
V o lu m e 6 I s s u e 3 M ay 1989

Published by
INTERNATIONAL COMPUTERS LIMITED

at
OXFORD UNIVERSITY PRESS

TECHNICAL
JOURNAL

ICL
T C P U M I P A I The ICL Technical Journal is published twice a year by
' . International Computers Limited at Oxford University
JOURNAL Press

Editor
J. Howlett
ICL House, Putney, London SW15 ISW, UK

Editorial Board

J. Howlett (Editor) F.F. Land
H.M. Cropper (F International) (London Business School)
D.W. Davies, FRS K.H. Macdonald
G.E. Felton M.R. Miller
M.D. Godfrey (British Telecom Research
(Imperial College, London Laboratories)
University) J.M.M. Pinkerton
C.H.L. Goodman E.C.P. Portman
(STCTechnology Ltd B.C. Warboys (University
and King’s College,) of Manchester)
London)

All correspondence and papers to be considered for publication should be
addressed to the Editor.

The views expressed in the papers are those of the authors and do not
necessarily represent ICL policy.

1989 subscription rates: annual subscription £35 UK, £44 rest of world, US
$88 N. America; single issues £17 UK, £22 rest of world, US $38 N. America.
Orders with remittances should be sent to the Journals Subscriptions
Department, Oxford University Press, Walton Street, Oxford 0X2 6DP,
UK.

This publication is copyright under the Berne Convention and the Inter
national Copyright Convention. All rights reserved. Apart from any copying
under the UK Copyright Act 1956, part 1, section 7, whereby a single copy of
an article may be supplied, under certain conditions, for the purposes of
research or private study, by a library of a class prescribed by the UK Board
of Trade Regulations (Statutory Instruments 1957, No. 868), no part of this
publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means without the prior permission of the copyright
owners. Permission is, however, not required to copy abstracts of papers or
articles on condition that a full reference to the source is shown. Multiple
copying of the contents of the publication without permission is always
illegal.
© 1989 International Computers Limited

Printed by H Charlesworth & Co Ltd, Huddersfield ISSN 0142-1557

Contents

Foreword
John Dickson 407

Tools, Methods and Theories: a personal view of progress towards
Systems Engineering
David E. Talbot 409

Systems Integration
Roger Lucas 415

An architectural framework for systems
P. Henderson and B. Warboys 435

Twenty Years with Support Environments
Brian Warboys and Philip Veasey 447

An Introduction to the IPSE 2.5 Project
R.A. Snowdon 467

The case for Case
Fred Russell 479

The UK Inland Revenue operational systems
E. Wilson 496

La Solution ICL chez Carrefour a Orleans
Y. Pisigot 500

A Formally Specified In-Store System for the Retail Sector
Val Jones 511

. . . towards a Geographic Information System
J.M.P. Quinn 542

ICL Technical Journal May 1989 j

TECHNICAL
JOURNAL
Volum e 6 Issu e 3

“Ingres Physical Design Adviser”: a prototype system for advising
on the physical design of an Ingres relational database
Michael Gunner 557

KANT — a Knowledge Analysis Tool
Graham E. Storrs and Chris. P. Burton 572

Pure logic language
Edward Bahh 585

The ‘Design to Product’ Alvey Demonstrator
Dr. L.D. Burrow 598

Notes on Authors 617

i> ICL Technical Journal May 1989

Foreword

It is now clear that Information and Information Systems are becoming the
life-blood of organisations.

The scale and impact of this is demonstrated in this issue, on the one hand by
the experience at the Inland Revenue in the UK, where one of the largest
databases in Europe is now regarded as a mere component in an organisa
tion-wide system, and on the other by what is happening at the most
recently-opened CARREFOUR hypermarket in France, where the closest
integration of business needs and information systems is required for instant
and local information on customer needs, stock optimisation and responsive
price and margin management.

These two examples are not isolated instances but are increasingly represen
tative of the demands of our marketplace. This marketplace is one in which
customers need to manage and specify such systems as a part of their overall
business process, and in which ever-increasing standards of quality and
reliability are demanded.

It is appropriate therefore that this issue concentrates on system architec
tures and integration. Clear demonstration is given of:

— the scale and complexity of systems currently in use

— the availability of formal methods for aiding the correct specification and
implementation of these systems

and

— the emergence of concepts and formalisms to support the design and
management of the complex integrated socio-technical systems that will
be required in the 1990s.

In addition, this issue vividly illustrates the impressive range of skills and
experience available from ICL and its collaborators and the way in which
advanced system theories and techniques can be rapidly applied to give real
business advantage.

John Dickson
Managing Director, ICL Product Operations

ICL Technical Journal May 1989 407

Tools, Methods and Theories: a personal
view of progress towards Systems

Engineering*
David E. Talbot

ICL Marketing and Business Strategy, Bracknell, Berkshire

Introduction

I am writing this paper from the standpoint of an Industrial consumer of
Tools, Methods and Theories. As such, one needs to be clear that the overall
goal of real interest is concerned not just with software engineering, or
human factors, or the inclusion of “knowledge” in systems or devices but
with the predictable construction of systems which usually contain all or at
least very many of these constituent elements. It is, of course, a system that in
the end a customer buys, not just its software or hardware or a knowledge
base or the interfaces that it presents to its users. The overall goal of work in
this field must therefore be Systems Engineering.

The original Alvey Software Engineering Strategy certainly recognised this
requirement from the outset. However, it also appreciated that we had a
considerably less well founded position in Systems Engineering than in
Software Engineering. In consequence, over its limited course of 5 years the
emphasis of the programme was placed on developing and consolidating the
Methods, Theories and Tools required to turn the business of producing
software into a more predictable enterprise and one much less dependent on
“wizards” and similar exotic creatures. Furthermore, Software Engineering
was seen as a promising base from which a more general approach to
building systems could be realised.

I aim, therefore, to review:

- how far Software Engineering has developed in terms of meeting its
original more limited aims and how this contributes to the Systems
Engineering goal.

- how far associated disciplines concerned with hardware, with issues of the
human interface and with knowledge based systems have moved to
encompass also the “system” view.

"This paper is based on an address given at the 1988 Alvey Conference; permission to publish it
here is gratefully acknowledged.

ICL Technical Journal May 1989 409

- and above all, how far these notions are really entering the industrial
“soul” and having clear and measurable effects on providing customers
with systems that meet their needs that is “Quality” systems.

The Systems Company

Let me start by proposing a view of “The Systems Company”. It is one that
owes much to the thinking of Peter Cropper, Brian Warboys and others in
ICL who have been worrying professionally about this subject for some years.

A rather simple model would contain a number of quite straightforward
notions:

- first, a view of requirements, and one, moreover, that takes the view that
the elicitation of requirements is a process that requires more than just
sound systematic methods and good tools, but also some understanding
and sympathy with the “market” being investigated.
next, the recurring dream (nightmare?) of “components” and the notion of
component re-use as still the major way in which both the quality of the
finished system can be better assured and the productivity of the engineers
can be raised.

- last, the notion of dealing with components and processes over which the
engineer has only limited control. It raises the issue of how design and
engineering integrity can be established in an environment where the use
of imported product components, and hence by implication their produc
tion processes, needs to be considered the natural way of doing business
rather than the exception.

Perhaps, however, the more interesting features of such a model are
concerned with points not recorded explicitly. These are:

- that the model itself is recursive and is true for successive points on an
integration chain where one man’s system must be considered simply as
another man’s component. Thus at one end of the integration chain it may
be concerned with etching silicon and at the other with, say, the
production of a major C3 System.

- that scale is a constant feature and that any method, theory or tool needs
to accommodate itself completely to systems enterprises that are generally
interesting only at levels measured in terms of tens of man years and
involving the work of teams rather than individuals.

- that since successive integration is an ever present reality the chances of
needing to deal effectively with complexity are high.

Against this background, let me now review developments so far.

Software engineering

Most software engineers would, I believe, have little difficulty in relating to
the model described. However, most would also have some difficulty in

410 ICL Technical Journal May 1989

saying how current developments in methods, theories and tools have been
of practical assistance to them in dealing with a number of the issues raised.

In the area of design the notions of “design in the large(r)” are well
established. Much good work has certainly been achieved in the develop
ment of theories and methods concerned with helping deal more effectively
with decomposition, improved modularity and binding, approaches to
designing-in desirable properties such as reliability and such like. Good
work has also taken place in the development of notations that help express
design more precisely and reason about the correctness of design. These
points are, I believe, of particular importance to software since software
creation is, above all, concerned with the process of design.

Overall good progress has been made in this area and has been accompanied
by the development of some tooling that extends just past the prototype
standard. I have little doubt that over the next few years tooling will improve
to match up to real industrial expectation, including a considerable increase
in the quality and effectiveness of “automatic” programming. However, in
pursuit of the Systems Engineering goal the need is to constantly remind
ourselves that real interest lies in matters concerned with design “in the
large” rather than “in the small”.

Some progress can certainly be claimed in the area of requirements
elicitation and specification. However, it is clear that this will continue to
remain the point in the process where the most expensive errors can and will
occur. There is an increasing recognition that work in IKBS and Human
Factors has much to offer, but integrating these possibilities has been slow; I
believe that we must continue to limit our expectation of what improved
techniques and tools can deliver. This will always be an area where an
understanding of the market need being investigated and the associated
insights that this brings will continue to be more powerful than simply the
exercise of systematic techniques supported by clever tools.

Within the model just described, the clearest single problem area is con
cerned with the notion of components and their re-use. Our hardware
colleagues have this well in hand but it is a matter of record that the “softer”
side has failed to make anything like similar progress. It is true that notions
of “design blueprints”, general application packages, system kernels etc. have
come or are becoming a well founded feature of the software scene. However,
it remains the case that the systematic and natural use of components at
whatever level continues to be a weak spot. Moreover, there is increasing
recognition that this is less of a technical problem than a “management” and
“attitudes” issue. Evidence to date suggests that solutions to this problem
will need to satisfy many legal, commercial, management process and
cultural points.

The final issue that I should like to touch upon here concerns the integration
of methods and tools not just in the context of a single stage in the

ICL Technical Journal May 1989 411

integration chain that makes up a delivered system but across all stages of
the chain. I would claim that the main integrating force should be the model
of the engineering “process”. My own observation here is that while we have
good useful models for the engineering process at the various stages of the
systems building chain, we lack good models of the overall process.
Moreover, enforcing “process” in software engineering continues to be a real
difficulty, relying as it does now on a mixture of brute force (exercised via
project management) and dusty procedure and standards manuals.

If good design through improved techniques and tools supports the business
of handling intrinsic product complexity then I would equally claim that the
successful management of scale, as well as the management of project
complexity, is concerned with improved theories, methods and tools that
support the engineering process. “Hacking”, I would contend, continues to
be the norm rather than the exception in most projects.

Other contributors

That I lump these together is simply an expression of my much more limited
awareness of the fields covered rather than any dismissive suggestion. I will
try to make just a few observations on the very clear and essential
contributions made to Systems Engineering by colleagues concerned with
hardware, human factors and IKBS.

If we start with our hardware colleagues, then again I believe it is true to say
that they would relate strongly to the model and its concerns over scale and
its management. Above all they have made most progress with issues
concerned with component re-use. However, components still tend to be “in
the small” rather than “in the large”. Nevertheless, the notion of components
and their repeated exploitation is a natural one to the hardware engineer and
he has a supporting infrastructure - legal, commercial, management and
technical procedures and above all positive attitudes.

In the area of design I would contend that the most impressive work
continues to be concerned with issues of design in “the (relatively) small”.
Consideration of how best to handle design of large complexity moves, as
predicted some time ago, towards convergence with many of the ideas
developed by software engineering. Further, with designs that exploit the
smallest achievable geometries, it is clear that traditional simulation methods
are becoming stretched beyond the possibility of reasonable containment
and hence increasing interest is being taken in the proof-based methods of
Software Engineering.

Increasingly, we shall also need to develop good decision support techniques
that enable guidance to be given on what functions to realise in silicon and
which in software.

In the area of the management of scale and the successive stages of

412 ICL Technical Journal May 1989

integration through the establishment of well founded process, the hardware
engineer is in much the same boat as his software colleague. Both have a need
to improve the techniques for expressing and enforcing, in a flexible manner,
orderly progress at specific stages of the integration chain; and both have a
need to understand how to develop a “meta process” for the overall chain of
activity.

IKBS techniques and paradigms still represent largely unfulfilled promise in
the matter of improving the techniques that might be applied to design,
process management and requirements elicitation and specification. Whilst
there is clearly an increasing understanding on the part of both the hardware
and software engineering communities that they need to pay considerable
attention to the possibilities available, too many IKBS practitioners still give
unsatisfactory levels of attention to the industrial requirements of
predictability, maintainability and the other general attributes of a well
engineered system or component.

Human Interface teams are now beginning to make real contributions to
both the values of the system product and the system development process.
However, from an industrial viewpoint, I would express some concern at the
slowness with which this has been integrated into the standard working
environment of the systems engineer. It is encouraging to see the problem
tackled in organisational form in the new DTI Information Engineering
Directorate. However, the techniques and tools developing will only be of
help if securely integrated into the overall systems development process.

Penetration into industrial practice

We may feel encouraged therefore that moderate progress has been made in
a number of relevant technical areas, but I believe we must have a lesser sense
of satisfaction with the rate that these new techniques find their way into the
fabric of routine industrial use.

Current surveys (e.g. NCC) continue to suggest that although take-up of
improved methods is making progress, progress continues to be slow. This is
my own observation. Generalisations are made about the reluctance of
senior management to invest; that there is a reluctance to make any more
until the use of these methods and associated investment is fully proven with
all the usual “chicken and egg” effect. I believe that such generalisations are
too simplistic. The USA Department of Defense commissioned a study some
years ago, as part of the Ada introduction programme, on examples of the
speed at which new ideas in the IT field came to be adopted in wide use. My
recollection is that the time from the clear definition of the idea - not
conception - to a clear position of commercial take-up - not universal
adoption - was of the order of 18 years and getting longer.

In short, the implications were that we need to look at the general models of
innovation that are now being explored by Business Schools and commercial

ICL Technical Journal May 1989 413

organisations having a clear interest in this subject. We in ICL count
ourselves amongst such groups. Such models identify a series of subtle and
complex forces at work. Any progress towards improving the take-up cycle
needs to understand these forces - to reduce the negative and re-inforce the
positive.

Suggestions for further study

I conclude this review with an indication of the areas to which I think most
attention should be directed in future.

My first point is that I believe that much thought still needs to be given to the
proper integration of the Software Engineering, Human Interface and IKBS
interests. Inevitably, organisational divisions of disciplines will continue to
exist: for example, systems will still continue to require hardware and
architecture; and this will impede progress to improved Systems Engineering
unless good mechanisms are installed to compensate specifically for what, in
the end, are relatively arbitrary divisions.

My second point takes me back to the issue of the Systems Engineering
process. We have made some progress towards the better understanding,
modelling and control of some of the constituent processes - software life
cycle, hardware development, requirements elicitation etc. - but we still have
little understanding of how we might best integrate these to deliver, in a more
predictable manner, well engineered system components. Further, we have
even less understanding of the meta- processes that are required to deliver
large scale systems involving many stages across the integration chain. I
would suggest that by paying some attention to this issue we might, in
addition to making progress on solving a big problem, make progress on the
organisational points I have noted.

My third and final suggestion centres around perhaps the most significant
issue: how to accelerate take-up of improved theories, methods and tools.
Whilst it is clear that we must continue to worry about developing better
metrics, gaining widespread agreement to these and undertaking trials and
demonstrations to prove effectiveness and increase awareness, it is, to my
mind, of vital importance that we try to understand better the relationships
of this specific problem with the more general problems encountered in the
innovation process. It must be clear, however, that such exploration will take
us well outside our own familiar surroundings.

414 ICL Technical Journal May 1989

Systems Integration
Roger Lucas

ICL Systems Integration Strategy Unit, Product Operations, Bracknell

Abstract

This paper looks at the nature of, and market and industry back
ground to, the emerging demand for Systems Integration. It discusses
the evolving basis for competition within the industry, and the influence
upon this of Open Standards. Finally, it addresses the question of the
attributes of a successful Systems Integrator.

1 Introduction

Is Systems Integration capability an imperative for IT vendor survival in the
1990s and beyond; or is it simply a passing fancy of the industry, a
technological hula hoop to be discarded when something else more intellec
tually attractive comes along?

Although there is no universal accepted definition of Systems Integration, it
is perceived by customers as a key area of interest which is increasing in
importance, and by the IT industry as an attractive business opportunity.

Thus it is currently fashionable for companies in the IT industry to declare
themselves to be Systems Integrators.

Competition is emerging from three main sources:

• Established IT and computer vendors
• Management Consulting houses
• Relatively newly established specialist Systems Integration companies.

This paper takes an overall look at the subject of Systems Integration in the
historical context of the evolving Information Technology industry. It
discusses some of the issues, and suggests some of the implications for the
future of vendors within the industry. It concludes that Systems Integration,
in whatever guise, is here to stay because it represents yet another evolution
ary step along the road of meeting the requirements of businesses, balancing
the capability of the IT industry to deliver against the IT demands of its
customers.

As always in this journal, the views expressed are those of the author and
they do not necessarily represent official ICL policy.

ICL Technical Journal May 1989 415

The dictionary defines integration as “the making up of a whole by adding
together or combining the separate parts or elements”.

In the IT context, this “whole” may be anything from a hardware box or
subassembly through to a complete, managed, distributed, networked system
which meets the total IT needs of a business enterprise. So the computer
industry has been in the integration business from its inception; it had to be
in order to deliver anything at all to its customers.

The factor which has changed with the passage of time is the deliverable itself
and the level of responsibility undertaken directly or implicitly by the vendor.
Progressively, over the years, IT vendors have been required to take on and
manage increasingly high levels of risk on behalf of clients. In the early days it
was generally the norm simply to deliver hardware and rudimentary
software, to provide maintenance and support but then leave the client to
sort out the rest. Although there were some high profile “bespoke” projects
undertaken by vendors on behalf of their clients, these tended to be
approached in a spirit of “shared exploration of the frontiers of technology”.

The evolution from those early days through into the future is discussed
later, but vendors have constantly sought to deliver the highest possible
“value” to their clients. This has been constrained by the levels of technology,
procedure, technique and inspiration available at the time. Thus the industry
can be seen to have been “riding a wave” of maximum practicably deliverable
value, which has taken it, over time, into areas of increasing complexity,
difficulty and risk.

In Systems Integration we have reached the point where, increasingly, the
client wishes to place a contract with a single “prime contractor” for the
delivery of a total business system for his enterprise. This business system will
typically be required to accommodate existing systems, together with new and
specially developed elements, from a variety of suppliers and combine these
into a fully integrated IT infrastructure to support the business. Thus the prime
contractor has sole responsibility for negotiating the price with the client and
managing any subcontractors; he will undertake full responsibility for meeting
the client’s timescales and functional, quality and business requirements. The
normal attributes for such a project will be high risk, innovative, complex and
an inability to be supplied “off the shelf” or from a single vendor.

Thus a Systems Integration contract can be defined as “a contract where a
prime contractor takes total responsibility for a multi-vendor, multi-contrac
tor IT project which delivers a client-specific solution to harmonise fully with
the client’s particular business and IT environment”. The skills and capabili
ties needed to fulfil this role successfully are discussed later.

So, to summarise, here we have high complexity and high risk for the systems

2 W hat is S y s te m s Integration?

416 ICL Technical Journal May 1989

integrator who is delivering very high value to his client’s business whilst
being subject to the fierce market forces of competitive tendering. Clearly this
is not the type of business to undertake lightly.

However, this is just the sort of business which the market leaders are already
demanding, and an area into which most major IT users will migrate in the
future, albeit some much more slowly than others. Meanwhile, the formal
Systems Integration contract can be viewed as the high profile, de-luxe
business solutions service which must be offered by all significant vendors in
the IT market. They must be able to do this, that is to be Systems Integrators,
because ultimately the only alternatives will be to become either a high-
volume commodity “box” supplier or a specialist niche subcontractor.

The Systems Integrator needs to be able to deliver whatever level and type of
IT solution his customers require. In the short and medium term, the bulk of
his business will be outside the scope of formal Systems Integration
contracts. Nevertheless he will increasingly need to call upon his Systems
Integration skills in order to meet his customers’ more routine requirements,
and without the impetus of these contracts his ability to compete at other
levels will steadily decline.

3 Market background

In the past, customers have bought freestanding mainframe and mini
computer systems from companies such as ICL. The task of generating local
applications and integrating these into the customer’s business and comput
ing environment has generally been undertaken by the customer himself.

Most medium/large organisations now have a multiplicity of computer
systems which, together, drive the business. But these systems need to
intercommunicate in order to give the organisation the maximum useful
information from its dispersed data sources. Intercommunication with
applications systems is necessary at system, file and terminal level; there is
also a need for access to common services such as electronic mail.

In order to meet these demands, many organisations have installed corporate
data networks to allow cross-connection between all relevant systems/termi-
nals within a unified framework. Most organisations now accept that they
will ultimately have to follow this path. This is a major integration task
which few have yet satisfactorily completed and which most accept is beyond
their experience or skills to achieve in-house.

These data networks are rapidly converging with the established corporate
voice networks, and the two will logically and physically merge together into
corporate information networks once suitable user terminals and networking
systems are readily available.

With the advent of networked applications systems, the distinction between

ICL Technical Journal May 1989 417

applications can no longer be described in terms of the equipment on which
they run (e.g. Mainframe, Mini and Micro computers). Instead it is becoming
accepted industry practice to describe computing in terms of the use to which
the computers and applications are put; namely, Corporate, Departmental or
Personal computing, linked together by a Network. This is the basis of the
CDPN model, used as a common reference model within ICL and with our
customers (Fig. 1 identifies some of the main attributes and requirements for
each of these types of Server).

Fig. 1

In order to allow the construction of networked systems of any desired shape
or complexity it is necessary to use modular “building blocks”, all of which
must necessarily conform to the same basic standards. Because major
corporate networks will contain systems from more than one vendor, these
standards need to be defined and controlled by the industry, rather than
being proprietary. Thus such standards are being widely adopted as corpo
rate purchasing standards, used by organisations to ensure that, despite
decentralised purchasing of information systems, all systems will still be able
to talk to each other through the corporate network.

Having established its corporate network, an organisation will then need to
connect it to the outside world. A growing dependence on public information
providers and industry-specific networks, plus the need for inter-enterprise
communication up or down the customer’s supply chain, means that a
further, higher level of integration is necessary. The addition of multi-mode
(e.g. voice, image) to this picture will add a further degree of complexity.

In today’s competitive world, a business needs to be managed as a single

418 ICL Technical Journal May 1989

cohesive entity and this can only be fully achieved if its information systems
are fully integrated. It is also becoming accepted by the business community
that IT is a prime source of competitive advantage, and as such is closely
linked to the success of their companies (see Fig. 2).

Success and Strategic Information Systems

The Success of our company is closely linked to our ability
to gain competitive advantage using information systems

Based on a survey of 286 chief executive officers
and 591 chief information officers

Source: United Research Co. Inc. Morristown N.J. USA

Fig. 2

Consequently, business enterprises are increasingly likely to focus their in-
house IT resources on areas of specific competitive advantage to their
business. Thus they will want to buy-in standard solutions and commodity
products for functional areas where they cannot gain significant competitive
advantage; they will also want to subcontract much of the integration task.
Thus an enterprise will typically place a number of contracts with separate
suppliers in order to construct an IT business system. Management of these
contracts to co-ordinated, successful completion is a highly skilled and de
manding task which many will wish to devolve to a single prime contractor.

From the IT supplier’s viewpoint, there are attractive business opportunities
in managing the enormous implementation complexities of these contem
porary IT solutions. Economies of scale can be gained by tailoring standard
solutions, repackaging bespoke systems elements into standardised modules
and systems, utilising standard building blocks for system and network con
struction, the sharing and cross fertilising of scarce and expensive skills, and
the accumulation of knowledge and associated intellectual property rights.

ICL Technical Journal May 1989 419

The end result is that customers today do not in general just buy “boxes”,
neither do they just buy “standard solutions”. Instead they are increasingly
placing a range of contracts for the purchase of standard products, standard
solutions, bespoke systems and major bespoke integrations through to
facilities management. There are differences between industry types in what
they will buy; there are also significant differences between customers in the
same industry, depending on their needs and in-house skills.

So, overall the IT requirements and expectations of businesses are becoming
more sophisticated and are thus placing demands of increasing complexity
on their information systems and networks. Consequently, the need for
delivery of fully integrated systems is paramount; so too is the need to
integrate new systems with existing applications and networks. But the
integration requirement does not stop there; a properly engineered enter
prise-wide IT system should also fully integrate with the business organisa
tion and its modus operandi. It should be structured and designed to full
ergonomic standards so that it integrates socially and functionally with the
business, its people and the way they work.

This requires far more than simply “plugging systems together” within
networks. It addresses fundamental questions concerning the structure and
shape of the business, relating this to how IT can assist any restructuring to
gain competitive advantage.

4 The evolving demand for integration

Figure 3 attempts to capture the essence of the progressive evolution in
market demands for integration. Over the years there has been a steady
increase in demand for more sophisticated integration at successively higher
logical levels; this is represented by the diagonal line showing integration
level versus time.

Thus in the early days of computing, the integration task was essentially that
of putting together a viable hardware structure. This soon extended to
include software and applications, evolving through business systems to the
current prime demand for business solutions, and leading on to the growing
demand for enterprise-wide IT integration. In the further future this is likely
to develop into large-scale IT integration between separate enterprises and,
later, complete industries. A variant of this last item will be the changing of
the boundaries between existing industries (e.g. Retail and Finance; Govern
ment privatisation programmes; Europe 1992).

The intrinsic difficulty of achieving the level of integration demanded, in a
multi-vendor environment, at each point in time is indicated diagram-
matically by superimposing the upper dotted curve which shows complexity
factor versus integration level. The net difficulty of doing this using today’s
tools and standards is represented by the lower dotted curve.

420 ICL Technical Journal May 1989

Fig. 3

This figure is representational and not definitive; it should be interpreted as
follows: if a perpendicular to the x-axis intersects the complexity curve below
the integration demand line, then the vertical distance between these two
indicates the relative ease of achieving the integration level demanded at that
time (the integration level is read from the y-axis at the point of the
perpendicular’s intersection with integration demand line). Conversely, an
intersection with the complexity curve above the integration demand line
denotes relative risk of failure or “degree of impossibility”.

So, Fig. 3 illustrates that appropriate tools, standards, technology and
techniques are essential to support all levels of integration activity. It is the
role of Technical Strategy to point the way forward in these areas, so that the
increasing complexities can be controlled and managed effectively.

Figure 4 indicates where some of the specific tools, standards and techniques
of today contribute to reducing the intrinsic complexity of integration at
each level and thus combine to bridge the gap between the two complexity
curves shown in Fig. 3.

So, an appropriate range of tools and standards is, and will continue to be,
essential to enable the IT industry to deliver the required level of integration.
The industry still has a lot more work to do to facilitate the large scale
integration between enterprises and industries (EDI is a start), and much
remains to be done to improve the lower levels of integration. Knowledge

ICL Technical Journal May 1989 421

Key:
a: Design automation j: Man machine interface (MMI)
b: Standard protocols k: Human computer interaction (HCI)
c: Wiring standards I: Community management
d: Interconnection standards m: Security
e: Softwear engineering n: Human factors in design
f: Applications standards o: Integration architecture
g: Interworking standards p: Electronic data interchange (EDI)
h: Interworking services q: Open distributed processing (ODP)
i: Information Management standards

Fig. 4

based systems certainly have a major role to play from now on; likewise
ODP appears to have much to offer in managing and integrating diversity.

5 Types of integration business

Within an IT supplier such as ICL, integration is something which must take
place throughout the company in order to create, from available components
and skills and processes, solutions which have sufficient value to its
customers to bring profit to the company. The prime concern must be to
deliver whatever components, systems and solutions bring the highest
perceived value to the customer’s business. Requirements vary widely
between different customers and industries, so it is necessary to be able to
transact different types of business, which need, in turn, to be supported by
several different types of integration.

Customers also are integrators, buying from many sources to build their own

422 ICL Technical Journal May 1989

solutions. Different customers make widely different choices of what to
integrate themselves and what to buy, depending on the value of the
integration and their ability to afford and manage the necessary skills.

Fig. 5

Figure 5 depicts the various ways in which a customer’s requirement may be
satisfied, identifying three major types of business and seven main areas of
supporting integration activity. These are:

(i) The supply of a range of generic products (e.g. ICL’s Networked
Product Line), with common integration standards based on Open
Standards, suitable for all markets and customers, that the customer
himself integrates into his IT systems. This subdivides into products
(hardware and software) and infrastructure (e.g. electronic office);

(ii) the supply of standard solutions, designed for an identified market,
integrated by the Systems Integrator from his generic products and
industry-specific products, and optionally tailored as necessary to the
needs of each individual country, sub-segment, or customer (for
example, Retail in-store systems);

(iii) fulfilling prime contracts for bespoke systems for an individual cus
tomer, integrated by the Systems Integrator and his subcontractors
from products and technology of diverse origin, including the custom
er’s existing installed system. This subdivides into three parts: Bespoke
systems (“green field” developments), Post-hoc integration (integrating
whatever the customer currently has installed), and Facilities Manage
ment. A formal Systems Integration contract will normally be based on
one or more of these.

The core of the business of a full-function Systems Integrator is in being able
to supply to its customers whichever combination of the above they perceive

ICL Technical Journal May 1989 423

to be of most value to their businesses. Full integration with the customer’s
business will be needed and this implies more than just plugging his systems
together to form an Enterprise Network. The totality of the Enterprise sys
tem needs to integrate ergonomically with the business and its environment:

organisationally: by providing access to the right information (rather than
data) in the right form and by providing the correct
functionality (sub)sets;

socially: by being easy to understand, relate to and use, having
consistent “seamless” interfaces and allowing people to
work in the way they find most convenient;

managerially: by being easy to monitor, change, update and maintain;
visually: by having equipment styles and colour options which

can be changed to blend with specific working environ
ments in especially image-conscious markets.

So, to summarise:

• Every solution delivered to a customer is the product of a chain of
integration functions (running from left to right in Fig. 5) of up to seven
main types, each adding value. A given business unit within the vendor’s
organisation will be part of many such value chains and may sit at
different points on each; the customer himself may also do some of the
integration.

• Understanding and accurately quantifying these value chains and their
complex interaction within the vendor’s organisation, and their relation
ship to customers’ own value chains will be essential for the vendor’s
ongoing market success and profitability.

• The fundamental requirement of an integration function is that it adds
value rather than cost to a system or solution. It should not simply be
there to “fix” repeatedly the problems which originate “upstream” in the
integration chain. So the Quality process has a central part to play in
Systems Integration now and in the future.

Within the ICL context, our Industry Marketing strategy will require us
increasingly to be perceived by the market as being highly competent in all
aspects of IT for our chosen industries. This requires us to be able to provide
a complete range of IT services to those markets; in other words, to cover the
full scope of functionality depicted in Fig. 5, together with the associated
skills, processes, support and consultancy which this implies.

6 Channelling value to Customers

Figure 5 covers what needs to be delivered. However, there is a further major
consideration; namely, by what means should it be delivered? Taking ICL as
the model:

While ICL’s objective is to be the preferred and trusted partner, and supplier

424 ICL Technical Journal May 1989

of value, to each of its customers, ICL cannot always be the supplier of all
value.

However, each customer should have an IT Architecture that ICL under
stands and preferably supplies. This will be derived from mapping the
customer’s business IT needs, his Enterprise Model, onto a standard
implementation architecture.

Within that IT architecture, ICL should seek to co-ordinate three major
distribution channel elements under ICL management:

• the ICL Direct Sales Force;
• other product suppliers;
• other integrators.

Fig. 6

Figure 6 represents the various channels through which people and skills
may bring value to customers. The wide variety of customer requirements
and the size and scope of contracts to be undertaken will require widely
varying mixes of contribution between these partners. In some cases ICL
may participate in consortia or undertake a specific part of a larger project.

The decision as to what is handled “in house” within ICL and what is de
volved to partners will depend on such factors as strategic importance, skills
available, profitability and local conditions. Any future acquisitions, collabora
tions and joint ventures will also have a significant influence on this decision.

7 Standards and Differentiation

Open Standards are an invaluable enabler for Systems Integration. They are
good news for all the stake holders in the IT industry, both vendors and

ICL Technical Journal May 1989 425

users, because they are owned by the industry and are under public change
control. Open Standards are a welcome sign of a maturing IT industry and a
way of taming excessive, gratuitous diversity on the one hand and domina
tion by one vendor on the other.

Two major issues are raised by the existence and growth of Open Standards:

How do vendors differentiate themselves one from another in an increasingly
standardised IT world?

Can a line sensibly be drawn between that which is subject to Open
Standards and that which remains proprietary (and thus highly diverse)?

7.1 Differentiation

The subject of differentiation in a technology-based industry needs to be
viewed in the context of the evolution and maturity of the industry. This is
because the balance between standards conformance and differentiation is
dynamic; that is, it changes over time:

• In a new industry there are no precedents or standards to follow, so
differentiation is primarily technological with a strong emphasis on
(functional) novelty. There is no consensus on “the right way to do
things” and there is not an obvious “winner” to imitate. The result is that
everybody thinks they know best and so do their own thing.

• In a semi-mature industry, most of the technology will be “commodity”
and will conform to standards. Conformance to higher level (e.g.
functional) standards will gradually become mandatory. Differentiation
will be mainly on additional core functionality and (a few) genuine
technical innovations; all these will rapidly be copied by competitors.
There will be a growing need to differentiate on other grounds such as
building corporate or brand image, quality, creative packaging of
offerings, market niching, service, etc.

• In a mature industry, almost everything will be “commodity”, including
most of the technology, core functionality, quality, standards confor
mance, etc. Here the differentiation will tend to be on corporate image,
fashion (easily copied, however), cost (not necessarily lowest), contrived
(promotional) differences and second/third order functionality details.
Very occasionally a major innovation may come along which changes
the rules of the game and causes a transient (or, in extreme cases,
terminal!) instability.

These are obviously generalisations which need to be interpreted differently
for different types of industry, but I would summarise them as:

New industries differentiate on Technology
Semi-mature industries differentiate on Functionality
Mature industries differentiate on Corporate Indentity

426 ICL Technical Journal May 1989

Currently the IT industry is semi-mature, but is moving towards the point
where the leading customers are looking for more than functional differentia
tion of products, they want a company with which they can, with confidence,
plan into the future. Of course such a company must be able to demonstrate
it has sound technology and products and that it conforms to industry
standards and that it can deliver a coherent, integrable range of products; but
these will increasingly become mandatory qualifications for being a player in
the market at all.

In the immediate future, there is still some scope for functional differen
tiation. This will mainly relate to macro “quality” issues such as:

• ergonomic design of hardware and total systems (i.e. “human factors”);
• manageability of networked systems;
• security of networked and distributed systems;
• accessibility of data across networked and distributed systems.

These will all, of course, have to cover multi-vendor environments and work
within the framework of Open Standards.

However, these are likely to be transient differentiators, rapidly becoming
“commodity” items as international standards move upstream to higher
logical levels, and shared codes of “best common practice” become widely
accepted in the industry.

Technology is likely to run further ahead of the industry’s ability to apply it
profitably to business solutions. This will give further opportunities for
technically based product and functional differentiation through innovative
application of technology (e.g. Knowledge Based Systems is an area which
clearly has great promise and untapped potential). However, we should not
under-estimate the inertia of current systems investment which works to
counterbalance radical innovation, despite the enthusiasm and fervour of
committed pioneers.

Nevertheless, barring major discontinuities caused by somebody “changing
the rules of the game” in the industry, one can anticipate a time not too
distant when all these factors cease to be significant sources of advantage in
the market, but instead become disqualifies for those who can’t make the
grade.

7.2 Scope of Open Standards

From the Systems Integrator’s viewpoint, there are great benefits in estab
lishing international standards which are not controlled by any one supplier
or national group. Their presence makes the integration task potentially less
complex and, given that they are widely adopted as procurement standards, a
“neutral space” is created within which vendors can compete on equitable
terms. From the customer’s viewpoint, they do not tie themselves too closely

ICL Technical Journal May 1989 427

to any one supplier and can utilise an optimum mix of products spanning a
variety of suppliers, confident that, because future products and systems will
also conform, they can easily integrate future enhancements into their
business systems.

The industry has made a notable achievement in establishing the current
portfolio of intercommunication and interworking international standards
and is already well down the track on standards of a higher logical level such
as UNIX, CAE, Security and EDI. However defining and agreeing a
standard is one thing; implementing it in a uniform and consistent way is
something entirely different.

It is here that we start to see some of the flaws in this idyllic picture of a
totally standardised IT world. For instance:

• Standards take a long time to formulate and agree and even longer to
appear in a significant selection of products across the different vendors.

• Generally, the higher the logical level of the standard and the more
complex its technical implications, then the longer it usually takes to
formulate and agree, particularly where there is a clash of powerful
vested interests and prior investment. (Paradoxically, the very high level
standards such as EDI are relatively easy to agree; but it is the “middle
ground”, into which much of the standards activity is migrating, which is
the most intractable.)

• Detailed implementation variations of a given standard between differ
ent vendors mean that full compatibility and interworking cannot be
guaranteed. This is a basic “engineering” problem of specification,
tolerances, operating limits and conformance; information engineering
has a long way to go to match the precision of mechanical engineering in
this area.

• It is not usually possible to establish a standard in advance of at least
some products being implemented. Thus there is a significant time lag
between a market or technical opportunity first appearing and an
appropriate standard being agreed. Because this time lag is so great, no
major vendor can afford to delay development until the standard is
agreed. Therefore, there will always be an accumulation of new develop
ments using proprietary standards which run ahead of the international
standards. As the complexity of international standards increases, this
non-standard element will grow in size, creating “diversity-in-depth”
which it will be increasingly difficult to align within the eventually agreed
standards.

• Another driving factor will be the wish of vendors to build differentiation
for their own products and systems on top of international standards. As
higher level standards work encroaches on these areas, there may well be
resistance to conformance, thus further delaying useful implementation
of the standard.

Taking all these factors together, it will be necessary for the industry to define
agreed domains and scopes for formal standards activity, and then to

428 ICL Technical Journal May 1989

determine a method for handling the integration of diversity in the areas thus
excluded. There is no quick or easy answer to this problem, but answer it we
must! Whatever the detailed resolution, the scope for technical differentiation
will still be eroded, as discussed in section 7.1.

8 Who will succeed as a Systems Integrator?

Market success in Systems Integration requires a company to be perceived as
achieving successful risk management on behalf of its clients.

Business success in Systems Integration requires a Systems Integration
company to be successfully managing its own risks.

I have argued that Systems Integration is a label associated with the next
evolutionary stage in the delivery of value by the IT industry to its customers.
Therefore, the choice for an IT company such as ICL is either to become a
systems integrator or a high volume supplier of commodity hardware and
software (forseeing the eventual polarisation of the bulk of the industry’s
physical deliverables into commodity international standards conformant
hardware “boxes” (e.g. UNIX engines), and de-facto standard applications
and tools (e.g. INGRES)).

This begs the question of what sort of company is most likely to succeed as a
Systems Integrator, bearing in mind that a supplier to customers in discrete
vertical industry markets will need to transact a wide range of business (see
Fig. 5) in order to be competitive.

What will it take to be a good, consistently successful Systems Integrator?

The short answer is “a lot”; the right culture, the right skills, the right
products, the right organisation, the right image and the right associates.
These issues are discussed in the following sub-sections:

8.1 Culture

I believe that the pivotal element is culture, and within that the commitment
to Quality. “Right first time, on time, every time” seems to say it all; but not
quite all. Quality will keep a company in business in the shorter term, but will
not necessarily give it a future; some additional vital spark is needed.

This is, I believe, the role of Innovation. Like Quality, this is a culture which
needs to pervade the entire organisation; everybody plays and it influences
everything that is done. Innovation is all about finding better ways to do
things and better things to do; about not wasting opportunities. It implies
flexibility, acceptance of change, responsiveness, and the commitment to
encourage, evaluate and, where appropriate, rapidly and fully implement
new ideas. It does not mean just inventing new products, it applies equally to
other areas such as organisational structure, processes, problem solving and

ICL Technical Journal May 1989 429

the way we do business; it is also proactive, rather than simply reacting to
problems.

So, if Quality is “getting it right first time, on time, every time”, then
Innovation is “doing it better each time”. In the wider marketing context,
both deliver improved profitability but whereas Quality also delivers market
acceptability, Innovation delivers competitive advantage.

I submit that the history of the Swiss watch industry over the last 20 years or
so amply illustrates the distinction between Quality and Innovation.

Taken together these two really amount to professionalism, although this
word may now be seen as a touch old fashioned. So,

QUALITY + INNOVATION = PROFESSIONALISM

because we expect more of the professional than just getting it right, we
expect him also to contribute new ideas, approaches and insights.

8.2 Skills

Satisfying market demands is becoming increasingly services and people
intensive, and requires ever greater levels of scarce and expensive expertise.
Thus, the skills he can call upon are crucial for the Systems Integrator; they
are his prime source of market differentiation and competitive advantage.

In high-profile SI contracts, the levels of skill, experience and expertise which
go into identifying the opportunity, formulating the bid, negotiating the
contract and selecting and managing the subcontractors need to be at least as
great as those applied to the technical design and implementation issues. It is
also all too easy at the bid stage to view the project simply as a vehicle for
delivering tangibles such as hardware and software, and fail to consider the
full value (and cost) of intangibles such as consultancy, training, IPR and risk
factor. These intangibles have a real asset value and must be managed as
such in terms of investment and pricing.

The IT industry should be able to learn a great deal here from other
industries (e.g. civil engineering and defence) who have longer experience in
bid and procurement management.

The evaluation of subcontractors and their products requires in-house
expertise in the design, manufacture and development of hardware and
software systems. How else is the Systems Integrator able to make valid
assessments? These skills are, in any case, needed to produce “bespoke”
elements of the solution.

In addition to bid, procurement and subcontractor management, strong
project management is essential. Without this, even the best constructed
contract will not achieve profitability.

430 ICL Technical Journal May 1989

World class technical specialists are also needed, but even more important
are top-level “information engineers” who have a sufficiently wide view to
ensure the viability and integrity of the total design.

Business modelling skills are also going to be increasingly important (see
Enterprise Modelling in section 8.3) in the establishment of requirements.

8.3 Products

A successful integrator will be able to call upon a basic set of modular,
reusable products developed within the framework of a unified architecture,
and which conform to appropriate international standards. From these he
will aim to construct a significant proportion of each delivered solution, the
aim being to allow for the maximum diversity of solutions from the minimum
set of modules. His profitability is largely dependent on how successfully he
achieves this balance.

Every product must have a clearly defined role and position within the
Architecture, be designed to be extendable and modifiable further down the
integration chain, and be usable in many markets and applications. The
product set will include integration tools which support downstream integra
tion, both by the integrator and his clients.

The role of the architecture is to provide a coherent framework within which
to construct networked industry solutions and integrate systems within an
Open Systems environment.

The architecture and products will also need to allow for the real world
diversity of proprietary standards and, progressively, new techniques and
tools will need to be developed to accommodate this diversity within fully
integrated Enterprise networks (see Section 7.2).

The above factors will form a significant proportion of the “economies of
scale” which the Systems Integrator will have in comparison with individual
customers. They do not mean that the Systems Integrator will always or
exclusively use these products, or that they will all be developed in-house.
The important thing is for a nucleus of “building blocks” to be available; this
will be augmented or replaced by other vendors’ products as and when
necessary to meet the client’s requirement.

Another essential capability is to understand fully, and agree with the client,
his business requirements and how these will be used to measure the success of
the IT business solution. Enterprise Modelling refers to a set of procedures and
techniques which can be used jointly to explore with the client his business
requirements and information flows, and to capture and record these. Such
techniques can be used to identify how IT can facilitate organisational
restructuring to improve the competitiveness of the business. Every Systems
Integrator will need to have a set of tools to support Enterprise Modelling.

ICL Technical Journal May 1989 431

Developed to the ultimate, this could eventually constitute the first stage of a
business solutions “full lifecycle management system”, covering the entire IT
infrastructure of an Enterprise.

This would require the integration of the tool sets for Enterprise Modelling,
functional requirements modelling, Enterprise Architecture modelling, sys
tems design engineering, development control, integration build control,
integration installation control, operational management and maintenance.

Fully integrated systems require greater development, build and integration
skills on the part of the supplier and have higher added value to the
customer. Pricing should therefore be related to the value of the system to the
customer, rather than “cost plus” from the supplier.

Arriving at a correct price requires thorough knowledge and analysis of
“value added” factors at all stages of the supply chain, the sales channel and
the customer/industry functional model. Tools to analyse these value chains
will be essential to successful systems integration companies in the near
future.

8.4 Organisation

The watchwords here are flexibility, adaptability and fast, responsive internal
processes, with a toleration of differences in management ratios and financial
controls within the organisation.

Internal accounting mechanisms need to recognise the different integration
value chains within the organisation and apportion added value and added
cost as appropriate.

Successful project teams need to be kept together rather than being
disbanded at completion of their project. This reduces project start-up times
and ensures a greater sense of identity and motivation.

There is likely to be an increasing market demand for systems which are
perceived by the end customer to be bespoke to his individual needs, not just
functionally but, in some markets, cosmetically (e.g. colour and visual design
of equipment). This will require vendors to be able to handle, efficiently and
quickly, short “bespoke manufacture to order” production runs.

Processes are also required to transform local products and bespoke project
experience, developments and IPR into standardised products and reusable
modules for use worldwide.

8.5 Image

The Systems Integrator will be doing business with major multi-nationals
and other organisations who trade on a global basis, and must thus be the

432 ICL Technical Journal May 1989

sort of company with whom they can have total confidence and which can
itself operate internationally.

A track record of successful delivery, high visibility, respect within the
industry, and opinion-leader clients are all necessary qualities.

8.6 Associates

This recognises the fact that almost all formal Systems Integration projects
will require the involvement of subcontractors, and that many will be big
enough to require a consortium to be formed to make a bid. The latter will
require the ability to collaborate constructively with companies who are
normally competitors (cf. civil engineering).

So, for the Systems Integrator, having contacts, collaborations and agree
ments with the right people can also be considered as a source of competitive
advantage.

Apart from this level of product and service collaboration, the full-function
Systems Integrator will also need to collaborate in the field of research and
development. Few companies will be large enough to do this all in-house.

One of the skills of the Systems Integrator will be in objectively assessing and
selecting wisely his acquisitions, collaborators and partners.

9 Summary

This has been a fairly wide-ranging paper which has explored some of the
major issues related to Systems Integration. The main points and conclu
sions may be summarised as follows:

Systems Integration is part of the continuing evolution of the IT industry in
its delivery of value to its customers and the management of risk on their
behalf. It involves additional complexity and additional risk for the supplier;
the former being controlled technically by means of tools and standards and
by access to the right technical skills, the latter being controlled by an
appropriate range of management skills.

Systems Integration is more than simply “plugging things together”; it is an
essential and pervasive part of the total “IT service” which major IT vendors
will need to be able to offer to clients in order to satisfy their wide diversity of
business requirements.

Existing IT suppliers ultimately will have the choice of becoming either
Systems Integrators or very high volume suppliers of standard “commodity”
hardware and software products.

To be successful, a Systems Integrator will need the right culture, skills,

ICL Technical Journal May 1989 433

products, organisation, image and associates; of these, an Innovation and
Quality culture is the essential foundation.

The basis of differentiation between vendors in the IT industry will change as
the industry matures. The prime sources of competitive advantage for a
Systems Integrator will not be directly product or technically related.

The business of a full-function Systems integrator is resource and Services
intensive, demanding high levels of skill and expertise which will be scarce
and expensive in the market. It is also wide-ranging, requiring the learning of
new skills and collaborations and partnerships with a broad spectrum of
other companies. The limiting factor on business volumes will be the right
skilled people, so the most successful companies will be those who can
develop, or gain guaranteed access to, the best architecture, tools, products,
techniques and processes to amplify the effectiveness of these people. Efficient
and effective skills transfer processes and the right internal organisation and
rewards system will also be needed to grow and retain the right skills in-
house.

Finally, the Systems Integrator needs to respond to three major challenges:

The organisational challenge of running synergistically within the same
company, three different types of business (products, standard solutions and
bespoke), accommodating their diversity of business ratios, structure and
metrics.

The business/technical challenge of how to systematize the volume delivery
of variably-tailored versions of standard solutions, often multi-sourced,
which achieve a “bespoke” level of fit with client businesses.

The management/technical challenge of succeeding as a prime contractor in
formal, high-profile, state of the art Systems Integration contracts, and
feeding experience so gained back into standard products.

10 Acknowledgments

A great deal of thought, discussion and argument within the SIS team
provided the starting point and some of the material for this paper.

434 ICL Technical Journal May 1989

An architectural framework for systems
P. Henderson

Department of Electronics and Computer Science, University of Southampton
B. Warboys

Department of Computer Science, University of Manchester

1 System Integration Issues

Systems are built from components. Eventually established systems become
components themselves in larger systems. Systems evolve by acquiring new
components and by losing obsolete ones. The task of developing evolving
systems becomes one of integrating existing systems with new components.

It is helpful in discussions of this sort not to distinguish between system and
component, since ultimately every system is a component in some higher
level system. Since we wish to concentrate on the way in which components
interface with each other we will use the words component and system
interchangeably in our discussions.

The key issue in system integration is evolution. Components exist to supply
services. Existing assemblages of components are used to supply particular
assemblages of services. As our requirements for services evolve, so the
requirement to incorporate new components in an existing assemblage is
conceived.

The big problem in system development is the need to evolve systems flexibly
and economically. This means that we must be able to consider alternative
solutions to a proposed evolutionary step. Then of course we need to be able
to analyse the value of each alternative.

To these ends we introduce a language for system-level specification which is
based on the notion of a component supplying a service and on the notion of
components built from assemblages of subcomponents. This language is
offered mainly as an illustration of the kind of language we feel is necessary
to understand the structural problem of systems built from components. As
yet we have not done the necessary experimental studies which will
determine whether this language can tackle problems on the scale required
by industrial practice.

We show how components can be combined and how the provision of
services by the combined components can be calculated. On this basis we
show how the hierarchical structure of a system and of a set of alternative

ICL Technical Journal May 1989 435

evolutions of that system can be described. We discuss the benefit of checking
these structures for consistency of service provision. We also address the
issue of the practical application of this technique which we claim leads to an
obvious need for a component catalogue. Finally we discuss how the
framework might be used as the basis for the evaluation of each alternative.

2 System Architecture

We often make use of the term architecture when discussing computer
systems. Usually what we mean is, in some vague sense, the overall
organisation of the components into a cooperating assemblage. Clearly for
system building a good understanding of the architecture is very important.
For example, most simple computers have the same architecture of proces
sor, memory and other devices arranged on a bus. Understanding how these
components interact and the rules which must be obeyed when combining
them is fundamental knowledge for the designer of a new computer. Of
course the designer may adopt a radically different architecture but, if his
design is to be realised eventually as a working system, he will have observed
some carefully determined rules for component design and component
combination.

We take this as our definition of architecture. The architecture of a system
has two parts

• the constraints which must be obeyed by a component to ensure that it is
integrable

• the rules o f composition which ensure that when components are taken
together they also form an integrable component.

An example from software would be the architecture of a purely functional
program. The constraints are that every function should be side-effect free.
The rules of composition are that only function application is allowed. These
are very simple rules to obey. It is remarkable that a wide range of software
can actually be built within just these rules.

Another example might be quasi functional programming with the following
architecture. Components are either side-effect free functions or procedures
which are allowed side-effects. Two forms of composition are allowed.
Application combines functions to form functions as in pure functional
programming and sequencing combines procedures and functions to form
procedures.

A third example arises when we consider the architecture necessary to exploit
concurrent behaviour in a potentially parallel machine. This is the architecture
of shared abstract data types in which we choose to arrange that the components
are either processes or abstract data types. Abstract data types obey constraints
which allow many processes to access them concurrently. The rules of
composition include the protocol which must be obeyed by the processes to
ensure important system properties such as freedom from deadlock.

436 ICL Technical Journal May 1989

The reason that an architecture is an important aspect of system design is
that it gives us the means of overcoming the inherent complexity which goes
along with size. It gives us the means to reason about the system as a whole
and to ensure that, during its evolution, reasonable proximity to a valid
implementation is maintained.

So any major system project can be expected to have an architecture for the
system it is developing. This architecture may or may not be simple. It may
or may not be explicit. It should be evident that the simpler and more explicit
the architecture is, the higher will be the quality of the end product.

3 Framework Architecture

System Engineering for systems to be realised as networked combinations of
hardware and software within a business environment requires engineers
with a wide range of skills. The system engineer has to supply the solution
which integrates the components of the system to profitably meet the
business requirements. It is necessary for the System Engineer to take two
distinct views of a system. Above him is the business need to be satisfied and
below him is the technology with which he is expected to achieve it.

When looking upward toward the business, the system engineer uses his
skills to

• be innovative about the market requirements
• analyse alternative solutions

When looking downward towards the technology, the system engineer is
primarily concerned with the productivity within the engineering process
which delivers the chosen solutions and he thus attends to

• tools, techniques and notations for describing the system
• the development and use of components which can be integrated

Occupying the middle ground as he does, the system engineer needs a
common language with which he can talk both to the market strategist and
the system developer. He needs to be able to describe the proposed
architecture for his solution at a sufficiently high level of abstraction that a
convincing argument can be made that the proposal does indeed solve the
business problem. He also needs to be able to describe the proposed solution
sufficiently precisely that the engineers to be charged with its realisation can
be convinced that a workable solution is indeed being offered. In addition, it
is necessary to be able to describe the solution as an evolution of an already
established system with which this solution is to be integrated.

This paper is an attempt to evolve such a language. Necessarily the language
will be at a very high level of abstraction. It will constitute a framework in
which solutions to system problems can be evolved and planned. Because it
accepts that systems are built from components which satisfy constraints and
are combined according to rules then the language subsumes an aspect of

ICL Technical Journal May 1989 437

architecture. It tries to be non-commital about the details of the architecture,
which components are hardware, which are software, which components are
data, which are process and so on. Consequently we refer to it as the
Framework Architecture. We expect it to be hospitable to all other architec
tures. It forms the basis for the highest level design. It is the most abstract
description of a system.

It tries also to be formal. It addresses itself only to the structure of systems,
what is built from what, rather than the structure of the processes which
generate the system. In particular we are able to show a simple calculator
style of manipulation of system structure descriptions. This formality allows
us to be precise about the constraints and rules which must be obeyed when
building or restructuring a system description. The constraints and rules
together comprise the architecture. Our long term goal is to understand the
relationship between the structure of the system and the process which
produces it. This is the first step towards that goal.

In order to achieve this goal we need to address ourselves to the most
abstract architecture which can describe system structure without predeter
mining the way in which the eventual system must be built. This we do in the
remainder of the paper using a particular notion, of a component as provider
of services.

4 Systems Description Language

To illustrate the basic model which we have defined we consider the services
provided by a household electricity supply. This example has the advantage
of being simple to describe and avoiding our prejudices about computer
system design.

Assume that the ultimate set of services required by the end-user of the
household electricity supply include light and heat. These services can be
provided by a lamp and a heater which in turn require the services of power
provided by a ring main.

Now we can define the system built by plugging the lamp into a socket in the
ring by the expression

ring + lamp
Assuming that the ring has only a single socket we can not plug the heater
into the ring unless we unplug the lamp, because the only socket has been
used up. Suppose that we introduce a ring with two sockets ring2 than we
might expect that

ring2 + lamp
has a residual socket and that the residual socket can be used for the heater.

Both of the following should therefore be plausible systems

438 ICL Technical Journal May 1989

(ring2 + lamp) + heater
(;ring2 + heater) + lamp

since we do not care in what order the appliances are plugged into the ring,
only that eventually they are both so installed. Consequently, since + enjoys
this property we choose to omit the parentheses and write

ring2 + heater + lamp

rather than the parenthesised form.

Consider the familiar two way extension lead. We might use it to extend our
original ring main, with a single socket, to allow the lamp and the heater to
be supplied. That is to say, the following is a valid system

ring + twoway + lamp + heater

To emphasise the structure we might choose to include parentheses

(ring + twoway) + lamp + heater

but the parentheses carry no meaning. We can write equations to note our
knowledge about the equivalence of systems

ring2 = ring + twoway

Later we will see that we can give a precise meaning to equivalence between
systems.

Well that all seems very trivial. It is of course. Our objective is to show that
much more complex system structures can be described than those we have
described so far, whilst retaining our desire to abstract as far as possible from
detailed design concerns. Let us describe the structure of a house with two
rooms, each supplied with a lamp and a heater. One possible description is

house1 = rooml + room2 + ring2
rooml = lampl + heater l + fwowayl
rooml = lamp2 + heater2 + twoway2

Another is

house2 = appliancesl + appliances2 + ringA
appliances1 = lampl + heater l
appliances2 = lamp2 + heater2

ringA = twoway 1 + twoway2 + ring2
With a little thought and a little substitution, we can probably convince
ourselves that these two descriptions are equivalent. That is

house l = house2
but the different sets of equations are suggestive of a different decomposition.
In housel each room provides heat and light assuming we provide a single
socket. We have taken the distribution of power between the lamp and the

ICL Technical Journal May 1989 439

heater to be the responsibility of the room subsystem. In house2 we have
chosen different subsystems. The appliance subsystems provide heat and light
but expect the services of a pair of sockets. Since there are two appliance
subsystems, we need four sockets which are provided by ringA.

All this structure is implicit. In the next section we will show how to make it
explicit. Recall that we are involved in a process of capturing the structure of
a system with little or no concern for the detail of its design. The system
structure will be hierarchical and we will wish, when restructuring the
description, to record this hierarchy explicitly so that we can clearly
distinguish between alternative descriptions.

5 Hierarchical Structure

We introduce another system structuring operation. If we have a system built
from (say) three subsystems X, Y and Z and these three subsystems are
known respectively as x, y and z, then we denote this system by

[x : X , y : Y , z : Z]

This structure shows clearly the three separate subsystems from which it is
built. Using the example from the previous section we can define housel as

[room 1 : [...], room2 : [...], ring2 : [...]]

where the nested [...], describes the structure of each of the components.
Where a component is primitive and has no structure we can describe it
using the form []. So the structure for the entire house 1 is

[room 1 : [lamp 1 : [] , heaterl : [] , twoway 1 : []] ,
room2 : [lamp2 : [] , heater2 : [] , twoway2 : []] ,
ring2 : []]

A rather better way to write this structure, especially as we can anticipate
that such structures will become very large, is as a set of equations, as follows

House 1 = [rooml: Room 1, room2 : Room2, ring2 : Ring2]
Room 1 = [lamp 1 : Lamp 1, heaterl : Heaterl, twoway 1 : Twoway 1]
Room2 = [lamp2 : Lamp2, heater2 : Heater2, twoway2 : Twoway2]
Ring2= []

Lamp 1 = []
Heaterl = []

Twoway 1 = []
Lamp2 = []

Heater2 = []
Twoway2 = []

The system which, in the previous section, we defined as housel is now
defined by Housel and retains explicitly the information about how it was
constructed. In particular we see that the structure is a partitioning of the set

440 ICL Technical Journal May 1989

of primitive components. House2 is a different partitioning of the same
components with an obvious description which we omit here.

What is missing is any information about why these components are
assembled into these particular subsystems. Of course our intuition about
these particular components has led us to believe that this structure is
sensible. It is because we consider that each component supplies some service
which another requires. We have therefore to define the services which each
component requires and those which it supplies. For example, taking the
elementary components lamp and ring, we can say that lamp supplies the
service light but requires the service socket. Similarly ring supplies the service
socket but require the service power.

Let us define primitive components by the services which they respectively
supply and require. We can write requires socket supplies light for the system
which we have previously called a lamp. In general we will have a list of
services which are required or supplied. Thus we have the definitions

lamp = requires socket supplies light
ring = requires power supplies socket

and from these we can calculate the definition, in terms of services, of
ring + lamp. It seems reasonable to assume that this combination still
requires the services which each separate component required, but which
were not supplied by the other. Similarly the services supplied by the
combination is whatever is supplied by either component and not required
by the other. So we expect to conclude that

lamp + ring — requires power supplies light

where the service socket is hidden, because the requirement for it has been
satisfied.

Now we can combine the hierarchical structure with the service information
and arrive at a structure description which allows us to argue formally that
the system has a sensible structure. We can complete the description of
House 1 as follows

House 1 = [room! : Room], room! : Room!, ring2 : Ring!]
Room 1 = [lamp 1 : Lamp 1, heater1 : Heater 1, twoway 1 : Twoway 1]
Room2 = [lamp2 : Lamp!, heater2 : Heater2, twoway2 : Twoway2]
Ring2 = requires power supplies socket 1, socket2

Twoway 1 = requires socket 1 supplies socket 11, socket 12
Twoway2 = requires socket2 supplies socket21, socket22

Lamp1 = requires socket 11 supplies light!
Lamp2 = requires socket2\ supplies light2

Heater1 = requires socket 12 supplies heat1
Heater2 = requires socket22 supplies heat2

ICL Technical Journal May 1989 441

Informally, the logic of this assembly should now be clear. Almost every
service which is required by some component is supplied by a nearby
component. The system as a whole provides heat and light in two rooms, but
requires power to do so. Formally, we need to develop a calculus which
allows us to manipulate and simplify the system descriptions. Although the
concept of a service is a very abstract notion we should be able to specify
constraints upon components in terms of the services which they respectively
supply and require. The calculus should allow us to calculate for each system
description the services which are at its interface.

6 A calculus of systems

The key operation which we need is a one which removes the structure we
have so carefully recorded, for this will allow us to calculate the residual
services unresolved by the particular combination which the description
records. We will define an operation which flattens a structure by removing
one level of the hierarchy, as follows

flatLxrA', y : Y, z : Z] = X + Y + Z

So, for example since

Rooml = [lamp 1 : Lamp 1, heaterl : Heater 1, twoway 1 : Twoway]']

we can calculate

flat Room 1 = Lampl + Heaterl + Twoway 1

In addition, we know that

Twoway 1 = requires socket1 supplies socketll, socketll
Lamp1 = requires socket 11 supplies light 1

Heaterl = requires socket 12 supplies heat 1

So we can calculate

flat Room 1 = requires socket1 supplies heatl, lightl

So what if we wish to flatten a more heterogeneous structure, such as
House 1? We need to extend the definition of + . We adopt the following rules

1 [_u:U,v : V] + [x:X,y : Y] = [u:U,v : V,x: X,y: Y] and similarly for differ
ent numbers of components

2 if requires R supplies S occurs as an operand of + , it can be treated as
[idummy: requires R supplies S]

With these two rules we can calculate as follows

flat Housel = Room 1 + Room2 + Ring2 =
[lampl : Lampl, heaterl : Heaterl, twoway 1 : Twoway 1]

+ [lam pl: Lampl, heaterl: Heaterl, twowayl: Twowayl]
+ requires power supplies socket 1, socketl

442 ICL Technical Journal May 1989

= [lamp 1 : Lamp 1, heaterl : Heaterl, twoway 1 : Twoway 1,
Zamp2 : Lamp!, heaterl: Heater2, twowayl: Twowayl,
dummy:requires power supplies socket 1, socket!']

This has removed one level of structure. A second level is removed if we
calculate as follows

flat flat House 1 =
Lampl + Heater] + Twowayl
+ Lamp2 + Heaterl + Twoway2
+ requires power supplies socket1, socket2

= requires socket]] supplies light 1
+ requires socket12 supplies heat 1
+ requires socket 1 supplies socket11, socket 12
+ requires socketH supplies light2
+ requires socket22 supplies heat2
+ requires socket2 supplies socket21, socket22
+ requires power supplies socket], socket2

= requires power supplies light1, heat 1, light2, heat2
It is perhaps interesting to note that what we are actually doing in repeatedly
revising the structure description is itself a system design activity. We are
building abstract system descriptions by combining abstract components
and are able to calculate properties of the assemblages which are supposedly
desired properties. If they are not then we can revise our specification.

As far as it goes, this definition of flattening achieves what we want.
Unfortunately it loses not only the structure, but also the knowledge about
the intermediate services used by nested components. We shall reformulate
the definition of primitive (or unstructured) components so that this does not
happen.

Let us redefine primitive components so that the services which they
respectively supply and require are represented by a graph. We can write
{light 1 => socket 11} for the system which we have previously called Lampl. In
general we will have a graph of services which are required or supplied, where
the relationship recorded in the graph is makes use of. Thus we have the
definitions

Lampl = {light l => socket 11}
Twowayl = {socket 11 => socket 1, socket 12 => socket 1}

and from these we can calculate the definition, in terms of services, of
Lampl + Twowayl, simply as the union of the two graphs.

Lampl + Twowayl =
{lightl => socket 11,
socketl 1 => socket 1, socket 12 => socket 1}

ICL Technical Journal May 1989 443

Repeating the calculation for House1, we proceed as follows

flat Housel = Room\ + Room2 + Ring2 =
\lampl : Lamp\, heaterl : Heater 1, twoway 1 : Twoway 1]

+ [lamp2 : Lamp!, heaterl: Heaterl, twowayl: Twowayl]
+ {soc/cetl => power, socket! => power)

= [lampl : Lampl, heaterl : Heaterl, twowayl : Twowayl,
lamp2 : Lampl, heaterl: Heaterl, twowayl: Twowayl,
dummy'.{socket l => power, socket! => power}{

This has removed one level of structure. A second level is removed if we
calculate as follows

flat flat Housel =
Lampl + Heaterl + Twowayl
+ Lampl + Heaterl + Twowayl
+ {socket l => power, socket! => power)

= {lightly-socketll)
+ {heat l => socketl!}
+ {socketll =^socketl, socketl2^> socketl}
+ {lig h tly socketll)
+ {heat2^> socket!!}
+ {socketH => socket!, socketll => socket!)
+ {socketl =>power, socket!^power)

= {light 1 => socket 11, heat 1 => socket 12,
socket 11 => socket 1, socket 12 => socket 1,
light2 => socketl 1, heat2 => socketH,
socketll =>socket2, socketll =>socketl,
socketl =>power, socketl =>power)

A final operation for adding structure to an unstructured component
completes our calculus. We define g part m to partition a graph g with respect
to a mapping m, where the mapping defines, for each node in the graph the
partition to which it is assigned. This will enable us to restructure a
description which has been obtained from flattening another description. So,
for example

{light => socketl 1, socket 11 => socket 1, socket 12 => socket 1}
part { lig h tly lamp 1, socket 11 —► twoway 1,

socket 12 -* twoway 1}
= [lampl : {lightl =>socketll},

twowayl : {socketll =>socketl, socketl!=>socketl}}\

which is, perhaps more simply

[lampl : Lampl, twowayl : Twoway 1]

444 ICL Technical Journal May 1989

Clearly, with a little effort, and suitable mappings we can restructure flat flat
Housel to produce Housel in a structured form. The mappings we use to
accomplish this are the following

{lightl -+lampl, heatl -theaterl,
socketll -+twoway 1, socketH-+twowayl,
lightl -+ lampl, heatl -+ heater!,
socketll -+ twowayl, socketll -+ twowayl,
socket 1 -+ ring2, socket2 -+ ring2}

and

{lamp 1 -+rooml, heaterl-+rooml,
lampl -+ room2, heater2 -+ room2,
twowayl -+ room 1, twowayl -+ room2,
ring2 -* dummy}

If, instead of this second mapping, we use

{lampl -+ appliancesl, heaterl appliances 1,
lampl -+ appliancesl, heater2 -+ appliances2,
twowayl —> ringA, twowayl -+ ring4,
ring2 -+ ringA}

then we construct instead a structure equivalent to the alternative House!.

We have shown the basis for a language of systems. We call it Framework
Architecture. It consists of some rules for combining systems to form systems
and some constraints restricting what are considered valid systems. We can
also specify derived constraints which we might require a system description
to enjoy such as flat (g part m) = g. A simple calculator has been prototyped
in me too and used to check the consistency of the examples used in this
paper.

7 A method for the analysis of systems

The way in which we see the Framework Architecture method being applied
is as follows. Existing systems are analysed by constructing a description of
each component in terms of the services which it supplies and requires. Using
part we impose upon this the physical structure which the system currently
enjoys. This leads to a refinement of the level of detail at which the
components are described. Some services will be coalesced, because their
separation contributes nothing to the description. Some services will be split
in order better to describe the interfaces between higher level components.

Once an existing system is described in this way it is now possible to explore
its potential for evolution and restructuring. Components can be removed
and replaced with alternatives. Subsystems can be restructured, first by
flattening them, then by restructuring them possibly with some alternative

ICL Technical Journal May 1989 445

components. A proposed evolution of the system can be studied by a
comprehensive analysis of the extent of its disruption of the current structure.
The potential for component reuse can be examined and the possibility of
component exploitation can be demonstrated.

In practice many different descriptions of the structure of a system are likely
to be held simultaneously, some for different versions of a system, some for
analysis and planning. Management of a task of this size is a job for an IPSE.
The calculator described in the previous section would then form a signifi
cant part of the system planner’s toolkit embedded in that IPSE.

The knowledge about components can be captured in a catalog which
enumerates the service requirements and service provision of each compo
nent. A component catalog lists these requirements and services for each
component. It forms a database for both the consistency checking and for the
value analysis which is used to choose among alternatives.

It is too early to say how practical it would be to establish a catalog of this
sort. Some experimental work is required do determine how realistically
components can be described using the notion of services.

8 Value Engineering

The structure of a proposed product can be evaluated also for the value
which each component adds to the solution. There are a variety of ways in
which this can be done. For instance we might assign cost and benefit values
to each component, distinguishing between bought-in and internally devel
oped solutions. We can go further and determine values for the retained
skills. However it may be more appropriate to develop a dynamic model to
supplement the static model described here.

To give a flavour of how value analysis can be accomplished assume that
each service can be given a monetary value and each basic component a
monetary cost. For each proposed solution we can calculate the value-added
and the combined cost. If it is necessary to take other costs into account then
they can be incorporated in the model as components of the solution.

By this means a series of alternative solutions can be evaluated to aid in the
decision to choose between them. Again, much experimental work along
these lines is required before the practicality of this technique can be assessed.

References

1 HENDERSON, P. and MINKOWITZ, C.J.: The m e lo o method of Software Design, ICL
Technical Journal, Vol 5, 4, 1987.

2 WARBOYS, B.: CASE in the System Programming Environment - a case study, CASExpo-
Europe Conference, London, November 1988.

3 HERBERT, A.: The Advanced Network Systems Architecture Project. ICL Technical
Journal, Vol 5, 1, 1986.

446 ICL Technical Journal May 1989

Twenty Years with Support Environments
Brian Warboys,

University of Manchester, Manchester M13 9PL, England
Philip Veasey

STC Corporate Information Systems, Feltham, TW13 7EJ

Abstract

This paper looks both backwards and forwards. It records some
lessons learnt from living with Support Environments for nearly 20
years. It looks forward to our current objective of achieving an "active"
support environment. It analyses the shortcomings and strengths of
our original implementation in 1971 and outlines how they have
influenced our thinking in the research and development of its
successor the UK Alvey funded project IPSE 2.5. It examines the work
underway to exploit the new technology now emerging from the IPSE
2.5 project. This work has highlighted the enormous organisational
impacts of this new technology and some observations are made on
the wider sociological implications of this style of PSE.

1 Introduction

The paper looking, as it does, both backwards and forwards, inevitably
draws on personal experiences. As such it seems useful to include some
introductory remarks concerning the systems we use as examples.

The CADES system was developed by ICL in the early 1970’s as a Support
Environment for the development of the ICL Mainframe Operating System
VME (Virtual Machine Environment). It has been used continuously since
then, accumulating on the way the development outputs of some 3000 man
years of endeavour over 16 years.

The IPSE (Integrated Project Support Environment) 2.5 project is funded
under the UK Government’s Alvey programme and is a collaborative
research project. It began in September 1985 and will formally terminate in
September 1989. It is a collaboration between ICL, its parent company STC,
Plessey Research (Roke Manor) Ltd., British Gas PLC, Dowty Defence and
Air Systems Ltd., The University of Manchester and the Science and
Engineering Research Council (Rutherford Appleton Laboratory). The AL
VEY programme is concerned with improving the UK’s capability in
Information Technology and hence includes encouraging collaboration
between Industry and Academia in the UK.

ICL Technical Journal May 1989 447

Since 1985, a group of Information Systems people with responsibility for
providing ICL’s internal systems have been directing work which has led to
the development of SENSE (Support Environment for New Systems and
Enhancements). This provides the internal, to ICL, software developers with
an integrated set of methodologies covering both the management and
technical aspects of their work. At the outset a review of CASE and
particularly IPSE’s was carried out. This led to a belief that they were in a
special position to take advantage of the technology beginning to emerge
from the IPSE 2.5 project and a strategy was adopted to ensure that the
chances of doing so would be maximised11. This included defining the
processes in SENSE more formally than is the common practice for software
development methods.

The work to create a SENSE IPSE is now being carried out through a
programme managed by STC’s Corporate Information Systems (CIS). The
first part of the paper describes the concept of a Process Support Environ
ment (PSE) which we believe can be achieved. The second part discusses the
evolution of the technology used to support this PSE.

2 Process Support Environments

A “Process Support Environment” (PSE) is a support environment in which
process is the key concept. Perhaps its most controversial quality is that it is
“active” in two senses.

First of all the environment is active. This radically reduces the burden of the
routine mechanics of following defined processes. Put simply, a work
environment can become “active” when it has sufficient knowledge em
bedded in it for it to play an active part in the control of what happens. The
word “control” here is important. In most environments where computers
are helping humans in their work, that help is better characterised as
“support”.

To clarify this distinction, consider the example of an investment approval
process being carried out in a conventional way, illustrated by the diagram
below. The manager continually refers to his own memory, written pro
cedures and possibly computer presented plans in order to determine what
the next activity should be and what resources/tools can be used to carry it
out. In the picture above, the manager directs that a cash flow analysis is the
next activity and the human part of our resource then sits down with the
prescribed spreadsheet tool which will support this work (see Fig. 1).

Compare this with the picture below in which the computer has taken over the
routine job of deciding what the possible next activities are and of offering
them to whomever the plan said should be doing them. At sign-on, our analyst
is offered a choice of activities on which work can proceed and, on choosing
the cash flow analysis (marked CFA in the diagram) is automatically presented
with the tools, datafiles and “Help” text for the job (see Fig. 2).

448 ICL Technical Journal May 1989

The computerised work environment is now exercising a level of “control”
over the process. The computer knows as soon as a job has been signed off as
finished (since this can only be done through the computer) and is therefore
able to offer the next jobs to whomever should be doing them. This situation
also creates a completely new set of possibilities for automatic collection of
information about what is happening or has happened.

Secondly, we can make the process active. By this we mean that the process
can be changed in flight when appropriate. Indeed everyone involved in the
process takes part in its determination by changing when desired those
aspects of it for which they have change authority. They will, of course, only
be able to make changes within the constraints determined by those with a
higher authority.

2.1 What Types of Process?

CIS’s immediate interest in the IPSE 2.5 technology is to use it to support
software development. It is sufficiently general, however, to support many
other kinds of process. Given its role, CIS has a strong interest in doing this
so that PSE’s are regarded as something which will support all processes
which:

- involve many different human roles with complex interactions
- are not mass production

Thus the process of creating and managing a new product would be a
suitable target for a PSE. For instance, if the product was a rubber band,
where we would not be interested in each separate instance of the product,
we would not create a PSE for its manufacturing process though we might do
so for its design. PSE’s will be useful for processes where each instance could
be, and sometimes must be, regarded as a separate project.

2.2 Support Down to What Level?

In order to answer this question it is necessary to appeal to what is hopefully
a fairly common understanding of the way in which activity in processes can
be modelled by networks. The diagram below show's part of the activity
network for a project process and indicates how we can separate out from
this the activities which are carried out by a particular role. A role is
characterised by its entitlement to perform certain tasks, its rights to the
resources necessary to carry them out and its relationship to other roles.
Examples of roles could be “designer”, “project manager” and “quality
assurance.” We would expect to use the PSE technology support to create
support for the process down to, but not including, the level of a specific
activity within a specific role. The technology would also be used to call the
support required for the specific activity. This support would not generally
use the PSE technology (though it might) but the user need not be aware of
this. Thus, from a users point of view, the PSE could be delivering support
for the whole process at all levels (see Fig. 3).

2.3 The achievement of an Active Environment

To understand what will be required to create an active environment it is
necessary to look at the process cycle depicted in the following diagram
which shows the steps which occur with or without a PSE. The diagram is
largely self-explanatory. A method is expressed in general terms applying to

450 ICL Technical Journal May 1989

Fig. 3

all instances of the use of the process. Choosing it may simply involve
following an existing procedure or may involve considerable creative effort.
For example our method may be for the development of any product, so that
if we move down to the first level plan this now describes the activities and
resources required to create the particular product we are interested in.
Estimates of the time required for the activities, and the amounts of the
resources, are then applied to the plan which makes it possible to calculate
schedules. Once a viable schedule is derived the plan can be implemented by
committing real resources. It can then be executed by carrying the work out.
Monitoring of the process provides information which can be fed back to
management who can evaluate whether there is any need to change the plan
at any of the three levels (see Fig. 4).

For an active environment the implementation step must also involve the
creation of a machine-executable model of the process. The fully defined plan
can contain all the information required to do this. Each step in the
execution of the process is then controlled by the machine driven environ
ment. In the “passive” environments to which we are accustomed any
correspondence between plan and reality relies on human action totally -
with results which are frequently disappointing.

2.4 User Requirement View of a PSE

Figure 5 is currently being used as the starting point for a top down user
requirement specification for the PSE. The area labelled Process Control

ICL Technical Journal May 1989 451

Fig. 4

indicates those parts of the total environment which are specific to the
particular process which the PSE has been designed to support. The
environment provides simultaneous support of more than one instance of a
particular role type, e.g. several designers. Each human role player is
wrapped around with:

- personal computing capabilities
- wordprocessing, spreadsheet etc. - electronic mail - access to external

information and information systems
- support for the current activity
- tools (which may themselves be major software systems) giving automa

tion and automatic adherence to many product quality standards expert
systems - context dependent textual help

- process control; giving automatic adherence to the process being sup
ported.

The roles interact by passing objects (inputs and outputs of activities)
between them, under process control, via a shared information store. The
objects must be allowed to take many forms, e.g. formatted data, text,
diagrams.

For this reason an object oriented approach appears suitable. The require
ment for simulaneous access by multiple users will be met by using PISA10
(Persistent Information Space Architecture) technology developed by
another Alvey project.

452 ICL Technical Journal May 1989

Fig. 5

In addition to the roles of the process being supported, the PSE must host
the following management roles:

- planning: this allows scheduling of the activities and resources and
evaluation of progress. Plans are automatically updated using data
collected automatically during the execution of the process

- object management (corresponding to many people’s use of the term
configuration management)

- version and variant control - build control - access control - fault
reporting and change control

ICL Technical Journal May 1989 453

- process management
- creation and change of process. The requirement for easy process change

implies a need for a suitable language for defining processes - assessment
of impact of process change

- activity support interfacing. This must enable easy and rapid change of
tools with different levels of integration into the PSE. Very low levels of
integration should be available with corresponding low integration costs.
This will ensure that we do not deny ourselves the chance of experimenting
with the increasing profusion of new and potentially productive tools

- attaching tools and expert systems - providing help text

Full definition of and most of the support for these management roles will be
common to all PSE’s

Other distinguishing characterstics are:

- embodiment of a full understanding of the interactions between the
different roles so that different types of activity are integrated. This is
achieved through the executing process model

- it focuses on providing support and control for human roles rather than
carrying them out automatically. However, the human roles are co
ordinated with roles which have been fully automated

- it allows easy and rapid change of process. This applies to both standard
processes, which will be continually evolving, and to a process which is
currently executing. Thus the process is exactly what is wanted, and is
feasible at the time

- as the process is carried out, it automatically collects data which can be
used to improve the process and provide better estimates in the future.

3 Origins of the Technology

In order to understand the reasoning which has led to our current approach
to Support Environments it is necessary to examine our experiences of
development under the influence of such tools. In spite of recent hype which
suggests that only recently has the industry begun to invest in any form of
integrated approach to development support we, (at ICL in the Mainframe
Division) at least, have been using such a support environment for nearly 2
decades. The environment in question is known as the CADES1,2 system and
has been used since 1972 for the support of the development of the ICL
Operating System VME3.

This system accurately reflects the industrial concern prevalent at the back
end of the 1960’s. Focus on these concerns is due in no small measure to the
two successful NATO Software Engineering conferences of 1968/694,5 which
are arguably responsible for the very term Software Engineering.

Examination of our experiences with this system over the last 16 years led to
some interesting observations on both what has changed and unfortunately
what has not during this period. The observations fall into two categories:

454 ICL Technical Journal May 1989

- the industrial scenario and development concerns of that era
- the technology developed to address those concerns.

Perhaps more than anything they are timely reminders at this time, when
there is an unseemly rush to standardise Support Environments, that our
engineering expertise is still far from being mature. They show us how much
has changed (and has still to change) in even our understanding of the
software development process. This must lead to concern that in the
realisation of the need for an “OPEN” standard we should not hastily define
a very closed system.

4 Our industrial Scenario in the early ’70’s

Prior to the early ’70’s ICL (in its various early forms, English Electric, ICT
etc.) had produced a number of comparatively small operating systems and
associated compilers for the relatively small mainframe machines which
existed at the time.

These systems were produced as discrete components and as they gradually
grew larger the approach was essentially to treat the enlarged components as
collections of programs and farm out the development of the programs to
separate groups of programmers. We found that this approach was inade
quate and indeed that the cost of the systems compared to earlier systems
increased exponentially rather than linearly with their increase in size.

Thus in 1971 when ICL set out to produce a major operating system, VME,
for its new range of Mainframes (what became the 2900 and the Series 39
ranges) it recognised that it had a major task on its hands since all the
indicators were that the development would never finish. In a sense this has
proven to be the case since some 200 development staff have been continually
developing the system since that time. The result was to establish the CADES
project to develop a rigorous system development methodology, Structural
Modelling, and a Computer Aided Development and Evaluation System,
CADES, to support the methodology.

4.1 The perceived problem circa 1970

The problem was perceived as being product related. Early documents2 state:
“The large development team would need to be able to identify and preserve
the overall structure of the operating system. Experience on earlier systems
had shown how difficult it was to protect a large system from structural
decay. The team would need to be able to distinguish between features which
affected the overall structure of the system and those which were merely
cosmetic.”

The methodology and computer aided system would have to facilitate all
stages of the operating system development process, i.e. high level design, low
level design of implementation, construction, system generation and mainte-

ICL Technical Journal May 1989 455

nance. They would have to encourage the codes of good practice which
prevailed within the computer industry, i.e. structured programming, data/
entity driven design, delayed fixing and binding, design for resilence etc.

4.2 The solution

These problems led to the introduction of the formal development method
ology known as structural modelling and to the creation of the CADES
system to provide project support for it (a PSE!). Structural modelling was
first described in detail in1 in 1973. It followed the philosophy that system
development should be primarily a data-driven top-down process. (We had
read the NATO conference reports4,5!). The emphasis was on the modular
structure of the system being designed to manipulate defined data items,
rather than data items being invented to support the encoding of abstract
functional requirements. Each code entity was termed a holon, a term
borrowed from Koestler9 to describe utilities in an hierarchic system.

A language called SDL (System Development Language) was devised to
allow the expressions of holon-holon and holon-data relationships. SDL was
also used to describe how each holon uses its relationship with other holons
and with data items in order to carry out its particular functions. The
hierarchy of SDL holons represents a gradual refinement of the total des
cription of the system, each level being a complete description of the system
at that level of design, the level being fixed by the accompanying data tree
decomposition. At the lowest levels this use of SDL merges completely into
the implementation programming language S3, a close relative of the
procedural language Algol68. The CADES database was set up to record
information about the various holon-holon, holon-data relationship and this
was then used as the basis for version control and other management support
purposes. It had become, of course, a Support Environment (see Figs. 6 and 7).

5 Properties of its successor IPSE 2.5

5.1 Observations on the CADES Approach

Within the size and scope of this paper we can only attempt a very superficial
analysis of the approach but the more significant highlights are:

(a) The approach was product structure derived. This leads to some good
and bad attributes. The best is perhaps that the architecture of the
system would play an active role in the subsequent design decomposi
tion. The theology of the product approach was reflected directly in the
tools used for development. Thus both the architecture and the tools
system have survived the test of time. The same system is still used 16
years and some 3-4000 man years later. It has demonstrated that
Support Environments can have longevity. The worst attribute is that
the process of development was necessarily made subservient and thus
although the product has not suffered structural decay the process of

456 ICL Technical Journal May 1989

Fig. 6

development has not been able to adapt properly to more modern
influences. It is particularly noticeable that the “total life cycle” outlined
above made no mention of specification. Of even more importance was
that the granularity of the database was product oriented and thus the
granularity of the supported process was of necessity constrained to the
level of the product modularity. Management of the process was and is
conducted at the holon level. Re-use, optimisation, version management
and all the other engineering concerns were thus also constrained to this
level.

(b) The approach was essentially one of “Design then Evaluate”. Support

ICL Technical Journal May 1989 457

Fig. 7

for interaction was provided but essentially the system is oriented
towards design capture of new modified functions and use of conven
tional (Codasyl based) database technology to invert and evaluate that
design. The notion of prototyping was missing and the ability to reason
about the design was restricted to structural analysis. Again the primary
goal of managing the avoidance of product structural decay was realised

but the granularity of design entities essentially restricted the ability to
reason except at holon-holon level.

(c) The system was a*closed one. Not really in the sense of current Open
Systems concerns, since one could easily define a “Public Tools Inter
face” to the system, but in the sense that any tool added to the system
was constrained by the core style of schema representation. New tools
had to be totally integrated and the resultant costs severely restricted the
ability to experiment with new toolsets, to rapidly discard and acquire
new tools and generally to adopt a flexible tools strategy.

(d) Many mundane issues are of fundamental importance. In the end most
effort was expended on Version Control (also referred to as Configura
tion Management) and it is clear that is of paramount importance that
such issues are addressed in such a way that they are all embracing and
transparent to tools providers.

5.2 Subsequent conclusions and influence on the IPSE 2.5 approach

(a) It is clear from the above that the principal constraint to a flexible
support environment is, not surprisingly, the basic architecture of that
environment. The decision on granularity had an all-embracing impact
on both the approach to an open tools policy and to the type of
development process which the tools enabled (and/or supported). In fact
the decision to base the environment core on the granularity of the
entities to be developed was the key factor. Our experience is that any
attempt to base the Support Environment on the entities to be
developed rather than the process to be used for the development is
doomed to the same constraints as the CADES system imposed. How
many of the current CASE/IPSE approaches are following this path?
Clearly a major influence on the IPSE 2.5 project was the desire to build
a Support Environment with a Process Control Engine as its core rather
than an operating system style core with an interface fashioned pri
marily to entity manipulation.

(b) Our Design then Evaluate strategy of CADES had highlighted the
constraints on better approaches to development. In particular we view
the need to reason about our specifications, designs, implementations as
being fundamental to good software development. This ability to reason
implies a level of integration of process and tools which needs to be
determined by the nature of the interaction between the reasoner and
the tools and not by the product modularity constraints. As work
stations increase in power and in screen and ‘tactile’ support so the
notion of a reasoning assistance will become increasingly tractable7.
However it is also clear that the Environment is still required to support
the conventional level of granularity as represented in the CADES
system.
The second major influence on the IPSE 2.5 project was therefore the
desire to investigate the integration of these coarse and fine grain
support options. There were also implications on the Interface in terms
of the management of vast quantities of fine-grain entities and their

ICL Technical Journal May 1989 459

abstraction into coarser-grain entities, for example those of manage
ment interest such as plan impacts.

(c) The closed nature of CADES had highlighted the constraints which
such an architecture placed on flexible tool acquisition and disposition.
Increasingly there is a need for flexibility in creating hybrid design
processes and this implies flexibility in levels of tool integration. A
simplistic “Operating System” style CASE will not enable the rapid
construction of heterogeneous tools systems. OPEN systems imply a
speed of change as well as community-wide ownership. It is important
to ensure that the community-wide ownership desire does not inflict
upon us a closed system in terms of development paradigms.
Thus another major influence was the desire for the process based core
to be the means of flexible and very cheap alien tools interworking, a
generic “meta” Public Tools Interface. Thus we consider of vital
importance to an Open CASE system the provision of a standard means
of construction of Public Tools Interfaces rather than any one Interface
per se.

(d) The notion of Component Re-use had been an early motivator in the
CADES system. The hope was that by the use of Database support we
could develop a generic approach to “Libraries”. Indeed that common
ality would be established at many levels. In practice this did not
happen. The means of specification and then subsequent browsing were
not available, but again, even if they had been, the fine-grain integration
which such “pattern-matching” implies would not have been realised by
an “entity”-based core. Again some support for the recognition of the
development process in order to enable re-use was required. It was also
clear that the development process was such that the re-use of process
fragments was as great a contributor to productivity as any design
component re-use. CADES did not aid the long period of gestation
concerned with the construction of a process, in many cases a heterogen
eous assemblage of sub-processes, to solve large scale problems. This
need to employ a variety of solution strategies in any given system
development is, we believe, of great and growing importance.

5.3 The IPSE 2.5 Approach

The purpose of this kind of Support Environment is to provide the means by
which the process of developing, maintaining, supporting and enhancing
information systems is made more efficient, in both quality and productivity
terms. Traditionally such Environments, be they for the support of program
mers or the support of projects, have been considered as tools to support
people who have tasks to carry out. The view taken in the IPSE 2.5 project is
to stand back from this position of “users and tools” and consider the
problem as a whole.

The process of developing, installing and changing information systems is
one which involves the co-operative efforts of many people. People are
involved in this process because of the intellectual nature of the various tasks.

460 ICL Technical Journal May 1989

We should not forget that no tool, as yet, can remove the essential
involvement of the human being. As Dijkstra8 said in 1972, “We shall do a
much better programming job ... provided we respect the intrinsic limitation
of the human mind”.

The IPSE is thus a means of supporting the whole process rather than being
a collection of tools which assist particular activities or classes of activities
within that process.

The essence of the integration component of IPSE 2.5 is based on the notion
already expressed that an IPSE is about supporting the process of systems
development, a process in which people (the “users” of the IPSE) play a very
significant part. In many ways this is the logical successor to systems such as
CADES where the environment is seen as providing the components out of
which the process is formed, but in a completely general way which is
ignorant of process.

5.3.1 The Process Control Engine (PCE) At the heart of an IPSE 2.5
system is something called a Process Control Engine (or PCE). The idea is
that the PCE is a computer system which provides the (changing) working
environments for its users, the people involved in the development process.
The PCE is cognisant of the process itself and is thus able to provide the
appropriate working environments at the appropriate times. The means by
which this is done (and how much can be done) is the essence of the IPSE 2.5
project from a technical point of view, taking particular account of the
requirements to support the use of formal methods and in particular formal
reasoning.

5.3.2 The Process Modelling Language (PML) It would be possible (but
not useful) to build a PCE which only supported a single type of develop
ment process. More usefully, it is necessary to provide some means by which
a general purpose PCE can be “programmed” to support different processes.
In reality, such processes are an amalgam of many separate processes or
maybe just constraints on how particular tasks may be carried out. (“I don’t
care how you do it, but do it by Tuesday!”). The concept of a Process
Modelling Language (PML) is introduced to be the means by which such
different process fragments can be described and composed. Such fragments
also provide the means of “alien” tool interworking. The working environ
ments to be provided by the PCE for its users must include all the things that
a user “says” he requires for the job in hand. The PML must therefore
provide for the descriptions of objects upon which the user might carry out
some operations, tools to help him carry out those operations, and means of
communicating changes to the working environments of himself or of others.
These are minimum requirements of the PML but serve here to illustrate the
concept. In “traditional” Support Environments, the database schema (or
rather the language in which it is expressed) can be seen as an embryonic
PML, often augmented by the command language of the host operating
system. Figure 8 shows the relationship between a user (i.e. a person involved

ICL Technical Journal May 1989 461

P C E

i--- 1
1 PML j

i (A i
i * i
!
1_ i

Fig. 8

within an overall development process), PML and PCE. The type of
interaction that the user has with the system is determined by the PML
description. The PCE is an engine which supports these descriptions. It is of
note that the approach being taken is essentially that of explicit process
descriptions. It is possible to imagine an approach by which a model is
“learned” implicitly by the PCE from actions carried out by users, such
models then being available subsequently. We believe that the interactive
nature of the people/tools society which the IPSE encapsulates calls for a
more explicit approach.

It is however worth noting that explicit models are the basis of “what if” type
analyses (or more general property analysis) as well as being used as
described here. This idea is one being pursued by the project in particular as
part of its work in providing support for project management.

6 The relevance of the IPSE 2.5 approach to Software Engineering processes

To understand the relevance of such a generic approach rather than the
stylised “operating system” core beloved of many CASE offerings there is a
need to examine the current context within which we need to engineer
software.

Major changes have taken place in the industry structure, the technology and
the market since we developed the CADES system. Most of these emphasise
the need for an Open system, in a Process sense, and in terms of flexibility of
Tool interworking.

We are no longer concerned with the development of discrete software

482 ICL Technical Journal May 1989

components. Instead the major concern is with the “glueing” together of
components to provide the IT component of some larger ecosystem. We need
to recognise the endemic nature of IT, to recognise that our traditional
software component is but one component of a much broader control
system. We need to recognise the need for the support of mixed componen
try, much of it never to be specified in terms to which our software
development methods can sensibly relate.

We need to recognise the need for an ever increasing variety of methods,
languages and toolsets, to recognise the need for support for system
development “in the large” and for component re-use of a wide variety of
component types. In particular we view the need for re-use of process model
fragments as being of paramount importance.

7 Benefits/Concerns

The generic approach taken by the IPSE 2.5 project clearly implies a process
of specialisation by many different groups in an organisation. Our approach
to this has been to envisage the creation of an IPSE service function to help
the various groups to create their PSE specialisations. In examining this
service role it is particularly important to understand the wider aspects of the
new technology’s impact.

7.1 Benefits

Quality
A widely accepted definition of quality is that it is “conformance to
requirement”. Such conformance is at risk unless we establish and keep to a
process for stating and achieving the requirement. PSE’s should therefore
produce major improvements since they:
- improve our ability to establish appropriate processes, even in a changing

environment, by reducing the cost of process change and greatly increasing
the speed at which changes in process can be implemented

- make non-conformance to process difficult or impossible.

Predictability
PSE’s will allow the automatic collection of a great deal of statistical
information about active processes. This will mean, for example, a big
improvement in our software metrics and a greatly enhanced ability to
estimate time and costs for future developments.

A PSE can give the same planning capability as existing tools in terms of
scheduling. They add, however, a capability for automatic update of progress
since the PSE itself knows as soon as a task is completed. Managers can
therefore replan rapidly to reflect the current situation without reliance on
people to update the plan.

Management’s knowledge that the process is being conformed to will give

ICL Technical Journal May 1989 463

them much greater confidence in the predictions of the plan. PSE’s let people
know what people ARE doing rather than what they SAY they are doing.

Rapid Execution of Process
The PSE is a means of automatic communication between people involved in
a process. As soon as it is possible for a task to be performed, the person
responsible for it can be advised through their workstation and in many
cases all they require to do the work can be made available to them (e.g.
documents and tools). Although, strictly speaking, this gives no change in
productivity, processes could be completed faster. This could give competi
tive advantages, for instance, through a PSE supporting a complex bidding
process or the process of getting new products to market.

Productivity
Every time work is done in an organisation there is the possibility that the
experience could be used to make future work more productive. This
knowledge asset has a nasty habit of evaporating as we constantly re-invent
the wheel. PSE’s can make a massive contribution to productivity by
providing an environment in which it is easier to capture and re-use this
knowledge in the forms of:

- standard processes
- product standards
- standard product components

Improved productivity will also be achieved in the following ways:

- better control will result in fewer mistakes being made and this will reduce
the number of iterations

- less time will be spent looking for the standards and procedures which
apply to an activity

- good, and bad, performance will be apparent much sooner, giving an
improved basis for productivity-directed motivation.

Quick Reaction to Changing Business Environment
This is possibly the most important benefit that can be expected and one that
could give an important competitive advantage. It is enabled by a greatly
reduced cost of process change and a great increase in the speed with which
process change can be implemented. PSE’s will bring about a change in
attitudes about how fast business processes can be changed and a readiness
to seize the new opportunities.

7.2 Concerns

Managing Re-use of Process Building Blocks
Although PSE’s create the right environment in which to re-use the process
asset, we still have a great deal to learn about how this can be done. It fits in
well with CIS’s role to build process libraries and offer them as a managed
service to help people to build their PSE’s. It is less clear what should be in

464 ICL Technical Journal May 1989

them and how integrity can be maintained in the build process, though a
number of approaches are being considered.

There are also management problems surrounding ownership, issuing au
thorities and compliance status which we suspect will require a much more
formal approach to standards management than has ever been previously
attempted. Some initial analysis of this has been carried out.

Requirement to Really Know the Process
It has been made abundantly clear by our work so far in constructing a
SENSE IPSE that if processes are to execute on a PSE, they have to be
formalised and recorded in much greater detail than has been the norm. This
will not be considered a bad thing by many but it does have to be recognised.
Once we have a good arsenal of tools and methodology for capturing process
this will be less of a problem.

It should also be recognised that what we do to manage process through
manuals is often to exaggerate discipline in order to combat anarchy. Thus it
is common to insist that no work on a stage should be started until the
previous stage is signed off as complete. Sometimes we mean this, but often
we rely on people to break the rules when it is obvious that they should
(while telling them not to). The PSE demands that we capture the true
process which, in this case, could in certain circumstances allow work to
continue at commercial risk.

7.3 Conclusion

The impact of PSE’s on organisation is likely to be considerable, even
dramatic. We have started to assess four kinds of impact:

- on the individual
- on groups of co-operative workers
- on the role of management
- on society

Individuals may view the coming of PSE’s as a benefit through a reduction in
the frustration caused by mistakes and through satisfaction at their own
improved productivity. A common reaction, however, will be that the
increased control is unwelcome and that the advent of “big brother” is
suspected. This can be countered by managing the degree of constraints that
are inherited by each person in the process-defining hierarchy. But managing
them in a true evolutionary way, since each execution of a process will
usually cause a change in that process.

Our expectations of PSE’s will be completely unfulfilled unless groups find
themselves able to co-operate more easily. Whether this turns out to be like a
dehumanised cog in a machine or a willing member of an orchestra is
probably a choice over which management has some power.

ICL Technical Journal May 1989 465

It is not unusual to hear of seasoned professionals who feel that knowledge of
process is like knowledge of an instrument. Once one has mastered the rules,
one may excel by breaking them at the right moment. This could be true but
probably belies the situation which most often confronts us which is more
cacophony than symphony. It is fun to play in an orchestra because everyone
can be relied upon to keep to the rules. Even jazz improvisations would be
unpleasant without some minimal order.

To us, all of this confirms the need for a process-based rather than an entity
based core for a PSE.

References

1 PEARSON, D.: “CADES" Computer Weekly, July 26th, August 2nd, August 9th, 1973.
2 WARBOYS, B.C. and PRATTEN, G.D.: “CADES - Principles” Seminar, Oxford Univer

sity, February 4th, 1976.
3 WARBOYS, B.C.: “VME/B a model for the realisation of a total system concept”. 1CL

Technical Journal, November 1980.
4 BUXTON, J.N. and RANDELL, B.: “Software Engineering Techniques”, Report on

NATO Science Conference, October 1969.
5 NAUR, P. and RANDELL, B.: "Software Engineering”, Report on NATO Science

Conference, 1968.
6 SNOWDON, R.A.: “IPSE 2.5 Technical Strategy”, IPSE 2.5 project document

060-00131-2.2.
7 JONES, C.B. and MOORE, R.: “An experimental user interface for a Theorem Proving

Assistant”, IPSE 2.5 document SE13/29/234.
8 DIJKSTRA, E.W.: “The Humble Programmer”, CACM NO 10, Vol 15, 1972.
9 KOESTLER, A.: "The Act of Creation”, Macmillan, 1964.

10 ATKINSON, M.P., MORRISON, R. and PRATTEN, G.D.: "A Persistent Information
Space Architecture”, proc. 9th Australian Computer Science Conf. 1986.

11 VEASEY, P.W. and POLLARD, S.J.: “Preparing the organisation for IPSE”. ICL
Technical Journal, November 1986.

466 ICL Technical Journal May 1989

An Introduction to the IPSE 2.5 Project
R. A. Snowdon

STC Technology Ltd., Newcastle-under-Lyme, Staffs. ST5 1EZ, UK

Abstract

This paper gives a brief overview of the Alvey IPSE 2.5 project. This is a
relatively large project investigating certain features of advanced
environments supporting systems development activities. The paper
concentrates particularly on the idea of process m ode lling whereby
support can be given for the processes by which development
activities are carried out.

1 Introduction

The IPSE 2.5 project is concerned with the problem of how computer
systems can be used in the development of software based information
systems.

The project is being carried out under the UK Alvey Programme Software
Engineering Strategy1 by a consortium comprising STC Technology
Limited, International Computers Limited, University of Manchester,
Dowty Defence and Air Systems Limited, SERC Rutherford Appleton
Laboratories, Plessey Research Roke Manor Ltd. and British Gas pic. It is of
4 years’ duration, finishing at the end of September 1989.

The name “IPSE 2.5” is due directly to the identification in the Alvey
programme of three generations of the so called Integrated Project Support
Environment - IPSE 1, IPSE 2, IPSE 3. The IPSE 2.5 project lies somewhere
between the second generation, characterised by the use of databases, and the
third generation, characterised by the use of artificial intelligence techniques.

The acronym IPSE (Integrated Project Support Environment) has come to
describe a computer based system providing a variety of facilities working
together to support people who develop software based information systems.
It is derived from the similar “Ada Programming Support Environment”
(APSE) describing an integrated set of tools for someone developing
programs in Ada.

The problem area of concern to the IPSE 2.5 project is that of computer
systems which provide a set of facilities to support people and organisations
(as opposed simply to individuals) concerned with all aspects of computer

ICL Technical Journal May 1989 467

systems development. In fact the project is both more limited and more
general than this.

It is limited in the sense that the scope of an IPSE is ill-defined; it is always
possible to think of something else that could be provided in an IPSE. The
IPSE 2.5 project therefore has some very specific things with which it is
concerned.

It is more general in the sense that it is quite clear that not only is there a vast
number of different computer systems, but there are also a great many ways
of developing them. Systems constructed to support the development of
computer systems must therefore be, to some extent, general purpose.

The two major aspects addressed by the project may be characterised by the
phrases “process modelling” and “formal methods”. Process modelling is
concerned with the need to provide support for the many processes involved
in the production of computer systems. Formal methods are mathematically
based approaches to software development. One of the original aims of the
IPSE 2.5 project was to investigate how support for such methods could be
integrated within a system providing support for the broader set of processes
concerned with computer systems production. This paper gives an introduc
tion to the project as a whole, placing somewhat more emphasis on the
notion of “process modelling” than on those concerned with “formal
methods”. Readers interested in the latter are referred to5 for more details. It
is planned that a later issue of the ICLTechnical Journal will contain a paper
which gives more details of the support for process modelling as developed
by the project. However this edition does include a paper7 concerned with
the application of the ideas within a company such as STC.

2 Motivations for a support system

At the risk of over simplification, the behaviour of most companies can be
described in terms of the model shown in Fig. 1.

Fig. 1 Company process

468 ICL Technical Journal May 1989

A company uses its ‘assets’ (financial, intellectual, material) to add value to its
‘inputs’ in order to produce ‘outputs’ from which it can directly, or indirectly,
increase its assets and make profits. This we may call the company ‘process’.

For any given company in any given business it is clear that it must
(generally) continue to improve its ability to carry out its business. This
might mean that the cost of doing so must be reduced or that the quality of
its outputs must be improved or both. The company process must become
more effective. A critical aspect of this is the management of change.

Over the years many basic tools have been produced to support the
production of computer systems. These include, for example, high level
programming languages and compilers, testing systems, tools for building
systems from components, management tools and a wide variety of others.
However, tools such as these are only part of the answer. It is clear that
simply having suites of tools which support specific activities is not sufficient,
particularly in the context of the larger and more complex systems that are
now being developed.

Thus the idea of a computer based system aimed at supporting the company
process rather than the use of computers as individual tools within the
process is seen as an important concept. This “process support system” is not
a new concept; the basic notion of a business support system is a well
established concept in several areas of computer applications. The applica
tion of these ideas to the complex area of information systems development
is, however, more unusual. The gains to be made in corporate effectiveness,
over and above gains to be made by simple technical advancement are,
however, very important.

Whilst a process support system should be of great benefit to a company
producing information systems, it is still the case that the individual tools
and techniques by which computer systems are developed are at present
primitive. The reliability and quality of computer based systems produced by
the application of these techniques still leaves much to be desired. A support
system which simply allows companies to apply such techniques more
effectively does not directly address these basic problems. As new techniques
emerge it is necessary for them to be properly integrated into the support
system concept.

3 What is an IPSE?

An IPSE is a computer based system supporting those parts of the overall
business process which are concerned with the technical development and
maintenance of an information system. This process might start at the
requirements definition phase, continue through the stage when a product is
completed ready for shipment to a customer and conclude with activities
concerned with supporting the product in use. An IPSE might be concerned
with supporting technical activities outside this scope - the exact delineation

ICL Technical Journal May 1989 469

need not be well defined. Generally, however, an IPSE will not be concerned
with the business or commercial aspects of the overall company process. This
does not mean that the management and control aspects of the production
process are outside of the scope of an IPSE. On the contrary, these aspects
are very much an IPSE concern! Note that the exclusion of business and
commercial aspects is, essentially, an artificial division and derives from
historical reasons as much as anything else.

Fig. 2 Working environments

As in Fig. 2, the IPSE provides the environment within which individuals
work. As far as each individual is concerned, the IPSE provides him/her with
an appropriate working context. Actions carried out by the individuals
working within an IPSE will cause changes to those working contexts. Of
course, changes may also be brought about by actions initiated from other
sources, either external to the IPSE or from within it (e.g. tools). The
appropriateness of working environments to the particular tasks to be
undertaken will have significant impact on the effectiveness of working
within such an IPSE.

Of course people play the most important roles in developing information
systems. An IPSE must therefore be seen as providing support for human
beings as they carry out their activities within the overall development
process.

Particular IPSEs (i.e. particular computer based systems) will vary in the
facilities provided as well as the scope of the overall process which is
addressed. It may be the case that a specific IPSE provides support for
systems to be developed in only one programming language or for one type

470 ICL Technical Journal May 1989

of computer. Support may be concentrated on a particular method of
systems design or for small or large projects. The degree of “integration” will
vary from an IPSE formed from a loosely coupled set of tools to one where
the facilities provided are tightly and coherently bound and presented to the
users.

In general an IPSE provides a means of storing components and descriptions
of the system being developed and a set of tools which can be used to create
such components and descriptions, and ultimately the system being developed.

Most existing IPSEs are either almost completely concerned with providing
support for the technical functions within the development process or
provide relatively separate support for technical and managerial activities.
Such IPSEs are based on a “store plus tools” model which emphasises the
product being produced rather than the process which is being followed. This
has the effect that such IPSEs are not able to provide appropriately
distinguished working environments as there is little or no information
available about the state of the process in order to be able to do so.

4 What is IPSE 2.5?

Specifically IPSE 2.5 is a project whose objective is to develop and
demonstrate a small number of IPSEs each constructed on the basis of
particular characteristics. The name IPSE 2.5 is generally used to describe
such systems.

The characteristics which are of principal interest to the project are
concerned with advancing beyond current IPSE projects in two important
areas. These areas have been alluded to above and are specifically:

1 to raise the level of integration within the support system above the store-
plus-tools approach by developing IPSEs which have knowledge of the
processes by which information systems are developed. The term used to
describe this idea is Process Modelling.

2 within this more integrated framework, to provide effective support for
the use of the emerging development methods based on mathematical
formalisms. These methods, known as formal methods, offer very signifi
cant advantages to systems developers over traditional approaches.
However, it is clear that good support is needed if these approaches are to
be widely available to industry.

An IPSE 2.5 system will provide a means of holding information about
products and projects, it will support configuration management and version
control, it will provide means by which existing tools can be used and it will
be equipped with state of the art MMI facilities to ensure the achievement of
effective man-machine synergy. One of the major challenges of the project is
to provide all of this integrated with Process Modelling and support for
Formal Methods in a clear and cohesive manner.

ICL Technical Journal May 1989 471

The IPSE 2.5 project is, of course, one which is investigating a number of
advanced concepts. The IPSEs being produced by the project have an
experimental nature, the properties of which will be evaluated as an
important part of the project itself.

5 What is Process Modelling?

In section 2 the idea was introduced that an IPSE is about supporting the
processes by which information systems are developed and thereby making
these processes more effective. The term Process Modelling is used to
describe the production of models of such processes and the use of these
models in an IPSE. Though these basic ideas are not new, the application in
the IPSE 2.5 project has some novel aspects.

The idea may be illustrated by analogy, by considering, for a moment, not a
support system for the development of information systems but an auto
mated manufacturing plant, maybe a production line for motor cars.

Such a plant might comprise a number of machines, each capable of carrying
out a particular operation on objects passing through the plant. The
successful operation of the whole plant requires the proper synchronisation
and control of all the machines and of the flow of objects between them. This
is the responsibility of a “controller”, provided in the plant by a computer
system. We assume that raw materials are made available to the start of the
process (in fact to the first machine in the line), operated upon in the
appropriate manner and order by the individual machines in the plant, with
the final manufactured objects emerging at the end. The “controller” system
must be provided with some sort of overall model of the plant and the
required behaviour so that it can cause the individual machines to operate at
the right time. This model might be “hardwired” into a special purpose
controller which can only control very specific processes, or it may be loaded
into a more general control machine much as a computer program is loaded
into a general purpose computer. As the control machine “obeys” the model,
so the appropriate process is enacted by the real machines in the plant.

There may be some conceptual distance between an automated manufactur
ing plant (“populated” by machines) and a company producing information
systems (“populated” largely by human beings), but the analogy should be
clear. The “controller” in the manufacturing plant is part of the system
supporting the process. Thus it might be expected that there be something
similar in an IPSE supporting the process of system development. The
Process Model to be loaded into an IPSE would hardly be as straightfor
ward as that for a manufacturing plant. It is one thing to describe the
sequence of operations for a machine, it is quite a different (and generally
unacceptable) matter to expect to be able to prescribe in detail the behaviour
of a person or persons carrying out the intellectually demanding tasks of
information systems development. It is however, quite reasonable to consider
a style of model which is, perhaps, descriptive of the goal of a task as opposed

472 ICL Technical Journal May 1989

to the imperative form that might be characteristic of an automated
manufacturing plant.

Of course, the factor of “change” is one which is of much greater significance in
the process of producing information systems. In an automated manufacturing
plant, the process is relatively well-defined and may be left to run with little
intervention (for such is the intention of automation). The process of producing
an information system is much less well understood and requires a significant
amount of monitoring and adjustment. These processes (of monitoring and
adjustment) are essential parts of the overall process and must therefore be
supported by the IPSE. Companies involved in producing information
systems do, of course, recognize the importance of these management pro
cesses. The paper7 elsewhere in this issue of the ICL Technical Journal notes
the relationship with the STC SENSE methodology for systems development.

6 Support and use of process models

A key component of an IPSE 2.5 support system is something which is
analogous to the “controller” in the manufacturing system. This component
(called the PCE - Process Control Engine) can be loaded with a Process
Model of the activities to be carried out by the staff of the company or
project using the IPSE. The IPSE 2.5 project is developing a language in
which such models are expressed. This language is called the Process
Modelling Language, or PML. Early work reporting on ideas contributing
to this language can be found in6.

The Process Model could be of an imperative nature as in a manufacturing
plant, but more generally it will be less stringent, describing the tasks that
need to be carried out and the constraints that should be observed.

According to what is described in the Process Model the PCE provides
appropriate working environments for each of the staff using the IPSE to
carry out the tasks involved in developing a system. These tasks may be
technical or managerial. In the former case the staff member will make use of
tools as provided in his working environment to develop further the system
being produced. These tools may perhaps be tools developed elsewhere (and
incorporated into the environment through standard interfaces) or may be
tools specifically developed by the IPSE 2.5 project and more tightly bound
into the environment. Certain tools developed to enable the use of formal
methods come into the second category. The environment will also provide a
storage component (and configuration and version control facilities) in much
the same way as current IPSEs do, except that access to the store will be
controlled through a working environment and hence, ultimately, under
control of the Process Model.

The working environment provided for managerial activities will generally
provide additional features concerned with the monitoring and changing of
Process Models.

ICL Technical Journal May 1989 473

u

Fig. 3 Past, present and future

Figure 3 shows a view of a process model expressed as a network of activities,
shown as o and entities, shown as I |. In this diagram, the current set of
activities are indicated by their lying on a time line labelled “present”. The
model to the left of this line represents the past, whilst that to the right
represents a prescription for what can happen in the future. This future is
rather like a plan. By definition, this “plan” has been produced by an activity
(usually described as a managerial activity) at sometime in the past. Such an
activity is therefore amongst those to the left of the “present” line. Manage
ment activities are part of the process model. Thus a process model not only
describes the technical activities to be carried out in the development of a
system, it also describes the managerial process as well. Very importantly, it
is necessary that it be possible to support activities concerned with monitor
ing and change, so that the process model can be altered as necessary to align
better with real intentions. Reverting to the manufacturing plant analogy for
a moment, it is as if there is a machine in the plant, under the overall control
of the “controller” which monitors the plant and is able to “reprogram” the
controller at appropriate points.

474 ICL Technical Journal May 1989

This particular area offers some challenging problems, particularly in terms
of the implications of dynamic binding and the need to control the impact of
change in an executing model.

A third class of user of an IPSE is the engineer who is responsible for
ensuring that the IPSE itself operates properly. Appropriate working
environments for tasks associated with such activities are established in the
same manner via Process Models loaded and activated by the PCE.

7 Tools

The description so far has concentrated on the idea that people involved in
the process of developing an information system are assisted by the provision
of working environments appropriate to the tasks they have in hand. As
tasks are carried out so the environment changes, both for a particular
individual and for others affected by his or her work. No mention has been
made so far about how tasks are carried out, in particular the provision and
use of computer based tools. In a complex and challenging activity as are
those involved with the development of information systems, it is absolutely
necessary that use be made of computer tools to carry out certain tasks. As
part of the working environment provided in order to carry out some
activity, an IPSE must provide access to relevant tools and ensure that use of
these tools is properly integrated with other relevant objects. Thus, if an
activity is likely to require the application of some analysis tool to some
object, then the IPSE should ensure not only that the analysis tool is
available, but that it can be applied to the object. In some circumstances, the
use of a particular tool may not require its selection by a person, but rather
that the tool is applied automatically as a consequence of some other action.
In any case, there is a clear requirement that computer based tools be
considered as an integral part of the process. The implication is that the
Process Modelling Language, and thus the PCE, must provide means by
which tools can be incorporated into an IPSE. In fact, there are different
types of tool which must be considered. The most important are the vast
number of tools which already exist, having been built for particular
purposes and, in all likelihood, for particular computers and operating
systems. As far as these are concerned, means are provided, through PML
and through tailorable constructs within the PCE, by which such tools can
be added to and used in an IPSE 2.5 system. The OBJ and MALPAS tools
referred to in the next section are examples. At the other extreme are tools
which are really just a form of process model and are completely defined in
PML. These tools are, of course, peculiar to the IPSE 2.5 culture and, whilst
being easily integrated with the rest of a model, cannot be made use of in
other situations.

8 Support for Formal Methods

The project is concerned with providing support for formal methods from
two points of view.

ICL Technical Journal May 1989 475

1 the use of formal methods in an industrial setting
2 further research to extend the scope and applicability of formal methods,

in particular through advanced tool support

If formal methods are to become more widely used in industry they must
include elements which are necessary in such a setting. The methods
emerging from the research laboratories must be ‘industrialised’. This
requires that formal methods development processes are produced which
address project management concerns, attend to the problems of multi
member projects, relate to corporate quality procedures and so on.

The IPSE 2.5 project aims to construct an IPSE supporting such a formal
methods based development process. In fact the project will develop an IPSE
to support a combination of the OBJ (see 3) and MALPAS (see 2) techniques.
This combination is used within the Plessey Company and hence is
extremely relevant to the purposes of the project. The IPSE will be
constructed using the Process Control Engine and Process Modelling
Language referred to above. Commercially available tools for OBJ and
MALPAS will be integrated within the model for use at the appropriate
points within the development process. Thus, the development of such an
IPSE does not rely on research into formal methods or on the development
of tools of an advanced nature. What is important is that the major
characteristics of a formal approach to development are well understood,
captured in the total process and supported by the IPSE.

Such a formal methods IPSE will necessarily reflect the current rather limited
level of support for formal methods. More advanced support is still a very
active research topic. There is, in the IPSE 2.5 project, a strong research
thread aimed at examining some of these issues, particularly those concerned
with formal reasoning.

As development proceeds from specification to implementation, opportuni
ties (or obligations) arise to make proofs about properties of the system being
produced. The mathematical nature of the specifications makes this possible.
Support is needed both to identify the proof obligations and to help the
developer carry out the proofs themselves. Both the determination of
obligation and the means of carrying out the proof depend to some extent
upon the method and on the form of the underlying mathematical basis.

In this part of the project advances are sought in terms of general purpose
tools both to determine proof obligations and to assist in carrying out the
proofs. In the latter area the approach being followed is to develop an
interactive proving system. Emphasis is placed on the interactive nature of
such a tool with research being particularly directed at the advantages which
might be gained from the use of a modern, powerful workstation with a
relatively large screen and a mouse.

A related topic of research is concerned with symbolic execution and its

476 ICL Technical Journal May 1989

support. It is sometimes the case in formal methods that it is useful and
appropriate to explore the properties of a system rather than make and prove
hypotheses. Symbolic execution can be a powerful tool for such purposes.

9 Status

Work on advanced support for formal methods has been carried out
separately from the remainder of the project. An early prototype interactive
proof system was developed to explore both the use of Smalltalk for such an
application and to explore appropriate styles of user interaction. The results
from this system (named Muffin) are now being used in the development of a
more realistic tool supporting a wider variety of logics and formal develop
ment methods such as VDM. 5 reports more fully on this work.

As reported in 6, the starting point for PML development was the language
RML 4 and the general field of conceptual modelling. This led to an initial
definition of PML and a prototype support system built, again, on top of
Smalltalk. A number of experiments have been carried out with this system
including models of processes taken from the industrial partners in the
project. Developments are now underway to construct a system capable of
supporting realistic numbers of people working on relatively large projects.
This implementation will be the basis of demonstrations and evaluation
exercises to be carried out during the final stage of the project.

Already, however, explorations have taken place to investigate the applica
tion of the results of the IPSE 2.5 project within STC. These include the
capture of aspects of the CIS (Corporate Information Services) SENSE
approach to development in a process model and the installation of that
model on a PCE to give a prototype tool supporting the use of SENSE.
Links are also being made with different tools in ICL Mainframes Division
(particularly with CADES and system construction tools) to add process
modelling capabilities as part of the VME Software Factory exercise. This
has required that formal process models be constructed of relevant Main
frames development processes. It is hoped that reports of such work will
appear in a later issue of the ICL Technical Journal

References

1 Alvey Programme Software Engineering Strategy. November 1983.
2 BRAMSON, B. D.: Tools for the Specification, Design, Analysis and Verification of

Software. RSRE Memorandum 4063, RSRE, Procurement Executive, Ministry of Defence,
RSRE Malvern, Worcs., June 1987.

3 GOGUEN, J. and MESEGUER, J.: Rapid Prototyping in the OBJ Executable Specifica
tion Language. SIGSOFT Software Engineering Notes, 7(5): 75-84, December 1982.

4 GREENSPAN, Sol J.: Requirements Modelling: A Knowledge Representation Approach to
Software Requirements Definition. Technical Report CSRG-155, Computer Systems Re
search Group, University of Toronto, March 1984.

5 JONES, C. B. and LINDSAY, P. A.: A Support System for Formal Reasoning: Require
ments and Status. In VDM’88, VDM-Europe Symposium 1988, Dublin, Springer-Verlag
1988.

ICL Technical Journal May 1989 477

6 OULD, M. A. and ROBERTS, C.: Defining Formal Models of the Software Development
Process. In Pearl Brereton, editor, Software Engineering Environments, Ellis Horwood
1987.

7 WARBOYS, B. C. and VEASEY, P.: Twenty Years with Support Environments. ICL Tech.
J., 1989 this volume.

478 ICL Technical Journal May 1989

The case for Case
Fred Russell

ICL System Strategy Centre, Bracknell, Berkshire

Abstract

At least half the world’s development staff are busy maintaining
systems - at least half this effort is non productive. One quarter of the
remainder are building systems that will never be used. The remainder
are working at about half the efficiency called for in the plan. Why is
this so? This paper examines some of the reasons and the extent to
which computer assisted software engineering (case) tools may solve
part of the problem.

Introduction

This paper very briefly examines some of the problems generated by today’s
software technology and the demands placed on it by the ever increasing
complexity and sophistication of applications. It explores the potential of
Computer aided software engineering (Case) technology for helping to solve
these problems with some idea of its application and benefits.

I imagine almost everyone interested enough in software development to be
reading this article will have little difficulty in finding an echo of their own
experiences in the above statement. If you break the statement down you will
see that around 75% of the world’s software effort is being lost due to
excessive maintenance, poor specifications, cancelled products, massive
overruns and inefficient practices. Some more ‘facts’ for you to ponder:

1 US Army Study of projects totalling about $7M. Showed:
47% delivered but never used
29% paid for but never delivered
19% abandoned or reworked
3% used after change
2% used as delivered.

2 Maintenance accounts for 67% of life-cycle cost.
3 Depending on the survey source you use, between 25% to 75% of all

software projects started are cancelled, often because projects are deemed
to be obsolete before completion.

4 About 1% of large systems (50K+ lines of code) are finished on time,
within budget and meet user needs. The average large system is a year late
and costs almost twice the original estimate.

ICL Technical Journal May 1989 479

(Anyone interested enough can find many more such examples in recent issues of Software
Engineering Notes (ACM) in Peter Neumann’s series on “Risks to the public in computer
and related systems”.)

If these sort of problems are not bad enough, they are exacerbated
by demand for software products growing by about 12% annually
whereas productivity is rising by only 4%, both figures compound. This
means that demand for output is outstripping potential supply by 3:1, and
growing.

One of the key reasons why we have these problems of heavy maintenance,
non-delivery and delays is the high rate of defects and bugs in software. A
survey by Software Productivity Research, Inc. revealed that an average
large program will have 50/60 bugs per 1000 lines (serious bugs, that is).

As a final point, there is a people problem. Productivity aside, the demand
for people far outstrips the potential supply by a factor of at least two. In
absolute terms the figures for numbers of people needed defy belief, like a
million for defense related projects in the States by 1990. The question is not
so much where all these people are coming from, but where are they going
to?

Developers cannot continue to indefinitely expand their office spaces to
accommodate this growing army of (largely non-productive) people. Nor can
they or their user population continue to accept the ever increasing backlog.
In any case there is an old principle of Economics called diminishing
marginal utility at work here; if you just keep on throwing more people at a
problem you invariably reach a point where they get in each others way.
Also, it is not just a problem of the right skills match of the people, the
intangible nature of software and its inherent flexibility creates a problem in
itself.

The trouble is that you cannot throttle down this ever growing demand
either. In a sense, the software industry is guilty of that most cardinal of all
business sins, overtrading. We have become the victims of our own myth in
the expectations we have created in the market for our products. As the
power of the hardware expands and becomes cheaper and more flexible, the
range of potential applications remorselessly increases, fueled by growing
user awareness of what may be possible.

If the demand exceeds the human resources available to meet it and these
extra resources are unlikely to be forthcoming in any reasonable timeframe
then higher productivity has to be the answer.

Software engineering context

It is the theme of this paper that productivity is a direct function of the
quality of the tooling used to support development, and that Case is an
essential component of any solution.

480 ICL Technical Journal May 1989

Just in case I get accused of doing some overtrading of my own, let me
quickly establish the true context of this paper. Software engineering is the
background theme. As most of you will know, its not a simple thing to define,
so perhaps if we identify the main areas it is concerned with as shown in
Table 1.

1 ... improving the softwear development process itself
2 .. methodology for life-cycle control
3 .. softwear metrics
4 .. project managerment techniques
5 .. formal methods of specification
6 .. structural methodologies
7 .. automation and support
8 .. re-use of software components
9 .. verification, validation and testing

Table 1 Main areas of softwear engineering

Areas 5,6 and 7, are the areas I want to explore with special reference to Case
tools.

The term “software engineering” was coined as long ago as 1968 at a NATO
Science Committee conference set up to examine the (then) problems of
developing software. Although it may not seem like it to some of us, quite a
bit of progress has been made since then, masked to some extent by the
increasingly complex products the industry has been expected to produce.
Some of these areas of improvement are: better methods of project control
and quality management; development of the life-cycle model; the evolution
of formal and structured methods and, most interestingly, the development of
automated tooling to support these techniques.

One of the important lessons to emerge is that all these techniques fit
together, they are not truly independent processes. To use them in an
effective manner therefore requires an integrated approach which itself has
significant impact on the organisational culture in which these tools are used.
The concept of integrated development supported by software tools plus
some kind of automated infrastructure leads to the idea of the integrated
project support environment (IPSE) in the development of which ICL is a
major player through the Alvey and ESPRIT programmes.

The diagram in Fig. 1, from the DTI/NCC STARTS Guide, second edition,
illustrates the interdependence of these facilities

In order to be effective the methodological structure illustrated above needs
to be reinforced by or allied to a strong conceptual model of the design
process. The life-cycle model provides one such conceptual basis for organis
ing and managing the production of software, and we see this embedded in
ICL’s phase Review mechanism. There are many variants of this linear
model, ranging from Barry Boehm’s Waterfall approach to the STARTS

ICL Technical Journal May 1989 481

Fig. 1 Software development methodological framework

model illustrated in Fig. 2, the Prototyping advocates tend to disagree with
the linear model as a foundation methodology for a number of very sound
reasons, but if you examine any Prototyping model, embedded within it is a
linear one; what differs may be the degree of formality assigned to the phases.

Effectively, no matter how you play around with diagrams, Prototyping does
not basically invalidate the linear model since Prototyping iterates up and
down the left hand size of the ‘V’ until a match to user requirements is
achieved. Then it may form part of a formal process, either starting all over
again, this time with the prototype serving as the requirement, or it may form
the product itself, migrating up the right hand side of the ‘V’. Depending on
what type of Prototyping techniques employed, e.g. exploratory, experimen
tal or incremental etc. Boehm’s Spiral model is probably the closest to an
integrated linear/Prototyping approach.

The coding process itself occupies an ambiguous position in the linear model
(Prototyping aside). In fact coding often begins in a real world situation
before design is complete, it continues through the testing and debugging
phase on to the maintenance phase which, after all is what you would expect
since the code is the software component of the system. It is a useful construct
to conceive of coding as occurring at a single point in the process, but reality
has its own way of dealing with abstractions.

482 ICL Technical Journal May 1989

Fig. 2 Life-cycle model

Requirements, however, seem central to the whole problem. While it is a
sound principle to define the quality of a product by the degree to which it
conforms to requirements, how do we test the quality of the requirements
themselves? The requirements specification can be an uneasy compromise
between end-user needs and the developers technical or marketing con
straints, a kind of balancing point between marketing pull and technology
push. This ‘front-end’ phase is probably the most difficult to get right and has
been recognised in software engineering by the plethora of formal and
structured techniques developed to give some coherence to the process. It is
interesting that it is this area that Case really began to emerge as a way
forward with its many variants of analysts workbenches.

In the above brief dissertation four issues seem to emerge as the foundations
for Case development. These are:

1 The need to construct integrated development environments - including
project management

2 the coding problem, its correctness and the extent to which it drifts from
the original requirement

ICL Technical Journal May 1989 483

3 the need for an adequate set of requirements couched in a form which
reduces errors in both logical structure and relevance to need

4 the need for Prototyping capability as an alternative where requirements
are uncertain as they certainly will be where innovative or speculative
development is needed.

Which, I think, brings us to Case itself, what it is and where it is going.

Case defined

As an acronym, Case is usually taken to mean “computer assisted software
engineering”. Some definition replace ‘software’ with ‘system’ to indicate the
potential range of these tools, but for the purpose of this paper we will stick
to software as the primary area. The term “Case” was reportedly coined by
John Manley in 1981 who was then the head of the Software Engineering
Institute at Carnegie Mellon University.

The significance of the term ‘Case’ lies in the recognition that software could
be used to assist in the development of software and may have its ideological
roots in CAD. Case is a US term only just beginning to become common
currency in the UK. On the other hand, ‘Ipse’ (which is a British extension to
the US ‘Apse’ concept) is widely used over here to describe a class of tools
supporting project management activities and tool integration. The Ipse
seems to have no precise equivalent in the US where Case development tends
to concentrate on the technical aspects of software development, such as
analysis, design and coding. In Britain we concentrate on project manage
ment and the construction of ‘super’ operating systems for software devel
opers, providing public tools interfaces for attachment of technically based
tools: Ipse 2.5, PCTE and ECLIPSE are instances of this type.

Generally, Case tools tend to cluster round three areas of software develop
ment. These are shown in Table 2.

Major areas Case clusters

Analysis and design Analysis and design aids

Coding Coding generators and programming support
environments

project control Integrated project support environments

Table 2. Clustering of Case tools

The problem that many people have with Case is knowing its limits and
where it fits into the spectrum of software products. The Ovum report places
it as shown in Table 3. Below.

484 ICL Technical Journal May 1989

Application packages Vertical Banking, Retail etc.
Horizontal Order processing, accounting,

OA, project management etc.

Development tools Re-usable libraries System kernels, math.
subroutines, I/O routine etc.

Case Analysis and design aids
Code generators,
programming support
environments, Ipse’s

Application tools 4GLs, DBMSs, report
generators, query languages,
spreadsheets, graphics, sorts
etc.

System Operating systems,
softwear utillites communications, compilers,

cross-compilers, linkers,
debuggers, editors etc.

Table 3. Case position in software product spectrum
Italics indicate areas where Case is relevant

This classification positions Case in a fairly central position in the range. The
narrowest definition of Case is that they are only concerned with analysis
and design processes.

The role of Case

The real objective of Case is to automate and support all the functions of the
development team that are needed to develop and maintain software. As you
would expect, however, the functionality actually provided by Case is a
compromise between what its potential users would really like and what
functions are most appropriate for automation. So, Case tools tend to focus
on the more routine and prescriptive level tasks which none of us enjoy doing
anyway, freeing up creative energy to concentrate on the higher level
decisions and activities. For instance, in its most simple form a Case tool
will provide graphic drawing and editing facilities to replace the pencil, paper
and templates we are used to, with the added bonus that the diagrams are
automatically verified for consistency, correctness and loose ends. It is in
removing the drudgery from development that Case contributes most to
productivity and quality.

One of the key effects of Case however is its impact on the way a user
organisation needs to orient itself round the use of these tools. Some user
organisations in the US have found, for instance, that their skills require
ments are shifting away from the designer/programmer team towards the
analyst/designer team where the skills orientation is closer to the application
area.

ICL Technical Journal May 1989 485

Case cannot be effectively used in isolation. It must be used in conjunction
with a very specific life-cycle strategy and the methods and disciplines needed
to support that particular view of the life-cycle. Bearing in mind that there
are literally hundreds of methods currently in use this poses significant
problems for both the user and the developers of Case. Should Case be
completely method independent, should it support the methods in use or
should it enforce them?

It is worth a quick look at the three areas of software engineering impacted
by Case (see Table 1). These are:

- Life-cycle models
- Structured methodologies
- Formal specifications

Life-cycle models

There is no such thing as a definitive model, each organisation having its own
variant, some having none at all. The underlying problem with life-cycle
models of the type shown in Fig. 2 is their relative inflexibility. A large
product can take up to two years to develop and by that time the original
requirements may have become invalid. This problem tends to push the
updating of the original requirements into the maintenance phase which,
according to Boehm’s COCOMO metrics also pushes up the cost by a factor
of fifty. Nevertheless, the life-cycle model is in almost universal use and its use
has been strongly influenced by defence contracts requirements.

An instance of this is the US DOD standard 2167 where the procedural and
documentation demands of the standard are almost impossible to meet
without Case support. We have similar standards in Britain. It is worth
noting here that, whatever the type of life-cycle model in use, there are
probably six other underlying activities which continue throughout the
project time frame. These are: project control, quality control, verification-
validation and testing (VV&T), object management, Prototyping and docu
mentation. Table 4 below illustrates where Case may be most relevant to a
life-cycle or phased model.

Prototying is a special instance of life-cycle models which attempts to avoid
the relative inflexibility of the linear approach and, in fact, you would find
very few Case tools that do not provide some form of prototyping. There is
no doubt that regardless of the type of prototyping technique used the main
advantages are the same - getting commitment from the user and feedback of
evolving requirements. In many ways it is a better way of building large
systems with its “build a little, test a little” approach. It can however provide
significant administrative and project control problems for the unwary.

Structured methodologies

Structured methods have been around since the 1970s for coding; these were

486 ICL Technical Journal May 1989

Analysis and design aids i i
Code generators
Ipses i '

i ":" :i l I

Requirements analysis r
Design l:;..;:,.:.:.:..i
Coding
Intergration and testing ■■■■ i i
Maintenance i - . - 1 i i

Prototyping i:;.;; i
Documentation ii i i
V V & T i--------1
Project control i i
Object management r i-------- 1

Quality control i— i

Table 4. Relevance of Case to life-cyclre phases

extended to include design and then analysis. Their use is still very spotty and
there is a tendency to regard their use as suitable only for very large systems
or defence projects. One of the usability problems is the immense amount of
documentation generated.

Structured methods consist of sets of rules and procedures for structural
decomposition, usually based on diagramming techniques, generating data
flow diagrams, entity models ets. Some of the techniques are underpinned by
mathematical theories, for instance, Jackson’s structured methods use proofs
developed by Boehm and Jacopini in 1966 which state that any control
structure can be expressed by using three component types - sequence,
iteration and selection.

Some of the leading techniques are Yourdon and Information Engineering in
the States, Jackson and SSADM in the UK.

All these techniques are naturals for Case and, as with prototying, there are
few analysis and design tools which do not use one variant or another. One
of the really big advantages of Case in this area is in the ability to control
the documentation problem.

Formal specifications

Although a good deal of effort is going into the development of natural
language interfaces for computers, there is the problem that the semantic
ambiguity of natural language, when used as a requirements language,

ICL Technical Journal May 1989 487

generates uncertainty and interpretation conflicts between the user and the
designers perceptions of what is really wanted.

Formal specification methods are (slowly) emerging as a possible way to
avoid ambiguity of meaning. They have, however, significant usability
problems in that they require considerable skills in set theory and other
branches of mathematics that are not commonly available. Equally, there is a
problem of where to stop. There is a natural tendency to merge the
requirements and design phases as a virtually single process. Its use is not
very widespread, particularly in information system design, however, as an
instance of its use, ICL uses “Me too”, which is a subset of VDM to specify
parts of its “Problem and resolution information system” (PARIS) a system
which will provide ICL with information about system problems with its
products.

Some leading examples of these techniques are VDM (Vienna Development
Method) by IBM, Gist by Information Science Institute in California, Gipsy
by Computational Logic and Z by Oxford University. Clearly these tech
niques will benefit by Case support but there are not too many instances at
the moment.

What do these tools actually do?

The clusters defined in Table 2 are based on the particular strengths of tools
categorised under these headings. In fact many of the marketed versions
contain some aspect of all three cluster characteristics. For the purpose of
illustrating what these tools actually do then the cluster approach is the best
way to describe them, so lets have a look at these categories.

Analysis and design aids

Typically, these are PC or workstation based and are designed to help the
analyst create and edit diagrams, usually of the structured methodology type
such as data flow diagrams, entity models and life histories etc. Tools in this
cluster typically provide for several styles of diagrams and some provide
screen painters. Diagrams are frequently provided for both data and process
modelling. Sometimes, as with the Information Engineering Facility from
Texas Instruments, there is separation between diagrams used for analysis
and those used for design.

Generally, these are low cost systems, it is easy to see what they do and are
usually easy to learn to use. Most importantly, for many intending users, they
can be used as ‘point’ tools in that they do not necessarily demand major
overhauls of the user organisation’s development methods.

One of the market leaders in this field is Excelerator from Index Technology.
As a drawing device these systems have many obvious advantages over
pencil and paper:

488 ICL Technical Journal May 1989

- quicker
- errors easily put right
- results are visually consistent
- diagrams can grow in any direction
- diagram components can have attributes and properties associated with

them
- design rules, syntax correctness and completion criteria can be automated

enforce the standards of the chosen methodology

However, today there is no room in the market for tools that simply draw
pictures. Just about all the tools in this class provide data modelling backed
up by some form of data dictionary system. Many of these provide for export
of their design data to (say) a mainframe data dictionary system or can be
passed on to a code generator. Increasingly, these products are expanding
away from their ‘point’ bias to become toolsets within some project
management environment, or are part of a network in which object
management is the key requirement. The emphasis is now moving away from
tools based on design data towards design knowledge. Knowledge-based
Case tools are beginning to appear such as the Bachman/series and Exsys.
My own project, part funded by the ESPRIT HUFIT programme, is
producing a knowledge based Case tool called INTUIT.

Some instances of these tools currently on the market are given in Table 5.

Core Workstation British Aerospace
Kalix/Kindra British Telecom
Automate Plus Cullinet/LBMS
Developer Workstation DBMS Inc
Quikbuild Workbench ICL
Excelerator Index Technology
Information Engineering Workbench Knowledgewear/Athur Young
MacCad Logica SDS
Speedbuilder Michael Jackson Systems
Design Aid Nastec
SQL Design Dictionary Oracle Corp
Information Engineering Facility Texas Instruments
Analyst/Designer Toolkit Yourdon Inc

Table 5. Analysis and design aids

Code generators

This range of products are those which output third generation languages
such as Cobol, PL/1, Ada and Lisp. Usually there will be a range of support
software such as compilers, linkers, interpreters etc. so that they can generate
executable code. The natural consequence of having this facility means that
all this class are capable of prototyping, for instance by animation of screen
painted sequences. It often does not matter that the language in which the
prototype is generated is not in the eventual target language since, depending

ICL Technical Journal May 1989 489

on whether the prototype is intended to become the product, as with
incremental development, the purpose will have been achieved of defining in
a pseudo run-time mode the intended functionality of the proposed system.

There is obviously some similarity with 4GLs in this respect, but there tends
to be advantages with using the high level code of generators because they
can use less computer resources than 4GLs. Even so, some Case tools are
integrated with 4GLs.

It is in this type of Case tool that we see re-use put to work. They usually
operate by bolting together bits of code forming a template in which the gaps
are filled with variables or labels derived from the screens or forms the
designer has previously painted in the design phase. Where there is extensive
computation involved then extra code may be required or perhaps could be
input via some kind of spreadsheet metaphor. There is little doubt that this
aspect of Case will benefit from knowledge based support guiding the
development of the coding process. The Knowledge-based programmer
assistant which was part of the original PCTE programme used a form of
conditional logic to support the user.

Productivity increases of some magnitude tend to flow from using this form
of Case. The Ovum report lists the following as some of the reasons for this:

Activity type Example
- Specification in very high level Refine, Use.lt

languages
- Specification by form filling and Netron/CAP, Transform

screen painting
- Language sensitive editing R1000, Genera
- Object management R1000, Refine
- Reverse engineering of existing Bachman/series

applications
- Knowledge-based techniques Bachman/Series, Refine, Spectrum

Some of this class of tool also address the problems of team-working by
providing multi-user capability, but there seems to be little evidence of a
general move towards Ipse type support. There may be sound marketing
reasons behind this decision of course. Some instances of the tools in this
class are shown in Table 6.

In te g ra te d p ro je c t s u p p o rt e n v iro n m e n ts

This is a relatively small cluster at the moment which appears to have had its
origins in the DoDs Stoneman report in 1980 specifying the Apse, (Ada
programming support environment). An Apse consisted of a database, an
interface to both users and tools and some tools. This database was a project
fileset intended to store information about the history and purpose of
objects, rather than their content. Object and configuration management was
therefore an important issue in an Apse.

490 ICL Technical Journal May 1989

Product Supplier
bachman/series Bachman Information System Inc
Knowledge Build Cullinet
Use. it Higher order Softwear Inc
Netron/CAP Netron Inc
R1000 Rational
Refine Reasoning Systems Inc
Spectrum Software A&E
Genera Symbolics
Transform Transform Logic Corp
Vax Cobol Generator DEC
Pacbase CGI Systems Inc

Table 6. Instances of Code Generator Case products

In Europe, we took out the Ada exclusivity and it became the Ipse, first
defined by Alvey. Also, there was a switch from Programming support to
project support which emphasised the life-cycle project management and
control activities.

In effect, an Ipse provides a framework (operating system, if you like) which
can be populated with tools connected to public tools interfaces. This is still
an emerging technology and there is a sub-market developing for tools for
integrating tools within an Ipse. The PCTE programme of ESPRIT (portable
common tools environment) possibly has the potential for this aspect of Case
tooling since it defines a de facto standard interface between a framework
Ipse and Case tools. Many manufacturers are already building both Ipse and
tools which conform to this interface standard. In ICL an early form of Ipse
was developed in the early 70s called CADES (Computer Aided Develop
ment and Evaluation system - see ICL Technical Journal Vol. 2 Issue 1 for
May 1980 for a good description of this).

Of major significance is the facility for Ipse to provide a means by which a
chosen methodology and standards can be imposed across the entire project
structure, rather than just at the technical or ‘point’ component. For
instance, life-cycle models are frequently supported by phase control pro
cedures which act as break points between the phases. The product must
satisfy some phase acceptance criteria before being allowed to progress to the
next phase. In an Ipse controlled development world this process can be
significantly enhanced by (say) ensuring that appropriate quality assurance
programmes have been carried through. Some instances of these Case tools
are shown in Table 7.

The benefits from Case

There is a temptation at this point to extend the above descriptions of the
attributes of Case to include a discussion of the technology and architecture of
these classes, but maybe this is best left to another article.

ICL Technical Journal May 1989 491

Products Suppliers
Software Backplane Atherton Technology Inc
BIS-lpse BIS Applied Systems
Genos GEC Software
Istar Imperial Software Technology
Maestro Philips
Perspective Kernal Systems designers pic
EPOS Systematica Ltd
PCTE Bull, ICL, GEC, Olivetti, Nixdorf,

Siemens, (ESPRIT programme)
Ipse 2.5 STC Tech. ICL, Dowty Electronics,

Rutherford Appleton Labs, Plessey
Research, British Gas Manchester
Univ. (Alvey)

Eclipse Software Sciences, CAP, LBMS
Ltd. Universities of Lancaster,
Strathclyde, and University College
of Wales (Alvey)

Aspect Systems Designers, ICL MARI
Advanced Electronics, Universities
of York and Newcastle. (Alvey)

Table 7. Ipse based Case tool examples

Instead I want to discuss the benefits that appear to be derived from the
present generation of these tools. Presently, the market is still in its infancy,
both in the range and scope of products available. Much of the initiative is
coming from spin-off companies and the list seems to grow daily. So far, the
use of Case is very spotty and very few large companies have committed
themselves to this technology, but they will. The installed base is presently
estimated at between 20000 and 30000 units and its a real growth market.
That 20/30K units in 1988 in the US and UK is forecast to rise to something
like 750K installed during 1995. (Interestingly, about 200K of that figure
represents workstations attached to Ipses.) This would bring Case, in value
terms to around 8% of the total software market at that time, but think of it
as representing around 25% of the present software investment. Because of
the relatively small base of installed systems not a lot of figures are available.
However, lets see what we’ve got.

At an address to the fourth Index Technology User conference, Paul
Hessinger pointed to the growing gap between software and the ability of
software builders to deliver. He estimated this gap to be 4% compounded
annually. (This figure differs from the one I quoted at the front of this paper, so
let's say between 4 and 8% and not argue too much!) He clearly believes that if
ever there was a requirement looking for a solution, this is it. Richard
Carpenter, also of Index Technology, said that a survey of the Case user
market showed the following impact:
10% Very favourable
80% preliminary results favourable
10% no impact

(None said negative impact)

492 ICL Technical Journal May 1989

He also pointed out that there are four levels of proficiency in their use:

beginners drawing of graphic diagrams and documentation
intermediate uses dictionary, produces reports
advanced user analysis, verify consistency, completeness, compliance,

rulesets
mastery re-uses previous design and dictionary objects

Really, the benefits from Case can be separated into:

- benefits from software engineering methods themselves
- benefits from using Case to automate those methods

It is rarely possible to properly quantify the overall benefit due to the lack of
adequate metrics. The key point is to acknowledge that software engineering
methods themselves can result in significant increases in productivity. British
Aerospace provides an instance of this where the use of methods substanti
ally improved productivity. In theory, it is possible to implement these
methods purely manually, but invariably, on any reasonable scale project,
the amount of paperwork generated can swamp the management of the
project. Case tools absorb a great deal of this overhead and enhance the
potential for introduction of these methods. The two approaches are
therefore interdependent. Here are some of the reported benefits from using
Case.

AT&T “Improved productivity accuracy and morale”. Reduction of data
elements from 12 000 to 900.
BDM Corp Direct productivity gain of two during coding and testing
phases (Using Symbolics workstations).
British Aeropsace Fivefold productivity increase in avionics and aircraft
utility systems software. Major changes reduced in number by a factor of six.
Achieved with tools from various sources used in BAe’s Safra methodology.
Carrier Corporation For a new application development: 45% overall
productivity improvement, 79% decrease in development time, no main
tenance for nine months (using DesignAid, Joint Application Design and
Telon).
DuPont Six to one productivity gain (Using Application Factory code
generator instead of a 3GL).
Marine Midland Bank Development of major banking system (for securi
ties clearance) in two years instead of three and a half years (Using
Excelerator and Telon).
Norma Industries IS expenditure is 0-6% of turnover versus around 5% for
the manufacturing average (Using Netron/CAP).
Philips Artillery command software completed on schedule, using Rational
by engineers with no previous Ada experience. Rational system estimated to
have paid for itself twice over within seven months.
Symbolics Have written four compilers (including Ada) in 24 person years -
well above the industry average.
TRW 100% productivity gain on two projects, 200% on a third, using a
“first generation Ipse” (Unix plus tools).

ICL Technical Journal May 1989 493

In a number of cases there has been a saving in code of between 5 and 10 fold
reported. As a final word (or picture) on this topic let me offer you Barry
Boehm’s productivity improvement tree, from TRW, in Fig. 3.

The productivity Improvement tree (TRW)

M0 TIVATE I— INCENTIVES, STAFFING, TRAINING
PEOPLE — FACILITIES

________I _ _] — MANAGEMENT

[MAKE STEPS — SOFTWARE TOOLS, ENVIRONMENTS
— MORE — WORKSTATIONS

EFFICIENT — OFFICE AUTOMATION

_ ELIMINATE — AUTOMATED DOCUMENTATION
STEPS i— AUTOMATED PROGRAMMING

IMPROVE I -------------------------
PRODUCTIVITY — — KNOWLEDGE-BASED SOFTWARE ASSISTANT

-------------------------- ELIMINATE — INFORMATION HIDING, MODERN PROGRAMMING
— r e _WORK — SOFTWARE AIDED DESIGN

— FRONT-END LANGUAGES
_______________ — INCREMENTAL DEVELOPMENT

BUILD — RAPID PROTOTYPING
— SIMPLER

PRODUCTS — PROCESS MODELS

~ [— COMPONENT LIBRARIES
COMPONENTS “ APPLICATION GENERATORS

________ |— FOURTH GENERATION LANGUAGES

Fig, 3

Summary

No, I’m not about to embark on a long winded summing up. My personal
conviction is that Case will become as essential to the IS development team
as CAD now is to designers of advanced microelectronic components. There
will probably be a series of shake-outs of the many builders of Case tools in
the world today as the user population increases and matures in its
appreciation of these tools. I suspect one of the key changes these tools will
bring about however is more to do with people than machines or software. It
is possible that there will be a gradual shift in skills requirements as the
potential for automating large chunks of the software process become more
widely realised through the evolution and spread of Case technology. We can
expect to see that employers who are using Case will have an easier job in
attracting top quality staff than those who still offer today’s technology. In
the end, it is the combination of good people and good tools that will have
the greatest effect on raising productivity.

494 ICL Technical Journal May 1989

Bibliography

Computer-aided software engineering. An Ovum report, by Julian Hewett and Tony Durham.
Pub. Ovum Ltd. London 1987.

The STARTS Guide, second edition 1987. Prepared by industry with the support of the DTI and
NCC.

Software engineering economics, Barry Boehm, Prentice-Hall 1981.
The costs and values of Case, Capers, Jones, Software Productivity Research Inc. 1987.
Software engineering strategy, Alvey Directorate. 1983.

ICL Technical Journal May 1989 495

The UK Inland Revenue operational
systems

E. Wilson
Technology Group Manager, Inland Revenue Development Centre, Telford, Shropshire

Abstract

The computer system developed to support the operational needs of
the UK Inland Revenue Service is one of the largest in the world, and
the needs among the most demanding. This distributed system, based
on a number of ICL Series 39 Level 80 mainframes, is now dealing with
about 30 million tax cases. The following note is intended as a
forerunner to a future fuller paper; it gives an outline of the main
components of the complete system, focusing on the validation and
integration procedures used, the system management practices and
the underlying organisational issues.

Background: the major system

There are currently four major Inland Revenue computer systems supporting
Operational needs. These are:

1 COP (Computerisation of PAYE). This system supports the administra
tion of Pay-As-You-Earn for about 25 million UK employees. Imple
mented nationally between 1982 and 1988, it is an online system
supporting 26000 terminals, installed in some 700 district taxation
offices, generating peak online traffic of over 200 messages per second. It
is implemented on 12 ICL Series 39 Level 80 mainframes installed in 11
geographically distributed Processing Centres (PCs).

2 CODA (Computerisation of Schedule D Assessing) administers Schedule
D taxation for some 4-5 million cases. It was implemented nationally
between 1986 and 1988 as an extension of the COP system, requiring
10000 additional terminals.

3 Accounts Office Systems are batch based systems supporting tax collec
tion and accounting, to be progressively replaced from 1990 by a major
new system called BROCS. The systems are implemented on 2 Series 39
Level 80 mainframes in 2 Accounts Offices (AOs).

4 NTS (National Tracing Service) offers facilities to trace employees or
employers by name and address fragments. It is implemented on a single
Series 39 Level 80 mainframe.

496 ICL Technical Journal May 1989

These systems interwork over a private X.25 network; the overall network
architecture is shown in Fig. 1.

Fig. 1 Inland Revenue Network - Operational Systems

System validation

All IR Operational systems are subject to significant levels of planned
change, largely to accommodate changes in Government legislation or
Departmental working practices. At the same time the hardware, system
software, and management tools are themselves being improved. Change
within the application systems is controlled by rigorous configuration
management procedures which themselves support a hierarchy of functional
tests from the unit level up to a User Acceptance test. Analogous practices
control change within the environment in which the application will operate.

Two principles underlie the approach to change in this environment. The first
is to minimise variety. All operational systems are constrained to have a
common software baseline; changes needed for one system (or one instance of
one system) are, after due validation, replicated everywhere. A similar
approach underlies the hardware baseline. The number of different types of
hardware components is minimised; standard configurations are constructed
for different bands of capacity; common hardware modification levels and
microcode levels are imposed.

The second principle is evolution not revolution. Changes to software are
introduced across a stable hardware base and vice versa; supplier support of
this policy is demanded. Both software and hardware changes are introduced
in a limited number of individually validatable packages updating their
relevant baselines.

ICL Technical Journal May 1989 497

These principles dictate the approach to changes to the systems environment.
Validation of such changes is effected through specific product validations,
clone tests, and load tests. Specific validations confirm that new system
software is non-regressive and conforms to specification. Successful collab
orations with suppliers to accelerate product validation have been entered
into with mutual benefit. Clone testing exercises a ‘clone’ of one of the live
system instances within its exact hardware environment prior to release of a
package of system or application changes. Load testing exercises a realistic
abstraction of a live system instance under conditions of full online load,
generated by a network simulator working across a real network.

System management

Systems management of the Operational systems is principally concerned
with

- Problem management. The progression of perceived problems from
whatever source through to timely resolution.

- Fault management - alerting, diagnosis, investigation, and recovery.
- Network configuration management.
- End system software management - software distribution, invocation,

regression.

From the outset the principle of centralised management and support has
been adopted, both because of its appropriateness to replicated identical
system instances and in order to focus scarce skills. The central support unit
at Telford Development Centre uses an extensive collection of support tools,
provided by suppliers or developed in house, to effect the management of the
end systems. The timely availability of ISO management standards and
conformant products is seen as a major requirement, in order to meet future
demands of increased terminal functionality, system interworking, and
complexity. In the absence of such standards, the Revenue has collaborated
with suppliers to provide generic, marketable, solutions.

Support interfaces

Centralised problem management is complemented by the provision, by ICL
and other major suppliers, of a single point of contact for support regardless
of fault type or location. ICL, as the supplier of both mainframe and terminal
hardware has its service management centre co-located with the Revenue’s
problem management group. Service levels provided by suppliers are
contractually determined and closely monitored.

Achievement

One important measure of the effectiveness of the various procedures
outlined is the availability of the computer services to the end user. A
terminal availability of 98-67% was achieved during 1987, covering all

498 ICL Technical Journal May 1989

reasons for unavailability including mains power failure and operator error.
A target of 99-2% was adopted for 1988.

Conclusion

Inland Revenue developments in the field of IT are dedicated to producing
solutions to business needs. Implicit in these solutions are high levels of
system reliability. Successful tools and procedures have been adopted to
achieve this across a network of complex replicated systems. We look to our
suppliers to continue to improve product reliability and management tools,
and thus to allow us to focus on the IT solutions themselves.

ICL Technical Journal May 1989 499

La Solution ICL chez Carrefour a Orleans
Y. Pisigot

ICL France, 78140 Vellzy-Villacoublay

Abstract

CARREFOUR, is the world wide largest hypermarket chain, with 100
hypermarkets: 71 in France, 25 in Spain, the remaining 4 in South
America. The latest of Carrefour, France opened in April 1988 and is
entirely managed by a system running on ICL CLAN and DRS
equipment. The sales area is 6000 square metres (60000 square feet),
the stock held is about 100 000 items, there are 34 check-out tills with
optical scanning and EFT equipment, and about 7000 customers use
the store daily, spending an average of 120 F (about £11) each; the
number of items sold daily is about 200 000. The system has direct links
to the banking system through the French national digital data
transmission network TRANSPAC; it also manages the Carrefour
private card (carte PASS). The paper gives a summary of the
architecture, function and performance of the store management
system.

1. Introduction

1.1. Le systeme d’encaissement et de gestion installe a CARREFOUR
ORLEANS a pour objectif la gestion complete du magasin. II traite
les flots d’informations circulant a l’interieur du magasin et permet
l’echange de donnees entre le magasin et diflerents partenaires
exterieurs:

- siege
- tournisseurs
- reseau bancaire
- etc ...

1.2. Schema de principe

1.3. Plusieurs categories de personnels sont en contact quotidien avec le
systeme

- les caissieres 1 „ , ,, , , . . 1 Pour les fonctions encaissement- les responsables encaissement r q jyj g *
- les responsables du coffre J

♦General Merchandising System.

500 ICL Technical Journal May 1989

- les commerclaux
• chefs de rayon Pour les fonctions
• secretaires d’achat > “gestion” sur le

- les personnels de reception marchandise CLAN 7
- les personnels administratifs (comptabilite)

2. Configuration generale

Fig. 2

502 ICL Technical Journal May 1989

3. Encaissement. Systeme G.M.S.

3.1. Fonctions POS
- Passage des articles (scanner)
- saisie des ventes
- encaissement par moyens de paiement

Carte Bancaire - connexion au reseau bancaire
Carte PASS - signature electronique sur PinPad Crouzet

- connexion via 4702 au reseau Carte PASS
- gestion comptant/credit

Cheque - lecture/encodage CMC7 via Crouzet ELC200
- avantages financiers (remise) aux clients privilegies
- retrait d’argent (fonction ALEX - Carte PASS)

3.2. Fonctions caissiere
- gestion du caissier flottant
- tiroir personnalise
- prelevements

3.3. Fonctions coffre
- saisie recettes/depenses
- suivi des caissieres
- mouvements d’argent

3.4. Fonctions fichiers

3.4.1. Tailles
utilisateurs 300
emplacements 50
moyens de paiement 10
articles 100000
remises/offres/reductions 99

3.4.2. Articles
Environ 50000 articles (sur les 100000 prevus) sont actuellement
introduits sur le systeme G.M.S.
La repartition FAM/disque est faite automatiquement a partir du
fichier Departement (environ 30).
Les articles a fort passage - tous produits de grande consommation -
sont en FAM (40000).
Ceci permet un passage caisse sans ralentissement pour la totalite des
articles.

3.4.3. Remises/offres/reductions
Tous les avantages financiers sur ticket sont appliques - en pourcen-
tage article ou departement - de fa<;on automatique.
Deux possibilites:
- application a l’ensemble des clients
- application uniquement aux clients privilegies (carte Pass)

ICL Technical Journal May 1989 503

3.5.1. Acces direct via X25 au reseau bancaire

- demandes d’autorisation au GIE Carte Bancaire
- traitement des listes d’opposition (listes noires)
- telecollecte des remises bancaires (E.F.T.)

Fig. 3

3.5.2. Acces direct via X25 au serveur Carte PASS

- controle du code confidentiel (sur 4702)
- traitement credit/comptant
- fonction de retrait d’argent (ALEX)

fichier clients magasin (dans 4702) ou exterieur (centre serveur)

Fig. 4

3.5. Fonctions transmissions

504 ICL Technical Journal May 1989

3.5.3. Acces interactif au systeme Back Office via X25/ADI

- pour mise a jour article sur G.M.S.
- transfert des elements de vente en fin de journee

4.1. Synoptique des fonctions

4.2.1. Gestion marchandise

Cycle achat
- proposition de commande
- passation de commande: en direct par telex ou par courrier
- reception marchandise
- traitement des factures
- tenue des stocks - avec inventaire et comptage
- maintenance des fichiers de base
- promotions
- ristournes de fin d’annee

statistiques achats

Cycle vente
- saisie des ventes (systeme GMS)
- gestion unitaire - merchandising
- etude assortiment
- analyse concurrence
- previsions de ventes
- statistiques de ventes
- tableau de gestion
- analyse chiffre d’affaires - historique - objectifs

4.2.2. Gestion administrative
comptabilite generale/tresorerie
compte d’exploitation
etc ...

4.3. Fonctions transfert

Fig. 8

4.2. Fonctions de gestion magasin

ICL Technical Journal May 1989 507

4.3.1. Schema general
Le CLAN est maitre dans cet echange et initie tous les transferts avec
le systeme GMS

Fig. 9

4.3.2. Mise a jour articles

Toutes les operations de maintenance du fichier articles sont realisees
sur le CLAN, avec transfert vers le systeme GMS:

soit dans la journee - pour application immediate
soit le soir - pour application pendant le traitement de nuit GMS

508 ICL Technical Journal May 1989

4.3.3. Resultats de ventes

Le transfert des resultats de ventes est essentiel pour le systeme de
gestion (saisie des ventes unitaires)
L’ensemble du traitement sur le CLAN: proposition de commande,
differents tableaux de bord, etc. n’est possible qu’apres ce transfert.
Un mecanisme est mis en place pour que l’information soit transferee
des que disponible (entre autre, avant tout traitement GMS de type
JOIN).
En cas de rupture de la liaison, toutes les informations sont archivees
sur DRS jour par jour et le transfert est automatique.

4.3.4. Planification caissiere

Cette fonction est executee sur un PC MS DOS directement a partir
des informations fournies par le systeme GMS; le CLAN sert done de
boite aux lettres entre GMS et le PC.
Toutes les informations sont disponibles jour par jour sur le CLAN et
le PC va les chercher quand elles lui sont necessaires.

4.3.5. Reseau telex

Cette liaison est utilisee pour transferer les commandes apres valida
tion par un responsable commercial, aux differents fournisseurs. Cette
fonction est realisee par un PC connecte au CLAN et au reseau telex
(4 voies simultanees) via un interface agree.

4.4. Configuration CLAN

5. Partenaires dans la solution Carrefour

ICL - encaissement DRS 155/DRS 145
GMS
9518:21

- materiel gestion CLAN 7 ecran
CROUZET - lecteur encodeur CMC7 pour cheque

- PIN PAD pour code confidentiel
AN ABEL - logiciel gestion magasin (CLAN)
PERRICHON - logiciel de planification caissiere sur PC connecte
SESIT-ITAB - connexion au reseau telex
AXIS DIGITAL - connexion PC MS DOS a UNIX CLAN 7

(UTOPIA)

6. Caracteristiques du Magasin Carrefour Orleans

- ouverture le 27/04/88
- directeur: M. DECLEMY
- surface de vente: 6000 m2 (magasin de centre ville)
- 250 personnes employees

ICL Technical Journal May 1989 509

- 34 TPV en ligne de caisse
- 4 caisses peripheriques
- 7000 clients/jour
- mouvement de 12/1400 articles/jour
- panier moyen 120 F
- objectif 250000 articles sur le CLAN (80000 aujourd’hui)

100000 articles sur GMS (50000 aujourd’hui)

510 ICL Technical Journal May 1989

A Formally Specified In-Store System
for the Retail Sector

V alJones
Department of Computing Science, University of Stirling,

Stirling FK9 4LA, Scotland

Abstract

The paper reports work completed under the auspices of Alvey
Software Engineering Project SE029, Use o f F unc tio na l P rog ram m ing
as a design a n d p ro to typ in g m e tho do log y fo r In te lligent Business
Systems. This project involved collaboration between, the Department
of Computing Science, University of Stirling, STC Technology Ltd. and
the Institute of Retail Studies, University of Stirling.

Retailers are well-established users of computer technology as aids
to traditional managerial functions such as financial management,
inventory control, space allocation and physical distribution. New
technology also opens up the possibility of extending new services to
customers. Here we present a design for an integrated supermarket
system in which the functions of space allocation and inventory
management are handled automatically. Customer services are also
provided - a home browsing and teleshopping service and an in
store information service. The small databases used as examples are
taken from food retailing, but the system is equally applicable to
other retail areas such as electrical goods, DIY, garden centres and
so on.

The complete system was formally specified; a few extracts from the
specification are given in Appendix 1, to illustrate style and structure.
The specification language used (me too) is executable and a
prototype of the retail system runs on a microcomputer,

The purpose of this exercise is to demonstrate that formal methods
can be applied to problems drawn from the real world. Here certain
simplifying assumptions have been made concerning the problem
domain, but the author believes that the result demonstrates the
feasibility of the approach.

1 Introduction

The large retail chains are well-established users of conventional computer
technology to handle traditional managerial functions such as financial

ICL Technical Journal May 1989 511

management and inventory. Many small retail outlets now use off-the-shelf
software running on microcomputers to perform similar functions. The
adoption of barcoding standards by producers means that wider use of EPoS
and EFTPoS systems (electronic point of sale, electronic funds transfer at
point of sale) is in prospect. In addition, many large retailers are increasingly
investing in new technology to aid in planning tasks such as space allocation
and physical distribution. New technology has also opened up the possibility
of extending new services to customers.

Presented here is a design for an integrated in-store supermarket system
which provides four facilities - two traditional management functions and
two novel services to customers. The two traditional applications are space
allocation and inventory management. The customer services provided are
an in-store information service and a computer-based home browsing and
shopping service. These represent four of the application areas identified in
[6],

For the store manager

The space allocation application automatically allocates products to shelves
in a supermarket. The supermarket may have any arbitrary layout. The
space allocation system generates a plan for distributing products across
shelves so that related products are shelved together. This plan can be
inspected and modified by the manager. The automatic perpetual inventory
application exploits EPoS and barcoding to continually monitor shelf stock
and store room stock. Warnings are given of impending shelf stock-outs and,
when stocks fall to a certain level, goods are automatically reordered from
the (currently cheapest) suppliers.

Customer services

The in-store information service is intended for large stores, where customers
may require help in finding a particular product. From any location in the
store the customer can request directions to a particular product. The system
calculates the shortest route from the customer’s current location to the
nearest instance of that product, and generates directions for the customer.
The teleshopping application allows customers to access (selected parts of)
the store’s database from a terminal in their home. The customer can browse
through the product information, decide what they require, and order goods.
The transaction will be effected providing the customer’s credit is good. If so,
the customer’s account is debited by EFT, and appropriate updates are made
to inventory, sales and orders to suppliers.

The examples which follow are taken from food retailing. The system,
however, is equally applicable to other retail areas such as hardware,
electrical goods, DIY, garden centres, and so on.

The retail system was designed using the me too method [1-5]. This method

512 ICL Technical Journal May 1989

uses the techniques of formal specification and rapid prototyping in the
design stage of the software development process. Here the functionality of
the system (what it does), rather than the user interface, is being prototyped.
The primary output from the me too method is the formal specification,
whose purpose is to act as a design document - as a guide to the
implementation and testing of the eventual software product. The system is
specified in the me too language; a sample of the specification is presented in
Appendix 1. The me too language is executable and a prototype system runs
on a microcomputer.

The purpose of this exercise is to demonstrate that formal specification can
be used to capture and express, economically and unambiguously, the
important aspects of a “real-world” problem. Proponents of formal methods
claim that the incorporation of these techniques into the software engineer
ing process increases the reliability, correctness and maintainability of
software products, and can decrease the costs and time involved in produc
tion and maintenance of software.

Certain simplifying assumptions have been made concerning the problem
domain. The specification does not attempt to cover all operational aspects
of a retail outlet; nor does it deal with the full complexity of the functions
which it does handle. Moreover, the store is treated in isolation, whereas
some aspects of the design would be more appropriate to large multiples
than to the small retailer’s operation, where only one outlet is involved. The
author believes, however, that there would be no obstacle to extending and
generalising the specification in order to address these complexities, and
hopes that sufficient complexity has been retained here to demonstrate that a
formal approach could be both feasible and fruitful in a real industrial
project.

2 The Store

The store consists of a collection of databases storing information on
inventory, suppliers, orders, sales, products, barcodes, customers and store
layout. Each component of the store is treated as a separate data type, and a
set of operations on that type is defined. For example, there is a type
Inventory, and a set of operations, including constructors and selectors, are
defined for objects of type Inventory. A data object of type Inventory is built,
and combined with the other objects (of types Suppliers, Orders, etc.) to build
an object of type Store. For each component of the store, there is a
corresponding module in the specification.

Each of the four applications makes us of the major type, Store, and to a
subset of the other types. The types are listed below:

St Store
I Inventory database
S Supplier database

ICL Technical Journal May 1989 513

O Orders (to suppliers)
SI Sales (i.e. accumulated total sales in pounds)
P Product information
B Barcode table (associations between barcodes and product descrip

tors)
C Customer database (customer identifiers and credit ratings)
L Layout of store

The store components in turn make use of various libraries of extensions to
the predefined operations on basic me too types, such as relations and
sequences. These components are as follows:

N extensions to operations on numbers
T extensions to operations on sets
R extensions to operations on relations
G operations on bags (bags are sets with repetitions)
Q extensions to operations on sequences

Figure 1 shows which components are used by each application:

Application-specific Generic
components components

Application St I S O SI P B C L N T R G Q (b)

(a) Space Allocation X X X X X X X X
(b) Perpetual Inventory X X X X X X X X X
(c) Instore Information X X X X X
(d) Teleshopping X X X X X X X X X X X

Fig. 1 Components used by the retail applications

The last column shows that some of the operations in the Automatic
Perpetual Inventory application are reused in the Teleshopping application.

Each application consists of the set of specifications defining the compo
nents used by that application, together with the application specification
itself. Each application specification, therefore, should be read in conjunc
tion with the specifications of the components which it imports. For
example, the Space Allocation component uses the Store, Inventory, Prod
ucts, Barcode Table and Layout components. An understanding of this
application therefore depends on reading the specifications of these compo
nents.

The type Store represented by a record containing eight fields.

Store = record (inventory : Inventory,
suppliers : Suppliers,

514 ICL Technical Journal May 1989

orders : Orders,
sales : Sales,
products : Products,
bartable : Bartable,
customers : Customers,
layo u t: Layout)

The record declaration is shown below.

Store : : inventory, suppliers, orders, sales, products, bartable, cus
tomers, layout;

When the declaration of the record type Store is input to the me too system,
record constructor, selector and update operations are automatically created
for objects of type Store.

Each field type refers to a component of the system which is specified in a
separate module. Instances of that type can be constructed using the
operations provided in that module.

3 The Store Components

There are many decisions which could be made concerning where informa
tion is to be distributed across different parts of the system. The choices made
below are not the only possible ones.

The specification of the retail system focusses on the functionality of the
system, and not on the user interface. The interactions with the me too shell
shown below are meant to illustrate this functionality. An implementation, as
opposed to a prototype, would incorporate appropriate interfaces such as
menus, mice, touch sensitive screens, and so on.

3.1 Inventory

Each inventory entry shows the following information concerning a product
stocked by the store:

ONSHELVES - quantity currently on the shelves
MINSHELF - shelf stock level at which shelves should be replenished
TOTSHELF - total shelf space allocated to this product (units of

product)
INSTORE - quantity held in the store room
REORDLEV - stock level at which this product should be reordered

Inventory records are indexed by barcode. Initially the store stocks the
following products:

ICL Technical Journal May 1989 515

Product Barcode
Master Blend1 ground coffee (size 230g) 5000136997729
Nescafe2 instant coffee (size 50g) 5000243000204
Nescafe instant coffee (size 100g) 5000243924403
Cafe Hag3 instant coffee (size 50g) 5000136998627
Irn Bru4 (size 2 litres) 5000107000827
Felix5 tuna cat food (size 400g) 5000108005445
Felix rabbit cat food (size 400g) 5000108005353

The inventory entry for each product is initially set up to allow space for 10
units of product on the shelves. The system starts with the shelves full. Shelf
stock is to be replenished when it falls to five units. Additional stocks of 15
units of each product are held in the store room; (total stocks of each
product, therefore, are initially set to 25). When total stocks of a product fall
to 10 units, that product must be reordered from the suppliers. These figures
can be adjusted as desired, for example when analysis of the store’s operation
results in the development of a more realistic local demand model. (Such a
model could be extracted automatically using feedback from scanning data
over a period of time.) The initial inventory is shown in Fig. 2.

ONSHELVES MINSHELF TOTSHELF INSTORE REORDLEV

5000136997729 10 5 10 15 10
5000243000204 10 5 10 15 10
5000243924403 10 5 10 15 10
5000136998627 10 5 10 15 10
5000107000827 10 5 10 15 10
5000108005445 10 5 10 15 10
5000108005353 10 5 10 15 10

Fig. 2 The initial inventory

Operations from the Inventory module are used to construct a data object
invt, which will later be supplied as the inventory field in the store record.
The type Inventory is represented as a map from barcodes to inventory
entries:

Inventory = map(Barcode, InvEntry)

where
Barcode = Nat
InvEntry = map(Attr.Nat)
A ttr= {''ONSHELVES", "MINSHELF", "TOTSHELF", "INSTORE",

"REORDLEV''}

‘Master Blend is a trademark of General Foods Ltd.
“Nescafe is a registered trademark of the Nestle Co. Ltd.
•’Cafe Hag is a registered trademark of General Foods Ltd.
4Irn Bru is a trademark of A.G. Barr pic.
“Felix is a registered trademark of Quaker Oats Ltd.

516 ICL Technical Journal May 1989

Four constructor operations are needed to build the inventory:

emptyinv : - > Inventory
m k e n t: Nat x Nat x Nat x Nat x Nat - > InvEntry
mkinv : Barcode x InvEntry - > Inventory
joininv : Inventory x Inventory - > Inventory

emptyinv constructs an inventory with no entries, mkent constructs an
inventory entry, mkinv constructs an inventory with a single entry and
joininv is used to merge two inventories. First an inventory entry is defined:

e n t= = m kent(10,5,10,15,10);

and ent is inspected:

e n t ;
{ ONSHELVES - > 10, MINSHELF - > 5, TOTSHELF - > 10,

INSTORE - > 15, REORDLEV - > 10} ;

Now the inventory is constructed:

invt = = em ptyinv() ;
invt = = joininv(invt,mkinv(5000136997729,ent)) ;
invt = = joininv(invt,mkinv(5000243000204,ent)) ;

invt at this point has the following value:

{5000136997729 - > {ONSHELVES - > 10,MINSHELF - > 5,
TOTSHELF - > 10,INSTORE - > 15,
REORDLEV - > 10},

5000243000204 - > {ONSHELVES - > 10,MINSHELF - > 5 ,
TOTSHELF - > 10,INSTORE - > 15,
REORDLEV - > 10}}

The other entries are added, and when the inventory as shown in Fig. 2 has
been constructed, invt is in the form in which it will be combined with other
objects to construct the store.

3.2 S u p p lie r D a tabase

Information about suppliers is held in a supplier database. For each supplier,
there is a supplier code, the supplier’s name and address, and his current
pricelist (the cost price of each product). A small supplier database is shown
in Fig. 3.
Supplier data will be held in an object of type Suppliers which can be
represented as a map:

Suppliers = m ap(Suppliercode,pair(Nam e-Address, P ricelist))

where
Pricelist = m ap(Barcode,Price)
Price, Barcode = Nat
Suppliercode, Nam e-A ddress = String

1CL Technical Journal May 1989 517

Supplier Name and address Pricelist
Code

sc1 Jim Skullion 5000136997729 140
Dock Road 5000243000204 80

5000243924403 155
5000136998627 90

sc2 Arthur Daley 5000136997729 142
The Lock Up 5000243000204 60

5000243924403 150
5000107000827 53

sc3 Harry Sharp 5000107000827 55
Abattoir Road 5000108005445 30

5000108005353 30

sc4 Frank Price 5000107000827 58
Dodgy Blvd 5000108005445 31

5000108005353 31

Fig. 3 A supplier database

Price lists are constructed using the operations emptypricelist and addprice,
and the Suppliers object using operations emptysuppliers and addsupplier:

em ptypricelist: - > Pricelist
addprice : Barcode x Price x P rice lis t- > Pricelist
emptysuppliers : - > Suppliers
addsupp lier: Suppliercode x Nam e-Address x Pricelist

x Suppliers - > Suppliers

The supplier database is constructed:

pH = = addprice(5000136997729,140,emptypricelist()) ;
pH = = addprice(5000243000204,80,pl1) ;
pH = = addprice(5000243924403,155,pl1) ;
pH = = addprice(5000136998627,90,pl1) ;

sup = = addsupplier("scl","Jim Skullion, Dock Road",pl1,
em ptysuppliers()) ;

The process continues until all the information shown in Fig. 3 has been
included in sup.

3.3 Orders

As goods are sold, an orders database is built up. Figure 4 shows that an
orders database consists of a number of orders to individual suppliers, and
that each order shows the quantity of each product to be ordered from that
supplier. Here four packets of Master Blend ground coffee are to be ordered
from supplier scl, and six tins of Felix cat food - five tuna and one rabbit
flavoured - from supplier sc3.

518 ICL Technical Journal May 1989

Supplier Barcode Quantity
Code

sc1 5000136997729 4

sc3 5000108005445 5
_______________ 5000108005353_______ 1

Fig. 4 An orders database

An orders database is represented as a map:

Orders = map(Suppliercode,Order)

where

Order = map(Barcode.Nat)
Suppliercode = String
Barcode = Nat

Initially the orders database is empty, so ord is defined using the operation
emptyorders, which takes no inputs and returns an object of type Orders:

ord = = emptyorders() ;

3.4 Sales

The sales figure is the cumulative total in pounds and pence representing the
money taken so far for sales of goods. This is represented as a Real Number.

Sales = Real

The store starts olf with a sales figure of zero: the operation emptysales
takes no inputs and constructs a value of type Sales:

emptysales : - > Sales

This operation simply constructs the value zero; its definition is
em ptysales() = = 0 ;

Our initial sales object is defined:
sal = = em ptysales() ;

3.5 Products Database

Information on products is stored in the products database. The database
here is structured to show explicitly the hierarchical relationships between
products. This can be seen from Fig. 5 where different levels in the hierarchy
correspond to different product categories: product groups, lines, brands,
sizes and so on. The topmost node of the tree is “foods”, since we are dealing
exclusively with foods in this example. In reality a food retail outlet would
also sell non-foods, so the database shown here would be a subtree of the full
database. Three product groups are shown - beverages, soft drinks and pet

ICL Technical Journal May 1989 519

foods; only one or two brands per product group are included. In reality the
tree would have a much higher branching factor. At the lowest level, each of
the leaves of the tree is labelled with a product descriptor and stores
information about that product. This example has seven leaves; a large
superstore, however, might carry more than 20,000 products.

Fig. 5 The product information

This design might be implemented as a network or relational database.
Alternatively, a frames system would be quite appropriate, since classes of
products share certain characteristics. All the information common to a
certain brand of a product could be stored higher up, for example the
contents of Nescafe could be stored at the node labelled Nescafe. The lower
levels (Nescafe 50g etc.) could inherit that information when required, rather
than duplicating the same information at all leaves of the subtree. This would
impose an overhead on retrieval operations; however the database would be
significantly compacted.

A great deal of information could be stored about products; some of this
information would be used by the company, and some could be accessed by
customers. Here we show a sample of the information which might be stored.

520 ICL Technical Journal May 1989

Figure 6 shows an exploded view of the leaves of the hierarchy; it can be seen
that the size, the selling price and the contents of products are recorded in the
leaves of the product database.

The Products module recognises the following abstract objects, or types:

Products - the product database
Category - product classes at different levels, e.g. beverages, coffee
Info - either the subcategories of a category, or Prod info
Prod info - at the lowest level, the information stored about a product
Attr - product attribute, e.g. size, contents
Val - the value of an attribute

The following constructor operations from the Products module are needed
to build the products database:

emptyproducts : - > Products
addproducts : Category x Info x Products - > Products
emptyprodinfo : - > Prodinfo
addprodinfo : Attr x Val x Prodinfo - > Prodinfo

The following representation will be used for product databases:

Products = map(Category,lnfo)

where

Category = {"foods","beverages","soft drinks", "coffee",
"instant coffee", . . .}

Info = set(Category) union Prodinfo
Prodinfo = map(Attr,Val)
Attr = {"size","sell","contains", . . .}
Val = Int union String union set(Val)

Now a database is constructed, starting at the topmost node:

prod = = addproducts("foods",{"beverages","soft drinks",
"pet foods"},em ptyproducts());

prod = = addproducts("beverages",{"coffee"},prod) ;

and so on, down to the leaves. Then the product information is constructed
and added into the database for each of the leaves, as in:

prl = = addprodinfo("size","230g",em ptyprodinfo());
pr1 = = addprodinfo("sell",169,pr1) ;
pr1 = = addprodinfofcontains",{"coffee grounds","caffeine"}, p r1);
prod = = addproducts("master blend 230g",pr1,prod);

3.6 Barcode table

For internal system operations, products are represented by their barcodes.
Where output is for human consumption, however, (e.g. for store staff or
customers), a more intelligible product descriptor is required. At times the

ICL Technical Journal May 1989 521

522
ICL T

echnical Journal M
ay 1989

Master Blend 230g Nescafe 50g Nescafe 100g Cafe hag 50g

size 230g

sell 169

contains coffee grounds
caffeine

size 50g

sell 85

contains coffee solids
caffeine

size 10Og

sell 174

contains coffee solids
caffeine

size 50g

sell 99

contains coffee solids

Irn Bru 2I Felix rabbit 400g Felix tuna 400g

size 2I size 400g size 400g

sell 70 sell 35 sell 35

contains water contains meat derivatives contains meat derivatives
sugar jelling agent jelling agent
carbon dioxide minerals minenals
citric acid rabbit flavour tuna
flavourings colourants colourants
E211 vitamin A vitamin A
caffeine vitamin D3 vitamin D3
E110 vitamin E vitamin E
E123 protein protein
ammonium ferric oil oil

citrate fibre fibre
girders ash ash

Fig. 6 The leaves of the product hierarchy

system will need to convert between product descriptors and barcodes, so we
will provide a module to construct a table showing the correspondences, and
to convert between the two representations. Figure 7 shows the correspon
dences between barcodes and product descriptors.

Barcode Product descriptor

5000136997729 master blend 230g
5000243000204 nescafe 50g
5000243924403 Nescafe 100g
5000136998627 cafe hag 50g
5000107000827 irn bru 2I
5000108005445 felix tuna 400g
5000108005353 Felix rabbit 400g

Fig. 7 A Barcode Table

These are EAN (European Article Numbering Association) standard bar
codes. The abstract objects in the Bartable module are

Bartable
Barcode
ProdDesc

and two operations are needed to build a barcode table:

emptybartable : -> Bartable
addbartable : Barcode x ProdDesc x Bartable -> Bartable

The representations are

Bartable = map(Barcode,ProdDesc)

where

Barcode = Nat
ProdDesc = String

The barcode table is built:

bar = = addbartable(5000136997729,"master blend 230g",
emptybartable());

bar = = addbartable(5000243000204,"nescafe 50g", bar);

and so on.

3.7 C u s to m e r D a tabase

For EFTPoS transactions, a database showing customers and their credit
ratings is needed. Our store has two customers registered, Mac and Morag,
with ratings of 1000 and 2000 pence respectively. Figure 8 shows this
customer database.
In the Customer module, a customer database is specified as a map:

ICL Technical Journal May 1989 523

Customer Credit
identifier

mac 1000
morag 2000

Fig. 8 A customer database

Customers = map(Custld, Credit)

where

Custld = String
Credit = Int

The database is built using two operations:

emptycustomers : - > Customers
addcustom er: Custld x Credit x Customers - > Customers

In our case, the customer database cust is constructed as follows:

oust = = addcustomer("mac", 1000,em ptycustom ersO);
cust = = addcustomer("morag",2000,c u s t);

3.8 Store layout

The store manager enters the details of the layout of the store and its shelving
to the system. This information will be used by the space allocation
application, and also by the in-store customer information service. Suppose
the overall dimensions of the store are 23 x 5, and there are four shelf fittings.
The space occupied by the shelves can be given by the coordinates of the end
points of the shelf:

shelf 1 (1,1) to (23,1)
shelf 2 (2,3) to (21,3)
shelf 3 (2,5) to (21,5)
shelf 4 (23,2) to (23,5)

Figure 9 shows the layout of the store, with the shelf fittings shaded in. The
top left hand corner is position (1,1).

Fig. 9 A Store Layout

524 ICL Technical Journal May 1989

Operations from the Layout module are used to construct a representation
of the floor plan and fittings. The types needed are Layout, Position and
Shelf:

Layout = pair(Position,set(Shelf))
Position = pair(Nat.Nat)
Shelf = map(Position, Category)

The operations needed to construct a layout are:

em ptylayout: Position - > Layout
em ptyshelf: Position x Position -> Shelf
ad dsh e lf: Shelf x Layout - > Layout

emptylayout takes an object of type Position, which is a vector specifying the
dimensions of the floor plan - in this case, (23,5). emptyshelf constructs a
shelf spanning the two positions supplied as parameters; it is empty in the
sense that no products have been allocated to it. addshelf adds a shelf to an
existing layout. The layout shown in Fig. 9 is constructed by:

sh1 = = em ptyshelf((1,1),(23 ,1));
lay = = addshelf(sh1,em ptylayout((23,5)));

and so on for the other shelves. An operation to display a layout is also
provided:

display : Store - > ScreenDisplay

where the definition of display and the representation of ScreenDisplay are
machine-dependent. Output from the display function is shown in Figs. 10,
11 and 12.

3.9 Constructing the Store

All the data objects which comprise the store have now been constructed.
Recall from Section 2 that a store is represented by a record containing eight
fields:

Store = record(inventory : Inventory,
suppliers : Suppliers,
orders : Orders,
sales : Sales,
products : Products,
bartable : Bartable,
customers : Customers,
layo u t: Layout)

The store can now be built by applying the record constructor mk_store to
the data objects constructed in Sections 3.1-3.8:

st = = m k_store(invt,sup,ord,sal,prod,bar,cust,lay);

This data object will be used in the four applications which follow.

ICL Technical Journal May 1989 525

Given the range of products carried by the store, and the layout of the store
and its shelving, the store management have to plan how much shelf space to
allocate to each product and where to locate it. Related products are
normally shelved together. Complementary products are sometimes located
close together (e.g. sage and onion stuffing near the poultry). Location of
perishables is also influenced by storage requirements - chilled, frozen, and
so on. The amount of space devoted to a particular product will be affected
by factors such as rate of movement, the size and sometimes the shape of the
package and the frequency of deliveries. There are other constraints on space
allocation such as the legal restriction on off-sales hours, meaning that
alcohol must be shelved in such a way that it can be cordoned off from other
goods outside off-sales periods. Other considerations include locating large
and/or heavy packages on lower shelves, and hazardous products out of
reach of children.

Algorithmic solutions to this class of problem are computationally expensive,
since the space of possible solutions is very large (the combinatorial
explosion problem). However some software aids for facilities management
in general [7], design of layout [8] and space allocation in particular, (e.g.
SPACEMAN, Accuspace, Resource-Opt [9]) are available. Expert system
technology, using heuristics to guide the search, offers another possible
approach [6].

In this application we simplify the problem be restricting ourselves to the
task of shelving related products together. We have already seen that the
product database is organised hierarchically; the problem then is to distrib
ute the products according to their hierarchical relationships across the
physical shelf space in the supermarket. Given any arbitrary layout, the
space allocation algorithm will generate a plan locating products on
shelves. The inventory database is used to determine total shelf space
allocation per product, and the spatial arrangement of different products is
determined on the basis of the information inherent in the hierarchical
structure of the product database. So, for example, all coffee products
should be located together, and, within that group, all the instant coffees
should be together, and so on down through the levels of the product
hierarchy.

The Space Allocation module imports the Layout module, so we can start by
using the display operation to display the layout of the store. As yet, no
products have been allocated to shelves.

display(st) ;

produces the output shown in Fig. 10.

4.1 (a) Space Allocation

526 ICL Technical Journal May 1989

* *

*

* *

*

* * * * * * * * * * * * * * * * * * * * * * *
Fig. 10 Output from the display operation showing a Layout

The operation allocateshelves can now be used to generate a plan for space
allocation. This operation takes an object of type Store, and returns an
object of type Store:

allocateshelves : Store - > Store

allocateshelves(s) extracts from the store s the product database, which is
structured as a tree. The leaves of the tree (the products) are unordered, so
the operation orders them according to their degrees of relatedness. Then the
products are allocated in order to the shelves in the layout. The operation
returns a new instance of Store with the layout filled in with products. Figure
11 shows the output from the display operation applied to the store after
products have been allocated to shelves.

st1 = allocateshelves(st);
d is p la y (s fl);

m m m m m m m m m m n n n n n n n n n n N N N

N
i i i f f f f f f f f f f F F F F F F F N

N

i i i i i i i c c c c c c c c c c N N N N

m master blend 230g
n nescafe 50g
N Nescafe 100g
c cafe hag 50g
I irn bru 2I
f felix tuna 400g
F Felix rabbit 400g

Fig. 11 Output from the display operation showing a Layout after allocation of products to
shelves

When the layout contains some product allocations, the display operation
uses the first character of the product name as a symbol on the diagram, and
prints a key to the symbols.

It can be seen that, within the constraints imposed by the layout, related
products have been located together. The coffee products are all adjacent to
one another, separated into instant coffee and ground coffee. Within the

ICL Technical Journal May 1989 527

instant coffee, brands, and different sizes of the same brand, are located
adjacently.

The store manager can now inspect the proposed plan, and reallocate shelves
if desired. The allocate operation takes a product name (of type Category), a
position and a store, and returns a new store wherein the position is now
occupied by the nominated product:

allocate : Category x Position x Store -> Store

Suppose, for example, it is decided that Master Blend should be replaced by
Irn Bru in position (1,1). The following reallocation would achieve this:

s t2= = allocate("irn bru 21",(1,1),st1);

The result of this reallocation is shown in Fig. 12.

display(st2);
i m m m m m m m m m n n n n n n n n n n N N N

N

i i i f f f f f f f f f f F F F F F F F N

N

i i i i i i i c c c c c c c c c c N N N N

m master blend 230g
n nescafe 50g
N Nescafe 100g
c cafe hag 50g
i irn bru 2I
f felix tuna 400g
F Felix rabbit 400g

Fig. 12 Output from the display operation showing a Layout which has been altered
manually

Further reallocations could be made. In this case, however, the manager
decides that the original plan is satisfactory, and reverts to store st1.

4.2 (b) Automatic Perpetual Inventory

Goods are delivered to the store (goods inwards) and are stored in the store
room before being put on the shelves. As customers’ purchases (goods
outwards) deplete shelf stock the shelves must be replenished from store
room stocks. When the total stock level of a product falls to a certain level,
stock is replenished by ordering more stock from the suppliers.

Traditional stock control procedures rely on periodic stock taking and
reordering of goods from suppliers as and when required. Goods inwards
figures are derived from delivery documentation and goods outwards is not
measured directly, but inferred from the results of stock taking. The stock

528 ICL Technical Journal May 1989

level at which reordering takes place depends amongst other things on the
rate of movement of the product, the expected delivery time, the shelf life of
the product and the in-store storage capacity. A further complication is that
rate of movement of certain products is subject to seasonal variation.

The introduction of electronic scanning equipment at checkouts makes it
possible to measure goods outwards directly, and therefore to monitor stock
continuously. Orders to suppliers can be generated automatically (teleorder
ing). Accumulated scanning data can be used to generate management
reports and predict demand. EPoS systems incorporating teleordering are
already in use in many retail sectors, for example bookselling [10], the
brewery trade [11], jewellery [12]. EPoS is also being taken up by smaller
retailers: a recent study by RMDP showed that nearly half of the 450 small
multiples surveyed had installed EPoS systems [13].

This application exploits scanning data in order to maintain a perpetual
inventory system. At the checkout each item purchased is passed over an
optical scanner which reads the barcode printed on the product. The price of
each item is retrieved from the product database and accumulated to
produce the customer’s bill. At the same time the inventory database and
sales are updated and stock levels are tracked so that orders to suppliers can
be generated automatically. Since shelf stock levels are held in the inventory
database, the need for shelf filling can be signalled before stock-outs occur.

Here the assumption is made that goods inwards equals goods outwards. (In
reality the situation is complicated by “shrinkage”, a euphemism for theft by
staff and shoplifters.)

We start with the store in its initial state. If the orders and sales databases are
inspected, it can be seen that as yet no sales have been made, and therefore no
orders to suppliers have been accumulated.

o rd e rs (s t l);
{};

s a le s (s t l) ;
0 ;

Now we inspect the inventory records for two of the products, showinv
requires a barcode rather than a product descriptor, so we use the barcode
table to convert from a product descriptor to a barcode.

showinv(getbar("felix tuna 400g",bartab!e(st1)),st1);
{"ONSHELVES" - > 10, "MINSHELF" - > 5, "TOTSHELF" - > 10,
"INSTORE" - > 15, "REORDLEV" - > 10 } ;

showinv(getbar("m aster blend 230g",bartable(st1)),st1);
{"ONSHELVES" - > 10, "MINSHELF" - > 5, "TOTSHELF" - > 10,
"INSTORE" - > 15, "REORDLEV" - > 1 0 } ;

The inventory is in its initial state, with 10 units of shelf space allocated to

ICL Technical Journal May 1989 529

each product, the shelves full and 15 units of each product in the store room.
So in total there are 25 units of each product in the store. Now a customer
comes into the store and fills a basket with the following items:

Item Qty Barcode
Master Blend ground coffee (size 230g) 4 5000136997729
Nescafe instant coffee (size 50g) 3 5000243000204
Felix tuna cat food (size 400g) 5 5000108005445
Felix rabbit cat food (size 400g) 1 5000108005353

and presents them at the checkout. The items are passed over the scanner. To
simulate this, we define a data object bas1 to represent the scanning data for
the customer’s purchases. bas1 is an object of type Basket, and as such is
represented as a sequence of barcodes:

Basket = seq(Barcode)

bas1 is now defined:

bas1 = =
[5000136997729,5000243000204,5000108005445,5000108005353,
5000108005445,5000136997729,5000108005445,5000136997729,
5000136997729,5000243000204,5000108005445,5000108005445,
5000243000204];

This represents the data which the barcode scanner would capture for this
customer transaction. The transaction is performed by the operation buy:

buy : Basket x Store - > Store

The buy operation returns a new store which has the inventory, sales and
orders fields altered appropriately. The store resulting from the transaction is
defined as st2:

s t2 = = buy(bas1,st1) ;

For each of the products in the basket, the shelf stock recorded in the
inventory is decremented by the number of units of that product purchased.
If this results in the shelf stock falling below the level specified by MIN-
SHELF, the shelf is refilled from the store room and the store room stock
INSTORE is decremented. The effect on the inventory can be seen by
inspecting entries for two of the products. (Changes to the inventory are
shown here in boldface type.)

showinv(getbar("felix tuna 400g",bartable(st2)),st2) ;
{"ONSHELVES - > 10, "MINSHELF" - > 5, "TOTSHELF'' - > 10,

"INSTORE" - > 10, "REORDLEV" - > 10 } ;

showinv(getbar("'master blend 230g",bartable(st2)),st2) ;
{O N SH ELVES - > 6, "MINSHELF" - > 5, "TOTSHELF" - > 10,
"INSTORE" - > 15, "REORDLEV" - > 10 } ;

Five tins of Felix tuna cat food were bought; this resulted in the shelf stock
falling to its minimum level, and consequently the shelf stock has been

530 ICL Technical Journal May 1989

replenished from store room stocks, which are now reduced to 10. In
contrast, four packets of Master Blend were bought; the shelf stock has fallen
to six, and the store room stocks remain as before.

We now turn to the orders. Every time items are purchased, an entry is made
in the orders database. Orders are accumulated so that as many items are
reordered as have been sold. Reordering then is tailored to the current rate
of movement of goods. This represents a very simple demand model, where
demand in the immediate future is assumed to match current demand. As the
orders are built up, the cheapest supplier of each product is selected for the
next order. When total stock of any product falls below its reorder level, all
the orders in the system are despatched simultaneously. (This of course
represents another simplification of the real situation). After the purchase of
bas1, the orders database contains the following information:

orders(st2) ;
{sc3 - > {5000108005445 - > 5, 5000108005353 - > 1},
sc2 - > {5000243000204 - > 3},
sc1 - > {5000136997729 - > 4 } } ;

None of the products in the store has reached its reorder level, so the orders
are not despatched yet. Inspection of the suppliers database confirms that
each product is to be reordered from the (currently) cheapest supplier.

Meanwhile, the sales figure is incremented. The total cost of the transaction
is calculated from the sell prices in the product database, and the value of
sales is altered accordingly:

sales(st2) ;
11.41 ;

Another customer arrives and purchases some goods. To simplify the
explanation, this customer purchases exactly the same range of goods as the
previous one.

st2 = = buy(bas1,st2);

Changes to the inventory of st2 can be illustrated by applying showinv
again:

showinv(getbar("felix tuna 400g",bartable(st2)),st2) ;
{"ONSHELVES" - > 10, "MINSHELF" - > 5, "TOTSHELF" - > 10,
"INSTORE" - > 5, "REORDLEV" - > 10 };

showinv(getbar("m aster blend 230g",bartable(st2)),st);
{"ONSHELVES" - > 10, "MINSHELF" - > 5, "TOTSHELF" - > 10,
"INSTORE" —> 7, "REORDLEV" - > 10 } ;

This time shelf stocks of Master Blend have been replenished. If we look at
the orders file, we see that the same suppliers have been chosen as previously,
since no changes have been made to the suppliers’ pricelists. Quantities of
goods to be reordered again match quantities of goods sold.

ICL Technical Journal May 1989 531

orders(s t2);
{sc3 - > {5000108005445 - > 10, 5000108005353 - > 2},
sc2 - > {5000243000204 - > 6},
sc1 - > {5000136997729 - > 8 } } ;

And, not surprisingly, sales have doubled.

sales(st2) ;
22.82 ;

Yet another customer arrives at the checkout, and by coincidence buys the
same selection of goods.

st2 = = buy(bas1,st2);

If we look at the orders database now
orders(st2) ;

{};
we find that it is empty. This purchase resulted in stocks of Felix tuna cat
food falling below the reorder level, so all the orders have been despatched.
Time is not represented in this system, so the goods are delivered as soon as
they are ordered, as we can see from the inventory.

showinv(getbar("felix tuna 400g",bartable(st2)),st2) ;
{"ONSHELVES" - > 10, "MINSHELF" - > 5, "TOTSHELF" - > 10,
"‘INSTORE" - > 15, "REORDLEV" - > 10 } ;

showinv(getbar("m aster blend 230g",bartable (st2)),st2) ;
{"ONSHELVES" - > 6, "MINSHELF" - > 5, "TOTSHELF" - > 10,
"INSTORE" —> 19, "REORDLEV" - > 10 } ;

Stocks of each product have been boosted by the number sold, and now total
stock of each good in the store is back to the initial level of 25. Finally we
look at the sales figure:

sales(st2) ;
34.23 ;

and find that the day’s takings so far amount to £34.23.

4.3 (c) In -S to re In fo rm a tio n

One Canadian chain has stores which are so large that customers frequently
have difficulty finding the products they wish to buy. The company has
installed terminals in the store so that customers can request directions from
their present position to the location of a particular product. This is the
purpose of this application. The algorithm is general in that it is not tailored
to any specific layout.

For any object of type Layout, the where operation generates instructions to
the customer to find a particular product:

where : Position x Category x Store - > Instructions

532 ICL Technical Journal May 1989

The first parameter specifies the customer’s current location, the second
names the product they wish to find. The representation of Instructions is

Instructions = seq(Move)

where

Move = pair(Direction, Nat)
Direction = {"North","South","East","West"}

Figure 13 shows the current layout of the store, with the position (11,2)
marked X. A customer at this position wishes to buy a 50 gramme jar of Cafe
Hag.

m m m m m m m m m m n n n n n n n n n n N N N
X N

i i i f f f f f f f f f f F F F F F F F N
N

i i i i i i i c c c c c c c c c c N N N N

Fig. 13 Customer positioned at (11,2) trying to find nearest Cafe Flag (c)

The where operation will find all possible routes (ignoring cycles), select the
shortest, and convert the route into intelligible instructions. (It also cleverly
avoids directing customers through shelving.) The algorithm is based on a
standard route-finding algorithm from graph theory, but is complicated by
the fact that the desired product may be distributed across several different
locations in the store. The nearest location is selected, and the shortest path
to that location is found:

w here((11,2),"cafe hag 50g",st2);
[(East,11),(South,2),(West,4),(South,1)] ;

Of the two possible routes, the shorter one, starting East rather than West, is
chosen.

4.4 (d) Teleshopping

Teleshopping is a shopping facility which enables shoppers to select and
order goods over a communications network. This is an extension of the
concept behind the interactive video disk used for point of sale promotions,
such as Asda Stores’ Videosystem system [14], The Videodem system allows
customers to browse through a product catalogue and view demonstrations
of products in-store.

For teleshopping, an interactive video disk and/or videotex machine may be
linked to a magnetic stripe reader, so that customers can complete a
purchase by debit card or credit card transaction. Alternatively, the system
may just register customer orders. The teleshopping terminals may be placed
in-store, or in a public area such as a shopping mall, or in the customer’s
home. The American Comp-U-Card “Shopping Machine” system, in use in

ICL Technical Journal May 1989 533

the USA, is used amongst other things for selling holidays [15]. The Danish
Call-Shop system began pilot testing in grocery outlets in Norway (for sale of
non-food lines) in 1986 [14], and was introduced in the UK in 1988 [16]. The
Bradford Centrepoint Project offers a free home shopping service to the
elderly and disabled, who use the service mainly for food purchases [17].
Food shopping is also included in the Telecard Supershop system, based on
the Prestel service in the UK, and in the French system based on the Teletel
network [17].

In our teleshopping application it is assumed that suitable communications
and EFT systems are in place, and that the customer has a terminal of some
kind installed at home. The customer is given a certain level of (read only)
access to the retailer’s database, and may browse through the product
information and order goods. The database can be regarded as an online
catalogue.

In our food retailing example, the customer would be able to submit queries
concerning products, such as:

“What kinds of coffee are sold in the store?”
“Is there any decaffeinated coffee?”
“Which is the cheapest instant coffee?”
“What would be a good substitute for product X?”
“Which foods contain (or do not contain) ingredient Y?”

The teleshopping application provides customers with seven operations: six
query operations, and one operation for ordering goods:

show : Category x Store - > Info
ch eapest: Category x Store - > set(Category)
cheapestprice : Category x Store - > Nat
substitutes : Category x Store - > set(Category)
containing : Category x Val x Store - > set(Category)
notcontaining : Category x Val x Store - > set(Category)
o rd e r : Custld x CustOrder x Store -> Store

These types have been described earlier in connection with the Products and
Customers modules, with the exception of CustOrder, which represents a
customer’s order for goods.

A customer might have the following interaction with the system. First they
might work their way down from the top of the product hierarchy, to see
which goods are available:

show("foods",st2)
{beverages, soft drinks, pet foods} ;

The reader may notice that the user needs to know one of the categories (e.g.
foods) in order to be able to start to use the system. This is not an important
point; here we are interacting with the prototype. In an implementation, an
interface such as a menu system would be provided.

534 ICL Technical Journal May 1989

show("beverages",st2) ;
{coffee} ;

show(''coffee",st2);
{ground coffee, instant coffee} ;

show("instant coffee",st2);
{nescafe, cafe h a g } ;

Having seen which product groups are available, and having focused in on
beverages and then on coffee, the customer is now interested in prices:

cheapest("coffee",st2);
{nescafe 5 0 g } ;

cheapestprice("coffee",st2);
85;

The customer now wants to find out more about a tentatively selected
product:

show("nescafe 50g",st2);
{contains - > {coffee solids, caffeine},sell - > 85,size - > 50} ;

and, worried about caffeine, asks which beverages do not contain it:

notcontaining("beverages","caffeine",st2) ;
{cafe hag 50g} ;

The customer then asks what brand substitutes for Nescafe are available:

substitutes("nescafe",st2);
{cafe hag} ;

and what alternatives there are to ground coffee

substitutes("ground coffee",st2) ;
{instant coffee} ;

Again feeling health-conscious, the customer asks which foods contain fibre
and not sugar, (inter gives the intersection of the two sets.)

containing("foods","fibre",st2)
inter

notcontaining("foods","sugar",st2);
{felix tuna 400g, Felix rabbit 400g"} ;

and finds that, with this store’s impoverished range, the cat has the best
chance of a healthy lifestyle. Eventually the customer is ready to place an
order. We simulate this in the prototype by defining a data object of type
CustOrder, where

CustOrder = map(ProdDesc,Nat)

By another coincidence, this order corresponds exactly to the basket bas1
which was used earlier. However a more suitable representation is used
for customer orders, since customers should not be required to deal with

ICL Technical Journal May 1989 535

barcodes, and specifying quantities is more convenient than repeating
items.

col = = {"master blend 230g" - > 4, "nescafe 50g" - > 3,
"felix tuna 400g" - > 5, "Felix rabbit 400g" —> 1} ;

The total cost of this order is £11.41. If the store manager were to inspect the
inventory, orders and sales now, the following state of affairs would emerge:

showinv(getbar("master blend 230g",bartable(st2)),st2) ;
{"ONSHELVES" - > 6, "MINSHELF" - > 5, "TOTSHELF" - > 10,
"INSTORE" - > 19, "REORDLEV" - > 10 } ;

orders(st2) ;

{};
sales(st2) ;

3 4 .2 3 ;

Currently two customers are authorised to order goods using the electronic
shopping service. They are recorded, along with their credit limits, in the
customer database:

customers(st2) ;
{morag - > 2000, mac - > 1000} ;

M ac attempts to order goods:

st3 = = order("mac",co1 ,st2) ;

and fails, since his credit is not high enough. The inventory, orders and sales
and customer databases therefore remain unchanged:

showinv(getbar("master blend 230g",bartable(st3)),st3) ;
{"ONSHELVES" - > 6, ''MINSHELF'' - > 5, "TOTSHELF" - > 10,
"INSTORE" - > 19, "REORDLEV" - > 10 } ;

orders(st3) ;
{};

sales(st3) ;
34.23 ;

customers(st3) ;
{Morag - > 2000, Mac - > 1000} ;

st2 = st3 ;
TRUE ;

Now Morag attempts a similar transaction:

st3 = = order("morag",co1 ,st2) ;

and is successful, as we can see from the new state of the store:

showinv(getbar("master blend 230g",bartable(st3)),st3) ;
{"ONSHELVES" - > 10, "MINSHELF" -> 5, "TOTSHELF" -> 10,
"INSTORE" - > 11, "REORDLEV'' -> 10 } ;

536 ICL Technical Journal May 1989

orders(st3) ;
{sc3 - > {5000108005445 - > 5, 5000108005353 - > 1},
sc2 - > {5000243000204 - > 3},
sc1 - > {5000136997729 - > 4 } } ;

sales(st3) ;
45.64 ;

customers(st3) ;
{morag - > 859, mac - > 1000} ;

Morag’s credit has been decremented, sales have been incremented, and the
orders and inventory files have been updated to reflect that fact that her
order is now being despatched.

Finally, it is worth noting that all the query operations from this application
could also be incorporated into the in-store information application.

5 In Conclusion

The retail system was designed using the me too method of software design.
This method combines the techniques of formal specification and rapid
prototyping. The specification is modularised, and comprises 18 compo
nents. The method is iterative: the user first specifies an abstract model of the
objects (types) and operations on those types, for the system being studied. In
the next step representations are given to the objects, and definitions to the
operations. Then the specification is typed into the me too shell and executed
as a prototype. This provides feedback on the design, exposing errors and
inconsistencies. The specifier returns to the previous step to correct any
errors and possibly to explore alternative designs. The process is so rapid
that many iterations may be made within a short time; the retail specification
was the result of several iterations.

The full specification of the retail is too long to reproduce here in full;
however samples are given in Appendix 1 and a copy of the complete
specification can be obtained by writing to the author at the Department of
Computing Science, University of Stirling.

Appendix 1

Extracts from the Formal Specification of the Retail System

As illustration, we give here the specifications for the store component and
for two of the components which it imports, namely Inventory and Suppliers.

% --
% SPECIFICATION of STORE
% --
% IMPORTS
% Inventory, Suppliers, Orders, Sales, Products, Bartable, Customers, Layout

ICL Technical Journal May 1989 537

% ---
% MODEL
% OBJECTS

% Store
% --
% SPECIFY

% OBJECTS

% Store = record(inventory : Inventory, suppliers : Suppliers, orders : Orders,
% sales : Sales, products : Products, bartable : Bartable,
% customers : Customers, layout: Layout)

% RECORD DECLARATIONS

Store: : inventory suppliers orders sales products bartable customers layout;
%-- --

% ---
% SPECIFICATION of INVENTORY
% --
% IMPORTS
% Bag
% --

% MODEL

% OBJECTS
% Inventory - the inventory data for the store
% Barcode - 13-digit number uniquely identifying a product
% InvEntry - data stored about each product in the inventory
% Attr - inventory attribute, such as number of items on shelves

% PUBLIC OPERATIONS
% emptyinv : -> Inventory
% mkinv : Barcode x InvEntry -> Inventory
% updinv : Barcode x Attr x Int x Inventory -> Inventory
% getinv : Barcode x Attr x Inventory -> Nat
% joininv ; Inventory x Inventory -> Inventory
% mkent: Nat x Nat x Nat x Nat x Nat -> InvEntry

% emptyinv constructs the inventory with no entries

% mkinv constructs an inventory with one entry

% updinv returns an inventory with a single entry, where the value of attr is
% incremented or decremented (depending on the sign of Int) for the product
% indicated by barcode

% getinv retrieves the value of an inventory attribute for a product

% joininv merges two inventories

% mkent constructs an inventory entry
% ---
% SPECIFY

538 ICL Technical Journal May 1989

% OBJECTS
% Inventory = map(Barcode,lnvEntry)
% Barcode = Nat
% InvEntry = bag(Attr) i.e. map(Attr.Nat)
% Attr = {"ONSHELVES","MINSHELF","TOTSHELF","INSTORE","REORDLEV"}

% OPERATIONS
emptyinv() = = { } ;

mkinv(b,f) = = {b —> f } ;

updinv(b,a,q,i) = = mkinv(b,bagunion({a -> q},i[b,{}])) ;

getinv(b,a,i) = = i[b ,{}][a ,{}] ;

joininv(i1 ,i2) = = H overwr i2 ;

mkent(on,min,tot,ins,re) = =
{"ONSHELVES" -> on,"MINSHELF" -> min,"TOTSHELF" -> tot,"INSTORE" -> ins,
"REORDLEV" -> re} ;

% ---

% --
% SPECIFICATION of SUPPLIERS
% ---
% IMPORTS
% Set_Extensions, Numbers_Extensions
%---------------------— ———---
% MODEL

% OBJECTS
% Suppliers -data on potential suppliers of goods to the store
% Pricelist -a suppliers’s price list (i.e. the store’s COST price)
% Price -price in pence
% Barcode -13-digit number uniquely identifying a product
% Suppliercode, Name-Address - supplier’s code and name and address

% PUBLIC OPERATIONS
% emptypricelist: -> Pricelist
% addprice : Barcode x Price x Pricelist - > Pricelist
% updprice : Barcode x Price x Pricelist-> Pricelist
% emptysuppliers : -> Suppliers
% addsupplier: Suppliercode x Name-Address x Pricelist x Suppliers -> Suppliers
% cheapestsup : Barcode x Suppliers -> Suppliercode

% PRIVATE OPERATIONS
% getprice : Barcode x Pricelist -> Price
% getpricelist: Suppliercode x Suppliers -> Pricelist
% cheapestcost: Barcode x Suppliers -> Price
%--
% SPECIFY

% OBJECTS

ICL Technical Journal May 1989 539

% Suppliers = map(Suppliercode,pair(Name-Address,Pricelist))
% Pricelist = map(Barcode,Price)
% Price,Barcode = Nat
% Suppliercode,Name-Address = String

% OPERATIONS

emptypricelist() = = {} ;

addprice(b,p,pl) = = pi overwr {b -> p} ;

updprice(b,p,pl) = = pi overwr {b -> getprice(b.pl) + p} ;

emptysuppliersQ = = {} ;

addsuppliers(sc,n,pl,s) = = s overwr {sc -> (n,pl)} ;

cheapestsup(b,s) = =

any({sc|sc <-dom(s); getprice(b,getpricelist(sc,s)) = cheapestcost(b.s)}) ;

getprice(b.pl) = = pi[b,0] ;

getpricelist(sc,s) = = second(s[sc,("Err",{})]) ;

cheapestcost(b.s) = =
dmin({getprice(b,getpricelist(sc,s))|sc <-dom(s);

b member dom(getpricelist(sc,s))}) ;
% --

Bibliography

me too

[1] HENDERSON, P. me too: A Language for Software Specification and Model Building
(preliminary report). I n te r n a l R e p o r t F P N - 9 , Dept, of Comp. Sci. Univ. of Stirling,
Scotland, 1985.

[2] HENDERSON, P. Functional Programming, Formal Specification and Rapid Proto
typing, IEEE Trans, on Software Engineering, 1986, SE-12, 2, 241-250.

[3] HENDERSON, P. & MINKOWITZ, C. The me too Method of Software Design, 1 C L

T e c h n ic a l J o u r n a l , 1986, 5, 1, 64-95.
[4] ALEXANDER, H. & JONES, V. S o f tw a r e D e s ig n a n d P r o t o t y p i n g u s in g m e too. London:

Prentice-Hall International, 1989.
[5] BENNETT, S„ JONES, V., MINKOWITZ, C. & ROWLES, J. m e too R e f e r e n c e M a n u a l ,

Version 6.0, Tech. Rep. SETC/IN/209, STC Technology pic, Newcastle Under Lyme,
UK, 1989.

Retail

[6] JONES, V. & DAVIES, K. A Taxonomy of Application Areas for Expert Systems in
Business, T e c h . R e p . T R - 3 1 , Dept, of Comp. Sci., Univ. of Stirling, Scotland, 1986.

[7] Keeping facilities under control, R e t a i l A u to m a t io n , Sept,/Oct. 1988, 8, 5, p. 6.
[8] Retail Europe - applying the technology. R e t a i l A u to m a t io n , July/Aug. 1986, 6, 4,

pp. 8-9.
[9] WALTON, P. Gut feeling for the right decision, D a ta L in k , Oct. 14, 1985.
[10] EPoS - going by the book, R e t a i l A u to m a t io n , July/Aug. 1986, 6, 4, pp. 4-5.
[11] Allied-Lyons spends £8m on EPoS, R e t a i l A u to m a t io n , Jan./Feb. 1987, 7, 1, p. 7.
[12] Focusing on the profit factor, R e t a i l A u to m a t io n , Jan./Feb. 1987, 7, 1, p. 9.

540 ICL Technical Journal May 1989

[13] Smaller firms opt for EPoS, R e t a i l A u to m a t io n , Sept./Oct. 1988, 8, 5, p. 24.
[14] Teleshopping - moving closer? R e t a i l A u to m a t io n , July/Aug. 1986, 6, 4, p. 3.
[15] Computer help for Comp-U-Card, R e t a i l A u to m a t io n , Jan./Feb. 1987, 7, 1, p. 8.
[16] Call Shop arrives in the UK, R e t a i l A u to m a t io n , Sept./Oct. 1988, 8, 5, pp. 19-20.
[17] Teleshopping - this year, next year, sometime...?, R e t a i l A u to m a t io n , Jan./Feb. 1987,7,1,

pp. 13-14.

ICL Technical Journal Mav 1989 541

. . . towards a Geographic Information
System

J. M. P. Quinn
FlagShip Project, MSTC, ICL West Gorton

Abstract

This paper describes the techniques developed in deriving a spatial
model of a mapped area from a feature coded digital map of that area.
It describes how the model Is used in conjunction with a database
application PLANES which allows users, such as Public Utilities and
Local Authorities, to set up and interrogate large Geographic Informa
tion Systems.

Introduction

A Geographic Information System is an example of the extension of a
conventional database to include spatial data such as that provided by
digital maps. The spatial data can be used simply to provide a background
against which the conventional data can be viewed or it can be used to
extend the range of questions that the Information System is able to deal
with to include spatial matters, such as: what road is behind a given house,
which houses are within 100 metres of a given point, road or area? Which
roads are affected by a given development? How does one get to ...? Show
the houses served by a given distribution network or having a specific
attribute.

The spatial data involved usually starts as an image either on paper or video.
For those applications in which the textural information in the image is
important (such as vegetation cover) it may well be appropriate to retain the
image form, but for many situations it is the shapes within the image and
their interrelations that are important and the extraction of relevant features
will of necessity produce a simplified vector-based view. The vector form is
the one used in the application described later for which the spatial data is
provided by the digital maps available from the Ordnance Survey, though
other companies are able to digitise from paper maps.

The display and manipulation facilities inherent in the use of Geographic
Information Systems draw heavily on a number of features that until recently
have been associated with expensive graphics work stations. This stimulated
the development of an experimental mainframe-based graphics system and

542 ICL Technical Journal May 1989

the use of the relatively dumb terminals which have been used in this study.
One advantage of this approach has been that the graphical manipulation
facilities can operate directly on data held in the large databases that are still
very much the province of mainframes and, because it is centrally held, can
be accessed by many users in different ways and for different purposes. The
fact that the cost of graphics work stations has dropped significantly does not
invalidate the choice; it allows much better user interfaces to be provided,
while maintaining the database in a central location.

Geographic Information Systems have a number of potential applications,
from thematic displays of information such as that derived from Census data
to their use in the Local Authority and Public Utility areas, in which much of
their data is spatial and currently held in the form of paper maps and
drawings. The investment necessary because of the huge amount of data
involved means it will be some time before they are in general use.

Digital maps are one source of spatial data. Others have grown out of the
Computer Aided Design area which allows the user to generate and
manipulate spatial information either to provide digital versions of the
original style of technical drawings or more effectively to derive such
drawings from the three dimensional modelling systems that are becoming
an accepted part of Computer Aided Design and Manufacture. Either way
the drawings consist of a set of user-definable shapes linked into a hierarchy
of shapes that can be manipulated flexibly and easily.

Images from either satellite or high altitude flying provide yet another source
of spatial data with a resolution which is rapidly approaching that possible
with the use of conventional surveying techniques. The software and
hardware technology required to convert such data so that it can be
effectively used is already available from a number of companies but is still
too expensive for widespread use. It can, for example, cost more than £500 to
covert a 500 metre square paper map image into the equivalent vector form.
The development of expert systems and parallel processing as well as
conventional systems should help matters over the next few years.

There are several developments both inside and outide ICL that are moving
towards an effective Geographic Information System. These are:

(a) PLANES, a Planning, Land, Network and Spatial system based on an
IDMS database and TP system which is described later.

(b) the availability of large scale (1:1250) scale maps, or the technology to
produce them, covering significant portions of the country.

(c) MapGin, a system which allows spatial objects to be identified from
large scale digital map data, stored and manipulated.

(d) the software and communications facilities offered by ICL’s VME
operating system which allow a variety of graphics terminals to be
networked with a mainframe computer which can itself be distributed.

(e) the development of expert systems supported by declarative languages

ICL Technical Journal May 1989 543

and parallel processing; this will allow further expansion of the current
trends.

In this paper the MapGin system and its rationale are described, as well as
some aspects of the PLANES system with which it is being used, as one
example in which spatial information can be included effectively.

MapGin Background

MapGin is a mainframe-based system that is primarily concerned with the
interpretation of digital maps of the type produced by Ordnance Survey; and
started life as a way of displaying such maps at arbitrary scale on a variety of
graphics terminals.

A major impetus for this work came from the realization that a large amount
of information is held implicitly in digital maps that can normally only be
understood and used by humans. The maps are held in digital form for
convenience and used for the draughting of paper maps which can be used to
provide a backdrop for service distribution networks, for example gas or
electricity, or any form of distributed information. While these are sensible
uses for the maps there is potential for much more and this paper describes
the start of an exploration of such possibilities.

As mentioned earlier the two basic forms of storage for spatial data are, as an
image, or as a set of simplified shapes delineated by lines or vectors. Each
form has different properties and uses and one can move from one to the
other in the way illustrated by Fig. 1. In this an object is shown to be
composed of both logical and spatial information.

Fig. 1 The relationship between an Object and image view

The logical information relates an object to other objects while the spatial
information defines the shape and position of the object in terms of primitive
components: points, lines and areas. Any human readable information such
as text also needs to be included. The components may also be defined in

544 ICL Technical Journal May 1989

terms of sets of simpler components, for example an area in terms of its
boundary lines. This produces advantages in terms of consistency of detail,
and reduced volume of data.

The act of drawing the map moves the focus down from the objects through
to their spatial components. From there each element is reduced to a set of
points in the displayed image. The act of recognition implies moving the
focus the other way, first grouping points into features then features into
objects. With OS maps one is able to start the recognition process at the
feature level, thus enabling a concentration on the process of object
identification and handling.

During the development the methods of transforming the feature-coded
image into an object-based view have been explored. The techniques
investigated are based on using similar visual clues to those that enable a
human observer to make sense of the patterns of coded lines that form the
map. By employing these techniques it has been possible to use the maps in a
far wider arena than previously.

In MapGin the original map data is retained and used for displaying areas of
interest in the map while the derived objects are used to make sense of that
view.

The main features of the Ordnance Survey data investigated are:

(a) The volume of data is large.
(b) the data is often geometrically imprecise.
(c) the spatial algorithms needed to extract meaning out of the data are

highly dependent on the nature of the data.
(d) the data appears to be coded in different styles with varying degrees of

precision. In some cases the data has sections missing and is inconsistent
with itself.

(e) the cartographic data is provided in National Grid Coordinates and
thus requires two six digit numbers to be manipulated.

These considerations led to an initial design philosophy for the system such
that:

i. the most useful key to large scale urban data is the road and street
network, both logically and geographically. This later provided a
convenient link into the PLANES system.

ii. all algorithms should allow a degree of tolerance to inaccuracy.
iii. while investigating an area the objects set up should be temporary,

created as needed during a given session. Once the analysis appears
complete it should be possible to save the objects in a database from
which they can be quickly restored when required.

iv. major discontinuities in source data will be corrected by visual inter
pretation and manual intervention. The system should attempt to
identify such situations and allow correction. Minor inaccuracies, such

ICL Technical Journal May 1989 545

as lines that don’t join exactly, can safely be interpreted and if
appropriate corrected.

v. the means of interacting with the system should be simple, easy to use
and extensible.

This approach places requirements on the supporting system such as:

(a) the hardware system should provide a large store to accommodate the
large data set.

(b) a full general purpose graphics package is required to handle the spatial
data and perform the necessary transformations to the original data and
allow it to be displayed on as wide a set of terminals as possible.

(c) fast floating point manipulation, because the data size is large and many
geometrical calculations are involved.

(d) powerful multiprocess and multiuser facilities are also needed to
facilitate independent and cooperative operation.

(e) flexible communication facilities to allow networking of the various
types of terminals.

(f) the software should be implemented in a high level language that
provides flexible object handling, access to the system facilities and
mixed language capabilities.

The Spatial Model

The spatial model adopted is based on the road network of the area. It
consists of sets of objects of various types. The objects are represented by
data structures that include their logical, textual and spatial attributes. The
main object types involved are defined for the Roads, Road Junctions,
Properties and distribution networks.

The data on which the model is based is provided by various Ordnance
Survey digital maps at scales of 1:1250 and 1:2500 and is accurate to 0-5
metres. One set of maps covers part of Coventry. The set covers an area of 72
square Kilometres in 110 map sheets. Metropolitan areas account for 84
500 metres square map sheets and country areas for 26 1 Kilometre square
map sheets.

The data is held on a map sheet basis and consists of sets of over 100 feature
types which can be lines (represented as lists of coordinates), text or point
coordinates. These features are spatially, not logically, associated and each
feature type is accompanied by qualifying information. In the case of lines
and points the feature code and line style for drafting is included. For text the
location and orientation are provided together with the text string itself.

The algorithms developed for extracting the objects from the feature coded
map data can be viewed as a set of empirical rules which are specific to this
style of feature coding. If the base representation is changed then the rules
must be changed also. At the present time we have chosen to group the

546 ICL Technical Journal May 1989

objects within map sheets in the same way as the original feature coded data,
although this is not a fundamental obstacle.

Identification of Objects

The information held for the two main object types is basically the same:
there is a constant part to identify and categorize the object and link it with
other ones, a variable set of coordinate points to delineate it and a containing
rectangle used for fast location of an object.

A road is identified as a set of centre line vectors, of a specific road centre line
feature code with a single associated name; and a house is a closed polygon of
coordinates also of a given feature code type. The header information for a
road includes the road name and type while that for a house includes its
name, type and the set of OS numbers associated with it in the case of flats or
terraced housing. Terraced and semi-detached houses can be further subdi
vided using the fence/property boundary feature codes.

The strategy for the allocation of names to roads is:

a road is a set of vectors with a single name within 2 metres of the line of
vectors and an orientation parallel to those vectors

or
a road is the set of centre line vectors with no name

and is either continuous with a named road whose name it can take
or joins or is joined by a named road whose name it can take

or
a road is the set of centre line vectors with multiple names associated with

it along its length
and can split up the original road at either junctions with other roads*
or bends so that each section of the original road has a unique name.

* In the case where there are several junctions between two names then one is
chosen by looking at house numbers and choosing the junction nearest the
smallest number. This technique starts with the apparent Ordnance Survey
convention of orientating house numbers to lie parallel to the roads in which they
are located.

After the first pass about 60% of the roads have been named uniquely. The
final success rate is over 90%.

The strategy for identifying properties is based on the definition of a property
as a closed polygon bounded by lines of one of the OS building feature codes.
The area defined by the polygon will usually include either a number or a
name text string. It will also have an associated road within 30 metres in a
direction indicated by the orientation of the text.

The next two figures are direct screen dumps. Figure 2 shows the property
polygons, including the numbers. The dividing walls are also shown together
with the other property boundaries, the road edge is shown as a chained line.

ICL Technical Journal May 1989 547

The cursor is placed over the house of interest and the corresponding address
displayed as 17 Dysart Close.

Fia. 2. Seieciina a DroDertv to determine its address

The geometry involved in attaching the properties to the roads is shown in
Fig. 3. The containing boxes for the properties are shown in black. Also
shown are the road centre lines and the construction lines dropped onto the
nearest roads as perpendiculars from thr centre of the containing rectangle. If
that is not possible then the nearest point on the road is taken. The road
chosen is then the closest one in the direction of the numbers.

In properties, such as terraced housing, which include multiple numbers
within the enclosing polygon the boundary-fence feature codes are used to
split up the property polygon into house polygons each with its own
associated number or name. The techniaue used in splitting ud the outiine is
to transverse that outline in a clockwise direction turning clockwise at each
intersection with the property boundary, thus isolating each house as a
closed polygon within the overall enclosing polygon.

Figure 4 shows a terraced house that has been split up in this way. The
calculated intersection points are shown as small rectangles, the house
number included as text in the OS mao. This represents an intermediate
phase in the interpolation of house humber. The final result is shown in
Fie. 6.

548 ICL Technical Journal Mav 1989

Fig. 3. Determining associated road for a given property and showing the geometry
involved

It is necessary to interpolate between the OS house number data in order to
allocate missing numbers to the individual houses. However, the vagaries of
the system of assigning numbers to properties precludes this in every case
and some require user intervention.

If any current property crosses a map sheet boundary then the polygon is
currently closed along the boundary. This is done for convenience since the
original map data is organised in that way but is not a real problem provided
both sides of the map edge match.

Database structures

There are three separate databases involved in the experimental system: the
original map database and the object database which hold the spatial data,
and the PLANES database which holds other textual attribute data.

Because of the nature of spatial data the map and object databases have been
developed specially for variable length records and fast access. They are
based on simple block files on to which a record structure has been
superimposed which reflects the abstract data tvpes used both for the map
and object data. The position in the file of any map feature code or obiect

ICL Technical Journal May 1989 549

MapGin command please Elapsed 19 32 CPU 1.00

Trace StateO Trace Off Printing State O Print Off Reveal State O Reveal Off (Show Trace)

Fig. 4 Splitting up a terraced outline using the property boundaries

record is given by a File Address: the block number and offset the in block at
which the item starts.

The map and the object database are organised on a map sheet basis. The
map database has an associated index file that gives the northing and
easting coordinates for each map sheet as well as the map width in metres,
together with the file address of the start of its data. This allows the display
of any part of the mapped area by selecting the map sheets which fall within
the area of interest and then clipping the appropriate map sheet data to the
screen.

The data for each map sheet is prefaced by a feature index that indicates
which codes are included and the file address at which they start. The line
data itself is held as a sequence of coordinate pairs, relative to the map
sheet base, with a count of the number of points at the start of each
sequence.

The map database allows records which span over more than one data block,
the object database does not. This is because the map data is not intended for
local modification but by updates from the Ordnance Survey. The object
data is intended to be modified by improving the object extraction algorithm
when a weakness in its operation is detected.

550 ICL Technical Journal May 1989

E x p e r im e n ta l S p a tia l S ystem

The main parts of the experimental system are shown in Fig. 5. It consists of
three main subsystems that can be run independently to provide a subset of
the total facilities, or together so that they can cooperate to provide the total
set.

The subsystems are: MapGin which handles all the cartographic data,
PLANES which handles the main property attributes and MapService which
intercepts messages from either PLANES or MapGin and routes them to the
appropriate recipient dependent on the context.

Fig. 5 Block diagram of the Experimental Spatial System

The lines show the interconnections and routes used. Each of the subsystems
has its own terminal for trace information and MapGin also has a SUN3
graphics terminal with a mouse for cursor control.

There can be more than one MapGin subsystem connected. Each can either
interact separately with PLANES or act as a slave to another MapGin
subsystem. Both PLANES and MapGin can operate independently and need
only be connected through MapService when either wants data from the
other.

The system described runs on an ICL mainframe with the VME operating
system (Virtual Machine Environment) capable of supporting multiple users.

ICL Technical Journal May 1989 551

A software environment has been developed to provide all the necessary
graphical and communications facilities required. The basic graphical facil
ities are device independent and can be mapped on to various graphical
devices in order to display and interact with the maps. Such devices are
currently connected asynchronously either via Modems at up to 19200 baud
or over OSLAN.

The set of devices that are supported are the Tektronix colour terminals 4501,
4701 and 4695 (printer), the Topaz greyscale graphics terminal, SUN 3, ICL
4602G terminal and DRS/PWS and DRS Model 30 ... It is simple to add
further device drives.

U sing M ap G in e x p e r im e n ta lly

The user is able to interact with MapGin through a simple command
language. Any positional information required is provided by using a cursor.
The type of interaction is controlled by MapGin.

The user can select an area of interest and may move interactively about the
mapped area, changing the scale as desired. It is also possible to move using
the text feature included in the map data as a gazetteer. All positional
information is held and presented in National Grid Coordinates.

In a given mapsheet the roads and junction objects can be determined by
using the command WALK and the property objects by the use of the
command PROPERTY. Once these have been used the objects can be saved
using the SAVE OBJECTS command or interrogated using the STREET
command for the roads or the ADDRESS command for the properties. In
the latter command the graphics cursor is used to point to the road or
property of interest.

On the SUN 3 and the PWS systems the user interface is presented as a set of
pop up menus, text screens and windows. See Fig. 6 for a typical screen
dump. The PLANES window is displayed in the top left hand corner
showing data associated with 1 Dysart Close. Pop up menus are shown in the
bottom left with a command selected. The main window displays Dysart
Close which has been split into individual properties using the commands
below the window.

An appropriate sequence of commands with explanation in { } would be as
follows:

map 39 {display map 39, a 500 m sq map with origin at coordinates
434500, 279500}

walk {identifies roads and junctions}
property {identifies all the properties and allocate to roads}
save 39 {writes objects to a database}
mz {zooms into a particular area indicated using the cursor}

552 ICL Technical Journal May 1989

Fig. 6 A screen dump of a typical MapGin session with PLANES

connect {connect to the PLANES system using MapService}
enquire {point to a building and display its address}
street {point to a street to determine its name}
split dysart {split Dysart Close into individual houses and interpolate the

numbers}
{continue with the interaction}

PLANES

PLANES is an ICL application being developed over a number of years to
be the company’s strategic Geographic Information System. Although its
development is a long term programme the incremental and modular
approach taken means that some components of the product are already in
use at about 70 customer sites. Despite being still in the early stages, the
distribution of these sites gives some indication of the wide potential
application of these types of system - currently the major users are local
authorities but also include public utilities and central government, with
pilot projects underway with financial, retailing and commercial organisa
tions. As for its geographic distribution, the system is already being used in
the United Kingdom, Australia, New Zealand and Papua New Guinea and is
gradually being introduced to further countries.

ICL Technical Journal May 1989 553

The system runs on an ICL mainframe running VME using IDMSX and
TPMS, to provide the database handling and data processing.

There are conceptually four elements to the system, although they integrate
closely to form the total Geographic Information System:

(a) The Property Directory provides the ability to uniquely identify all
properties and streets in the geographic area of interest by mapping an
address on to a structured key. The Directory has extensive facilities to
relate other data sets to this key, thus forming previously unrelated
property-based applications into a corporate information system. It also
provides a sophisticated search process, which may be used throughout
this corporate system as a common access path to retrieve any of this
data through the input of possibly incorrect or incomplete addresses.

(b) The Network Directory performs the same job of providing a complete
and unambiguous definition of a network, and acts as the focal point for
network related applications and data sets. The networks described may
be either highway networks or public utility ones such as electrical
supply, sewerage etc. Network Directory has extensive facilities to define
the elements of the network and the relationships between them in the
most appropriate way. It can also support a time series view of a
network, and map differing ‘user’ views onto the same underlying
network definition.

(c) The Spatial Directory holds mapping and spatial data in a form which
allows it to be presented in the traditional manner of maps and plans,
and to be classified as a set of objects to which textual data can be
attached and between which relationships can be defined, in order to
support a wide variety of analysis and decision support functions.

(d) The Information Manager module provides a very flexible end-user
system building capability which provides a simple way of generating
applications which have inbuilt relationships with some or all of the
above Directories. This provides a rapid way of generating some of the
textually based application systems which are required to support an
organisation’s operational needs, complementing the Directories' ability
to integrate existing applications.

Whilst the Property Directory, Network Directory and Information Man
ager are released products, as described above, the Spatial Directory
currently exists only in prototype form. One of the major reasons for this
module being the last to be tackled in our phased development is the
difficulty and cost of collecting the spatial information in the form of
structured objects as opposed to mere graphic images. While many users are
very excited about the use of digital maps, both as means to access and view
attribute information, and perhaps more importantly for the powerful
analysis and data manipulation that becomes possible when spatial and a
wide range of other attribute information are inter-related in a structured
way, very few could afford the cost of the very labour-intensive data
collection exercise that either digitising paper maps or surveying the bricks
and mortar would entail. Thus the prospect of a piece of software such as

554 ICL Technical Journal May 1989

MapGin which could identify a high proportion of spatial objects auto
matically (and the remainder through some user interaction), both in terms of
their spatial structure and their proper relationship to textual attributes such
as property address or pipe number, would be a huge step forward in making
Geographic Information Systems accessible to a large group of users who
currently have the desire, or in many cases real need, for such a system but
lack the resources to implement one.

MapService

This is an experimental program that uses VME communications facilities to
connect the various components of the system together. It intercepts all the
messages between PLANES and its TP terminal and can reroute all or a
specific set of messages to MapGin. It can support the broadcast of messages
to all the MapGin processes connected or handle them individually. As the
development proceeds MapService facilities will be subsumed into the main
PLANES system.

Using the Spatial Model

The interaction between PLANES and MapGin using the experimental
facilities can be initiated from either end. Examples of such interactions are
as follows:

(a) MapGin can be used to display the area of interest and once the analysis
has been carried out road names and property addresses retrieved by
just pointing at the displayed image of the road or property. When
connected to PLANES the address generated can be used to extract and
display any associated attribute data: for example property descriptions,
owners names and occupations.

(b) The PLANES user may browse through a set of properties one by one
and for any one can input the command VIEW. This command is
intercepted by MapService and routed to MapGin so that the property
can be displayed on the screen. In order to do that MapGin causes the
PLANES screen to be redisplayed and a copy sent to MapGin. From
this the position of the property can be determined and it is displayed at
a scale that shows an area of 100 metres square centred on the property.

(c) The PLANES user can select a property in a road and then WALK
from one property set to another. At any stage he can request a walk to
the next road, left, right or straight on. This command is routed to
MapGin in order to determine the current road and property. The next
road is selected on the basis of the nearest junction and then the first
house chosen that satisfies the direction (left, right or straight on). This
address is then passed to PLANES so that the enquiry can continue
from the new property.

(d) It is possible to use MapGin to determine and display the distribution of
attribute data stored by PLANES within a given area. It is first
necessary to select the shape of the area to be examined. This may be a

ICL Technical Journal May 1989 555

circle, a rectangle or an irregular polygon. Commands are then sent by
MapGin to PLANES that cause it to walk through the set of properties
with that attribute data and route the resultant PLANES data to
MapGin. MapGin then checks whether the property is within the area.
If it is the property is highlighted otherwise it is discarded.

In Conclusion

The MapGin experimental system has been used to demonstrate the
possibility of constructing an object-based model of a feature-coded area
with an acceptable degree of success. It is then possible to use that model to
provide a graphical interface to an existing object based enquiry system such
as PLANES such that the two parts of the system complement each other
and the whole is greater than the sum of the parts.

The early experiment is being taken further and ways of incorporating the
ideas of MapGin more directly into the PLANES system are being actively
pursued. One immediate use is aimed at helping a new PLANES user to
generate the structured key that is used to link the property address with the
appropriate records in the IDMS database. This can be very time consuming
and the facility of generating addresses from the OS map data should be very
useful. Other uses are concerned with extending the analysis of map data to
allow for the identification of land parcels, the introduction of symbol
facilities and allowing the various distribution networks of Electricity, Gas
and Water to be incorporated and displayed at various levels of abstraction.

ACKnowieaaements

I would like to thank Dr. I. Moshkun of ICL whose help and encouragement
made the going easier. Mr. N. Perry of ICL Knowledge Base Systems whose
initial work laid the foundations for this work. Mr J. M. Pratt currentlv with
ICL in Reading for his help during the early stages of the project. Mr. C. J.
Skelton. Project Manager of FlagShip for his support and understanding
throughout the project, and to the members of the PLANES team for
funding part of the experiments and mending their part when broken and
other colleagues too numerous to mention

References

UK Committee of Enauirv into the Handling of GeoaraDhic Information. Page 153. ‘Handling
Geographic Information’ London HMSO 1987.

Deriving and using an Object Based Model of a mapped area from a feature coded
Representation. J. M. P. Ouinn Vol 1 proceedings of Auto Carto London 1986. 59-68.

Automatic Structuring and Feature Recognition. M. de Simone Vol 1 proceedings of Auto
Carto London 1986. 86-95.

The VME based Graphics Software Svstem. N. Perrv. I. Moshkun and J. M. P. Ouinn FGIN 50
(unpublished).

556 ICL Technical Journal Mav 1989

“Ingres Physical Design Adviser”:
a prototype system for advising on the
physical design of an Ingres relational

database
Michael Gunner

ICL (UK) Central Government Business Unit, Reading

Abstract

This paper describes a prototype advice system to help with the
process of physical design of an Ingres relational database. The
approach taken, and the design principles used, followed an investi
gation into ways of automating this process.

The prototype has rules for calculating query costs in terms of disk
accesses. It does a search of alternative designs, comparing them, and
advises which one is the best. This search is "heuristic” in that “ rule of
thumb” decisions are made to choose a few likely alternatives that are
worth comparing, and it proceeds in stages which successively
approach a solution.

1 Introduction

Ingres has been adopted as ICL’s strategic relational database system and
there is therefore a major need for users and consultants to become
acquainted with it. One of the things which is likely to receive most attention
is physical database design, because of its importance in attaining good
performance, and because it requires skills and experience which are scarce.

This paper describes an investigation into the use of design automation
systems to help with relational database physical design. An expert systems
approach was adopted in developing an inference mechanism and set of
rules. This resulted in the production of a prototype advice system called
‘Ingres Physical Design Adviser’ (IPDA), written in Prolog and running on a
personal computer (Prolog2 produced by Expert Systems International).

Section 2 discusses some related research described in published papers.

Section 3 is a description of the physical design process, and of what is
involved in optimising performance.

ICL Technical Journal May 1989 557

Section 4 explains briefly the approach taken in designing IPDA.

Section 5 describes the design and general principles of IPDA. It includes an
outline and a functional description. The main components in the prototype
design are described.

Section 6 reviews the project as a whole: what was achieved and what
possibilities there are, considering the implications of research papers
reviewed in Section 2.

2 State of the art review and a survey of some published papers

2.1 In tro d u c tio n

This section is a review of some published papers on performance and
physical database design: different approaches to design aids, and the
strategies adopted for solving design problems.

In summary this review considers papers and reports on the following
subjects:

- the implications of an audited benchmark test,
- the place of performance calculations in possible Structured Systems

Analysis and Design Method (SSADM) developments,
- a system which compares alternative sets of indexes using some broad

measures of cost,
- a system called Design-by-Example which offers a user interface based on

skeleton queries, as well as an interesting algorithm for searching for
solutions. Again it is only for indexes and not storage forms,

- a system to generate representative query sets automatically from the
logical design, based on what are seen to be the “general semantics” in the
database,

- an Expert System for logical design of databases, part of a program to
build expert systems for the complete database design process,

- an IBM system for selecting indexes which uses the database management
system’s own optimiser to make the cost comparisons.

2 .2 In g re s S ilv e r B u lle t B e n ch m a rk

The Ingres Silver Bullet Benchmark Report, audited by Codd and Date’s
Consulting Group (Silver Bullet, 1988), claims to be a major milestone in the
relational database marketplace. It reports a performance rate of 100
Debit/Credit transactions per second, achieved with a Sequent computer
system with 16 processors.

Although achieving this level of performance helps in overcoming the
barriers to the acceptability of relational databases for large-scale Trans
action Processing applications, in practice there is a much more common

558 ICL Technical Journal May 1989

requirement. This is for large systems to support around 30 TPS, not with
repetitive simple queries, but with a much more varied workload including
complex queries. It is for this kind of system that a tool to help with
optimisation could be very useful.

2 .3 CCTA re c o m m e n d a tio n s fo r p e r fo rm a n c e p re d ic tio n

A paper published by the CCTA (Central Computer and
Telecommunications Agency, 1987) describes how performance prediction
based on disk I/Os could be achieved using knowledge of the database
system’s architecture and query optimiser. It shows how performance
prediction is used in the context of SSADM. A new SSADM form is
proposed: Relational Database Access Calculations which the designer
would use to do the calculations to optimise performance. The designer has
to make his selections of likely solutions, and for each of them repeat the
calculations to compare them for performance. SSADM is being promoted
as a standard by the government, through the CCTA.

2.4 The n e e d fo r A u to m a tio n

It is stressed in various papers proposing automated systems (for example
Finkelstein et al, 1988) that is is very easy to miss the best solutions, because
there are far too many possibilities for them to be examined in a rigorous
way. The very large number of alternative solutions possible for a physical
design make an expert systems approach seem suitable, and this is what was
adopted for this project. However a number of other approaches have also
been studied.

2 .5 A n a u to m a tic in d e x s e le c to r u s in g b ro a d ly b a s e d cos ts

The relational database performance optimisation model described by
Motzkin (1987 and 1985) compares overall costs for a system, when various
alternative sets of indexes are applied to the files.

The cost function is very broadly based and takes into account disk space
used, searches involved in queries, modifications, and reorganisations. Cost is
given in time and in dollars.

Motzkin’s system requires the database designer to enter a lot of informa
tion. This includes (a) system and operating environment constraints and
costs, including total available disk space, time available, disk access times
and average cost per access, (b) database information: the number of files,
and information about each file, (c) workload information such as the
number of searches and changes to each field of each file which the user
will make per day, and (d) index information: the number of indexes which
are available on each file, and the variations which the designer is
thinking of.

ICL Technical Journal May 1989 559

2 .6 D e s ig n -b y -E xa m p le sys te m to g e t p a tte rn o f q u e rie s , a n d s e le c t in d e xe s

Design-by-Example or DBE (Bitton et al, 1985) is a system which borrows
from a technique used in some query interfaces, Query-by-Example or QBE.
The physical design it produces is based on example queries which it presents
on screen. The designer modifies these to show what the user is likely to do.

A series of example tables is displayed, containing sample data, and example
skeleton queries. These can be modified, and values inserted to define
selections and joins, together with weightings that indicate the relative
frequency of each query. DBE then generates candidate physical design
schemes, and computes performance forecasts. For each design proposed, it
presents a forecast for the response time for every example query. The
designer decides when a desirable scheme is reached.

Besides the DBE query generator, Bitton’s system is interesting for its index
selector in which a search strategy is used to find the columns of a table
which it is useful to index. For each table it selects one column as the primary
key, and others to be secondaries, using rules based on the distribution of
data and the pattern of queries.

The index selector employs a search strategy to decide on indexes for a given
table, using the total number of disk accesses required for the pattern of queries
as the cost for comparing alternatives. Initially a column is chosen as the
primary key. Then a secondary index is assumed to exist for all other columns.
Cost calculations are done to find the effect of dropping each of the
secondaries from the set. This may produce a list of columns which, if indexed,
result in a cost increase (see Section 3). If this is so the most significant of them
is dropped, resulting in a set of secondaries reduced by one. The cycle is then
repeated, until it is found that none of the secondaries can be dropped without
increasing the cost. The result is a recommended set of secondaries.

2 .7 G e n e ra tin g q u e ry se ts a u to m a tic a lly fro m th e lo g ic a l d e s ig n

Ryan and Carlis (1984) present a different approach for generating query
patterns, by analysing the entities and relationships in the logical design.
They assume that an entity in an LDS (logical data structure) has a semantic
importance which depends on its relationships with other entities. They
derive a set of representative queries by considering paths between entities,
one of the criteria to identify central entities being the count of the number of
arcs in the diagram which indicate relationships. They claim that this is
accurate enough for a first-cut design and saves a lot of time compared with a
manual method of doing it.

2 .8 Use o f e x p e r t sys te m s

Two papers from France (Bouzeghoub et al, 1985a and 1985b) describe an
expert system, written in Prolog, which generates the logical design for a

560 ICL Technical Journal May 1989

relational database system. The authors say that their system is envisaged as
being part of a more complete system to cover business analysis and physical
design as well. The system described in these papers offers help with designs
which have incomplete specifications. For each design step it offers general or
specific principles of reasoning, and explanations. It allows back-tracking to
allow changes to the specification, and new information.

2.9 A n IB M e x p e r im e n ta l p h y s ic a l d e s ig n to o l

An IBM experimental physical design tool for relational databases, called
DBDSGN, is described in Finkelstein et al, (1988). Given a particular
workload (SQL statements and their execution frequencies) DBDSGN
suggests a physical configuration for efficient performance. Each configura
tion consists of a set of indexes and an ordering for each table. DBDSGN
reduces its search space by compiling a list of “plausible” columns for each
SQL statement. One reason which defines a column to be plausible is that (a)
there is a predicate on it and (b) the system can use an index to process that
predicate. This happens when the predicate is ANDed to the rest of the
WHERE clause, and it is usable as a search argument to retrieve rows
through an index scan. If a table is not mentioned at all in a statement, or if
columns are only referenced in the SELECT lists and never in the WHERE
clauses, then columns are implausible for that statement. Having compiled its
list of plausible indexes, DBDSGN performs a process of index elimination,
and generates solutions.

An important principle of DBDSGN is to make use of the same optimiser as
is used for run-time queries, i.e. the database management system optimiser.
DBDSGN runs the optimiser to determine which columns might be worth
indexing and to estimate the costs of execution statements in different
configurations. This provides a very reliable basis on which to choose
solutions because the optimiser is able to supply the estimates of cost it uses
itself in order to decide on an access path. The optimiser examines the set of
access paths that exist and computes the best expected cost for a statement
by evaluating different join orders, join methods, and access choices.

3 Physical design for an Ingres relational database

Physical design for a database follows logical design, and concerns the
physical structure of the files and indexes holding the data. Good perfor
mance from the database depends on good design, and physical design in
particular. With Ingres a high degree of tuning can be achieved because of
the options available, but experience and skill are required to make the best
selections. In fact a rigorous search for the best design among all possible
ones cannot be done in practice because of the number of possibilities. Part
of the project was to formulate a set of rules for tuning, emulating what
would be done by an expert.

The problem faced by the database designer is illustrated by considering the
following list of things which have to be taken into account:

ICL Technical Journal May 1989 561

the size of a database table: how many columns and how many rows?
- how often data is to be added, how fast the table is growing,
- whether disk space is at a premium,

the general pattern of queries, including relative frequencies of various
types, for example to search the entire table, to make fast access to a small
number of rows, make joins with other tables, look for patterns and ranges
of values,

- (for VME Ingres) the availability of Contents Addressable Filestore, CAFS.

An Ingres relation or table is physically stored in a file, held in pages which
are 2048 characters on Unix, and 4096 on VME. A page is the smallest unit
of retrieval from the disk.

Files can be set up with keys, in which case queries may make use of a key in
finding tuples (rows) which satisfy a predicate of a query (i.e. a condition
following a ‘where’).

When a query is entered, the Ingres Optimiser works out an optimum access
path, from knowledge it has of the physical structure for the table, including
its indexes, and its size. On VME with CAFS the optimiser will select CAFS
if it offers the fastest retrieval, which will not always be the case, especially
with a very big file when use of an index can be faster.

The most significant factor affecting the response time for a particular query
is the number of disk accesses made. Other factors such as processor speed,
or the relative speed of input/output to disk for one processor compared with
another, are of second or lower order significance. The response time will be
improved if for example Ingres is able to retrieve several records in one access
rather than retrieving them one at a time.

Hence to minimise the number of disk accesses for frequently used queries is
a major objective of optimisation.

The investigation carried out considered an Ingres system which does not
make use of CAFS, and the prototype does not have rules which take into
account its availability. However it is envisaged that the design used could be
modified by adding appropriate extra rules to calculate the disk access cost
of a query, but the rules for a search for alternatives in design might stay
unchanged.

There are four storage organisations allowed: heap, indexed-sequential
(isam), btree, and hash-random (see Appendix). All except heap are keyed
structures which require a primary key. All structures can be “compressed”,
that is stored without trailing spaces, thus making eight structures possible.
All can have extra keys which are called secondaries. These are held in
separate files for which there are also alternative storage structures.

The availability of these alternatives allows considerable scope for ‘tuning’,
which can dramatically improve performance.

562 ICL Technical Journal May 1989

The Ingres database can be set up by making all the tables heap, when no
choice of key at all is required. Alternatively a primary key can be chosen for
each table, with one keyed storage structure such as btree for all the tables.
This may be quite adequate. However, in order to obtain the best perfor
mance possible, the physical design has to be optimised by selecting
separately the best storage structure for each table, and then perhaps adding
secondary keys.

For one table there is a very large number of feasible alternatives even when
there is only a small number of columns. This can be appreciated by
considering the variations possible. There are eight storage structures to
choose from. Six require a column (or a combination of columns) to be
chosen as the primary key. On all structures secondary indexes may be added
to help with particular queries. There are four file structures to choose from
for the extra indexes. The optimum choice depends on the pattern of use,
which initially has to be anticipated, and then monitored while the system is
running, to help with later tuning.

I PDA makes quantitative comparisons which could not be made accurately
by an on-the-spot designer. Although his experience might tell him which
solutions offered most hope, there is research (Finkelstein et al, 1988) to show
that the optimum solution may easily be missed, as the addition of indexes
carries costs which have to be balanced against the gains they are aimed to
produce. Update queries can be slowed down when extra indexes are added.
Balancing costs against benefits is not simple.

The number of alternatives for all the tables of a large database is so large
that they could not all be considered in a realistic timescale. Carlis et al (1983)
give a figure of 13 centuries with a Cyber 74 computer to look at all the
possibilities for one (US Navy) database.

Other physical factors such as the placing of database files on the disks to
minimise disk head movement, and the use of cached memory, also affect
performance, and would be considered when setting up an Ingres system.
Work on this would be done after the physical design and would be
configuration-dependent.

4 Evolution of prototype system: ‘Ingres Physical Design Adviser’ (IPDA)

IPDA was evolved with the help of expert systems methodology and went
through two prototypes. Given that the physical design process is largely a
matter of an expert applying experience and “rules of thumb”, and yet the
problem seemed to demand some precise numeric calculations, a lot of
heartsearching went into deciding whether an expert systems approach was
indeed the most appropriate. The second prototype which eventually
emerged has a sub-system to evaluate a cost which is measured in disk
accesses, and a sub-system which searches alternative physical designs, and
compares them and makes selections on the basis of this cost. As the project

ICL Technical Journal May 1989 563

evolved, this algorithmic approach and search sequence were seen to be
essential. This implementation concentrated on this approach rather than on
making use of an existing shell which would have had explanation facilities
and a facility to enter new rules in an easy-to-understand form, rather than in
Prolog. The prototype uses information about the database which is
captured in the ICL Data Dictionary System, and a set of data was used to
simulate an interface.

5 Description of IPDA, the prototype adviser

5.1 O u tlin e

The prototype. IPDA. advises on the setting up of the file for one Ingres
table. It reads some information which has been entered about entities and
attributes (in a form which could be captured by a Data Dictionary), and it
asks questions interactively from the designer about the pattern of queries to
be made using the table.

IPDA uses the information it has available to make a search for a few of the
alternative configurations from among the very large number of possible
ones in order to find a solution to recommend. This is carried out in five
steps, each of which settles on one variation and feeds its result to the next.
The first step makes a list of the columns which IPDA considers worthwhile
“candidate” keys, the second chooses one of them as primary key, the third
chooses a basic (keyed) storage structure, the fourth eliminates any remaining
keys from the list which appear to be more trouble than they are worth, and
the fifth considers all those still left as secondaries, and finds the best storage
structure for each of them. The end result is a set of indexes and structures for
the files associated with the table, and it constitutes the IPDA’s recommen
dation. (Compound indexes are not considered, nor is a heap structure with
secondary indexes - this would be work for a further development.)

This “heuristic” search follows a sequence which seems likely to produce a
sensible solution: perhaps an expert in the field might go about his design in a
similar way. There is no attempt to examine all the possible alternatives,
which would not be practical. At each stage only a small number of
alternatives have to be considered.

IPDA employs an algorithm for calculating the “cost” of a set of enquiries on
one database table, in terms of disk accesses, given a particular physical
configuration. It uses this calculation several times in each of the search steps,
in order to compare the costs for alternative configurations given the same
query load.

IPDA does not deal with queries involving joins between tables, which
would be an essential feature for a system like this (a method for doing this
was discussed but there was not time to implement it). The use of compound
keys might be decided on by a designer, but this was thought to be too

564 ICL Technical Journal May 1989

difficult to try to automate. Queries which insert records as opposed to
updating them were also not estimated for in the algorithm for the cost
function.

5.2 F u n c tio n a l d e s c r ip tio n

IPDA produces a file organisation for one table based on the minimum disk-
access cost found from a set of solutions considered. The details it gives are:
- if at least one key to be used, then one column as Primary Key,
- the Primary File Organisation: heap, isam, hash, or btree,
- a set of columns as Secondary Keys together with the File Organisations

of each one (the same alternatives).
The search sub-system works through 5 stages of successive refinement of
physical design evaluating alternatives using a cost function for disk accesses
for the load.

The pattern of use for one table is obtained by asking for information about
queries on it (Section 5.5 considers the user interface further). The informa
tion required is:
- the frequency in relative terms (say per second) for each of the set of queries,
- for each query:

whether it is retrieval only, or involves update,
whether there is only one predicate (where-clause), or if not how the
predicates are combined, by conjoin (and) or disjoin (or),
for each of the predicates (Condition-clauses following ‘where’):

the name of the column involved,
whether it is updated (if an update query),
the number of records which will match the condition (an estimate),
the type of match, i.e. exact (an equals condition), a pattern, a range of
values (e.g. between two values), or some other such as “less than”.

Note that only a limited set of conditions is handled. Joins between tables
are excluded, as are aggregation, and complex boolean combinations of
predicates.

It might be argued that it is artificial to require the designer to supply details
of all predicates given. Flowever manual methods such as SSADM currently
require this. The only viable alternative is for the system to collect the
statistics itself during a period of time when the database is being used by the
user in his normal work. However these statistics would measure the queries
actually being executed, not the queries users would like to execute if the
performance were adequate.

5.3 The s e a rc h s tra te g y

The object of having a search strategy is to narrow the search space by
making selections in stages, in which a basic choice is made in preparation
for the next stage, from a few likely options.

ICL Technical Journal May 1989 565

The sequence is based on an expert’s idea of what would work in practice
(and it is interesting that a similar sequence is found in (Bitton, 1985) - see
Section 2).

Apart from Step 4 the algorithm is linear, and Step 4 has a maximum number
of cost calculations of 1/2 x (Number of Columns) squared. This is thought
to be acceptable.

The algorithm rules out the alternative of heap with secondaries and no
primary. This would be relevant if the system were to model insert queries as
well as updates, which would be an added complication which was not
considered.

The steps are as follows:
Step 1: Get the First Index List
(a) Make the Organisation for the file heap, without any secondary indexes.

Calculate the cost.
(b) Calculate the costs for each column mentioned in at least one predicate,

when it is a secondary btree index, with no other indexes. The file
organisation is still heap. In each case where there is a reduction
compared with the unindexed cost, then put this column on a list of
indexes.

The result is to produce a list of those columns which, if used as btree
secondary indexes on a heap table, would give a cost reduction in the absence
of any other indexes.

The remaining steps are only carried out if there is at least one column on
this list, otherwise the organisation must be heap without secondary indexes.
Step 2: From this list choose one column as Primary key, and make the others

Secondaries
(a) Calculate a set of costs, for each alternative of one column on the list

being the primary key, and the rest on the list secondaries. (Assume
btree organisation at this stage.) Select the lowest cost alternative. This
gives one of the columns as primary key.

(b) Select the lowest cost alternative. This gives one of the columns as
primary key.

Step 3: Find the best Primary Organisation
(a) Make all the Secondaries btree.
(b) Calculate the costs for each alternative Primary Organisation for the

file, i.e. hash, btree, isam. (Having selected a primary key, a keyed
structure is implied and heap is not considered as an alternative).

(c) Select the alternative with the lowest cost.
Step 4: Get the optimum list of secondaries
(a) Keeping other factors constant, try dropping all the Secondaries one by

one from the list output from Step 2 and calculate the cost, making a list
of costs.

566 ICL Technical Journal May 1989

(b) Compare the costs obtained with the initial cost (output from Step 3),
and if there is an improvement (or no change), drop the one which gives
the best improvement.

(c) Then repeat this cycle but compare each cost with the cost obtained in
the previous cycle. Iterate round, dropping columns from the Secondary
list, until no further improvement is obtained (or the result is that there
are no secondaries).

Step 5: Find the best organisation for each secondary index
(a) Starting with all the Secondary indexes as btree, set them one by one to

the organisation which gives the lowest overall cost (from the list of
organisations of hash, btree, and isam).

(b) Once an organisation has been chosen for an index on a column, leave it
set when considering the next indexed column.

Some comments
After one demonstration there was a suggestion made that Steps 2 and 3
should be combined, so that all organisations were considered for each
primary key. This was considered but it was thought - pragmatically - that
selecting the primary key on the assumption that all keys were btree was
likely to yield a good answer in almost all cases.

The system does not allow the user to intervene: that would make sense if the
system came up with two alternatives which were close compared with others
which it dropped. There might be an advantage in a system which allowed
the user to impose his or her own choices, within a range offered by the
system. It would also be a useful feature if the system could pursue two or
more alternatives through successive steps.

5.4 C o s t F unc tio n

This is evaluated by firing rules from the Knowledge Base of IPDA for
calculating the number of disk accesses which will occur for the predicted
usage pattern for one table. The inputs are as follows:
- the names of all the columns of the table,
- the total size of one row of the table, in characters,
- the set of queries on the table, and their frequencies,
- the basic file organisation: whether heap, hash, isam, or btree,
- if a keyed structure the column which is primary key,
- other column or columns on which there are secondary indexes,
- the file organisations for each of the secondary keys,
- the number of rows in the table.
The total cost in disk accesses is calculated.

The cost algorithm for a query uses two simple models:
(a) to decide the access path the optimiser will choose,
(b) to evaluate the cost of this access path.

ICL Technical Journal May 1989 567

The assumption is made that at run-time Ingres will use the indexes where it
can make a faster retrieval. As we have discussed, the selection of access path
is made by the optimiser, which will also select CAFS rather than indexed
retrieval if it is present on the system, and if this gives faster retrieval. The
cost function used in IPDA does not include consideration of CAFS. The
algorithm would have to be refined for a CAFS system.

5.5 User Interface

IPDA uses a simple question and answer dialogue. It was not an aim of the
project to produce an interface beyond one which was sufficient to demon
strate the prototype.

IPDA displays a list of tables which are in its knowledge base, and invites the
designer to choose one for which he wishes to set up files and indexes. With
knowledge of the table structure (from the logical design) IPDA then asks a
series of questions about the pattern of queries on it, and the number of rows.
(Some volumetric information could potentially have been retrieved from the
data dictionary.)

IPDA prompts for details from the user, to get the frequency in relative terms
(say per second) of each query, and a description.

Ideally IPDA would work from the SQL query text, but to avoid writing a
query parser in the prototype, the user was asked for significant attributes of
the query directly.

IPDA explains its reasoning, and displays its solutions as follows:

Step 1
Display Cost for Heap Organisation, Unindexed,
Display Cost Reduction for each column if used alone as an index,
Display as candidate indexes the columns which give a reduction.

Step 2
Display costs for each candidate index chosen as primary key, the others
being secondaries (file organisations btree),
Display as primary the one giving lowest cost, the others secondaries.

Step 3
Display costs for each keyed organisation (isam, btree, hash),
Display primary organisation chosen,
Display cost.

Step 4
Display costs for each secondary being dropped,
State whether any cost reduction obtained,
If so display the secondary being dropped (the one giving the lowest cost),
otherwise display the secondaries selected as the full list, and end,
Repeat.

568 ICL Technical Journal May 1989

Step 5
For each secondary key:

Display cost for each file organisation: isam, btree, hash (with the others
either btree, or what has previously been selected in Step 5),
Display the organisation chosen for this key.

(Remember that the cost is still the cost for the pattern of queries, and that
everything else about the table files has been fixed.)

6 Some conclusions

This prototype showed the principles of a database design adviser, in which
an expert system approach was used to develop a knowledge base. Some of
the research papers suggest possible ways for further development.

If the system were developed to have a complete rule-set, an expert system
might then not be the best approach. There is a big advantage in using
Ingres’s own optimiser, called from the system (Finkelstein, 1988, see
comments below). An IPDA software system which ran in the same
environment as the Ingres database system could be used for the physical
design, using the Ingres optimiser to compare costs of the alternatives it
evaluated during its heuristic search.

Finkelstein et al stress that a global solution cannot be obtained for each
table independently. Any index decision made for one table may affect the
best index choices for another. The rule-set has therefore to take into account
joins, and also, to be complete, insert queries, compression as a further
option of file storage form, and perhaps the use of heap storage form plus
secondary indexes. (For VME the cost function needs to be refined to take
account of CAFS, but the Ingres optimiser will be able to do this.)

In comparison with IPDA, Motzkin’s system takes into account a much
wider range of factors. These are real considerations for a database adminis
trator and an ideal system should also include them.

IPDA requires the designer to input information on the set of most-used
queries. Bitton’s DBE shows a useful interface technique for this. Ingres may
at some future date collect statistics of its own which would make it
unnecessary for the designer to enter estimates of usage. However this would
not be wholly satisfactory because there would be no information on the
queries which the user would like to enter but does not because the current
design does not support them easily.

As the search method is untested in IPDA it seems promising that it is similar
to Bitton’s, though it was arrived at independently.

Finkelstein et al write in their conclusion “A tool should not use an
independent model of the behavior of the underlying system, even if that
model is more accurate than the system’s internal model. Instead the

ICL Technical Journal May 1989 569

database system should export a description of its behavior... Improvements
in formulas and statistics should be incorporated into the optimizer, not into
tools.” Considering IPDA and Ingres, the Ingres optimiser is potentially able
to supply the cost of its chosen access paths for a given configuration and
query. If the optimiser were available to IPDA as a “cost module”, then it
could be used for this purpose. IPDA could supply it with one solution at a
time, and then run the queries in the query load. This is potentially an
excellent solution, and would do away with I PDA’s own cost function sub
system, but keep the search sub-system. There would not be the possibility of
IPDA selecting an option which (even if it were theoretically better) actually
takes longer because Ingres does not choose the access paths predicted.

Finally there is potential in the ICL Data Dictionary for applying IPDA-
type rules. The automatic generation of the Ingres database from the logical
design would use volumetric and frequency information to define appropri
ate file storage forms and indexes.

Acknowledgements

I am grateful to Dr Michael Kay of ICL for ideas which I have used in my
prototype system, and for assisting me with the project generally.

The project was sponsored by ICL as part of an MSc degree course in
Information Systems Design at Kingston Polytechnic, and I am grateful to
Tony Sherwood and others of Management Systems Centre, in Mainframes
Systems Division, for allowing me the time to complete it. I also wish to
thank the colleagues in ICL, and Dr Petros Gelepethis and other staff at
Kingston Polytechnic, who helped me at various times.

Appendix

A n o te o n S t o r a g e S tr u c tu r e s
A storage structure is a file arrangement providing a way to access data in a table. Keyed storage
structures provide a way to get to a particular row or set of rows within a table more quickly
than if the file were unstructured.

Heap is the default storage structure used when a table is created by INGRES. It means that
there is no key at all to the table, it is just a heap of data. A record is added at the end of the heap.

Hash storage structure is the fastest access method for exact match queries with no pattern
matching. The index is a field chosen as the key. A hashing algorithm is used on the key to decide
where to find the record on the disk. When the structure of a table is modified to hash INGRES
distributes the data evenly over pages of store. The table is built by placing each record on the
page where its key hashes to.

Isam (Indexed-sequential storage access method) storage structure also requires a key to be
specified. It is more versatile than hash and supports pattern-matching, range scans, and partial
key specifications as well as exact match retrievals. Isam tables use a static index that points to a
static number of pages. The table is sorted by keys at the time it is set up, and an index is built
up. This points either to other index pages, or to the data pages where rows with that key range
are stored. Hence there can be additional disk accesses to scan indexes, unlike hash.

570 ICL Technical Journal May 1989

INGRES Btree (Balanced Multi-way tree) is the most versatile structure. It supports keyed
access, range searching, and pattern matching. The index is dynamic rather than static, allowing
the index to grow as the table grows, eliminating overflow problems which occur with isam or
has (additional pages of index which have to be accessed indirectly, involving further disk
retrievals). Index pages point to leaf pages, and these point to the records actually holding the
data, which are in data pages. Because it is kept in balance all retrievals go through the same
number of index levels. The major advantage compared with isam is that it eliminates overflow
as the table grows (except where there are a large number of duplicate keys, i.e. having the same
value). When an index page becomes full it is split into two, but a data record itself never has to
be moved. As a table gets larger splitting occurs less frequently than when it is small, and it is
usually at the leaf or lowest level.

References

BITTON, D., MANNILA, H., RAIHA K.J, Design-by-Example: a Design Tool for Relational
Databases, Report TR 85-692, Cornell Univ., Ithaca, NY, USA, July 1985.

BOUZEGHOUB M., GARDARIN G, METAIS E, SECSI: An Expert System Approach for
Database Design, First Conference on AI for Databases, Blanes, Gerona, Spain, Oct 85,
(Barcelona, Spain: Consorci Inf. & Documentacio de Catalunya 1985), (1985a).

BOUZEGHOUB M., GARDARIN G., METAIS E, Database Design Tools: An Expert System
Approach. Proceedings of the Eleventh International Conference on Very Large Data Bases,
1985, Stockholm, 1985, (1985b).

CARLIS J. V., MARCH S. T„ and DICKSON G. W„ Physical Database Design: a DSS
Approach, in Information and Management 6, pp 211-244, 1983.

CCTA, Performance Prediction for Relational Database, (Information Systems Engineering
Report Number 10), CCTA, December 1987.

FINKELSTEIN S., SCHKOLNICK M., and TIBERIO P„ Physical Database Design for
Relational Databases, ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988,
Pages 91-128.

MOTZKIN D., An optimal physical database model, Math. Modelling (USA), 1987, Vol 8, pp
240-4.

MOTZKIN D., Database performance optimisation, AFIPS Conference Proceedings 1985,
NCC Conf, AFIPS Press 1985, pp 555-566.

RYAN K. L., CARLIS J. V., Automatic generation of representative query sets, IEEE Comput.
Soc. Press 1984, pp 262-70.

Silver Bullet, Ingres Benchmark Report April 1988, RTI, and “Auditor Report Silver Bullet
Benchmark”, Tom Sawyer of Codd and Date Consulting Group, April 23 1988.

ICL Technical Journal May 1989 571

KANT — a Knowledge Analysis Tool1
Graham E. Storrs

Logica Cambridge Ltd., Cambridge
Chris. P. Burton

ICL Knowledge Engineering, Manchester

Abstract

The project out of which this paper arises is a 5 year, £7 million
collaboration between ICL, Logica Ltd, the universities of Lancaster,
Liverpool and Surrey, Imperial College London and the Department of
Social Security. The broad aim of the project is to help members of the
general public in making claims under the Social Security provisions,
and the staff of the Department in assessing the eligibility of these
claims.

Achieving these aims involves assembling, manipulating and access
ing a very large body of knowledge, much of which can change, some
very quickly; and developing fast and efficient methods for accessing
this knowledge. The present paper describes one of the main tools
developed for building and maintaining this knowledge base.

Introduction

The Alvey DHSS Large Demonstrator Project is a £7 million, 5 year research
project aimed at demonstrating the viability of intelligent decision support
for large, legislation-based organisations. It is a collaborative project,
partially funded by the UK Government, between Logica Cambridge, ICL,
the Universities of Lancaster, Liverpool and Surrey, Imperial College, and
the Department of Social Security (DSS).

The project is building three applications as demonstrator systems. These
are;

• The Claimant Information System. This will provide advice and ex
planations to potential claimants of social security benefits as to their
eligibility to claim and the consequences of claims they might make.

'This work was carried out as part of the DHSS Large Demonstrator Project, supported by the
Alvey Directorate of the UK Department of Trade and Industry and the UK Science and
Engineering Research Council. The collaborators are ICL. Logica, Imperial College, and the
universities of Lancaster, Liverpool and Surrey. The UK Department of Social Security is also
actively participating in this work. The assistance of other project members is gratefully
acknowledged. The views expressed here are those of the authors and may not necessarily be
shared by other collaborators.

572 ICL Technical Journal May 1989

• The Local Office System. This is intended to provide decision support
for DSS adjudication officers who are assessing claims for benefits in
local offices. These people are legally empowered adjudicators and the
decisions they must make are affected by large bodies of complex
legislation and case law.

• The Policy System. This will provide support for DSS policy makers.
The job of a policy maker is to formulate, explain and monitor the policy
of the department, to implement it as social security legislation, and to
modify existing legislation so as to reflect the current policy.

Knowledge Analysis in the DHSS Demonstrator Project

One of the prime objectives of the project is to investigate the use of very
large knowledge bases. So it is with the local office (LO) system that we will
be particularly concerned in this paper as it is only within this application
that a very large knowledge base is being built.

While the project is faced with many problems of how to represent and
organise very large bodies of knowledge within a machine for efficient
inference, it rapidly became clear that the major difficulties with building large
knowledge bases were in the analysis of the knowledge, the validation and
verification of the knowledge base and the maintenance of the knowledge base.
This despite the fact that the sources of knowledge for the systems we are
building are, on the face of it, highly structured, definitional and rule-like.

A style of knowledge analysis has developed within the LO application. This
is based on a restructuring of the knowledge in the various sources
(Adjudication Officer’s Guide (AOG) and the Acts and Regulations) into an
essentially hierarchical breakdown of the concepts involved (e.g. the notion
of “capital” in Income Support). Onto these, the “operation” of the regula
tions is superimposed as a set of linking rules and this “legal” perspective of
the knowledge is systematically mapped to another structured knowledge
base which represents the user’s conceptions and the “task” knowledge. The
task knowledge is unlike the legal knowledge in that part of it must be
acquired through techniques such as interviews and simulations but most of
it is also contained in the AOG. Figure 1 shows how the operational
knowledge base is derived from these intermediate representations which are
in turn based on the analyses and reformulations done by the analysts.

It is very difficult to say how large a “very large knowledge base” is as there
are no adequate metrics. The target we have set ourselves is to have encoded
about one third of the printed source material required for the adjudication
of claims for income support (in fact, the project expects to have about half
the source material encoded). This should encompass about two volumes of
the eleven-volume AOG plus all the relevant acts and regulations as well as
parts of some other sources (e.g. the Income Support Manual). Readers
unfamiliar with these sources will not necessarily appreciate how large this
body of knowledge is, nor how dense it is, nor how densely cross-referenced.

ICL Technical Journal May 1989 573

Fig. 1

It is the cross-referencing in particular that leads to extreme difficulties for
the knowledge analyst. We have estimated that, in a typical month’s work,
each analyst will have referred to approximately 20 megabytes of text as a
result of reference-following. This is a rather extreme instance of the “thumbs
problem” and it is simply not possible for a person to keep track of this
information unaided.

The Requirements for KANT

In order to support the knowledge analysis activity within the LO applica
tion, a hypertext-based tool, known as KANT, has been built. The require
ments for KANT were:

e to support the project’s knowledge analysis style directly - that is, to
support the procedures for knowledge analysis with which the present
analysts are familiar;

• to be easily usable by the present analysts - these are people with a legal
or systems background without, necessarily, any computer skills;

• to be able to allow the user to work on more than one analysis at the
same time;

• to have a sensible and, as far as possible, automatic route from paper
source to KANT form;

• to be able to cope with the anticipated volume of material to be analysed
this involves having multiple sources (e.g. several acts plus the AOG)

available at the same time;
• to handle this quantity of text without slowing down the analysis - we

574 ICL Technical Journal May 1989

took this to mean that browsing the sources should be able to be done at
a pace similar to that of turning and scanning printed pages and that
retrieving a reference by following a link should bring up the target text
within a second;
and, a requirement imposed by our users which caused great difficulties,

• that the sources should look, as nearly as possible, identical to their
paper equivalents.

The Knowledge ANalysis Tool (KANT)

Most of the design of KANT, and its implementation, has been done in the
ICL part of the project team, as has most of the slog of turning paper sources
into KANT sources. The implemented system is written in Interlisp on a
Xerox 1186 Lisp workstation and makes extensive use of the project’s screen
management and text management software tools in order to gain the
necessary performance.

KANT will allow the analyst to open up as many source documents as are
needed. These each reside in a separate window and the windows may be
moved, shaped, buried and revealed as suits the user. Sources in the context
of the DHSS Large Demonstrator are such things as legislation, procedures
guidelines and case law manuals. Sources may be browsed by scrolling at the
rate of a line, paragraph, or page, or they may be searched for occurrences of
strings. Similarly the user may open as many “structure” windows as
necessary. These contain the results of the analysis. For each session, each
node of each structure has “provenance” data attached. This gives the name
of the analyst who is working on it, the reason for the analysis, the date and
the time and a full record of all the significant changes to the node.
Provenance records may be reviewed or printed as desired.

The structures created by the analyst are basically hierarchical and are
usually displayed as indented blocks of text. A graphical “overview” is also
available to assist rapid navigation over the structure. Structures may be
folded and unfolded in the style of “ideas processors” or “outliners”. Each
node has its own internal structure. It has a title, then an arbitrary number of
fields which are text strings of arbitrary length. The interpretation of the
fields is determined by the conventions adopted by the analysis team, and
typically they can be a body of free text, and a rules section (for adding rules
in an “intermediate” rule language). Other software tools to do with
Knowledge Base Building may make use of the conventions in order to
extract the correct fields for input to a Rule Compiler, for example. A node
may be moved to a new location within the same structure or copied to
another location in the same or a different structure (in all cases bringing all
its subordinate nodes and maintaining all its links appropriately). The
analysts can obtain a hardcopy printout of a structure in any chosen degree
of detail to allow offline study and discussion of the analysis.

Nodes in the structures and text in the sources may have links attached to

ICL Technical Journal May 1989 575

Fig. 2

them. These links may go either to a piece of text in this or another source
document, or to nodes in this or another structure, as indicated in Fig. 2. The
links may be followed by buttoning on them, and doing so reveals the target
text or node almost immediately (i.e. with a sub-second response time). The
same link mechanisms are used to link entities in the operational knowledge
base back to nodes in structures and text in sources. This can be used to call
up justifications for user-guidance or diagnosis. The links may be named by
the analyst and it is found that for each analyst, analyses proceed with
relatively small numbers of link types (i.e. around 10). However, different
analysts use different sets of link types and have commented that shared sets
and standard common subsets might be useful additions to the system. The
significance attached to the direction of a link is a choice for the analyst a
useful convention is that the origin object “depends upon" the destination
object.

We have found that analysts like to work with several source documents
open and several analysis structures open at the same time. Interestingly,
some of these structures may be used as “scratch-pads” recording progress in
the analysis and adding commentary and annotation to work in progress.

K A N T ifica tio n

The process of taking text and moving it into the KANT source format has,
inevitably, become known as KANTification and it is a non-trivial problem.
To give us the speed we need from the system, we handle text in blocks rather
than character by character. These blocks must be pre-defined for the system.

576 ICL Technical Journal May 1989

They are, typically, about the size of a paragraph of text but may range in size
from a full page to a single character. They not only include text from the
body of sources but also marginal and footnotes, cross references and table
entries.

The materials from which we cull our knowledge are occasionally found on
magnetic tape in a standard mark-up language such as SGML. Such
languages have sufficient information in them for us to specify the rules of
KANTification and apply them to get a KANTified text. Some of the
material is available on floppy disc (in more or less obscure formats). The
process in this case usually requires some manual intervention to ensure that
the word-processor conventions are correctly interpreted as properly for
matted KANT text blocks (in particular the handling of footnotes and
marginal notes can be problematic). However, a great deal of the sources we
must deal with exist only in paper form. Using optical character reading
followed by manual formatting has proved successful but tedious and
expensive. A more cost-effective technique has been to have a word
processing bureau retype the documents and typographically mark them up
as they enter them according to our specifications.

User experiences

Several of our analysts in the LO application (and, increasingly, in Policy
and Claimant Information) have now used KANT in their work. The
feedback from them has been largely positive. The major objective of using
such a hypertext system to solve the “thumbs problem” has been met to
judge by their reports. Problems with the system are largely to do with
surface HCI features rather than the user’s conceptual model or the system’s
support for the task.

One interesting observation is that users find they occasionally have
difficulty in navigating around large analysis structures that they have
created. The feeling seems to be that the physical appearance of the indented
text blocks they create is more homogeneous than normal text so the usual
cues to location are not present - even though the structures are strictly
hierarchical. We do not yet have a complete solution to this problem - some
users have solved it by adding ancillary structures linked to their analyses
which act as guides or indexes. We do provide a graphical overview of the
structure on which is indicated the user’s current location and which also
allows the user to move rapidly to another part of the structure, but even this
is of limited use with very large structures. The problem is exacerbated by the
restricted size (1200 x 900 pixels) of what are by normal standards large high-
resolution screens. A screen with four times the area would also be useful to
enable several source windows to be browsable simultaneously.

The ability to create links and annotations within the source documents
themselves is a facility much discussed in the hypertext literature but was not
one which emerged as a requirement during the initial design of KANT. It

ICL Technical Journal May 1989 577

was called for after users had gained some experience with hypertext, and
when the needs for control of the source amendment process became
apparent.

Another interesting finding, already referred to, is that the analysts tend to
create and use a relatively small number of link types. Some of these are for
the object-level analysis of the source and others are for meta-level comment
and structuring of the analysis process itself. Analysts seem to believe that a
pre-defined set of links could be a useful addition to the system even though
they tend to invent quite different sets for themselves. Such a set of links
would, in effect, provide a basic epistemology of the domain and it is
interesting to speculate how these sets of links might differ from domain to
domain, how they might be employed in a distributed group analysis process
in order to provide consistency in the analysis, and how their semantics
might be defined for the system in order to provide a deeper understanding of
the resulting structures and greater machine assistance with the analysis
process.

Legislation is constantly changing. In particular the so-called secondary
legislation (regulations) may be changing very rapidly. There is therefore a
need to be able to update sources as they change, maintaining all the links
that previously existed, adding new links (doing new analysis) where
appropriate, and ensuring that changes in the source are reflected in the
analysis and therefore the knowledge-base. Given the organisation in KANT
of a source document into a “pool” of KANTified paragraphs, the document
the user sees (“virtual documents”) have an actual internal existence as
ordered lists of references to the paragraphs in the pool. This provides the
basis for the flexibility needed in the structure of a source document to
support the maintenance of extensive and constantly changing material.
Changes to a document are usually notified as a (sometimes very long) list of
paragraphs which should be added to it or which replace existing paragraphs
in it. To create a new version of a document, these new paragraphs must be
added to the pool and a new virtual document created which is like the old
one except that the new paragraphs replace or extend the old ones. Any
hypertext links which existed for paragraphs in the old document which are
no longer present in the new one must then either be appropriately
connected to the replacing paragraph or deleted. KANT provides a “jeop
ardy” mechanism to assist the analyst in this task. When the destination
object of a link changes due to editing, deletion, etc, the object at the
dependent end of the link is automatically marked as jeopardised, with a
prominent warning triangle superimposed on the image of the object. Thus
the relevance of a change can be easily traced through to the analyses and
any consequent changes can be propagated all the way through to the
knowledge-base. What is more, because old paragraphs are not deleted from
the pool and retain their original links, the old virtual document can be
retained and thus a complete system of version control is possible.

The choice of the size of the node is an interesting parameter to consider.

578 ICL Technical Journal May 1989

KANT takes the position that each node is a “paragraph”. This designation
is more to support the user’s conceptual model than it is accurate. A
paragraph may indeed be a paragraph (in a source text for instance) but it
may also be a footnote, a marginal note, or whatever. It may even be a single
character if that is appropriate. However, in the analysis structures, the
“paragraphs” are always structured, for example as title, text and rule, each
of which has a different meaning to the system. As mentioned earlier, facilities
exist for the user to define his or her own node structures as well as there
being several other “library” structures available.

The choice of the paragraph as the “grain size” for the node has some
consequences in use. For instance, some users have expressed the need to link
to and from individual phrases within paragraphs and individual compo
nents of rules. The fact that this is not allowed sometimes leads them to
create unnatural structures, breaking up their analysis in awkward ways so
that the linkable chunks are each in a separate node.

Other systems tackle the grain size problem in different ways. The card-based
systems, for example, generally use a whole card as the unit for linking to,
while they allow single words or smaller units to be used to link from. Such
choices seem to lead to different perceptions of the systems being used.
Certainly there is something of the feel of using menus - albeit menus
embedded in text - with the card-based systems, whereas text-oriented
systems such as KANT retain much more of the feeling of reading linear text.
In fact, rather as there is a continuum between hypertext and semantic
networks, there is one between hypertext and menu systems. In this case, the
dimensions which vary are: the size of the displayable unit (i.e. what
constitutes the display of a linked-to node), the explicitness of the marking of
links in the text, and the amount of embedding of the linked text in non-
linked text.

Concluding remarks

Some of the most exciting and, indeed, appropriate applications for hyper
text systems appear to be in areas to do with creativity, exploration and
design. Knowledge analysis is clearly such an area and the hypertext system
we have built to support this activity within the DHSS Demonstrator Project
is proving to be an effective and useful tool, apparently well-liked by the
project’s analysts and well targeted to their needs.

The use of KANT takes us only so far down the road towards a finished
knowledge base. That is, it takes us as far as an intermediate representation
of the rules and structures we wish to incorporate. Another tool, the
Knowledge-Base Builder (KBB) is then used for knowledge encoders to take
the KANT intermediate representation and turn it into rules and objects in
the target knowledge representation language. Explorations are in progress
to discover the extent to which the two tools can be merged into a single
environment for analysing knowledge and building knowledge bases. One

ICL Technical Journal May 1989 579

great advantage of such a system would be the fact that individual knowledge
base entities could then be traced back all the way to the original sources
with a clear “audit trail”, provenance information and records of intermedi
ate development decisions. For applications based on legal sources, which
are constantly being revised, this traceability would be of enormous benefit
to those tasked with the maintenance of the knowledge base.

Another interesting aspect to the development of a hypertext tool for
knowledge analysis is that there appears to be a smooth progression between
hypertext and some knowledge representation schemes which is potentially
exploitable.

Hypertext, in its simplest form, is a set of nodes connected together by
undifferentiated links. Each node is an unstructured piece of text or
graphics (or both) and each link is a uni-directional association between
two nodes. However, both nodes and links could have a lot more structure
than this and their structure could have a lot more meaning for the system.
For instance, the nodes need not be free text but could be structured so that
there were a number of named text, graphics or even numeric fields. The
nodes could also be of different types. The links too need not be simple
associations but could be special types of relationship such as “is defined
by”, or “supersedes”. There could also be meta-level organisation so that
link relationships could be described in terms of their directionality, or
their transitivity (a link type such as “supersedes” would be unidirectional
and transitive, for instance).

In fact, as nodes and links become more and more structured and more and
more meaningful, the nature of the system changes progressively from being
hypertext to being a kind of knowledge representation style known as a
semantic network. The best-known semantic network representations are
those supported by the popular artificial intelligence (AI) toolkits such as
Art, KEE, and KnowledgeCraft. These representations are also known as
frame-based because the node is a “frame”, that is, a set of labeled and,
perhaps, typed slots for information - rather like a record in conventional
programming languages. Some of these slots may hold a reference to another
frame and thus become, effectively, relationships (i.e. links) between nodes.

Thus we have a continuum between hypertext and knowledge representation
schemes which varies along the two dimensions of node and link structure.
The existence of this continuum makes possible the opportunity to build
intelligence into hypertext systems. The way to do this would be to add
sufficient structure to both nodes and links so that the hypertext “document”
may be interpreted as knowledge by a knowledge-based system.

Notes on the screen images

The following Figures 3-6 are images taken from the screen in a KANT
session. The process of capturing has lost some of the detail - for example

580 ICL Technical Journal May 1989

typefaces appear much smoother on the screen, without ‘jaggies’, but the
overall appearance is realistic.

Figure 3 shows an overview of most of the screen. The analyst has opened
two sources, and is working on a single KANT structure. The KANT control
area is near the top right of the screen. The need for more screen area is
apparent.

Figure 4 shows a section of a source window. One paragraph has been
highlighted as a result of the operator ‘buttoning’ on the end of a link in a
structure. This and another paragraph have a small arrow icon attached to
them showing that they are the destination ends of links from structure
nodes.

Figure 5 shows a section of a structure window. Nodes with a ‘ + ’ icon are
‘unfolded’, the children of the node are visible. Nodes with a icon are
folded, they contain descendants which are not currently visible. Buttoning
on the icon switches to the other mode. Nodes with a ‘0’ icon have no
descendants. Arrow icons leaving the node denote the origin ends of links,
and incoming arrows denote destination ends. Upper arrows refer to sources,
lower arrows to structures. Buttoning on an arrow causes the object at the
other end of the link to be scrolled into view and highlighted, possibly via a
selection menu in the cases where one arrow represents several links.

Figure 6 shows the same structure fragment, in the case where the destination
end of one of the outgoing links has been modified, by editing, for example.
The node is jeopardised, and the analyst is thereby warned to inspect the
situation and possibly take some action.

In Figures 3 and 4, Crown copyright data is used by permission of the
Controller of Her Majesty’s Stationery Office.

ICL Technical Journal May 1989 581

SCHEDULE 10

Capital To Be D isregarded

*»1.The dwelling occupied as the home; but,, notw ithstanding
regulation 23 (calculation o f income and capital o f members o f
claimant's fam ily and o f a polygamous marriage), only one dwelling
shall be disregarded under this paragraph,

2. Any premises acquired fo r occupation by the claimant which he
intends to occupy w ith in 26 weeks o f the date o f acquisition orsuch
longer period as may be reasonable in the circumstances to enable
the claimant to obtain possession and commence occupation o f the
premises,

3. Any sum directly a ttributab le to the proceeds o f sale o f any
premises fo rm erly occupied by the claimant as his home which is to
be used fo r the purchase o f o ther premises intended fo r such
occupation w ith in 26 weeks o f the date o f sale orsuch longer period
as m aybe reasonable in the circumstances.

4. Any premises occupied in whole or in pa rt by

(a) a partner or relative o f any m ember o f the fam ily where
th a t person is e ither aged over 60 or is incapacitated;

(b) the fo rm e r partner o f a claimant where the claimant is
not to be treated as occupying a dwelling as his home; but

_________________ x i . _____ _________ i . _ II .. _ i _______i........... i______ xi- . £ . x „ _ . _

4 Capital resources to be d is reg a rd ed
C om m ent 'In a ssess in g capital, some specific re so u rces may
be di s re g ard ed d urin g the ag gregation..
Rule:...

*0 Capltalresources to be disregarded, definitely
*" Comment: Of th ese^eom e 'resources 'a re unequivocally........

d isregardable (by their nature they fall in a category which
is specific, e.g, the claimant’s own home), and som e are
d i sreg ard abl e "if re as o n ab l e ",...
Rule:

4 Capital res ources to be dis regard ed , where re asonable
“* Comment: ’..

Rule:
0 Land capital r e s o u r c e s ...

C6mrrierit; Whether or not the value of the land can be
d isregarded d ep en d s on the nature of it3 ownership.

• Not land capjtal r e so u rces ..
Comment:” " I I...
Rule;

a::;:: "|%j| " iS S t r u c tu r e : - NovDem

¾¾:¾¾:¾; ■ + Capital reso u rces to be d isregarded :¾¾
|:;i;:|i|:|:|l;i|i; “ Com ment: In a s s e s s in g capital , s o m e specific r e s o u r c e s may :::¾
::¾¾¾¾¾ be d i s r e g a rd e d during the ag g reg a tio n . :::¾
:¾¾¾¾¾¾ Rule; :-:¾
:::::::::::¾¾ * ~ o C ap itaL fesources to be d i s r e g a rd e d , definitely :1:¾
1::¾¾¾¾ Com n/en tyOf th e s e , so m e r e s o u r c e s are unequivocally :¾¾
::::¾¾¾¾ d is r igarda to le (by their n a tu re they fall in a ca teg o ry which ::¾¾
:¾¾¾¾¾ is specif ic, g \ n . t h e cla imant’s ow n hom e), a n d so m e are ::::¾
:¾¾¾¾¾ djeregardabllV 'if r e a so n a b le" , :¾¾

Buie:_________ A
:::::::::¾¾¾ + Capital r e s o u r c e s to be d i s r e g a rd e d , w here r e a so n a b le :¾¾
:¾¾¾¾¾¾ + Com ment: :¾¾
:¾¾¾¾¾¾ Rule: :¾¾
:¾¾¾¾¾¾ 0 Land capital r e s o u r c e s :¾¾
:¾¾¾¾¾¾ Com ment: W hether o r n o t t h e value of th e land can be
:¾¾¾¾¾¾ d is re g a rd e d d e p e n d s o n t h e n a tu re of its o w n ersh ip . :¾¾

::1¾¾¾¾¾ - Not land capital r e s o u r c e s :¾¾
:¾¾¾¾¾ C om m ent; ' ’ ' ' ’ ' ::::¾

_____________ Rule:________" ::::¾

Fig. 6

584 ICL Technical Journal May 1989

Pure logic language
Edward Babb*

ICL Future Systems, Bracknell, Berks.

Abstract

ICL's aim was to design a logic programming language to simplify
the creation of application packages and therefore lower the cost to
the end user of solving his problems. Modern Database systems
map the user’s query to fast search software. Our strategy was to
generalise this - and design a language whose main purpose was to
help with the mapping of a users problem to conventional fast search
software. The result, ICL’s Pure Logic Language, performs this
mapping in a general fashion. ICL’s Language is briefly described and
applied to some simple applications in electronics, mechanics and
business. It is also succinctly compared with some other state of the art
logic languages being developed elsewhere.

1 Introduction

This short paper describes briefly the philosophy and nature of a Pure Logic
Language PLL being developed in ICL Bracknell. Some features of PLL,
such as metalevel reasoning and interval reduction are only now being
implemented. These and other features of the language, have therefore, not
been fully described. In addition the examples chosen have been deliberately
simple so that a range of applications can be illustrated rather than one
application in depth. In fact, the language has been applied to two major
applications - PAYE and Distribution Manager ref 10.

ICL’s long term goal is to make computers more concise and correct to use
by means of logic:

The conciseness of logic can be explained by a simple example. Suppose
we define a relationship between three variables using the formula:
x = y * z. Depending on how we use this equation it corresponds to the
algorithms: x — y * z, y ~ x /z , y = z & y — sqrt(x). As you can see, the
conciseness of logic arises because many algorithms can be described by
one concise logical formula.
The improved correctness of logic, in building applications, derives from
this conciseness. Since the descriptions are now more mathematical, we

* Supported by ICL and Alvey grants IKBS 084 & 092.

ICL Technical Journal May 1989 585

can employ mechanical theorem proving, to check the consistency of
our rules against more general common sense rules - and hence try to
stop the entrance of invalid data and rules.

1.1 D e s ign s tra te g y

The Pure Logic Language was designed according to the following basic
ideas: ref 5,6

• Logic expressions are always simplified back to logic expressions. This
means that some answer will always be returned by a query in the
language.

• Unsolvable expressions should terminate. Important in large systems
where infinite looping can be very expensive and difficult to distinguish
from real problem solving ref 3,4.

• unsolvable and FALSE expressions must be distinguished1.
• The expressiveness of full classical logic2 is provided. Greater expressive

ness improves the chances of the user expressing himself correctly.

2 Elementary operations

2.1 A r ith m e tic

We can write the following query in PLL:

1.84 * pounds = 14?

and get the answer pounds = 7-6087. In this paper the query is written before
a question mark and the answer is written to the left of a rewrite symbol
- R - > .

We can also write this query in equivalent forms and still get the same
answer:

T84 * pounds - 14 = 0?
-R - > pounds = 7-6087

14/18-4 = pounds?
- > R - > pounds = 7-6087

In each case, an attempt is made to find a value for the variable pounds. This
flexibility in the language, means that the user is freer to choose his natural
style, rather than the machine’s. Furthermore, we can string statements
together, connected by an and. For example: L84 dollars equals one pound,

1 PROLOG treats u n s o l ia b l e as F A L S E and therefore n o t - u n s o lv a b le becomes T R U E \ which by
classical logic is incorrect.
2PROLOG is restricted to Horn clauses.

586 ICL Technical Journal May 1989

and given there are 14 dollars and the cost of an object minus thirteen is equal
to fifty six times the unit dollar price. This can be written:

T84 * pounds = dollars & dollars = 14 &
cost - 13 = 56 * pounds -R - >
dollars = 14 & pounds = 7-6087 & cost = 439 08

Because PLL is based on logic, we can only assign to the variable dollars
once.

2.2 List operations

Like LISP and PROLOG, the language allows operations on list structures.
To split a list into its head and tail we use the equation list = headoflist'. '.
tailoflist. Thus the following:

['rose 'daffodil 'daisy] = Xh : : Xt?
- R - > Xh = 'rose & Xt = ['daffodil 'daisy]

splits the list ['rose 'daffodil ’daisy] into the head 'rose and tail ['daffodil
1 daisyJ\ alternatively, we can equate3 two list structures where some of the
elements are variables:

[a 'daffodil 'daisy] = ('rose b 'daisy]?
-R - > a = 'rose & b = 'daffodil

2.3 R ange o p e ra tio n s

The equation x in S allows us to generate or test membership of a list:

x in ['rose 'daffodil 'daisy]?
-R - > x = 'rose or x = 'daffodil or x = 'daisy

or range of numbers:

x in [1 ...10]?
-R - > x = 1 or x = 2 or x = 3 o r ... x = 10

2.4 Rewrite definitions

A typical predicate, defined by the user, has a predicate name, followed by a
list of variables, and then an expression. A new predicate such as
convert(d p) is declared as follows:

define convert(d p) tobe 1-84 * p = d?

3The solution of sets of equations involving list structures is the equivalent of unification in
PROLOG.

ICL Technical Journal May 1989 587

convert (pounds 14)?
-R - > pounds = 7-6087

it is rewritten to 1-84 * pounds = 14 with pounds & 14 being substituted for
each occurrence of the parameters p c£ d. Finally, this expression is evaluated
to give the answer shown.

2 .5 U n so tvab le p ro b le m s

A key feature of the logic language is its behaviour on unsolvable problems
as shown in these examples:

x = y + 20?
-R - > x = y + 20

not(x = 20)?
-R - > not(x = 20)

Typically, x = y + 20 is unsolvable because there is an infinite set of values of
x and y that satisfy this equation. In each case, unsolvable problems are just
rewritten to themselves and not to FALSE4.

Alternatively, part of the problem can be solved:

y + 4 = 14 & f(x)
-R - > y = 10 & f(x)

In this case y + 4 = 14 is reduced to y = 10, but f{x) is left unchanged since/
has no definition.

2.6 O th e r fea tu res

PLL has many other features ref 9 such as recursion, guards, and-rewrites
and further temporal operators. These are not described to keep this
introductory paper on PLL simple.

3 Scientific applications

3.1 In tro d u c tio n

The electrical circuit and mechanical system have been chosen to illustrate
the operation of the language. The practical application of PLL for 1CL
would more likely be deductive databases and planning.

4As might happen in PROLOG.

When convert is used in a query:

588 ICL Technical Journal May 1989

Fig. 1 Electrical network

3.2 Electrical circuit example

An electrical circuit, Fig. 1, consists of two resistances rl and r2 in parallel,
followed by a single resistance r3 in series with these. Across this circuit is a
4 volt lead-acid accumulator. Such a system is simply modelled by a set of
equations. This can then be used in a flexible manner by a circuit designer, to
design specialised solutions to other people’s problems.

3.2.1 Parallel circuit: First, we define the resistance of any pair of parallel
resistances rl and r2:

define parallel_r(r r1 r2) tobe 1 /r = 1/r1 + 1/r2?

Using this definition we can compute the resistance of a 3 ohm and a 6 ohm
resistance connected in parallel:

paralle l_r(r 3 6)?
-R - > 1 /r = 1 /3 + 1/6
-R - > 1/r = 0-5
-R - > 1/0 5 = r
-R - > r = 2 (ohms)

As this detailed5 reduction shows, the predicate parallels is rewritten to
1/r = 1/3 + 1/6. A 3 and a 6 have been substituted for rl and r2. The formula
is then further reduced, using in built arithmetic rewrites, to its simplest form
r = 2.

Unlike a traditional computer language, which computes in only one
direction, the language can often operate reversibly. Thus, if we know the
value of one of the two parallel resistances - namely 6 ohms and we know the
total resistance is 2 ohms, then the language can still obtain the value of
the other resistance:

5 All this detail is not actually produced!

i r1^

ICL Technical Journal May 1989 589

paralle l_r(2 rx 6)?
-R - > 1/2 = 1/rx + 1/6
-R - > 1/rx = 1/6 — 1/2
-R - > 1/rx = 2/6
-R - > rx = 6/2
-R - > rx = 3 (ohms)

Reduction takes place as before, except that a slightly different order is now
taken.

3 .2 .2 Complete circuit: Next we define the resistance of any two series
resistors:

define series_r(r r1 r2) tobe r = ri + r2?

The total resistance is given by using these parallel and series predicates to
form a single expression representing the complete circuit resistance:

define all_r(R r1 r2 r3) tobe
some(rx) paralle l_r(rx r1 r2) & series_r(R rx r3)?

In this definition, we define rx from rl and r2 using the parallel predicate. We
then use the series predicate to combine rx with r3 to obtain the total
resistance R. The quantifier some6 can be thought of as declaring rx as a local
variable - invisible outside its scope. The complete circuit is then modelled
by including ohms law and this all_r predicate:

define circuit(v i r1 r2 r3) tobe
some (R) v = i * R & all_r(R r1 r2 r3)?

Because the total resistance is not required in the model it is also made local
with a some(R) quantifier.

3 .2 .3 Using the electrical circuit: We can now use this 5 variable electrical
model to calculate the current given a 4 volt accumulator and values of 3, 6
and 2 ohms for rl, r2 and r3 respectively:

circuit(4 i 3 6 2)?
-R - > some (R) 4 = i * R & all_r(R 3 6 2)
-R - > some (R) 4 = i * R & R = 4
-R - > 4 = i * 4
-R - > i = 1

or to obtain the value of r3 assuming we know the current is 1 amp:

circuit(4 1 3 6 r3)? -R - > r3 = 2 (ohms)

6 The same as E in classical logic.

590 ICL Technical Journal May 1989

However, suppose the two resistances are unknown but the voltage is 4 volts
and the current is 1 amp:

c ircu its 1 r1 r2 2)? -R - > 0-5 = 1/r1 + 1/r2 (ohms)

The query is now rewritten to an equation relating rl and r2, rather than a
definite numerical solution. Now suppose, we know all the resistances values
but not the voltage and current:

circuital' 3 6 2)?
-R - > v = i * 4 (volts)

In this case, we get the relationship between the voltage and the current as
our answer. If we now decide the voltage is 8 volts we can then use this
equation v = i * 4 rather than the original circuit predicate to answer our
question. Thus we have avoided the unnecessary recomputation needed
when starting from the circuit predicate.

Each of these queries would need a separate algorithm in a conventional
programming language. The conciseness of PLL means that we need only
one definition.

3.3 G e a r Con ro d P is ton

A mechanical system consists of two gear wheels connected to a conrod
driving a piston in the manner shown in Fig. 2. This first gear is 1 cm radius,
the second is R cms radius and this drives a conrod of L cms in length with a
piston at its end.

Gears Conrod Piston

- a -|------------- x ----------------

--------------- — D --------------------

Fig. 2 Mechanical system

This is represented by an equation:

define piston(Phi R L D) tobe som e(a b x)
a = R * cos (Phi/R) & b = R * sin (Phi/R)

ICL Technical Journal May 1989 591

& L * L = x * x + b * b & D = a + x
& L > 0 & D > 0 ?

Starting from Phi in Fig. 2, the value of a and b are obtained using
a = R * cos(Phi * R) and b — R * sin(Phi * R). Pythagoras, L * L = x * x +
b * b gives x and b from the conrod length L. The position of the piston D is
then the sum of x and a.

Using this mechanical model we can ask a variety of questions such as w h a t
is th e p o s i t io n o f th e p is to n ?

piston(20 2 4-5 D)? -R -> (D = 6-45619)

or w h a t is th e le n g th o f th e co n ro d ?

piston(20 2 L 6-0)? -R -> (L = 4-04532)

4 Commercial applications

4.1 In tro d u c tio n

Often we are faced with the problem of handling uncertain information
especially in the early stages of planning. One use for the PLL temporal
database capability is in representing uncertain facts about people’s holiday
dates. We can then use this in deciding on dates of meetings or in persuading
people to provide more definite information.

The next two applications involve commercial databases and show how
complex data and queries can be represented in a Pure Logic Language. All
these applications clearly need a friendly front end and PLL should be seen
as the formalism for such a front end to map to.

4.2 T em p o ra l lo g ic

PLL has a temporal database capability based on Interval Quantification IQ
r e f 8 ,1 2 . A simple use, for this temporal logic, is to model data about holidays
in a small office. It can handle the usual uncertain information that normally
precedes a definite entry in a holiday planner. Figure 3 shows that early in
the year, we only know the following about Ed and Daves holidays:

Dave goes on holiday before Ed. Dave takes his holiday before 25th
May. Ed must go on holiday before 1st June. Ed must return to work
after 15th June and Dave must return after 17th June.

Figure 3 represents the slack in the position of these dates by the shaded
areas. In PLL this time sequence is asserted by the following a d d d a te l b e fo re
d a te 2 commands:

592 ICL Technical Journal May 1989

Fig. 3 Uncertain holiday dates

add 'Dave_s before 890525?
add 'Ed_s before 890601?
add 'Dave_s before 'Ed_s?
add 890615 before 'Ed_e?
add 890617 before 'Dave_s?

A predicate called iand which will perform high speed intersection of
intervals is used to find if both Ed and Dave are on leave between the 8th
June and 13th June:

I = iand([['Dave_s 'D ave_e]['Ed_s 'Ed_e] [890608 890613]])?
(I = [890608 890613])

or when are both Dave and Ed on leave before the 13th June?

I = iand([['Dave_s 890613] ['Ed_s 890613]])?
(I = ["Ed_s" 890613])

or when are both Dave and Ed on leave?

I = iand([['Dave_s 'Dave_e] ['Ed_s 'Ed_e]])?
(I = iand([["Ed_s" "Ed_e"] ["Dave_s" "Dave_e"]]))

In this case we can see from the diagram above that there is no definite
answer. The finish date of Dave’s leave can be either before or after the finish
date of Ed’s leave. Rather than return a complicated conditional expression7,
the original query is returned8. The user then can either alter his query or
add more definite temporal information in the time sequence database.

4.3 O pen a n d n e g a tiv e d a taba se in fo rm a tio n

Most databases use a closed world assumption where facts that are not true
are assumed false. Pure Logic Language easily allows a more subtle

7 Which can be done.
8 Or a simplified form if some of the intersections can be unconditionally performed.

ICL Technical Journal May 1989 593

Fig. 4 Venn diagram of parts

representation to be used where this is appropriate. In the Venn diagram in
Fig. 4, there are parts nuts and bolts, unknown parts and definite non parts
such as pliers and spanners. This information is represented as follows:

define part_db(part) tobe
(part in [nut 'bolt] or
unknownpart(part))

&
part in [spanner 'pliers]?

If we now ask questions of this database, we get a more natural response.
Thus, Is nut a part? is TRUE. Is spanner a part? is FALSE and most
important Is gear a part? is unknown rather then FALSE.

part_db('nut)? -R -> T R U E
part_db('spanner)? -R - > FALSE
part_db('gear)? -R - > unknownpart("gear")

This corresponds to the answer we would get from people if we asked the
above questions. In fact, even negated queries such as Is a nut not a part? give
the correct answer:

part_db('nut)? - R - > FALSE
part_d b ('sp ann er)? -R - > TRUE
part_db('gear)? -R - > ’ unknownpart("gear")

4.4 C o m p le x da ta b a se q u e ry

Consider the following small database of suppliers and parts:

define part(p) tobe
p in ['nut 'bolt]?

define sp(s p) tobe
[s p] in [['s i 'nut]

[si 'bolt]
['s2 'nut]]?

594 ICL Technical Journal May 1989

Using this database it is possible to ask questions in the Predicate Calculus.
Predicate Calculus was first used by the great philosopher and logician
Bertrand Russell. Many database query languages are based on Predicate
Calculus but use only tuple variables rather than domain variables. Even
though PLL can use both, domain variables are usually the most natural:
thus we can ask9 Which supplier makes all parts?:

all(p) (part(p) - > sp(s p))?—R - > (s = "si")

Examination of the above database should show that indeed si is the only
supplier of all the parts. Alternatively we can ask10 Which suppliers do not
make all part?

define supplier_all_part(s) tobe
all(p) (p art(p)- > sp(s p))?

(some(p) sp(s p)) &~ supplier_all_parts(s)?-R > (s = "s2")

Again, it must be emphasised that PLL is not really intended for direct end
user usage - rather it is meant as a language for interfacing to some friendly
interface system with this formalism usually being hidden away!

5 Discussion

5.1 State of the art

It is beyond the scope of this short paper to provide a complete state of the
art on logic programming.

John Lloyd in ref 7 and in his unpublished lecture notes refers to many
problems with traditional PROLOG. A typical problem is that p(x), q(x) is
FALSE whereas changing the order to q(x), p(x) causes it to succeed. In fact
such unsafe behaviour is no problem to PROLOG enthusiasts because they
have a precise procedural model of the language which allows them to
overcome such difficulties.

ECRC in Munich have augmented PROLOG with an optimiser CHIP
meaning Constraint Handling in PROLOG ref 12. Many problems involve
searching using many variables. If each variable ranges over many states, the
search space quickly becomes impossibly large. CHIP avoids such coarse
searching by essentially reasoning about the domains of values - in
particular reasoning about the upper and lower bounds on values. CHIP
also uses similar techniques to that used in database search algorithms where
database style bit maps ref 1,2 are used to store intermediate results.

9V p (p a r t (p) => s p (s p)) in predicate calculus.
i o s p (s p) a -i V p (p a r t (p) = > s p (s p)) in predicate calculus.

ICL Technical Journal May 1989 595

IBM in York Town Heights have a language called CLP (R) Jaffar et al
ref 10. This is another enhanced version of PROLOG which includes an
equation solver - they say solving constraints in the domain of uninterpreted
functors over real arithmetic termsl

The Pure Logic Language described in this paper aims to solve some of John
Lloyds objections to PROLOG and to include some of the constraint
satisfaction ideas in the ECRC and IBM work. However, unlike these
systems PLL is a rewrite language and has an altogether more general
expressive power than PROLOG with its narrow reliance on Horn Clause
syntax.

6 Conclusion

The interpreter is implemented in the computer language C. Expressions and
other data structures are held using traditional pointer data structures.
However, technical details of its implementation are well beyond the scope of
this short paper. Performance of the language seems to compare with and
sometimes exceed conventional interpreted PROLOG.

As mentioned earlier many features of the language have not been described
in this introductory paper. Some crucial features are only now being
implemented such as special predicates for metalevel control. Hopefully some
more detailed paper will elaborate on these extra features.

ICL intend to exploit this research by making the Pure Logic Language the
basis of a Visible Logic Eureka project called VisiLog. This aims to use the
improved expressibility provided by logic as the language underpinning a
spreadsheet/icon based system for helping people solve problems.

Acknowledgement

PLL is based on work performed mainly under ALVEY contracts 1KBS 084
Pure Logic Language and I KBS 092 Logic Database Demonstrator. These
contracts involved Imperial College, Edinburgh University, Bradford Uni
versity and Turing Institute. The funding by Alvey and ICL and the
contribution of Peter McBrien1', David Cooper11 12, Pete Slessenger and Joan
Travis is gratefully acknowledged. In addition, we received background help
from groups led by Professor B. Richards at Edinburgh University, Professor
Dov Gabbay at Imperial College and Professor Imad Torsun at Bradford
University.

11 Most of the PLL implementation r e f 9.
12 Temporal logic r e f 8 .

596 ICL Technical Journal May 1989

References

1 BABB, E.: P e r f o r m in g R e l a t io n a l O p e r a t io n s b y m e a n s o f S p e c i a l i s e d H a r d w a r e . ACM
TODS. March 1979.

2 BABB, E.: F ile C o r r e la t i o n U n i t . ICL Technical Journal. Nov. 1985.
3 BABB, E.: F in i t e C o m p u ta t io n P r in c ip le : A n a l t e r n a t i v e m e th o d o f a d a p t i n g r e s o lu t io n f o r

L o g i c P r o g r a m m in g . Proceedings of Logic Programming 83 - Portugal. June 1983.
4 BABB, E.: T h e L o g i c la n g u a g e P r o l o g M in d a ta b a s e t e c h n o lo g y a n d in te l l i g e n t k n o w le d g e

b a s e d s y s te m s . ICL Technical Journal. Nov. 1983.
5 BABB, E.: R e q u ir e m e n ts f o r L a r g e K n o w le d g e B a s e s . ACM 84 - The challenge of the 5th

generation. September 84. San Francisco.
6 BABB, E.: M a t h e m a t i c a l L o g i c in th e L a r g e P r a c t i c a l W o r ld . ICL Technical Journal. Nov.

1986.
7 LLOYD, J.W.: D ir e c t io n s f o r m e ta p r o g r a m m in g . Bristol University report.
8 COOPER, D.: T e m p o r a l O p e r a to r s in P L L . SSC internal report.
9 McBRIEN, P.J.: P L L U s e r V e r s io n 0 .3 2 I s s u e A . SSC research report.

10 SLESSENGER, P.H.: T r ia l D is t r ib u t io n m a n a g e r im p le m e n ta t io n in P L L . SSC research
report.

11 The CHIP group: C H I P v e r s io n 2.1 R e f e r e n c e m a n u a l. ECRC, Arabella str. 17, D-8000
Munchen 81, West Germany.

12 RICHARDS, B., BETHKE, I.: T e m p o r a l D a ta b a s e s : a n I Q A p p r o a c h . Edinburgh Univer
sity Research Paper EUCCS/RP-19. March 1988.

ICL Technical Journal May 1989 597

The ‘Design to Product’ Alvey
Demonstrator

L.D. Burrow
GEC Electrical Projects, Boughton Road, Rugby CV21 1BU

Abstract

‘Design to Product’ is one of the Large Scale Demonstrators funded by
the Alvey Directorate. ‘Design to Product’ is providing the specification
for, and a partial implementation of, a system to assist designers
throughout the lifecycle of light electro-mechanical products. The
project includes the development of integrated flexible machining and
assembly cells.

The principal feature of ‘Design to Product' is its ability to integrate
diverse sources of engineering information and to provide powerful
techniques tor using that information. The system includes a number
of design support tools. These tools have use of information from
the designer directly, from the evolving Product Description or from
the built-in engineering knowledge bases. Information generated in the
design office is used by the factory systems to manufacture the
designed components.

The concepts of ‘Design to Product’ will be demonstrated in 1990, at
the Lucas Diesel Systems factory in Gillingham. The demonstrations
will be based on typical application problems and specimen parts
drawn from a Lucas diesel fuel pump development and will run from
early conceptual design to the machining and assembly of products.

The architecture of the ’Design to Product’ system emphasises
distributed computing, communications and modular construction.
There is a strong relationship between the concepts of the ’Design to
Product’ system and the evolution of standards promoting open
system CIM implementations.

1 Introduction

This paper describes the background to and the development of the ‘Design
to Product’ Alvey Demonstrator project. It also describes the work that has
been carried out and the future plans.

The Alvey Directorate was set up by the Government in 1983, with a total
budget of £350 million, with the task of establishing a national programme of

598 ICL Technical Journal May 1989

collaborative research and development in IT between industry and acad
emia. Funds for this programme were provided by the Department of Trade
and Industry, the Science and Engineering Research Council and industry.
Four key areas of Information Technology (IT) are supported by the
programme, namely, Man-Machine Interfaces (MMI), Intelligent Know
ledge Based Systems (IKBS), Software Engineering (SE) and Very Large
Scale Integration (VLSI). As part of the Alvey programme a number of
‘Large-Scale Demonstrators’ were funded. One of these Large-Scale Demon
strators is the ‘Design to Product’ (DtoP) project.

‘Design to Product’ is concerned with applying advanced techniques in
Information Technology to Computer Integrated Manufacturing. The pro
ject addresses the product lifecycle from design through manufacturing to in-
service support for the class of engineering products encompassed by ‘light
electro-mechanical devices’. The resources available have limited the scope of
‘Design to Product’. The main emphasis is towards the interactions between
design and manufacture whilst simulation and analysis tools, MRP and the
entire set of activities covered by Business systems are not covered (Fig. 1).

Fig. 1 Enterprise operations included in ‘Design to Product'

‘Design to Product’ started in 1985, has a budget of nearly £9 million and a
duration of 5 years. During the course of the project a little under 200 man
years of effort will have been invested from both industry and academia.

The work has been divided into two 2-5 year phases. During the first ‘Pilot’
phase the structure of the ‘Design to Product’ system and the fundamental
features of its key components were developed. Expertise in key Enabling
Technologies was also gained, in particular by the industrial collaborators.
During the current ‘Implementation’ phase of the project, the pilot phase
software is being further developed and integrated into the full ‘Design to
Product’ system. This DtoP system includes an example factory implementa
tion to demonstrate the benefits of close integration between the manufactur
ing and design processes.

The prime objective of DtoP is to provide the specification of a system
capable of assisting designers and engineers at all stages in a products
lifecycle from early design through manufacturing to in-service support. A
key feature of the target system is its ability to integrate diverse sources of
engineering information and to provide powerful techniques for using that
information. By developing a ‘DtoP public interface’ the system will allow
third party knowledge bases and specialized processes to be included as parts
of a ‘Design to Product’ system.

Another objective is to demonstrate a partial implementation of the ‘Design
to Product’ system in 1990. This implementation will be based on the
prototype work carried out within the project, it will also include a wide
range of Alvey enabling technology projects and other research projects from
both the UK and Europe. Subsequent developments will lead to commercial
products in the early to mid 1990s.

To achieve these objectives a collaboration was set up between the following
organizations, each concerned with particular aspects of the project. These
are:

GEC Electrical Projects (responsible for overall project management, devel
oping the integrated DtoP system, and ultimate commercial exploitation),
Lucas Diesel Systems (who will stage the final demonstration, and provide
the user viewpoint), GEC Marconi Research Centre (who are developing
both hardware and software to support off-line programmed flexible assem
bly), GEC Avionics (control of the life cycle design process), Loughborough
University (research and development of knowledge based process planning
software), HUSAT (definition of the design process, task analysis, user
interface design), Leeds University (research and development of multi-
representational solid modelling systems), Edinburgh University (research
and development of knowledge based integration techniques to support
conceptual design).

2 Hardware and software

The design office component of ‘Design to Product’ is being developed on
SUN/UNIX/SunNews single user workstations and IBM PCs using a
variety of languages notably POPLOG (a mixed language system combining

600 ICL Technical Journal May 1989

PROLOG, LISP, POP11 and ML), C and FORTRAN. The factory area
control system is being developed on DEC VAX11/750/VMS equipment and
is based on INGRES. The manufacturing equipment is based around an
Okuma LC20 lathe, Hulle Hille NBH70 Machining Centre, Zeiss CMM
Co-ordinate Measuring Machine, and a Redifusion Reflex assembly robot
(Fig. 2).

3 Design and manufacture today

Today’s world of engineering design is increasingly competitive and aggress
ive. The complexity and performance of products is increasing yet the
customer demands lower prices, higher reliability, shorter lead times and
products more closely tailored to specific market requirements.

Unless industry is able to respond competitively to these pressures eventually
they will be forced out of business with all the corresponding social and
economic problems that this entails. Against this background the field of
Computer Integrated Manufacture (CIM) is rapidly developing. However,
the approach to implementing CIM has been somewhat piecemeal. Often in
an attempt to resolve particular problems companies are pressurized into
developing and implementing islands of automation in both Computer
Aided Drafting and Computer Aided Engineering.

Throughout Europe there are a number of heavily automated manufacturing
plants in existence. Generally they are purpose built, green field develop
ments which satisfy a particular clear, generally narrow, market niche. The
investment is high, the timescales well defined, and the benefits quantifiable.

However, there is another much more common environment in which CIM
techniques have yet to penetrate. That is the small batch manufacturer who
markets semi-bespoke products and who is effectively selling expertise in
both design and the ability to manufacture efficiently. Such companies are
often relatively small, cannot justify a bespoke green field development and
must be able to continue to use their current resources flexibly and effectively
into the future. These two contrasting environments can be shown through
the differences between a plant designed for the volume production of car
engines and those plants designed to produce speciality products such as
prototype components for the aerospace industry.

The goal for both volume production and small batch production is the
same, low unit costs, high quality and assured delivery schedules. In volume
production the emphasis is towards optimising the manufacturing process to
the particular product with high efficiency plant using proven concepts.
Design will be strongly directed towards improving manufacturing plant
efficiency. In small batch manufacture the emphasis is towards optimising the
design processes, with the manufacturing operations being designed for
flexibility for a range of product variants. Most small and medium enter
prises have restricted resources and this implies other requirements:

ICL Technical Journal May 1989 601

Fi
g.

 2

Th
e

D
to

P
sy

st
em

 d
ia

gr
am

(a) Incremental development.
(b) Full cost justification.
(c) Maximal reuse of existing technology and company expertise.
(d) Low entry cost.
(e) ‘Future safe’ flexibility (implying independence of single suppliers,

particular technical solutions, spreading risk).

Superimposed on this is the increasing pressure to reduce work in progress.
Conventional MRP type planning approaches are seen to increase work in
progress whilst JIT concepts help to reduce work in progress. The pressure is
therefore to increase the proportion of a product using standard components
which are pulled through on demand.

Increasingly concern is being voiced that current approaches to CIM do not
offer the resilience required to allow adaptation in the future. Solutions often
depend on one vendor’s ability to work with another. Furthermore conven
tional CIM investment is seen as expensive and lacking in clear quantified
cost justification.

In general terms the application of Information Technology techniques into
industry has brought some benefit but not as much as had been anticipated.
There are many reasons for this, amongst the more important being

(a) The interaction between people, teams and systems is not well under
stood.

(b) Information affecting important decisions is frequently not available at
the right time.

(c) There are very few integrated systems supporting an “open” range of
functions relevant to design and manufacture.

(d) System facilities that encourage learning, either of system capabilities, or
from previous mistakes seldom exists.

(e) The design cycle is often seen as a sequential process. Systems neglect
the feedback and iterative processes in design leading to considerable
inefficiency in the use of information.

It is against this background of design and manufacture today that the
‘Design to Product’ system is being developed. The key requirement is seen
to be the more effective management of information; its generation, modifica
tion, retrieval and storage at all stages in the product life-cycle. The goal is to
increase company effectiveness and hence profitability.

3.1 Information systems and people

The original aims of DtoP were directed towards showing that advanced
software, particularly IKBS, could be used to automate the design and
manufacture of light electro-mechanical items. This ambitious, technocentric
view has evolved such that now DtoP is directed towards augmenting and
supplementing human control rather than supplanting it.

ICL Technical Journal May 1989 603

This change in DtoP mirrors a similar change in the CIM world at large.
There is now much more emphasis on understanding the underlying
structures and the requirements those structures place on the information
technology solutions. These developments include a much deeper apprecia
tion of the interaction between humans and systems, enabling humans to
carry out those aspects for which people are best suited whilst interworking
effectively with advanced software systems.

3.2 The open system

There are two basic stances which can be adopted for CIM systems, the
‘closed’ homogeneous, single vendor system and the ‘open’ heterogeneous,
multi-vendor system. From a vendor’s point of view the chief requirement is
to increase their market share. If the supplier is large then it may be possible
to dominate a market niche by offering a widely spread set of packages
integrated by an internal standard. Their recommended solution may not be
the most effective or appropriate for all customers. Smaller vendors do not
have sufficient resources to support such a strategy and consequently are
forced to concentrate on a narrow market sector.

In contrast to this the user generally requires a bespoke system which is
simple to specify and configure yet which has the potential for expansion in
unforeseen directions. Frequently they will want to use equipment and
software from a range of suppliers. Today the lack of interconnection
standards and methods ensure that such systems arc expensive to procure
and few vendors are able to offer the requisite systems engineering expertise.

There is therefore an increasing number of standards bodies working to
define useful, open standards for CIM. These standards cover a broad range
of issues from communications (e.g. ISO OSI model, Manufacturing Auto
mation Protocol (MAP) and Technical Office Protocol (TOP)) to data
exchange formats (such as the CAM-I Product Definition Data Interface
(PDDI), the ISO Standard for the Exchange of Production Information/
Product Data Exchange Standard (STEP/PDES) and the Office Document
Architecture (ODA) developments). Supporting these are developments
concerned with systems engineering (such as the ISO Open Distributed
Processing (ODP) and Portable Common Tool Environment (PCTE) [15],
the US DOD CAIS and the UK Alvey work in the Advanced Networked
Systems Architecture project (ANSA))1.

However systems which support the “Open” integrated philosophy remain,
at least for the time being, concepts rather than reality. In the future though,
these and other initiatives directed towards establishing standards will
enable high levels of integration to take place between heterogeneous
systems.

From the many initiatives1,3'10'11 currently in place a number of themes are
beginning to come together.

604 ICL Technical Journal May 1989

(a) The need for a reference model to describe the activities of manufactur
ing enterprises in consistent and formal terms.
(This is required so that all parties to a CIM problem can at least agree
what the problems are in terms that are not ambiguous.)

(b) The need for standards to promote the exchange of information between
systems.

(c) The need to manage all engineering information.
(d) The need to provide reference models for future computing systems

architectures.
(e) The need to define the role of advances in information technology

notably user interface design and artificial intelligence.
(f) The need to quantify the costs/benefits of both direct and indirect

factors.
(g) The need to adopt a ‘user centred’ design approach. This in turn requires

the development of better techniques to effectively and accurately
capture the user requirements and to transpose them into terms that
system builders comprehend. The goal is to implement systems that suit
the intended users.

(h) The need for greater understanding and models describing both the
partitioning of and interactions within the ‘Sociotechnical’ system
comprising the users and the software/hardware they use.

3.3 Information supply

The processes of design, analysis, machining, build, test and quality assurance
generate a considerable volume of information about the particular product;
about its function, shape, manufacture and test performance. As information is
encoded and transferred from stage to stage some is lost only to be
reconstructed (possibly expensively and inaccurately) at some later stage, and
what survives is distributed throughout the organization often in a haphazard
manner. Furthermore attempts to transfer information in ways other than that
envisaged initially often lead to inconsistencies and difficulties4.

The introduction of Computer Aided Drafting/Design and Computer Aided
Engineering systems into the traditional engineering design and manufactur
ing procedures has not changed the fundamentally sequential process
described. What they have done is to improve the efficiency and speed with
which certain stages in the sequence are performed. Through their support of
standard parts and part libraries, they have improved the information
distribution problem in certain areas. However, the lack of good data
exchange standards and lack of management of the information flow means
they do little to correct the information scattering, loss and regeneration
problem.

4 The processes of design

Underpinning the work of DtoP is a view of the design processes the system
is intended to support. To define the specification of DtoP requires an

ICL Technical Journal May 1989 60S

understanding of the basic processes the system needs to support it in order
to ascertain what should be included.

There is no single generic model of design activity. Although there are a
number of features that most accept will form some part of the process, the
balance and dynamics between them is less clear. One such is the continuous
interplay between procedural strategies and opportunistic strategies for
finding design solutions.

Thus companies typically have an organisational structure representing the
company’s division of responsibilities. The distribution of a new project in
this organisation forms the first stage of the strategy for generating design
solutions. Formal company procedures may also define the information flow
between the different operations in the company. However when viewed at
the level of an individual the interpretation of his tasks seems highly
idiosyncratic driven more by the person’s style, knowledge and creativity
than by predefined organisation. At this level the design process is personal
and takes as input possibly fast changing information (specifications, con
straints) from elsewhere. A complex iterative process, characterised by the
continuous generation of new problems, review of constraints and synthesis
of solutions, ultimately transforms inputs into output information to be
passed to others in the system. This transformation may be seen as quasi-
continuous or discrete. Project planners and organisers tend to view
‘outputs’ as discrete measurable deliverables although individuals may see
them as the results of a continuous evolution.

Much research investigation has been devoted to the processes of design, see
for example12,2. Reference 13 describes the background of the approach
adopted in the development of the full ‘Design to Product' system.

5 The concept of OtoP - management of information

The goal of the ‘Design to Product’ system is to reduce the losses in the product
information generation cycle, and to resolve the information consistency and
management problems inherent in existing design and manufacturing metho
dologies. This is achieved by comprehensively managing the generation and
use of information. There are two principal categories of information to be
handled. The first is the “Product Description" which is the knowledge
describing all aspects of the product and which is built dynamically as design
evolves. The second is the ‘Engineering Knowledgebase’. This is the essentially
static information describing the background facts and knowledge used by the
designer, including for example company knowledge, product information,
expertise encoded into knowledgebases and databases, and previous designs.
It is the global availability of this knowledge generated and used during a
product’s design, manufacture and service life that is seen as the underlying
unifying and integrating factor. Design is seen, not necessarily as a sequence of
design, planning and manufacturing stages, but as a whole set of product
generation activity interworking with a common set of information.

606 ICL Technical Journal May 1989

5.1 The DtoP system implementation

The implementation design of the DtoP system provides a central Engineer
ing knowledge base called the ‘Information Management System’ (IMS) that
holds both the Product Description and the Engineering Knowledge Base.
The consistency of the Product Description is maintained and managed by
the Information Management System. Arranged around the IMS is an
extensible set of design and manufacturing support tools able to access its
information. The processes of design are carried out by the user finding and
selecting useful information either from the IMS or from outside of DtoP,
then choosing the processes to operate on the information. Powerful facilities
are provided in the user interface to the IMS to help the finding, examination
and selection of appropriate information. An ‘Assistant Tool’ helps the user
to define and/or select ‘Design Procedures’ and then control the processing
of the selected information using the Design Procedures. A Design Procedure
is any useful set of tool operations, possibly derived from company pro
cedures, or defined by the user or other users. It provides a suggested
sequence of tool operations that can be executed, suspended, modified or
ignored at will by the user. By this means routine operations can be
supported efficiently whilst enabling the user to explore alternatives easily.
The building of the Design Procedures is one of the mechanisms available in
DtoP for capturing the processes that designers use and making them
available to other perhaps less skilled users.

‘Design to Product’ is intended to support teams of 5-20 people working on
a project. Such teams are expected to use distributed networked single user
workstations possibly located in different geographical locations. Such
networks would also support specialised services such as database and
printer servers. The system administrator has facilities to define what tools,
procedures and information particular users have access to, so reducing the
system complexity as seen by the user and providing a level of project
management.

5.2 The architecture of the ‘Design to Product’ system

The ‘Design to Product’ system (Fig. 3) is the collection of software modules
integrated into the software system that will be demonstrated in 1990. The
principle requirements on the architecture of this system are that it should
provide an ‘open’, distributed, heterogeneous, computing platform. The
platform should allow functionality to be incorporated incrementally yet
allow a high degree of integration. It should be scaleable, i.e. capable of long
term expansion to provide greater performance and increased capabilities
without running against inherent limitations of the system that are costly to
overcome. The platform should be adaptable, i.e. it should allow a steady
evolution as requirements and environments change.

To achieve these requirements each Tool in the ‘Design to Product’ system is
treated as a self contained software object with a well defined interface. Tools

ICL Technical Journal May 1989 607

Fig. 3 Hardware configuration of the Design to Product’ system

communicate via the Tool Manager using messages that define the actions to
be executed and the information required to support the action. Tools may
reside on any machine in the network, the choice of which machine would be
determined by issues of performance, load sharing and local facilities.

As the design information is generated and used in the system it is recorded
in the IMS as part of the ‘Product Description’ knowledge base. The
‘Product Description' can be seen as a graph of related items of design
information, dynamically constructed as the design proceeds. The graph
records the dependencies between items and the processes that created the
items. Its structure allows the consistency of the design to be checked and for
the history of its evolution to be traced. Schema Definitions for the design
items held in the IMS define the attributes of and relations between items.
Where possible the representations used, particularly for manufacturing
information, take account of emerging standards. This will assist the ultimate
interfacing of third party systems. The comprehensive management of the
design as it develops will provide designers with much better records of their
work. This combined with powerful design support will allow major
improvements in design productivity.

5.3 The DtoP system components

The DtoP system can be described as partitioned into a number of regions
(Fig. 2).

The Design Support Tools - these are software systems designed to support
particular aspects of the Design and Manufacturing lifecycle. Each of the

608 ICL Technical Journal May 1989

DtoP collaborators is developing different tools which are described briefly
below. Design tools could be supplied from any source and may run in a
variety of computing environments. DtoP will be demonstrating design tools
based on SUN/UNIX and IBM PC/MS-DOS together with a Computer-
vision CADDS4 CAD workstation.

The User Interfaces - these are the functions that mediate between the user
and the functions available in the ‘Design to Product’ system. Typically these
interfaces are tailored to support particular tasks that users wish to carry out.
The detail facilities available at the interfaces depends on who the user is,
what their role is and what tasks they are carrying out. In all cases the
interfaces are intended to give a user-friendly, convenient but flexible access
to those facilities of DtoP that are particularly relevant to the goals of the
user.

The Tool Manager- The Tool Manager provides the facilities for integrating
the control of and data transport between a wide range of tools in a
heterogeneous, distributed environment; the Tool Manager concepts are
closely related to the Advanced Networked Systems Architecture (ANSA)
project also supported by the Alvey Directorate1. Its operation is largely
invisible to the user but it plays a crucial role in connecting client tools to
server tools and transferring information from one to the other.

The Information Management System - All the information generated and
transformed by the tools of the DtoP system is managed by the facilities of
the ‘Information Management System’ (IMS). The IMS provides secure,
consistent and longterm storage of all information defining the Product
Description. It also controls the access to the engineering knowledge stored
in the ‘Design to Product’ system. This domain knowledge includes for
example, records of previous designs, rulebases for expert system support,
system help information, task procedures and external databases.

The lower levels of the IMS support an entity relationship model in which all
objects are instances of a class type. The schema of a particular class type is
defined by its position in a class hierarchy and can inherit properties from its
parents. There is no particular restriction on the attribute value types.
Relations can be defined either as simple links or, for more complex relations,
as relation objects. One attribute of the object is the ‘contents’ of the object.
This contains information that can only be interpreted by the design tools
able to operate on that class of object. All entities have unique names and
sets can be defined as collections of objects. Entities can be deleted, modified
or created as required and found by matching attributes, and class or set
membership.

The IMS has the dual roles of controlling the shared use of information and
for providing long term, secure storage of important information. Thus
mechanisms for archiving, consistency checking and recovery are also
included. Facilities built into the IMS allow the user to specify the degree of

ICL Technical Journal May 1989 609

restriction he wishes to place on other users wishing to use or modify the
same information. In the event of conflicts arising the system can resolve the
priorities if required or refer to the user for arbitration.

6 The User-Computer Interfaces to the ‘Design to Product’ system

The principle requirement of DtoP is to produce a system that will assist the
various users throughout the product generation cycle. For any DtoP type
system to be successful the user must have a clear and accurate view of the
system processes being supported, similarly the system designer requires a
clear and accurate view of what the users are likely to require. Without these
views being well understood and defined there is a real risk of developing a
system in which there is a serious mismatch between what the user expects
and what the system does.

The inevitable consequence of getting this aspect of the system w'rong is poor
performance of the combined human computer system. Training time and
associated costs will be high, confidence in, and productivity from, the system
will be low. ‘Design to Product’ has devoted considerable resources to
understanding the design problem, developing methods of describing user
interactions with systems, and carrying out substantial studies of the target
design and manufacturing operations. This work is drawing on techniques
such as the Enterprise Modelling methodology from the ESPRIT AMICE
project14 and the Alvey Project SE015 ‘Formal Requirements Specification -
FOREST’16,

To ensure that the ‘Design to Product’ system provides facilities that match
the tasks of design and manufacture requires a firm understanding of the
detail processes of design. Within the project HUS AT is studying the
procedures Lucas designers currently use to design typical diesel fuel pump
parts. A technique called Personal Task Representation (PTR)7 has been
used in this study. The method principally comprises a process of structured
interviews, the results of which can be configured into a structured flow chart
describing the functions and information flows. The insight gained from this
work has helped the development of the ‘Design to Product’ system by
indicating what domain knowledge should be contained in the system, what
tools would be useful and what characteristics the user interfaces for these
tools should have.

The complexity of the design task combined with the flexibility and range of
resources in the ’Design to Product’ system poses many challenging prob
lems of user interface design. The final characteristics of the user interfaces
for the ‘Design to Product’ system have not yet been fully defined as they will
depend on extensive user trials planned to take place in the middle of 1989.
They will also depend upon the outcome of the current studies of the design
processes at Lucas and the functional capabilities of the design support tools
still under development in the project. Although these studies have yet to be
completed it is apparent that the designer must be able to call up extensive

610 ICL Technical Journal May 1989

and very well developed help, support and explanation systems that inform
quickly and efficiently the system state at any time. It is also clear that the
system needs a good understanding of the types of user (e.g. system
administrator, chief designer, apprentice), the roles they have (e.g. knowl
edgebase maintenance, design review, progress audit) and the tasks (e.g.
editing, searching for relevant previous design information), to carried out2.

The system design of DtoP has been organised to decouple the functions
required to support the user interactions (which are the design tool opera
tions) and the detailed techniques and styles of the screen operations. Thus
the user interactions with the screen are handled by specialised tools that
interact with the design support tools via the Tool Manager. The user
interface specifications and designs have been developed using prototyping
tools and mockups. These are then implemented in a modular re-useable
manner. The choice to build the user interfaces using ‘SUN Network
Extensible Window System (NEWS)’ was made primarily because SUN-
NEWS offers an object based environment ideally suited to the construction
of user interfaces by the incremental development path described above.

7 Design Support Tools in DtoP

The Design Support Tools of the DtoP system assist the designer to make
effective decisions, and their integration enables the design information to be
shared by all tools. Such tools must be capable of working in conjunction
with existing systems and techniques. The system design of DtoP provides
for a ‘Public Tool Interface’ allowing a wide variety of tools from any source
to be integrated.

7.1 Specialists

Designers frequently consult colleagues, specialist books or use standard
procedures to develop the detail of some aspect of the design. Subsystems
called ‘Specialists’ within the DtoP system will play a similar support role.
Specialists could be developed that will assist the user to take account of
manufacturing constraints, estimate costs, and assess the reliability and
maintainability of their design. The concept of a Specialist is similar to that of
an Expert System, but because many such specialists can be invoked and are
positively linked to the tasks the user is carrying out considerably greater
utility is achieved. Currently an advanced expert system building tool
‘Socrates’8 is being integrated into the DtoP system. Simple PC based expert
systems providing design expertise are also being integrated. Ultimately a
fully developed ‘Design to Product’ system would incorporate many such
‘Specialists’ drawn from diverse sources and covering many aspects of the
product life cycle.

7.2 The Edinburgh Designer System

Edinburgh University using techniques drawn from AI research have

ICL Technical Journal May 1989 611

developed an integrated suite of ‘intelligent’ design support tools, called the
Edinburgh Designer System (EDS)6. A ‘Blackboard’ architecture has been
used and a truth maintenance system based on the ‘deKleer’ model9 is
supported. The system has been designed to aid the user develop the design
of parts and products, starting with an initial technical specification.
Engineering knowledge in the EDS is held in a Declarative Knowledge
Base (DKB) as information (‘Module Class Definitions (MCD)’) organized
in a network structure. Each Module contains declarative knowledge using
formal representations developed by the project. This knowledge describes
a particular engineering entity of interest. In the Lucas diesel fuel pump
domain targetted by ‘Design to Product’ typical modules might be based
on the parts of a fuel pump and contain information describing the
constraints between parameters of the part, its shape, its relationships
with other parts, and tabular product data relevant to the part. Alterna
tively the MCDs can be used to represent knowledge about regions of
design space which can be explored to find a design specification that
meets the requirements.

7.3 The Solid Modelling Engine (SME)

The Solid Modelling Engine in ‘Design to Product' is being built at Leeds
University. The SME consists of a core of multirepresentational geometric
modellers; these are integrated with an ‘intelligent’ front end by the Process
Integration and Modeller Management System (PIMMS) with a Geometry
Database (GDB) system utilities and other geometric functions. The SME is
seen as providing a set of modeller functions through which geometric
queries may be answered. The PIMMS presents a transparent function call
interface to the underlying modellers.

The SME will provide a vital system tool capable of supporting other
processes in the DtoP system. Typically it will be used to calculate geometry
and mass property information, evaluate dimensions, recalculate tolerance
frames, generate and verify tool paths for the NC program generation.

The physical appearance of many products is an important aspect of their
design. To support this the SME provides visualization capabilities typical of
conventional CAD systems. An IGES interface is included in the SME to
allow the transfer of geometry information to conventional draughting
packages or to other modelling systems.

7.4 The Generation of Manufacturing Data

Once a design has been developed to a point that it can be described
geometrically then it becomes possible to generate process plans to describe
the manufacturing operations required to make the part. Conventionally a
production engineer will use a ‘group technology’ approach to process
planning. In this, parts related to the manufacturer’s product range are
categorized into families that are manufactured in a similar manner. A target

612 ICL Technical Journal May 1989

part is classified into one of the predefined families and its corresponding
generic process plans selected. This provides the starting point for the design
of a bespoke process plan for the target part.

In ‘Design to Product’ Loughborough University have taken the same basic
approach when developing the Loughborough University Manufacturing
Planner (LUMP). However, by taking a more advanced view of the issues
and integrating process planning with feature visualization, automatic
generation of cutter paths and AI based process planning5, it is believed
substantial benefits in accuracy and productivity will be achieved.

One aspect of the work in the ‘Generation of Manufacturing Data’ section of
‘Design to Product’ is directed to developing knowledge bases for process
planning. Another aspect is devoted to the design and construction of
software tools to assist particular process planning activities, such as the
selection of cutting tools and fixtures, machine tools and cutting processes
and the ordering of process operations. The key characteristic of this work is
that all the process planning tools can access both the Product Descriptions
and the Knowledge Bases of the ‘Design to Product’ system. The output of
the process planning activity extends the formal description of the design
held in the Product Description. This integration of functions by using a
common set of knowledge bases ensures that knowledge generated early in
the design process is always available for use later in the process. This
contrasts strongly with the current situation where the information may well
not be explicitly carried forward and has to be expensively and sometimes
inaccurately recreated at a later stage.

Once an ordered set of operations to manufacture the part has been decided,
NC part programs can be compiled.

Many of the techniques being applied in this section of the project are known
and being used today although not generally in an integrated manner. The
real benefit in using formal data and methodologies in the manufacturing
areas is to ensure that the design rules from which it has been derived are
correct. Feedback which provides the ability to modify and improve the
original data is the key difference that makes systems using an integrated
approach so powerful. The emphasis is not on having the most efficient
process plan or NC program, but in having an effective solution (with
hopefully an alternative) quickly. Many will have experienced situations
where part programmers edit part programs to bring about small time
savings while machines stand idle and operators look on.

7.5 The Generation of Assembly Data

This area of work in ‘Design to Product’ parallels the Generation of
Manufacturing Data process for automated assembly. However, the state of
the art in automated assembly is not as advanced as for automated
machining. There is still fundamental work to be carried out to identify the

ICL Technical Journal May 1989 613

techniques for the control of robotic assembly systems before the ‘Generation
of Assembly Data’ processes can be clearly defined. The goal is to be able to
offline programme flexible assembly cells. There are many parallels between
assembly and machining which suggest that in the future the two areas (at
least in part) may be supported by common tools.

7.6 Documentation support in DtoP

Much of the product design information will ultimately be contained in
documentation such as product design descriptions, publicity material,
drawings, operator instructions, service and maintenance manuals. Accord
ingly DtoP includes some basic documentation support tools. The documen
tation model supported in DtoP consists of a generic structure description
populated by text or diagram elements. These text or diagram elements are
taken from the Product Description and are created automatically by some
tools, or input by the Designer in the course of his work. The Designers
Notebook and the graphic support tools in DtoP allow the designer to
produce text or diagram notes at any stage of the design and to tag them to
the Product Description. The document descriptions are postprocessed for
display on the screen, for output to a printer or for input into wordprocessing
or desk top publishing packages.

7.7 The Factory Control System

Within the ‘Design to Product’ system the factory control system will not be
deeply integrated into the business system which typically controls the
manufacturing enterprise. However, during the final demonstration illustrat
ive links between the factory control system and a business system will be
demonstrated.

The development of the factory systems for the project is also in two phases,
pilot and implementation. For the pilot phase a small FMS machining cell
was constructed by GEC - Electrical Projects ‘FAST’ division at Rugby. The
cell included a CNC lathe, CNC machining centre with robot loading, a
CNC inspection machine and the GEC free ranging AGV. The whole is
controlled by an advanced modular cell controller developed at Rugby.
Process plans and part programs generated by the ‘Design to Product’
system can be accessed by the cell controller. Part program development can
then be carried out on the shop floor and returned to the ‘Design to Product’
system to form part of the evolving Product Description. By this means a
consistent record of the design and machining evolution can be maintained.
This cell was demonstrated publicly early in 1988.

A prototype flexible assembly cell is being developed by GEC - Marconi
Research Centre at Gt. Baddow. This is based around the TETRABOT (a
parallel robot being developed by GEC). This cell is being used to investigate
assembly techniques using real-time sensor feedback and reconfigurable
grippers.

614 ICL Technical Journal May 1989

Running in parallel with the GEC Marconi Research work is the Lucas
Research assembly cell. Lucas are building an assembly cell based on current
technology directed towards analysing and developing appropriate assembly
techniques for flexible manufacture. This cell along with an Okuma LC20
lathe, Hulle Hille NBH70 Machining Centre, Zeiss CMM Co-ordinate
Measuring Machine, will form the manufacturing part of the DtoP demon
stration 1990.

7.8 Other Design Support Tools

Tools to support the analysis of parts (e.g. for strength, vibration and thermal
characteristics) or to simulate their operation are not being developed as part
of the project. However, the DtoP system is being developed to include a
public tool interface and therefore such tools are likely to be components of
future fully developed systems.

7 Future prospects

The Alvey Large Scale Demonstrator projects are intended both to show
possible applications of research in three key areas (MMI, IKBS, SE) and to
accelerate the introduction of advanced products to the market place.
‘Design to Product’ will demonstrate in 1990 certain aspects of its concept in
detail. Thereafter development of commercial products will continue. To be
commercially valuable a ‘Design to Product’ system must be a tool that
designers both wish to use and find helps them (in a cost effective manner) to
produce better solutions to their design problems. To achieve the first the
system must have effective user interfaces, provide useful design tools and
have a good performance. To achieve the second requires an extensive period
of knowledge engineering to create the general knowledge bases contained in
the system that describe the application design environment to be supported.
Throughout the life of the system these knowledge bases will have to be
updated and extended. Tools to support this maintenance will be part of the
system. Finally to be acceptable commercially the system must be able to
work with the design tools customers currently use. Consequently the
‘Design to Product’ system must provide interfaces using data exchange
standards where they exist.

8 Conclusions

‘Design to Product’ offers the possibility of a novel and integrated approach
to design and manufacture. It will provide specialized tools to support
important parts of the design process, provide the mechanisms for integrat
ing the tools and manage the records of the design description as they
evolve.

By providing an integrated and direct path to the factory systems it should
prove possible to move rapidly and accurately from the design phase of a
product to its manufacture.

ICL Technical Journal May 1989 615

Finally as more standards evolve which support open systems then many of
the ‘Design to Product’ system concepts described in this paper will extend
beyond the bounds of this project.

Acknowledgements

This paper draws extensively on the research and development work of all
the collaborators in the Alvey ‘Design to Product’ project. The ‘Design
to Product’ project is supported by the Alvey Directorate (Information
Engineering Directorate) The Science and Engineering Research Council and
the Department of Trade and Industry.

References

1 ANSA Reference Manual Release 00.03, ANSA 24 Hills Rd, Cambridge UK.
2 Alvey Project MMI142 - A User Modelling Tool for MMI Design, Project Report

(unpublished).
3 ESPRIT I, Area 5 Project 688 “AMICE”. Paper “CIM OSA: The Enterprise Model”, CIM

Europe Conference, Madrid, May 1988.
4 SMITH ERS, T.: “The Alvey Large Scale Demonstrator Project Design to Product” in

Bernold, T. (Ed.), “Artificial Intelligence in Manufacturing”, Elsevier Science Publishers
B.V. (North Holland), 1987.

5 Process Planning using a Truth Maintenance System. UMIST/ACME workshop and
advanced research in CAM, January 1987.

6 POPPLESTON, R„ SMITHERS, T., CORNEY, J., KOUTSOU, A., MILLINGTON, K.
and SAHAR, S.: “Engineering Design Support Systems”, presented at the 1st Int. Conf.
Applications of Artificial Intelligence to Engineering Problems", Southampton, April 1986.

7 “The Navy Engineering Standard”, Procurement Executive, Ministry of Defence.
8 CORLETT, R., DAVIES, N , KHAN, R., REICHGELT, H„ VAN HARMELEN, F.:

“Socrates: A flexible toolkit for building logic-based expert systems”, in Knowledge Based
Systems, Vol. 1, No. 3, June 1988.

9 DE KLEER, J.: “An Assumption Based Truth Maintenance System”, in Artificial
Intelligence 28, 1986, pp. 127-162.

10 SULLIVAN, J.S., RUMMIER, D.C.: "Second generation CAE tools learn to share one
database”, Electronic Design, July 10, 1986.

11 MURPHY, S.: “Human Centred CIM Systems”, ESPRIT I Project No. 1199, Proceedings
of the 5th Annual ESPRIT Conference, Brussels, November 14-17, 1988.

12 FINKELSTEIN, L., FINKELSTEIN, A.: “Review of Design Methodology”, Proceedings
of the IEE, Vol. 130, Pt. A, No. 4, June 1983.

13 SINCLAIR, M., SIEMIENIUCH, C., JOHN, P.: “A Llser Centred Approach to Define
High Level Requirements for Next Generation CAD Systems for Mechanical Engineer
ing”, DtoP Project Document DTOP/PROJ/HUSAT/26/1, (to be published).

14 ESPRIT Project No. 688 AMICE, CIM-OSA Reference Architecture Specification,
available from CIM-OSA/AMICE, 489 Avenue Louise, B 14-B-1050 Brussels, Belgium.

15 ESPRIT Project No. 32 PCTE, The PCTE Functional Specifications Manual.
16 FINKELSTEIN A, POTTS, C.: “Structured Common Sense: A Requirements Elicitation

and Formalisation Method for Modal Action Logic”, ALVEY Project No. SE 015
FOREST, Deliverable Report 2, November 1986.

616 ICL Technical Journal May 1989

Notes on Authors

E. Babb
Ed Babb obtained qualifications in Electrical Engineering and Computer
Science at Imperial College. He then researched adaptive pattern recognition
systems at Cambridge University on secondment from Hawker Siddely
Dynamics. From about 1971, working in ICL, he researched speak recogni
tion and information retrieval. His work on CAFS covered storage struc
tures, architectures and query languages. He is now studying the application
of mathematical logic to business and is currently Manager of the Logic
Language Project in the Systems Strategy Centre at Bracknell.

Dr. L.D. Burrow
After completing a doctorate at Warwick University Laurie Burrow spent
three years engaged in research in the automation of urban transport
systems. He joined GEC Electrical Projects as a systems engineer concerned
with the design, development and implementation of control systems for
projects in the metals and marine industries. From 1981 to 1984 he worked
for the Kenya Government, setting up the Control and Instrumentation
courses and facilities at Mombasa Polytechnic. In 1984 he rejoined GEC
Electrical Projects as a Technical Manager of the Design to Product Alvey
Large Scale Demonstrator.

C.P. Burton
Chris Burton joined Ferranti in 1957 after graduating in Electrical Engineer
ing at Birmingham and two years’ square-bashing and maintaining army
radar. Helped commission and then maintained a large valve computer
system for three years, then moved to development of Orion and the
FP6000/1900 series at West Gorton prior to Ferranti Computers becoming
part of ICT (later ICL). Managed the hardware development teams for the
planned 1908A and the original 2970 and 2980 mainframes. Participated in
the mainframe development of the original S-series 2900s, and in 1977
transferred to the newly formed Advanced Development Group, mostly
investigating the then new microprocessors and networks. This eventually
became part of the Knowledge Engineering Business Centre, where he
initially led the team introducing AI tools such as LISP and PROLOG. He is
currently a member of the Alvey/DHSS Large Demonstrator Project, with
interests in ‘Large Scale’ aspects such as conversion and analysis of source
material and management of the knowledge base. He is a Fellow of the IEE
and of the BCS.

ICL Technical Journal May 1989 617

M.R. Gunner
Mike Gunner graduated from University College London with a first degree
in physics. For eleven years he taught physics in schools in England and
Sierra Leone and in the University of Zululand, South Africa. He has a Post-
Graduate Certificate in Education and a Diploma in Education, both from
London University. Since 1977 he has held a series of appointments in ICL,
in training, technical support, software development and validation, and
consultancy.

From 1986 until 1988 he studied for an MSc in Information Systems Design
at Kingston Polytechnic, receiving sponsorship from ICL; the work de
scribed in this paper was completed as a project for the MSc. He has recently
become a consultant in the Services, Application and Systems Support
Group in the ICL(UK) Central Government Business Unit.

Professor P. Henderson
Peter Henderson is Professor of Computer Science in the Department of
Electronics and Computer Science at the University of Southampton.
Previously he was Professor of Information Technology at the University of
Stirling and before that a lecturer at the Universities of Newcastle upon Tyne
and Oxford. He is the author of a well-known book on functional program
ming and numerous papers on software engineering. He has been a
consultant to ICL for many years.

Dr. V M. Jones
Valerie Jones graduated in English Language and Literature from the
University of Newcastle upon Tyne and in 1979 was awarded a PhD by
Newcastle for a thesis on “Some problems in the computation of socioling-
uistic data”. She then held posts at Newcastle, first as a Research Associate in
the Department of English Language and then as a Programming Advisor in
the Computing Laboratory. In 1984 she moved to the Department of
Computing Science at the University of Stirling where she is now a Research
Fellow working on the ESPRIT-II Lotosphere Project. Her current interests
are in software engineering, formal methods, methods for rapid prototyping
and expert systems. She is either sole or joint author of some 20 publications,
roughly half on topics in linguistics and half (the more recent) on topics in
computing science; her second book, written jointly with Dr. Heather
Alexander (until recently at Stirling), on Software Design and Prototyping
using me too, will be published during 1989.

R. Lucas
Roger Lucas is the Manager of Strategy Integration in the Systems Integra
tion Strategy unit within ICL Product Operations HQ. He joined ICL well,
English Electric Leo Marconi - in 1965 as a programmer, later progressing
through customer support on System 4 and 1900 to Operating System
technical support and consultancy, mainly on George 2, VME/B and

618 ICL Technical Journal May 1989

VME/K. He was the ICL representative on the VME/K User Group
throughout its life cycle.

In more recent times he has worked in ICL Services on Information Systems
strategy and implementation for the Customer Service organisation. For the
last 18 months he has worked in his current role in Systems Integration
Strategy, initially within Marketing and Technical Strategy and now in
Product Operations.

Y. Pisigot
Yannick Pisigot joined ICL in November 1986. After having spent several
years in the computing divisions of industrial companies (Philips, Electrolux)
he gained important retail experience while setting up the management of the
computing division of a hypermarket chain (Continental). His first mission
with ICL was to create a development and support team in the newly-
established vertical retail activity. He is currently responsible for the Retail
products and solutions team in ICL France.

Dr. J. Michael Quinn
He joined ICL Marketing and Technical Support in 1969. Since then he has
held a number of positions in planning, project management and software
development in various corners of the UK. He is currently a member of the
European Declarative System (Esprit II) project team in Mainframe Tech
nology Centre at ICL West Gorton. He became interested in geographic
information systems on joining Futures Group some six years ago; the work
reported here stems from that time and has been carried out in co-operation
with the PLANES project based at Leeds.

A.J. Russell
Fred Russell joined ICL in 1967 as a Systems Engineer, subsequently
transferring to selling 1900 systems in the National Accounts Area. On
leaving the sales force he had a varied career within ICL, ranging through
business planning, market introduction and programme management of
2900 development and introduction. He then became involved in the
emerging office automation strategy, in particular in the human factors
aspect of this. Currently he manages the Human Factors Group in the
Systems Strategy Centre at Bracknell and is responsible for the ICL
component of an ESPRIT programme aimed at developing knowledge-
based user-centred software development (CASE) tooling.

Dr. R.A. Snowdon
Bob Snowdon received his PhD in 1974 from the University of Newcastle
upon Tyne, having studied programming methodology and how computers
can be used to assist in the task of software system design. He joined ICL in
1975 as one of the designers of the 2900 CADES system. More recently he
has been closely involved with both UK and European initiatives in software

ICL Technical Journal May 1989 619

engineering, particularly in the areas of formal development methods and
computer systems to support the many aspects of software systems develop
ment. Since 1985 he has been the project architect of the Alvey-funded IPSE
2.5 project.

Dr. G.E. Storrs

Graham Storrs is a senior consultant with Logica Cambridge Ltd., the
research and development centre for Logica worldwide. He works within
the Human-Computer Interaction Group, which is responsible for a range
of products in the areas of Intelligent Training, Intelligent Front-Ends and
HCI design methods. His present activities include leading a design team in
the Alvey DHSS Demonstrator Project and contributing to a study into
support for the development and dissemination of methods for the CCTA.
Previous work in Logica has included the development of intelligent
training systems.

His background has been in human factors consultancy and in academic
research into HCI and artificial intelligence. His PhD work was in the field of
cognitive psychology. He is a founder and editor of the international HCI
journal, Interacting with Computers.

D.E. Talbot

David Talbot joined ICL in 1960 after graduating from Oxford with a
degree in mathematics. He has held a wide variety of jobs: a systems
analyst/technical manager; a business manager responsible for ICL’s busi
ness with UK Ministry of Defence research establishments and with
Universities; a marketing manager for ICL(UK) and for ICL’s mainframes
worldwide.

Most recently he completed a secondment to DTI where he was responsible
for the Software Engineering aspects of the Alvey Programme. He is
currently Manager of Technology and Engineering in ICL Product Opera
tions. Throughout his career he has had an interest in the design, develop
ment and application of systems “in the large”.

P.W. Veasey

Philip Veasey received an M.Sc in Mathematics at the University of
Warwick in 1968. His experience has included seven years selling computer
systems with Burroughs and Microdata and five years teaching in Third-
World universities. Before joining ICL in February 1985 he was responsible
for marketing project management software in South East Asia. This
experience led to the strong planning orientation which has influenced his
work as architect of the SENSE methodology now used by STC Corporate
Information Systems for all internal systems development. He is now
programme manager for SENSE IPSE, which will implement SENSE on the
IPSE 2.5 technology.

620 ICL Technical Journal May 1989

Professor B.C. Warboys
Brian Warboys has worked for ICL (and its predecessors) since graduating
with a degree in mathematics at Southampton University. He has specialised
in the development of operating systems for mainframes: throughout the
1970s he was Chief Designer of the VME Operating Systems for the ICL
2900 series machines, and as such was responsible for both the product
design and development of the CADES systems used to aid the development
process.

He is currently both Professor of Software Engineering in the Computer
Science Department at Manchester University and an ICL Fellow. At
Manchester he heads a team of 6 Research Assistants and 4 Ph.D students
concerned with the development of a Software Environment for the Flagship
machine, an Alvey parallel machine project being developed in collaboration
with ICL Mainframe Systems.

E. Wilson
Ed Wilson joined Inland Revenue from school in 1962, entering Automatic
Data Processing (ADP) in 1965. Whilst still employed by IR he had wider
experience through loans to obtain a Master’s degree in Design of Informa
tion Systems at the Royal Military College of Science, Shrivenham and
latterly collaborating on the Heineken Project with ICL West Gorton. This
was a joint HM Government/ICL venture to validate and advance the in-
service date of Series 39, particularly Level 80, by 12 months.

Once this project had enabled IR to successfully intercept Series 39 he
returned full time to the Revenue and in January 1988 was appointed head of
Technology Group at Telford, responsible for some 32,000 VDUs and 50
Series 39 Level 80 nodes. He now has additional responsibility as Technical
Architect for the whole of IR data processing at Telford, Basingstoke and
Worthing.

ICL Technical Journal May 1989 621

h

