B. Bocca

Jorge B. Bocca graduated from the Universidad de Chile with a degree in
Economics. After graduating he worked as a System Analyst in industry and
then, he returned to University at St. Andrews to do an M.Sc. in Computa
tional Science. In 1979 he joined Southampton University to do research in
the field of relational data base systems. Here, he obtained his Ph.D. in
Computer Science. From there he went to Bristol University to work as a
researcher into distributed data base systems and later on, to the University
of Ulster as a lecturer in Computer Science. Shortly after joining ICL early in
1985, he was detached to the European Computer-Industry Research Centre
(ECRC) in Munich, as a researcher in the field of Knowledge Bases. He has
numerous publications in the fields of logic and data bases.

P. Broughton

Phil Broughton has a B.Sc. in Electronics Science from Southampton
University. After graduating in 1970 he joined ICL to work on the hardware
design of large and medium mainframe machines; as a logic designer he was
one of the key engineers for the 2980 and its development into 2982, later
working on the design of a large pipelined successor to the 2980. Since then
he has managed the design of the 3900 HSC, LSC & MSC and level 30 Store.
On Flagship he has managed the early phase of hardware development, later
moving to his current post to manage the system software.

Chris Clack

After graduating from Queen’s College Cambridge Chris Clack spent two
years in the oil industry as an International Field Engineer before moving
into computing. He has Master’s degrees in both Physics and Computing
Science and has worked for the last three years as a member of the research
staff at University College London. His major research interests are func
tional languages and parallel architectures. He is a consultant to The
Instruction Set Ltd, specialising in UNIX and C. He co-designed the graph
reduction machine GRIP and is currently working on its construction at
UCL as part of the Alvey programme.

M.G. Cutcher

Martyn Cutcher graduated from the University of Surrey in 1981 with a Bsc.
(Hons.) in Civil Engineering and joined ICL (Distributed Systems) in August
1982 to work on S25 systems software. In 1985 he moved to Applied Systems
to work on the Alvey Flagship project, investigating the Fifth Generation
applications scenario. In January 1986 he joined the Systems and Architec

602 ICL Technical Journal May 1987

ture group in Applied Systems where he has worked on the ESPRIT 956
COCOS project and has continued work on parallel logic languages.

Professor J. Darlington

John Darlington studied for his degree in Mathematics and Computing at the
London School of Economics from 1966-1969. He then went to the Depart
ment of Artificial Intelligence at Edinburgh University to study for a Ph.D.
degree with Rod Burstall. The Ph.D., which was awarded in 1973, introduced
for the first time the idea of systematic program development using formally
based transformations. This work was continued as a Research Fellow until
1977 when Dr. Darlington moved to Imperial College to take up a lectureship.
There Dr. Darlington was responsible for the initial invention of the ALICE
parallel graph reduction machine. He was promoted to Reader in 1982 and to
the personal Chair of Programming Methodology in 1985.

Dr. Darlington’s work has been centred around the development of Functional
Programming languages particularly topics of program transformation and the
design of parallel architectures. He heads a research group developing these
topics and is Principal Investigator on the Flagship project, an Alvey col
laboration with ICL and Plessey, aiming to develop these ideas commercially.

Dr. J.R.W. Glauert

John Glauert is Information Technology Lecturer in the School of Information
Systems at the University of East Anglia, Norwich. After graduating from
Cambridge University with a degree in Natural Sciences, he studied for an M.Sc.
in Computing Science at Manchester University where he was involved in the
design of an early Dataflow Language. He studied for his Ph.D. at Cambridge,
researching into Relational Database Systems. He returned to Manchester to
work on language design and implementation for the Dataflow Project. At UEA
he is researching general graph-rewriting models of computation for parallel
systems with a grant under the Alvey Programme.

Dr. J.R. Kennaxvay

After graduating in Mathematics at Edinburgh University, Richard Kennaway
studied at the Programming Research Group at Oxford University for an
M.Sc., and subsequently a D.Phil. in Mathematics, in the area of formal
semantics of parallelism and non-determinism. He then held a research post at
Edinburgh University, where he continued to work in this field and completed
his D.Phil. thesis. He is currently working in Professor Sleep’s research group,
on graph-rewriting semantics for parallel computation.

S.R. Leunig

Steve Leunig has a B.Sc. in Mathematics from the University of Western
Australia and a M.Sc. in Computing Science from London University. After

ICL Technical Journal May 1987 603

graduating in 1974 he joined ICL to work in VME support, later moving to
join the VME Comms team where he became a leading designer. On
Flagship he is leading the design of the system software.

Professor R. Morrison

Ronald Morrison is a graduate of the Universities of Strathclyde, Glasgow
and St. Andrews. After a three year spell as a system programmer at Glasgow
he moved to a Lectureship in the Department of Computational Science at
St. Andrews in 1972 where he is now one of the two Professors, and the
leader of the Programming Research Team. His main interests are in
programming language design and implementation. He has designed several
languages, including S-Algol and PS-Agol: he is co-author of two books,
Recursive Descent Compiling (with A.J.T. Davie) (Ellis Horwood 1981) and
Introduction to Programming with S-Algol (with A.J. Cole) (Cambridge
University Press 1982) and has in preparation Developing Large Software
Systems using Ada (with I. Sommerville) (Addison Wesley) and Data Types
and Persistence (with M.P. Atkinson and O.P. Buneman) (Springer). In 1983
he was Visiting Fellow at the Australian National University, Canberra. At
St. Andrews he is one of the technical directors of a £2M project aimed at
revolutionising programming techniques, funded by the Science and Engi
neering Reaserch Council and STC.

Jean-Marie Nicolas

Jean-Marie Nicolas received the M.Sc. degree in Computing Science from
the University of Grenoble, France, in 1969, the “Doctorat de 3eme Cycle”
and the “Doctorat D’Etat” degrees from the University of Toulouse, France,
in 1973 and 1979 respectively.

During 1969-1970 he served as a research assistant with the Computer
Science Laboratory of the University of Toulouse. From 1971-1983 he was a
research engineer with the ONERA-CERT Computer Science Department
in Toulouse and a part-time lecturer at Sup’Aero. Shortly after joining the
BULL company in 1984 he was detached to the European Computer-
Industry Research Centre (ECRC) in Munich, West-Germany where he is
presently in charge of the Knowledge/Data Base research group.

Dr. Nicolas has published several books devoted to artificial intelligence and
databases, as well as numerous articles in journals and conferences devoted
to these subjects. His primary research interests concern both theoretical and
practical aspects of databases, logic/deductive databases and knowledge
bases.

Simon L. Peyton-Jones

Simon Peyton Jones is a Senior Lecturer in Computer Science at University
College London. After graduating from Trinity College Cambridge he

604 ICL Technical Journal May 1987

worked on industrial computing for two years before taking up his present
post. His main research interest is in functional programming languages and
their implementation, and he is currently leading a team in an Alvey project
to design and build a high performance graph reduction machine, GRIP. He
has written a book about the implementation of functional languages using
graph reduction, to be published by Prentice Hall in March 1987.

E.C.P. Portman

Charlie Portman gained his B.Eng. at Liverpool University and joined
Ferranti’s Computer Department in 1954. He worked as a circuit engineer, a
logic designer, a test programmer and led a drum commissioning team before
taking responsibility for the Sirius Project. He worked on the Ferranti Orion
Computer and took the first of these machines to Sweden in 1963. He later
led development of the 1900 series machines at West Gorton Manchester. In
1972 set up and managed the Software Division for ICT with staff at
Manchester, Kidsgrove, Stoke and Stevenage. The Division had responsi
bility for 1900 Executive Programmes, Test Programmes for both 1900 and
the early 2900 machines and also was responsible for an early 2900
Supervisor programme.

Later roles in Systems Engineering and Advanced Development led to the
present task of leading the Alvey DHSS Large Scale Demonstrator for ICL’s
Knowledge Engineering unit. This demonstrator is a five year, £3-75M,
advanced development project aimed at introducing IKBS techniques into
large legislation based organisations. Over 30 staff in the Universities of
Lancaster and of Surrey and Imperial College, London and at Logica and
ICL are involved.

Among other external activities he is a member of the Science and Engineer
ing Research Council’s Computer Science Committee.

John M. Pratt

John Pratt is the Group Leader of the Man-Machine Interaction Group of
the European Computer-Industry Research Centre (ECRC), which is jointly
owned by ICL, VLL, and SIEMENS, and is located in Munich. He was an
English Electric Scholar at Cambridge, took an Engineering degree, and
naturally joined English Electric Computers in 1961. He has been with the
emerging ICL most of the subsequent time, with short diversions with
Honeywell Controls and ITT Europe. His work has concentrated on the
design and engineering problems of input-output systems, with particular
emphasis on the efficient integration of software and hardware. He has
particularly investigated the special problems of real time system design, data
communication systems and high performance interactive graphic systems,
and encouraged the investment in MMI research in universities. His current
research objective is to include the strengths of the user within the system
design process, leading to a more powerful, symbiotic, combinations of man
and machine. He is a Chartered Engineer and a member of the IEE.

ICL Technical Journal May 1987 605

G.D. Pratten

Graham Pratten is a Chief Research Fellow in Software Directorate, STL
North West. He is an MA of Cambridge University, having graduated in
mathematics with Tripos Part III in 1962. He followed the LEO III-English
Electric-ICL-STC path through the evolution of STC. His career has
involved him with LEO III software, System 4 software strategy, the EMAS
(Edinburgh University) project, VME database systems, CADES design,
mainframes software engineering strategy, ICL’s University Research Coun
cil and the Software Engineering Technology Centre (SETC).

S. Prior

Steve Prior has worked for ICL since 1969. He has been involved with
various aspects of 1900 and 2900 software design and development. He is
currently designer/implementer with the Flagship system software team. He
is interested in formal methods, having spent four months in 1985 on
sabbatical to the Formal Methods group at Manchester University, and is
investigating the introduction of formal specification techniques into the
Flagship project.

B.J. Procter

Brian Procter has a B.Sc. in Physics and Mathematics. He has worked in the
computer industry for nearly thirty years, joining EMI where he worked on
one of the earliest transistor “second generaton” machines. With ICT and
subsequently ICL, he was the lead designer and later design project leader on
most of the smaller 1900 series computers, 2903 and 2960; and system design
manager on Series 39 Level 30. Next came an involvement in shaping the
VLSI design policy carried out with corporate responsibility. His present job
is technical management of the Flagship programme and member of the
group technical steering team with special responsibility for new architecture.

M.J. Rigg

After graduating from Cambridge University with a degree in Mechanical
Sciences Malcolm Rigg joined IBM as an engineer and subsequently moved
to IBM Hursley where he worked on product assurance of both hardware
and software. After joining ICL Dataskil he spent some years working with
the Commission of European Communities as a technical consultant in APL,
graphics and statistical tools. More recently he has concentrated on the
evaluation of new products and techniques, and the formulation of technical
strategy within the Public Services Business Centre of Industry Systems-
formerly the Public Administration Business Centre of Applied Systems.

Jon Salkild

Jon Salkild graduated from Jesus College Cambridge with a degree in Genetics
and went on to do an M.Sc. in Computer Science at University College London.

606 ICL Technical Journal May 1987

He is currently involved in the design and construction of the parallel graph
reduction machine GRIP at UCL as part of the Alvey program.

J. Sargeant

John Sargeant is a SERC research fellow in the department of Computer
Science at the University of Manchester. He worked on the Manchester
Dataflow project, obtaining his Ph.D. in 1985 for work on data structure
implementation in dataflow computers. His research interests include paral
lel computer architecture, operational behaviour of parallel computer sys
tems, and programming language implementation for parallel machines.

C.J. Skelton

Colin Skelton graduated from University College, London, with an Honours
Degree in Physics. He designed servosystems and launch control electronics
with Hawker Siddeley Dynamics (now British Aerospace) before joining ICL.
Since 1971 he has managed the development of the 2960, 2956, 2966 and
most recently the Series 39 Level 30 mainframe systems. As Head of the 5G
Systems Department in ICL’s Mainframe Systems Division he is now Project
Manager for the Flagship declarative architecture and parallel processing
consortium.

Professor M.R. Sleep

After graduating in Physics at Bristol University, Ronan Sleep lectured at
Brunei University where he also completed his Ph.D. thesis. He then moved
to the University of East Anglia at Norwich where he has built up a research
team in the field of New Generation Languages and Architectures, supported
by SERC and Alvey grants. He was seconded to the Alvey Directorate for a
period of two years during which he helped establish the Alvey Architecture
Programme. He is presently Professor of Computing Science at UEA.

M. Small

Mike Small is a graduate of Brunei University and has worked for ICL since
1967. He is the System Designer responsible for VCMS (VME Capacity
Management System) and Reveal, the Knowledge Engineering tool upon
which VCMS is based. Previously he was involved in the design of test
systems for ICL mainframes including ME29. He is a Chartered Engineer, a
member of the BCS and the BIM.

C.M. Thomson

Tom Thomson received a BA in mathematics at Oxford and an M.Sc. in
logic at Bristol (1967). After working for English Electric, the University of
East Anglia, and CTL on various aspects of software development he joined
ICL in 1971 and specialised in communications for 13 years. Since 1985 he

ICL Technical Journal May 1987 607

has acted as a system architecture consultant in ICL’s Fifth Generation
system development team.

Paul Townsend

Paul Townsend joined the Royal Air Force in 1963 for a three year electronics
and navigation apprenticeship with the 104th entry RAF Malton. His
subsequent main involvement was with digital/analogue flight simulators.

After working with Ferranti he joined ICL Mainframe Systems in 1974,
became involved with the development of the 2980 and 2982 large main
frames and with their proposed successor as a project leader and then was a
Design Manager on the Input/Output systems for the System 39 Levels 30
and 80 machines. He then became Design Manager for the ALICE project
and is now Manager for the ICL Fifth Generation systems computer
architecture and hardware.

I. Watson

Ian Watson is a senior lecturer in the Department of Computer Science,
University of Manchester. He has been employed at the university since
obtaining his Ph.D. there in 1973. His main research interest is in the
architecture of parallel computers. He was responsible for the major part of the
engineering design of the Manchester Dataflow computer; a novel prototype
parallel machine which became operational in 1981. Since then, he has
concentrated on the design of machines to support the declarative style of
programming.

P. Watson

Paul Watson is a lecturer in the Department of Computer Science at the
University of Manchester, where he has been employed since completing his
Ph.D. in September 1986. His major research interest is in the design of
computational models for the parallel evaluation of declarative languages.
Other interests include Functional and Logic Programming, the Lambda
Calculus and Garbage Collection. Work in the latter area has led to the
design of a new scheme for Garbage Collection on Parallel Computers,
which has been patented by ICL.

J. V Woods

Viv Woods is a senior lecturer in the Department of Computer Science at the
University of Manchester where he has been employed since 1968. He had
previously been employed for five years by ICT before moving to an
academic post at Manchester to undertake research work for a Ph.D. He was
heavily involved in the MU5 project undertaken in liaison with ICL and
subsequently with the MU6 development. Subsequently his interest has
transfered to the architecture of parallel machines and is currently investigat
ing designs to support declarative programming styles.

608 ICL Technical Journal May 1987

