
Volume 12 Issue 1 May 1997 Edition

Journal

ICL Systems Journal
Editor
Prof. V.A.J. Mailer
ICL Professor
Department of Computer Studies, Loughborough University,
Loughborough, Leicestershire, LE11 3TU.

Editorial Board

V.A.J. Mailer (Editor)
A.J. Boswell
P.J. Cropper
D.W. Davies FRS
G.E. Felton
PFL Forbes
J. Flowlett
N. Kawato (Fujitsu)
M.H. Kay
F.F. Land

C.J. Mailer (Board Secretary)
M.R. Miller (BT Laboratories)
W. O'Riordan
J.V. Panter
J.M.M. Pinkerton
E.C.P. Portman
A. Rowley
M.J. Rigg
B. C. Warboys (Univ. of Manchester)
P.G. Wharton

All correspondence and papers to be considered for publication should be
addressed to the Editor.

The views expressed in the papers are those of the authors and do not nec
essarily represent ICL policy.

Published twice a year by Research and Advanced Technology, ICL,
Bracknell.

1997 subscrip tion rates (including postage & packing):
UK and Europe Rest of World

Annual subscription £72 $120
Single issues £43 $72

© 1997 International Computers Limited, Registered Office, ICL House, 1 High Street, Putney,
London SW15 1SW. Registered in England 96056

ISSN 1364-310X

ICL Systems Journal
Volume 12 Issue 1

Contents

Editorial i

Java™—An overview 1
Nic Holt

Mobile Agents—The new paradigm in computing 14
L. L. Thomsen and B. Thomsen

The SY Node Design 41
G. Allt, P. DeSyllas, M. Duxbury, K. Hughes, K. Lo,
J. Lysons and P.V. Rose

Discovering associations in retail transactions using 73
Neural Networks

O.V.D. Evans

Methods for Developing Manufacturing Systems Architectures 89
S. Murgatroyd and R. Smethurst

Demystifying Constraint Logic Programming 121
O.V.D. Evans

Constraint Logic Programming 137
M. Wallace

ECL'PS6—A Platform for Constraint Programming 159
M. Wallace, S. Novello and J. Schimpf

Previous Issues 201

Guidance for Authors 211

ICL System s Journal May 1997 i

Front cover: Mobile Agents in action! See the paper, "Mobile Agents—The new paradigm in
computing," in this issue.

u ICL Systems Journal May 1997

Editorial
The ICL Systems Journal normally avoids having issues devoted to a sin
gle theme, except in exceptional circumstances. However, the practice of
having a small number of papers on a related theme has been followed
frequently, particularly when new fields of importance are emerging.

In this issue, papers on three important areas are being published,
namely, Java, Mobile Agents and Constraint Programming. The first two
of these are, of course, related within the context of distributed computing
and the Editor intends that papers on significant applications of these new
technologies will follow in future issues. Constraint Programming, how
ever, is not new and applications of it have been described in earlier issues.
What makes a further set of papers timely is the development of a power
ful new software platform, ECL'PS^, at IC-Parc, a research institute at Im
perial College in London, of which ICL is one of the sponsors. This plat
form enables the technology of Constraint Programming to be applied to a
wide variety of difficult problems with much greater ease than hitherto.

The Editor is aware that a number of people in the field of computing
perceive the intellectual hurdle of Constraint Programming to be difficult
to surmount. Consequently, two introductory papers have been invited
from Owen Evans and Mark Wallace to provide readers with "a lift over
this hurdle". These papers are followed by a comprehensive description
of ECLiPSe, also written by Mark Wallace, together with some of his col
leagues at IC-Parc. A paper on its application will follow in the next issue.

V.A.J. Mailer

111ICL System s Journal May 1997

Java™ - an overview
Nic Holt

High Performance Systems, ICL, Manchester, UK

Abstract

The origins of Java can be traced back to the early 1990s when Sun
engineers were investigating the requirements for cheap consumer
devices capable of communicating with each other. In 1994, Sun rec
ognised the potential of coupling Java technology with the World-
Wide Web, paving the way for a new era of "Network Computing".
Since then Java has become a cornerstone of Internet distributed com
puting and all major IT industry suppliers have embraced Java tech
nology in some form or other. This paper identifies the significant
elements of Java technology, outlines the positioning of major IT sup
pliers and discusses its potential influence on new business models
based on distributed computing.

1. Introduction
Java has become inextricably associated with the rapid evolution of Internet
computing sparked by the introduction of the World-Wide Web and widely
available Internet services. This vision is one of universally accessible on
line information services supported by a global network infrastructure.
Although the consumer market is likely to be more significant in the longer
term, the immediate focus is on the potential business benefits of applying
these technologies within organisations—the so-called Intranet. In the
longer term, the distinction between Intranets and the Internet will become
blurred. The emergence of commercial-strength secure distribution
infrastructure overlaying the Internet will enable new models of inter-
organisational collaboration and commerce, as well as intra-organisational
operation.

The question of the moment is whether the convergence of several
technologies heralds a revolution in distributed computing, or whether the
benefits of Java, relative to steady evolution of current approaches, are being
over-hyped. There are major commercial issues at stake. In particular, the
prevailing "WinTel" (Microsoft W indows/Intel) dominance of the
(enterprise) desktop is under threat—a response to the massive perceived
management costs of PCs, widely quoted as around $4,000 per PC per
annum [Forrester, 1995].

ICL System s Journal May 1997 1

2. Background
The origins of Java can be traced back to the early 1990s when Sun engineers
started to investigate the requirements for cheap consumer devices with
embedded processors, capable of communicating with each other. The short
product life-cycle of the consumer market dictated that it should be possible
to introduce upgraded products—including, significantly, the processors
embedded within them—whilst maintaining previous investment in
software and applications. Over the next two years a new language, "Oak"
(later to be renamed Java), as well as an operating system (a precursor of
JavaOS) and custom microprocessors (the Picojava architecture) were
developed. In 1994, Sun recognised the potential of coupling the nascent
Java technology with the burgeoning World-Wide Web, heralding the dawn
of a new era of "Network Computing". Since then almost all major IT
industry suppliers have embraced Java technology in some form or other.

3. What is Java?
Java is a modem object-oriented programming language. The term "object-
oriented" means that a program is written in terms of real-world objects
and the actions that can be performed on them. This is rapidly becoming
the preferred industry approach and is embodied in languages such as C++
and Visual Basic, as well as the distributed object architectures of Microsoft
ActiveX and OMG CORBA. The emergence of self-contained objects offers
the prospect of software "building-blocks" or components which can be
simply integrated into sophisticated applications. Microsoft ActiveX,
OpenDoc and Java Beans are examples of component software technologies.

As a programming language, Java has several features which offer
improvements over alternative languages. These include "safety features"
which ensure more reliable programs, extensive libraries of useful services,
a component-based approach to application construction and a natural fit
with networked computing. Nonetheless, even with the benefits of Java it
still requires skill and experience to write good software.

Java's main distinguishing feature, however, is not in the language itself
but in the means by which a Java program is executed on a computer.
Normally, a program is issued in a (binary) form which is specific to the
processor on which it is intended to run and, in some cases, specific to the
combination of processor and operating system. Application vendors must
make a separate investment in each target platform for each software
product. This results in a huge barrier to entry into volume markets such
as the desktop for alternatives to the Windows/Intel architecture.

In contrast, Java is compiled to a machine-independent form known as
Java byte-code. This can be thought of as the instruction set for an imaginary
machine. A Java program is executed by a piece of software known as the
Java VM (Virtual Machine), which interprets the byte-code form of the

2 ICL System s Journal May 1997

program. To achieve program portability, it is only necessary to ensure that
the Java VM itself is available on each computer system—a once-off porting
activity which can be undertaken independently.

None of this approach is new. In the late 1970s, the University of
California, San Diego, developed the UCSD Pascal system which made high-
level programming feasible on personal computers. In the UCSD system,
Pascal was compiled to a portable, interpreted form known as p-code. The
limitations of Pascal, in particular its limited I/O features, eventually led to
its demise at the hands of the C language.

With aims similar to Java, the Royal Signals and Radar Establishment
at Malvern (now DRA, Malvern) developed the Architecturally Neutral
Distribution Format (ANDF) during the early 1990s, as a means of
distributing software written in any source language in a machine
independent form. Although technically sound, the concerns of software
vendors that it would enable reverse engineering of programs distributed
in ANDF prevented its widespread adoption.

What distinguishes Java from its predecessors is the completeness of
the "vision" promoted by SUN, including the language itself, a rich set of
standard libraries, development tools, execution environments, inherent
distribution & networking capabilities and, perhaps most importantly, a
credible case.

4. Other Elements of Java
Java Beans is the framework for developing platform-independent Java
software components which can be independently developed, delivered
and deployed—the equivalent of Microsoft OLE or ActiveX Controls.
JavaSoft have published a full standard for Java Beans and support is
provided in version 1.1 of the Java Development Kit. Several of the leading
industry suppliers have adopted Java Beans as their standard technical
framework for networked applications.

Java Remote Method Invocation (RMI) is a mechanism which allows
one Java application component transparently to invoke a method in another
component which is executing on a remote platform. RMI provides a richer
set of facilities than, for example, CORBA, but is inherently not as scalable.
JavaSoft's positioning of RMI is for use within bounded groups of platforms
(or between components in different processes on the same platform), using
CORBA HOP for wide-scale distribution.

JavaOS™, is a highly compact operating system designed to run Java
applications directly on microprocessors in anything from network
computers to pagers.

Flotjava Views is a groupware products incorporated into JavaSoft's
Web Browser. The development model of Views is similar to Apple when
the Macintosh was released: provide useful but limited capability and leave

ICL System s Journal May 1997 3

the door open for ISVs to add value.

5. Java Performance
The penalty for adopting an interpretive approach to program execution is
that it is inefficient—around 20 times slower than compiling the program
directly to the instruction set of the real machine. There are several ways in
which the inefficiencies of interpretation can be mitigated and the
performance penalty of 20 reduced to a range of 2-5. The technique currently
in vogue is known as JIT (Just In Time) compilation, which involves
compiling individual functions to Java byte-code as they are first used.

Recent development of dynamic translation (load-time or runtime
compilation) techniques has resulted in Java execution rates which, perhaps
surprisingly, are faster than those for statically compiled C++ on the same
hardware; this is because, at runtime, it is possible to determine actual data
access patterns and conditional branch decisions and, hence, generate code
optimised for the circumstances in which it is being executed. It is likely
that dynamic translation will have a profound impact in a wider arena: it
significantly alters the design assumptions on which many modern
processor designs are based—in particular, the effectiveness of brute force,
global, static compiler optimisations.

If portability is not a key requirement (in particular, for servers), the
original Java program itself can be compiled directly to machine code, in
which case there is no penalty.

An alternative approach, also being adopted, is to produce silicon which
actually has the JVM as its native instruction set. Sim Microelectronics have
designed such a chip, called Picojava, which will shortly achieve first silicon.
Early simulation results indicate that this will cause a 10 fold increase in
performance over an interpreter given similar processor clock-speeds. The
implications of a new architecture for the industry should not be
underestimated, given the mindshare that Java enjoys.

6. Distributing Java Programs
The portability of Java programs in byte-code form has a dramatic benefit:
it is possible to download software across the network (Internet or Intranet),
as it is required, from a remote, centrally administered server, thus reducing
cost of ownership. Furthermore, exactly the same copy of the program can
be downloaded to any type of client. The server requires no knowledge of
the type of the client system and, apart from the generic Java VM itself (and
a Web browser or its equivalent) no special software is required on the client
system to enable it to execute the downloaded program. This allows a
diversity of platforms to be supported by a common server (see Figure 1).

4 ICL System s Journal May 1997

Figure 1

7. Application of Java to Networked Information Services
7.1 Desktop Systems
The major short-term opportunity for Java is on the desktop within the
Enterprise. The approach is to download the client elements of Enterprise
applications and groupware, on demand, from centrally administered
servers.

• Support costs are drastically reduced and the same version of the
application is used by everyone.

• Workstation specifications can be relaxed, allowing the use of "thin cli
ents" which don't have the burden of hundreds of megabytes of oper
ating system software.

• The global network provides secure access not only to resources within
the Enterprise ("the Intranet") but also to external services such as those
required to operate business relationships with suppliers, customers
and collaborators.

This approach is viable for most desktop users, other than "power us
ers", and studies undertaken by Sun suggest that it is appropriate for up to
90% of Enterprise employees.

ICL Systems Journal May 1997 5

7.2 Consumer Devices
A second major opportunity for Java is its use in consumer devices such as
set-top boxes, portable devices, such as PDAs, and public devices such as
kiosks. A Java-based approach enables such devices to provide universal
access to information and services anywhere on the global network. This
will be one of the driving forces speeding the introduction of a global, com
mercial-strength security model.

7.3 Server Systems
A longer term opportunity for Java is in server systems (see Figure 2). The
issue of portability is less critical for such systems—there may only be a
handful of credible server platforms by the end of the decade (in marked
contrast to the probable increase in diversity of embedded processors for
client systems) and porting server applications to these few is probably
commercially viable. The positive features of Java as a programming lan
guage may enable it to supplant C++ as the programming language of choice
for the software engineering of large-scale server applications. In such situ
ations, Java programs would be compiled directly to the machine code of
the server processor, ensuring no loss of efficiency. An additional benefit of
Java (as indeed of other Object Oriented approaches) is that by enabling the
"encapsulation" of legacy services and information as componentised ob
jects, it greatly simplifies the integration of such systems into an evolving
IT service provision.

There are now several Application Development Environments avail
able for large-scale software development, many of them re-engineered from
C++ tools. Java class libraries are being specified and implemented, offering
standardised interfaces to a wide range of services. Together with either

6 ICL System s Journal May 1997

native (platform specific) compilers and/or dynamic compilation tech
niques, these constitute a comprehensive set of tools for developing effi
cient, maintainable large-scale applications.

It is interesting to note that some industry analysts (e.g. David Coursey)
are suggesting that, with increasing commoditisation of server platforms,
developing a comprehensive Java Server Environment is one of the few
opportunities for Sun to create a defensible business.

8. How is the Industry Responding?
Most of the industry is adopting a highly positive response towards Java
and the distributed computing model with which it is associated.

• Sun have established JavaSoft to develop and sell Java technology, ar
guably to support the repositioning of their predominately hardware
business towards the server market. They are developing a new range
of hardware processors which execute Java byte-codes directly and this
may be particularly useful in low-cost terminal devices.

• There is a risk that Sun could, by ownership of the Java standards, be
come a latter-day Microsoft, having proprietary ownership of perva
sive de facto standards. This risk is balanced by the establishment of an
industry review process, which will be open to Java licensees. There
has also been a recent move by Sun to submit Java to ISO for (inde
pendent) standardisation—a move fiercely contested by the rest of the
industry, since Sun wishes to retain control of Java standards and thus
appears to be trying to use ISO to rubber-stamp its own interests.

• Novell has established close links with JavaSoft as the basis for a repo
sitioning around a product line known as IntraNetware, based entirely
on the technologies described above. Novell aims to become the one-
stop shop for Intranet technology, building on their Netware channel.

• Oracle and Informix have both announced frameworks based on net
worked computing and Java (Network Computer Architecture and
Universal Web Architecture respectively). Oracle are also enhancing
their applications to allow, for example, an Oracle Manufacturing sys
tem to handle stock-level queries and ordering from any Java-enabled
client.

• Although not a vendor, the Object Management Group (OMG) is an
industry standards body which has developed specifications for dis
tributed object-oriented computing, under the brand of CORBA. The
CORBA interoperability protocol (HOP) is the chosen basis for all the
above distributed computing initiatives and products. The CORBA se
curity specifications (CORBASEC and SECIIOP) are likely to become
the basis for secure distributed Java-based computing. The availability

ICL System s Journal May 1997 7

of client support for CORBA HOP in the next release of the JDK from
JavaSoft, will place CORBA-based security products in an important
position in the growing distributed computing market.

Netscape has a strong link with JavaSoft and has been buying into
Internet technology companies (e.g. Visigenic, a producer of CORBA
distributed ORB technology). Netscape has just announced Communi
cator, a Java-enabled groupware suite with in-built CORBA HOP sup
port.

Corel, who now owns the WordPerfect Office products, have re-engi
neered them in Java to produce the Java Office Application suite; initial
product versions of these are now available.

IBM has established a new Network Computing Products Division to
exploit the opportunities provided by Java and related technologies and
has announced a Network Computer product. Lotus has produced Java-
enabled versions of Notes (with considerable help from JavaSoft).

Sun, Netscape, IBM and Novell are jointly sponsoring a high profile
"Java Education World Tour".

Even Microsoft has embraced Java (reluctantly at first) and indeed its
strategic software development tools support Java (the J+t tools) equally
alongside Visual C++ and Visual Basic. Microsoft is making moves which
suggest that it wants to wrest control of the Java language from Sun,
including the release of a Windows-specific native compiler for Java.
There are rumours that the company will produce a compiler from Visual
Basic to Java byte-code, which, like Microsoft C and C++, could be partly
interpreted and downloadable over the network into Windows client
systems.

Microsoft would like to hide Java components inside ActiveX wrap
pers; JavaSoft would like to do the opposite. The battleground is over
control of Enterprise (and open) distribution architecture and protocols.
Microsoft, intent on expanding from the desktop to the enterprise server,
is pushing Distributed COM and "the rest" are using CORBA HOP as
distributed networking protocols. A key deciding issue here could be
the credibility of the distributed security features of each offering.

Sun has licensed ICA—a Citrix Systems Inc. protocol enabling ultra thin
clients to execute Windows applications on the server—for incorpora
tion into the Java Virtual Machine. ICA-based clients with WinFrame
servers offer a possible alternative strategy to Java in some circum
stances.

Many software development tool vendors are hastily converting their
existing C*+ and Visual toolsets to become Java toolsets. Leading toolsets

ICL System s Journal May 1997

include Symantec Visual Cafe Pro.

• Java is seen as an opportunity by vendors of well-established soft
ware products to re-vitalise them in the guise of "Internet-enabled"
products.

9. How Will Java Change the Future?
Java and its associated technologies will speed the globalization of infor
mation systems. The ability to download software, as it is required, will
break down barriers within and between organisations, allowing rapid ac
cess to information or services anywhere on the global information net
work. Early adoption will be in applications where security is non-critical.
However, the extent to which electronic commerce is able to benefit will
depend upon the establishment of a global infrastructure of trusted secu
rity services.

Proliferation of "Thin Client" systems, NCs and PDAs, all running
downloaded Java software, will truly enable access by "anyone, anytime,
anywhere". Simplified client systems and software will greatly reduce the
total cost of ownership of desktop systems (estimated reduction by a factor
of 4). The move away from "fat clients" will substantially loosen the grip
of Microsoft on the desktop. Potential beneficiaries include not only the
(mainly software) vendors identified in the previous section, but also sup
pliers of simplified hardware platform technologies, such as Acorn (ARM
processors).

Network- (or server-) centric distributed computing will lead to a new
generation of client-server architectures in which the revitalised role of the
server as the trusted guardian of shared resources including information,
services and software will be crucial.

Java-based Intranet systems will enable organisations to exploit their
information assets more effectively to achieve integration and co-ordina
tion within the organisation.

It will be easier to integrate business processes between different or
ganisations, as well as between individuals and organisations. This is a
consequence of the elimination of the need to pre-install or configure soft
ware before doing so: it will be automatically downloaded as required.

Since software will generally not be permanently installed on a client
system, new software charging models will be utilised such as pay-by-use,
or server-session-based, etc. This may lead to new distribution and chan
nel models for client software.

Java portability ("write once, run anywhere") will reduce software pack
aging and distribution costs. Its rich set of libraries, component-based soft
ware integration model ("Java Beans") and safety features will increase
development productivity.

Portable software reduces customer "lock-in" and will affect the struc
ICL System s Journal May 1997 9

ture of competition in the industry.
A component-based software architecture provides opportunities for

niche software vendors to develop specialist components which can be read
ily integrated into other applications and end-user solutions.

The ability to manage client software from a central server opens new
opportunities for service providers to offer fully serviced IT facilities to small
businesses—the IT equivalent of fully serviced office suites.

Figure 3 A Vision of the "Networked Organisation", showing the
positioning of Java, and the potential exploitation of related technologies
& services.

10. Java Opportunities
10.1 Networked Business Solutions
Java will undoubtedly bring about fundamental changes in the nature and
profile of IT provision within the arena of medium to large organisations.
This will affect not just product businesses, but also the way in which solu
tions and services are integrated, deployed and maintained.

Several software vendors are developing downloadable Java versions
of Groupware client applications; this immediately enables anyone with a
Java-enabled client to use Groupware services. The general approach is to
evolve Groupware products into Java components ("Beans"), which can be
flexibly integrated into business solutions, either by software vendors or
by third party solutions builders.

Such products are initially targeted at the Intranet market, eventually
ICL System s Journal May 199710

providing a comprehensive framework for the operation of an organisa
tion's core business processes—both internally and in its interactions with
other organisations (and individuals) over the Internet. Longer term evo
lution of groupware products will enable the collaboration of geographi
cally dispersed participants into virtual groupings for social, educational
or community purposes.

10.2 Java-based Services
Java-based computing offers the opportunity to provide innovative serv
ices over the Internet to anyone who has a Java-enabled Web Browser. ISPs,
for example, could host Java-based services for external services customers
(e.g. the First Direct Home Banking service). Equally, they could offer "fully
serviced virtual offices" to small businesses, based on downloadable Java
applications, removing software administration burdens from unskilled
users. Networked services for small businesses could include simple ac
counting, stock management, virtual purchasing groups (combining the
buying power of numerous small retailers to achieve wholesale price re
ductions) and product and service directories.

10.2 Consumer Devices
Perhaps the most exciting opportunity for Java is that originally envisaged
by SUN at its genesis—the routine embedding of programmable devices
into consumer products. Products ranging from electronic and white goods
to mobile phones and set-top boxes already incorporate microprocessors.
Indeed, it is widely reckoned that over half the lines of code written each
year are for such purposes; but, typically, the software is non-portable and
hard-wired into the devices.

During the 1980s, advances in technology made it possible for general
purpose computers to abandon the machine hall for workers' desks and,
more recently, people's homes. Trends in technology and costs continue
inexorably and the next market era will see general purpose computing
devices embedded in consumer products, connectable to "the network".
Just as the size of the desktop market long ago outstripped that for central
DP systems, it is likely that the consumer market will dwarf both of these
(see Figure 4).

An early example of such devices is the Java-enabled set-top box, pro
viding interactive access to a wide-range of information-based services, as
well as media broadcasts. Another example is the Personal Digital Assist
ant (PDA) which combines the convenience of a personal organiser, the
freedom to rove of a mobile phone, together with the programmability and
application availability of a PC to deliver networked services "anytime,
anywhere".

ICL System s Journal May 1997 11

Figure 4

10.4 Software Engineering
The Java phenomenon exemplifies a movement towards object oriented
methods/ tools and technologies/ which has been gathering momentum over
the last few years and is now rapidly gaining widespread adoption. One of
the key factors has been the natural synergy between 0 -0 approaches and
distributed computing. 0 -0 methods and approaches have a natural
synergy with the tools and technologies being developed under the Java
banner. As noted above, this could well pave the way for Java supplanting
C++ as the preferred language for large software developments.

11. Conclusion
Successive generations of computing devices have seen an exponential trend
in volumes and total market value. The next major growth area is likely to
be in networked consumer devices, with volumes predicted in billions. Java
paves the way for development of this new market by providing inherent
platform independence and distribution capability. Network-centered com
puting will create new products for consumers (whether home or business)
and new opportunities for information-based service suppliers.

Acknowledgements
The author would like to acknowledge assistance in the preparation of this
paper from Simon Kenyon, who is an ICL Distinguished Engineer and Java
consultant for ICL itcentre.

12 ICL Systems Journal May 1997

Java and Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc.

References
Computing Strategies, Forrester, vol. 12, no. 3, January, 1995

A vast amount of documentation is also available on the World-Wide
Web. Useful starting points include:

JavaSoft White Papers & Java Specifications

http: / / www.javasoft.com

Novell strategic alliance with Sun

http://www.novell.com/strategy/sunqal3.html

The Oracle Network Computing Architecture

http://www.oracle.com/nca/index.html

Informix Universal Web Architecture

http: / / www.informix.com/

Corel Java Office Suite

http://206.116.221.27/

IBM Network Computing Products Division

h ttp :// www.intemet.ibm.com/

Netscape Intranet client-server software

h ttp :// www.netscape.com/comprod/announce/index.html

Microsoft Java Strategy White Paper
http: / / www.microsoft.com/ntserver/JAVAWP.EXE

Biography
Nic Holt is a Systems Architect in ICL High Performance Systems.

He has worked for ICL in a wide variety of technical roles since 1972, and is
currently developing a technical architecture to support the evolution of
the business systems of a large UK Government customer; the eventual
system will be one of the largest in the world. Nic is an ICL Distinguished
Engineer, a Fellow of the BCS and a Chartered Engineer. He has strong
links with the research community, is a member of the EPSRC IT & Compu
ter Science Panel, and was appointed a Visiting Professor at Glasgow in
1990.

ICL System s Journal May 1997 13

http://www.javasoft.com
http://www.novell.com/strategy/sunqal3.html
http://www.oracle.com/nca/index.html
http://www.informix.com/
http://206.116.221.27/
http://www.intemet.ibm.com/
http://www.netscape.com/comprod/announce/index.html
http://www.microsoft.com/ntserver/JAVAWP.EXE

Mobile Agents—The new paradigm in
computing

L. L. Thomsen and B. Thomsen

Research & Advanced Technology, ICL, Bracknell, Berkshire, UK

Abstract

The emergence of agent based systems is signalling the beginning of
one of the most important paradigm shifts in computing since object
oriented methods and client/server based distributed systems. This
paradigm shift will obviously require technology development, but
of equal importance, or perhaps of even more importance, it will also
require substantial education and methodology development. It is
not hard to predict that agent technology is an important emerging
technology, since it is already beginning to send shock waves through
the computer industry. In the current hype, however, it is particu
larly difficult to distinguish publicity from reality and to get a clear
impression of what agents are all about. In this paper we will try to
give a comprehensive overview of what mobile agents are, what they
may be used for and what the technical issues are.

1. Introduction
The importance of agent technology is not hard to predict, since shock waves
are already being felt throughout the computer industry. A steadily in
creasing number of research projects, prototypes and even products con
taining, or claiming to contain, agent technology are being announced al
most daily, and autonomous and mobile agents are beginning to appear on
the internet. The emergence of these agent based systems is signalling the
beginning of one of the most important paradigm shifts in computing since
the introduction of object oriented methods and client/server based dis
tributed systems.

It seems inevitable in computing that whenever a new concept is pro
posed a hype is created and promises are made of a cure for all ills. So it is
not surprising that with agents the current hype is making it particularly
difficult to distinguish publicity from reality and to get a clear impression
of what agents are all about.

Based on our experience of the Facile project at ECRC [Thomsen et. al.
1996a], [Thomsen et. al. 1996b], in particular the development of the Mo
bile Service Agent [Thomsen et. al., 1995a] application and Eclipse Agents
[Bonnet et. al., 1996], together with our continuing survey of other research
projects and emerging products, we will try to give a comprehensive over

14 ICL System s Journal May 1997

view of what mobile agents are, what they may be used for and what the
technical issues are.

2. Mobile Agents—what they really are
Beyond the confusion created by the current hype there is to some extent
an understandable confusion about agents, since there are, at least, two
categories: intelligent agents and mobile agents. Historically, the two types
of agent have been proposed and studied in rather different research com
munities. Intelligent agents have been studied quite extensively for sev
eral decades in the AI community, whereas mobile agents are more recent,
mainly coming from distributed computing and to some extent from the
programming language research communities.

Intelligent agents have been mainly studied in the context of robotics,
planning and scheduling and machine learning to enable computer sys
tems to act on partial and /o r inconsistent information; e.g. letting robots
learn about their environment or letting agents assist users by learning their
preferences. Simple intelligent agents are making their way into products
in the fields of handwriting recognition and information filtering, but the
more spectacular dreams of human-like intelligent agents have so far failed
to materialise.

Mobile agents, in contrast, need not be "intelligent"; in fact most mo
bile agents do not satisfy the AI community definition of "agent-hood".
Put bluntly, mobile agents are just fragments of programs and their execu
tion state that travel around a network of computers. Downloading an

ICL Systems Journal May 1997 15

agent is often no different from downloading an application from an FTP
site, except that the agent can take advantage of the client's infrastructure
for agents without involving the user. The infrastructure (i.e., the client's
program that receives and executes agents) allows the user to download
and run an agent without having to take the steps of creating source direc
tories, configuring, compiling and installing binary program images. This
simplicity makes it much easier to download applications for temporary
use; the user can retrieve the application with little effort, examine it and
then throw it away or save it for later use. The catch-phrase here is "soft
ware on demand" — plug in an empty computer and the software you
need comes to you. When you have finished, you can throw away the
software so that you do not need to buy a bigger hard disk!.

Clearly, mobile agents can be used for more than just a convenient way
of distributing lightweight applications but we shall return to this later.

3. Mobile Agents—what they can be used for
As the trend towards ever greater integration of computing and communi
cation systems grows, an increasing number of people will expect to have
access to information and computing power anywhere and at any time.
This greater integration will facilitate the development of new leisure ac
tivities and working practices.

From a technology point of view, it is certain that the immediate future
will be characterised by very heterogeneous systems, with people access
ing the global information infrastructure, as well as corporate networks,
via a variety of devices, ranging from mobile phones, personal digital as
sistants (PDAs) and mobile communicators to dumb terminals, PCs and
work stations. The borderline between work and pleasure will become
blurred and the devices used for work and pleasure will be the device suit
able for the task at hand, rather than the physical location of the device.

3.1 Characteristics of new distributed systems
In this extremely diverse and rapidly changing and challenging environ
ment, flexibility and adaptability are key characteristics that the new dis
tributed systems must have. Current technology will be or is being adapted
and modified to operate in new ways to support this. In particular, there
has been a move towards object oriented client/server systems in recent
years.

However, in the object oriented client/server model for distributed
computing, communicating systems have to interact through predefined
interfaces supported by preprogrammed methods. Each interface has im
plications for how the resources at each system can be accessed, what infor
mation can be exchanged, how control flow in an application can be dis
tributed over the network, and what connectivity must be maintained be

16 ICL Systems Journal May 1997

tween interacting systems.
Although some of these limitations in client/server interfaces are be

ing addressed via the notion of interface brokers, many systems restrict
communications to simple data. These restrictions constrain how applica
tions can use the distributed system infrastructure. As systems move to
wards richer data formats and communication protocols, more possibili
ties for innovative applications emerge. The contrast between the available
services, based on FTP, versus those based on the WWW dramatically shows
this principle in action.

In developing new distributed system infrastructures, the next step to
wards increased flexibility is to communicate programs, not just data. For
example, there are now proposals for including programs in the MPEG-4
video transmission standard [ISO, 1996], as well as in the virtual reality
standard, VRML [Bell et. al., 1995]. PostScript also falls into this category,
but the most spectacular example is probably the use of Java applets
[Campione and Walrath, 1996] for transmitting executable contents on the
WWW. In this respect it is also worth mentioning TeleScript [White, 1994]
and Java servlets [Campione and Walrath, 1996] in the field of specialised
servers.

However, each of the above mentioned systems has a very specific use
for transmissible programs. By generalising the principle, transmissions
can contain pieces of program code that can travel around a network and
be executed at different nodes. Such program "fragments" can carry com
munication links with them, their own execution state, data, local proce
dures and other types of information. These travelling programs are called
"mobile agents". By using communicating agents within a distributed sys
tem, applications can essentially program the network to suit their particu
lar needs. The resulting communications interface is so rich that the above
mentioned restrictions on how clients and servers can interact effectively
disappear. Hence mobile agents can serve a variety of purposes in distrib
uted systems.

3.2 Some uses of Mobile Agents
Many people have already experienced—maybe unknowingly—the first
instance of mobile agents through the use of Java applets [Campione and
Walrath, 1996] and Javascripts [Kent and Kent, 1996] to add active contents
to HTML documents on the internet. TeleScript [White, 1994] and Safe-
TCL [Gallo, 1994] have been proposed for similar use in adding active con
tents to e-mails. To some extent these "all singing and dancing" e-mails
and home pages are just the vanguard of novel applications based on the
mobile agent principle.

More generally, mobile agents can be used to distribute interfaces to
servers, since an executing agent can communicate repeatedly without in

ICL System s Journal May 1997 17

tervention from the user, allowing the construction of dynamic services,
such as watching the fluctuation of share prices, and only notifying the
user when certain thresholds are reached.

Mobile Agents can act as local representatives for remote services, pro
vide interactive access to data they accompany, and carry out tasks for us
ers temporarily disconnected from the network. Agents also provide a means
for the set of software available to a user to change dynamically according
to the user's current needs and interests. This idea forms the basis for the
"slim" client or Networked Computer.

In a "wireless" network, agents can dramatically reduce the need for
communication. For example, consider a service that is normally accessed
by first completing a variable series of forms. This interface could be im
plemented by sending each form to the client, receiving and processing the
completed form and then sending the appropriate next one. On a "wire
less" network it would be much less expensive to receive one agent with all
the forms and the logic for using them followed by one transmission to the
server. Even in wired networks the reduced need for communication can
be of importance. Since networks are now spanning the Earth one has to
take into account that one's communicating partner may be on the other
side of the globe and that the upper limit to the speed of communication is
dictated by the speed of light.

By reducing communication needs, agents can also mask poor "wire
less" links. If the user is accessing a service through an interactive inter
face, the interface may be unusable if network interruptions are frequent,
even if the latency is low. Infrared local area networks are an example of a
"wireless" network with this characteristic. As a user moves between rooms
or round comers, the connection can be momentarily lost. An agent that
encapsulates as much of the interface as possible can make the perform
ance acceptable. Agents that can function in a stand-alone mode are suit
able for nomadic systems that have no "wireless" connections.

Agents may allow servers to use customised communication protocols
with clients. To receive an agent initially, the client and server must share
some standard protocol. Once the agent is running, though, it can use a
specialised protocol for communicating back to its home server or for com
municating with other agents that it knows of; e.g. as in the case of the
previously mentioned "stock market agent". Mobile agents may even move
(teleport) themselves to different locations depending on the need of the
application; e.g. querying a large database can be done by moving to the
site of the database.

A promising area where mobile agent technology may prove very use
ful is in updating services in nonstop systems such as telephone switches.
If the control program is structured as an agent, one may perceive sending
it a replacement agent to take over when new services are to be offered.

18 ICL System s Journal May 1997

The "old agent" and the "new agent" could coordinate their actions in such
a way that the new agent gradually takes over from the old as incoming
calls are being closed and new incoming calls are being opened. This strat
egy could be used for software upgrades in general. For example, a
spreadsheet program could be structured as a system of agents and, as the
vendor upgrades parts of the spreadsheet, the modified agents can be dis
tributed to users via the global information infrastructure for automatic
integration into their copies of the program.

Agents can serve a similar function in computer-integrated manufac
turing systems. A new component, added to a system, could introduce
itself by sending out an agent that provides an interface to the features of
the new component and smoothly integrates it into the production control
network. Essentially the component reprograms the control network to
recognise and use it via its interface agent.

This use of agents for nonstop systems is also applicable to retail out
lets where different devices, such as scanners, card readers and printers,
are often added to the system. Similarly, new services, such as loyalty card
point collection and the like, are added to the software of supermarket cash
points. Large superstores now often operate on a 24 hour basis and it is
becoming increasingly difficult to power down a busy store to do such ad
ditions. Again if the software is structured as agents, both new services
and drivers for new hardware components could be added in a nonstop
fashion.

Another area of application for mobile agents is groupware. Agents
could be sent as attachments to messages to display their interactive con
tent, and they could be used to filter and format electronic news depending
on the user's preferences or corporate status. Agents could be used to alert
the user of events of interest, such as updates to electronic calendars, or
they could be used to negotiate meeting schedules. Mobile agents could
also be used in workflow applications, where the agents know where to go
in which order and what each human has to do. More ambitiously, mobile
agents could be used to structure collections of groupware and distribute
updates to software, as mentioned above, or to distribute new clients on
client/server systems; e.g. a teleconferencing system could distribute cli
ents to the participants before a session starts.

3.3 Benefits of Mobile Agents
Mobile agents may help people on the move by allowing them to download
software useful to them as they are physically mobile. But mobile agents
can also help people to stay where they are by enabling them to send soft
ware agents remotely on their behalf, thus enabling them to be virtually
mobile. In fact, a combination of physical and virtual mobility can elimi
nate the need for carrying heavy equipment by transporting (teleporting) a

ICL System s Journal May 1997 19

user's communication and computing environment to the user's destina
tion. It is much easier to move electrons than molecules and, as discussed
above, mobile agents may help a person to use expensive resources more
efficiently when physically mobile.

Such applications can be implemented, of course, without the use of
mobile agents. There is at present no one convincing "killer" application
that stands out and demands mobile agent technology, except perhaps the
replacement of software modules in spacecraft. However, it is the enabling
factor that mobile agents offer that is important since much tedious imple
mentation work may be eliminated by establishing the infrastructure for
mobile agents.

Application developers are already finding the platform independence
and automatic memory management offered by Java [Arnold and Gosling,
1996] a decisive factor. However, it is important to realise that Java applets
are only scratching the surface of what is about to happen. Developers are
finding Java limiting when trying to implement some of the more advanced
visions of what agent technology is all about. This is mainly due to the fact
that Java, despite being platform and operating system independent, is not
a language for distributed computing and definitely not a language for pro
gramming "full-grown" mobile agent systems. Although this criticism may
seem extreme, since it is always possible to apply an agent oriented pro
gramming style in any sufficiently expressive language, the fact is that Java
does not include constructs for directly supporting distributed computing,
such as communication and persistence, nor does it contain constructs for
supporting mobile agents, such as agent transport mechanisms and loca
tion change.

4. Mobile Agents—the technical issues
To unleash the full potential of mobile agents it is necessary to address a
whole spectrum of issues from many different areas of computing. In fact,
mobile agents and mobility seem to touch the foundations of computing,
uncovering and breaking many of the tacit assumptions built into the cur
rent computing and communication infrastructure. Furthermore, the ad
vent of mobile agents is stimulating solutions to "old" problems; e.g. one of
the more spectacular visions for mobile agents is letting an agent or agents
roam the internet searching for information. However, the main problem
in this vision is not in getting the agents to move from place to place, but
rather in solving the problems of schema integration and query optimisation
that have been discussed in the distributed database community for dec
ades, plus the fact that most data on the internet is held in unstructured
data formats such as ASCII files. Similar arguments apply to questions of
security, authentication and "wireless" communication.

Mobile agents are about moving code around in distributed systems,

20 ICL System s Journal May 1997

allowing the code to be transported and executed in different locations and
carrying out tasks on behalf of somebody. Thus the following questions
need to be answered:

• how is the code transmitted
• how is the code executed
• what assumptions can the code make about its execution environ

ment
• what assumptions can the environment make about the received

code
• how is the code constructed
• who constructed the code
• on whose behalf is the code executing.

Furthermore, since it is unrealistic to assume that agent based systems
will have the luxury of being started from scratch, questions have to be
answered about how systems based on mobile agents are to be implemented
and executed on legacy systems, such as today's operating systems:

• what assumptions are broken
• how can they be repaired.

Obviously, systems based on mobile agents will need to address se
quential programming, but most agent systems will also have aspects of
concurrency needing communication and synchronisation. In a globally
interconnected world, aspects of distributed computing, such as partial fail
ure, different communication mechanisms and general quality of service,
clearly need to be addressed. Furthermore, associated with the issue of
physical mobility are the problems of location dependence and independ
ence, disconnectivity and communication mechanisms with different band-
widths and costs to which solutions are required. Many, if not all, of these
issues are not particular to mobile agents, but are general issues for reliable
distributed and mobile computing.

These issues will be discussed in the following sections dealing with
programming languages, architectures and security.

5. Programming Languages
Although much research on mobile agents is carried out in the distributed
computing community, there is a strong emphasis on programming lan
guages in the discussion. There are two reasons for this: firstly, agents need
to be created and their behaviour described and, secondly, computations
have to be able to move between machines.

5.1 Creating agents
Agents can be created in any language, just like the well-known fact that in

ICL System s Journal May 1997 21

order to create objects there is no need for an object oriented programming
language—in the early eighties a number of books were published on how
to perform object oriented programming in COBOL, PASCAL and C. Clearly
a programming language with an object model, like C++, Java or CORBA's
IDL, makes object oriented programming easier. To quote Peter Nauer:

"There are no right or wrong models of computing—there are some
models that are more suited for a given purpose than others."

Hence, for agent programming a new language is not necessarily
needed, but a language that directly supports the notion of mobile agents
may make the task of constructing such agents easier, since such a language
will support the programmer's mental model more directly.

5.2 Moving computations
This being said, however, there is one major difference between conven
tional systems, including distributed object oriented systems, and mobile
agent systems, namely, the question of moving computations between ma
chines. In some distributed object systems, e.g. CORBA (Common Object
Request Broker Architecture), it is possible to achieve the effect of moving
computations from one location to another by replicating the code of an
object, freezing and marshalling its state and then sending it across to a
different location, where the computation can continue because the code
was already there. This approach only works if the installer of the software
has control over the entire system and, at construction time, had enough
foresight to know what code might need to be replicated.

In general there is no substitute for moving code, for example, down
loading the needed software to an empty laptop before disconnecting and
going "on-the-move".

A minimal requirement is that the code is relocatable, but more gener
ally the code should also be machine independent. It is also desirable that
the code is able to express constraints that it expects to be satisfied from the
underlying platform and to express exceptional behaviour if these con
straints are not satisfied. Furthermore, there is a question about the context
of the code, especially its state and the communication links that the code
carries with it.

Since code transmission, or transmission of computations, is given, some
way of describing these computations is needed, and a programming lan
guage is just that—a way to describe computations. In principle, one does
not need a new programming language for this, any programming lan
guage will do, even just sending machine code.

Sending machine code clearly only works for hom ogeneous
architectures, although cross compilation or emulation would go some way
towards solving this problem. The internet is a very heterogeneous net

22 ICL System s Journal May 1997

work, thus sending machine code does not seem a viable option, but, for
example, on many corporate PC networks it is safe to assume that almost
everybody has a processor compatible with the Intel 386.

However, it is generally considered to be unsafe to receive and execute
machine code, unless the code comes from some trusted supplier; e.g. it is
generally considered safe to download a program from Microsoft or even a
well reputed FTP site on the Internet, but letting arbitrary programs enter
your machine is not acceptable. The problem is that machine code is very
low level and it is hard, if not impossible, to predict what the code is going
to do, and standard operating systems do not provide the right kind of
protection for the user's data when such code is running under the user's
own account or on the user's PC. This is mainly a problem of standard
operating systems, which were not developed to cope with moving code
around machines. But changing the operating system is difficult, even for
Microsoft! Thus the machine code option for agent code transmitted by the
general public should be left out.

5.3'-Alternatives for moving computations
One alternative could be to send source code in some conventional lan
guage and to compile it on receipt. However, this approach will suffer
from the above problem if the language is considered unsafe (e.g. C /C ++
and even PASCAL). Moreover, this approach suffers from a lack of inte
gration with the run-time environment. Normally, in a conventional lan
guage, all the code in a program is assumed to stay in a single address
space. To maximise performance, conventional compilers strive to make
the code as machine specific as possible, making this a seemingly difficult
option as well.

Currently, many people consider that a safer alternative is to define a
new scripting language (safe TCL is one such example) and have the code
interpreted or have the program compiled to some intermediate represen
tation (e.g. byte code) which can then be interpreted and thus checked at
run-time for bad behaviour (Java and Telescript adhere to this approach).
It may be quite natural to think that this is the way to go, given the trend
towards defensive programming in normal application programming in
terfaces (APIs), where the programmer will put in checks to ensure that the
parameters passed through the API satisfy the conditions for correct func
tioning of the API. However, this is just because the level of abstraction of
the data passed through APIs is very low. If a higher level of abstraction is
applied and guaranteed not to be compromised, defensive programming is
not necessary. The same argument applies to transmitted code.

A third alternative is to receive intermediate code and to compile it
"on-the-fly" (this technique is well developed for functional programming
systems—the so called "parse, compile, execute loop"). Here code can be

ICL System s Journal May 1997 23

checked statically (or rather before execution) then compiled and executed
at the full speed of the native code without fear of error, assuming that the
compiler/system support is implemented correctly. There is nothing new
here, it is simply that it is possible to take advantage of some considera
tions on ensuring type safe integration of new computations into a running
system that have been developed over many years of research; e.g. Facile
[Thomsen et. al., 1996a] uses this approach.

In fact, combinations of interpretation and compilation may be called
for depending on the execution platform and/or the size of the agent and
its expected run time performance. It is not always worth compiling an
agent since it may only run a small program and, perhaps infrequently.
Sometimes its execution performance is dominated by slow external com
munication and sometimes by (slow) user input. In these cases it may be
sufficient just to interpret the code. In other situations, where the agent
code is bigger or needs to run as fast as possible and be run repeatedly, it
may be worthwhile compiling the agent to use native execution. The right
choice between interpretation and compilation is difficult to make, and there
are only preliminary results to guide developments [Knabe, 1997].

6. Architectures
As already mentioned, an infrastructure to support both clients and serv
ers, sometimes called agentware, is needed. In fact, using the client/server
metaphor in discussions on agentware may be misleading, since agent ori
ented systems will (have to) move towards a peer-to-peer architecture. As
the agent language gets richer, more things need to be supported in its run
time environment and this clearly has implications for the software archi
tecture of systems.

6.1 Traditional approach
Currently, when constructing distributed systems, it is necessary to use
multiple programming styles with incoherent programming models, and
often it is necessary to resolve conflicts by using low level methods even
reverting to the lowest common denominator. Historically, application
developers split their system so that application specific subsystems de
pended directly upon the operating system. However, application imple
mentors often experience difficulties with their applications not being port
able because each operating system has its own distinct application pro
gramming interface, and different versions of the applications employ dif
ferent subsystem architectures due to the fact that distinct operating sys
tems provide services that differ in kind and semantics.

6.2 Middleware
To achieve machine and operating system independence layers of software

24 ICL Systems Journal May 1997

hiding the platform particulars, so called middleware layers, have been
developed. Middleware providers distinguish themselves by implement
ing a particular collection of services that they advertise as useful. For ex
ample, the Open Software Foundation's Distributed Computing Environ
ment (OSF/DCE) [Johnson, 1991] offers communication, naming and secu
rity services, COMANDOS [Cahill et. al., 1994] defines and implements a
virtual machine that hides distribution to the programmer, while ANSAware
[APM, 1989] provides support for federated client/server applications and
distributed objects in a similar manner to Object Management Group's
Common Object Request Broker Architecture (OMG/CORBA) [OMG,
1992a], [OMG, 1992b], [Mowbray and Brando, 1993]. Existing middleware
is mainly a collection of useful services, but most often not a very coherent
collection. This is due essentially to the fact that existing middleware was
developed following a bottom-up approach from low-level services to lan
guage support.

Middleware is mainly a set of library functions which can be embed
ded within a host language or linked with routines in some other language.
In addition to this, there is often a collection of macros and possibly a rela
tively simple language for describing data/simple objects to be transmit
ted as well as a stub compiler for translating from the common external
representation to a representation in the host language (e.g. C/C**, Ada,
Fortran).

Attempts to adapt the middleware approach to agent based systems
have clearly been pursued. Examples include the Knowledge Interchange
Format (KIF) [Genesereth et. al., 1992] and the Knowledge Query and Ma
nipulation Language (KQML) [Finin et. al., 1994], coming mainly out of the
distributed Al community. However, as we have mentioned already, mo
bile agent systems differ from client/server architectures.

6.3 Agentware
Similar to middleware, agentware needs to integrate "services" tradition
ally found at different layers in current operating systems. Integration of
concurrency constructs is needed to allow agents to spawn off sub-agents
to carry out tasks locally or remotely, and synchronisation and communi
cation mechanisms are needed for these to be able to synchronise their ac
tions and communicate tasks and results back and forth. A safe interface to
the local file system is also needed. But agentware also needs to integrate
features of advanced programming language run-time management, e.g.
automatic memory management is needed for higher level management of
the physical memory, but it is equally important for ensuring that agents
cannot peek and poke in other agents' memories. Agentware also needs to
integrate concepts found in graphical user interfaces.

Clearly agentware can be implemented to sit on top of existing operat

ICL Systems Journal May 1997 25

ing systems and this situation will be predominant in the foreseeable fu
ture. However, it is worth revising many of the layers in current systems
architectures since agentware will otherwise end up duplicating services
from the operating system, communication packages and window man
agement systems. Already the layered systems in the communication sub
systems suffer inefficiencies due to the lack of integration, e.g. on most TCP/
IP implementations a message is copied three times before it actually "goes
on the wire". Similarly, agentware will duplicate operating system fea
tures such as memory management, process/thread control and resource
management in general. It is this realisation that lies behind the push to
wards the Java operating system and Java hardware.

7. Security
Mobile agents bring with them the fear of viruses, Trojan horses and other
undesirable things. In many respects a mobile agent has similar character
istics to that of a computer virus. It may transport itself from computer to
computer, it may use resources (CPU time, disk space, communication band
width, etc.), it may spawn copies of itself or create further mobile agents to
achieve its goals. The major difference is that a mobile agent is benign and
supposedly useful and friendly, but clearly it will not always be sufficient
to rely on the creator's good intentions.

The foremost security concern with mobile agents is that they may in
troduce a very simple way of penetrating the security fire walls that tradi
tional operating systems set up to protect local resources from misuse and
tampering. This is due mainly to such systems being conceived at a time
when software was difficult to move from machine to machine, and in
stalled software did not communicate with the outside world. The concern
in traditional multi-user systems was to protect the users from interference
with each other. Such systems assume that the user is in control of the
software he or she is executing and will ensure that execution under a user
account or on a user's PC could at worst harm that user. However, these
system assumptions are not applicable when mobile agents start to move
from host to host and are executed in different locations and different envi
ronments. Thus it is clearly understandable that IT managers are concerned
about the potential risks posed by mobile agents, based on their experi
ences with viruses in corporate PC networks.

Security aspects can largely be separated into issues concerning au
thentication, privacy/confidentiality and integrity.

Authentication is not a problem specific to mobile agents, but mobility
and mobile agents add a good stress test to existing approaches. Authenti
cation is needed in any multi-user system, in particular in distributed multi
user systems operating in an open network infrastructure. The authentica
tion of users is needed for determining their access rights (for their agents)

26 ICL System s Journal May 1997

and other capabilities. This is traditionally done via log-in procedures where
user IDs and passwords are checked against account information stored in
the computer system. However, this model assumes that the user is going
to have a one-to-one session with the computer. This view breaks down
when the user views the computer as a communication device to a net
worked communication and computing infrastructure. In this scenario cre
dentials may have to be checked whenever an agent moves around and/or
during execution. The user may need to have a unique ID (e.g. a phone
number, credit card, smart card or IP address) or multiple IDs and know
when and how to use the relevant one.

Beyond the traditional authentication procedures, most (proposed) so
lutions are based on encryption and digital signatures. Integrating these
with the mobile agent paradigm has the advantage that the problem of
letting mobile agents purchase goods or services on behalf of their users
can be readily solved as well. However, general solutions in this area are
still being sought, partly because there are technical problems to be solved
and partly because of political constraints; e.g. US export restrictions on
some encryption methods prohibiting their use outside the US. In the same
vein, France has restrictions preventing private citizens using any form of
encryption.

As discussed above issues regarding privacy and confidentiality are
currently being dealt with using techniques based on new programming
languages and compiler technology specifically oriented towards safe ex
ecution, combined with new secure application interfaces added to exist
ing operating systems or even new operating systems. The main approach
to systems based on mobile agents is based on the development of safe
languages; i.e. languages that do not allow peek and poke, unsafe pointer
manipulations and unrestricted access to file operations. This is often
achieved through interpreted languages. Java [Arnold and Gosling, 1996],
Safe-TCL [Gallo, 1994], Telescript [White, 1994] and VBScript [Holzner, 1996]
are examples of this. Following this approach all (or at least all the per
ceived) dangerous operations are forbidden or (minimally) monitored. As
mentioned earlier the same level (or even a stronger level) of security can
also be achieved by advanced compiler technology that allows native code
to be generated and executed.

7.1 Particular concerns with Agents
The first concern in agent security is about the client downloading an agent
from the net, but there is an almost symmetric issue that can be paraphrased
as "agents going to places of ill-repute" in the sense of somebody sending
an agent on his or her behalf. Will the person be allowed to do so and, if so,
without interference? These are difficult issues since hosts need to execute
agents and, for security reasons, need to analyse their code, but agents

ICL System s Journal May 1997 27

should not reveal information beyond that strictly necessary for safe ex
ecution; e.g. an agent trying to buy the cheapest ticket should not reveal the
current lowest price so that a host that sees this could get away with bids
just under the current best as opposed to normal cut-throat pricing. The
best hope is to apply a style of programming that will be hard to reverse-
engineer.

Even when the fear of viruses has been eliminated, mobile agent sys
tems may be a great deal more complex to develop than traditional client/
server applications since it is very easy to create agents that will counteract
each other or inadvertently “steal" resources from other agents. Just as
with client/server systems, constructors of systems based on mobile agents
may inadvertently introduce logical bugs such as deadlocks and livelocks.
Since an agent can move from place to place, it can be very hard to trace the
execution of such systems and, when constructing such systems, special
care must be taken. Analyses of such systems requires the most advanced
results from concurrency research, e.g. [Borgia et. al., 1996], [Degano et. al,
1997],

Clearly electronic commerce and the global information society are open
to fraud, trust misuse, malicious misinformation and even "terrorist-like"
attacks, just as in society today. Most agent systems address collaborative
agents, or personal agents, in order to simplify user interaction and infor
mation gathering. However, offending applets are becoming a problem for
some businesses on the internet [Goulde, 1997], and it is envisioned that a
whole class of self interested or even hostile agents may emerge [O'Riordan,
1995], Creating an infrastructure that will allow governments and other
authorities to monitor, or at least trace, such antisocial behaviour and pro
duce evidence that can be used for prosecution is a challenge that only few
researchers have started to investigate. Clearly a fine balance will have to
be struck between a "big brother is watching you" system and a global
commercial village where commerce and information interchange can take
place freely.

Mobile agents pose many security problems, but companies who de
cide not to develop or use mobile agent technology because of the security
issues will run a high risk of being beaten in the market place by someone
who either ignores the security problems, or "hacks" some sort of partial
solution to them. Although considerable resources have been spent on com
puter security, in particular for military systems, the state of the art is still
very much in its infancy since many of the issues are not very well known
(or perhaps only known by persons with security clearance and therefore
not able to share their knowledge). Most security protocols are flawed—the
flaws have just not been discovered yet. To get a handle on the security
problems posed by mobile agents, good theory and experiments are needed
(and spectacular failures, such as the Microsoft Internet Explorer/ActiveX

28 ICL System s Journal May 1997

bug, also help to speed up developments). Again, mobile agents are not
going to solve these problem but may speed up the search for solutions!

Security needs to embrace the entire system. Partial solutions cannot
be trusted to rely on the environment since the environment may be com
promised. One security flaw in Java is based on the fact that files loaded
from the file system are more trusted than files loaded over the network,
but if an attacker manages to place a file in the user's file system by other
means, e.g. luring the user to ftp the file, the security of the browser may be
completely compromised.

In reality, levels of security are a balance between the cost of imple
menting them, the cost of running them and the cost of security breaches.
The security required for buying a house, for example, is very different
than that required for buying a T-shirt or a book. Even if you can prove you
have been cheated out of five pounds, the cost of a legal procedure could
easily make you accept the loss of five pounds. Similarly, the benefits that
mobile agent systems promise to bring now outweigh the threat of viruses,
hostile hosts and self-interested agents.

8. Next generation Mobile Agent systems
The battle for the first generation mobile agent systems seems to have been
won by Java, although Microsoft may launch one more attack based on a
revamped ActiveX/VBScript strategy. Therefore, from a research and busi
ness strategy point of view, it is worthwhile looking towards the next gen
eration.

Since Java is already showing deficiencies there will be an intermediate
generation (generation 1.5) where middleware platform providers, such as
OSF/DCE and OMG/CORBA, will try to "get in on the action". Such
middleware integrations will clearly serve a need and push the technology
in the right direction. The integration of Java with CORBA, for example,
will allow legacy applications, already brought into the client/server world
by a CORBA wrapping, to be made readily available to the Java world, and
Java will add capabilities by allowing the CORBA-enabled client to be
downloaded and executed anywhere on the Internet. However, this ap
proach suffers from the complexity of having to master both Java and
CORBA. Although they are both object based, they have largely incompat
ible object models. Therefore, it will be necessary to implement systems
that map from one to the other. Furthermore, CORBA has a limited data
model and will thus restrict the type of objects that can be exchanged be
tween clients and servers. Moreover, Sun has developed an extension to
Java, called the Remote Method Invocation (RMI) interface, which allows
developers to construct Java based systems that can invoke Java object
methods remotely, in much the same way that Remote Procedure Calls (RPC)
allow the invocation of procedures in client/server applications today. The

ICL System s Journal May 1997 29

data model for Java's RM1 is Java and thus there is no need for cumber
some translations between different data models. Furthermore, since the
Java data model is richer than the one supported by CORBA's IDL, a more
sophisticated exchange of data will be possible. In addition to this, Java
supports easy interfacing to legacy applications through native interfaces
and thus threatens to make middleware, such as CORBA and DCE, obso
lete. However, the solutions based on middleware integration, and even
the Java RMI, are all rather traditional in their approach to distributed com
puting. This is not difficult to understand since distributed computing is
still a bit of a black art with very difficult models and arcane interfaces.

To bring the vision of mobile agent technology successfully to the end-
user, it will be necessary to overcome these difficulties. It will be necessary
to establish abstract interfaces that are separate from particular communi
cation infrastructures, such as ATM, TCP/IP or X.25, in much the same
way that high level languages, such as Java, allow programs to be written
without concern for physical memory management. There is no reason
why programmers have to manage setting up and terminating network
connections, linearising and delinearising objects, splitting and reassem
bling network packages, etc. This can be handled in much the same way as
automatic memory management (in fact, much reuse is possible; e.g. the
code for linearisation). First generation agent systems have already dem
onstrated the usefulness of platform independence. However, platform
independent systems have in the past been rejected because they cannot
take advantage of the particulars of a given platform. There is clearly a
conflict in the desire to be able to write applications capable of moving
across various platforms and the desire to take advantage of platform spe
cific features; e.g. graphics or video accelerators, multi-processors or high
performance networking. A way to overcome this conflict is to move from
a uniform platform to a uniform way of describing platform differences,
much in the spirit of the ideas behind intelligent networks and ATM tech
nology. Here quality of service (QoS) requirements may be specified and
the transport system can report if these requirements can be honoured, oth
erwise the system should be capable of graceful degradation. For this to be
manageable, it will be necessary to develop intelligent interfaces based on
the principles of declarative programming.

8.1 Second generation and future Mobile Agent systems
Second generation agent systems and their successors will have to bridge
the gap between intelligent agents and mobile agents. The complexity of
mastering this will only be achievable within a coherently integrated frame
work, based on a well defined programming model (or rather integration
of well understood programming models). Indications of this approach
may be found in the April system [McCabe and Clarke, 1995] from Fujitsu/

30 ICL System s Journal May 1997

Imperial College, Objective Caml/MMM [Remy, 1994], [Remy and Vouillon,
1997] from INRIA, Erlang from Ericsson [Armstrong et. al., 1996] and Fac
ile [Thomsen et. al., 1996a] from ECRC/ICL. Interestingly these are all based
on the integration of polymorphically typed functional programming, some
object orientation and the CCS process model [Milner, 1989], together with
its higher order and mobile extensions, CHOCS [Thomsen, 1993], [Thomsen,
1995a], LCCS [Leth, 1991] and the pi-calculus [Milner et. al., 1989].

As already mentioned, systems based on mobile agents will exploit
sequential programming, but most will also have aspects of concurrency
needing communication and synchronisation. Obviously, in an intercon
nected world, aspects of distributed computing, such as partial failure, lo
cation dependence, different communication mechanisms with different
bandwidths and costs plus general quality of service need to be considered
as well. Mobile agent systems will, in fact, need to bring together many, if
not all, aspects of computing—aspects that through decades of separation
in layers and subsystems have developed different and incoherent modes
of operating. The interactions between the layers and subsystems are very
complex, and methods and tools developed for one purpose will have to be
used for new purposes. Program analysis, for example, originally devel
oped for code optimisation, is used for security purposes in the Java virtual
machine. Many areas in communications, such as point-to-point, asynchro
nous, broadcast, stream based and RPC based, are still not well understood.
There is a continuing debate about data formats and data representation in
communication and incorporating code containing data will fuel this dis
cussion further.

Many issues remain in programming languages, whether they be im
perative, object oriented, declarative, logic or constraint oriented. Issues of
naming, scoping, binding, typing and modularity will have to be resolved.
There are even old fashioned questions about syntax (or syntactic confu
sion), behaviour of constructs (or rather unexpected behaviour such as arrays
starting at 0) plus the general question of semantics (which most often is ill
defined or loosely defined), which will have to be answered.

Systems aspects, such as memory management, have already been
mentioned for security reasons, but other aspects, such as persistence and
graphical user interfaces, need to be considered too.

Finally, we have to remember that the concept of mobile agents is about
moving programs around; so programs as data objects will be an issue and
questions such as their representation, either syntactic, intermediate or na
tive, and whether to compile or interpret the code, need to be answered.

8.2 Programming model
First generation agent languages, such as Java, Safe-TCL, VBScript and
Javascript, are rather traditional in that they are based on the imperative

ICL System s Journal May 1997 31

and object oriented programming paradigms. These languages, therefore,
do not gain much support from formal reasoning, although considerable
effort is currently being put into "postmortem" construction of formal foun
dations for Java. Parts of its type system, for example, have recently been
proved to be sound [Drossopoulou and Eisenbach, 1997] and the core lan
guage together with some of its concurrency constructs have been given a
model based on game theory [Abramsky and McCusker, 1997], but issues
such as inheritance, polymorphism and sub-typing, all present in Java, are
still not well understood.

The informal treatment of language semantics, in particular concurrency
and communication, and security aspects are major problems in the first
generation of agent systems. The interactions between the subsystems are
very complex and methods and tools developed for one purpose are now
being used for new purposes; e.g. program analysis, originally developed
for code optimisation, is used for security purposes in the Java virtual ma
chine. However, since the Java byte code verifier uses a "model" of the
code, which does not always reflect the operational behaviour of the vir
tual machine, a security loophole exploiting this fact has recently been un
covered and later demonstrated. Similarly, a security problem with
Microsoft's Internet Explorer and embedded ActiveX component occurred
because a technology created for a static environment like the desktop was
put into the (virtually) mobile environment of the WWW. Technically the
problem arises from ActiveX control being based on dynamic binding and
thus ActiveX will bind to anything of the same name upon downloading to
a client. Malicious web page creators thus only have to guess the name of
the program they want to start and, since most DOS/Windows programs
will reside in "standard" directories, this is not very difficult.

The security flaws in Java and ActiveX touch upon the reasons why
high level languages have been rejected in the past, because sometimes there
is a price to be paid for safety. Everything that can be done with a Java
applet can also be done using traditional http requests; however, things
can happen much faster if the code is being executed locally. ActiveX, which
employs almost no security model, can allow things to happen very quickly
indeed using native code with unrestricted access to the client machine,
where the code may then reside for future use. Java applets employ a much
stronger security model and are consequently slower and more clumsy to
rim. Although there are, as discussed above, flaws in the Java security model,
it is a step in the right direction. In general it is not advisable to allow code
downloaded from anywhere to perform certain operations, such as direct
memory access or reformatting a hard disk, although, in some circumstances,
this would be the most efficient way of doing it. Such operations leave
openings in the system's security, which will inevitably be discovered and
exploited at some point.

32 ICL System s Journal May 1997

8.3 The integration aspect—new features
Integrating all the needed features in a coherent way will require a leap in
bringing new techniques, research results and technology together in prac
tice. The most promising solutions follow advanced languages based on
static binding, well defined scoping rules and rich interface descriptions,
combined with systems based on access lists and capabilities.

The investigation and creation of multi-paradigm programming lan
guages has received much attention in recent years. Most approaches are
based on integrating well understood programming models, most of which
are formally defined. The state of the theory of computing is being moved
forward by such efforts, since points are being highlighted where the exist
ing theories are not applicable, either because they cannot be used to de
scribe systems adequately or because they do not scale to full size systems.
Such efforts are needed, since techniques, such as program analysis, tradi
tionally used for optimisation, will now be used as part of the security
mechanisms. If there are no adequate theories to describe and prove that
these algorithms are doing what they are supposed to be doing, how can
they be trusted? As the security flaw in the Java virtual machine has al
ready demonstrated, this is not a trivial question.

However, it has been apparent for a while that flow analysis and modu
lar programming have goals that are in opposite directions. Flow analysis
usually needs to take a global view of the code, and optimisations based on
flow information assume that this information is complete. Interprocedural
flow analysis, or higher order flow analysis, is still in its infancy and diffi
cult to implement efficiently. However, promising results, based on plac
ing flow information in type systems, which can then be used in module
interfaces, have recently been developed.

Placing flow information in type systems leads to new type systems
with richer properties than purely input/output relations. In a sequential
environment these descriptions may be used to propagate information
about, for example, memory usage, and in a concurrent environment they
may be used for process and communication channel allocation and even
deadlock prevention.

Enriching type systems with abstract descriptions of the dynamic be
haviour of programs may also be used for security, since it is possible to
specify the accepted dynamic behaviour. In fact, unacceptable behaviour
will be excluded through the type system and monitoring of the dynamic
behaviour will, therefore, not be needed. This is similar to the way that
static typing today eliminates the need for checking data in procedure calls,
leading to faster execution.

Such type systems can also serve further purposes. In distributed sys
tems, activity will not normally start in one node, but will start in different
locations, after which logical links will be progressively established to form

ICL System s Journal May 1997 33

the overall system. Currently such systems have to be integrated at very
low level, since they do not share a common way of describing and making
available interfaces to other systems. However, as interface descriptions
get richer, binding based on interfaces will be possible.

Although strong static typing is being recognised as very important in
ensuring program correctness and safety, the additional information needed
at program construction time may be seen by programmers as an addi
tional burden. Advanced languages, such as ML [Milner et. al., 1990], em
ploy type inferencing, rather than type checking, allowing programmers to
write programs almost without type specification. The compiler then in
fers the type and reports back if there are type errors. Type inferencing can
also be applied to the intermediate code representations, used for trans
porting mobile agents, to compare between the expected type of the agent
and the actual type. As the type system gets richer, including abstract de
scriptions of the dynamic behaviour of the program, a fine balance between
decidable and undecidable properties must be found.

Beyond machine inferable properties one can imagine instrumenting
agents with machine checkable properties. Such proof carrying code can
then be examined by machine assisted verification techniques. Since such
techniques might be too difficult for the average user to handle, an indus
try based on trusted code producers and trusted third party code verifiers
could be developed, which, when combined with digital signatures and
strong encryption, could lead to a new era of reliable and trusted comput
ing.

9. Conclusions
Agent oriented programming is an emerging and exciting paradigm in com
puting. It is not hard to predict that, by the end of the century, it will be as
important as object oriented programming and client/server based distrib
uted systems were in the eighties and early nineties.

Clearly, mobile agents pose many security problems, mainly due to old
security loopholes and the fact that computer security is still in its infancy.
However, companies, who decide not to develop or use mobile agent tech
nology because of the security problems, will run a high risk of being beaten
to the market place by someone who either ignores the security problems,
or "hacks" some sort of partial solution to them.

The first wave of mobile agents has already appeared on the Internet in
the form of Java applets and Microsoft has been trying to push its ActiveX/
VBScript technology as a competing technology. Even though Java is a
very novel technology it is built on a very conservative evolutionary ap
proach; bluntly, it is just a nicely cleaned up version of C++. However, the
language still has some ugly and confusing constructs (e.g. arrays starting
at 0) and assignments like (I := ++I—), as well as some direct flaws (e.g.

34 ICL Systems Journal May 1997

covariance of arrays which, for type safety, should have been contravariant)
and the implementation still has some holes in its integrity (e.g. the code
verifier does not always verify the actual code). Most significantly, Java is
not a distributed programming language and developers, therefore, are al
ready experiencing difficulties in implementing the more ambitious mo
bile agent visions. Remedies for this situation are being proposed and are
mainly based on middleware integration, such as DCE, CORBA and the
Java RMI following a distributed object oriented approach. More "agent
like approaches", such as IBM's aglets and General Magic's Odyssey, both
based on ideas from General Magic's telescript, have also recently emerged.
Since Java has deficiencies in design, architecture and implementation, a
certain confusion exists, both because people do not understand all the is
sues (which is understandable, since they are very complex) and also be
cause of commercial factors, such as Microsoft's attempt to derail the Java
steam roller by defining their own APIs.

The second generation mobile agent systems will be able to draw upon
substantial experience from the first generation (and generation 1.5). Inte
gration of agent technology from the AI community and the distributed
systems community will lead to technologies capable of implementing the
most ambitious visions about software agents. New network technologies,
such as "wireless" ATM and intelligent telephony, are emerging that will
further the need for simple software solutions based on the agent principle.
Due to security concerns many of the important issues of computer sci
ence, such as structured programming, language design and system engi
neering, are back on the agenda. Clearly second generation systems will
face the usual question of why another new language/system is needed
now that the Java standard is here. However, despite commercial pres
sures, it is important to try not to build tomorrow's legacy systems today.
By "thinking mobility" better systems may be created, because many old
and well known problems need to be solved properly for security reasons.
Moreover, these problems only need to be solved once and future systems
will benefit. It is easy to make a mobile system non-mobile, but extremely
difficult to make a non-mobile system mobile.

Independently of the underlying technology supporting the implemen
tation of mobile agents, there is the emerging concept of agent oriented
programming as a way of thinking about computer systems. Already Java
applets are signalling a new way of distributing software. When tools for
electronic commerce become more stable and accepted, new ways of li
cencing software will evolve; e.g. payment could be made on the basis of
methods similar to those being considered for video on demand.

A paradigm shift almost always calls for cultural changes and the ear
lier one starts to prepare for this the smoother such changes will be. The
paradigm shift will obviously require technology development, but of equal

ICL System s Journal May 1997 35

importance, or perhaps of even more importance, it will also require sub
stantial education and methodology development. Object oriented pro
gramming has been around for almost twenty years, but object oriented
development methods are only now starting to be mainstream practice. It
is therefore important that methods supporting a transition from object ori
ented programming to agent oriented programming are developed. There
will be a need for strong involvement in developing both new standards
and collaborative platforms—even perhaps with competitors.

Acknowledgements
Most of the authors' previous work on Facile was carried out at ECRC in
Munich, funded in part by several projects in the European Union ESPRIT
programme. Some of the current work is also supported by the European
Commission and this support is gratefully acknowledged.

A special thanks to Pierre-Yves Chevalier, Xerox Research Lab. in
Grenoble, for producing the agent drawing while we were colleagues at
ECRC in Munich.

Finally the authors would like to thank their former colleagues at ECRC
for contributing to the work on Facile and Mobile Agents.

References
ABRAMSKY, S. and McCUSKER, G., "Linearity, Sharing and State: a Fully
Abstract Game Semantics for Idealized Algol with active expressions," In
O'Heam and Tennent (eds.), Algol-like languages, Birkhauser 1997.

ARCHITECTURE PROJECTS MANAGEMENT LIMITED, "ANSA: An
Engineer's Introduction to the Architecture," ANSA Technical report,
Number TR.03.02., 1989.

ARNOLD, K. and GOSLING, J, "The Java Programming Language," The
Java Series, ISBN 0-201-63455-4,1996.

ARMSTRONG, J., WILLIAMS, M., WIKSTROM, C. and VIRDING, R.: "
Concurrent Programming in Erlang" Prentice Hall, ISBN 0-13-285792-8,
1996.

BONNET, PH., BRESSAN, S., LETH, L. and THOMSEN, B., "Towards
ECLiPSe Agents on the INTERNET," Proceedings of the 1st Workshop on
Logic Programming Tools for INTERNET Applications, in conjunction with
JICSLP'96, Bonn, Germany, September 2—6, 1996. (h t tp : / /
clement.info.umoncton.ca/~lpnet/final/eclipse-agents.ps.Z)

BORGIA, R., DEGANO, P., PRIAMI, C., LETH, L. and THOMSEN, B., "Un
derstanding Mobile Agents via a non-interleaving semantics for Facile,"
proceedings of the Third International Static Analysis Symposium (SAS'96),

36 ICL System s Journal May 1997

Aachen, Germany, September 24-27, LNCS 1145, Springer Verlag, 1996.

BELL, G., PARISI, A. and PESCE, M., "The Virtual Reality Modeling Lan
guage," Specification, Internet, 1995. http://www.sdsc.edu

CAMPIONE, M. and WALRATH, K., "The Java Tutorial: Object-Oriented
Programming for the Internet," The Java Series, 1996. ISBN 0-201-63454-6

CAHILL, V, BALTER, R., HARRIS, N. and ROUSSET DE PINA, X. (edi
tors), "The COMANDOS Distributed Application Platform," Springer-
Verlag, ESPRIT Research Reports, 312,1994.

DEGANO, P., PRIAMI, C., LETH, L. and THOMSEN, B., "Analysis of Fac
ile Programs: a Case Study," proceedings of the Fifth LOMAPS Workshop
on ANALYSIS AND VERIFICATION OF MULTIPLE-AGENT LAN
GUAGES, SICS, Stockholm, Sweden, June 24-26,1996, LNCS 1192, Springer
Verlag, 1997.

DROSSOPOULOU, S. and EISENBACH, E., "Java is Type Safe - Probably,"
to appear in Proceedings of 11th European Conference on Object Oriented
Programming, 1997.

FININ, T, FRITZSON, R., MCKAY, D. and McENTIRE, R., "KQML as an
Agent Communication Language," Proceedings of the Third International
Conference on Information and Knowledge Management, ACM Press,
November 1994. (http://www.cs.umbc.edu/kqml/papers/kqml-acl.ps)

GALLO, E ," Agent-Tcl: A white paper," Draft document, posted to the safe-
tcl@cs.utk.edu mailing list, December 1994.

GENESERETH, M., FIKES, R. et. al., "Knowledge interchange format," Tech
nical Report, Computer Science Department, Stanford University, 1992.

GOULDE, M., "Digitivity's Applet Management System Secures Applets
— Run Java Applets Securely Behind Firewalls," Draft, the Patricia Seybold
Group, 1997.

HOLZNER, S., "Web Scripting with VBScript," MIS:Press, ISBN 1-55851-
488-0,1996.

INTERNATIONAL STANDARDISATION ORGANISATION, "Description
of MPEG-4," ISO/IEC JTC1 SC29/WG11 N1410, MPEG 96, Chicago, Oct.
1996.

JOHNSON, B.C., "A Distributed Computing Environment Framework: An
OSF perspective," Technical report DEV-DCE-TP6-1, Open Software Foun
dation, Inc., Cambridge, MA, 1991.

KENT, P. and KENT, J., "Official Netscape Javascript Book," Netscape Press,
ISBN 1-56604-465-0, 1996.

ICL System s Journal May 1997 37

http://www.sdsc.edu
http://www.cs.umbc.edu/kqml/papers/kqml-acl.ps
mailto:safe-tcl@cs.utk.edu
mailto:safe-tcl@cs.utk.edu

KNABE, E, "Performance-oriented implementation strategies for a mobile
agent language/' Chapter in Mobile Object Systems, Christian Tschudin
and Jan Vitek, editors, to appear in the Springer-Verlag Lecture Notes in
Computer Science series, 1997.

LETH, L., "Functional Programs as Reconfigurable Networks of Commu
nicating Processes," Ph. D. Thesis, Imperial College, Department of Com
puting, 1991.

McCABE, F.G. and CLARK, K.L., "April - agent process interaction lan
guage," in M. Wolldridge, N. Jennings, editor, Intelligent Agents, LNAI,
vol. 890, Springer-Verlag, 1995.

MILNER, R., "Communication and Concurrency," Prentice Hall, 1989.

MILNER, R„ PARROW, J. AND WALKER, D., "A calculus of mobile proc
esses," Technical report ECS-LFCS—89—85, Laboratory for Foundations
of Computer Science, Edinburgh University, 1989.

MILNER, R„ TOFTE, M. and HARPER, R., "The Definition of Standard
ML," MIT Press, 1990.

MOWBRAY, T.J. and BRANDO, T., "Interoperability and CORBA-based
Open Systems," Object Magazine, pp. 50-54, Sept.-Oct. 1993.

OBJECT MANAGEMENT GROUP, "Object Management Architecture
Guide," num. Document 92.11.1, OMG Inc., Framingham, MA, Nov. 1992.

OBJECT MANAGEMENT GROUP, "Common Object Request Borker: Ar
chitecture and Specification," num. Document 92.12.1, OMG Inc.,
Framingham, MA, Dec. 1992.

O’RIORDAN, B., "Self-interest as an opportunity," Draft, personal com
munication.

REMY, D. and VOUILLON,)., "Objective ML: A simple object-oriented ex
tension to ML," Proceedings of POPL'97,1997.

REMY, D., "Programming Objects with ML-ART: An extension to ML with
Abstract and Record Types," Proceedings of TACS'94,1994.

THOMSEN, B., "A Second Generation Calculus for Higher Order Processes,"
Acta Informatica 30, Springer Verlag, 1993.

THOMSEN, B., "A Theory of Higher Order Communicating Systems," In
formation and Computation, Vol. 116, No 1,1995.

THOMSEN, B„ KNABE, E, LETH, L. and CHEVALIER, P.Y, "Mobile Agents
Set to Work," Communications International, July, 1995.

THOMSEN, B., LETH, L. and KUO, T.M., "FACILE - from Toy to Tool," ML

38 ICL System s Journal May 1997

with Concurrency: Design, Analysis, Implementation, and Application,
Flemming Nielson (Editor), Springer-Verlag, 1996.

THOMSEN, B., LETH, L. and KUO, T.M., "A Facile Tutorial," Invited Tuto
rial, in Proceedings of CONCUR'96, Concurrency Theory 7th International
Conference, Pisa, Italy, August 1996, LNCS 1119, pp 278—298, Springer
Verlag 1996.

WHITE, J. E., "Telescript technology: The foundation for the electronic
marketplace," General Magic white paper, 2465 Latham Street, Mountain
View, CA 94040,1994.

Biographies
Lone Leth Thomsen
Lone Leth Thomsen joined ICL's Research & Advanced Technology De
partment as a Principal Researcher on July 1st, 1996. She was formerly at
the ECRC in Munich, where she was a senior researcher. At ECRC she
worked on the Facile project and she was the ECRC site leader for Esprit
BRA working group SEMAGRAPH II 6345 and the Esprit BRA COORDI
NATION 9102. Jointly with Jean-Jacques Levy and Bent Thomsen she was
the Technical coordinator for Esprit BRA CONFER 6564.

She is currently Technical coordinator for Esprit working group CON-
FER-2 21836 together with Jean-Jacques Levy and Bent Thomsen.

Lone Leth Thomsen received her PhD in computing from Imperial
College, London in 1991. She has an MSc in Software Engineering and
Computing Systems from Aalborg University Centre, Denmark. She is a
member of ACM, IEEE, BCS, EATCS and IDA.

Bent Thomsen
Bent Thomsen joined ICL's Research & Advanced Technology Department
as a Principal Researcher on July 1st, 1996. He was formerly at the ECRC in
Munich, where he was a senior researcher and teamleader on the Facile
project. At ECRC he was the site leader for Esprit BRAs CONCUR2 7166,
CONFER 6564 and LOMAPS 8130. Jointly with Jean-Jacques Levy and Lone
Leth Thomsen he was the Technical coordinator for Esprit BRA CONFER
6564.

He is currently the ICL site leader for Esprit BRA LOMAPS 8130 and
Esprit working group CONFER-2 21836 and, jointly with Jean-Jacques Levy
and Lone Leth Thomsen, he is the technical coordinator for Esprit working
group CONFER-2 21836.

Bent Thomsen received his Ph.D. in computing from Imperial College,
London, in 1991. He has a BSc in Mathematics, a BSc and an MSc in Com
puter Science from Aalborg University Centre, Denmark. Bent Thomsen is
a member of ACM, IEEE, BCS, EATCS and Dansk Magister Forening.

ICL System s Journal May 1997 39

Lone Leth Thomsen and Bent Thomsen are currently establishing a re
search framework, including a virtual laboratory with Fujitsu Labs, on
Mobility and Agent technology, while continuing their research in the Agents
area.

For more information and previous work see http://sst.icl.co.uk and
http://www.ecrc.de/research or e-mail addresses: lone@sst.icl.co.uk and
bt@sst.icl.co.uk

40 ICL System s Journal May 1997

http://sst.icl.co.uk
http://www.ecrc.de/research
mailto:lone@sst.icl.co.uk
mailto:bt@sst.icl.co.uk

The SY Node Design
G. Allt, P. DeSyllas, M. Duxbury, K. Hughes, K. Lo, J.S.M. Lysons and

P.V. Rose

ICL High Performance Systems, Manchester, UK

Abstract

SY is the latest generation of high performance Series 39 processors,
and is fully compatible with existing Series 39 systems. The design is
built on the highly successful SX design, with the OCP in particular
reusing the SX Picode pipeline, but the design does include a number
of features that reduce the total cost of ownership. These include: the
use of CMOS technology, an SMP (symmetric multiprocessor) archi
tecture, and an optional cheaper multinode interconnection scheme.
These new features enable higher performance to be provided at a
significant reduction in relative cost throughout the range of scalable
product offerings. This paper describes the architecture of the SY
node and the techniques used to achieve these objectives.

1. Introduction
SY is the latest model in the Series 39 range of processors. It has been intro
duced to provide better cost-performance than the existing systems for us
ers of the ICL OpenVME operating system. It provides complete backwards
compatibility: all current user programs are capable of running on SY with
out the need for recompilation.

The design builds on the .SX design. SX is built from large ECL gate-
arrays manufactured by Fujitsu. The SX node consists of four units: a so
phisticated pipelined processor for the execution of 2900 order code and SX
picode; an Input Output processor providing up to 16 SMARTfibre or
Macrolan channels; an Inter-Node processor allowing up to 8 SX nodes to
be joined in a multinode system; and the store. Details of the SX node ar
chitecture and design were published in the ICL Technical Journal in 1990
[Eaton et al, 1990], [Abraham et al, 1990].

A major innovation was to abandon the use of high-speed ECL (Emit
ter Coupled Logic) technology. ECL technology fails to provide the required
level of integration required for modem processors and has a high power
consumption. SY is built from semi-custom CMOS VLSIs manufactured
by Fujitsu to ICL's own designs. Although CMOS gates are inherently slower
than ECL gates, the level of integration has enabled us to build an OCP of
comparable performance to an SX OCP, but considerably cheaper to de
velop, manufacture and use. In addition, the greater level of integration
provides a much improved level of hardware reliability.

ICL System s Journal May 1997 41

In order to provide large users with an upgrade path from the most
powerful SX systems, we had to provide systems that were several times
more powerful than a 6-node SX. Although the OCP Picode processor used
in SY is the similar to the SX design, the store system has been radically
altered to enable 4 OCPs to share a common store as a symmetric multi
processor. The design includes a coherent caching algorithm that was ex
tensively modelled and a split-transaction protocol Node Bus. This pro
vides a single Series 39 node with at least 3 times the power of an SX node
and because of the change in underlying technology a SY node occupies
much the same floor space and volume as an SX node.

A significant cost of SX systems was the multinode interconnect. The
use of high-speed fibre-optic connections provided the bandwidth required
while, at the same time, allowing nodes to be separated physically by up to
750 m (or 2 km in extremis). Although a number of customers required
such a physical separation to provide disaster tolerance, a large number
were known to site the two nodes adjacently. In SY, we have provided a
multinode interconnect that is available in two forms: a 200 MB/second
fibre optic link for the high-resilience market and a direct connection for
customers who want multinode systems for performance but as cheaply as
possible. It is possible to 'mix-and-match' these options for 3- or 4-node
systems.

The input/output has been designed around the use of SMARTfibre,
although optional fitting of Macrolan couplers is available. Other intercon
nects such as FDDI, OSLAN or FiberChannel are available via external gate
ways.

Significant use has been made of existing products and designs for sup
port and maintenance. A large proportion of the diagnostic support
firmware has been carried forward from the Node Support Computer for
SX (NSX) to that for SY (NSY) and all the generic parts of the support appli
cations VISA and SAM are unchanged.

1.1 Outline Description
The core unit of the SY node is a back plane into which can be plugged the
following PCAs (printed circuit-board assemblies):

1 to 4 Order Code Processors (OCPs)
1 Memory Control Unit (MCU)
1 to 4 Main Store Units (MSUs)
1 Coupler Interface Controller (CIC)
1 to 16 Input Output Daughter Boards (IODB)
1 Node Connection Switch (NCS)

These are interconnected as shown in Figure 1.

42 ICL System s Journal May 1997

Figure 1: SYNode - principal sub-units

2. Order Code Processing
2.1 Introduction
The OCP plug-in assembly comprises a Series 39 OCP and a 2-level cache
structure with an interface to the Node bus, on a single printed circuit board.

The principal task of the SY OCP is to fetch, decode, and execute the
Primitive Level Interface (PLI), the target order code of the Series 39 node.
A secondary task is to implement the low-level Series 39 architectural fea
tures in response to incoming interrupts to PLI processing. As on the previ
ous SX design, these requirements are implemented by converting PLI and
interrupts into sequences of a lower level order code, Picode. This section
describes the OCP hardware, while subsequent sections describe the Cache
structure and Picode. Note that in this document the terms PLI and Picode
can refer to the order code or an individual instruction within it, or to a
sequence of such instructions.

The SY OCP is based on the design of the SX OCP in order to minimise
development costs and design risks. Many improvements over the SX de
sign have been incorporated, to maximise performance and predictability
of behaviour. On SX there were two Picode instruction streams (A and B)
sharing the same hardware pipeline. The asynchronous interaction of the
two streams was difficult to validate, and on SY this feature has been aban
doned in favour of a single interrupted stream.

The basic structure of the OCP hardware is shown overleaf in Figure 2.

ICL System s Journal May 1997 43

Figure 2: OCP hardware

This structure comprises five separate pipelines, with the following basic
functionality:

Fetch Request of PLI and Picode from the Code Cache, prediction of
conditional PLI jumps, and some pre-decoding of PLI

Pigen Conversion of PLI into Picode sequences, queuing of interrupt se
quences, and generation of a stream of Picode instructions for the
Engine

Apipe Picode instruction decoding, and request of operand data from
the Data Cache or Ipipe

Ipipe Provides access to OCP-based hardware control registers (Image
Store)

Xpipe Execution of Picode functions, and control of atomic updates to
the current process state (registers, the Data Cache, and OCP Im
age Store).

Hardware interfaces between these pipelines are via various types of
multi-line buffer, which allows complete inter-pipeline asynchronism. In
puts to Fetch, Pigen, and Ipipe use FIFOs (first-in-first-out), while Apipe and
Xpipe use Parameter files, a form of random-access register file. Each new
Picode instruction is allocated exclusive use of the next parameter file line
(slot) by Apipe, and keeps that slot through all parameter files until even
tual termination. The maximum concurrency of Picode instructions within
the Engine is thus 16, the number of slots in these parameter files.

44 ICL System s Journal May 1997

2.2 Normal Picode execution
PLI code is pre-fetched by Fetch via the Code Cache, and buffered until
required. Incoming code is inspected for predictable jumps, and any found
are allowed to modify further code fetches. Each individual PLI is extracted
from the buffer, pre-decoded, and passed to Pigen.

In Pigen, the PLI is further decoded into a Picode sequence start ad
dress and other PLI-related decodes, and checked for any illegal combina
tion of fields. When the previous Picode sequence has ended, this new
sequence then starts. Picode is kept in a single segment of virtual store,
arranged so that the most frequently accessed code is in the bottom 8k words.
Picode addresses in this range get rapid access to their Picode instruction
from a fixed store within Pigen: Picode outside this range is requested from
the Code Cache via Fetch. Picodes subsequent to the first are accessed
sequentially or from (Picode) jump destinations until the sequence ends.
Picode instructions and related PLI and Picode information are passed to
Apipe.

Various hardware registers are maintained: some correspond to the PLI
Visible Registers, some are private to Picode and others are status flags
used internally by the hardware. The definitive copies of these registers
are held in Xpipe, with the relevant ones updated on successful termination
of each Picode instruction. To enhance performance, the registers used in
operand address generation have additional copies maintained in the Apipe:
these can be updated prior to termination where the new data is known.

The Apipe accepts each Picode instruction from Pigen, allocating it the
next cyclic slot number. Each Picode is decoded chronologically, into the
actions required by each Engine pipeline. The Apipe register copies are
used in generating any operand address, which is passed to the Data Cache:
read requests will later reply with data and error flags to the Xpipe, while
for the moment write requests will reply with error flags only. If the oper
and is within the OCP Hardware Image Store, the address is passed instead
to the Ipipe which accesses the addressed hardware in a similar manner to
the Cache accessing data. If a register to be read by the Apipe is not yet
valid due to an outstanding write by an elder Picode instruction, the Picode
attempting the read will wait until the data is available.

For 'simple' Picode functions involving only registers which are acces
sible to the Apipe and are currently valid, the Picode function is executed
here and the result written immediately to the Apipe register copy: such
functions will later be repeated in the Xpipe. If the necessary input regis
ters are not currently valid or the function is too complex, the register is
written later from the Xpipe with data from the main execution unit. If the
Picode needs no operand fetching, control passes directly from the Apipe to
the Xpipe.

The Xpipe is responsible for final execution of the Picode instruction

ICL System s Journal May 1997 45

and updating of the process state. The process state is the collection of
store data and the PLI register set that defines a breakpoint within a proc
ess. This breakpoint can be dumped and restored to allow multiprocessing
on a single processor. Xpipe processes each instruction chronologically, read
ing registers and/or operand data then executing the Picode function. Sim
ple Picode functions execute in one beat, whereas more complex functions
may take several beats. All functions are implemented directly by hard
ware for the best possible performance, whereas on SX complex instruc
tions were controlled by a microcode. Meanwhile, error flags are checked
for any errors encountered during generation or processing of the Picode.
If all is OK, the process state is updated with the results of execution by
allowing writes to registers, the Cache or OCP Image Store, and the slot
containing the Picode instruction is released for reuse. If not OK, the proc
ess state remains unchanged and errors are prioritised into an Exception
which is passed to Pigen: the (younger) contents of all slots are then nulli
fied, that is they cause no process state update.

More serious errors that indicate illegal Picode, or a corruption of sys
tem data, are also collected and inspected at termination time. If a Picode
generating such an error attempts to terminate, a "Mayday" is generated,
which prevents termination and stops the processor but attempts to ensure
that outstanding store writes are completed before initiating a system dump
and reload.

2.3 Jumps & Interrupts
Conditional Picode jumps have a condition prediction built in to the Picode
function. Pigen dynamically detects such jumps and ensures that the next
Picode is accessed from the predicted destination. An alternative (non-
predicted) destination is calculated and then fetched by Apipe. The condi
tion prediction is checked by Xpipe and, when wrong, a jump to the alterna
tive destination is issued nullifying all younger activity in the Scheduler
and the Engine.

Conditional PLI jumps are predicted by Fetch, and subsequent PLI sup
plied to Pigen are from the predicted destination. The condition prediction
is dynamic, being derived from the contents of a JPred (Jump Predict) RAM
within Fetch. This RAM is addressed by a combination of the jump source
address and a history of recent jump conditions. The alternative (non-pre-
dicted) destination is again calculated /fetched by Apipe. The condition
prediction is checked by Xpipe and, if wrong, a correction jump is immedi
ately issued. This nullifies the OCP, pre-fetches the rest of the current (jump
ing) Picode sequence and follows this with Picode for the correct next PLI.
Fetch also updates the JPred RAM to increase future prediction accuracy.

A second major task of Pigen is to control Interrupts to PLI Picode. These
consist of Exceptions that are errors encountered in generation or execu

46 ICL System s Journal May 1997

tion of specific Picode instructions, and Events that represent asynchronous
situations requiring Picode support, typically to support low-level archi
tectural features within Series 39. Exceptions are received from Xpipe, and
Events can be received from anywhere within the OCP. Units external to
the OCP requiring Picode support pass a message via the Code Cache to
Pigen. A non-empty message queue within Pigen then generates the neces
sary event to Picode.

Pending Interrupts are buffered and prioritised, and the chosen Inter
rupt selects one of several Picode interrupt sequence start addresses. The
current Picode sequence is then interrupted by this new sequence, with the
new Picode initially preserving the interrupted process state if a later re
turn will be necessary.

A further type of Picode sequence change is a Warp. This occurs when
a single Picode instruction encounters a difficult descriptor type during
execution. Warps are signalled to Pigen by Xpipe and invoke the same hard
ware as Interrupts (although they are not strictly classed as Interrupts) to
cause immediate entry to a Picode sequence to act on the descriptor and
complete the PLI Picode sequence that warped.

3. Storage System

Figure 3: Cache hierarchy

3.1 Cache Hierarchy
Figure 3 shows an outline of the caching hierarchy. For simplicity only

ICL System s Journal May 1997 47

2 OCPs are shown, but more could be fitted. The boxes marked LI are the
first-level cache, and are all identical. When used by an OCP, they form an
integral part of the OCP pipeline together with the address translation unit
(shown as V on the diagram and known as a VMU). When used by a CIC,
the cache and VMU form an autonomous unit. The boxes marked L2 are
the second-level cache, and again are all identical. Both level caches reside
on the OCP and CIC PCAs. The MCU provides the portal from the Node
Bus to the mainstore cards.

Each OCP has two ports into the storage system. The first is through
the Code Cache. PLI instructions can be two or four bytes long and the
OCP pre-fetches code in 8-byte quanta. After translating a Series 39 virtual
address into a real address, the VMU passes the read to the level-1 cache.
The second port (Data Cache) is for data and handles fetches and stores of
varying lengths up to 8 bytes.

The CIC has only one port: for this reason, one interface of the level-2
cache is left unconnected. The CIC generates stores and fetches on behalf
of the IO processors and controls access to multinode data. On this inter
face data can again be of varying length up to 8 bytes, but also available are
32-byte fetches and stores for IO.

3.2 Cache Coherency
The storage system can be considered to be an array of 32-byte cells. Own
ership of a cell moves from cache to cache or mainstore as a client (OCP or
CIC) requests access to the data. There are four levels of ownership of a
cell, providing distributed coherency control which minimise inter-cache
traffic.

Firstly, a cell can be not valid in a particular cache. The cache has no
knowledge of any data within that cell and must fetch it from somewhere
else before it can do anything to that cell. Secondly, a cell may be marked
shared. In this state the cache's copy of the cell has valid data, but then so
may another cache's copy. The cache may return fetch data to a requesting
client, but if that client is writing to store, then the cache must ensure that
any other copy of the data can no longer be used. The third state is termed
exclusive, and is used to express that the cache has the only up-to-date copy
of the data. This is likely to be the result of a client writing to data within
the cell. The final state, which is only used in the level-2 cache, is inclusive.
This indicates that a formerly exclusive cell has been shared with another
cache, but that mainstore has not been updated.

When a client fetches data from a level-1 cache, the cache must test (or
associate) the address. The cache uses two-way set association. In this case
a large number of real memory addresses map onto a pair of cache cell
addresses, and a test is made whether the real address is currently repre
sented by one of the two cache cells or not. If it is and is valid then the

48 ICL System s Journal May 1997

cache can return the data to the client without any further action. If it nei
ther maps nor is valid then a request is made to the level-2 cache to give the
level-1 cache shared ownership of the cell.

If the client wants to write to the cell, the level-1 cache must request
exclusive ownership of the cell, if it does not already have it. Once a level-
1 cache has exclusive ownership it writes to the cell with impunity until
another cache requires to access it.

For one cache to acquire or change ownership of a cell, another cache
must share or relinquish ownership. To facilitate this, the protocol used is
based on a load-give pair of transactions. The request for ownership is
called a load, and this will be followed by the give function that grants
ownership. A particular cache may not itself be in a position to give a cell,
and when it can't it passes the load request on. In the case of a level-2 cache
forwarding a level-1 cache's request, the request is broadcast across the node
bus to all level-2 caches and mainstore. All level-2 caches then reply with
their cell ownership status, and according to such statuses, they and the
memory control unit decide from where the data should be given.

Part of the ownership details maintained by a level-2 cache is informa
tion on the status within the level-1 caches connected to it. If the level-2
cache decides that the cell is owned by such a level-1 cache then it forwards
the load request. Any give response caused by a forwarded load is then
returned through the level-2 caches to the originating cache. The subject of
cache coherency is reviewed in IEEE Computer [IEEE, 1990].

3.3 Node Bus
The Node Bus is one of the defining features of the SY system. This is a
split transaction 128-bit 50 MHz bus connecting all the level-2 caches and
the mainstore controller, allowing as many as eight concurrent transactions.
Figure 4 above shows a typical split transaction across the node bus. One

Requester Other Caches Server
Cache

s
s

CL
o>ε

τ

Request

Responses

The Requester cache places a Request
on the bus.

Other caches ‘snoop* the Request, and
generate a Response to the Server.

The Server analyses the Responses, and
its own status, th en ...

Reply generates the appropriate Reply

Ail caches update their status accordingly.

Figure 4: Transaction split across the node bus

ICL System s Journal May 1997 49

level-2 cache, termed the requester, arbitrates a cycle on the Node Bus to
request a transaction. All other caches then snoop the request in their asso
ciation and generate a response. If no cache is able to provide the cell, the
MCU then makes a request to the Mainstore and generates a reply with the
requested data some unspecified time later. If one cache and only one cache
has a valid copy of the data, this server cache generates the reply quickly. If
more than one cache has a valid copy of the data, a pre-defined priority is
used to identify the cache that provides the data.

A special technology was bought from Fujitsu in which to implement
the bus as all the physically separate PCAs are mounted on the motherboard.

In addition to cache coherency traffic, the node-bus supports the pass
ing of messages between clients. A message consists of source and destina
tion address information, function qualifier and up to 16 bytes of data. Mes
sages can be created by client Picode or microcode and are directed at other
clients, or to the store system for low-level control. Messages will also be
automatically created by a VMU to support multinode activity.

3.4 Protocol validation
The development framework provided us with the capability of defining
the protocol used between the caches at the architectural design stage. The
language then provided automatic checking that these protocols were con
tinually adhered to. We then had the impetus to capture this checking into
the detailed hardware implementation. This allowed us to define checks
such as: "Why are you requesting this cell, you already own it exclusively?"
or "Why are you asking me to give you this cell, I don't have it?".

These checks provide an immediate indication that the coherency of
the caches has been corrupted. This will prevent such a problem, maybe
caused by a design or maintenance fault, from resulting in a corruption of
system or user data.

3.5 Virtual Memory Management
As indicated above there is a Virtual Memory Management Unit (or VMU)
between every level-1 cache and its client processor. Generally, a processor
accesses store via its virtual address, but the OpenVME architecture ac
cepts that the same physical store location may be represented by a number
of virtual addresses. Also in a multinode system one virtual address may
have physical store in more than one node. The main task of the VMU is to
handle virtual to real address translation and to detect writes to store in
other nodes so that the other nodes get informed.

Any function executed by the VMU is split into at least two passes, a
primary (or read) pass and a secondary (or write) pass. On completion of a
primary pass, information about the translation is returned to the client
together with any read data. The client than decides whether or not to

50 ICL System s Journal May 1997

complete the function and how to complete it and instigates the secondary-
pass.

The core of the VMU is a set of Address Translation (ATU) slaves. These
contain the most recently accessed entries in the three sets of translation
tables maintained by OpenVME. On a pass through the VMU, the address
is associated with the ATU slaves and if all the necessary information is
available, allows the pass to complete. If the pass is primary, the transla
tion information is returned to the client and if the function involves read
ing, a read request is issued to the level-1 cache. If the pass is secondary, a
write request may be made to the cache.

If the slaves do not have the required translation data, a read for the
table entry is made to the cache, and the function is re-queued. When a
function is waiting for table data all subsequent functions are only tenta
tively executed. Any requests for table data are made, but reads are not
actioned as the client expects reads to be executed in order. When the data
for a table entry returns from the level-1 cache the queue of instructions is
restarted and the function attempted again. If the function was waiting for
this particular data, then it will proceed to the next stage of the translation
sequence, otherwise it will simply re-queue itself. In a similar manner, a
function will be re-queued if for any reason it cannot complete the pass
through the VMU. The particular wait condition is remembered and this
defines the trigger to restart the queue.

In Series 39 multinode architecture, certain virtual addresses are marked
broadcast. This means that a write to the location must also be performed
in the other nodes in the system. For such an address, when it is first trans
lated in the primary pass, a flag is set to indicate this. After the secondary
pass, a third pass is then scheduled which generates a message that is sent
to the CIC. On receipt of this message the CIC passes the write into the
multinode network.

The PLI provides a set of store-to-store instructions. These are limited
by the OCP dataflow width of 64-bits. However, the VMU has the capabil
ity of trapping a sequence of consecutive 8-byte writes and accumulating
them into a single 32-byte cell write. This cell write can then be processed
by the cache hierarchy more efficiently than the individual writes.

4. Input/output Processing
The SY I/O system, like that for SX, is designed to provide up to 16 fibre-
optic LAN connections which may be any combination of SMARTfibre or
Macrolan interfaces, subject to a maximum of 12 Macrolans. This allows
the majority of existing SX system users to "drop in" the SY node with no
changes to their I/O sub-systems. Support for "slow devices" remains un
changed, provided through gateways.

Connection to the LAN is by means of an "I/O Daughter Board" (IODB)

ICL System s Journal May 1997 51

which is configured, by means of a "switch", to interface to either
SMARTfibre or Macrolan. Each of the IODBs is connected via an asynchro
nous, full duplex byte interface to the "Node Connection Switch" (NCS)
which, for the I/O system, "multiplexes or de-multiplexes" these sixteen
interfaces to a single full duplex word interface to the "Coupler Interface
Controller" (CIC). The CIC then provides access to the node bus via the
level-1 & levei-2 caches. (See Figure 1)

Further information for both the CIC & NCS can be found in Section 6:
Multinode processing.

As on previous Series 39 machines the OCP supports the OpenVME
operating system by providing high level functionality for I/O driving.
For SX systems this was provided by special stream B Picode. Since this
mechanism no longer exists for SY systems, this functionality has been ex
ported to the IODBs and is now provided by a SPARC based microproces
sor optimised for use in embedded systems (Fujitsu SPARClite MB86934)
executing a microcode of approximately 64 Kbytes, written in C, and de
veloped specifically for this purpose.
The major hardware components of the IODB are shown in Figure 5 and

Figure 5: Input/output system

52 ICL System s Journal May 1997

defined below:

SPARClite microprocessor (referred to above)
Executes microcode to provide the high level functionality required
by the OpenVME operating system for 1/O driving. Through its
interface with the DMA chip (see below) it fully controls the opera
tion of the IODB.

ROM
Contains the initial SPARClite microcode providing support for ini
tial establishment, loading of the operational microcode and dump
ing of the contents of the SRAM for diagnostic analysis.

Static RAM
One Mbyte of Static RAM containing the microcode and buffers for
data and control information. The control buffers include the
OpenVME architectural Cyclic Output Buffer (COB) for Coupler
Information Frames (CIFs), buffers containing internally generated
CIFs, buffers for support of Data Phase such as the Assisted Stream
Tables and various Page Table buffers. For data, a 256 Kbyte cyclic
input buffer, the CIB, and a 16 Kbyte cyclic buffer for output data.

DLC and SERDES Chips
Used, as on SX systems, to interface, through "updated" Optical
transceivers, to the optical fibre LAN.

DMA Chip
A new CMOS gate array chip designed and developed specifically
for SY providing interfaces to the NCS and all other major compo
nents of the IODB (SPARClite, SRAM, ROM and DLC). The major
functionality of the chip is to provide DMA operations between main
store and the buffers in SRAM and to support the transfer of con
trol information between the SPARClite and the OCPs.

The IODB includes comprehensive integrity checking of all data paths,
RAMs and control sequences.

A major new feature of the SY I/O system is improved management of
"failing" IODBs. The capability to "Hot-Pull" boards allows those with a
hard fault to be replaced, reinitialised and configured back into the system
without the need to power off or re-IPL.

5. Multinode Processing
Multinode processing on SY is standard Series 39, i.e. a number of nodes
are connected together to form a single coherent image of the OpenVME
operating system. These nodes share virtual store by replicating that stor

ICL System s Journal May 1997 53

age on different nodes.
Any writes to shared store are broadcast to other nodes in the system.

This ensures the coherence of replicated data throughout the system. An
other important requirement is that all nodes must see the public writes
applied in the same order—hence it's crucial that there is a mechanism for
handling this (see below).

The multinode connections on SX systems require 4 Macrolan and 2
TSN connections per node. In order to scale up to the performance require
ments on SY systems—intemode traffic increases as node processing power
increases—the same connections would have to be increased by up to 16
Macrolans per node. The cost of providing these connections would be
disproportionately high compared to the rest of the components in the node.
A different approach had to be sought and the resultant design is described
below.

5.1 SY Internode Processor INP
The SY INP is the point of communication between nodes in a SY system
which can be between one and four nodes. The distance between the nodes
can be as short as 20 cm, e.g. between adjacent cabinets, or as long as 2 km.
Nodes are connected as two concentric rings (see Figure 6)—unlike SX which
requires central boxes and TSN token rings. Communication between the
INP and the OCP is done via the Node Bus in the form of 'messages'.

There are 2 main units within the INP, namely the Coupler Interface

Figure 6: Intemode connection

54 ICL System s Journal May 1997

Controller that interfaces to the Node Bus via the level-1 and level-2 caches
and the Node Connection Switch that interfaces to the 'ring', IO couplers
and the Node Support Computer.

The main advantage of the INP is that it takes the load off the OCPs in
dealing with intemode and IO traffic so the OCPs can concentrate on their
main task of PLI execution.

5.2 Coupler interface Controller CIC
The CIC unit is used to transmit outgoing intemode, IO and Support Sys
tem messages, via the NCS, to the public write network as well as the IO
sub-system.

It also receives incoming intemode, IO and Support System messages
from the NCS, processes them, performs store accesses on behalf of clients
and passes messages to the OCP. These functions are best served by a
microcoded engine. It breaks down complex actions into simple functions
which can then be transmitted to the storage system.

Another important feature of this unit is the realisation of the node's
Real-Time Clock that is held and maintained in the CIC.

5.3 Node Connection Switch NCS
The NCS is essentially a crossbar switch that provides the connectivity to
the other nodes in the system and is also the main gateway to the IO cou
plers (up to 16 IO and an additional interface for the DCM/NSY). This
latter interface provides the operational connection of the NSY to the OCP
and Mainstore units.

Although the nodes are connected in a 'ring' fashion, the actual path
for a broadcast action is taken around a so-called 'hairpin' route. See Fig
ure 7. When a message is to be sent out of the node, it goes up the generate-
links and traverses all nodes until it hits the 'top' node which is defined as
a synchronisation point for all broadcast actions, i.e. writes to store in all
nodes are applied in the order they pass through the 'top' node. When a
message reaches the 'top' node, it is 'turned round' and a bit in the message
is set indicating that it can now be 'applied' in all nodes. After a message
has been made applicable, it is sent down the 'apply-links' and as it passes
each node, a copy of the message is sent to the CIC to be applied in each
node. The message continues down the 'apply-link' until its reaches the
'bottom' node, passes to the CIC and is then subsequently discarded.

5.4 10 data route
IO traffic is routed through the NCS for a given node as shown in Figure 8.
It effectively uses the same crossbar switch for routing the IO data through.
A special feature of the IO interfaces is that the NCS is resilient to IO cou
pler failures and faulty couplers can be configured out without affecting

ICL System s Journal May 1997 55

Figure 7: Node connection switch

56 ICL Systems Journal May 1997

Figure 8: I/O traffic routing

Figure 9: Node connection re-routing

ICL Systems Journal May 1997 57

the system. Hot-swap of any IO couplers is supported.
If a link malfunctions, then it is possible to establish a multi-node sys

tem avoiding this broken link; see Figure 9. For example, in this diagram,
the left hand picture shows a fully functional connection and the public
write goes up the stack of nodes to the top node. It then gets marked 'ap
plicable' and sent back down the stack to the bottom node to be discarded.
The broken case is shown on the right. The public write cannot traverse the
broken link, so it is turned round at the second from top node, made 'appli
cable' and sent back to the bottom node. From here it is sent down (and
back round) to the top node where it is discarded.

5.5 Copper versus Optical connections
If there is no requirement for physical separation of the nodes, they may be
connected together with copper interconnect. In this case, the cabinets must
be bolted together and the internode cabling is placed within a duct be
tween the two nodes. This provides a single Faraday cage for the nodes
that allows us to meet the EMC requirements and reduces ground potential
differences between the nodes. Up to 4 nodes may be connected this way
with the maximum cable length of 5 m.

If a synchronous-interface approach is adopted on copper connections,
then a means of distributing a system clock across up to 4 nodes is required.
Whilst this is probably feasible, the method adopted on SY is simpler and
removes the need for Phase-locked Loop Oscillators or highly sophisticated
and expensive clock tuning engines. The scheme adopted on SY is to send
together with the data/control highway a 'travelling' clock that is set roughly
two-thirds of the way through the clock cycle time. In this way, transmis
sion line reflections and cross-talk are allowed to die down before valid
data is strobed into a FIFO. Reading of the FIFO occurs in a different clock
regime, so special circuitry, known as "de-boggling" circuitry, is required
to change the clock speed for the data. The interface is thus regarded as
asynchronous.

This principle is further applied to the interfaces between NCS and all
the IO couplers, and between NCS and the CIC. The advantage is that the
OCP/CIC, NCS and the IO couplers (including NSY) can then operate un
der independent clock-regimes. It allows the basic clock cycle time to be
different on these sub-systems, allowing appropriate technology to be cho
sen for each sub-system.

To support separations where the nodes are not physically adjacent,
such as disaster-tolerant systems, an optical interface is used. This solves
the problem of widely separated copper interfaces where the logic ground
voltage difference would render it unusable.

To meet the bandwidth requirements of a full 4 node SY system, 2 high-
bandwidth optical transceivers operating at 1 Gbit/second per link are used.

58 ICL System s Journal May 1997

6. Picode
Picode is the machine code that is obeyed by each OCP on an SY system
(see Figure 10). Although the SY Picode is not binary compatible with SX
Picode and individual Picode instructions have slightly differing effects on
the hardware state, there is considerable compatibility in their effects on
the process state. For this reason a large amount of SX Picode source was
reused on SY.

Picode is responsible for the following:
• providing the "Primitive Level Interface" to the overlying software
• resolution of program errors
• supporting the Series 39 architecture, scheduling processes and in

terrupts
• providing fast I/O support
• supporting intemode establishment, disestablishment and error re

porting
• supporting the interface to the node support computer for SY (NSY)

Of the above, some of the complex arithmetic instruction routines, all
of the resolution of program errors, some of the I/O support and some of
the interface to the node support computer for SY were reused from the SX
Picode.

SX had two Picode instruction streams (A and B) running interleaved
on a single OCP. On SY a significant amount of the stream B functionality
has been moved to other hardware. Also the SY design provides up to 4
OCPs accessing a single store image. Picode exploits this by assigning each
OCP to a software process and running up to four processes in parallel.

Figure 10: Position of Picode within an SY node

ICL System s Journal May 1997 59

6.1 Multiple OCPs
On earlier Series 39 machines OpenVME's process scheduling algorithm
causes one process to be nominated and entered into a software table called
the "Node Environment Table" (see Figure 11). On SY the Picode itself can
perform process scheduling in order to nominate up to four processes to
run concurrently. The Picode, then, has two modes of operation: "Software
Process Scheduling Mode", where the software performs process schedul
ing and enters the nominated process into the node environment table; and
"OCP Process Scheduling Mode", where the Picode performs the process
scheduling. In software process scheduling mode only one OCP is used,
however many are fitted, and this mode is used by the OpenVME loader.

To enable OCP process scheduling mode an extra field has been de
fined in the node environment table. This is known as the "Process Priority
Table Pointer" and holds the address of OpenVME's process priority table.

The SY Picode takes over the management of the process priority table.
New primitive procedures are provided to allow software to add a process
to the table, remove a process and change a process's priority within the
table.

Any time a process priority table is defined or altered, Picode performs
a selection algorithm in which a process is selected for each available OCP.
The selection algorithm will favour processes of a higher priority and will
also try to keep processes on the same OCPs as they have run on before to
minimise the switching of local data between OCPs' caches.

A process that needs to perform system-wide tasks may need to run
"Preemptively" indicated by causing the "PEP" bit in the program status
register to be set. A preemptive thread, once started, must finish before
another preemptive thread at the same or lower privilege can start (although
a higher privilege preemptive thread may still interrupt it). When calling
any of the new primitive procedures to manipulate the process priority
table the software process must be pre-emptive.

Figure 11: SY node environment table

60 ICL System s Journal May 1997

After changing the process priority table, when software ends the
preemptive thread, a "Nomination Point" occurs. This is where the Picode
nominates a process for running on each available OCP. These will be the
processes that have been selected by the selection algorithm mentioned
above. Note that no change of the node environment table occurs, the Picode
keeps its own table of selected and nominated processes.

When software decreases its privilege, when an interrupt occurs or when
an interrupt thread finishes the Picode performs a schedule. To schedule,
the Picode must select processes to run on each OCP. This Picode is cur
rently running on any OCP. In general, these will be the nominated proc
esses but there may also be interrupts to run, or preemptive processes to
complete. If it selects an interrupt to run, this may need to be run on the
current OCP or another one. If it needs to run on the current OCP then the
interrupt is activated. Otherwise a message is sent to the chosen OCP for
the Picode on that OCP to also perform a schedule. If no interrupt is se
lected, but the scheduling Picode finds that an OCP is no longer running
the correct process, that OCP is sent a message telling it to perform a sched
ule. When the second OCP performs its schedule, it may agree with the
first OCP's decision, in which case it goes ahead and changes its process or
runs the interrupt. Alternatively it may find either a further discrepancy
between the processes being run and those selected or it may find that the
list of selected processes and interrupts has changed. In this case it sends
another message to ask an OCP to perform a schedule. This continues until
no further discrepancy is found. The scheduling algorithm is designed to
ensure that at all times each process is running on at most one OCP and
that at most only one OCP is preemptive.

6.2 Multinode
On SX the handling of writes to store generated on another node (public
writes) was handled by the Stream B Picode. On SY, public writes and
semaphores are handled by hardware, with a message sent from the writ
ing processor's VMU to the CIC, then sent to the CIC on the other node and
applied to store there. A public real time clock is also provided by the CIC
which the Picode can read by sending a message to the CIC. Because the
internode hardware is substantially different, the largest part of the inter
node Picode on SY is to effect internode establishment or disestablishment.

To establish a public write service the Picode will cause all the links
between the required nodes to be connected. Note that the nodes are con
nected together in a chain and a multinode service can only be established
between linked nodes. Each link can be either copper, for nodes that are
adjacent, or optical for nodes that are separated. Nodes can be connected
into a full circle but only a hairpin is required for a multinode service, so
under this circumstance Picode will choose not to use one of the links. This

ICL System s Journal May 1997 61

is a resilience feature as if a link should fail this will obviously be the link
the Picode will choose not to use.

On receiving the establish request from software the Picode chooses a
node to be the master node. The Picode in this master node will then grope
along the links to find the nodes required for the requested multinode sys
tem. As each node is groped it is connected. When the full circle is con
nected, the Picode then chooses a link to disconnect in order to form the
hairpin. This choice is based on two things. Firstly, if the previous multinode
service terminated because of a link failure then the link that failed before
will be the one chosen to disconnect. Otherwise, the Picode will choose to
disconnect an optical link in preference to a copper link. This provides the
best performance as an optical link is likely to be joining nodes that are
some distance apart. When Picode disconnects an optical link, it will send
the link a message to initiate "health check mode" in which the link con
stantly checks its own state and causes fail information to be sent to
OpenVME should any fail be detected.

6.3 I/O Support
On SX I/O support processing was performed by Stream B Picode. Most of
this processing has now been exported to processors on the 1/O couplers.
There is a requirement as on SX, for SY Picode to support fast path I/O
sequences. To gain a further performance advantage the multiple OCP as
pect of SY is exploited by allowing OCPs to perform I/O fast path sequences
in parallel. In order to do this each coupler is set up so that it can individu
ally message one specific OCP, this way two OCPs operating in parallel are
guaranteed to be driving different couplers and so no interleaving of mes
sages can take place. See Figure 12.

6.4 Simulation
There were significant innovations in the simulation of SY Picode before
the hardware was switched on. Software was written to interface the Picode
test bed with the VISA test bed and the Picode unit driver could therefore
be tried with the actual Picode before hardware availability.

Because the establishment and disestablishment Picode were written
in C, the full establish and disestablish sequences could be tried on a stand
ard UNIX machine, through the use of test harnesses. Such use of C pro
vided a significant improvement in code writing.

Most significantly, OpenVME was run on the Picode test bed up to the
point where it required an 'oper' terminal. This is the first time OpenVME
has been non in simulation of a new processor design before the hardware
was available. This had some major advantages: Picode faults could be
removed before hardware availability; faults in the OpenVME changes for
SY could also be removed; experience could be gained on how OpenVME

62 ICL System s Journal May 1997

behaved in a multi-OCP environment and getting OpenVME to the 'oper'
on the real hardware was made easier due to the fact that it had already
been done on the Picode test bed. The achievement of this involved en
hancing the Picode test bed to allow page discards and the development of
software to emulate an IO processor and pass on commands from the Picode
test bed to a real disk. This software is now being used on future ICL devel
opments.

Figure 12: I/O coupler-OCP configuration

7. Performance monitoring & modelling
Performance modelling has played an increasingly important role in all
Series 39 system developments as a tool for both performance prediction
and design option assessment. For design option assessment the speed of
response is more important than the absolute accuracy of result, for per
formance prediction the reverse is true.

ICL System s Journal May 1997 63

SX project carried performance modelling to new levels of detail by
modelling both the processor pipeline and internode connect in significant
detail driving the models from detailed traces obtained from both real work
loads and ICL specific benchmarks. These workloads may have been run
ning for many hours in order to achieve the desired state before a trace is
taken.

The SY project has modelled the same as the SX project but has ex
tended it to include the modelling of the system behaviour with the aim of
further improving the accuracy of performance predictions.

7.1 Modelling Approach
Ideally the same behavioural models used to validate the SY design would
have been used to predict the performance. Regrettably the time taken for
a behavioural model to run is orders of magnitude greater than for a per
formance model. Further the behavioural models "execute": it would have
been impossible to run a behavioural model to the point where it could run
the operating system or a real workload.

An alternative adopted by the SX and SY projects is to build Discrete
Event simulations models which abstract the behaviour of the system such
that the model does not "execute" but simulates with the same timing as
the behavioural model. Realistically it is impossible to achieve identical
timings in all cases without re-implementing the behavioural models so
engineering judgement must be applied to ensure the largest contributors
to overall performance are accurate.

The SY performance modelling relies on detailed traces gathered from
running real workloads on current machines. These traces detail the exact
state for the instruction sequence being executed by a workload. The state
includes the value of all registers relevant to the instruction execution but
does not include the state of the store. Clearly this information gathering
process imposes a significant performance penalty.

The traces can be used directly to drive performance models but they
can also be analysed to determine a detailed profile as to what the work
load does at a more abstract level—the frequency of public writes, the fre
quency of access level changes, etc. The information used by a model is
dependent on the objectives of the model.

Further information as to the system level behaviour has also been gath
ered both from the OpenVME system logs and from special traces that mini
mise the disturbance of the workloads.

7.2 Performance Models
Prior to SY performance modelling tended to be done using S39 systems.
All performance modelling for SY has been done using Sun workstations
and a performance modelling package written in C++.

64 ICL System s Journal May 1997

The performance modelling package used on SY has been derived from
a discrete event modelling package for the Simula language provided by
STL (of which ICL was part at the time). The Simula package was used for
some preliminary pipeline investigations but was found to be too slow and
hence was converted to C++ and further extended for our specific needs.
This package has been used for all SY performance modelling and has been
used by other groups within HPS.

For SY the basic modelling package has been used to support three
major models—a pipeline model, a multi-node interconnect model and a
system model.

The pipeline model is a highly detailed model of the OCP pipeline and
storage hierarchy. It is driven using workload traces taken from previous
S39 machines. It has been developed as a highly configurable model which
allows many different options to be modelled without the need for new
code to be written. This is achieved by constructing a set of stages which
interconnect using queues, emulating the behaviour of the real pipeline.
These stages can be general or specialised but all follow the same pattern:
they take information from their input, perform some function on it, main
tain internal state and pass the modified information to their outputs. The
model is configured by means of a configuration file which allows queues
and stages to be linked together. Various parameters are applied to each
stage in order to specialise it. An example of this is cache size. Another file
provides parameters that specify the cost functions that govern the time
taken for various functions by the stage. This approach allows many op
tions to be considered with minimum need for code to be written at a cost
of performance. Where code is needed, such as when new functionality is
identified, a new stage can be created as a derivative of an existing stage.
The new functionality is added (plus any parameter handling code) and
the stage is then available for general use.

The SY node comprises between one and four processors. In its sim
plest form the pipeline model only models one processor, its caches and the
storage system. In order to determine the impact of multiple processors
competing for resources within the storage system and to determine the
impact of cache invalidation it is possible to configure more than one pipe
line BUT this costs significantly more in run time them modelling a single
pipeline. In order to determine the performance of multiple processor sys
tems efficiently the events which cause interaction are extracted from a sin
gle pipeline model as it runs and fed to a load generator, configurable with
up to 4 processors, which presents them to the storage hierarchy after some
time displacement. This simulates both the loading of the storage hierar
chy by other pipelines and the interaction of specific address access on the
caches.

The multi-node model follows a similar pattern to the pipeline mode

ICL System s Journal May 1997 65

in that it is configurable and obtains its performance characteristics from
input files but rather than being trace driven it is profile driven, the profile
being derived from an analysis of the workload traces. This allows the
ratio and relationship between events to be changed without the need to
generate complex detailed traces. This gives the possibility of creating arti
ficial workloads which will drive the system harder than any real work
load and to create profiles for workloads which it is not possible to monitor
(see Figure 13).

The system model is a new model for SY which models the detailed
system behaviour below the operating system level but above the hard
ware level—the level implemented by the Picode. It is a simple perform
ance model with the functionality built directly into the model but with
timing and workload information taken from a parameter file.

On previous systems this level has been largely ignored as, although
its impact on performance was believed significant, the implementation
options were severely limited. On SY there has been a radical change to
this architectural level brought about by the support of multiple processors
within a single node, which has meant a need for greater understanding in
this area. In this model the individual processors are modelled running a
configurable workload—defined largely in terms of the rates of system call,
instruction execution, I/O rates and pre-emptive time. The systems reac
tion to these events has been captured at an abstract level and the costs of
various functions are input as parameters. The model simulates the work
load including all messages between processors and the contention for vari
ous system resources.

Figure 13: SY performance models

The models are used for two main purposes—design analysis and
performance prediction. For design analysis it is the relative difference
between two options that is important as it allows the designer to assess
the options. Numerous options have been considered during the project

66 ICL System s Journal May 1997

life and all models have been used for this purpose. For performance pre
diction it is the overall performance which is important. For this the three
models are combined—the results of one model feeding another as follows

Currently the SY system is undergoing extensive performance trials.
Many of the predictions from the performance modelling are being achieved
or exceeded

8. Conclusions
SY, like its predecessor SX, has attained the status of being the most com
plex and powerful machine ever built by ICL. It fully satisfies all the re
quirements of our customer base in that it provides high performance and
high reliability for our top-end customers whilst being capable of being
scaled down to satisfy the needs of even our smallest customers at a com
petitive cost of ownership. The challenge has been immense for both Fujitsu,
in providing the state-of-the-art VLSIs to ICL's designs and the ICL design
ers and implemented who have used to the utmost their intellect, knowl
edge and skills to make SY a reality.

Glossary
ATU

Apipe

CIB

Address Translation Unit. Hardware which can convert
a virtual address to a real address.
Picode instruction decoding and operand request part
of the OCP.
Cyclic Input Buffer. Storage space for data arriving from
peripheral devices.

CIC Coupler Interface Controller. Hardware which transfers
messages between OCPs and IO and intemode couplers.

CIF Coupler Information Frame. "Commands" sent to the
IODB from picode/OpenVME to control the IO opera
tion.

COB Cyclic Output Buffer. Storage space for data being sent
to peripheral devices.

CMOS Complementary Metal Oxide Semiconductor. High den
sity microchip technology used on SY systems.

Dataflow Transference of data between registers in the hardware.
DCM Diagnostic Control Module. Hardware which allows

direct access by the node support computer to the SY
registers.

Disestablishment Termination of the internode service causing all nodes
in the service to return to being single nodes.

ICL System s Journal May 1997 67

DLC
DMA

Data Link Chip.
Direct Memory Access. Mechanism by which a coupler
can write data to the SY system by directly writing into
the SY main memory.

ECL Emitter Coupled Logic. High speed microchip technol
ogy which was used for SX.

Establishment Connection of many nodes together to form one multi
node system.

FDDI Fibre Distributed Data Interface. An industry standard
interface for transferring data.

Fetch Part of the OCP hardware which fetches and decodes
PLI instructions.

FIFO First in-first out. A buffer which gives back data in the
order in which it was stored.

FiberChannel An upcoming standard high speed optical fibre and
protocol for passing data along it.

Gbit
HPS
ICL
INP

109 bits.
High Performance Systems.
International Computers Limited pic.
Internode Processor. Hardware to send and receive
messages along a fibre optic cable.

Internode Connection between SY nodes to form a multi-node sys
tem.

IO Input/Output. The action of data being transferred to
or from a peripheral device such as a terminal, disc drive
or printer.

IODB IO Daughter Board. Or IO coupler, providing the con
nection between the node and SMARTfibre or Macrolan.

IPL Initial Program Load. The act of loading the SY hard
ware to allow it to start running OpenVME.

Ipipe Part of the OCP hardware to provide access to OCP
based hardware control registers.

JPred
Kbyte
Mainstore
MCU

Jump Predict. The jump prediction mechanism.
1,024 bytes.
The computer's memory.
Memory Control Unit. Hardware allowing access to
mainstore.

Microcode Data which is loaded into a hardware RAM which con
trols the actions of the hardware.

68 ICL Systems Journal May 1997

MSU
Macrolan

Mbit
Mbyte
Multinode

NCS

NSX

NSY

OCP

OSLAN

OpenVME
Oper

PCA

PLI

Picode
Pigen

RAM

SAM
SERDES
SMARTfibre

A unit of mainstore.
ICL's optical fibre, local area network, connection for
peripheral devices.
220 bits.
220 bytes.
Many nodes connected together to run one SY system.
This is done for increased performance and increased
resilience over a single node system.
Node Connection Switch. Hardware to allow informa
tion to be transferred between nodes in a multinode
system.
Node Support Computer for SX. A small computer
which monitors and provides general support for an SX
node.
Node Support Computer for SY. A small computer
which monitors and provides general support for an SY
node.
Order Code Processor. Central processing unit of the
SY node which executes PLI instructions and services
interrupts.
A 10 Mbit/second coaxial cable communications link
and protocol.
ICL's operating system.
An OpenVME session which is specifically used by a
systems operator. This will, in general, be the first ses
sion which is made available when an OpenVME serv
ice is started.
Printed Circuit Assembly. Comprising a board and com
ponents.
Primitive Level Interface. The standard interface to the
hardware seen by OpenVME applications.
The machine code which is obeyed by the SY processor.
Hardware within the OCP which converts PLI into
picode sequences and queues interrupt sequences.
Random Access Memory. Computer memory in which
data can be read and written by supplying an address.
The OpenVME support and maintenance server.
A chip that acts as a serialiser/deserialiser.
ICL's high speed optical fibre connection for peripheral

ICL System s Journal May 1997 69

SMP

SPARC
SPARClite

STL

SX
SY

Simula

TSN

VISA

VLSI
VMU

Xpipe

devices.
Symmetric Multiprocessor. Comprising many proces
sors using a common store.
A specific machine code language.
An off-the-shelf microprocessor which obeys SPARC
machine code, optimised for use in embedded systems.
STC Laboratories. Research division of Standard Tel
ephones and Cables.
A generation of ICL series 39 mainframe processors.
The latest generation of ICL series 39 mainframe proc
essors.
An object oriented programming language used for
simulation.
Token Serial Number. The mechanism by which mes
sages in a multinode system are applied in the same
order in each node to give a consistent store image.
VME Inoperative System Access. This enables diagnos
tic access to be made to a node.
Very Large Scale Integration.
Virtual Memory Unit. Hardware which translates a vir
tual address and provides access to store.
Part of the OCP hardware which performs the execu
tion phase of a picode instruction.

Bibliography
EATON, J.R., ALLT, G. AND HUGHES, K., "The SX Node Architecture,"
ICL Technical Journal, Vol 7, Issue 2,1990.

ABRAHAM, G.P., FREETH, D.C. AND VOSPER, H„ "SX Design Proc
esses," ICL Technical Journal, Vol 7, Issue 2,1990.

IEEE COMPUTER, "A Survey of Cache Coherence Schemes for Multi
processors," IEEE Computer, June, 1990.

Biographies
George Allt
George Allt joined ICL in 1968 with an HND in Computer Science from
Oldham College of Technology. He initially worked for the Computer En
gineering Service Organisation before moving to development in 1971. He
has been involved in both 1900 and 2900 machines, primarily in microcode

70 ICL System s Journal May 1997

development. George was the design manager for the picode development
on SX and was the overall system designer for the SY project.

Pete DeSyllas
Pete DeSyllas joined ICT Stevenage in 1967 having graduated from Exeter
University with a BSc in Physics/Maths. He joined the 1901A hardware
development team, subsequently was involved in the design of Disk &
Communications controllers and then joined the team developing the
smaller 2900 Series processors, becoming responsible for the design of the
cache/slave storage systems.

He moved to Manchester in 1975, leading teams to design and develop
cache systems for the 2966 and Series 39 Level 30 systems. On SY he has led
the team responsible for the design and development of the IODB—the
unit providing connection between Node and IO Subsystem.

In May 1997 he transferred to Cadence Design Systems Ltd under tin
outsourcing agreement between the two companies.

Martin Duxbury
Martin Duxbury is a UMIST Physics graduate who joined ICL West Gorton
in 1978 from STL Harlow. He has worked on four generations of OCP hard
ware, from 2966 via Series 39 Level 80 and SX systems to the latest SY. He
was the SY OCP system designer and lead the team of engineers imple
menting the majority of the OCP logic.

In May 1997 he transferred to Cadence Design Systems Ltd under an
outsourcing agreement between the two companies.

Kevin Hughes
Kevin Hughes joined ICL Bracknell in 1979 after graduating from Sheffield
City Polytechnic with a BSc in Computing Science. He initially worked on
1900 microcoded emulation systems on 2900 systems and moved to West
Gorton in 1982 to continue the work on Series 39 where he moved into
Series 39 system design specialising in performance. He was system de
signer on SY and was manager of the performance modelling team.

He was appointed ICL Distinguished Engineer in 1996 and is a fellow
of the BCS and is currently a system designer working on the next genera
tion of Series 39.

Kam Lo
Kam Lo joined ICL in 1970 after graduating from the University of Man
chester with a BSc in Electronic and Electrical Engineering. He worked
initially on developing interconnect technologies for 2900 series products
and since then has worked on Series 39 systems with technical design re
sponsibility for various hardware units. On SY he was the manager of the
ICL System s Journal May 1997 71

OCP and IODB design teams.
In May 1997 he transferred to Cadence Design Systems Ltd under an

outsourcing agreement between the two companies.

John hysons
John Lysons joined ICL in 1982 after graduating from Oxford University
with MA honours in Mathematics. He has worked in Manchester on three
Series 39 mainframe developments.

John has produced microcode for Series 39 level 80, picode for SX as
well as software products including an SX microcode compiler, the picode
test bed and part of the high level performance models for SX and SY. He
became manager of the SY picode project in 1994.

Phil Rose
Phil Rose joined ICL in Manchester in 1976 after graduating with a BA in
Engineering (Pt I) and Electrical Sciences from Cambridge University. He
worked on the development of successive mainframe products from 2982
to SY where he was a systems designer and a development manager for the
hardware design.

In May 1997 he transferred to Cadence Design Systems Ltd under an
outsourcing agreement between the two companies.

72 ICL System s Journal May 1997

Discovering associations in retail
transactions using neural networks

O.V.D. Evans

Research and Advanced Technology, ICL, Bracknell, UK

Abstract
A pilot application is described in which an unsupervised neural net
work is used to look for all significant combinations of store items
that tend to occur together in supermarket basket transaction files.
Such networks can pick up repeating patterns without the need for
any preliminary training. Before searching for such associations a
number of file pruning and conversion steps are needed. The reason
for these is described together with the means by which the results of
using the network are viewed and analysed. The results to-date in
dicate that savings of several orders of magnitude in file searches can
be achieved when compared with conventional boolean queries.

1. Introduction
The ability of a neural network to generalise can be exploited in data min
ing applications to find associations between groups of items. A typical
example of such an application is in retail basket analysis. In this case it
can be of value to the retailer to find out all the combinations of goods that
tend to be purchased together. To discover all likely associations using
Boolean key conjunctions in a database search would be impossibly labori
ous since each likely item would need to tested against all combinations of
all other likely items.

A neural network can be used to some effect to find associations in two
ways. A supervised neural network can be used as a 'what if' tool in which
the network is trained either on a randomly selected sample of actual bas
kets, or on a set of synthetic baskets the contents of which represent vari
ous hypothetical mixes of items to determine the actual prevalence of such
mixes. Alternatively, and more usefully, an unsupervised neural network
can be trained on an entire basket file and any associations present can be
deduced by examining the weightings of the nodes.

Clearly, the application of a competitive neural network towards the
discovery of associations between basket items will involve both a consid
erable measure of data pre-processing and conversion and then subsequent
analysis of the results. The bulk of this paper is devoted to describing these
data filtering and conversion procedures in order to put the use of the com

ICL System s Journal May 1997 73

petitive network in a proper perspective. The paper aims to show that the
conversion used make the use of neural networks a practical approach to
data discovery.

2. Association mining
The purpose of association mining in a retail industry context is to try to
discover patterns in the sale of items. Many items are known to have sea
sonal or regional sales profiles, but of equal interest to the retailer is to know
what individual items tend to be bought together—in other words, how
many times item X occurs in the same basket of purchases as items Y, Z ,
etc. Such information can be of value in activities such as restocking, dis
play layout, product promotion and in the exploitation of buying trends
and fashions. Some quite unexpected associations have been revealed from
such analyses [Derbyshire, 1996], [Baran, 1997].

The actual analysis tries to quantify associations in terms of confidence
and support. These terms, coined by Rakesh Agrawal of the IBM Almaden
data mining group [Agrawal and Srikant, 1994], refer respectively to the
percentage of records in some database D containing item subsets X which
also contain Y, and the percentage of records in the database that contain
both X and Y. An association with high confidence means that most records
that have X also have Y. An association with high support means that most
records in the database have both X and Y.

Although it is quite easy to specify what information is needed, it can
be appreciated that, with retail operations stocking 10,000 to 40,000 indi
vidually coded items, the combinatorial problem of looking not only for
pairwise matches but for more extended associations is computationally
intractable using conventional record searching techniques based on Boolean
conjunctions. A subsequent section will show that, although the number of
items likely to form associations of interest is more likely to be around two
orders of magnitude down from the above figures, since files holding thou
sands of transactions have to be searched, the intractability issue remains
formidable. Nevertheless, since the variety, rather than the total number of
items sold, determines the size of the neural network, the reduction of this
value to a few hundred makes the use of both supervised and unsuper
vised neural networks acceptable in terms of performance.

Retail transaction records tend to come in the form of large 'flat' files.
For the purpose of data discovery, where associations may be sought be
tween different classes of objects, such as products, departments, prices,
dates, times of day and checkout positions, it is preferable to work with the
'raw' data rather than with some subsequently 'warehoused' variant. The
'raw' data is easily filtered with simple tools and purpose-built applica
tions and then converted into vectors of active and passive elements needed
as input for the neural networks—as explained below. There would be a

74 ICL System s Journal May 1997

disadvantage in using 'warehoused' data, or data otherwise assumed into
a database, since the original files might need to be reconstituted by means
of the relevant join operations before conversion to a form digestible to a
neural network. Working with the 'raw' data avoids this overhead and is a
not uncommon practice among implementors of data discovery applica
tions. There is also the problem that database access languages may have
difficulty with some of the file filtering operations, such as the quorum
function, needed to select baskets with a minimum occupancy.

3. Neural networks
Neural networks originally started as a way to simulate the behaviour of
networks of biological nerve cells, known as neurons. Each simulated neu
ron, like its biological counterpart, is designed to carry out a simple thresh
old calculation by collecting signals at its multiple inputs and summing
them. If this sum exceeds a set threshold, the neuron 'fires' by sending out
its own signal. The transformation between input sum and output is deter
mined by a non linear function which can vary from a simple 'gap acting'
(hard on/hard off) to the more common sigmoid (S-shaped) response.

Although neural networks bear some similarity to their biological pre
cursors, they have evolved into a number of standard types that now bear
little resemblance to their biological equivalents other than the ability to
learn and recognise patterns, particularly where invariant behaviour is
buried in a noisy environment. Such data-rich environments are termed
model-weak, and model estimation depends on the use of statistical infer
ence techniques, such as non-parametric regression. Neural networks can
be regarded as an example of such a technique and have found uses in
applications where the only reasonable means of capturing the behaviour
of a model is through learning.

In general, two classes of Artificial Neural Network (ANN) can be iden
tified:

• Supervised ANNs: commonly the multi-layer perceptron model
• Unsupervised ANNs: also known as self-organising maps.

3.1 Supervised networks
These are modelled on the work of McCulloch and Pitts on association nodes
[McCulloch and Pitts, 1943] and developed into perceptrons by Rosenblatt
[Rosenblat, 1962], Perceptrons were conceived as 'black box' genotypic
models with a memory mechanism that permits them to learn responses to
input stimuli. Although their behaviour approximates to that of a nervous
system their components, artificial neurons, bear little relation to their bio
logical counterparts. In a multi-layer perceptron (MLP) these neurons are
arranged as layers of nodes, in which each node has a weighted input link

ICL System s Journal May 1997 75

from all the nodes in the previous layer. The sum of these input signals is
multiplied by a weighting factor and the sum then operated on by the node's
transfer function. The output is then passed to the next layer, again via a
weighted link.

Supervised learning involves propagating an input signal through the
MLP structure to its output and comparing the result with some expected
value. The error signal generated is then used to update the weightings
between the nodes in a process of back-propagation. The commonest form of
back-propagation in use is the generalised delta ride of Rumelhart, Hinton
and Williams [Rumelhart et al, 1986]. A series of input vectors known as
the training pattern is repeatedly presented to the MLP until the root mean
square value of the resulting error signals reduces to less than some speci
fied threshold, or a given set of repeat cycles completes. The training proc
ess involves the setting of two parameters, the learning rate η, the momen
tum a, the number of hidden layer nodes and the number of training vec
tors that make up a training epoch. An MLP can be used for data discovery
but, due to the need for specific training data (the 'supervision' compo
nent), the process is rather indirect and does not compare with the capabili
ties of an unsupervised network. A fuller treatment of the practical use of
supervised neural networks is given in a previous Systems Journal article
[Evans, 1997].

3.2 Unsupervised networks
Neural networks can be used for data discovery in cases where there are no
data available to train a supervised network. Unlike the case of supervised
networks, there are a variety of unsupervised ANNs of which the com
monest forms are variants of the competitive network and the Kohonen
self-organising map. The distinction between these two types of network
is that in the case of the Kohonen ordered map there is a process whereby a
'winning' node claims the territory around itself, and in the competitive
case [Rumelhart and Zipser, 1986] the second (non-input) layer is organ
ised into inhibitory clusters, in each of which only one node can win the com
petition. Figure 1 illustrates a simple competitive network with three input
units and three competitive units. The arrowed links between the input
units on the left and the competitive units on the right are the weighted
inputs to the latter. Figure 1 also includes the frequently used option of
inhibitory links between competitive nodes and self-reinforcing links. These,
if used, will apply a small decrement to the weights of all nodes but the
winning one. In the application described below this option was not used.
In such a network a 'winner takes all' strategy means that the winning node
reinforces its state by transferring weights from its inactive to its active in
puts. A fuller description of the particular competitive algorithm used in
the application is given in the Appendix.

76 ICL System s Journal May 1997

Figure 1 A co m p etitiv e n etw ork

It is important to note that the competitive rules, though simple, rein
force the weights of vector elements that occur together and do not per
form simple cumulative totals on each vector element. This means that a
competitive network is capable of resolving as many independent associa
tions of vector elements as there are competitive units in the cluster. Such
resolution usually becomes apparent after even a single training cycle, so
that it is not normally necessary to present the input data more than once to
the network. This contrasts with the operation of a back-propagation net
work, where the input set of training patterns is repeatedly applied to the
input until, through back propagation, the difference between the network
output values and the expected values reduces to below some pre-set thresh
old. Another difference between supervised and unsupervised networks
is that in the former the output is the set of values of the output nodes of the
trained network to subsequently applied input signals. In a competitive
network the results of interest are the values of weights between the input
nodes and the competitive nodes. The outputs of the competitive nodes
merely serve to determine the competition winner for each input vector.

Figure 2 is a typical graphic plot of the weight values of a competitive
node after a single training pass. By applying a threshold value (the hori
zontal line—set by trial and error to some fixed fraction of the maximum
weight value) it is possible to separate the highest values as collectively
corresponding to clusters of input values that have recurred sufficiently
often to have led to reinforcement on every occasion that the node has won
the competition. How these values are further analysed to discover asso
ciations is described in Section 5 below.

ICL Systems Journal May 1997 77

Figure 2 Competitive network weights

4. Data filtering
Before a neural network can be exploited for data discovery in this manner
a considerable amount of data filtering and cleaning needs to be done. Typi
cally, out of a product range of 10,000 different items (known by their uni
versal product code, UPC) sold in a day, the most frequently occurring have
associations that are already well known while the thousands of items with
the lowest ranking are sold so infrequently that they are unlikely to form
any significant associations. Somewhat surprisingly, the range of items of
interest can be reduced to a few hundred, as can be seen in Figure 3, where
204 items have been selected from the overall rankings. A further stage of
data filtering that it should be possible to apply is to select items by depart
ment. Figure 4 shows the cumulative count of items ranked by department
with three departments selected for further analysis. Such a selection will
prune all items belonging to unselected departments from the records of
the basket file.

78 ICL Systems Journal May 1997

Figure 3 Occurrence of items by rank

Figure 4 Occurrence of items by department

In the same way that the items in each basket can be reduced to just
those belonging to departments of interest, it is also possible to weed out
all baskets with less than some specified minimum item count, since they
are unlikely to produce associations of significant interest. Typically such
pruning can reduce the number of records to be analysed by a factor of
four. As an example, by setting a minimum quorum of 5 items per basket,
the number of baskets to be analysed was reduced from 3,228 records to
767 before eliminating any departments.

With judicious pruning it is possible to reduce the range of items which
could form associations from several thousand down to, say, 200. This re
duces the possible pairs that can be formed from several tens of millions to
19,900 (2,ioC2). Although this still leaves a large combinatorial search space,
with 200 inputs it immediately becomes practical to use a neural network
whereas 10,000 would present intolerable performance problems. For this
purpose each of these 200 items is represented by a presence or absence
value in a vector.

For finding associations, multiple occurrences of an item in a basket are
of less interest them the variety of items in the basket and are given a 'present'
value in the vector. Multiple occurrences, however, can be made to bias the
item value logarithmically from say 0.5 for a one-off to some arbitrarily
high value of, say, 0.9. Without this bias low occurrences would not gener
ate a detectable signal. A typical neural network for basket association search
could therefore have 200 input units and 20 (say) competitive units—this
would allow the network to identify up to 20 clusters of input signals, but
with the likelihood of partial overlaps.

ICL Systems Journal May 1997 79

5. Application details
An application has been designed round the data filtering and competitive
network components which, once initialised, can be driven entirely from a
graphics user interface either locally or remotely. The program consists of
a driver kernel supporting a graphics user interface which enables a user to
select an operation to perform from a repertoire of tools. Since each tool
can be run on its own, all data interchange between tools is by means of
files. This organisation is shown in the following diagram.

Figure 5 Example of an association map

In a typical data discovery run the following operations would be in
voked, by using the corresponding tool and would normally be executed
in the sequence listed below.

• Stats: This tool is used to extract basic statistics from the raw basket
data such as rank ordering by number of items sold, items sold by de
partment and basket occupancy rankings. The statistics, such as item

80 ICL Systems Journal May 1997

occurrence ranking (see Figure 3) and item counts by department (see
Figure 4), are presented to the user, who can then choose a subset for
further processing from a continuous range of items in selected depart
ments. The tool takes as its input the raw basket data file and format
ting information about it.

• Prune: Prime performs several tasks. It will generate a pruned basket
file that includes only items from the selected range, from selected de
partments and of a given user-supplied minimum occupancy. It will
also assign a vector index to all the items selected. It will finally configure
the competitive network in accordance with the number of items (in
put units) remaining in the selected range, and the number of competi
tive units specified by the user.

• Vectorise: Vectorise will ask the user to select a portion of the primed
basket file for conversion into pattern vector format to be input to the
neural network. Although the entire file can be vectorised, it is often
more useful to partition it into parts corresponding to selected times of
the day.

• Competitive neural network (CNN): The neural network tool will
accept a configuration file (produced by the Prune tool) specifying the
number of input and competitive nodes, the learning rate and the
number of training cycles (one, by default) to be executed. The user
can control and monitor the operation of the tool by means of its own
dialogue box. The output of the network is displayed for every input
vector during learning, and the state of the weights to a selected node
can be inspected on completion. Figure 2 is an example of such a dis
play. The operator has the option of moving the threshold line from its
default position before the state of the weights are written to a file,
'all_nodes.pl', containing for each competitive node, its identity, the
threshold value used and a 'hit' list of all the weights, which exceeded
the threshold, sorted into descending order of weight values.

• Analysis: This tool performs three functions:
1. For each node it takes a specified number (default 5) of the highest

value weights from the 'all_nodes.pl' file, uses their index value
(input node number) to pick up the corresponding product code
from a table generated by the Prune tool and writes the resulting
lists to a new file.

2. Again for each node, the product code with the highest weighting
is used as a key to spool off from the main pruned file only those
records containing the code. The number of occurrences in the spool
file of each of the remaining codes in the list is then found.

3. The results of the search are then displayed graphically as a matrix

ICL System s Journal May 1997 81

of graphs, each of which displays the associations found for the
corresponding node (Figure 5). In each box, the left hand bar is the
key code with the remaining bars representing the count of records
in the spool file containing both the code for the bar and the key
code. Statistics such as numeric occupancy values and percent con
fidence can the be displayed in an appended dialogue box (not
shown in the figure) by 'clicking' on the bar for individual statis
tics, or in the box space for an overall summary of all the bars in the
box.

All the tools described above are presented to the user in a toolbar (not
shown in the figure) below the main application workspace and instances
to the tool can be called into action by clicking on their icons. Each active
tool is capable of a choice of activities selectable from a pull-down menu
and can operate independently of each other on filed data. As files are
accessed or created during the operation of a tool, these become visible in
the workspace along with links to the tools using them. Figure 6 shows
what the workspace would look like to the user at the completion of a data
discovery run. The box at the upper right of the figure is a message area in
which the application can inform the user about its current state. Figures 3,
4 and 5 are all instances of the graphic information that can be selected
from the icons in the workspace.

82 ICL System s Journal May 1997

Figure 6 Application user interface

The application was written in ECL'PSe, a highly efficient constraint
logic programming language based on a Prolog developed at the European
Computer Industry Research Centre in Munich. ECL'PSe versions exist for
a variety of UNIX platforms. The graphics interface was written in ICL
GraphicsPower.

6. Use of supervised networks
Although supervised networks, with their need to be trained on example
data, cannot, strictly speaking, be used for data discovery, they can be used
in a related activity—hypothesis testing. This involves training an MLP
with a set of baskets randomly sampled from the data or artificially made
up to represent the 'typical' purchase profiles of various classes of hypo
thetical customer.

The former approach will yield results—eventually, as the discovery of
associations then becomes a hit-or-miss process depending, as it does, on
picking up a 'good' set of baskets during random trawls of the file. Early
versions of the application did use a proprietary supervised neural net while
the competitive net was still under development. The use of this MLP has
now been discontinued.

7. Results
The association map shown in Figure 5 was generated from the analysis of
the weights of a competitive network having 200 inputs and 20 competitive
units after one training cycle using 80 baskets.

As described above, each analysis box, corresponding to a node, is the
result of taking the UPC code corresponding to the highest value weight
and using it as a key to spool from the original pruned file, a file containing
only the records that include the key, and counting the occurrences of the
next five highest weighted UPCs in that file.

The merit of the map is that it shows at a glance the strength of the
associations discovered by the competitive network. In the actual applica
tion, statistics about the associations picked up by a particular node can be
displayed by 'clicking' the cursor in the relevant box. A summary of all the
associations discovered in the example run is listed in Table 1.

Some associations are quite weak but others, such as those picked up
by nodes 8 and 17, show strong associations. In the case of node 17, over 4
items—with 11% of all baskets containing item U0001 also containing items
U003, U004 and U005. In this particular case these associations occurred in
a sample of 767 baskets so that although some groupings have high confi
dence, in general they have low support.

1 Index values have been used in place of UPC values as basket transaction files and any results
derived from them are regarded as commercially confidential by the originators of the data.

ICL Systems Journal May 1997 83

N o d e Ite m N o O c c C onf(%) N o d e Ite m N o . O cc. C o n f(%)

1 U 168 24 11 U 018 42

U 088 1 4 U 132 1 2
U 103 1 2

U 084 2 8 U 002 10 23

2 uon 98 12 U 053 25

U 162 3 3 U 118 1 4

U 071 8 8 U l l b 1 4
U 074 5 5

U 138 4 4

3 U 108 21 13 U 042 40

U 046 2 9 U021 3 7

U 010 3 14 U 135 2 5
U 040 5 12

4 U 009 105 14 U041 46

U 005 28 26 U 142 2 4

U 003 9 8 U 087 1 2

U 022 8 7 U121 1 2

U151 2 1

5 U 039 35 15 U 097 14

U 104 2 5 U 010 3 21
U 008 2 14

6 U 035 38 16 U 106 30

U 075 3 7 U 169 2 6
U 146 2 5 U 137 1 3
U052 2 5 U 035 2 6

7 U 022 44 17 uooo 155

U 016 5 11 U 003 18 11

U031 4 9 U 004 18 11
U 005 31 20
U031 7 4

8 U 012 51 18 U 106 30

U 003 8 15 U 169 2 6
U 014 6 11 U 137 1 3

U 017 1 1 U 035 2 6

U031 1 1

9 U161 20 19 U 033 68
U 045 2 10 U046 6 8
U 170 1 5 U 043 2 2

U 155 8 11

U124 4 5
10 U 123 22 20 U 007 128

U 020 7 21 UOOO 22 17
U 059 1 4 U 0 6 3 3 2
U 045 2 9 U 162 4 3

Table 1 Summary of associations found

Other runs, involving different contiguous parts of the data file, have
been successful in finding that the fourteen occurrences of one particular
item always occurred with the only occurrences of one other item. The
probability of picking up one of the occurrences of this pairing with ran

84 ICL Systems Journal May 1997

dom sampling would be about 0.07 and took several dozen runs to dis
cover using the supervised network.

8. Conclusions
It is clear that preliminary pruning can reduce the combinatorial complex
ity of trying to discover associations between items in a typical transaction
file by several orders of magnitude. This is still not sufficient to render the
problem tractable by conventional search methods. However, the general
ising ability of a suitably configured competitive neural network has made
it practicable to highlight potential associations after a single training pass.
Then it becomes a simple matter to use the resulting weight statistics to
'drill down' into the original file to test the strength of the clusters discov
ered by the network. The number of full scans of the file is never more than
the number of competitive nodes regardless of the number of item codes
over which associations are being sought. With a maximum association
membership of five item codes in the example given this means that the
total number of additional scans is 80—a scan for each of the non-key items
in each node. Some of the latter can be trivial for key items with low sup
port. This compares favourably with the very large number of passes over
the database needed for a complete pairwise association search over 200
item codes and the rather greater number in the case of associations of more
than two items.

The great merit of the procedure described is that the clusters revealed
by the competitive network are merely a means of pruning the number of
searches over the transaction file. The results returned are always counts of
actual items present. The system is therefore in this sense self-validating
for what it finds—but it may of course miss some weak associations if the
number of competitive nodes is insufficient to detect them.

Appendix
Competitive Networks
The operation of a simple competitive network with a single layer contain
ing just one inhibitory cluster, as used in the data mining application under
discussion, can be described in the following set of rules:

• Every competitive unit in the cluster receives an input from every in
put unit.

• A competitive unit only learns if it wins the competition against its
neighbours; i.e., it has generated the highest output value.

• A stimulus pattern Sj is a vector each element of which can be either
active or inactive. An active element is assigned a value 0.9 and an

ICL System s Journal May 1997 85

inactive one 0.1.
• Each competitive node j generates an output given by the expression

N
y'j = sigmoid(£ijwjj)

/ = 1

where N is the number of elements in the input vector and sigmoid(x)2 is
the conventional transfer function used in neural nets. The use of a non
linear transfer function is optional and acceptable results can be achieved
with a unity function.
• Each unit has weights that average to a constant (normally 0.05). For

unit j where the weight on the line from input i is given by w:j, the
weights are set to conform to the identity

1 N— V w, =0.05
N — ,J

/ = 1

A unit learns by shifting weight from inactive to active input lines such that
this identity is maintained. More formally the learning rule that has been
adopted is:

{ 0 for a non - winning unit
kt])̂ for the winning unit

where y . is the output value of the unit, constant k is +1 for an active input
and —1 for an inactive input, and η is the learning constant (set to 0.11
through experiment).

Figure 7 Competitive network before and after learning

The effect of this weight transference is to move the stored pattern in

1 1
' s igmuid(x) = γ ------- j - r

I'vJ
86 ICL Systems Journal May 1997

the winning unit weights a little closer to the input pattern. Figure 7 illus
trates this graphically where the input vectors have been normalised to
unit length and represented as black dots. The weight vectors, initially set
to random values, are marked with Xs in the left hand diagram. After train
ing, their final positions indicate that each of the three nodes has discov
ered a natural cluster of patterns with the weight vectors now respectively
pointing to the centre of gravity of each of the groups, as seen in the right
hand diagram. In general, the weight distributions of the individual mem
bers of the inhibitory cluster tend to adopt values corresponding to mutu
ally exclusive reinforcing input vector values (but with overlapping ele
ments allowed) so that the multiple occurrence of distinct associations of
vector elements can be discovered by examining the weights at each node
at the end of a training run. From the relative strengths of these it is possi
ble to derive association rules for the vector elements they represent.

If there is structure in the input vector patterns, the competitive units
will break up the patterns into structurally relevant clusters—if any are
present. If the stimuli are highly structured then the classifications will
remain stable. For less well structured stimuli the classifications will be
less stable and may even move about from one node to another in the clus
ter. The results achieved to-date show little overlap between units. This
may be due to the fact that the occurrence of active vector elements in the
input patterns corresponds to the overall occurrence of the UPC items they
represent which is highly non-uniform as shown in Figure 3.

References
AGRAWAL, R and SRIKANT, R., Fast Algorithms for Mining Association
Rules. Proceedings of 20th International Conference on Very Large
Databases, Santiago, Chile, 1994.

BARAN, U. Helping Retailers Generate Customer Relationships. ICL Systems
Journal, Vol. 11, No. 2,1997.

DERBYSHIRE, M.H. An Architecture for a Business Data Warehouse. ICL
Systems Journal, Vol. 11, No. 1,1996.

EVANS, O.V.D., Short-term currency forecasting using Neural networks. ICL
Systems Journal, Vol. 11, No. 2,1997.

McCULLOCH, W.S and PITTS, W., A Logical Calculus of the Ideas in Imma
nent Nervous Activity. Bull. Math. Biophysics, 5,115-133,1943.

ROSENBLATT, E, Principles of Neurodynamics. Spartan Books, 1962.

RUMELHART, D.E., HINTON, G.E. and WILLIAMS, R.J. Learning Inter
nal Representations by Error Propagation, in Parallel Distributed Processing,

ICL Systems Journal May 1997 87

Vol. 1, (edited by D.E.Rumelhart et al), MIT Press, 1986.

RUMELHART, D.E. and ZIPSER, D. Feature Discovery by Competitive
Learning, in Parallel Distributed Processing,, Vol. 1, (edited by
D.E.Rumelhart et al), MIT Press, 1986.

Biography
Owen Evans joined the Advance Research and Development laboratory of
ICT Engineering (an ICL predecessor) in 1963 from the oil industry. The
research facility has continued in unbroken line to its present guise of the
Research and Advanced Technology centre of ICL Group HQ. During his
time in the research centre which has spanned virtually the entire evolu
tion of the computer industry, he has worked on computer architecture,
memory and microprogram design, system performance evaluation, com
piler design and logic languages. In the course of his career at ICL he has
managed various projects supported by the Advanced Computer Technol
ogy Project, the Alvey programme, and the EC Esprit and Fourth Frame
work initiatives in the areas of high-level language emulators, text databases,
human-computer interaction and constraint logic programming. His cur
rent interests are in the areas of constraint logic programming, data mining
and neural networks.

Mr. Evans graduated in Engineering from Cambridge in 1959.

88 ICL Systems Journal May 1997

Methods for Developing
Manufacturing Systems Architectures

S. Murgatroyd1 and R. Smethurst2

1MSI Research Inst., Loughborough University, Loughborough, UK
2ICL Enterprises, Westfields House, Kidsgrove, Stoke-on-Trent, UK

Abstract
This paper describes the progress of a collaborative research project being
carried out at the MSI Research Institute in collaboration with ICL
Enterprises. Building on ICLE's (ICL Enterprise's) OPENfra m e w o rk
methodology, the project aims to develop generic manufacturing systems
architectures, which describe typical manufacturing business processes,
typical application architectures and supporting social systems. These
generic architectures w ill form the basis of re-usable m odels of
m anufacturing dom ains for use in subsequent OPENf r a m e w o r k
assignments. In addition, the project aims to evaluate and specify an
integrated set of tools to support the O P E N fra m ew o rk methodology and
to provide a critique of the methodology in the light of the state-of-the-
art in the area (particularly with respect to the development of Enterprise
Integration science and the rapidly d evelop in g field of dom ain
ontologies) and other comparable approaches. Methodology and tool
evaluation is being carried out via a series of case studies, with one such
study, involving a major UK electronics manufacturer, being reported
in detail in this paper.

1. Project Description
A three-year EPSRC/CDP funded research project has been taking place
since May 1995. Entitled "Methods for Developing Manufacturing Reference
Architectures", the project is a collaborative venture, between the MSI
(Manufacturing Systems Integration) Research Institute of Loughborough
University and ICLE which aims to:

i Support the development of a manufacturing systems architecture
which lends structure to manufacturing systems used in target
enterprises and identifies attributes of necessary underlying
information system components.

ii Develop specific manufacturing reference models, providing
specialisations of the generic manufacturing systems architecture.

iii Apply, evaluate and promote the use of an integrated set of methods
and tools to support the top-down development of the generic
architecture and its specialisations.

ICL System s Journal May 1997 89

Four main areas of study are being pursued, as follows:
i Classification and Structure of Manufacturing Architectures and

Reference Models. Here existing candidates are being classified and
assessed in respect of their capability to populate manufacturing
business architectures, technical architectures and social systems.

ii Methods and Tools for Model Capture. This activity has two main
thrusts, namely: development of a meta-model based on the
OPENframework methodology and an assessment of available
methods and tools that can support the methodology.

iii Case Study Application of the Methods and Tools. Prior to being
integrated into the meta-model framework, the capabilities of a subset
of candidate methods and tools is being evaluated on case study data
obtained from collaborating partners. The details of one such case
study, carried out in conjunction with a major UK electronics
manufacturer, are described later in this paper.

iv Workbench Specification, Application and Enhancement. The design
of this workbench is being established in consultation with
collaborating partners with a view to them directly exploiting the
technology.

2. The OPEN framework Methodology
The OFENframework methodology [ICL, 1993] has been developed within
ICL and is used by over 400 practitioners worldwide. The methodology is
a set of well-documented and method-supported precepts and guidelines
to ensure business process re-engineering1 and system integration projects
are managed effectively and that they give rise to solutions that are aligned
with business need. It is used to assess customer needs, to define criteria
for success and to structure design, development and delivery processes.
Whether developing a stand-alone product or a full business process re
engineering solution, the principles remain the same. These are embodied
in "The Four Precepts":

i Every system integration project must follow a process defined by
OPENframework's "Stages of Solution Delivery"

ii Requirements must be specified with regard to the different
Perspectives of people affected by the project

iii Solutions must be expressed in terms of the OFENframeivork
Elements

iv Success criteria must be specified with reference to a defined set of
Qualities.

1 The examination and refinement of organizational processes and activities, manual or
automated, that support the functioning of the business. (Re-architecting: a Netron white
paper - http://www.netron.com/literat/rearchwp.htm).

90 ICL System s Journal May 1997

http://www.netron.com/literat/rearchwp.htm

The goal of applying the OPENframework methodology is to produce, ei
ther in part or in full, architectures made up of the OPENframework Ele
ments, namely Business Architecture, Technical Architecture and Social
System.

Figure 1: OPENf r a m e w o r k Elements, Perspectives & Qualities

3. OPEN/ramewor/cMeta-Model
Early in the project, a meta-model of the OPENframework methodology
[Murgatroyd & Gilders, 1995] was produced using entity-relationship-at
tribute techniques. The aim of this model is to:

i Capture and promote an understanding of the concepts of the meth
odology and the relationships between the elements of the
architectures, social systems, qualities and perspectives.

ii Provide a framework within which to position candidate methods
and tools.

iii Provide a mechanism by which the project's relationships with com
plementary MSI research projects (involved in business strategy de
velopment and distributed object systems) may be formalised;
thereby characterising key aspects of the nature of the interface be
tween business and manufacturing systems in a formal and con
sistent manner.

It is envisaged that subsequent case studies to that described in Section 4

ICL System s Journal May 1997 91

will use, in part, ICL's "ProcessWise Workbench" [ICL,1994],2 a process mod
elling tool which can be configured according to an internal meta-model;
the OYENframework meta-model described above will be used for this pur
pose. The development of the meta-model is ongoing and is taking into
account the recent work in the area of developing enterprise ontologies,
more specifically those of the TOVE project [Fox, 1992], Stader [Stader, 1996]
and Lenat [Lenat, 1995]. In addition to these ontologies, existing Process Wise
meta-models used in previous consultancy assignments will be incorpo
rated into the meta-model where appropriate. Eventually the meta-model
configured ProcessWise Workbench will be used to communicate both the
Generic Manufacturing Architecture and specialisations of it in terms of re-
useable models of manufacturing enterprises. This is shown in Figure 2.

4. Case Study
4.1 Introduction
The case study took place over a three-month period at the premises of a
large UK electronics manufacturer. The study had four major aims, namely:

i To provide recommendations to the case study partner regarding
improvements to identified manufacturing support processes

ii To provide a means of evaluating the OPENframework methodol
ogy

iii To provide a means of evaluating a set of tools for use within the

2 The ProcessWise Workbench is a PC based tool which allows the modelling, simulation and
redesign of business processes. The tool has a powerful meta-modelling facility which allows
the workbench to be configured to represent the particular domain(s) of interest.

92 ICL System s Journal May 1997

Figure 2: Meta-Model Development & Use

OPENframework, methodology
iv To provide "live" data for the development of the generic manufac

turing architecture and its specialisations.
The case study partner had recently undergone a large organisational

review and implemented an IT solution to support its manufacturing sup
port processes. For this reason it was not appropriate to consider using the
O PE N fram ew ork approach to define a Technical Architecture but to con
sider optimising the processes which the IT solution supported. For this
reason, the study mainly considered the Business Architecture and Social
Systems of OPENframework.

The case study partner's core business is systems design, printed cir
cuit board assembly and systems assembly. This study concentrated on the
processes supporting the board and systems assembly activities and delib
erately excluded the design processes.

4.2 Scope & Drivers
The study covered all the processes/activities concerned with supporting
the manufacture of the case study partner's main product line with a view
to providing observations and recommendations to contribute to the overall
aims of:

i Reducing order-to-ship lead-time from 4 to 2 weeks
ii Achieving 100% delivery date performance

iii Achieving improved stock levels/inventory control.
After consultation with appropriate staff, the key processes/process

areas were deemed to be:
Order forecasting and demand management.

The product is so ld and d is tr ibu ted through a n etw ork o f con tracted
d istribu tors who produce m onth ly forecasts o f u n it sales fo r a 12-m onth
period. It is the responsibility o f the D em and M anager to collate this
inform ation and present it to the Sales and M anufacturing R eview (SM R)
meeting.

Sales and Manufacturing Review (SMR).
This w as identified as the key process. The SM R process takes the fo rm of
a m onth ly director-level m eeting a t which the operations plan fo r the next
period is determined. Sales forecast figures are presented and compared to
previous forecast accuracy. The role o f this meeting is seen to be to produce
the operations plan to support the sales plan.

MRP (Materials Requirements Planning)
The M R P process is carried ou t autom atica lly by the m anufacturing
m an agem en t sy s te m and g en era tes procu rem en t requ ests fro m the

ICL System s Journal May 1997 93

operations plan and inventory allocations for confirmed orders.
Procurem ent

The procurement policy is to procure to the level of the operations plan as
decided by the SMR process. Procurement is to forecast, as manufacture is
to order.

Order desk.

Orders are received and entered onto the manufacturing management
system. The orders are confirmed in consultation with the Master
Production Scheduler and a delivery date is generated. Basic information
regarding the product is entered at this point to aid the Master Production
Scheduler in determining any special product requirements and to enable
hardware configuration (full bill-of-materials production).

H ardw are and softw are product configuration.

Prior to manufacture, a full bill-of-materials must be produced (hardware
configuration). After assembly, the systems must be software configured
prior to delivery.

M aster prod uction scheduling.

The Master Production Scheduler loads the manufacturing capacity with
manufacturing instructions derived from a monthly-updated operations
plan. The Master Production Scheduler has communications channels
(formal and otherwise) with the following areas of responsibility: -
Manufacturing, Order Desk, Demand Manager, Purchasing and Hardware
Configuration.

Sub -system (board level) assem bly.

The sub-assembly process is concerned primarily with the production of
modules (PCBs) to satisfy demand from both the systems and ship-loose
orders (spares etc). A module safety stock buffer is used to regulate the
supply to both manufacturing and ship loose. Production orders for
modules are raised whenever the level of modules in this buffer falls below
a specified safety level.

S ystem A ssem bly.

The Assembly sub-process represents the manufacturing operations where
hardware sub-assemblies and unit software are configured (assembled) to
fulfil a particular order. The flow of system orders through this process is
essentially constrained by the availability of sufficient system kits and the
number of available software configuration engineers.

W arehousing / Delivery.

After system assembly and software configuration, systems are sent to the
warehouse for packaging etc. arid subsequent delivery to the customer.

94 ICL Systems Journal May 1997

Figure 3: Process Relationships

At the time of the study, there was excess manufacturing capacity for
the volume of product orders that were being received (the product was
relatively new and sales volumes were still 'ramping up'). For this reason
the manufacturing processes were not considered in detail; i.e. the study
did not include the modelling of shop floor layout, individual manufactur
ing process lead-times, manufacturing shift patterns etc.

4.3 Deliverables
The deliverables from the case study to the industrial partner were to be:

i Documented models of current processes within the scope of the
study.

ii Documented what-if? Analyses (simulations) detailing the factors
that determine order fulfilment lead-time and inventory control.

iii Documented recommendations for process improvements and pos
sible functional re-alignment to achieve the stated performance
goals.

4.4 Tools
The tools used to carry out the case study were:

i Process Modelling - ithink [High Performance Systems].
ii Organisational Modelling - VISIO, Visio Corporation.

iii Documentation - Word for Windows, Microsoft.
Since a manufacturing management system had previously been in

stalled, it was not necessary to carry out a detailed information modelling
exercise with a view to systems implementation. However, the informa
ICL System s Journal May 1997 95

tion flows between processes and the transformation of information from
process to process could not be ignored and were documented alongside
the production of the process model. If a more formal information repre
sentation had been required, IDEF-1, "Integration Definition for Informa
tion Modelling (IDEF1X)" [NIST, 1991], or EXPRESS "The NIST EXPRESS
Toolkit: Introduction and Overview," [Libes, 1993] would have been used.
The majority of modelling was carried out using the ithink tool and subse
quent model descriptions are presented in ithink terms.

Within the scope of this study, the building of a business process model
was not the end in itself, rather a means to an end; i.e. to aid the authors in
their understanding of the problem domain. The choice of modelling tool
and its inherent simulation capabilities enabled the authors to assimilate
very quickly large quantities of information and to validate (with the aid of
appropriate personnel) their findings through what-if? analyses. The re
sulting model has been the basis of the recommendations for process im
provements, but not exclusively so, since other (unmodelled) relevant in
formation has also helped to form the authors' view of the current situation
and hence their recommendations.

4.4.1 Brief ithink description
The tool used for modelling the case study partner's order fulfilment ac
tivities was ithink, developed by High Performance Systems. The authors'
selected this package for its flexibility in model construction, graphical
processing nature and simple to use simulation capabilities.

A simple model example is now described to give an overview of the
ithink modelling terminology as a precursor to the description of the proc
ess model. It should be noted that this is a very concise introduction to the
ithink modelling tool and is not intended to provide a complete and thor
ough description of the software package. The suppliers, High Perform
ance Systems [HPS], should be consulted for more information.

A Simple Model
The ithink discrete simulation package allows the creation of reasonably
complex models using a number of simple constructs. Figure 4 shows a
simple ithink model that contains all the basic constructs that can be used to
produce a process model, namely flows, stocks, converters and connectors.

The basic idea behind ithink models is that processes can be modelled
as 'flows' of information between distinct locations, at a rate which maybe
either fixed or dependent on some other factor. A complete model can be
built by connecting these flows in an order which most accurately reflects
the process (or processes) being modelled.

With this in mind, the above model can be broken down into the con
structs as follows:

96 ICL Systems Journal May 1997

S tock s:
F lo w s:
C o n verters:

STORES, MANUFACTURING, WAREHOUSE.
IN FLOW, OUT FLOW.
VALUE, CYCLE TIME.

Figure 4: Simple i th in k Model

F lo w s represent the transit of 'information units' from one location to
another (which may or may not represent an actual physical location).

The f l o w s of 'information units' into (and out of) the MANUFACTUR
ING stock are directly controlled by the f l o w values IN FLOW and OUT
FLOW. These values maybe either fixed or variable; e.g. in the above model
IN FLOW may be set according some VALUE dependent on the number of
manufacturing orders received and available manufacturing capacity,
whereas the OUT FLOW may be dependent on the completion status of
manufactured goods and the available warehouse capacity.

F lo w s are in effect control valves that regulate the rate of f l o w s into or
out of particular stock items.

C o n v e r te rs can be constant values, definable variables, equations or
can be defined graphically.

S to c k s can be used to simply hold 'information units' in a model (e.g. a
storage bin for nuts and bolts) or can be used to represent the mechanics of
a process (e.g. to model the lead-time of a production line). There are a
number of s to c k types available in the ithink modelling package which have
different behavioural characteristics. The types are:

ICL System s Journal May 1997 97

R e se rv o ir : the simplest s to c k type. The number of 'information units'
at any given time in a re s e r v o ir depends solely on the
number of units added and removed. All units are lumped
together; i.e. there is no separation of batches in a reservo ir .

Q ueue: Information units flow into and out from queues in a first-
in-first-out (FIFO) order. As with reservo irs , the number
of units in a queue at any given time is dependent on its
inward and outward f lo w s . Q u eu es maintain information
about batch sizes; i.e. information enters and exits queues
in discrete chunks.

C o n veyer: Information units traverse a c o n v e y o r with a defined tran
sit time. The outward f l o w from a c o n v e y o r will normally
be continual but can be halted by using logical decisions
determined elsewhere in the process model.

O ven : The flow of 'information units' into an oven is controlled.
O ve n s process these units in batches and when the process
ing is complete, dump the units instantly to the outflow.
The 'cook time' of units in the oven is controlled by the
outflow logic.

During model construction, the user can specify capacity constraints
for all s to c k control items used in a process model.

C o n n ec to rs define the dependencies between specific items in a proc
ess model. For example, in Figure 4 the simple ithink model shows that the
value of the IN FLOW flow is dependent on the value of the c o n v e r te r called
VALUE.

4.4.2 Model Simulation
ithink includes discrete simulation capabilities that allow detailed exami
nation of dynamic behaviour of a process (or collection of processes). The
output of this simulation can be presented to the model user in the form of
graphs or data tables. The information to be included in these graphs/
tables can be defined by the user; e.g. the user may choose to view the flow
of units into the stock MANUFACTURING from the simple process model.

The user specifies the 'delta' used for the simulation and the period
over which the simulation should run. The delta specifies the unit of time
adopted during the simulation (days, months, years etc.) and dictates the
frequency at which the model state is recalculated.

The ithink package allows a simple measurement of cycle-time infor
mation to be calculated. The model, shown in Figure 4, includes a cycle
time measurement that tracks the lead-time of units through the MANU
FACTURING process.

98 ICL Systems Journal May 1997

4.5 Process
A number of initial interviews were conducted with appropriate staff in
order to form an overall view of the key processes with particular empha
sis on their inputs, ownership, involved personnel, interfaces with other
processes and outputs. This information, together with existing documen
tation allowed a first-cut model to be developed. This model highlighted
the gaps in the knowledge of the problem domain and resulted in a cycle of
re-interviewing and re-modelling. Following this re-modelling, typical
model simulations were run and shown to the key staff involved in each
process to see if the simulations reflected reality in their experience. This
enabled some of the major model assumptions to be addressed and cor
rected and provided valuable model validation. This validation period in
cluded attendance at an SMR meeting to gain an appreciation of the quality
and detail of information available from which to generate the operations
plan.

As a final validation process, the model was presented to the SMR proc
ess improvement working group. Again simulations of typical operational
scenarios were demonstrated and questioned and the possible uses of the
modelling tool within the SMR process itself were discussed.

The total elapsed time for the study was five months through from
scoping to documentation and presentation of findings. During this pe
riod a number of formal interviews and informal discussions were held
with appropriate staff. The key personnel involved were:

i Manufacturing Manager
ii Procurement Executive

iii Procurement Manager
iv Master Production Scheduler
v Demand Manager

vi Order Desk Manager
These people were identified as being key since they possessed inti

mate knowledge of the current processes and were deemed (informally) to
be owners of the processes identified in Section 4.2 (Scope & Drivers). In
addition to these people, the work of the study was discussed with the
members of the internal SMR process improvement group, bringing the
total number of staff involved to approximately twenty. Over the period of
the study, approximately thirty interviews and discussions were held and
the model went through approximately ten cycles of simulation, validation
and re-modelling. The final model was essentially a description of the as-is
processes. The simulation capability enabled potential scenarios to be in
vestigated (or more correctly, problems with current operational procedures
to be identified) but the model was not sufficiently restructured to repre
sent the to-be situations; in reality the model building exercise provided
ICL System s Journal May 1997 99

validated information for the process of deciding on the to-be structure of
the processes rather than explicitly defining it. The final model did not
represent the entirety of the information gathered and analysed during the
study. On-going work is translating this information (i.e. modelling) into
suitable forms, using identified methods and tools, particularly ICL's
ProcessWise Workbench.

5. Model Description
5.1 Order Desk

5.1.1 Description
PRODUCT orders arrive at various rates and in various quantities. The
quantities stated in this model are for complete PRODUCT systems. The
model allows for the generation of various PRODUCT order patterns using
a set of variables depicted in Figure 5 and described below:

PRODUCT_order fraction
The number of PRODUCT system orders received in an SMR period
(31 days) (see Section 5.3, Sales & Manufacturing Review (SMR)) is
set to be a fraction of the operations plan for that period; e.g. if the
operations plan for that period is set to 40 and the
PRODUCT_orderJraction is set to 0.75 then, in the absence of any
deviation, 30 system orders will be received in that period. The
order pattern is normally distributed, the mean of which is
PRODUCT_orderfraction*operations plan for that SMR period.

too ICL System s Journal May 1997

P R O D U C T_order_std_dev
This is the standard deviation for the normally distributed order
pattern.

P R O D U C T _order_start_day
Model simulations assume that the factory is 'ramped-up' from zero;
i.e. there is no inventory and hence no manufacturing capability for
a period of time (equal to the longest procurement lead-time for a
constituent part of the PRODUCT system). This variable allows
the day on which orders first arrive at the factory to be set; i.e. the
first day on which it is 'open for business'.

PR O D U C T _random _order p ro b a b ility
Random orders of larger quantity may be introduced into the order
pattern using this variable. PR O D U C T _random _orderprobability sets
the probability of such large random orders; e.g. if set to 50, on av
erage, there will be a larger order one day in 50. The quantity of
this larger order is also random and may be 3, 4 or 5 times that
dictated by the normal order distribution. In a similar way, the
quantity of ship loose orders may be specified and the process model
for this is depicted in Figure 6. Ship loose quantities are specified
in terms of modules (boards).

Figure 6: Order Model-Part 2.

ICL System s Journal May 1997 101

Figure 7: Typical PRODUCT Order Pattern

In Figure 7, a typical PRODUCT order pattern is shown with the following
variable values:

PRODUCT_orderfraction = 0.75 (of operations plan of between 60
and 75 systems per SMR period).

PRODUCT_order_std_dev = 2
PRODUCT_order_start_day = 156 (5 SMR periods into factory opera

tion)
PRODUCT_random_order^probability = 50

PRODUCT orders are entered into the Manufacturing Management
System (MMS) according to there being sufficient available_to_promise (ATP
—see Section 5.2, Master Production Scheduling (MPS)). If there is insuffi
cient ATP, the MMS will re-date the order based on future ATP. At this
stage the order has not been confirmed to the customer, it resides on the
MMS as a "simulated" order. At the point of order entry, a template of
basic PRODUCT system information is completed. To confirm the order,
the Master Production Scheduler uses this template information. The fact
that the order is on the MMS indicates sufficient ATP and if the template
does not indicate that the system is a "special" (i.e. a system containing
unusual or difficult to procure parts) then the Master Production Scheduler
confirms the order and delivery date. At this point the order becomes "ac
tive" on the MMS. If the system is a "special", the Master Production
Scheduler will specify a delivery date and communicate this to the order
desk who will seek acceptance from the customer.

Through this process, orders are confirmed using ATP and template

102 ICL Systems Journal May 1997

data and confirmation does not depend on there being a complete hard
ware configuration available.

The model assumes that the time taken from order entry to order con
firmation is 3 days.

5.1.2 ATP Redating
The process of ATP redating is used to out-schedule orders that arrive and
cannot be immediately satisfied due to existing order book commitments.
The order desk and MPS functions jointly own the process.

As mentioned in Section 5.1, if an order quantity cannot be satisfied
due to insufficient ATP (due to previously accepted orders and hence com
mitted procured inventory) then the order delivery date is rechecked against
the ATP before representation to the customer. The process simply involves
using the MMS to look forward in the operations plan to a date where there
will be sufficient inventory procured to meet (in full) the anticipated order.
If the delivery date attained from this process is acceptable to the customer,
then the order becomes simulated and is treated as in Section 5.1.

The modelled ATP redating process works in a similar manner to the
real process through using the future operations plan for determining the
next available delivery date for a particular order.

The model varies from the actual process in the following ways:
• There is no prioritisation of orders i.e. orders from particularly fa

voured customers cannot have precedence over other orders.
• Orders for redating are processed in a strictly FIFO manner.

The simple algorithm adopted for the redating only redates an order to
a particular operations period if the full order quantity can be manufac
tured in that period. ATP figures from successive periods are not accumu
lated in order to redate.

For example, an order arrives for 16 units.
Current ATP (period N) = 3 units.
ATP for period (N+l) = 13 units.
ATP for period (N+2) = 20 units.

In the real process, this order could be fulfilled by the end of period
(N+l), since the two successive periods' ATP equals the order quantity. In
the model, the order can be redated but cannot be fulfilled until period
(N+2) where the ATP figure exceeds the order quantity. If an order cannot
be redated in any operations plan period, then it is rejected.

5.2 Master Production Scheduling (MPS)
5.2.1 Description
The main input to the modelled MPS process is the monthly operations

ICL System s Journal May 1997 103

plan that is a rolling twelve-month production plan. See Figure 8. This
operations plan is agreed at the SMR meeting (Section 5.3, Sales & Manu
facturing Review (SMR)).

Figure 8: Master Production Scheduling Model

The main output from the MPS is the 'Available to Promise' (ATP) fig
ure for the PRODUCT range. The ATP figure gives a rough indication at
any given time of the company's ability to manufacture PRODUCT sys
tems. This figure is calculated from a stock-perspective and does not take
into consideration the following factors:

• Manufacturing capacity.
• Configuration capacity (both hardware and software).
• Impact of other product ranges on ability to manufacture PROD

UCT systems.
The ATP figure is calculated according to the following equation:
ATP s operations plan - confirmed system orders - delivered systems

104 ICL Systems Journal May 1997

The only factor that increases the ATP is the operations plan figure that
occurs monthly. The pull on ATP comes from confirmed orders and deliv
ered systems that can occur on a daily basis. A reservoir stock construct
has been used to model ATP since the ATP value is cumulative (i.e. any
additional ATP arising from a previous months operation plan which has
not been committed to received orders is carried over until consumed). The
stock-based perspective of ATP is based purely oh the figures in the opera
tions plan, which are based around generic PRODUCT systems. To ac
count for the 'ramping-up' effect of the model (see Section 5.1.1, Descrip
tion), the model ATP equation does not become active until the first pro
curement cycle has been completed; i.e. there can be no realistic ATP until
there is sufficient initial inventory to satisfy the operations plan figure, so
the ATP figure is held at zero until this occurs. Once the initial ramp-up
procurement period has expired, the ATP equation shown above is used
(where no detailed check on inventory availability is used). The model has
the ramp-up procurement period set initially to 100 days (approximately
the longest lead-time for any item in a PRODUCT system).

5.3 Sales & Manufacturing Review (SMR)

5.3.1 Description
The SMR (Sales and Manufacturing Resource) process is key to planning
procurement and production operations (Figure 9). The SMR process is
essentially a monthly meeting where sales forecasts are used to determine
a manufacturing operations plan. The procurement policy for the PROD-

ICL Systems Journal May 1997 105

Figure 9: Manufacturing & Sales Review

UCT is to procure to the operations plan. The operations plan is signed off
by the Managing Director as authorisation to initiate procurement.

Representation at the monthly SMR meetings varies, but a typical meet
ing is attended by :

Sales Director
Operations Director
Master Production Scheduler
Procurement Executive
Demand Manager.

The op_plan can be generated within the model in two ways:
i By specifying the salesjplan in terms of a sales_mean and a

sales_std_dev (normal distribution) and then multiplying the
sales_plan by op_plan Jraction in order to reflect that often the SMR
process does not generate an op_plan to support fully the sales_plan.
(op_plan_selector = 0).

ii By taking real opjplan figures from the SMR documentation.
(■op_plan_selector = 1).

In Figure 10 is shown a typical operations plan generated from an
op_plan with the following parameters:

salesjnean = 50
sales_std_dev = 2
op_plan Jraction = 0.7

Figure 10: Typical Operations Plan

106 ICL Systems Journal May 1997

In reality, an operations plan such as that shown in Figure 10 would not
remain fixed over the period of a number of SMR meetings. It is one of the
roles of the SMR process to adjust the operations plan in light of the sales
forecasts, number of confirmed orders and number of manufactured sys
tems. The model allows for operations plan adjustment via a very simple
feedback loop in which order trends are used to either increase or decrease
the operations plan. Figure 11 shows the operations plan adjustment in the
situation where orders are, on average, lower than sales forecasts (and hence
operations plan). It can be seen that the operations plan shows a general
downward trend. In the situation where orders are, on average, greater
than sales forecasts (and hence operations plan), the corresponding opera
tions plan shows an upward trend.

Figure 11: Typical Operations Plan

The feedback loop for the operations plan may be incorporated or not by
the use of the op_correction switch. Setting op_correction = 0 disables the
feedback and setting op_correction = 1 enables the feedback.

5.4 Materials Requirements Planning (MRP)
5.4.1 Description
The MRP process is used to generate procurement requests from the opera
tions plan and inventory allocations for confirmed orders. The modelled
MRP process is extremely simple and generates procurement instructions
for complete PRODUCT systems and shipped-loose orders (Figure 12).
These procurement instructions are then passed to the procurement model
and sub-model (see Section 5.5, Procurement). The two inputs to the MRP

ICL Systems Journal May 1997 107

process are the operations plan and the shipped-loose procurement quan
tity. The operations plan figure is used directly to produce a demanded
systems procurement figure. A ship-loose procurement order is automati
cally raised each month and is equal to the ship loose demand from the
previous SMR period.

5.5 Procurement

5.5.1 Description
The procurement process is responsible for supplying the company's manu
facturing capability with the components and other raw materials that are
needed in support of the PRODUCT range (Figure 13). Orders to procure
material can either be dependent or independent-demand. The dependent
demand orders typically originate from systems 'orders' included in the
operations plan and, to a certain extent, the scheduling is controlled by
agreement between the procurement function and the MPS. Certain high-
cost items from the PRODUCT bill-of-materials that would typically be in

108 ICL System s Journal May 1997

Figure 12: Materials Requirements Planning Model

Figure 13: Procurement Model

eluded with the dependent demand driven purchase orders are processed
manually. Independent demand is normally generated from the MMS. This
demand is usually dictated through re-order point control (ROPC). Com
ponents ordered according to this method are usually high-volume, low-
cost items. There are other mechanisms within the company by which pur
chase orders may be raised, but these do not significantly contribute to the
PRODUCT procurement process.

The m odelled procurem ent process includes a num ber of
simplifications. These include:

• Only modelling the PRODUCT procurement. Any impact of pro
curement processes for other products upon the effectiveness of the
PRODUCT procurement processes was ignored.

• There is no adoption of a 'procurement window' within the cur
rent model.3

• The PRODUCT was modelled only to the first level of the PROD
UCT bill-of-materials. The following items combine to form a com
plete PRODUCT system:

Cabling
General Documentation
Configuration Documentation
Connectors
Modules

Each sub-assembly has a separate procurement operation which per
mits the use of different operating characteristics; e.g. the procurement lead-
time for cabling can be different to that defined for general documentation,
connectors etc. The settings used in the process model to simulate the PROD
UCT procurement process are shown in Table 1.

5.5.2 The ‘Generic’ PRODUCT System
Although each PRODUCT order is usually unique (i.e. the production proc
esses are predominantly configure/assemble to order), the commonality of
sub-assemblies required for specific orders allows an average system bill-
of-materials to be defined—the 'Generic System'. This generic system, il
lustrated in Table 1, is used to drive the procurement orders raised as a
consequence of the operations plan. The template used for the generic sys
tem is updated normally on a weekly basis from historical data (in the real-
3 In reality, the procurement process does not automatically track the decisions made in the
determination of the operations plan. Although the operations plan is generated for a rolling
twelve-month production period, it is accepted that the procurement orders are only released
to a point in time where confidence in the predicted order level is high, and such that held
stock levels can be maintained at an economic level. The setting of the 'procurement horizon'
is also made with consideration to the order response rate and product lead-time.

ICL System s Journal May 1997 109

world process) but is fixed within this model. The factors that control the
generic system within this model can be set within the flight simulator.

Sub-Assembly
Number per

Generic System
Procurement

Lead-time
Procurement

Lead-time
standard deviation

Cabling 1 50 2
General 1 10 1

Documentation
Config 1 20 1

Documentation
Connectors 1 50 2

Modules 1 max_proc_lead_time 3

Table 1: Procurement Details Used in Process Model Simulations

5.6 Inventory

Figure 14: Inventory Model

5.6.1 Description
The receipt and storage of procured materials and components has been
modelled collectively as 'Inventory' (Figure 14). The Inventory area serves
only to hold material until requested by the manufacturing processes or
independent ship-loose demand. The inventory process is contained in an
ithink sub-model in order to mask the detail from the main model. The sub
model contains five similar process branches to represent the inventory lev
els of the five PRODUCT sub-assemblies: Cabling, General Documenta
tion, Configuration Documentation, Connectors and Modules. Each sub
model process branch operates in the same manner: sub-assemblies arrive
from suppliers (goods receipt modelled simply as procurement orders de

110 ICL System s Journal May 1997

layed by a procurement lead-time) and arrive in a unique inventory bin for
each sub-assembly. Each inventory bin is depleted by manufacturing re
quests, whereby a number of sub-assemblies is withdrawn from the inven
tory stocks to satisfy an order for a specified quantity of generic PRODUCT
systems. The only variance in the inventory sub-process model occurs in
the issue of Module inventory. The flow of Module inventory is controlled
purely by the level of the Modules safety stock buffer. The Inventory sub
model is also used to generate a number of statistics that are used else
where in the model. These values are:

total jnodules: the number of modules (and potential modules) in the
process. This figure includes finished modules and work-in-progress.
assembled_available_kits: the number of complete generic systems,
which can be manufactured with existing sub-assembly inventory.
This excludes Module inventory that exists as work-in-progress.
total_available_kits: (used solely for monitoring purposes in simula
tion). As above, but includes all Module inventory including WIP.

5.7 Configuration

Figure 15: Configuration Model-Part 1.

ICL Systems Journal May 1997 111

Figure 16: Configuration Model-Part 2

5.7.1 Description
Hardware and software configuration are important processes for fulfil
ment of PRODUCT orders. A PRODUCT system requires a hardware con
figuration (a detailed bill-of-materials on the MMS) prior to system manu
facture (assembly) and a software configuration prior to delivery to the
customer. There is a limited resource (configuration engineers) to carry out
this work and in addition to the PRODUCT configuration activities there is
demand for FIELD - ISDX software reconfiguration. For this reason the
FIELD - ISDX reconfiguration load is modelled.

The configuration model is based around the available configuration
resource, configurators (Figures 15,16). It is assumed that one configurator
(i.e. a configuration engineer) is able to produce a PRODUCT hardware
configuration, a PRODUCT software configuration and an FIELD - ISDX
reconfiguration; i.e. the configurator is multi-skilled and can perform one
of these tasks at any one time. The configurators resource is allocated based
on confirmed PRODUCT orders (which initiates the generation of a hard
ware configuration). Once this hardware configuration is available and there
is sufficient inventory, a set of manufacturingjnstructions is generated which
initiates the generation of a software configuration. In addition, it is possi
ble to specify a loading for FIELD reconfiguration (PRODUCT already de

ICL System s Journal May 1997112

ployed which requires reconfiguration as part of an upgrade) in the same
manner as the P R O D U C T _ o rd e r_ p a tte rn , normally distributed with
FIELD_config_mean, FIELD_config_std_dev and FIELD_random _probability.

configurators = 14
hw_config_lead_tim e = 2 days
sw_config_lead_tim e = 1 day
F IE L D _configJeadJim e = 5 days

It is assumed that it takes one configurator these times to produce one
configuration per system and that all systems require individual configu
rations; i.e. if on one particular day an order is received for 5 PRODUCT
systems it, 5 configurators will be required to produce the 5 (individual)
hardware configurations. Also, 5 configurators will be required to produce
5 (individual) software configurations.

Figure 17 shows the number of available configurators over time, as they
are required to perform hardware and software configurations in response
to a PR O D U C T _order_pattern in the absence of any FIELD reconfiguration
loading.

Figure 17: Typical Configuration Engineer Resource Usage

In Figure 18 is shown the available configurator resource with a FIELD
reconfiguration demand loaded over the PR O D U C T_order_pattern depicted
in Figure 17. The FIELD reconfiguration demand is defined by the follow
ing parameters:

FIELD _config_mean = 10
FIELD _config_std_dev = 2
FIELD _random p ro b a b ility = 50

ICL System s Journal May 1997 1 1 3

Figure 18: Typical Configuration Engineer Resource Usage

Within the configuration model there is no concept of prioritisation of
configuration effort. Configurators are allocated to tasks as demanded with
out regard to when their results are required; i.e. 'as it lands on the desk'.
The configuration model impacts other areas of the model since
manufacturingjnstructions cannot be issued without a hardware configura
tion being available and assembled systems cannot be delivered until a soft
ware configuration is available and loaded. Unavailable hardware and soft
ware configurations give rise to increased delivery_lead_time.

5.8 Sub Assembly
5.8.1 Description
The Sub-Assembly process is concerned primarily with the production of
modules to satisfy demand from both the systems and ship-loose orders. A
module safety stock buffer is used to regulate the supply to both manufac
turing and ship-loose. Production orders for modules are raised whenever
the level of modules in this buffer falls below the specified safety level. The
sub-assembly process model contains a representation of the module safety
stock buffer. The safety buffer is replenished from the Inventory area when
ever the safety level has been breached. At present only a minimum safety
level is specified for this buffer; this level can be set from the flight simula
tor control panel. The pull on the module stock buffer can be from either
ship-loose demand or from system demand. System demand (in the form
of manufacturing instructions) pulls off the required modules to satisfy the
defined number of generic systems. Ship-loose demand can be of any size.
The Sub-Assembly Model is shown in Figure 19.

114 ICL Systems Journal May 1997

5.9 System Assembly

Figure 20: System Assembly

ICL Systems Journal May 1997 115

Figure 19: Sub Assembly Model

5.9.1 Description
The system assembly process (Figure 20) represents the manufacturing op
erations where hardware sub-assemblies and unit software are configured
(assembled) to fulfil a particular order. The flow of system orders through
this process is essentially constrained by the availability of sufficient sys
tem kits and the number of available software configurations. The systems
orders are processed in the model in a strictly first-in-first-out (FIFO) order.
No orders can proceed unless the previous order has been satisfied. There
is no prioritisation of orders allowed in the model/ an order already in the
process cannot be removed or cancelled. The time required to fully assem
ble the hardware required for a PRODUCT system is set to six days in the
process model. After hardware assembly, the systems are sent for software
configuration. The model contains the stock assembled_systems merely for
simulation monitoring purposes; i.e. to specifically monitor the "number
of assembled systems from hardware configuration" without reference to
software configuration.

5.10 Warehouse

Figure 21: Warehousing Model

116 ICL System s Journal May 1997

5.10.1 Description
After system assembly and software configuration, systems are sent to the
warehouse for packaging etc. and subsequent delivery to the customer. The
warehouse processes (Figure 21) are not modelled in detail. This part of
the model simply includes a time associated with the warehouse processes.
The model assumes that the warehouse processes take two days. The
delivery Jeadjtime variable measures the time taken for a particular order to
reach delivery from initial order inquiry.

6. Results of Study
The study gave rise to many recommendations for improvement of the or
der fulfilment processes, particularly the SMR process which was seen to
be key to the company's manufacturing operations. Many of the recom
mendations were for organisational change or re-alignment and as such
were not a direct result of model simulations. The model building activity,
in conjunction with knowledge of the OPENframework methodology, forced
the authors to seek information and solutions outside of what was possible
to model and simulate. The model lent credibility to the recommendations
and proved to be an invaluable catalyst for discussions within the com
pany. Particularly important was the ability to simulate realistic operating
scenarios and to provide a range of what-if? analyses far beyond that possi
ble with manual methods alone. The essence of the recommendations for
process improvement was as follows:

• The order fulfilment processes were individually well understood
but their interaction and contribution to the business as a whole
were not. A division of process ownership between function areas
within the company exacerbated this problem.

• The SMR process should be widened in scope to perform company
wide requirements planning to ensure that the business goals are
met. This would broaden the scope of the current SMR process that
sees its function as only producing operations plans.

• Business goals should be translated into metrics by which the per
formance of the SMR process can be constantly measured.

• The company and not a functional area of it should own the SMR
process. This should be reflected in its compulsory attendance list.

• Sales forecast accuracy is key to the performance of the manufac
turing operations. Sales forecast figures should be visible at the
SMR meetings and included in a formal feedback loop to adjust
operations plan levels (as opposed to current ad-hoc methods).

• Hardware and software configuration activities and their resource
levels play a key part in determining manufacturing lead-time and
should be included in the SMR planning activity. To allow this, the

ICL System s Journal May 1997 117

ownership of these processes should change to allow the SMR proc
ess to determine configuration resource levels.

• Order confirmation based on available-to-promise will lead to in
ventory level problems in the event that sales actually meet fore
cast demand and ship loose demand remains uncoupled from the
determination of the operations plan.

• A tool such as ithink should be used as part of the SMR process to
perform continuous what-if? analyses.

7. Conclusions
The recommendations of the study were well accepted and are being incor
porated into the company's on-going process improvement initiatives.
Knowledge of the OPEN'framework methodology enabled the study to be
carried out in a structured manner and although the company did not have
day-to-day visibility of it, their knowledge that the study was being carried
out within a well established framework gave them confidence that the
recommendations would be well founded. Using the principles of
OPENframeivork enabled the modelling study to be kept in perspective with
the overall aims of the company and was particularly useful in producing a
realistic and acceptable scope for the study. The ithink modelling tool only
allowed coverage of some of the aspects of the study; being able to visual
ise its position within the OPENframework meta-model made it possible to
better relate the modelled information to some of the more subjective as
pects of the study such as personal motivations, organisational structures
and the use of the supporting IT. Without knowledge of the OPENframeivork
methodology, the study would not have been as successful as it was since it
would have been easy to consider the modelling exercise and its resultant
model as the sole reason for carrying out the study. The OPENframework
methodology ensured that the goals of the study were kept firmly in view
and that the modelling exercise provided appropriate support in achieving
them. Whilst much of the data gathered during the study was specific to
the particular company, the study provided much valuable generic process
information to further the development of the Generic Manufacturing Ar
chitecture.

Acknowledgements
The Author would like to thank the CDP directorate of the EPSRC and the
members of the MSI Research Institute for their continued support of this
research work.

Bibliography
FOX, M.S., "The TOVE Project: A Common-sense Model of the Enterprise,"

118 ICL System s Journal May 1997

Proceedings of the International Conference on Object Oriented Manufac
turing Systems, Calgary, Alberta, Canada, 1992.
HPS, High Performance Systems, Inc., 45 Lyme Road, Suite 300, Hanover,
NH 03755 Phone: (800) 332-1202 or (603) 643-9636 Fax: (603) 643-9502, URL
http: / / www.hps-inc.com/products/ithink/ithink.html.
ICL, "OPENframework - The Systems Architecture: An Introduction,"
Prentice Hall, 1993.
ICL, "ProcessWise Workbench User Guide" - ref. PWB/ usrguide/P5.4, issue
1.0, Process Management Centre, Forest Road, Feltham, Middx, TW13 7EJ.
LENAT, D.B., "CYC: A Large-Scale Investment in Knowledge Infrastruc
ture," Communications of the ACM, 38, no. 11, November, 1995. (See also
other articles in this special issue).
LIBES, D., "The NIST EXPRESS Toolkit: Introduction and Overview," Don
NISTIR 5242, National Institute of Standards and Technology, Gaithersburg,
MD, 1993.
MURGATROYD, I.S. AND GILDERS, P.J., "OFENframework Meta-Model,"
MSI Research Institute, Loughborough University, Loughborough, UK.
NIST, "Integration Definition for Information Modelling (IDEF1X)", Fed
eral Information Processing Standards Publication, 184, National Institute
of Standards & Technology, Gaithersburg, USA.
RICHMOND, B., "System Dynamics/Systems Thinking: Let's Just Get On
With It," International Systems Dynamics Conference, Sterling, Scotland,
1994.
STADER, J., "Results of the Enterprise Project," Proceedings of Expert Sys
tems '96, the 16th Annual Conference of the British Computer Society Spe
cialist Group on Expert Systems, Cambridge, UK, December, 1996.

Biographies
Shaun Murgatroyd

Shaun Murgatroyd graduated in Mechanical Engineering from Leeds Uni
versity in 1985. After positions with the UK Atomic Energy Authority and
American Can UK Ltd, he joined the Department of Manufacturing Engi
neering at Loughborough University in 1987 as as Research Assistant. He
has worked on a number of manufacturing systems integration research
projects in collaboration with industry involving significant secondment
periods at collaborator sites. Now a Senior Research Associate in the MSI
Research Institute, his expertise lies in the application of modelling meth
odologies, tools and techniques within manufacturing industry.

ICL System s Journal May 1997 119

http://www.hps-inc.com/products/ithink/ithink.html

Roy Smethurst
Roy Smethurst joined ICL (then English Electric Leo Marconi) Kidsgrove in
1964 after graduating from Nottingham University with a BSc in Math
ematics. He worked initially on Compilers (KDF6, KDF7, KDF9, System 4
COBOL and PL/I). Subsequently he moved to a system design role on
Series 39 VME, where he was the design authority for VME's SCL System,
Work Management, Spooling and File Transfer. In 1991 Roy joined the
OPEN'frameivork architects and produced architectures for the Availability
quality, CALS (Continuous Acquisition and Life-cycle Support), Manufac
turing Systems and Multimedia. For the last three years Roy has been an
OPENframework Consultant with major assignments with ICL Pathway,
BZW, Avery Berkel UK and RAF Strike Command. He is a member of the
BCS and a Chartered Engineer.

120 ICL System s Journal May 1997

Demystifying Constraint Logic Pro
gramming

O.V.D.Evans

Research and Advanced Technology, ICL, Bracknell, UK

Abstract

This short paper is intended to refute the view that logic program
ming languages such as Prolog are esoteric and therefore inaccessi
ble to anyone with a grounding in conventional sequential program
ming. By first dem ystifying logic languages through a series of
worked examples the groundwork is then laid for explaining, again
with examples, the data-driven processes that form the basis for the
power and conciseness of logic programming languages, such as the
ECL'PS'’ platform described elsewhere in this issue.

1. Why logic programming
The ECL'PS* platform supports a logic programming language paradigm.
Although a n um ber of constraint programming systems exist which are
independent of logic languages, in the particular case of ECL'PSf some
grounding in logic languages is essential for a good understanding of how
constraints work and what their benefits are. The basic principles of logic
programming are first introduced with a number of programmed illustra
tions. A second subsection includes a systematic description of a complete
worked example. Since this description aims to demystify the art of con
straint logic programming its theoretical aspects have been excluded, as far
as possible, in order to concentrate on the practical task of producing use
ful programs. The use pf examples for describing the operation of the vari
ous features of ECL'PS? conforms to the style adopted in the relevant refer
ence manuals. Throughout this work the assumption is made that the reader
has encountered conventional programming languages at some stage.

2. Logic programming basics
Logic programming is the process of constructing a logical expression and
evaluating it for consistency for a given set of value assignments to its terms.
The evaluation of a logic program is normally called a query because what
is being done is to test whether a particular assertion, the query, is consist
ent with the facts and rules that make up the program. The answer to the
query is therefore either logically true or false. If the query succeeds it will
return the answer true, but in the course of succeeding it will have given

ICL System s Journal May 1997 121

values to various variables of interest and possibly completed other ac
tions—all as side effects. What the query will have evaluated is in essence a
single large logical expression consisting of instantiated variables and the
logical operators and, or and not. The significance of regarding a logic pro
gram as a single logical function is that such an expression is true or other
wise regardless of the order of execution of its terms—in other words it is
completely declarative. Since, in practice, the program interpreter needs to
execute the expression in some systematic order, much of the development
of logic programming languages has centred around eliminating any defi
ciencies that could arise due to order-dependent execution. The most nota
ble features contributing to order-independence being the concept of back
tracking so that disjunctive conditions can be explored, and the delayed
execution of expressions that still include variables that are instantiated at
some later point in the predicate firing order. It will be seen later that con
straint logic programming is a logical extension of the process.

Any practical realization of logic programming as exemplified in a lan
guage such as Prolog will have a syntax that enables such logical expres
sions to be structured into more digestible sub-expressions. The so-called
Hom-clanses in Prolog, and used in ECL'PSf, are such sub-expressions, each
representing one of the rules that has to be true for the query to succeed in
a way that helps to distinguish the scope of variables local to a particular
rule from those shared with other rules. These rules can be nested and
recursive. Typically a logic program will consist of a top-level conjunction
of rules (called predicates in Prolog) each of which consists of one or more
sets of goals which can in turn invoke other predicates.

Since logic programming languages are declarative this means that the
control structures normally used in sequential languages to handle repeated
operations are replaced by predicates containing goals defining the non
end and end conditions of any such activity. In working through a list, say,
the non-end goal will repeatedly call itself recursively until it fails—but at
this point the end condition goal will hold and the predicate will be satis
fied. Another related property of a declarative programming language is
that it is a single-assignment language. This means that no variable can be
bound to a value more than once within a solution path—but quite clearly
if alternative solutions are available through backtracking, the overall query
can be re-satisfied several times with different values.

In logic programming languages a distinction is made between assign
ment, which is treated, if supported at all, as an extra-logical primitive, and
unification. Unification is a completely symmetric primitive which for say,
two variables x and Y,1 will test that their respective structures are equiva
lent and that any individual values within the structure are identical or

1 By convention the leading character of a variable identifier is an upper case letter to distin
guish it from facts, predicates or atoms which always start with lower case letters.

122 ICL Systems Journal May 1997

become identical after local unification. The program fragment (with its
result):

1 ? - X = [l , _ , 2 , _ , 3 , _ , [A - 5 , 7 + C]] , Y = [_ , a , _ , b , _ , c , [6 -
B , D + 8]] ,X = Y .

Y = [1 , a , 2 , b , 3 , c , [6 - 5 , 7 + 8]]
X = [1 , a , 2 , b , 3 , c , [6 - 5 , 7 + 8]]
D = 7
B = 5
C = 8
A = 6
y e s

is an example, first of the unification of x and y respectively to the list struc
tures shown which contain a mixture of integers, atoms (a , b , . . .),
uninstantiated variables (a, b ,_ , . . .) / and a sublist—and then to each
other. The result illustrates that variables can be bound to values wherever
they occur. It can be noted that operators such as + and - have no meaning
in logic programming and are merely treated as symbolic literals. In this
relatively simple example the unification algorithm has worked out that
the conjunction of the three unifications is consistent with the value bind
ings listed and therefore returns the answer 'yes'. Any contradictions will
cause failure.

A more useful example is given in the following complete predicate.
This shows how rules are invoked by a query, in this case by applying uni
fication to evaluate the logical outcome of a series of comparisons to bind
the correct value to the query variable. In this case the program consists of
a small database of five facts h e i g h t / 3 and one rule c o n t o u r / 2 , where the
number after the name is the customary form of specifying the number of
terms governed by the predicate, also known as its "arity".

h e i g h t (0 , 5 0 0 , g r e e n) .
h e i g h t (5 0 1 , 1 0 0 0 , y e l l o w) .
h e i g h t (1 0 0 1 , 1 5 0 0 , b r o w n) .
h e i g h t (1 5 0 1 , 2 0 0 0 , p u r p l e) .
h e i g h t (2 0 0 1 , 3 0 0 0 , w h i t e) .

c o n t o u r (H e i g h t , C o l o u r) : -
H e i g h t > = L V , H e i g h t < H V , h e i g h t (L V , HV, C o l o u r) ,

c o n t o u r (H e i g h t , o f f _ m a p) s - H e i g h t < 0 .
c o n t o u r (H e i g h t , o f f _ m a p) : - H e i g h t > 3 0 0 0 .

In this case the query asks what colour of contour band (on a map)
corresponds to the query height. When the query c o n t o u r (2 4 4 4 , c) . is
entered the following steps are executed by the logic language interpreter:

1. The first goal of the c o n t o u r / 2 predicate is invoked.

ICL System s Journal May 1997 123

2. The first term H e i g h t compared with l v . l v is undefined so the
goal is delayed.

3. The second term H e i g h t compared with h v . h v is undefined so the
goal is delayed.

4. The first instance of the fact h e i g h t / 3 is invoked, which will cause
its two first terms (0 and 500) to be unified with l v and h v respec
tively.

5. The two delayed goals >= and < are now woken up and will both
fail.

6. The first goal of c o n t o u r / 2 will now backtrack and invoke the next
instance of h e i g h t / 3 and reunify Lvand HV. The second set of com
parisons will also fail as will those involving the third and fourth
invocations of h e i g h t / 3 .

7. The fifth invocation of h e i g h t / 3 will cause the first rule to succeed
because the two comparisons will now hold, and the third term of
the rule head can now be unified and the query satisfied, giving c
= w h i t e .

If the query is entered with a H e i g h t value for which none of the facts
hold then the first goal of the c o n t o u r / 2 predicate will fail and the remain
ing two are tested in turn. This is because all three instances of the predi
cate are regarded as alternatives any of which can satisfy the query condi
tions in the same way that the facts h e i g h t / 3 are interrogated in turn. This
caters for the or operator in logic programming in the same way that the
comma separators are equivalent to the and operator. It is quite feasible to
write the entire program as a single logical expression—this is left as an
exercise for the reader.

The example is intended to illustrate how the basic logical operators and
and or are applied to resolving a query that requires both unification, goal
delay and backtracking for its solution. More importantly, it also demon
strates that many operations imply unification without the need to apply
the equality operator explicitly. The structure of the individual goals of the
predicate is in Horn-clause form—consisting of a head, a neck and a body.
The head consists of the name of the predicate and the list of terms that
enable it to communicate with the rest of the program. The neck separates
the head from the body and can be dispensed with if there is no body. The
body of a predicate goal is any sequence of clauses separated by commas—
each clause normally being either a call to a predicate or a fact.2 An exam-

2 Strictly speaking Prolog does not distinguish between facts, predicates and queries as all
three share the same syntax. For example in foo(X,Y,Z) the variables can be free, integers,
atoms, compound terms or other predicates.

124 ICL System s Journal May 1997

pie of a bodiless goal is the end condition goal in the following predicate,
where i n d e x / 3 holds if the elements of one list correspond to the elements
of another list processed in some manner.

i n d e x ([] , [] , _) .
i n d e x t [X | T 1] , [I - X | T 2] , 1) : - + (1 , 1 , N I) , i n d e x (T 1 , T 2 , N I) .

The predicate will hold when the second list is a list of the elements of
the first list prefixed by an ascending index and the separator There is
a non-end goal and an end goal, the latter satisfying the end conditions
without the need for a neck and a body. This is an example of how a repeti
tive task, such as the processing of elements in a list can be defined with
just the two conditions—one relating some operation on the head elements
of the lists with a recursive call to do exactly the same on the tails of the
lists, and the end condition (both lists empty). The + function is an example
of a built-in predicate that is extra-logical. This means that in the equivalent
representation n i i s i + l the variable n i is assigned the arithmetic sum of
i and l and not the value i + l . Extra-logical predicates, of which all arith
metic functions are a class, are so-named because the result variable is not
instantiated through unification and equally importantly because the as
signment is not reversible. It will be seen later that the latter restriction
does not apply when arithmetic operations are represented as constraints.

The above short description of the basics of constraint logic program
ming is necessarily incomplete but it should prove sufficient to guide the
reader through the details of the short ECL'PSf application described in the
next section as an exercise in the use of a logic programming language be
fore embarking on any use of constraints.

3. ECL'PS® as a logic program
The notation used in the program examples of the previous section is in
fact the one shared by the constraint logic programming language ECL'PS*·
with the majority of other Prolog-based languages. This section will use
the ECL'PS1’ syntax to describe a working example of a program represent
ing the behaviour of a vending machine—vending machines appear to be a
popular vehicle for describing the operation of logic programs. The selec
tion of goods, prices and stock levels have been taken from an actual vend
ing machine. The application behaves purely as a logic program and does
not depend in any way on constraints.

The complete vending machine paradigm can be described by the fol
lowing logical expression:

A sale is achieved if a selected item exists and it is in stock and the
sum tendered is greater than or equal to the item price and if the
sum is greater than the price there is enough cash float to make change
or the tender is returned if the item is out of stock or the tender is

ICL System s Journal May 1997 125

less than the price or if the float is not enough to make change.

If the sale condition holds then there is some additional housekeeping
to perform such as updating the float and the stock of items—since the
latter cause irreversible effects they can be regarded as extra-logical actions.
The program, listed below, can be divided into the following parts:

1. a database of facts

2. a predicate with a number of alternative goal conditions

3. some database update predicates.

Facts are named relationships between atomic values. For a vending
machine there are three sets of facts:

• a description of the items on sale

• the stock level of the items on sale

• the float, being the amount of money in the machine.

Facts can be either static or dynamic. Dynamic facts need to be speci
fied explicitly—in this example by means of the compiler directive :- d y
n a m i c . . . at the head of the program. The fact g o o d s / 3 is static since it
describes the permanent properties of the sale items such as price, item
code and description. The remaining facts are dynamic because as sales
are made the stock levels will go down and the float will increase. The facts
s t o c k / 2 relate each item code to its stock level and the single fact c _ f l o a t /
1 holds the current cash balance in the machine.

The predicate s a l e _ a c h i e v e d / 4 caters for the six input conditions that
the vending machine will recognise. These are respectively for the query

s a l e _ a c h i e v e d (T e n d e r , l t e m _ n o , I t e m , C h a n g e) .

with the variables T e n d e r and l t e m _ n o instantiated to integer values and
the returning item description, i t e m and change, C h a n g e :

V a l i d s a l e , c o r r e c t t e n d e r :
The s t o c k / 2 database is searched for a match on its first term
to the value of i t e m _ n o . If the second term, unified to N is non
zero, the database g o o d s / 3 is searched for a match on its first
two terms, T e n d e r and i t e m _ n o respectively. If a match is
found the third and fourth terms of the query are unified to
the third term (description) of the matching g o o d s / 3 fact and
zero (no change) respectively. During the search process the
individual database facts are searched for unification to the
search keys. Failed matches will cause local backtracking un
til the matching fact is found. If the goal succeeds to this point
the amount of the tender is added to the float and the stock

126 ICL Systems Journal May 1997

holding for the item concerned reduced by one. Since arith
metic addition is an extra-logical operation the built-in predi
cate i s is called to evaluate the expression c _ f l o a t + T e n d e r
in which the addition operator functions as such and not as
literal and where c _ f l o a t causes the corresponding fact to be
dereferenced to its value automatically. Failure of any of the
searches will cause another goal to be selected.
V a l i d s a l e , c h a n g e r e q u i r e d :
As before the stock is checked but in the case of the g o o d s / 3
database only a match of i t e m _ n o to the second term is sought.
If a match is found the third term of the query is unified with
the third term of the matching fact. The amount of change is
then calculated and checked to be less than the current float.
If it is this value is unified with the C h a n g e term of the query
and the s t o c k / 2 and c _ f l o a t / 1 facts are updated as before.
V a l i d i t e m , c a n n o t m a k e c h a n g e :
This goal caters for the condition that although the item exists
and is in stock, too much tender has been input for change to
be made. This goal succeeds by unifying the first term of the
query (tender) with the last (change) and returning the mes
sage "No change" as the third term. No facts are updated.
V a l i d i t e m , o u t o f s t o c k :
This choice succeeds if the query variable i t e m _ n o unifies with
the first term of a s t o c k / 2 fact for which the second term is
zero. Again the first and fourth query terms are unified (ten
der returned) and an "Out of stock message" returned. No
facts are updated.
V a l i d i t e m , s h o r t t e n d e r :
This choice succeeds if the second term of a fact g o o d s / 3 uni
fies with the query variable x t e m _ n o and the amount of the
tender is less than the item price. The tender is returned with
the message "Check price". No facts are updated.
I n v a l i d i t e m c o d e :
This goal succeeds if the item code entered is outside the range
covered by the set of facts g o o d s / 3 . It is also an example of an
alternative syntax for disjunctions. Instead of specifying two
separate goals for checking the higher and lower limits, the
built-in or predicate can be used in the general f o r m
(C l a u s e _ l ; C l a u s e _ 2 ; . . . C l a u s e _ n) . Again, the
tender is returned with the message "Check selection" and no
updates are made. In vending machines where item choice is

ICL System s Journal May 1997 127

made by pressing a unique button this goal would be redun
dant.

Since the program needs to return the tender if it makes no sale, the
predicate must not be allowed to fail so that all eventualities must be ca
tered for. However since only one goal needs to be satisfied once for any
particular query it is normal to add to each goal a condition that disables
the query processor from returning all the possible solutions to the query.
This is an efficiency measure as it prevents the query processor from "fol
lowing fruitless computation paths that the programmer knows could not
produce solutions" [Sterling and Shapiro, 1986]. This condition is known
as the cut and its purpose is to act as a barrier to backtracking so that a
conjunctive goal followed by a cut will produce at most one solution be
cause it commits the solver to all choices made up to the point that the cut
occurred. In the example below the cut would be added just ahead of the
stop symbol in each of the goals as ’, ! .' where '! ' is the symbol for the
built-in cut predicate. Use of the cut predicate remains controversial and
while the above description is appropriate in the current context, it should
not be taken as comprehensive and the cited reference or similar should be
consulted for a fuller description of its use.

The remaining predicates in the example program are used to update
the fact database. Facts can be added to the database using the built-in
predicate a s s e r t / i and likewise retracted with r e t r a c t / l . Compiled facts
have to be declared as dynamic before these predicates can be used. Here
the two built-in predicates are used to retract out-of-date stock and float
values and to replace them with current values. If a dynamic fact is as
serted it is merely added to the database of that fact, so that in order to
update a fact it is necessary specifically to retract the old copy. Since these
procedures carry out program modification they should be used with cau
tion since they can give rise to unexpected behaviour.

: - d y n a m i c c _ f l o a t / l , s t o c k / 2 .

% G o o d s d e s c r i p t i o n d a t a b a s e - s t o c k e d g o o d s
g o o d s (2 6 , 2 , " F r u i t p a s t i l l e ") .
g o o d s (2 8 , 4 , " O p a l f r u i t s ") .
g o o d s (2 4 , 5 , " R e a d y s a l t e d c r i s p s ") .
g o o d s (2 9 , 7 , " W in e g u m s ") .
g o o d s (2 4 , 1 0 , " S a l t & v i n e g a r c r i s p s ") .
g o o d s (3 0 , 1 3 , " C r u n c h y b a r ") .
g o o d s (1 9 , 1 4 , " P o l o ") .
g o o d s (2 4 , 1 5 , " C h e e s e & o n i o n c r i s p s ") .
g o o d s (2 0 , 2 0 , "TUC s a n d w i c h ") .

% U n s t o c k e d g o o d s
g o o d s (0 , 1 , _) . g o o d s (0 , 3 , _) . g o o d s (0 , 6 , _) . g o o d s (0 , 8 , _) .
g o o d s (0 , 9 , _) . g o o d s (0 , 1 1 , _) . g o o d s (0 , 1 2 , _) . g o o d s (0 , 1 6 , _) .

128 ICL Systems Journal May 1997

g o o d s (Ο , 1 7 , _) . g o o d s (0 , 1 8 , _

% S t o c k d a t a b a s e
s t o c k (l , 0) . s t o c k (2 , 2 0) .
s t o c k (5 , 2 0) . s t o c k (6 , 0) .
S t o c k (9 , 0) . s t o c k (1 0 , 2 0) .
s t o c k (1 3 , 2 0) . s t o c k (1 4 , 2 0) .
s t o c k (1 7 , 0) . s t o c k (1 8 , 0) .

. g o o d s (0 , 1 9 , _) .

s t o c k (3 , 0) . s t o c k (4 , 2 0) .
s t o c k (7 , 2 0) . s t o c k (8 , 0) .
s t o c k (1 1 , 0) . s t o c k (1 2 , 0) .
s t o c k (1 5 , 2 0) . s t o c k (1 6 , 0) .
s t o c k (1 9 , 0) . s t o c k (2 0 , 2 0) .

% C a s h f l o a t
c _ f l o a t (1 0 0) .

% S i x v e n d i n g c o n d i t i o n s
s a l e _ a c h i e v e d (T e n d e r , X t e m _ n o , I t e m , 0) : -

s t o c k (I t e m _ n o , N) , N > 0 , g o o d s (T e n d e r , I t e m _ n o , I t e m) ,
N e w _ c _ f l o a t i s c _ f l o a t + T e n d e r ,
f l o a t _ u d (N e w _ c _ f l o a t) , s t o c k _ u d (l t e m _ n o) .

s a l e _ a c h i e v e d (T e n d e r , I t e m _ n o , I t e m , C h a n g e) : -
s t o c k (I t e m _ n o , N) , N > 0 , g o o d s (P r i c e , I t e m _ n o , I t e m) ,
T e n d e r > P r i c e , C h a n g e i s T e n d e r - P r i c e , c _ f l o a t > = C h a n g e ,
N e w _ c _ f l o a t i s c _ f l o a t + P r i c e ,
f l o a t _ u d (N e w _ c _ f l o a t) , s t o c k _ u d (l t e m _ n o) .

s a l e _ a c h i e v e d (T e n d e r , I t e m _ n o , " N o c h a n g e " , T e n d e r) : -
g o o d s (P r i c e , I t e m _ n o , _) , T e n d e r < P r i c e ,
C h a n g e i s T e n d e r - P r i c e , c _ f l o a t < C h a n g e .

s a l e _ a c h i e v e d (T e n d e r , I t e m _ n o , " O u t o f s t o c k " , T e n d e r) : -
s t o c k (I t e m _ n o , 0) .
s a l e _ a c h i e v e d (T e n d e r , l t e m _ n o , " C h e c k p r i c e " , T e n d e r) : -

g o o d s (P r i c e , I t e m _ n o , _) , T e n d e r < P r i c e .
s a l e _ a c h i e v e d (T e n d e r , l t e m _ n o , " C h e c k s e l e c t i o n " , T e n d e r) : -

(I t e m _ n o > 2 0 ; I t e m _ n o < l) .

% V e n d i n g m a c h i n e h o u s e k e e p i n g
f l o a t _ u d (N e w _ c _ f l o a t) : -

r e t r a c t _ a l l (c _ f l o a t (_)) , a s s e r t (c _ f l o a t (N e w _ c _ f l o a t)) .

s t o c k _ u d (I t e m _ n o) : -
s t o c k (I t e m _ n o , S) , N S i s S - l ,
r e t r a c t _ a l l (s t o c k (I t e m _ n o , _)) ,
a s s e r t (s t o c k (l t e m _ n o , N S)) .

The example program illustrates some of the basic features of the
logic programming language incorporated into ECL,PSP but clearly there
are many aspects that the program does not include. Principal among these
is the extensive library of built-in predicates which range from input-out
put control, internal database handling (of which a s s e r t / 1 and r e t r a c t /
l are only a part), term, list and string manipulation as well as a compre
hensive list of arithmetic functions. These are not described in the worked
example since once the logic programming aspect ECL'PS*' has been de
mystified, access to these features becomes easy and straightforward.

ICL System s Journal May 1997 129

4. Why constraints
The purpose of using constraint technology is as an efficiency aid in appli
cations where in order to find a solution a search has to be made through a
large number of alternative value assignments to variables. By defining in
advance all the constraints governing the variables involved in such searches
it is possible to eliminate all impossible alternatives before the search is
started. In many computationally hard problems, this has been known to
tip the balance between solvability and unsolvability. For problems known
to be intractable constraints can be added progressively until a solution is
obtained. Another desirable feature of constraint programming is that as
the constraints are progressively set up—as a set of bounded domain vari
ables and the relationships between them—propagation will occur every
time a new constraint is created and subsequently whenever any of the
variables involved undergoes a change in domain. Because this happens
autonomously, constraint solvers can be said to be one of the few large-
scale applications of data-flow programming where control of computa
tion is predominantly data driven.

4.1 Constraint basics
The description by example of the operation of the constraint solver in
ECL'PSf is based on some acquaintance with Prolog-like logic programming
languages as described in the preceding sections. Also since the applica
tion program used as the vehicle for describing the behaviour of the ECL'TS'
constraint solver is a variant of the one already described, the reasonable
assumption is made that the foregoing sections have already been read and
digested.

A constraint logic program written in ECL'PSf will appear superficially
to be no different from one without constraints. For example, the program
below can be described as holding if all its goals are true:

f o o (X , y , z , . . .) : -
g l (. . .) ,
c l (X , Y) ,
g 2 (. . .) ,
c 2 (Y , Z) ,
c 3 (X , Z) ,
g 3 (. . .) ,
g 4 (. . .) .

In this case however the g — goals are conventional goals and the c . . .
goals are constraints with x , y , z being variables shared between the vari
ous goals. The difference becomes apparent when the program is executed.
Once the first constraint c l (X , Y) has been set up and the order of execu
tion (firing order) reaches c 2 (Y , z) , since y is common to c l (x , Y) and
c 2 (Y , z) , c l (x , Y) will be re-activated. The same process will apply when

130 ICL System s Journal May 1997

c3 (x, z) is reached since z is shared with one previous constraint and x
with the other. If some other constraint declared in a predicate other than
f oo (x , y , z , . . .) also shares any of the three domains through the terms at
the head of the predicate then changes in that constraint will also propa
gate into the predicate. The constraints will execute in an order governed
solely by the sequence in which the domains are referenced inside the con
straints and not in the order of declaration in the program.

In using constraints to solve a combinatorial problem involving a search
for a set of values that satisfies the constraint requirements the following
three steps must be executed—here used in the context of a trivial schedul
ing example:

1. The scope of the problem is set by defining the bounds of all the
domain variables involved. For example the variables s i , S2, S3
representing say, task start times of the three tasks 1, 2 and 3 of
some job, can all be given finite integer domains ranging from 0 to
100 with the command [F, s i , S2, S 3]: :0. .100, where f is the
job finishing time. The :: operator is used by ECL'PSf to define a
domain and the .. to define its lower and upper limits.

2. The constraints of the problem are defined. Supposing the three
tasks with durations of, say, 30, 25, and 28 need to be fitted into a
span of 100 time units so that they are executed in sequence and
their durations do not overlap, then the following precedence con
straints would ensure th is...

S2#>=Sl+30,S3#>=S2+25,F#>=S3+28.
51 = S l { [0 . .1 7] }
52 = S2{[3 0 ..4 7]}
F - F {[8 3 ..1 0 0]}
53 = S3{[55. . 7 2]}

... where the # operator stipulates that the equality/disequality identi
ties in which it appears are to be treated as constraints by the pro
gram interpreter and not as in-line goals. The result of applying the
constraints to the domain variables defined earlier is shown under
the constraints that produced them. It is important to note that
propagation applies to both sides of any identity equally—any do
main variable can be affected. 3

3. The residual domains of the variables are searched for a solution by
instantiating each domain in turn to one of the elements in its range
after pruning—this process is commonly called labelling. A built-in
predicate indomain/ 1 exists for this purpose. It starts with the small
est element in the domain and on backtracking successive elements
are taken. Once an instantiation of the variable is found which is

ICL System s Journal May 1997 131

consistent with the constraints the goal is satisfied. Normally the
built-in is used as part of a predicate that works through the list of
variables to be labelled.

5. ECL'PS* as a constraint logic program
As a worked example of a constraint program in ECL’PSf it is possible to
continue to use the vending machine paradigm. The problem to be solved
in this case is to make change in coin denominations that exactly make up
the amount returned. As a subsidiary problem it is possible to specify that
this amount should be made up of the minimum number coins that will do
the job.

The problem of selecting from a set of assorted integers a subset that
exactly sums up to a given value is one of a class of 'knapsack' problems3
which, when scaled up sufficiently, becomes computationally infeasible to
solve—such problems are generally known, with commendable understate
ment, as computationally 'hard'. In the case of selecting coins from a set of
only six denominations with repeats allowed the problem is trivial but serves
to illustrate the operation of a constraint solver.

To illustrate the problem the fact c _ f lo a t / l introduced in the vending
machine example of the previous section is changed from a simple integer
value to a list of the current holdings of coins in descending denomination
value from 50p to lp. The sub-problem of making the correct change for
the vending machine can be defined as follows:

Given an integer value C find what sum of multiples of the integer
values 50, 20,10, 5, 2 and 1 exactly equals C where these multiples
individually do not exceed the limits listed in the fact c _ f lo a t/l .

The program is specified as a query which for a required value of change
will return a list of the number of coins present in the change in their vari
ous denominations, and the total number of coins returned. As will be seen
later this last term will be used as an optimizing parameter. With the term
c instantiated to the value 13, the program will execute the following goals:

1. For each element listed in the fact c_f lo a t / 1 the goal get_denam_ds /
2 will create in a second list a corresponding domain with bounds
between zero and the element value. This specifies that the number
of coins of any denomination in the change must not exceed what is
in the float.

2. The goal d_count/3 is called to count the total number of coins re
turned in the change—used later for optimization. The operator
\== in its third clause holds when the two terms are not identical. 3

3 The integers represent rod lengths and the problem is to find what subset of them would
exactly fit a notional one-dimensional knapsack.

132 ICL System s Journal May 1997

3. A constraint is defined so that the sum of the denomination amounts,
each multiplied by its denomination value, must equal the required
change amount. The moment this constraint is defined some a pri
ori propagation will take place since the only values for the 50p and
20p domains that can satisfy the instantiation of c to 13 are the ground
state zero. Likewise the domains for lOp and 5p will be reduced to
0 . . 1 and 0 . . 2 respectively. This pruning will take place autono
mously.

4. The goal l a b e l l i n g / 1 is called with a list of the domains for which
it will attempt to find a set of ground values that satisfies the sum
constraint. The goal applies the built-in predicate i n d o m a i n / 1 to
each domain variable of the list in turn starting with the smallest
element of each domain and taking successively increasing values
wherever backtracking occurs. Each time a new value is generated,
all the constraints referencing the domain (in this case just the sum
constraint) are woken up and re-evaluated for consistency. A first
solution is achieved with the result list instantiated to [0 , 0 , 0 ,
o, 5, 3] and the number of coins returned is 8—which is inciden
tally also the number of backtracks executed to arrive at the solu
tion.

The example program is listed below—in practice some mechanism
for updating the float would also be included. In addition to the result
given above, eight further solutions will be found to be available.

% C a s h f l o a t i n d e n o m i n a t i o n s o f SO p, 2 0 p , l O p , 5 p , 2 p ,
l p r e s p e c t i v e l y
c _ f l o a t ([2 , 4 , 3 , 7 , 6 , 4]) .

m k _ c h (C , [D 5 0 , D 2 0 , D 1 0 , D 5 , D 2 , D l] , S) : -
c _ f l o a t (F L) , g e t _ d e n o m _ d s (F L , [D 5 0 , D 2 0 , D 1 0 , D 5 , D 2 , D l]) ,
d _ c o u n t ([D 5 0 , D 2 0 , D 1 0 , D 5 , D 2 , D 1] , 0 , S) ,
C # = 5 0 * D 5 0 + 2 0 * D 2 0 + 1 0 * D 1 0 + 5 * D 5 + 2 * D 2 + D 1 ,
l a b e l i n g ([D 5 0 , D 2 0 , D 1 0 , D 5 , D 2 , D 1]) .

g e t _ d e n o m _ d s ([] , []) .
g e t _ d e n o m _ d s ([X | X t] , [D | D t]) : -

D : : 0 . . X , g e t _ d e n o m _ d s (X t , D t) .

l a b e l i n g ([]) .
l a b e l i n g ([X | X t]) : - i n d o m a i n (X) , l a b e l i n g (X t) .

d _ c o u n t ([] , C , C) .
d _ c o u n t ([0 | D t] , C , F C) : - d _ c o u n t (D t , C , F C) .
d _ C O U n t ([D j D t] , C , F C) : - D \ = = 0 ,N C i s C + D , d _ C O U n t (D t , N C , F C) .

The salient points to be noted from this worked example are that as
constraints become defined, a priori constraint propagation will take place

ICL System s Journal May 1997 133

automatically. By reducing the domains of the variables in each constraint—
in some cases down to ground values, the residual domain space that needs
to be searched is considerably reduced. The search process also propagates
constraints—every ground state that preserves the consistency of the set of
constraints is retained and the labelling process can proceed to the next
variable. Although the reduction of search space in the above example will
have little impact on performance, the mechanism can have a critical effect
in rendering a large range of problems solvable by reducing the order of
their complexity.

The example described above will produce one solution each time that
the query is executed until no further solutions are possible. This means
that it is possible to apply further cost criteria to select an optimum solu
tion from this solution space. For a vending machine various options are
available. In this example the one adopted minimizes the total number of
coins returned in the change. To achieve this the coin total produced in the
previous example can be used as the objective function by turning it into a
domain that can be progressively reduced as the optimization finds better
solutions. The following changes to the example program will achieve this:

top(C, L, M):-
c_ floa t(F L), svm_c(FL,0,N),M:: 1 . .N,
min_max(mk_ch(C,L,M),M), ! .

top(_,"C an't make change",_) .
mk_ch(C, [D50,D20, DIO,D5,D2,Dl],M):-

c_ floa t(F L), get_denom_ds(FL,[D50,D20, DIO, D5,D2, D l]),
d_count([D50, D20, DIO,D5,D2, D l] , 0,S),M#=S,
C#=50*D50+20*D20+10*D10+5*D5+2*D2+D1,
la b e lin g ([D50,D20,D10,D5,D2,D1]) .

The main difference is that the change making predicate now becomes
a goal term of the built-in optimizer predicate min_max/24 with the second
term being the objective function. This latter is the value that the optimizer
will seek to find a lowest value for and has therefore been converted from
the integer in the first example to a domain variable here. The optimizer is
now called from a top-level predicate to p /3 which also includes the defini
tion of the new domain variable m with an upper bound representing the
maximum number of coins in the float. The only change to the body of the
original program is the inclusion of the additional constraint M#=s, which
will prune the 'number of coins' domain every time there is a reduction.
Executing the optimized program under ECL'PSf will produce the results...

4 Built-in predicates are available from a library of pre-defined procedures. min_max/2 uses
the b r a n c h a n d b o u n d method in which partial solutions found to be worse than a previous
solution force failure and a recomputation. Better solutions update the objective function by
lowering its upper bound and the search restarts from the beginning.

134 ICL Systems Journal May 1997

[e c l i p s e 2 9] : t o p (1 3 , L , N) .
F o u n d a s o l u t i o n w i t h c o s t 8
F o u n d a s o l u t i o n w i t h c o s t 7
F o u n d a s o l u t i o n w i t h c o s t 5
F o u n d a s o l u t i o n w i t h c o s t 4
F o u n d a s o l u t i o n w i t h c o s t 3

L = [0 , 0 , 1 , 0 , 1 , 1]
N = 3
y e s .

... where it can be seen that, again for a change requirement of 13 and the
same float make-up as before, the number of coins returned has been re
duced progressively from 8 to 3 to achieve the optimum solution of one
each of lOp, 2p and lp. It will also be noted that the top-level predicate also
caters for the case where no combination of denominations in the float will
meet the change requirement—this would cause the main goal to fail
through over-constraint and call the alternative.

6. Ease of use and other ECL'PS* features
The above examples of both logic programming and constraint logic pro
gramming are intended merely as an introduction to the art and to serve as
the basis of a hands-on practiced course. ECL'PS', in common with other
well established logic programming languages, has an on-line language
interpreter that executes any valid sequence of procedures entered into the
command line. It therefore becomes very easy not only to explore the logic
language and finite domain library features described above, but also other
extensions such as the interval domain (applying constraints to real values)
and generalized propagation libraries (turning any predicate into a con
straint), and the so-called 'glass box' features of ECL'PS1’ with which it is
possible to examine in detail the nature and behaviour of the individual
domain attributes of variables.

A feature of many rule based so-called 'expert systems' applications is
their ability to provide explanations of the reasoning path that led to a solu
tion. This is usually just a record of the firing order of the internal rules of
the expert system. The equivalent in a constraint based system would be
to make a record of the sequence of constraints visited in the course of ab
initio pruning and subsequent labelling in addition to the non-constraint
goals visited. The granularity of this process is so fine that even the design
ers of an application would have difficulty in interpreting the results. This
is where the 'glass box' tools supported by ECL'PSf come into their own as
by using them it is possible to focus on the behaviour of particular domains
and if necessary display the progress of pruning graphically. These fea
tures have proved to be particularly valuable in resolving on the one hand
why programs fail through over-constraint, and on the other pinpointing

ICL System s Journal May 1997 135

the causes of insufficient pruning which renders the subsequent search phase
inefficient.

Bibliography
STERLING, L. and SHAPIRO, E„ "The Art of Prolog", MIT Press 1986.

Biography
Owen Evans joined the Advance Research and Development laboratory of
ICT Engineering (an ICL predecessor) in 1963 from the oil industry. The
research facility has continued in unbroken line to its present guise of the
Research and Advanced Technology centre of ICL Group HQ. During his
time in the research centre which has spanned virtually the entire evolu
tion of the computer industry, he has worked on computer architecture,
memory and microprogram design, system performance evaluation, com
piler design and logic languages. In the course of his career at ICL he has
managed various projects supported by the Advanced Computer Technol
ogy Project, the Alvey programme, and the EC Esprit and Fourth Frame
work initiatives in the areas of high-level language emulators, text databases,
human-computer interaction and constraint logic programming. His cur
rent interests are in the areas of constraint logic programming, data mining
and neural networks.

Mr. Evans graduated in Engineering from Cambridge in 1959.

136 ICL Systems Journal May 1997

Constraint Programming
Mark Wallace

IC-Parc, William Penney Laboratory, Imperial College, London, UK

Abstract

Constraint Programming is a paradigm that is tailored to solving hard
search problems. Its success is due to combining clean problem mod
elling with efficient problem solving. This is achieved by extending
declarative modelling techniques with efficient specialised constraint
handlers and high-level control. The paper starts by reviewing the
historical roots of constraint programming and introducing the con
cept of a constraint store. The latter, which holds a set of primitive
constraints, of which the global consistency is enforced, is illustrated
by a particular constraint programming language called CLP(9t).
The use of constraint propagation to improve the efficiency of a pro
gram by reducing the size of the search space is discussed and a sim
ple application is used to illustrate the dramatic improvements in
program runtime that may be achieved. The implementation of con
straint programming is examined and, in particular, the embedding
of constraint programming code in general-purpose programming
languages is discussed. Constraint programming methods are now
being used in many applications, some of which are briefly surveyed.
The paper concludes by summarising current developments and in
dicating areas of likely importance in the near future.

1. Introduction
Constraint programming is a paradigm that is tailored to hard search prob
lems. To date the main application areas are those of planning, scheduling,
timetabling, routing, placement, investment, configuration, design and in
surance. Constraint programming incorporates techniques from mathemat
ics, artificial intelligence and operations research, and it offers significant
advantages in these areas since it supports fast program development, eco
nomic program maintenance, and efficient runtime performance. The di
rect representation of the problem, in terms of constraints, results in short,
simple programs that can be easily adapted to changing requirements. The
integration of these techniques into a coherent high-level language enables
the programmer to concentrate on choosing the best combination for the
problem at hand. Because programs are quick to develop and to modify, it
is possible to experiment with ways of solving a problem until the best and
fastest program has been found. Moreover more complex problems can be
tackled without the programming task becoming unmanageable. A tuto

ICL System s Journal May 1997 137

rial introduction to constraint logic programming can be found in [Fruhwirth
et.al, 1992].

Constraint logic programming (CLP) combines logic, which is used to
specify a set of possibilities explored via a very simple inbuilt search method,
with constraints, which are used to minimise the search by eliminating
impossible alternatives in advance. The programmer can state the factors
which must be taken into account in any solution, - the constraints, state
the possibilities - the logic program, and use the system to combine rea
soning and search. The constraints are used to restrict and guide search.

The whole field of software research and development has one aim,
namely, to optimise the task of specifying and writing and maintaining cor
rect, functioning programs. Three important factors to be optimised are:

• correctness of programs

• clarity and brevity of programs

• efficiency of programs

Constraint programming is, perhaps, unique in making a direct contri
bution in all three areas. This is why it is such an exciting paradigm.

2. History
In 1963 Sutherland introduced the Sketchpad system, a constraint language
for graphical interaction. Other early constraint programming languages
were Fikes' Ref-Arf, Lauriere's Alice, Sussmann's CONSTRAINTS and
Borning's ThingLab. These languages already offered the most important
features of constraint programming: declarative problem modelling and
efficient constraint enforcement; propagation of the effects of decisions; flex
ible and intelligent search for feasible solutions. Each of these three fea
tures has been the study of extensive research over a long period.

The current flowering of constraint programming owes itself to a gen
eration of languages in which declarative modelling, constraint propaga
tion and explicit search control are supported in a coherent architecture
that makes them easy to understand, combine and apply.

2.1 Declarative Modelling and Efficient Enforcement
2.1.1 Algorithm = Logic + Control
Declarative programming has a long history yielding languages such as
LISP, Prolog and other purer functional and logic programming languages,
and of course it underpinned the introduction of relational databases and
produced SQL which, for all its faults, is today's most commercially suc
cessful declarative programming language.

There has been a recognition that declarative programming has prob
lems with performance and scaleability. One consequence has been a swing

138 ICL Systems Journal May 1997

back to traditional procedural programming. However, constraint program
ming, whilst recognising that efficiency is an important issue, retains the
underlying declarative approach. The idea is not to abandon declarative
programming (that would amount to throwing away the baby with the
bathwater), but to augment it with explicit facilities to control evaluation.
Hence Kowalski's maxim that Algorithm = Logic + Control.

When constraints are used in an application, both the issues of model
ling and performance are considered. An early use of constraints was in the
modelling of electrical circuits. Such circuits involve a variety of constraints
from simple equations (the current at any two points in a sequential circuit
is the same), to linear equations (when a circuit divides, the current flowing
in is the sum of the currents flowing out), to quadratic equations (voltage
equals current multiplied by resistance) and so on. A constraint solver that
can handle all the constraints on a circuit would be prohibitively ineffi
cient. Consequently Sussmann sought to model circuits using only a sim
ple class of constraints. He showed that the lack of expressive power of
simple constraints can be compensated for by using multiple orthogonal
models of the circuit. The different constraints of the different models inter
act to produce more information than could be extracted from the models
independently.

2.1.2 Constraints for Multi-Directional Programming
In many early constraint systems, constraints were little more than func
tions which were evaluated in a data-driven way. The logic programming
paradigm, however, suggested that programs should be runnable "in both
directions". In addition to evaluating a function, f(X), yielding the result Y,
it must be possible to solve the equation f(X) = Y for a given value Y but
unknown arguments X.

Naturally when a function is evaluated "backwards" i.e. from its re
sult producing its input—it is no longer a function. Attempts to integrate
functional and logic programming motivated much research on equation
solving systems, and in the end spawned constraint logic programming.

It was recognised that constraint solving lies at the heart of logic pro
gramming, in its built-in unification. Researchers began to replace (syntac
tic) unification with other equation solvers. An important example of this
was Boolean unification: this is a solver for equations between Boolean ex
pressions, whose possible values are only true or false. This development
has now found a commercially successful application for design and verifi
cation of digital circuits. Moreover Boolean unification is also being ap
plied to the design and verification of real-time control software.

2.1.3 Constraint Logic programming
Soon an even more radical step was taken when it was recognised that

ICL System s Journal May 1997 139

unification could be replaced by any constraint system and solver, provided
certain conditions were satisfied. There was no need for a unification algo
rithm (which reduces an equation between expressions to an equivalent set
of variable assignments). Indeed the constraints need not be equations at
all.

The resulting scheme [Jaffar and Lassez, 1987] called the Constraint
Logic Programming Scheme, and written CLP(X), was illustrated by choos
ing mathematical equations and inequations as the constraint system, and
the Simplex algorithm as the solver. This instance of CLP(X) is called
CLP(91), and is described in a later section.

It has inspired a whole research area, exploring the interface between
logic and mathematical programming. One resulting constraint program
ming language is 2LP (Linear Programming and Logic Programming), which
embeds mixed integer programming in a constraint programming system.
Another is Newton, which uses interval constraints to solve hard math
ematical problems involving polynomials.

Whilst constraint logic programming offers a powerful modelling lan
guage, new constraint propagation algorithms and a clean execution model,
mathematical programming offers some sophisticated algorithms, highly
optimised implementations and a wealth of industrial application know
how.

The next step beyond the standard constraint logic programming
scheme was to include more than one constraint system and solver in a
single system. Even CLP(91) was, in fact, such a combination including
syntactic unification, Gaussian elimination and the Simplex. CLP systems
nowadays include a variety of solvers which exchange information through
shared variables. For numeric variables, in addition to the above solvers,
there may also be a Groebner base rewriting system for handling polyno
mial equations, a very powerful CAD solver and a weaker but very useful
constraint handler for reasoning on numeric intervals. The latter three sys
tem are typically useful for non-linear constraints, containing expressions
in which variables are multiplied together.

2.2 Propagation
2.2.1 Early Applications
Constraint propagation was used in 1972 for scene labelling applications,
and has produced a long line of local consistency algorithms, recently sur
veyed in [Tsang, 1993].

Constraint propagation offers a natural way for a system to spontane
ously produce the consequences of a decision. (Propagation is defined in
the dictionary as "dissemination, or diffusion of statements, beliefs, prac
tices"). Propagation is the most important form of immediate feedback for
a decision-maker.

140 ICL System s Journal May 1997

Propagation works very effectively in interactive decision support tools.
In many applications constraint programming is used in conjunction with
other software tools, taking their results as input, performing propagation,
and outputting the consequences. Typically feedback from the propaga
tion tool is given in the form of a spreadsheet interface.

Many early applications of constraint programming were related to
graphics: geometric layout, user interface toolkits, graphical simulations,
and graphical editors. Constraint propagation has played a key role in all
these applications, with the result that control over the propagation has
been thoroughly investigated: leading to a current generation of very high-
performance constraint-based graphics applications.

2.2.2 Constraint Satisfaction Problems
On the other hand constraint propagation has been the core algorithm used
in solving a large class of problems termed constraint satisfaction problems
(CSP's). Standard CSP's have a fixed finite number of problem variables,
and each variable has a finite set of possible values it can take (called its
domain). The constraints between the variables can always be expressed
as a set of admissible combinations of values. These constraints can be
directly represented as relations in a relational database, in which case each
admissible combination is a tuple of the relation. CSP's have inspired a
fascinating variety of research because despite their simplicity they can be
used to express real, difficult, problems in a very natural way.1

One line of research has focussed on constraint propagation, showing
how to propagate more and more information (forward checking, arc-con
sistency, path-consistency, k-consistency, relational consistency and so on).
For example arc-consistency is achieved by reducing the domains of the
problem variables until the remaining values are all supported; a value is
supported if every constraint on the variable includes a tuple in which the
variable takes this value and the other variables all take supported values.

Even if none of the arc-consistent domains are empty, this does not
imply the CSP has a solution. To find a solution it is still necessary to try
out specific values for the problem variables. Only if all the variables can
be assigned a specific value, such that they all support each other, has a
solution been found. One algorithm for solving CSP's, which has proved
useful in practice, is to select a value for each variable in turn, but, after
making each selection, to re-establish arc-consistency. Thus search is inter
leaved with constraint propagation. In this way the domains of the rentain-
ing values are reduced further and further until either one becomes empty,
in which case some previous choice must be changed, or else the remaining
domains contain only one value, in which case the problem is solved.

Another line of research has investigated the global shape of the prob
1 The class of CSP problems is NP complete.

ICL Systems Journal May 1997 141

lem. This shape can be viewed as a graph, where each variable is a node
and each constraint an edge (or hyper-edge) in the graph. Tree-structured
problems are relatively easy to solve, but research has also revealed a vari
ety of ways of dealing with more awkward structures, by breaking down a
problem into easier subproblems, whose results can be combined into a
solution of the original problem. Picturesque names have been invented
for these techniques such as "perfect relaxation" and "hinge decomposi
tion".

More recently researchers have begun to explore the structure of the
individual constraints. If the constraints belong to certain classes, propa
gation can be much more efficient or it can even be used to find globally
consistent solutions in polynomial time. Indeed there are nice sufficient
conditions to distinguish between NP-complete problem classes and prob
lem classes solvable with known polynomial algorithms.

2.2.3 Constraint Propagation in Logic programming
The practical benefits of constraint propagation really began to emerge when
it wds embedded in a programming language [Van Hentenryck, 1989].
Again it was logic programming that was first used as a host language,
producing impressive results first on some difficult puzzles and then on
industrial problems such as scheduling, warehouse location, cutting stock
and so on [Dincbas et.al., 1988]. The embedding suggested new kinds of
propagation, new ways of interleaving propagation and search and new
ways of varying the propagation according to the particular features of the
problem at hand.

These advantages were very clearly illustrated when, using lessons
learned from the Operations Research community, constraint logic program
ming began to outperform specialised algorithms on a variety of bench
mark problems. However the main advantage of constraint programming
is not the good performance that can be obtained on benchmarks, but its
flexibility in modelling and efficiently solving complex problems.

A constraint program for an application such as Vehicle Scheduling, or
Bin Packing, not only admits the standard constraints typically associated
with that class of problems, but it also admits other side-constraints which
cause severe headaches for Operations Research approaches.

Currently several companies are offering constraint programming tools
and constraint programming solutions for complex industrial applications.
As host programming language, not only logic programming but also LISP
and C++ are offered.

2.3 Search
The topic of search has been at the heart of AI since GPS. Some fundamen
tal search algorithms were generate and test, branch and bound, the A*

142 ICL System s Journal May 1997

algorithm, iterative deepening, and tree search guided by the global prob
lem structure, or by information elicited during search, or by intelligent
backtracking.

The contribution of constraint programming is to allow the end user to
control the search, combining generic techniques and problem-specific heu
ristics. A nice illustration of this is the n-queens problem: how to place n
queens on an nXn chess board, so that no queens can take each other. For n
= 8, depth-first generate-and-test with backtracking is quite sufficient, find
ing a solution in a few seconds. However, when n = 16, it is necessary to
interleave constraint propagation with the search so as to obtain a solution
quickly. When n = 32, however, it is necessary to add more intelligence to
the search algorithm. A very general technique is to choose as the next
variable to label the one with the smallest domain; i.e. the smallest number
of possible values. This is called first-fail. It is particularly effective in
conjunction with constraint propagation, which reduces the size of the do
mains of the unlabelled variables (as described for arc-consistency above).
For n queens, the first-fail technique works very well, yielding a solution
within a second. Unfortunately even first-fail doesn't scale up beyond n =
70. However there is a problem-specific heuristic which starts by placing
queens in the middle of the board and then moving outwards. With the
combination of depth-first search, interleaved with constraint propagation,
using the first-fail ordering for choosing which queen to place next, and
placing queens in the centre of the board first, the 70-queens problem is
solved within a second, and the algorithm scales up easily to 200 queens.2

3. Programming with a Constraint Store
3.1 Primitive Constraints
The traditional model of a computer store admits only two possible states
for a variable: assigned or unassigned. Constraint programming uses a
generalisation of this model. A so-called constraint store can hold partial
information about a variable, expressed as constraints on the variable. In
this model, an unassigned variable is an unconstrained variable. An as
signed variable is maximally constrained: no further non-redundant con
straints can be imposed on the variable, without introducing an inconsist
ency.

Primitive constraints are the constraints that can be held in the con
straint store. The simplest constraint store is the ordinary single-assign
ment store used in functional programming. In our terms it is a constraint
store in which all constraints have the form Variable = Value.

The first generalisation is the introduction of the logical variable. This

2 Solutions for n queens can be generated by a deterministic algorithm, however this problem
is useful for providing a simple and illuminating example of techniques which also pay off
where there are no such alternative algorithms.

ICL System s Journal May 1997 143

allows information of the form Variable = Term to be stored, where Term is
any term in first-order logic. For example it is possible to store X = f(Y).
The same representation can be used to store partial information about X.
Thus, if nothing is known about the argument of /, we can store X = f(_).
This is the model used in logic programming and, in particular, by Prolog.

The storage model used by logic programming has a weakness, how
ever. This is best illustrated by a simple example. The equation X - 3 = Y +
5 is rejected because logic programming does not associate any meaning
with - or + in such an equation.

The extension of logic programming to store equations involving math
ematical functions was an important breakthrough. Equations involving
mathematical functions are passed to the constraint store, and checked by a
specialised solver. In fact not only (linear) equations but also inequations
can be checked for consistency by standard mathematical techniques. It is
necessary, each time a new equation or inequation is encountered, to check
it against the complete set of equations encoutered so far.

Linear equations and inequations are examples of primitive constraints.
Thus we have an example of a constraint store. Further constraint stores
can be built for different classes of primitive constraints, by designing con
straint solvers specifically for those classes of constraints.

We use the term storage model, rather than data model, because the
facility to store constraints is independent of the choice of data
model—object-oriented, temporal etc. On the other hand, the term storage
model as used here does not refer to any physical representation of the
stored information.

Definition: A constraint store is a storage model which admits primi
tive constraints of a specific class. Each new primitive constraint that is
added to the store is automatically checked for consistency with the cur
rently stored constraints.

This definition of a constraint store specifies an equivalent operation to
writing to a traditional store. However no equivalent to the read statement
is specified. There are two important facilites useful for extracting infor
mation from a constraint store.

Firstly it is useful to retrieve all those constraints that involve a given
variable, or set of variables. For example, if the constraint store held three
constraints, X >Z,Y >X,W >Z the constraints involving X would be Y > X
and X >Z. However retrieving only constraints explicitly involving a vari
able may not give a full picture of the entailed constraints on the variable.
For example, the store X > Y, Y >Z entails X > Z . The mechanism necessary
to return all the constraints and entailed constraints on a given variable or
set of variables is termed projection. A very useful property of a class of
primitive constraints is the property that the projection of a set of primitive
constraints on a given variable, or set of variables, is also expressible as a
144 ICL Systems Journal May 1997

set of primitive constraints. If the primitive constraints have this property
it is possible, for example, to drop a variable from the constraint store when
it is no longer relevant. This is the equivalent to reclaiming the store asso
ciated with a variable in a traditional programming language when the
variable passes out of scope.

Secondly it is useful to retrieve particular kinds of entailed constraints
from a constraint store. For example it is very useful to know when a con
straint store entails that a particular variable has a fixed value. For exam
ple the constraint store X > Y, Y > 3,3 > X entails that both X and Y have the
value 3.

3.2 CLP(9i)
The constraint logic programming scheme, written CLP(X), is a generic ex
tension of logic programming to compute over any given constraint store.
Logic programming over a constraint store has all the advantages of tradi
tional logic programming, plus many further advantages for high-level
modelling and efficient evaluation. If the constraint store holds primitive
constraints from the class X, logic programming over this constraint store
is termed CLP (X). In this section we shall use a particular class of primi
tive constraints, linear equations and ineqqualities, termed % to illustrate
the scheme. We shall use an example from [Colmerauer, 1990] to illustrate
how it works.

Given the definition of a meal as consisting of an appetiser, a main
meal and a dessert, and given a database of foods and their calo
rific values, we wish to construct light meals i.e. meals whose total
calorific value does not exceed 10.

A CLP(9l) program for solving this problem is shown in Figure 1.

Figure 1: The Lightmeal Program in CLP(9i)

ICL Systems Journal May 1997 145

A CLP (9t) program is syntactically a collection of clauses which are either
rules or facts. Rules are as in logic programming with the addition that
they can include constraints, such asl + J + K<10, in their bodies.

The intermediate results of the execution of this program will be
descibed as computation states. Each such state comprises two compo
nents, the constraint store, and the remaining goals to be solved. We shall
represent such a state as s t o r e 9 G o a l s . CLP (9i) programs are executed
by reducing the goals using the program clauses. Consider the query
l i g h t m e a l (x, y , z) . which asks for any way of putting together a light
meal. The initial state has an empty constraint store and one goal:

9 l i g h t m e a l (X , Y , Z) .

This goal is reduced using the clause whose head matches the goal.
The goal is then replaced by the body of the clause, adding any constraints
to the constraint store:3

X=A,Y=M ,Z=D , I + J + K =< 1 0 , I > = 0 , J > = 0 , K>=0 9
a p p e t i s e r (A , I) , m a i n (M , J) , d e s s e r t (D , K)

The execution continues, choosing a matching clause for each goal and
using it to reduce the goal. Variables which neither appear in the original
goal, nor any of the currently remaining goals are projected out, as described
above. A successful derivation is a sequence of such steps that reduces all
the goals without ever meeting an inconsistency on adding constraints to
the store. An example is:

X = r a d i s h e s , Y=M, Z=D, 1 + J + K = < 1 0 , J > = 0 , K>=0 9
m a i n (M , J) , d e s s e r t (D , K)

X = r a d i s h e s , Y=M, Z=D, 1 + J + K = < 1 0 , J > = 0 , K>=0 9
m e a t (M , J) , d e s s e r t (D , K)

X = r a d i s h e s , Y = b e e £ , Z=D, l + 5 + K = < 1 0 , K>=0 9
d e s s e r t (D , K)

X = r a d i s h e s , Y = b e e f , Z = f r u i t 9

Note that at the last step the constraint 1 + 5 + 2 =<10 is added to the
store, but it is immediately projected out.

Next we give an example of a failed derivation. The initial goal is the
same as before, but this time p a s t a is chosen as an appetiser instead of
r a d i s h e s :

X =A ,Y =M ,Z=D , I + J + K =< 1 0 , I > = 0 , J > = 0 , K>=0 9
a p p e t i s e r (A , I) , m a i n (M , J) , d e s s e r t (D , K)

X = p a s t a , Y=M, Z=D, 6 + J + K = < 1 0 , J > = 0 , K>=0 9
m a i n (M , J) , d e s s e r t (D , K)

3 Strictly all variables in the clause are renamed, but we omit this detail for simplicity.

146 ICL System s Journal May 1997

Xspasta, Y=M, Z=D, 6+J+K=<10, J> = 0, K>-0 ff
meat(M,J), dessert(D,K)

At the next step whichever clause is used to reduce the goal meat (m, j) , an
inconsistent constraint is encountered. For example, choosing beef requires
the constraint / = 5 to be added to the store, but this is inconsistent with the
two constraints 6 + / + K < 10 and K > 0.

When the attempt to add a constraint to the store fails, due to inconsist
ency, a CLP (X) program abandons the current branch of the search tree and
tries another choice. In sequential implementations this is usually achieved
by backtracking to some previous choice of clause to match with a goal.
However there are or-parallel implementations, where several branches are
explored at the same time, and a failing branch is simply given up, allow
ing the newly available processor to be assigned to another branch.

4. Constraint Propagation
4.1 Propagating Changes
A key innovation behind constraint programming is constraint propaga
tion. Propagation is a generalisation of data-driven computation. Consider
the constraint x = y + 1, where x and y are variables. In a constraint pro
gram, any assignment to the variable y (e.g. y = 5) causes an assignment to
x (x = 6). Moreover the very same constraint also works in the other direc
tion: any assignment to x (e.g. x = 3) causes an assignment to y (y = 2).

In a graphical application, constraint propagation can be used to main
tain constraints between graphical objects when they are moved. For ex
ample if one object is constrained to appear on top of another object, and
the end-user then moves one of the objects sideways, the other object will
move with it as a result of constraint propagation.

In general each object may be involved in many constraints. Conse
quently the assignment of a new position to a given object as a result of
propagation, may propagate further new assignments to other objects, which
may cause further propagation in their turn. If each constraint between
two objects is represented as an edge in a graph, the propagation spreads
through the connected components of the graph.

When a particular object is assigned a new position, and the change is
propagated from the object to other objects, there is a causal direction. In
this case we can assign a direction with each edge of the (connected compo
nent of) the graph. As long as the graph is free of cycles, the propagation
behaviour is guaranteed to terminate, and produce the same final state ir
respective of the order in which constraints are propagated. Efficient algo
rithms, such as the DeltaBlue algorithm, have been developed for propaga
tion of graphical constraints. They work by firstly generating the directed
graph whenever an object is moved, and then compiling this directed graph
into highly efficient event-driven code.
ICL System s Journal May 1997 147

However if the graph contains cycles both these issues arise. Consider,
as a simple example, the three constraints Cl, C2 and C3 specified thus: Cl:
x = y + 1, C2: y = z + 1 and C3: z - x + 1.

Assigning y = 3 may start a non-terminating sequence of propagations
cycling through the constraints Cl (which yields x = 4), then C3 (which
yields z = 5), then C2 (which yields y = 6) and then Cl again and so on.
Alternatively the same assignment y = 3 could propagate through C2 yield
ing z = 2, thence x - 1 and y = 0 via C3 and Cl. In this case the propagation
also goes on for ever, but this time the values of the variables decrease on
each cycle. Thirdly, the same assignment y = 3 could yield z = 5 via Cl and
C3, and z = 2 via C2.

In this example the original constraints are, logically, inconsistent. How
ever similar behaviour can occur when the constraints are consistent. In
the following example there are constraints on three variables. C4: x + y = z,
C5: x - y = z. Suppose the initial (consistent) assignments are x = 2,y - 0, z
= 2. Now a new assignment is made to z:z = 3. If constraint propagation on
C4 yields y = 1, then propagation on C5 yields x = 4. Now propagation on
C4 and C5 can continue for ever, alternately updating y and x.

Propagation algorithms have been developed which can deal with cy
cles, but if the class of admissible constraints is too general, it is not possi
ble to guarantee that propagation is confluent and terminating.

4.2 Active Constraints
4.2.1 Propagating New Information
The changes propagated by label propagation, as discussed in the previous

148 ICL Systems Journal May 1997

Figure 2: A Constraint Graph with a Cycle

section, are variable assignments as held in a traditional program store.
However in this section we explore the application of constraint propaga
tion to constraint stores, which maintain partial information about the pro
gram variables expressed as primitive constraints. Using a constraint store,
it is possible to develop a quite different model of computation in which
the store is never destructively changed by propagation, but only aug
mented. One great advantage of this combination is that confluence prop
erties are easy to establish, and consequently there is little need for the
programmer or applications designer to know in what order the propaga
tion steps take place.

4.2.2 Constraint Agents
We have encountered two very different kinds of constraints. Primitive
constraints are held in a constraint store, and tested for consistency by a
constraint solver. On the other hand propagation constraints actively propa
gate new information, and they operate independently of each other. Propa
gation constraints are more commonly called constraint agents. The be
haviour of a constraint agent is to propagate information to the underlying
store. In case the underlying store is a constraint store, the information
propagated is expressed as primitive constraints.

Constraint agents are processes that involve a fixed set of variables.
During their lifetime they alternate between suspended and waking states.
They are woken from suspension when an extra primitive constraint on
one or more of their variables is recorded. Sometimes, after checking cer
tain conditions, the woken agent simply suspends again. Otherwise the
agent exhibits some active behaviour which may result in new agents be
ing spawned, new primitive constraints being added to the store, or an
inconsistency being detected (which is equivalent to an inconsistent con
straint being added to the store). Subsequently the agent either suspends
again, or exits, according to its specification.

4.2.3 Some Built-in Constraint Agents
The simplest constraint agent is one which adds a primitive constraint to
the constraint store and then exits. The most fundamental example is as
signing a value to a variable, eg. x=3. This agent adds X = 3 to the con
straint store and exits.

The next two examples are disequality constraints, which will be illus
trated in the next section. The first disequality constraint is invoked by the
syntax x=Y. This agent does not do anything until both X and Y have a
fixed value. Only when the primitive constraints in the store entail X = valx
and Y -va ly for some unique values valx and valy, does the agent wake up.
Then its behaviour is to check that valx is different from veil, . In case they are
the same, an inconsistency has been detected.

ICL System s Journal May 1997 149

If the constraint store holds finite domain constraints, then the more
powerful constraint agent invoked by the syntax x ## Y can be used. This
agent wakes up as soon as either X or Y has a fixed value. It then removes
this value from the finite domain of the other variable and exits.

4.3 Map Colouring
4.3.1 The Map Colouring Program
As a toy example let us write a program to colour a map so that no two
neighbouring countries have the same colour. In constraint logic programs,
variables start with a capital letter (e.g. a), and constants with a small letter
(e.g. red).

Figure 3: A simple map to colour

A generic logic program, in Prolog syntax, that tries to find possible
ways of colouring this map with only three colours (red, green and blue) is
as follows:

c o l o u r e d (A , B , C , D) : -
n e (A , B) , n e (A , C) , n e (A , D) , n e (B , C) , n e (B , D) , n e (C , D) ,
c h o s e n (A) , c h o s e n (B) , c h o s e n (C) , c h o s e n (D) .

c h o s e n (r e d) .
c h o s e n (g r e e n) .
c h o s e n (b l u e) .

In this program the (as yet undefined) predicate ne constrains its argu
ments to take different values. We will show how different definitions of ne
cause the program to behave in different ways.

The predicate chosen can be satisfied in three ways. At runtime the
system tries each alternative in turn. If a failure occurs later in the compu

150 ICL System s Journal May 1997

tation, then the alternatives are tried on a last-in first-out basis.
The first definition of ne uses the original disequality of Prolog:

ne(X,Y) :- X\=Y.

If invoked, when either of its arguments are uninstantiated variables,
X\=Y simply fails. To avoid this incorrect behaviour it is possible to place
the constraints after all the choices. In this case the program correctly de
tects that there is no possible colouring after checking all 81 alternatives.

A more efficient Prolog program can be written by interleaving choices
and constraints, but this requires the programmer to think in terms of the
operational behaviour of the program on this particular map. The same
effect can be achieved much more cleanly by using the above program with
anew definition: ne(x,Y) :- X'=Y. This disequality predicate delays until
both arguments have a fixed value. It then immediately wakes up and fails
if both values are the same. If the values are different it succeeds. This
program detects that our map cannot be coloured with three colours after
trying only 33 alternatives.

Another disequality constraint is available in CLP, which assumes its
arguments have a finite set of possible values. We can use it by defining:

ne(X,Y) :- X##Y.

This disequality delays until one of its arguments has a fixed value.
This value is then removed from the set of possible values for the other. To
obtain the advantage of x # # y it is necessary to declare the set of possible
values for each variable, by writing [a , b , c , d] :: [red ,g reen ,b lu e]., as
follows:

coloured(A,B,C,D) :-
[A,B,C,D]: : [red ,green ,b lu e],
ne(A,B), ne(A,C), ne(A,D), ne(B,C), ne(B,D), ne(C,D),
chosen(A), chosen(B), chosen(C), chosen(D).

ne(X,Y) :- X##Y.
chosen(red). chosen(green). chosen(b lue).

This program detects that the map cannot be coloured after trying only
six alternatives.

Although this example is so trivial that it is quite simple to solve it in
Prolog, the CLP program scales up to complex maps and graphs in a way
that is impossible using a programming language without constraints.

4.4 Building Constraint Agents
4.4.1 Guards
Constraint agents can be built by directly defining their waking behaviour
using the notion of a "guard". As an example we take a resource constraint

ICL System s Journal May 1997 151

on two tasks, tl with duration dl and f2 with duration d2 forcing them not
to overlap. The variable ST, denotes the start time of tl and ST2 denotes the
start time of t2. Suppose we wish to define the agent constraint agent(STv
ST2) thus: if the domain constraints on the start time of tl and t2 prevent tl
from starting after t2 has finished, constrain it to finish before t2 has started.

This behaviour can be expressed as follows:
a g e n t (S T _ 1 , S T _ 2) <==> % a g e n t n a m e a n d p a r a m e t e r s

S T _ 1 #< ST _2 + d 2 | % g u a r d
S T _1 + d l #<= ST _2 % b o d y

The guard will keep the agent suspended until the domains of ST, and
ST2 are reduced to the point that the inequality ST, < ST2 + d2 holds for
every possible value of ST, and STr When this is true, it wakes up and
executes the body, invoking a new agent S T _ i + d l #<= s t _ 2 . Of course
this guard may never become true, in case task t2 runs before task tl. To
cope with this alternative we add another guard and body, yielding the
final definition:

a g e n t (S T _ 1 , S T _ 2) <==> H a g e n t n a m e a n d p a r a m e t e r s
S T _ 1 #< S T _2 + d 2 | % g u a r d l

S T _ 1 + d l #<= ST_2 ; % b o d y l
S T _2 #< S T _1 + d 2 | % g u a r d 2

S T _2 + d 2 #<= S T _ 1 % b o d y 2

This agent wakes up as soon as either of the guards is satisfied and ex
ecutes the relevant body. As soon as one guard is satisfied, the other guard
and body are discarded.

4.4.2 Agents Defined by Specific Codes
Constraint programming systems implement their built-in agents using
specific codes which wake up, for example, whenever the upper or lower
bound of the domain constraint on a given variable is altered.

Using specific codes it is also possible to build complex constraints and
constraint behaviours to obtain good performance on large complex prob
lems. Indeed this is the approach that has been very successfully applied
on job-shop scheduling benchmarks and incorporated into commercial con
straint programming tools such as CHIP and ILOG SCHEDULE.

5. Implementation and Applications
5.1 Constraints Embedded in A Host Programming Language
5.1.1 Control
A constraint programming language is the result of embedding constraints
into a host programming language. The host program sends new constraints
to the constraint handler, under program control. The information that can
be returned to the host program depends on how tightly the constraints are

152 ICL Systems Journal May 1997

embedded in the host language. Most basically the constraint handler can
report consistency or inconsistency. Given a closer embedding it can also
return variable bindings. Most closely it might allow the host program
ming language to be extended with guards and other annotations, so as to
allow host program statements to be suspended and woken up like other
constraint agents.

We can diagram the behaviour of a constraint program as follows:

Figure 4: Control in Constraint Programming

The diagram shows three successive phases occurring during program
execution.

In the first phase the host program is executing under explicit program
control. The host program performs such tasks as input/output, event han
dling, and search. It may execute for some time before finally sending a
constraint to the handler. The diagram illustrates the host program per
forming search over three branches. For the purposes of the diagram, it
does not matter how these branches are explored (sequentially, or in paral
lel) and how they are expressed (by recursion over a set of alternatives, or
by non-deterministic choice and backtracking). The succeeding phases of
the execution are only shown for the second branch.

In the second phase the constraint handler is executing, and its control
is constraint-driven. The constraint handler only becomes active when it
receives a new constraint from the host program. The behaviour of the con
straint handler (represented in the diagram as a network of thick lines) is
defined by a set of atomic behaviours (each of which is represented by a
single arc in the network). An atomic behaviour is the posting of a new
constraint to the store, or a single propagation step performed by a con

ICL Systems Journal May 1997 153

straint agent, or the invocation of the body in a guarded constraint. When
no more constraint propagation is possible, the constraint handler returns
to the host program with success, and the host program resumes control, as
illustrated in the third phase of the above diagram.

5.1.2 Concurrency
The challenge for embedding constraint handling in a host programming
language is to deal with constraint agents acting concurrently. Assuming
the programmer has little or no control over the waking and resuspending
of constraint agents, the constraint programming framework must ensure
that the final result of constraint propagation, before the host program
resumes control, is independent of the order in which the agents wake up
and post new basic constraints to the constraint store. The concurrent con
straints framework [Saraswat, 1993] enables this condition to be met for
large classes of practically useful constraint agents.

5.1.3 Logic Programming as a Host Language
Constraints fit hand in glove with declarative host programming languages.
Three of the most influential constraint programming languages were em
bedded in Prolog: Prologlll, CLP(9t) and CHIP. Whilst all three system are
still developing further, there are many new constraint programming sys
tems emerging including ECL'PSf, Oz, 2LP, and Newton.

From a theoretical point of view the extension of logic programming to
Constraint Logic Programming (CLP) has been very fruitful. A good survey
is [Jaffar and Maher, 1994]. For example ALPS, a form of logic program
ming with guards, was an extremely influential language, becoming the
forerunner of the Concurrent Constraints paradigm [Saraswat, 1993]. Con
current constraint programming has in turn provided a very clean model
of concurrent and multi-agent computing. Constraints can also be mod
elled in terms of information systems, which allows us to reason about the
behaviour of constraint programs at an abstract level.

5.1.4 Libraries for Embedded Constraint Programming
The constraint programming technology has matured to the point where it
is possible to isolate some essential features and offer them as libraries or
embedded cleanly in general purpose host programming languages.

For example isolating constraints as libraries has made possible the
development of sophisticated constraint-based scheduling systems, see
[Zweben and Fox, 1994]. More generally there are commercially available
libraries supporting constraint handling such as the CHIP and ILOG C*+
constraint libraries.

154 ICL Systems Journal May 1997

5.2 Applications of Constraint Programming
Based on a few constraint programming languages which support the stor
age of basic constraints and the waking and resuspension of constraint
agents, the technology has achieved a number of remarkable successes on
benchmarks and, more importantly, real industrial applications. A recent
survey of practical applications of constraint programming [Wallace, 1996]
estimated the annual revenue from constraint technology at around $100
million per annum.

One early application, developed in 1990, was to container port plan
ning in Hong Kong [Perrett, 1990]. The application was built by ICL, using
finite domain constraints. Another early user was Siemens, who have ap
plied Boolean constraints to problems of circuit design and integration. Both
Siemens and Xerox are now applying constraints to real time control prob
lems.

Constraints are used for graphical interface design and implementa
tion at Object Technology International. Constraint-based scheduling has
made a big impact in the USA, with applications in heavy industry, NASA
and the Army. The application developers are typically small companies
such as Recom, Red Pepper and the Kestrel Institute.

One company, ILOG, has sold constraint technology both in the USA
and Europe. ILOG also have applications in south east Asia. Its French
rival, Cosytec, is perhaps the only company to make all its business from
constraint technology and applications. [Cras, 1993] gives a survey of in
dustrial constraint solving tools.

Areas where constraint programming has proved very successful in
clude scheduling, rostering and transportation. Constraints are used for
production scheduling in the chemical industry, oil refinery scheduling,
factory scheduling in the aviation industry, mine planning and scheduling,
steel plant scheduling, log cutting and transportation, vehicle packaging
and loading, food transportation scheduling, nuclear fuel transportation
planning and scheduling, platform scheduling, airport gate allocation and
stand planning, aircraft rescheduling, crew rostering and scheduling, nurse
scheduling, personnel rostering, shift planning, maintenance planning,
timetabling, and even financial planning and investment management.

There is a regular conference on the Practical Applications of Constraint
Technology, presented on h t t p : / / w w w . d e m o n . c o . u k / a r / P A C T 9 7 /
i n d e x . h t m l .

6. Current Developments
6.1 Constraints in the Computing Environment
Naturally there is a great deal of useful research exploring ways of using
constraints in an object oriented programming environment, in databases,
and on the internet. The field of constraint databases, in particular, has

ICL System s Journal May 1997 155

http://www.demon.co.uk/ar/PACT97/

thrown up a growing community of researchers who are exploring the theo
retical and practical possibilities of storing constraints in databases, impos
ing constraints on databases, and retrieving constraints from databases. This
work is starting to be noticed in the field of geographical information sys
tems. There is a growing need for databases to handle space, in two and
three dimensions, and time. Examples are environmental monitoring and
protection, air traffic control, and reasoning about motion in three dimen
sions. The constraint database technology appears to address these require
ments.

6.2 Mixed Initiative Programming
One of the great bugbears of constraint programming is how to deal with
overconstrained problems. As Jean-Francois Puget put it, "What solution
do you return when there are no solutions?" The traditional approach in
mathematical programming is to associate a penalty with each violated
constraint and seek the solution which minimises the total penalties.

A related approach is to decide between the different constraints which
ones are more important than which others. The constraint program then
only enforces a constraint if this does not cause a more important constraint
to be violated.

The drawback is that it is not easy for the user to estimate the impor
tance of a constraint, and the solution produced by the software may well
not be the best solution in the opinion of the end users of the system. Moreo
ver this approach is a black box, and the end users receive no feedback
about "nearby" solutions, which might prove better on the ground.

Accordingly one current area of research is how to help the end user
solve overconstrained problems, and multi-criteria optimisation problems
which have different, and possibly conflicting, optimisation criteria. The
challenge is to allow the end-user to explore the solution space interac
tively, eliciting information about solutions, and potential solutions, which
enables the user to choose the very best solution for his or her purposes.
This is called mixed initiative programming.

6.3 Interval Reasoning
Intelligent software systems have often been highly specialised for sym
bolic computation, but weaker on numeric computation. This is one rea
son why the combination of symbolic constraint solving and mathematical
programming are proving to be so interesting both in theory and practice.

One recalcitrant problem for numeric computation is the problem of
numeric instability. Under certain, unlikely, circumstances, tiny rounding
errors in the basic mathematical routines can unexpectedly cause serious
errors in the final result. The difficulty is that these errors are hard to pre
dict, and no practical way has been found to predict them.

156 ICL Systems Journal May 1997

A way to contain this instability is to reason on numeric intervals, in
stead of numbers, ensuring that at each calculation the interval is rounded
out so as to ensure the actual solution lies inside it. Unfortunately these
intervals tend to grow too wide to be useful. Recently, however, using in
tervals as primitive constraints in a constraint programming framework
some excellent results have been obtained for well-known mathematical
benchmarks. These results compete with the best mathematical program
ming approaches, in particular when the input intervals are quite wide.

Intervals appear in a multitude of different contexts as a way of ap
proximating values. In particular they are used in database indexing, in
constraint propagation, and for specifying uncertainty.

The author predicts that interval constraints will play a crucial role in
spatial and temporal databases and in the handling of uncertainty.

6.4 Stochastic Techniques
Organisations are increasingly able to capture an up-to-date picture of their
global resources, and they are seeking to optimise their use of these re
sources. However for large organisations this optimisation problem is un
manageable: no algorithm could ever find the guaranteed best solution for
the whole organisation.

Stochastic techniques are a way of exploring very large solution spaces
and finding good solutions even when it is only possible to visit a
(vanishingly) small proportion of the solutions. Well-known techniques
include simulated annealing, genetic algorithms and tabu search. A draw
back is that for structured problems, where constraints impose complex
dependencies between different parts of the solution, stochastic techniques
are not able to enforce these constraints.

Recently researchers have begun to explore ways of embedding con
straint propagation in stochastic algorithms, thus ensuring that the solu
tions visited by the algorithm satisfy the problem constraints. To date such
hybrid algorithms have been rather loosely coupled. For example, the
stochastic technique only works on a small subset of the problem variables,
producing skeleton solutions. These are then fleshed out using constraint
handling techniques, and the cost of the resulting full solution is calcu
lated, and fed back to the stochastic algorithm which generates another
skeleton solution.

Tightly integrated algorithms combining techniques from mathemati
cal programming, constraint programming and stochastic algorithms are
now the vision of a growing research community. These algorithms may
still not be the "golden bullet" that cuts through all forms of complexity,
but they would certainly represent an important step in the right direction.

ICL System s Journal May 1997 157

Bibliography
COLMERAUER, A., "An Introduction to Prolog III," Communications of
the ACM, 33(7): 69-90, July, 1990.

CRAS, J.Y., "A Review of Industrial Constraint Solving Tools," ISBN 1-
898804-001, AI Intelligence, 1993.

DINCBAS, M„ SIMONIS, H. and VAN HENTENRYCK, P. "Solving large
scheduling problems in logic programming," EURO-TIMS Joint Interna
tional Conference on Operations Research and Management Science, Paris,
July, 1988.

FRUHWIRTH, T, A. HEROLD, A., V. KUCHENHOFF, V, LE PROVOST,
T, LIM, P, MONFROY, E. and WALLACE, M., "Constraint logic program
ming: An informal introduction," Logic Programming in Action (edited by
Comyn, G. and Ratcliffe, M.), Springer, 1992.

JAFFAR, J. and LASSEZ, J.L., "Constraint logic programming," POPL'87:
Proceedings of Nth ACM Symposium on Principles of Programming Lan
guages, pp 111-119, Munich, January, 1987.

JAFFAR, J. and MAPIER, M., "Constraint Logic Programming: A Survey,"
Journal of Logic Programming, 19/20:503-581,1994.

PERRETT, M., "Using Constraint Logic Programming Techniques in Con
tainer Port Planning," ICL Technical Journal, Vol 7, 3,1991.

SARASWAT, V. A., "Concurrent Constraint Programming," MIT Press, 1993.

TSANG, E., "Foundations of Constraint Satisfaction," Academic Press, 1993.

VAN FIENTENRYCK, P, "Constraint Satisfaction in Logic Programming,"
Logic Programming Series, MIT Press, Cambridge, MA, 1989.

WALLACE, M.G., "Practical applications of constraint programming," Con
straints, 1(1), 1996.

ZWEBEN, M. and FOX, M.S., (Editors), "Intelligent Scheduling," Morgan
Kaufmann, 1994.

Biography
Mark Wallace is currently seconded from ICL to IC-Parc, Imperial College,
where he is Deputy Director. Dr. Wallace has been with ICL for some 15
years, during which he completed a PhD in natural language processing at
Southampton University, and then spent a decade at the European Compu
ter Industry Research Centre (ECRC), first working on knowledge bases
and, for the last three years, leading ECRC's constraint reasoning project.
At IC-Parc he manages several research and application development
projects, as well as participating in the development of ECL'PS1’ II.

ICL Systems Journal May 1997158

ECL'PSe - A Platform for Constraint
Logic Programming

Mark Wallace, Stefano Novello and Joachim Schimpf

IC-Parc, William Penney Laboratory, Imperial College, London, UK

Abstract

This paper introduces the Constraint Logic Programming (CLP) plat
form ECL'PS', which is designed to support not only an implementa
tion of CLP but also mathematical and stochastic programming tech
niques. ECL'PS' is designed for solving difficult "combinatorial" in
dustrial problems in the areas of planning, scheduling and resource
allocation. The platform supports experimentation with different
hybrid algorithms. These algorithms have two aspects: constraint
handling, and search. Various different constraint handling facilities
are available as ECL'PS'’ libraries, including finite domain propaga
tion, interval propagation and linear constraint solving. In ECL'PS''
the same constraint can be treated concurrently by several different
handlers. With regard to search behaviour, ECL'PS' supports both
constructive and repair based search and allows these to be combined
into hybrid search techniques.

1. Introduction: The ECL'PS® Philosophy
The first generation of constraint programming languages focused on a sin
gle technique: constraint propagation, as described in Section 4 of [Wallace,
1997]. Whilst constraint propagation has proven itself on a variety of ap
plications, it cannot alone suffice to produce solutions efficiently for typical
practical industrial problems.

Over the years Operations Researchers have designed highly efficient
algorithms for several classes of problems, such as set partitioning, match
ing, knapsack, and network flow problems, using techniques based on
Mixed Integer Programming (MIP). More recently stochastic techniques,
such as Simulated Annealing, have achieved striking results on optimiza
tion problems such as the travelling salesman problem.1

ECL'PS' is designed to take advantage of all these results, by support
ing industrial scale MIP functionality, and stochastic techniques, as well as
constraint propagation and solving.

More importantly, real industrial problems seldom fit into a specific
class: the pure travelling salesman problem rarely comes up in real life be
cause there are typically many salesmen available to cover the different
customers, certain customers can only be visited at certain times of day,

ICL System s Journal May 1997 159

also roads are busier at certain times of day so the journey time may vary
with the time of day, and anyway the poor salesmen need some time to
rest—they can't usually complete their circuits before lunchtime! These
"side constraints" may belong to another problem class—such as the class
of set covering problems, or scheduling problems.

Industrial problems typically have constraints that belong to different
problem classes—they are in a sense "hybrid". Accordingly it is not enough
to offer a wide choice of algorithms for solving such problems: the main
requirement is to be able to mix and match the algorithms, i.e. to build
hybrid algorithms.

ECL'PS' is designed to support the fast development of specific hybrid
algorithms tuned to the problem at hand. It is not assumed that the first
algorithm implemented by the application developer is guaranteed to be
the best one: rather ECL'PS1’ provides a platform supporting experimenta
tion with different hybrid algorithms until an appropriate one is found which
suits the particular features of the application.

In the next section we shall explore ECL'PS' as a problem modelling
language. We distinguish two kinds of model: the conceptual model, which
captures the problem specification, and the design model, which is tuned
for efficient solving on a computer. ECL'PS' is designed to support both
kinds of models and the mapping between them.

In the following sections we shall examine the ECL'PS·’ facilities for
handling constraints. In [Wallace, 1997] we encountered different kinds of
constraints—primitive constraints, propagation constraints and constraint
agents. ECLTS' supports various classes of built-in constraints, both primi
tive constraints and propagation constraints. ECL'PS' also allows complex
constraints and constraint behaviours to be constructed from the built-in
classes, thus supporting constraint agents.

After constraint handling we return to the second major aspect of prob
lem solving: the search for solutions.

We will separate this discussion into two subsections. The first is con
cerned with constructive search, and the second with repair-based search.
Constructive search explores the consequences of making choices for deci
sion variables one-at-a-time. Each choice reduces the set of viable choices
for the remaining decisions. By contrast repair-based search explores the
consequences, not of making decisions, but of changing them. In this case
the new choice is typically compared with the previous one, in the context
of other suggested choices for the other decision variables. Initially it is not
expected that the suggested choices are necessarily consistent with the con
straints. The idea of changing the choices is to reduce the number of con
straint violations until all the constraints are finally satisfied.

1 The travelling salesman problem is to find the shortest route which starts at a certain point,
visits a given set of destinations (customers) and returns to the starting point at the end.

160 ICL System s Journal May 1997

Finally there is a brief section on the ECL'PS·· system, its external com
munication facilities, how to embed it, documentation and how to obtain
the system.

2. ECL'PS6 as a Modelling Language
2.1 Overview of ECL'PS0 as a Modelling Language
ECL'PS'’ is tailored for solving combinatorial problems. Such problems are
characterised by a set of decisions which have to be made (where each de
cision has a set of alternative choices) and a set of constraints between the
decisions (so a certain choice for one decision may preclude, or entail, cer
tain choices for other decisions).

In ECL'PSf each decision is modelled by a variable, and each choice by
a possible value for that variable. The constraints are modelled by rela
tions between the variables. As an example consider the map colouring
program, with four countries to colour, as shown in the following code:

: - l i b (a p p l y _ m a c r o e) .

c o l o u r e d (C o u n t r i e s) : -
C o u n t r i e s = [A , B , C , D] ,
a p p l i s t (v a l u e , C o u n t r i e s) ,
n e (A , B) , n e (A , C) , n e (A , D) , n e (B , C) , n e (B , D) , n e (C , D) .

v a l u e (r e d) .
v a l u e (g r e e n) .
v a l u e (b l u e) .

This problem was also used to illustrate constraint logic programming
in [Wallace, 1997]. ECL'PSf is a constraint logic programming language,
using the same syntax as Prolog. Hopefully this syntax will already be
familiar to many readers. At the same time, we also hope that any readers,
who have suffered from the limitations of Prolog, will not automatically
conclude that ECL'PSf suffers from the same limitations.

The problem involves four decisions, one for each country. These are
modelled by the variables A, B, C and D. Countries is just a name for the list
of four variables. Each decision variable, in this problem, has the same set
of choices, modelled as possible values for the variables (red, green and blue).
There are six constraints, each of which is modelled by the same relation
(ne meaning not equal to).

The first command :- l i b (a p p l y _ m a c r o s) . loads an ECL'PSf library.
Much of the functionality of ECL'PSf is held in different libraries, some of
which will be introduced in the next section. The library apply jnacros holds
the definition of the applist predicate, which applies a predicate to each ele
ment of a list, applistf value,Countries) is equivalent to value(A), value(B),
value(C), value(D).

ICL System s Journal May 1997 161

2.2 Why Logic Programming
The requirements on ECL'PS·' are of two kinds: to enable such problems to
be modelled simply and naturally; and to enable the resulting problem
model to be solved efficiently. The separation of modelling and solving is
supported in ECL'PS· by distinguishing the conceptual model, expressed
as a "pure" logical ECL'PS1' program, from the design model, which is con
structed from the conceptual model by adding control to the ECL'PS1 pro
gram.

This combination of requirements is difficult to satisfy—perhaps im
possible if a completely general modelling language is required, suitable
for every kind of application. However the applications for which ECL'PS''
is designed are decision support applications involving combinatorial prob
lems.

Logic programming is peculiarly apt for modelling problems of this
kind for two reasons:

• It is based on relations

• It supports logical variables.

Since every combinatorial problem is naturally modelled as a set of
variables and a set of constraints (i.e. relations) on those variables, the fa
cilities of logic programming precisely match the requirements for model
ling combinatorial problems.

Every predicate in a logic program defines a relation, either explicitly
as a set of facts, or implicitly in terms of rules. We can recall the example
from [Wallace, 1997], The predicate meat was defined by two facts:

m e a t (b e e £ , 5) .
m e a t (p o r k , 7) .

whilst the predicate main (meaning "main course") was defined by two
rules:
m a i n (M , I) : - m e a t (Μ , I) .
m a i n (Μ , I) : - f i s h (M , I) .

Variables in logic programming are logical variables. Thus it is entirely
natural to initialise the problem variables (for example by writing Countries
= [A, B, C, D]) and then to constrain them (for example by writing ne(A,B)
and so on).

We briefly compare ECL'PS'’ as a modelling language with formal speci
fication languages, mathematical modelling languages, mainstream pro
gramming languages and object oriented languages.

2.2.1 Formal Specification Languages
Formal specification language are designed for formality, but not for ex-

162 ICL Systems Journal May 1997

ecution. Consequently they include constructs, such as universal quantifi
cation, which are precisely defined but are not constructive. In other words
there are constructs which cannot be mapped onto any (practical) algorithm.

Luckily the class of problems for which ECL'TS* is designed have a
finite set of decision variables each of which admits only finitely many al
ternatives. Consequently it is only necessary to support a restricted form
of logic2 which is easier to understand and easier to implement. The near
est thing ECL'PS* offers to universal quantification is iteration over finite
sets, as for example the goal applist(value, Countries) in Section 2.1.

The restricted logic of ECL'ES* has a benefit that the mapping from the
conceptual model of the problem to the design model is an extension of the
conceptual model rather than a rewriting. This means that when problem
requirements change it is natural to capture these changes in the concep
tual model, and then carry them through to the design model. The result is
that during application development the conceptual model and the design
model remain in step. This avoids many of the pitfalls which await devel
opers working on applications whose specifications are changing even dur
ing application development.

2.2.2 Mathematical Modelling Languages
There already exists a class of modelling languages designed for combina
torial problems. These are the mathematical modelling languages typically
used as input to mixed integer programming (MIP) packages. We further
discuss MIP, and how to use it through ECL'PS*, in Section 3.4 below.

Although the syntax is different, mathematical modelling languages
share many of the features of logic programming. They support logical
variables, and constraints. They support numerical constraints which,
though not supported in traditional logic programs, are supported by con
straint logic programs as we shall see in tire following section. They sup
port named constraints, which is achieved in constraint logic programming
by introducing a predicate name, e.g. p r e c e d e (Τ Ι , T 2) : - Τ Ι > = T 2 .

There are two facilities in constraint logic programming which are not
available in mathematical modelling languages.

The main one is quite simple: in constraint logic programs it is possible
to define a constraint which involves a disjunction. Mathematical program
ming cannot handle disjunction directly. The second difference is that logic
programming allows new constraints to be defined in terms of existing ones,
even recursively. In mathematical programming the model is essentially
flat, which not only complicates the model but also reduces reusability
within an application and across applications.

To illustrate the advantage of handling disjunction in the modelling
language, we take a toy example and present two models: a mathematical

2 technically called Horn clauses.

ICL Systems Journal May 1997 163

programming model and a constraint logic programming model.
Consider the constraint that two tasks sharing a single resource cannot

be done at the same time. The constraint involves six variables: the start
times Sj, S2, the end times Er E2, and resources R2, R2 of the two tasks. The
specification of this constraint is as follows:

either the two tasks use distinct resource (Rj ne R2) or taskj ends
before task2 starts (Ej < S2) or else task2 ends before task1 starts (E2 <
δχ)·

First we shall show how it can expressed as a mathematical model with
out disjunctions. For this purpose it must be encoded using numerical equa
tions and inequalities, together with integer constraints.

The disjunctions can be captured by introducing three 0/1 variables,
Brl, Br2, and B(, and using some large constant, say 100000, larger than any
possible values for any of the six variables. Now we can express the con
straint in terms of numerical inequalities as follows:

R, + 100000 * Brl + 100000 * Br2 > R2 + 1
R2 + 100000 * Brl + 100000 * (1 - Br2) > Rt + 1
S2 + 100000 * (1 - Br l) + 100000 * B, > E2
S2 + 100000 * (1 - B^) + 100000 * (1 - Bt) £ Ej

If Bri = 0 then the two tasks use different resources. In this case, if also
Br2 = 0 then R2 > R2 + 1, otherwise Br2 = 1 and Rj > R2 + 1. It is an exercise for
the reader to prove that if Brl = 0 then the tasks can overlap. Otherwise, if
Brl = 1, then B(= 0 entails St > E2 and Bt =1 entails S2 > E,.

In ECL'PSf this constraint can be expressed directly in logic, as illus
trated below:

t a s k R e s o u r c e (S I , E l , R l , S 2 , E 2 , R 2) : -
n e (R l , R 2) .

t a s k R e s o u r c e (S I , E l , R l , S 2 , E 2 , R 2) : -
R 1 = R 2 , S i > = E 2 .

t a s k R e s o u r c e (S I , E l , R l , S 2 , E 2 , R 2) : -
R 1 * R 2 , S2 >= E l .

We note that the ECL'PS' model is a conceptual model, whilst the math
ematical model is a design model. The point here is that in ECL'PS' both
models can be expressed, whilst mathematical modelling can only express
a design model. Indeed we shall show in Section 4.1 a design model writ
ten in ECL'PS' that is very close to the conceptual model.

Another ECL'PS'’ design model, which is also close to the conceptual
model, is handled in ECL'PS'’ by an automatic translator which builds the
MIP model and passes it to the MIP solver of ECL'PS'’ . This translator is
described in [Rodosek et al., 1997].

Whilst the above example shows that such complex constraints can be

164 ICL Systems Journal May 1997

expressed in terms of numerical inequalities, as required for MIP, the en
coding is awkward and difficult to debug. It becomes increasingly difficult
as the constraints become more complex (e.g. the current example immedi
ately becomes even harder if the resources have a finite capacity greater
than one).

Notice, finally, that the mathematical model requires resources to be
identified by numbers, whilst the constraint logic programming model
imposes no such restriction as we shall show in Section 4 below.

2.2.3 Mainstream Programming Languages
Naturally the implemented solution to an industrial problem must be de
livered into the industrial computing environment. It is sometimes argued
that this is only possible if the solution is implemented in a mainstream
programming language such as c, c** or even Java. There are two argu
ments supporting this view, firstly that of how to embed it (it is easier and
more efficient to pass data and control between modules written in the same
programming language), and secondly that of system support (mainstream
language programmers are much easier to find and replace than specialist
programmers).

Whilst this argument only supports a mainstream programming lan
guage being used for implementation, and not conceptual modelling, it has
consequences for the modelling language as well on the assumption, which
we discussed above, that the conceptual model should be close to the de
sign model. Thus if the design model is encoded in a mainstream pro
gramming language, then either the conceptual model is compromised,
becoming more like a design model, or the gap between the conceptual
model and design model grows very wide.

Sadly the attempt to tackle combinatorial problems with mainstream
programming languages has too often foundered because the implemented
solution has proven not to solve the actual industrial requirement (often
because requirements change during application development). The solu
tion cannot then be modified to meet the actual, or new, requirements within
a reasonable cost and time-scale.

Given that the core combinatorial optimization problem is best solved
by a specialised programming platform (either mathematical or constraint-
based), the problem of embedding has to be solved.

One approach is to embed constraint solving in a mainstream program
ming language. However, as we shall see in Section 5 below, search and
constraint handling are closely interdependent. Even if the search is en
coded in a mainstream programming language, the programmer is required
to understand in detail not only the data structures used by the constraint
handlers, but their operational behaviour.

In practice, packages providing an embedding of constraints in main

ICL System s Journal May 1997 165

stream programming languages also encapsulate search within the pack
age. The application developer is required to control the search. To avoid
any mismatch between the host programming language and search control
within the package, a popular approach is to implement the package as a
library of the host programming language.

The result is that the separation of conceptual modelling and design
modelling is given up in favour of staying within the confines of the ex
pressive capabilities of the host programming language. This approach
not only requires specialist programmers to develop and support the ap
plication, but it also sacrifices the modelling advantages of mathematical
and constraint logic programming.

In fact the problem of embedding has been overcome, although first
generation constraint logic programming languages were deficient in this
area. ECL'PSf can be fully embedded in C and C**, and indeed uses an
external solver, written in C to handle linear constraints, since the runtime
cost of such an interface is perfectly acceptable even for a tightly integrated
component such as a constraint handler.

2.2.4 Object Oriented Languages
ECL'PSf supports object-orientation through two distinct features, modules
and structures. Modules support behavioural object orientation, and struc
tures support structural object orientation.

Because of the nature of combinatorial problems, the only requirement
for behavioural object orientation is in the constraint handlers. The imple
mentation of each constraints library is hidden inside a module, and access
to the internal data structures is only through predicates exported from the
module.

The remaining objects that can occur in an ECLPSf model have attributes
but no behaviour, and so they require only structural object orientation.

In our first example we modelled a map colouring problem using only
variables and constraints. It can be argued, however, that for more com
plex applications, the conceptual model can benefit from a notion of object,
into which variables can be built. For example in modelling a resource
scheduling problem the notion of a task with certain attributes is useful. A
task might have an identifier, a start time, an end time and a duration, as shown
in the example below.

After declaring structures for tasks and times, the programmer can ac
cess any of their attributes independently.

Each ECL’PS1· prompt (e.g. [e c l i p s e l] :) is followed by a user query
(e.g. lib(structures).). In the rest of this paper, "query N" always refers to
the query which is preceded by the prompt [e c l i p s e N] : .

[e c l i p s e 1] : l i b (s t r u c t u r e s) .
* s t r u c t u r e s l o a d e d

166 ICL System s Journal May 1997

[e c l i p s e 2] : d e £ i n e _ s t r u c t (t a s k (i d , s t a r t , e n d , d u r a
t i o n)) .

d e £ i n e _ s t r u c t (t i m e (h o u r , m i n u t e)) .
* y e s .

[e c l i p s e 3] s T = t a s k w i t h [i d : a , d u r a t i o n : 1 0] .
* T = t a s k (a , _ , _ , 1 0)
* y e s .

[e c l i p s e 4] : T l = t a s k w i t h [i d : a 3 , s t a r t : S 3 , e n d : (t i m e w i t h
h o u r : H 3)] ,

T 2 = t a s k w i t h [i d : a 4 , s t a r t : S 3 , e n d : (t i m e w i t h
h o u r : H 4)] ,

H 3 > H 4 .
* T 1 = t a s k (a 3 , S 3 , t i m e (H 3 , _) , _)
* 1 2 = t a s k (a 4 , S 3 , t i m e (H 4 , _) , _)
* y e s .

The programmer enters l i b (s t r u c t u r e s) . to which the system re
sponds s t r u c t u r e s l o a d e d . I have added a star to the beginning of each
line showing a system response.

Query 2 defines the attributes for objects in the classes task and time.
Query 3 shows how the user can equate a variable with a structured object
(i.e. the variable is instantiated to the structure). ECL'PS1' automatically con
structs unknown values (written _) for the unspecified attributes.

Query 4 illustrates something of the expressive power needed in a con
straint programming language which supports objects. Not only do the
objects T1 and T2 share an attribute value—this is a shared sub-object—but
they also have non-shared sub-objects of which the attributes are connected
by a constraint. Such a constraint, between distinct objects, is not express
ible within the traditional object-oriented framework.

2.3 The Conceptual Model and the Design Model
The main benefit of constraint logic programming over other platforms for
solving combinatorial problems is in the closeness between the conceptual
model and the design model. ECL PS1 takes full advantage of this by offer
ing facilities to choose different annotations of the same conceptual model
to achieve design models which, whilst syntactically similar, can have radi
cally different behaviour.

2.3.1 Map Colouring
Let us start by mapping the conceptual model for the map colouring exam
ple, discussed in Section 2.1, into a design model which uses the finite do
main constraint handler of ECL'PS11.

The design model is encoded as shown below:
: - l i b (f d) .

ICL System s Journal May 1997 167

c o l o u r e d (C o u n t r i e s) : -
C o u n t r i e s = [A , B , C , D] ,
C o u n t r i e s : : [r e d , g r e e n , b l u e] ,
n e (A , B) , n e (A , C) , n e (A , D) , n e (B , C) , n e (B , D) , n e (C , D) ,
l a b e l i n g (C o u n t r i e s) .

n e (X , Y) : - X##Y.

The design model extends the conceptual model in four ways:

1. The ECL'PS1, finite domain library is loaded (using :- lib(fd))

2. An explicit finite domain is associated with each decision variable
(using Countries :: [red, green, blue])

3. The finite domain built-in disequality constraint is used to imple
ment the ne constraint (using ne(X,Y):- X##Y). ## is a special syntax
for disequality used by the finite domain constraint solver

4. This program includes a search algorithm, invoked by the goal
labeling(Countries). As we shall see later, this predicate tries choos
ing, for each of the variables A, B, C and D in turn, a value from its
domain. It succeeds when a combination of values has been found
that satisfies the constraints.

Naturally this is a toy example, and it is not always so easy to turn a
conceptual model, such as the ECL'PS'' program in Section 2.1, into a design
model, such as the program listed above. Nevertheless constraint logic
programming, and in particular ECL'PS'’, have made much progress in
achieving a close relationship between the conceptual model and the de
sign model. The different components of the ECL'PS'’ system all support
the separate development of a clear, correct conceptual model, and an effi
cient design model, and they also support the mapping between the two.

2.3.2 Having Enough Change in Your Pocket
Let us now take a more interesting problem, which has been set as a recent
challenge within the MIP community. The problem is apparently rather
simple: what is the minimum number of coins a purchaser needs in their
pocket in order to be able to buy any one item costing up to one pound, and
guarantee to be able to pay the exact amount?

The problem involves only six decision variables, one for the number
of coins of each denomination held in the pocket (the denominations are 1,
2,5,10,20, 50).

The conceptual model for this problem is as follows:
: - l i b (a p p l y _ m a c r o s) .

s o l v e (P o c k e t C o i n s , M i n) : -
P o c k e t C o i n e = [P , T w , F v , T e , T w e , F f] , %1

168 ICL Systems Journal May 1997

ap p lis t(ran g e (Ο,99) , [Min|PocketCoins]), %2
Hin = P+Tw+Fv+Te+Twe+Ff, %3
fro m to (l,99 ,gene (PocketCoins)) , %4
minimize(Hin). %5

g e n e (P o c k e t C o i n s , T o t a l) : -
C o i n s = [P l , T w l , F v l , T e l , T w e l , F f l] , %6
a p p l i s t (r a n g e (0 , 99) , C o i n s) , %7
T o t a l = P l + 2 * T w l + 5 * F v l + 1 0 * T e l + 2 0 * T w e l + 5 0 * F f 1 , %8
m a p l i s t (' < = ' , C o i n s , P o c k e t C o i n s) . %9

The lines are numbered, using the syntax %N, as % is a comment sym
bol in ECL'PS1. This program is now described line-by-line.

1. The variable PocketCoins is just a shorthand for the list of six vari
ables, [P, Tw, Pv, Te, Twe, Pfj which denote the number of coins of
each denomination held in the pocket.

2. [A,B,C] is a list, but ECL'PS1, allows lists to be written in an alterna
tive syntax [Head I Tail], Thus [Min I PocketCoins] is simply another
way of writing the list of seven variables, [Min, P, Tw, Pv, Te, Twe,
Ffl. The command applist(range(0,99), [Min \ PocketCoins]) associ
ates a range (between 0 and 99) with each of the variables.

3. Min is the total number of coins in the pocket, as enforced by the
equation Min = P+Tw+Fv+Te+Twe+Ff.

4. To ensure that these coins are enough to make up any total between
1 and 99, we now impose 99 further constraints, one for each total.
genc(PocketCoins,Total) is called for each value of Total between 1
and 99.

5. m inim ize(M in) simply specifies that the best feasible solution to the
problem is one which minimises the value of the variable M in.

6. genc(PocketCoins,Total) initialises another set of coins [PI, Twl, Fvl,
Tel, Twel, Ffl] needed to make up the total Total.

7. This set of coins is also initialised to range between 0 and 99.

8. Their total value is constrained to be equal to Total. This constraint
is enforced by the equation Total = P1+ 2*Twl + 5*Fvl + 10*Tel +
20*Twel + 50*Ffl.

9. Finally the constraint that the required coins of each denomination
must be less than, or equal to, the number of coins of that denomi
nation in the pocket, is enforced by the constraints: PI <= P, Twl <-
Tw, Fvl <= Fv, Tel <= Te, Twel <= Twe, Ffl <= Ff. These constraints
are generated by the single command maplist(<=, Coins, PocketCoins).

ICL System s Journal May 1997 169

Let's start by trying mixed integer programming on this problem. To
do this we add integer declarations for each of the integer variables, and
change the constraints to use the syntax recognised by the (external) MIP
solver accessed via the ECLlPSf library eplex. For equality we use the syn
tax $=, and for inequality we use $>=. The design model is shown:

: - l i b (a p p l y _ m a c r o s) .
: - l i b (e p l e x) .

s o l v e (P o c k e t C o i n s , C o s t) : -
P o c k e t C o i n s = [P , T w , F v , T e , T w e , F f] ,
a p p l i s t (r a n g e (0 , 9 9) , [M i n | P o c k e t C o i n s]) ,
M i n $= P + T w + F v + T e + T w e + F f ,
f r o m t o d , 99 ,g e n e (P o c k e t C o i n s)) ,
o p t i m i z e (m i n (M i n) , C o s t) .

g e n e (P o c k e t C o i n s , T o t a l) : -
C o i n s = [P l , T w l , F v l , T e l , T w e l , F f l] ,
a p p l i s t (r a n g e (0 , 9 9) , C o i n s) ,
T o t a l $= P l + 2 * T w l + 5 * F v l + 1 0 * T e l + 2 0 * T w e l + 5 0 * F f l ,
m a p l i s t (' $ = < ' , C o i n s , P o c k e t C o i n s) .

r a n g e (M i n , M a x , V a r) : -
i n t e g e r s (V a r) ,
V a r $>= M i n ,
V a r $=< Ma x .

This program passes all the $= and $>= constraints to the CPLEX mixed
integer programming package (CPL93), and invokes the CPLEX branch
and bound solver, to minimise the value of the variable Min. This mini
mum is placed in the variable Cost.

As such this model can only solve the problem of producing the exact
change up to 59 pence (replacing 99 with 59 in the above program). For the
full problem the system runs out of memory. There are standard MIP solu
tions to this problem: these can run for many hours and it is a tough chal
lenge to reduce this time to minutes.

An ECL,PSf program for solving the "Coins" problem using the facili
ties of the ECL'PS ̂ finite domain constraint solver implemented in the
ECL'PSf the library fd is given below:

: - l i b (a p p l y _ m a c r o s) .
: - l i b (f d) .

s o l v e (P o c k e t C o i n s , M i n) : -
P o c k e t C o i n s = [P , T w , F v , T e , T w e , F f] ,
a p p l i s t (r a n g e (0 , 9 9) , [M i n | P o c k e t C o i n s]) ,
M i n #= P + T w + F v + T e + T w e + F f ,
f r o m t o (1 , 9 9 , g e n e (P o c k e t C o i n s)) ,
m i n i m i z e (l a b e l i n g (P o c k e t C o i n s) , M i n) .

170 ICL Systems Journal May 1997

gene (PocketCoins, T o ta l) :-
C o i n s = [P l , T w l , F v l , T e l , T w e l , F f l] ,
a p p l i s t (r a n g e (0 , 9 9) , C o i n s) ,
T o t a l # = P l + 2 * T w l + 5 * F v l + 1 0 * T e l + 2 0 * T w e l + 5 0 * F f l ,
m a p l i s t (' # < = ' . C o i n s , P o c k e t C o i n s) .

r a n g e (M i n , M a x , V a r) : -
V a r : : M i n . . M a x

In this case the #= and #> = constraints and the optimization predicate
minimize are implemented in the ECL'PSf finite domain library. This pro
gram proves within a few seconds that the minimum number of coins a
purchaser needs in his pocket to make up any total between 1 and 99 is
eight coins. One solution is: P=l, Tw=2, Fv=1, Te=l, Twe=2, Ff= 1.

We have shown how the same underlying model for the "Coins" prob
lem can be passed to different solvers so as to use the best one. However in
ECL'PSf it is not a choice of either/or: the same constraints can easily be
passed to several solvers at the same time. For instance we can define X
$#■ Y to be both X $= Y and X #= Y and replace = in the above model
with $#=. We can treat >■ similarly.

Whilst for this problem the finite domain solver alone solves the prob
lem most efficiently, we have encountered practical examples where the
combination of both solvers outperforms each on its own.

3. Solvers and Syntax
ECL'PS1, offers several different libraries for handling symbolic and numeric
constraints. They are the fd (finite domain) library, the range library, the ria
(real interval arithmetic) library, and finally the eplex (MIP) library.

3.1 The fd (Finite Domain) Library
The finite domain library has been used and refined over a 10 year period.
As a result it has a great many constraint handling facilities. It is best seen
as three libraries.

The first is a library for handling symbolic finite domains, with values
like red, machine_l etc. The built-in constraints on symbolic finite domain
variables are equality and disequality: these constraints can only hold be
tween expressions which are either constants or variables. These constraints
can also be used when the domains are numeric.

The second is a library for handling integer variables, and numerical
constraints on those variables. The library propagates equations and in
equalities between linear expressions. A linear numeric expression is one
that can be written in the form Term, + Term, + . . . + Term , where each term
can, in turn, be written Number or Number * Variable. The number can be
positive or negative.

ICL System s Journal May 1997 171

An example is the expression 3 * X + (-4) * Y + 3 (which we would
simply write 3 * X - 4 * Y + 3).

The third is a library supporting some built-in complex constraints.
Two examples of such constraints are the a l l d i s t i n c t constraint, which
constraints a set of variables to take values which are pairwise distinct, and
the a t m o s t constraint, which constrains at most N variables from a given
set to take a certain value.

3.1.1 The fd Symbolic Finite Domain Facilities
In Sections 2.1 and 2.3.1, above, we showed a map colouring problem and
its solution. The domains associated with the countries were red, green and
blue. These were declared as finite domains, with the usual syntax: X ::
[red, green, blue].

The problem could have been modelled using numbers to represent
colours, so there is no extra power in allowing symbolic finite domains as
well as numeric ones. However when developing ECL'PSf programs for
real problems, it is a very great help to use meaningful names so as to dis
tinguish different types of finite domain variables. In particular it is crucial
during debugging.

The basic constraints on finite domain variables, together with predi
cates for accessing and searching these domains are illustrated below:

[e c l i p s e 1] : l i b (f d) .
* f d l o a d e d

[e c l i p s e 2] : X : : [a , b , c] .
* X = X { [a , b , c] }
* y e s .

[e c l i p s e 3] : X : s [a , 3 . 1 , 7] .
* X = X { [3 . 0 9 9 9 9 9 9 , 7 , a] >
* y e s .

[e c l i p s e 4] : X : : [a , b , c] , d o m (X , L i s t) .
* X = X { [a , b , c] }
* L i s t = [a , b , c]
* y e s .

[e c l i p s e 5] : X : : [a , b , c] , Y : : [b , c , d] , X#=Y.
* X = X { [b , c] >
* Y = X { [b , c] >
* y e s .

[e c l i p s e 6] : X : : [a , b , c] , X # # b .
* X = X { [a , c] }
* y e s .

[e c l i p s e 7] : X : : [a , b , c] , i n d o m a i n (X) .
* X = a M o r e ? (;)

172 ICL Systems Journal May 1997

* X ■ b M o r e ? (;)
.* X = c
* y e s .

[e c l i p s e 8] : [X , Y , Z] : : [a , b , c] , X # # Y , Y # # Z , X # # Z ,
l a b e l i n g ([Χ , Υ , Ζ]) .
* X S a
* Y = b
* Z * c M o r e ? (;)

* X = a
* Y s= C

* Z = b M o r e ? (i)

* y e s .

[e c l i p s e 9] : [X , Z] : : [a , b , c] , Y
d e l e t e f f (V a r , [X , Y , Z] , R e s t) , i n d o m a i n (V a r) .

* X = X { [a , b , c] }
* Y = a
* Z * Z{ [a , b , c] }
* R e s t = [X { [a , b , c] } , Z { [a , b , c] }]
* V a r = a M o r e ? (;)
* y e s .

The programmer enters l i b (f d) .to which the system responds f d
l o a d e d .

The second query associates a symbolic finite domain with the vari
able X. In response ECL'PS'' prints out the variable name and its newly
assigned domain. The fact that the variable has an associated domain does
not require any changes in other parts of the program, where X may be
treated as an ordinary variable.

Query 3 shows that symbolic domains can include values of different
types.

Query 4 shows the use of the dom predicate to retrieve the domain
associated with a variable.

Queries 5 and 6 illustrate the equality and disequality constraints, and
their effects on the domains of the variables involved. Finite domain con
straints use a special syntax to make explicit which constraint library is to
handle the constraint, for example it uses #= instead of =.

Queries 7,8 and 9 illustrate search. Strictly one would not expect search
predicates to belong to a constraint library, but in fact search and constraint
propagation are closely connected.

Query 7 shows the indomain predicate instantiating a domain variable
X to a value in its domain. ECL'PS1' asks if more answers are required, and
when the user does indeed ask for more, another value from the domain of
X is chosen, and X is instantiated to that value instead. When the user asks
for more again, X is instantiated to the third and last value in its domain,

ICL System s Journal May 1997 173

and this time ECL'PS1' doesn't offer the user any further choices, but simply
outputs yes.

Query 8 illustrates the built-in finite domain labelling predicate. This
predicate simply invokes indomain on each variable in turn in its argument.
In this case it calls indomain first on X, then Y and then Z. However the
variables are constrained to take different values by three disequality con
straints, and only those labellings that satisfy the constraints are admitted.
Consequently this query has six different answers, though the user stops
asking for more after the second answer.

Query 9 illustrates a heuristic based on the fail first principle. In choos
ing the next decision to make, when solving a problem, it is often best to
make the choice with the fewest alternatives first. The predicate deleteff
selects a variable from a set of variables which has the fewest alternatives:
i.e. the smallest finite domain. In the example there are three variables, X,
Y and Z representing three decisions, deleteff picks out Y because it has the
smallest domain, and then indomain selects a value for Y. The third argu
ment of deleteff is an output argument: Rest returns the remaining variables
after'the selected one has been removed. These are the decisions yet to be
made.

3.1.2 The fr/lnteger Arithmetic Facilities
For numeric finite domains the fd library admits equations, inequalities and
disequalities over numeric expressions.

Additionally the fd library includes some built-in optimization predi
cates. These are all illustrated below:

[e c l i p s e 1] : l i b (f d) .
* f d l o a d e d

[e c l i p s e 2] : X : : 1 . . 1 0 .
* X = X { [1 . . 1 0] >
* y e s .

[e c l i p s e 3] : X : : 1 . . 1 0 , m i n d o m a i n (X , M i n) .
* X = X { [1 . . 1 0] >
* M i n = 1
* y e s .

[e c l i p s e 4] : [X , Y] : : 1 . . 1 0 , X#>Y+1.
* X = X{ [3 . . 1 0] }
* Y = Y{ [1 . . 8] }
* y e s .

[e c l i p s e 5] : [X , Y] : : 1 . . 1 0 , X#>Y+1 , Y # = 6 .
* X = X { [8 . . 1 0] }
* Y = 6
* y e s .

174 ICL System s Journal May 1997

[e c l i p s e 6] : [X, Y, Z] : : 1. . 10, X #= 2*(Y+Z).
* X = Χ { [4 . . 1 0] }
* Υ = Υ { [1 . . 4] }
* Ζ = Ζ { [1 . . 4] }
* y e s .

[e c l i p s e 7] : X : : 1 . . 1 0 , mindomain(X,Min).
* X = Χ { [1 . . 1 0] }
* Min = 1
* y e s .

[e c l i p s e 8] : [X ,Y ,Z] : : 1 . . 10, X #= 2*(Y+Z), Y##Z,
minimize (l a b e l i n g ([Χ , Υ , Ζ]) , X) .

* Found a s o l u t i o n w i t h c o s t 6
* Y = 2
* Z x 1
* X = 6
* y e s .

Query 2 illustrates how a numeric finite domain can be initialised just
by giving lower and upper bounds, instead of the whole list of members.
In fact, internally, finite domains are stored as lists of intervals (for example
[1..5, 8..10,15]).

Query 3 shows how the user can find out the lower bound of a vari
able's numeric finite domain. There is a similar predicate for retrieving the
upper bound.

Queries 4, 5 and 6 illustrate some features of finite domain constraint
propagation.

Query 4 shows the pruning achieved by a simple numerical finite do
main constraint. Notice that both the domains of X and Y are pruned—
constraints work in all directions.

Query 5 illustrates that a finite domain constraint remains active even
after it has achieved some pruning. This query is the same as query 3, with
an extra constraint imposed subsequently. The X # > Y + 2 constraint is still
active, and prunes the domain of X still further from [3..10] to [8..10].

Query 6 shows that, in the interest of computational efficiency, the
mathematical constraints only narrow the bounds of the finite domains. In
this example the domain of X could theoretically be reduced to [4,6,8,10],
but this would require much more computation - especially if the finite
domains were quite large!

Query 7 is an example of the use of the built-in minimize predicate.
This predicate returns an admissible labelling of the variables X, Y and Z
which yields the smallest value for X. In general any search procedure can
be substituted for labelling([X,Y,Z]) as the first argument to minimize. For
example we could have used minimize((indomain(X), indomain(Y),
indomain(Z)), X).

ICL System s Journal May 1997 175

3.1.3 The fd Complex Constraints
There are two motivations for supporting complex constraints. One is to
simplify problem modelling. It is shorter, and more natural, to use a single
alldistinct constraint on N variables than to use n*(n-l)/2 (pairwise)
disequalities.

The second motivation is to achieve specialised constraint propagation
behaviour. The a l l d i s t i n c t constraint on N variables, has the same se
mantics as n*(n-l)/2 (pairwise) disequalities, but it can also achieve better
propagation than would be possible with the disequalities. For example if
any M of the variables have the same domain, and its size is less than M,
then the a l l d i s t i n c t constraint can immediately fail. However if two
variables X and Y have the same domain, with M>1 elements, the constraint
X ## Y can achieve no propagation at all. Thus the pairwise disequalities
are unable to achieve the same propagation as the alldistinct constraint.

The constraint atmost(Number, List, Val) constrains the number of the
variables, Number, in the list, List, to be not greater than the the value, Val.
This is a difficult constraint to express using logic. One way is to constrain
each sublist of length Number+1 to contain a variable with value different
from Val, but the resulting number of constraints can be very large.

A more natural way is to constrain all the variables to take a value
different from Val, and to allow the constraint to be violated up to N times.
The fd library supports such a facility with the constraint #-0(Τ1, T2, B).
This constraint makes B=1 if T1=T2 and B=0 otherwise. It is possible to
express utmost by imposing the constraint # = (Var^VaLB) or each variable
Varj in the list and then adding the constraint B + . . . + Bm # <= N. The
built-in atmost constraint is essentially implemented like this.

The other fd constraints (#<, #>, etc.) can be extended with an extra 0/1
variable in the same way.

The fd library includes a great variety of facilities, which are best ex
plored by obtaining the ECL'PSf extensions manual [Brisset et al., 1997] and
looking at the programming examples in the section on thefd library there.

3.2 The range Library
The range library does very little itself, but it provides a common basis for
the interval and the MIP libraries. By contrast with the finite domain library,
the range library admits ranges of which the upper and lower bound are
either real numbers or integers. The library enables the programmer to
associate a range with one or more variables, as illustrated below:

[e c l i p s e 1] : l i b (r a n g e) .
* r a n g e l o a d e d

[e c l i p s e 2] : X : : 0 . 0 . . 9 . 5 , l w b (X , 4 . 5) .
* X = X { 4 . 5 . . 9 . 5 }
* y e s .

176 ICL System s Journal May 1997

I e c l i p s e 3] : X : : 4 . 5 . . 9 . 5 , X - 6 . 0 .
* X = 6 .0
* y e s .

[e c l i p s e 4] : X : : 4 . 5 . . 9 . 5 , X»1.0 .
* no (more) s o l u t i o n .

[e c l i p s e 5] : X : : 0 . 0 . . 9 . 5 , l w b (X , 4 . 5) , i n t e g e r s ([X]) .
* X = X{5 . . 9)
* y e s .

In query 2, the programmer enters X: : 0 . 0 . . 9 . 5 , l w b (X , 4 . 5) ., and
the system responds by printing out the resulting range. When the vari
able is instantiated, the range is checked for compatibility, as shown by
queries 3 and 4.

Finally, what might be treated as type information in other program
ming paradigms, can be treated as a constraint in the constraint program
ming paradigm. Thus we can add a constraint that something is an integer
in the middle of a program, as shown by query 5.

3.3 The ria (Real Interval Arithmetic) Library
The ria library supports numeric constraints which may involve several
variables. Throughout program execution, ria continually narrows the
ranges associated with the variables as far as possible based on these con
straints. In other words ria supports propagation of intervals, using the
range library to record the current ranges, and to detect inconsistencies.

The constraints handled by ria are equations and inequalities between
numerical expressions. The expressions can be quite complex, they can
include polynomials and trigonometrical functions. This functionality is
quite similar to that offered by fd, except that fd can only propagate linear
constraints. On the other hand, the finite domain library uses integer arith
metic instead of real number arithmetic, so it is in general more efficient
than ria.

Since interval propagation will be described in the next issue of the
Journal [Yakhno et al., to be published], we shall confine ourselves here to a
single example showing ria at work.

Suppose we wish to build a garden house, whose corners must lie on a
given circle. The house should be a regular polygon, but may have any
number of sides. It should be as large as possible within these limitations.
(Note that the more sides the larger the area covered, until it covers practi
cally the whole of the circle.) However each extra side incurs a fixed cost.
The problem is to decide how many sides the garden house should have?

If it had six sides, the house would look as illustrated overleaf in Figure
1.

ICL System s Journal May 1997 177

The area of the house is 2*6*A where A is the area of the triangle in the
illustration. The area of an N-sided house can be modelled in ECL'PSf as
shown below:

: - lib(ria).
area(N,Rad,Area) :-

X*>=0, Y*>=0, N*>=3, integers(N),
Rad *>=0, Area*>=0,
Area *=< pi*sqr(Rad),
cos(pi/N) *= Y/Rad,
sqr(Y)+sqr(X) *= sqr(Rad),
A r e a *= N*X*Y.

cost(N,Rad,W1,W2,Cost) :-
W1*>=1, W2*> = 1, Cost *> = 0,
area(N,Rad,Area),
Cost *= Wl*Area-W2*N.

tcost(N,Cost) :-
cost(N,10,1,10,Cost).

N is the number of sides, and Area is the area of the house. The variable
Rad denotes the radius of the circle, and X and Y are the lengths of the sides
of the triangle, as illustrated in Figure 1.

ria requires its constraints to be written with a specific syntax (eg x *>=
γ instead of just x >= y). This distinguishes ria constraints from linear and
finite domain constraints, which each have their own special syntax.

To work out the payoff between the area and the number of sides, we
define the cost-benefit of the house to be Wl*Area-W2*N, where W1 and
W2 are weighting factors that we can chose to reflect the relative costs and
benefits of the area against the number of sides. In the model shown above,
tcost returns the cost-benefit of an N-sided house in case the radius of the

178 ICL System s Journal May 1997

Figure 1: The Garden House

circle is 10, and the weights are Wl=2 and W2=10.
We can place this program in a file called honse.pl, and then use ECL'PS'

to find out some costs by first "consulting" the file, as illustrated by query
1 below:

[e c l i p s e 1] : [h o u s e] .
* range loa de d
* h o u s e . p l compi led
* y e s .

[e c l i p s e 2] :
* C =
* y e s .

[e c l i p s e 3] :
* C = C { 1 6 0
* y e s

[e c l i p s e 4] :
* C = C { 2 0 0
* y e s .

[e c l i p s e 5] :
* C = C { 2 0 4
* y e s .

[e c l i p s e 6] :
* C = C { 2 0 3
* y e s .

[e c l i p s e 7] :
* N - N{3 . .
* C = C { 0 . 0
* y e s .

t c o s t (3 , C) .
. . 99 . 9}

t c o s t (4 , C) .
. . 160}

t c o s t (6 , 0 .
. . 2 0 0 }

t c o s t (7 , 0 .
. . 204}

t c o s t (8 , C) .
. . 203}

t c o s t (N , C) .
31}

. . 284}

C{99. 90

[e c l i p s e 8] : t c o s t (N , C) , s q u a sh ([C] , l e - 2 , l i n j .
* N = N{3 . . 31}
* C = C{0 .0 . . 224}

Queries 2-6 would seem to indicate that the seven sided house is best
for the given cost weightings.3

However it is also interesting to see whether the interval reasoning
system itself can achieve useful propagation without even knowing the
number of sides of the house. We show this in query 7.

An upper bound on the number of sides is extracted due to the con
straint that the cost-benefit must be positive, but the propagation on the
cost-benefit is rather weak. In cases like this, propagation can be augmented
by a technique known as squashing, as illustrated in query 8. This tech

3 The intervals returned from ria are much narrower than this, but for this paper I have re
duced the output to three significant figures.

ICL System s Journal May 1997 179

nique will be described in detail in [Yakno et al., to be published].
We now give two short examples showing limitations of interval rea

soning in general. This will motivate the introduction of a linear constraint
solver in ECL'PS1', to be described in Section 3.4.

The two limitations are that interval reasoning cannot, even in some
quite simple examples, detect inconsistency among the constraints; and in
cases where the constraints have only one solution, interval reasoning of
ten fails to reflect this in the results of propagation.

This is illustrated by the two simple examples below.
[e c l i p s e 1] : l i b (r i a) .
* r i a loade d

[e c l i p s e 2] : X+Y *=<1, Z+X*=<1, Y+Z*=<1, X+Y+Z*>=2.
* X = X { - I n f .0 . . I n f .0}
* Y = Y { - l n f . 0 . . I n f .0}
* Z = Z { - I n f .0 . . I n f .0}
* y es

[e c l i p s e 3] s X+Y *= 2 , X-Y *= 0.
* X = X { - I n f . 0 . . I n f . 0}
* Y = Y { - l n f .0 . . I n f . 0 }
* y e s

In this case the system failed to detect the inconsistency in query 2, and
did not deduce that only one value was possible for X and Y in query 3.
The answer is not incorrect, as ria only guarantees that any possible an
swers must lie in the intervals returned - it does not guarantee the existence
of an answer in that interval. Nevertheless it would be useful to have avail
able a more powerful solver to recognise cases such as these.

3.4 The ep lex (External CPLEX Solver Interface) Library
Equations and inequalities between linear numeric expressions, as defined
in Section 3.1 above, are a subset of the constraints which can be handled
by ria. However this class can be handled very powerfully, so much so that
any inconsistency between the constraints is guaranteed to be detected.
Techniques for solving linear constraints have been at the heart of opera
tions research for half a century, and highly efficient linear solvers have
been developed.

One of the most widely distributed, scalable and efficient packages in
corporating a linear constraint solver is the CPLEX MIP package (CPL93).
CPLEX offers several algorithms for solving linear constraints including
the Simplex and Dual Simplex algorithms. These algorithms are supported
by sophisticated data structures, and the package can handle problems in
volving ten of thousands of linear constraints over ten of thousands of vari
ables.

180 ICL Systems Journal May 1997

In the discussion so far, we have not yet mentioned an important as
pect of most industrial combinatorial problems. Not only is it required to
make decisions that satisfy the constraints, but they must also be chosen to
optimize some measure. In the travelling salesman problem for example,
the decisions of what order to visit the cities are based on optimizing the
total distance travelled by the salesman.

One feature of available packages for solving linear and mixed integer
problems, is support for optimization. Indeed they not only offer optimi
zation as a facility, but require it. Therefore in illustrating the two example
where ria performed badly, using instead the eplex library, we shall insert a
dummy optimization function. The use of eplex is shown below:

[e c l i p s e 1] : l i b (e p l e x) .
* e p l e x l o a d e d

[e c l i p s e 2] : X+Y $=< 1, Z+X $=< 1, Y+Z $=< 1, X+Y+Z $>= 2,
Opt $= 0, o p t i m i z e (m i n (O p t) , C o s t) .

* n o (m o r e) s o l u t i o n .

[e c l i p s e 3] : X+Y $= 2 , X-Y $= 0 , o p t i m i z e (m i n (X) , C o s t) .
* X = 1 . 0
* Y = 1 . 0
* C o s t = 0 . 0
* y e s .

[e c l i p s e 4] : X+Y $= 2 , X-Y $= 0 , o p t i m i z e (m a x (X) , C o s t) .
* X » 1 . 0
* Y = 1 . 0
* C o s t = 0 . 0
* y e s .

Where fd uses a #, and ria uses a *, eplex uses a $.
Query 2 is the same set of constraints whose inconsistency is not de

tected by ria. eplex, however, recognises their inconsistency.
In order to establish that there is only one possible value for X we have

had to use two queries, 3 and 4, first finding the minimum value for X and
then the maximum. Although the same value for Y was returned in both
solutions, the eplex library has still not proven that 1 is the only possible
value for Y.

For problems involving only real number (or continuous) variables, lin
ear constraint solving alone suffices to solve the problem. However indus
trial problems typically include a mixture of real number and integer vari
ables. For example in problems involving discrete resources the decision as
to which resource to use for a task cannot be modelled as a continuous
variable.. Traditionally operational researchers will use a binary (or 0/1)
variable or an integer variable. Most resources are discrete, for example
machines for jobs, vehicles for deliveries, rooms for meetings, berths for

ICL System s Journal May 1997 181

ships, people for projects, and so on. Another fundamental use of discrete
variables is in modelling the decision as to the order of doing things—for
example, visiting cities in the travelling salesman problem, or performing
tasks on the same machine. From the point of view of the programmer
adding the constraint that a variable is integer-valued is straightforward.
However the effect of such a constraint on the performance of the solver
can be disastrous, because mixed integer problems are much harder to solve
than linear problems.

[e c l i p s e 1] : l i b (e p l e x) .
* e p l e x l o a d e d

[e c l i p s e 2] : X+Y $>= 3 , X-Y $= 0 , o p t i m i z e (m i n (X) , C) .
* Y = 1 . 5
* X = 1 . 5
* C = 1 . 5
* y e s .

[E c l i p s e 3] : i n t e g e r s ([X]) , X+Y $>= 3 , X-Y $= 0 ,
o p t i m i z e (m i n (X) , C) .

* Y = 2 . 0
* X = 2
* C = 2 . 0
* y e s .

The eplex library uses standard range-variables provided by the range-
library, which facilitates interfacing to other solvers. The interface to CPLEX
enables state information to be retrieved, such as constraint slacks, basis
information, and reduced costs. Also many parameters can be queried
and modified. A quite generic solver demon is provided which makes it
easy to use CPLEX within a data-driven CLP setting.

The notion of solver-handlers encourages experiments with multiple
solvers. A pair of predicates make it possible to read and write problem
files in MPS or LP format.

MIP packages such as CPLEX and XPRESS , which is also currently
being integrated into the eplex package, are surprisingly effective even for
some problems involving many discrete variables. Their underlying linear
solvers reflect a carefully chosen balance between flexibility and scalability.
They offer less flexibility than the linear solvers which are usually built into
constraint programming systems, such as CLP(Si), but much better
scalability.

It has proved possible, within ECLPS1, to achieve much of the flexibil
ity of CLP(Si) within the restrictions imposed by MIP solvers [Rodosek et
al., 1997],

182 ICL Systems Journal May 1997

4. Complex Constraints
Whilst constraint programming languages offer a broad selection of built-
in constraints, each new industrial application typically requires a number
of application-specific constraints which aren't among the built-in con
straints.

Let us take, as an ongoing example, the constraint that two tasks shar
ing a single resource cannot be done at the same time. This constraint was
introduced in Section 2.2.2 above.

The constraint involves six variables: the start times S,, S2, end times Ev
E2 and resources Rv R2 of the two tasks. The specification of this constraint
is as follows:

either the two tasks use distinct resource {R1 ne R,) or task2 ends
before task2 starts (£} < S2) or else task2 ends before taskj starts (£2 <
s,)·
We shall compare three different ways of handling this constraint. First

we recall how it can be encoded using numerical equations and inequali
ties, together with integer constraints. This is the encoding necessary to
allow it to be solved using MIP algorithms, as available through the eplex
library. However the MIP package is not necessarily the best algorithm for
handling such a constraint.

Indeed experience with practical applications suggests that the more 0/
1 variables it is necessary to introduce to handle each constraint, the less
efficient MIP becomes. The inefficiency arises partly because the MIP con
straints are handled globally and the cost of handling extra constraints and
boolean variables increases very fast with their number.4 An additional
factor is that until the boolean variables take a value very close to 0 they
have very little effect on the search.5

By contrast we shall show how it can be handled using two further
libraries of ECL'PS'' - the propia library and the chr library. These libraries
allow the constraint to be modelled much more simply and handled more
efficiently.

4.1 The propia (Generalised Propagation) Library
A major issue in defining complex constraints is how to handle disjunction.
The resource constraint of our running example can be quite easily expressed
using a disjunction of finite domain constraints. Indeed ECL'PSe allows us
to express disjunction as alternative clauses defining a predicate, so the
constraint can be expressed as a single ECL'PS' predicate thus:

4 Using the Simplex or Dual Simplex algorithms this cost goes up, in the w orst case,
exponentially with the number of constraints and variables.
5 Technically the constraints in which they appear are rarely facet-inducing cuts.

ICL System s Journal May 1997 183

f d T a s k R e s o u r c e (S I , E l , R l , S 2 , E 2 , R 2) : -
R1 # # R 2 .

f d T a s k R e s o u r c e (S I , E l , R l , S 2 , E 2 , R 2) : -
R 1 # = R 2 , S I # >= E 2 .

f d T a s k R e s o u r c e (S I , E l , R l , S 2 , E 2 , R 2) : -
R 1 # = R 2 , S2 # >= E l .

The purpose of the propia library is to take exactly such disjunctive defi
nitions and turn them into constraints.

This is illustrated in below:
: - l i b (p r o p i a) .

p r o p i a T R (S I , R l , S 2 , R 2) : -
[S 1 , S 2] : : 0 . . 1 0 0 , [R 1 , R 2] : : [r l , r 2 , r 3] ,

E l = S l + 5 0 , E2 = S 2 + 7 0 ,
f d T a s k R e s o u r c e (S I , E l , R l , S 2 , E 2 , R 2) i n f e r s m o s t .

f d T a s k R e s o u r c e (S I , E l , R l , S 2 , E 2 , R 2) : -
R1 # # R 2 .

f d T a s k R e s o u r c e (S I , E l , R l , S 2 , E 2 , R 2) : -
R 1 # = R 2 , S I #>= E 2 .

f d T a s k R e s o u r c e (S I , E l , R l , S 2 , E 2 , R 2) : -
R 1 # = R 2 , S2 #>= E l .

The syntax Goal infers most turns any ECL'PSf goal into a constraint. It
is supported by the propia library.

The behaviour of this constraint is to find which values for each vari
able are consistent with the constraint. The constraint has the propagation
behaviour described in [Wallace, 1997]: it repeatedly attempts to reduce the
domains of its variables further every time any other constraints reduce
any of these domains. Some examples of this behaviour will now be dis
cussed with reference to the following:

[e c l i p s e 1] : [f d T a s k R e s o u r c e] .
* p r o p i a l o a d e d
* f d T a s k R e s o u r c e . p l c o m p i l e d .
* y e s .

[e c l i p s e 2] : p r o p i a T R (S l , R l , S 2 , R 2) , R l # = r l , R 2 # = r l .
* S I = S l { [0 . . 5 0 , 7 0 . . 1 0 0] }
* R l = r l ,
* S2 = S 2 { [0 . . 3 0 , 5 0 . . 1 0 0] } ,
* R2 = r l
* y e s .

[e c l i p s e 3] : p r o p i a T R (S l , R l , S 2 , R 2) , R l = r l , S 2 # > = 3 5 , S 2 # < = 4 5 .
* S I = S l { [0 . . 1 0 0] }
* R l = r l ,
* S2 = S 2 { [3 5 . . 4 5] } ,
* R2 = R 2 { [r 2 , r 3] }

184 ICL Systems Journal May 1997

yes .*

In query 2, the constraint deduces that, since the tasks cannot overlap,
taskj cannot start between 51 and 69, and task2 cannot start between 31 and
49. In query 3, since the tasks are bound to overlap, the constraint deduces
that task2 must use either resource r2 or ry

Other behaviour can be achieved by writing Goal infers consistent or
Goal infers ground instead. These behaviours, together with other facilities
of the propia library are described in the ECL'PS'’ extensions manual [Brisset
et al., 1997].

4.2 The chr (Constraint Handling Rules) Library
The ECL'PSf programmer has little control over the behaviour of complex
predicates using the propia library.

For example in the fdTaskResource query 2, illustrated above, the con
straint detects "holes" inside the domains of the variables SI and S2. How
ever experience in solving scheduling problems suggests that the compu
tational effort expended in detecting such holes is rarely compensated by
any reduction the amount of search necessary to find solutions. Whilst this
propagation is too powerful, the other alternatives available in the propia
library are too weak.

The most useful behaviour for the constraint is to do nothing until one
of the following conditions hold:

• If the tasks are guaranteed to overlap, constrain them to use distinct
resources

• If the tasks must use the same resource, and one of the tasks cannot
precede the other, constrain that task not to start until the other task
has ended.

Notice that this is, unfortunately, not the behaviour achieved by the
MIP encoding, either.

This behaviour can be expressed in ECL'PSf using the Constraint Han
dling Rules chr library. The required ECL'PS1 encoding remains quite logi
cal, but it needs a new concept, that of a guard. A rule with a guard is not
executed until its guard is entailed, until then it does nothing. The data-
driven implementation of guarded rules uses the same mechanisms as the
data-driven implementation of constraints discussed in the following sec
tion.

The syntax for guarded rules is rather different from the syntax for
ECL'TS1· clauses encountered so far. This syntax is illustrated by the accom
panying encoding of the chrtaskResource constraint. In this example the
constraint handling rules use finite domain constraints in their definitions.

c h r T R (S l , R l , S 2 , R 2) : -

ICL System s Journal May 1997 185

[S 1 , S 2] : : 0 . . 1 0 0 , [R 1 , R 2] : : [r l , r 2 , r 3] ,
E l = S l + 5 0 , E2 = S 2 + 7 0 ,
c h r T a s k R e s o u r c e (S I , E l , R l , S 2 , E 2 , R 2) .

c o n s t r a i n t s c h r T a s k R e s o u r c e / 6 .

c h r T a s k R e s o u r c e (S I , E l , R l , S 2 , E 2 , R 2) <==>
R l #= R 2 , E l #> S2 | E2 # <= S I .

c h r T a s k R e s o u r c e (S I , E l , R l , S 2 , E 2 , R 2) <==>
R l #= R 2 , E2 *> S I | E l # <= S 2 .

c h r T a s k R e s o u r c e (S 1 , E 1 , R 1 , S 2 , E 2 , R 2) <==>
E l #> S 2 , E2 #> S I | R l # * R 2 .

Logically each of these three rules states the same constraint: either Rl
* R2 or S2 > El or SI > E2. However each rule uses a different "if...then"
statement. For example the first rule says that if R1=R2 and E1>S2 then SI
>E2.

In order to use constraint handling rules, it is necessary to translate
them into the underlying ECL'PS'’ language using an automatic translator.
The constraints must be written to a file called file.chr - in our example we
shall use chrTaskResource.chr. To illustrate the loading and use of constraint
handling rules, some examples are given:

[e c l i p s e 1] : l i b (c h r) , l i b (f d) .
* c h r l o a d e d
* f d l o a d e d

[e c l i p s e 2] : c h r (c h r T a s k R e s o u r c e) .
* c h r T a s k R e s o u r c e . c h r c o m p i l e d .
* y e s .

[e c l i p s e 3] : c h r T R (S l , R l , S 2 , R 2) , R l # = r l , R 2 # = r l .
* S I = S l { [0 . . 1 0 0] }
* S2 = S 2 { [0 . . 1 0 0] }
* R l = r l
* R2 = r l
* y e s .

[e c l i p s e 4] : c h r T R (S l , R l , S 2 , R 2) , R l = r l , R 2 = r l , S l # < = 6 5 .
* S2 = S 2 { [5 0 . . 1 0 0] }
* R l = r l
* R2 = r l
* S I = S l { [0 . . 5 0] }
* y e s .

[e c l i p s e 5] : c h r T R (S I , R l , S 2 , R 2) , R l = r l , S 2 # > = 3 5 , S 2 # < = 4 5 .
* S I = S l { [0 . . 1 0 0] }
* R2 = R 2 { [r 2 , r 3] }
* R l = r l
* S2 = S2{ [3 5 . . 4 5] >
* y e s .

186 ICL Systems Journal May 1997

Query 3 yields less propagation than propiaTR because this implemen
tation does not punch holes in the variables' domains.

Query 4 does, however, produce new information, because not only do
both tasks use the same resource, but also the constraint SI <65 means that
taskj must precede task2. The constraint deduces that the latest start time
for SI is actually 50, and the earliest start time for S2 is also (by coinci
dence) 50.

Query 5 uses the fact that the tasks must overlap to remove r, from the
domain of R2.

The chr library offers many more facilities, including multi-headed rules,
and augmentation rules. These facilities can be explored in detail by study
ing the relevant chapter in [Brisset et al., 1997], and trying out the example
constraint handling rule programs which are distributed with ECL'PS'’.

4.3 Explicit Data Driven Control
The propia and chr libraries are implemented using a set of underlying fa
cilities in ECL'PSf which support data-driven computation. The main fea
ture supporting data-driven computation is the suspension. This is illus
trated below:

[e c l i p s e 1] : l i b (s u s p e n d) , l i b (f d) .
* suspend load ed
* fd load ed

[e c l i p s e 2] : s u s p e n d (w r i t e ln ("Wake u p ! ") , l , X - > i n s t) ,
w r ite ln (" D o t h i s f i r s t ") ,
X=l.

* Do t h i s f i r s t
* Wake u p !
* X = 1
* y e s .

[e c l i p s e 3] : suspend(w riteln("W ake u p ! ") , l , X - > i n s t) ,
c u r r e n t_ s u s p e n s io n (S) ,
su sp e n s io n _ to _ g o a l(S ,G o a l ,M) ,
c a l l (G o a l ,M) .

* Wake u p !
* *

* y e s .

[e c l i p s e 4] : suspend(w riteln("W ake u p ! ") , l , X - > i n s t) ,
c u r r e n t_ s u s p e n s io n (S) ,
k i l l _ s u s p e n s i o n (S) ,
X=l.

* S = 'WOKEN GOAL'
* X = 1
* y e s .

ICL Systems Journal May 1997 187

[e c l i p s e 5] : X: : 1 . . 1 0 ,
s u s p e n d (w r i t e l n (" W a k e u p ! ") , l , X - > m i n) ,
X # > 3 ,

* W ake up!
* X - X { [4 . . 1 0] }
* y e s .

A suspension is a goal that waits to be executed until a certain event
occurs. Each suspension is associated with a set of variables, and as soon
as a relevant event occurs to any one of the variables in the set, the suspen
sion "wakes up" and the goal is activated. One such event is instantiation:
all the suspensions on a variable wake up when the variable is instantiated.

Query 1 loads the suspend library, and it also loads thefd library, which
will be used in the last example. It is preferable to load all the libraries that
may be needed at the start of the session.

Query 2 suspends a goal writelnC'Wake up!") on one variable X. The
goal will be executed as soon as X becomes instantiated (X —> inst). When
woken the goal will be scheduled with a certain priority. The priority is
given as the second argument of suspend. In this case the priority is 2, which
is the highest priority. The remainder of query 2 performs another write
statement and then instantiates X. The output from ECL'PS1’ shows that the
suspended goal is not executed, until X is instantiated, after the system has
already output Do this first.

Query 3 shows various facilities for explicitly handling a suspension.
The current suspensions can be accessed. (It is also possible to access just
the suspensions on a particular variable.) A suspension can be converted to
a goal.6 A suspension can be "killed", so that it is no longer accessible or
wakeable. The suspension has no connection to the goal, however, which
can still be executed.

Query 5 illustrates another kind of event that can wake up a suspended
goal. In this case the goal is suspended until the lower bound of the finite
domain associated with X is tightened (X ->min).

There are other events which can wake suspended goals associated with
other constraint handlers, but the most general event is that the variable
becomes more constrained in any way (expressed as X constrained). Goals
suspended in this way will wake when any new constraint on X is added
(an fd constraint, a ria constraint, or an eplex constraint).

Finally it is also possible to retrieve goals suspended on a given vari
able, or those associated with a given event on a given variable.

Based on this simple idea it is possible to define a constraint behaviour
explicitly. As a simple example let us make a constraint that two variable
differ by more than some input number N. We will call the constraint
ndiff(N,X,Y), where N is the difference, and X and Y the two variables. Its

6 The variable M denotes the module in which ivriteln is defined.

188 ICL Systems Journal May 1997

behaviour will be to tighten the finite domains of the variables. In the fol
lowing code, a behaviour for an ndiff constraint is implemented and, since
underlying/d constraints are used, thefd library is loaded:7

: - l i b (f d) .
: - s u s p e n d .

n d i f f (Ν , Χ , Y) : -
m i n d o m a i n (X , X H i n) ,
m a x d o m & i n (Y , YM ax) ,
YMax<XMin+N, ! ,
X#>=Y+N.

n d i f f (Ν , Χ , Y) : -
m i n d o m a i n (Y , Y M i n) ,
m a x d o m a i n (X , X M a x) ,
XMax<YMin+N, I ,
Y#>=X+N.

n d i f f (Ν , Χ , Y) : -
s u s p e n d (n d i f f (Ν , Χ , Y) , 3 , [X ,Y] - > a n y) .

The first clause for ndiff checks if the lower bound for X is so close to
the upper bound for Y that X cannot be less than Y (if it was, then to satisfy
the ndiff constraint we would need to have Y >= X + N). In this case impose
the constraint that X # >=0 Y + N.

The second clause does the symmetrical test on the lower bound of Y
and the upper bound of X.

If neither of these conditions is satisfied, then ndiff doesn't do anything.
It just suspends itself until the finite domains of X or Y are tightened ([X,Y]
-> any).

This very same mechanism of suspended goals is used to implement
all the built-in constraints of ECL'PS'. For example the constraint X # > Y is
implemented using a goal which is suspended on two events: a change in
the maximum of the domain of X, and a change in the minimum of the
domain of Y. Typically all the finite domain built-in constraints are sus
pended on events which occur to the finite domains of their variables.

Before concluding this subsection, we should observe that the different
constraint libraries of ECL'PS' are supported by a very flexible facility. The
information about each kind of constraint on a variable is held in a data
structure which is attached to the variable called an attribute. When th efd
library is loaded, each variable in ECL'PS'' has a finite domain attribute. If
the variable has no finite domain, this attribute contains nothing, and the
behaviour of the variable is just as if it had no attribute. On the other hand
if the variable does have a finite domain, then the attribute stores the finite

7 Th e f d library automatically loads the s u s p e n d library, so it is not actually necessary to load
s u s p e n d explicitly.

ICL System s Journal May 1997 189

domain, as well as pointers to all the suspended goals which are waiting
for an event to occur to the finite domain.

Naturally ria constraints and eplex constraints are stored in other at
tributes, and they have their own suspended goals attached to them.

Any ECL'PS1' user can define and implement a completely new con
straint handling library in three steps:

1. A new attribute, storing information about the new class of con
straints, must be defined

2. Events specific to this class of constraints must be specified

3. New constraint behaviours must be implemented in terms of goals
which suspend themselves on these events.

The ECL'PS'' extensions manual [Brisset et al., 1997] gives an example
of defining such a new constraint library.

5. Search
5.1 Constructive Search
5.1.1 Branch and Bound
In the preceding sections we have encountered two optimization proce
dures, the finite domain procedure minimize and the MIP procedure optimize.
Both optimization procedures implement an algorithm called branch and
bound, which posts a new constraint, each time it finds a solution, that the
cost of future solutions must be better than the cost of the current best solu
tion. Eventually the new constraint will be unsatisfiable, and the algorithm
will have proved that it has found the optimum.

5.1.2 Depth-First Search and Backtracking
We have also encountered the finite domain search procedure labeling, which
successively instantiates a list of finite domain variables to values in their
domains. In ECL'PSf the default search method is depth-first search and
backtracking on failure. Of the complete search methods available, this is
in practice the best because search algorithms with a breadth-first compo
nent quickly grow to occupy too much memory. We will discuss some
incomplete search methods below.

5.1.3 G u esse s - Constraints Imposed During Search
Search is, of course, much more general than just labelling. Certainly, for
combinatorial problems, it involves making guesses that may later turn out
to have been bad. However a guess need not involve guessing a value for
a variable, as is done in labelling. For example if a variable X has range
[0..100], instead of guessing a precise value for X, it may be useful to per
form a binary chop, first guessing that X > 50, and then, if the guess turns

ICL Systems Journal May 1997190

out to be bad, guessing that X < 50. A guess in the most general sense is the
posting of a new (non-redundant) constraint which narrows the search
space. However there is no guarantee that such a guess does not rule out
solutions to the problem, therefore the system must also explore the re
mainder of the search space on backtracking. Typically this is done by im
posing the negation of the constraint. However the negation of an inequal
ity > is a strict inequality <, which can't be handled by linear programming.
However in case X is an integer variable, and N an integer, the negation of
X >N is X <N-l which can be handled.

5.1.4 MIP Search
Finite domain propagation only narrows domains, and does not guarantee
to detect all inconsistencies. Thus there is no guarantee that a partial label
ling (which assigns consistent values to some of the variables) can always
be extended to a complete consistent labelling. However the linear con
straint solver available through eplex does indeed guarantee to detect all
inconsistencies between the linear constraints. On the other hand a linear
solver does not take into account the constraint that certain variables can
only take integer values, thus it can return proposed solutions in which
non-integer values are proposed for integer variables. The linear solver
can efficiently find an optimal solution to the problem in which integrality
constraints on the variables are ignored. Such an optimum is termed an
optimum of the "continuous relaxation" of the problem, or just the "re
laxed optimum" for short.

This suggests a different search mechanism, in which a new constraint
is added to exclude the non-integer value in the relaxed optimum returned
by the linear constraint solver. If the value for integer variable X was 0.5 in
the relaxed optimum, for example, a new constraint X > 1 might be added.
Since this excludes other feasible solutions such as X=0, this new constraint
is only a guess, and if it turns out to be a bad guess then the alternative
constraint X < 0 is posted instead.

This is the search method used in MIP when optimize is called in the
eplex library.

5.1.5 Search Heuristics based on Hybrid Solvers
MIP search can be duplicated in ECL'PS·’ by passing the linear constraints
to CPLEX and using the proposed solutions to decide which new constraint
to impose (i.e. guess) next. Whilst there is little point in precisely duplicat
ing the MIP search control with ECL'PS', it allows the ECL'PS'' programmer
to define new search techniques using information from both the fd library
and from eplex. For example the choice of which variable to guess a con
straint on next can be guided by the size of the finite domain, as recorded in
the finite domain library, and then the choice of what value to label it to can

ICL System s Journal May 1997 191

be guided by its value in the relaxed optimum returned from eplex.
This search technique is supported by the ECL'PS1' library fdplex, and is

illustrated below. The fdplex version of indomain selects the value closest to
the value at the relaxed optimum returned by eplex.

: - l i b (f d p l e x) .

m y l a b e l i n g ([]) .
m y l a b e l i n g (V a r s) : -

d e l e t e f f (V a r , V a r s , R e s t) ,
i n d o m a i n (V a r) ,
m y l a b e l i n g (R e s t) .

s o l v e (X , Y , Z , W) : -
[X , Y] : : 1 . . 5 ,

[Z , W] : : 1 . . 1 0 0 ,
10*Z+7*W +4*X+Y #= 4 9 ,
C o s t #= Z -2 *W + X -2* Y ,
m i n i m i z e (m y l a b e l i n g ([X , Y , Z , W]) , C o s t) .

Indeed it is instructive to watch the search taking place using the ECL'PSf
tracing facilities, so we shall load the above program into a file called
fdplexsearch.pl. Now we shall run it as shown as follows:

[e c l i p s e 1] : [f d p l e x s e a r c h] .
* f d l o a d e d
* r a n g e l o a d e d
* e p l e x l o a d e d
* f d p l e x l o a d e d
* y e s .

[e c l i p s e 2] : s p y (m y l a b e l i n g) , s p y (i n d o m a i n) .
* s p y p o i n t a d d e d t o m y l a b e l i n g / 1 .
* s p y p o i n t a d d e d t o i n d o m a i n / 1 .
* y e s .

[e c l i p s e 3] : s o l v e (X , Y, Z , W) .
* CALL m y l a b e l i n g ([X { e p l e x : 1 . 0 , r a n g e : 1 . . 5 , f d : [1 . . 5] } ,
* Y { e p l e x : 5 . 0 , r a n g e : 1 . . 5 , f d : [1 . . 5] > ,
* Z { e p l e x : 1 . 2 , r a n g e : 1 . . 3 , f d : [1 . . 3] > .
* H { e p l e x : 4 . 0 , r a n g e : 1 . . 4 , f d : [1 . . 4] }])

(d b g) ? - l e a p
* CALL i n d o m a i n (Z { e p l e x : 1 . 2 , r a n g e : 1 . . 3 , f d : [1 . . 3] })

(d b g) ? - l e a p
EX IT i n d o m a i n (l) (d b g) ? - l e a p

* CALL m y l a b e l i n g ([Y { e p l e x : 5 . 0 , r a n g e : 1 . . 5 , f d : [1 . . 5] } ,
* X { e p l e x : 2 . 0 , r a n g e : 1 . . 5 , f d : [2 . . 5] > ,
* W (e p l e x : 3 . 7 , r a n g e : 1 . . 4 , f d : [2 . . 4] }])

(d b g) ? - l e a p
* CALL i n d o m a i n (W { e p l e x : 3 . 7 , r a n g e : 1 . . 4 , f d : [2 . . 4] })

(d b g) ? - l e a p

192 ICL Systems Journal May 1997

* E X IT i n d o m a i n (4) (d b g) ? - l e a p
* CALL m y l a b e l i n g ([3 , 2]) (d b g) ? - n o d e b u g
* F o u n d a s o l u t i o n w i t h c o s t - 1 1
* X = 2
* Y = 3
* Z = 1
* W = 4
* y e s .

In query 1 the fdplex is loaded, and it automatically loads the other
libraries which are needed. Query 2 sets spypoints on two predicates. Now
each time either of these predicates are called, and when they exit, the de
bugger stops and allows the programmer to study the state of the program
execution. Query 3 calls the program defined in the search code above.
Before labelling starts the domains of the variables have already been re
duced by finite domain propagation. The reduced domains are automati
cally communicated to the range library, and passed into the linear solver.
The linear solver (CPLEX) has already been invoked by eplex and has re
turned the values of the variables X,Y,Z,W at the relaxed optimum.

Now deleteff selects the variable with the smallest domain, which is Z.
The fdplex indomain predicate labels Z to the integer value nearest to its
value at the relaxed optimum. This wakes the fd constraint handler which
tightens the domain of X, and it wakes the linear solver which returns a
new relaxed optimum with new suggested values for the other variables.

This time the variable with the smallest domain is W, and this is the
one selected for instantiation. Once this has been instantiated to the integer
value closest to its suggested value, fd propagation immediately instanti
ates the remaining values.

At the next spy point the user enters n (for no debug) and tracing is
switched off. The optimal solution is indeed the one found first, which
testifies to the usefulness of the combined heuristic used in the search.

5.1.6 Incomplete Constructive Search
For real industrial applications, the search space is usually too large for
complete search to be possible. The branch and bound search yields better
solutions with longer and longer delays until, in many cases, it fails to yield
any new solutions but continues searching fruitlessly.

In cases where complete search is impractical, the heuristics guiding
the search become very important. If bad heuristics are chosen the search
may methodically explore some unpromising comer of the search space
yielding very poor solutions which fail to drive the branch and bound search
into more fruitful areas. Good heuristics depend on good constraint han
dling: the information returned from the constraint handlers is crucial in
enabling the heuristics to focus search on promising regions. Moreover
once some good choices have been made, propagation can achieve even
ICL System s Journal May 1997 193

better results supporting even better heuristics for future choices. This posi
tive feedback produces a virtuous spiral.

Received wisdom suggests that local search techniques, based on solu
tion repair, achieve faster convergence on good solutions than constructive
search. However on several industrial applications our experience has
shown the contrary. Good heuristics, tailored to the application at hand,
have proved more effective in yielding high quality solutions than tech
niques based on solution repair.

5.1.7 Intelligent Backtracking and n o g o o d Learning
ECL'PS1’ offers facilities for programmers to define specific constructive
search algorithms. Intelligent backtracking has been implemented in
ECL'PS'’. It is not offered as a library, however, because in practice any
reduction in the amount of search due to intelligent backtracking is vitiated
by the cost of accessing and updating the necessary data structures.

The information about which constraints are involved, when a failure
occurs during search, is useful for recording combinations of variable val
ues which are mutually inconsistent. Such conflict sets can be used to im
pose extra constraints called nogoods which are learned during search.

nogood learning has also been implemented in ECL'PS'’ and is proving
useful on some benchmark examples, but as yet no library supporting
nogoods is available. A paper describing this work [Richards & Richards,
1996] is available from the IC-Parc home page (whose URL is given in Sec
tion 6 below).

5.2 Solution Repair
At the end of the previous section we suggested that even for incomplete
search, constructive search with good heuristics can outperform solution
repair. However there are many important examples, such as job-shop
scheduling and travelling salesman problems, where repair performs bet
ter than constructive search. Moreover repair is very important in han
dling dynamic problems, which change after an initial solution has been
found. The problem may be changed because the user is unsatisfied with
the solution for reasons which are not captured in the implementation, and
adds new constraints to exclude this solution. Otherwise the change may
be due to external circumstances such as unplanned delays, rush orders,
cancellations, and so on.

ECL'PS1' uses the concept of the tentative value to support solution re
pair. This is the same concept that is used to return proposed values for
variables from the linear solver, as discussed in the preceding section. In
the case of repair, however, the tentative value comes not from a constraint
handler, but from the original solution to the original problem.

When the problem changes, some of the tentative failures may no longer

194 ICL Systems Journal May 1997

satisfy some of the new constraints. Indeed the simplest change is to change
the value of a variable, which is to impose a new constraint constraining
that variable to take a new value different from its tentative value. In this
case the tentative value violates the new constraint. In case there are no
violations, of course, the tentative values comprise a feasible solution to the
new problem and there is no need to repair the solution at all.

The purpose of the ECLPS' repair library is to support the process of
detecting a variable whose tentative value is in conflict with a constraint,
and in detecting further violations that result from choosing a value for a
variable that differs from its tentative value.

5.2.1 “Constructive” Repair
There are several very different repair algorithms that arise from different
choices of how to change the value of a variable from its tentative value.
The algorithm most similar to constructive search simply instantiates the
variable to the chosen new value. In this case the tentative values do no
more than support a specific heuristic within a constructive search algo
rithm. Notice that the heuristic can do more than simply choose the tenta
tive value as the first guess for each variable during labelling. It can also
take into account for each value for a variable the number of other tentative
values with which it conflicts according to the constraints. Thus when a
variable is labelled to a new value, the value is chosen so as to minimise
disruption to the original solution.

The ECLlPSf repair library defines primitives for setting a tentative value
for a variable (tmt_set) and for looking it up (tent_get). It also supports a
special annotation which changes the behaviour of a constraint from propa
gation to simply checking against the tentative values of their uninstantiated
variables. The annotation is written Constraint r, where Constraint can be
any built-in or user-defined constraint. Whenever the check fails, the con
straint is recorded as a conflict constraint, and full propagation on the con
straint is switched on. The set of conflict constraints can be accessed via the
predicate conflictconstraints. This can be used in the search procedure to
decide which variable to label next.

Abuilt-in search predicate called repair is provided which selects a vari
able whose tentative value violates a repair constraint, labels it and suc
ceeds when all the remaining variables have consistent tentative values.

We illustrate this repair algorithm (with an example from the IC-Parc
ECL'PSf library manual [Schimpf et al., 1997]) below:

s o l v e (Χ , Υ , Ζ) : -
[X , Y , Z] : : 1 . . 3 , % t h e p r o b l e m v a r i a b l e s

Y # # X r , % s t a t e t h e c o n s t r a i n t s
Y # # Z r ,
Y # = 3 r .

ICL System s Journal May 1997 195

[Χ , Υ , Ζ] t e n t _ s e t [1 , 2 / 3] , % s e t e x i s t i n g s o l u t i o n
r e p a i r , % i n v o k e r e p a i r l a b e l i n g
[Χ , Υ , Ζ] t e n t _ g e t [N ew X ,N e w Y ,N e w Z] . % g e t r e p a i r e d s o l u
t i o n

The solutions found are [1,3,1] and [1,3,2], which means that only Z has
been repaired. Initially only the constraint Y #= 3 is inconsistent with the
solution so variable Y is repaired to take the value 3. This now affects the
constraint Y ## Z , and Z must be repaired to either 1 or 2.

The constraint Y ## X is not affected by the update. In particular, X
keeps the value of the existing solution, and is not even being labelled by
repair IQ.

Constructive repair is also known as informed backtracking and has been
used successfully on a variety of benchmarks [Minton et al., 1992].

5.2.2 Weak Commitment
Instead of instantiating a variable in order to repair it, an alternative method
is simply to change its tentative value. This approach requires no back
tracking, since every conflict can be fixed by just changing tentative values.
The disadvantage is that cycles can easily occur in which two variables
repeatedly switch their tentative values.

Avery successful algorithm based on repairing tentative values is called
Weak Commitment [Yokoo, 1994]. On starting all the variables have tenta
tive values. Variables in conflict are repaired - by instantiating them - until
either there are no more conflicts and the algorithm terminates, or the re
maining conflicts cannot be repaired. The latter situation occurs when the
next variable in conflict cannot be instantiated to any value that is consist
ent with the variables instantiated so far.

When such a dead-end is encountered, the weak commitment algo
rithm simply uninstantiates all the variables, setting their tentative values
to the values they had when they were instantiated. Then the algorithm
restarts, fixing conflicts as before.

5.2.3 Local Improvement
Constructive repair and weak commitment are two algorithms designed to
find feasible solutions to a problem. In case the problem additionally re
quires some cost to be minimised, the repair must be adapted to return
better and better solutions.

For unconstrained problems, local improvement can be achieved by
just changing the value of some variable, having chosen the variable and
value such that the cost of the new solution is better than the cost of the
previous solution. This idea underlies the various hill-climbing algorithms
as well as stochastic techniques such as Simulated Annealing and Tabu
search.

196 ICL Systems Journal May 1997

For problems with constraints, changing the value of a variable will
not necessarily yield a feasible solution. The EC U PS' repair library can be
used, however, to find a feasible solution which incorporates the change.

A simulated annealing program has been written in ECL'PS'’ which
ensures that moves respect the problem constraints. The program has been
compared with a pure simulated annealing approach which simply associ
ates a cost with violated constraints and otherwise treats the problem as
unconstrained. Experiments showed that the "constrained simulated an
nealing" program outperformed the pure one.

For an industrial application the repair library has been used together
with the eplex linear constraint library. In the algorithm used for this appli
cation, the relaxed optimum is checked against the repair constraints, and
at each step a violated constraint is strengthened in such a way that the
next solution returned from eplex must satisfy it. The algorithm outper
forms standard MIP search because the problem is a dynamic constraint
problem: there is an original solution and the requirement is to modify that
solution to satisfy some new constraints.

Details of these algorithms are beyond the scope of this article, but hope
fully this brief survey has offered a glimpse of the power of repair-based
search in combination with the different solvers of ECL'PSf.

6. The ECL'PS9 System
ECL'PS' runs under the UNIX operating system (specifically SunOS 4 on
Sun-4 hardware, Solaris on Sparc machines and Linux on PC's), and will be
available under Windows-NT (version 4.0) by the end of 1997.

ECL'PS' is can be embedded in c and c” programs. It is available in the
form of a linkable library, and a number of facilities are available to pass
data between the different environments, to make the integration as close
as possible. Naturally facilities are also provided to allow ECL'PS'’ to in
voke c and c**.

A tightly integrated graphical system is very useful for program devel
opment, and ECL'PS'' offers such an integration to the Tcl/Tk toolkit, which
is public domain software available under Unix and Windows. Typically
ECL'PS'’ is invoked from Tel which is driven directly by user interactions.
An example graphical environment for ECL'PS' developers is the graphical
constraint environment Grace, available as an ECL'PS'' library. Grace is im
plemented using ECL'PS'’ and Tel.

The ECL'PS' system includes a great deal of documentation which can
be printed, but is best to use on-line as a set of web pages. The home page
for ECL'PS' at IC-PARC is

h t t p : / / w w w - i c p a r c . d o c . i c . a c . u k / e c l i p s e

ICL System s Journal May 1997 197

http://www-icparc.doc.ic.ac.uk/eclipse

This page offers a dozen links to other pages giving the following in
formation:

• If you are interested in ECL'PS11:
- Overview of ECL'PS'’ features
- How to obtain the system
- W hat is ECL'TS's current status?
- Application descriptions
- Related papers and technical reports
- Other CLP-related sites

• If you are already using ECL'PS··:
- Latest release notes
- M anuals and other docum entation
- Programs, libraries and tools
- The User Group Mailing List
- How to report a bug
- Download the latest version

The m anuals cover the non-constraint facilities of ECL'TS*1 [AGGOUN
et alv 1997] as well as the facilities supporting constraints [Brisset et al.,
1997], [Schimpf et al., 1997]. There is additional inform ation covering the
graphical user interface library, and how to em bed code in C and C " .

Background references can be found in the list of publications reach
able from the IC-Parc hom e page at:

h t t p : / / w w w - i c p a r c . d o c . i c . a c . u k /

7. Conclusions
The ECL'PSf platform has been under development for over ten years.
During that time constraint programming has established itself not only as
an important research area, but also in live industrial applications. The
market for constraint technology is growing dramatically, to the point that
the major vendor of MIP technology (CPLEX) has been recently taken over
by a constraint technology vendor (ILOG).

Over the last five years ECL'PS1’ has moved on from its early roots in
logic programming and constraint propagation, to a focus on hybrid algo
rithms. A tight integration between MIP and CLP has been developed and
hybrid algorithms based on this combination have proved their efficiency
in industrial applications. However hybrid search algorithms, in particu
lar utilising solution repair, have also been a focus of research and develop
ment.

Based on growing experience with hybrid algorithms, we have been
able to separate the features of the different algorithms both from each other,
and from the underlying problem model. Consequently we have reached

ICL Systems Journal May 1997198

http://www-icparc.doc.ic.ac.uk/

the point where ECL'PS1, can be used to express a clear, precise and neutral
conceptual model of an application, and this model can then be extended
and annotated at the implementation stage. The result of implementation
is a design model which implements fine-grained hybrid algorithms tai
lored to the application at hand.

This work has been based on experience gained from a variety of in
dustrial applications. IC-Parc has developed applications for several of its
industrial partners, and each application has contributed to the final archi
tecture of the ECL'PS' platform. Ongoing applications, with partners such
as British Airways, Wincanton Transport and Bouygues, continually give
rise to new hybrid techniques, and these results will feed back into ECL'PS',
as the algorithms are encapsulated and added as new libraries.

Nevertheless the real benefit of ECL'PS' comes not from the algorithms
that are already encapsulated as libraries, but from the ease with which
new hybrid algorithms can be developed and validated, and delivered into
the industrial computing environment.

Bibliography
AGGOUN, A. et.al., "ECL'PS" user manual," IC-Parc, 1997.

BRISSET, P. et.al., "ECL'PS" Extensions manual," IC-Parc, 1997.

CPLEX. Using the cplex callable library and cplex mixed integer library.
Technical Report Version 2.1, CPLEX Optimisation Inc., 1993.

MINTON, S„ JOHNSTON, M. D., PHILIPS, A. B. and LAIRD, P., "Minimiz
ing conflicts: a heuristic repair method for constraint satisfaction and sched
uling problems," Artificial Intelligence, 58,1992.

RICHARDS, T. and RICHARDS, B., "Nogood learning for constraint satis
faction," (Technical Report, IC-Parc, 1996), Proceedings of CP 96 Workshop
on Constraint Programming Applications, 1996

RODOSEK, R., WALLACE, M. and HAJIAN, M., "A new approach to inte
grating mixed integer programming with constraint logic programming,"
(Technical Report, IC-Parc, 1997), Annals of Operations Research (to be
published).

SCHIMPF,]., NOVELLO, S. and EL SAKKOUT, H., "IC-Parc ECL'PS" Li
brary Manual," IC-Parc, 1997.

WALLACE, M.. "Constraint programming," ICL Systems Journal, Vol 12,
1,1997.

YOKOO, M., "Weak-commitment search for solving constraint satisfaction
problems," Proceedings of 12th National Conference on Artificial Intelligence,
pp 313-318,1994.
ICL Systems Journal May 1997 199

ECL'PS' is jointly owned by ICL and IC-Parc and can be obtained by ftp
from IC-Parc by emailing e c l i p s e - r e q u e s t Q d o c . i c . a c . u k . Full docu
m entation is also obtainable from the web site at: h t t p : / / w w w -
i c p a r c . d o c . i c . a c . u k / e c l i p s e

Biographies
Mark Wallace

Mark Wallace is currently seconded from ICL to IC-Parc, Imperial College,
where he is Deputy Director. Dr. Wallace has been with ICL for some 15
years, during which he completed a PhD in natural language processing at
Southampton University, and then spent a decade at the European Compu
ter Industry Research Centre (ECRC), first working on knowledge bases
and, for the last three years, leading ECRC's constraint reasoning project.
At IC-Parc he manages several research and application development
projects, as well as participating in the development of ECL'PS·' II.

Stefano Novello

Stefano Novello has been a Research Fellow at IC-Parc, working on ECL'PS''
II, since 1996. He completed an MSc at Imperial college in 1988 and then
went to ECRC, eventually taking on the management of the KCM project
with responsibility for developing and supporting Europe's first and fast
est Prolog machine. From 1992 to 1996 he worked at Encore computers,
before joining IC-Parc. At IC-Parc, Stefano has made ECL'PSf II into a 'C'
library and is developing a Windows version of the system.

Joachim Schimpf

Joachim Schimpf is one of the original designers of ECL'PS'. He obtained
his Dipl. Inform, from the Technical University of Munich in 1986 and then
joined Siemens. He moved to ECRC in 1988, where he became co-designer
of Sepia and ECL'PS·', and developed the parallel implementation of ECL'PS'.
He moved to IC-Parc in 1995, as a Principal Research Fellow. Since then
Joachim has designed ECL'PS' II and developed the mathematical program
ming functionality of the system.

200 ICL Systems Journal May 1997

http://www-icparc.doc.ic.ac.uk/eclipse
http://www-icparc.doc.ic.ac.uk/eclipse

Previous Issues
Vol.ll Iss.2 - Tanuarv 1997
The Year 2000 Problem
Working with Users to Generate Organisational Requirements:
The ORDIT Methodology
Network computing with remote Windows
Neural Networks
Short-term currency forecasting using neural networks
Helping Retailers Generate Customer Relationships
The Systems Engineering Excellence Model
Cochise: a World Wide Web interface to TPMS applications

Vol.n lss.1 - May 1996

The Internet and how it is used
An Architecture for a Business Data Warehouse
Virtual Reality as an Aid to Data Visualization
Re-engineering the Hardware of CAFS
An Innovative Solution for the Interconnection of Future Component Packaging
Development of Practical Verification Tools
Coupling ORACLE with ECL'PS·'
Integrating the Object Database System ODB-II with Object Request Brokers
SAMSON and the Management of SESAME

Vol.lO Iss.2 - November 1995

The Architecture of the ICL GOLDRUSH MegaSERVER
The Hardware Architecture of the ICL GOLDRUSH MegaSERVER
CAL in Higher Education - Potential and Pitfalls
The UK Technology Foresight Programme
Making the Internet Safe for Business
Developing Financial Services Kiosks
High Availability Manager
The Virgin Global Challenger
Design of the Format for EDI Messages Using Object-Oriented Techniques
New Aspects of Research on Displays

Vol.lO Iss.l - May 1995
Object databases and their role in multimedia information systems
The ICL Multimedia Desktop Programme
Multimedia Information used in Learning Organisations
The Software Paradigm
Single Sign-on Systems
Why is it difficult producing safety-critical software?
Experiences using the Ingres Search Accelerator for a Large Property Management
Database System
RAID
Improving Configuration Management for Complex Open Systems

ICL Systems Journal May 1997 201

Vol.9 Iss.2 - November 1994

Establishing Co-operation in Federated Systems
An ANSA Analysis of Open Dependable Distributed Computing
An Open Architecture for Real-Time Processing
Updating the Secure Office System
POSIX Security Framework
SQL Gateways for Client-Server Systems
Asynchronous transfer mode - ATM
The ICL search accelerator™, SCAFS™: functionality and benefits
Open Teleservice - A Framework for Sendee in the 90s
LEO, A personal memoire

Vol.9 Tss.l - May 1994

Client-sen'er architecture
How ICL Corporate Systems support Client-server: an Architectural Overview
Exploiting Client-sen’er Computing to meet the needs of Retail Banking Organisations
A practical example of Client-server Integration
From a Frog to a Handsome Prince: Enhancing existing character based mainframe applications
Legacy systems in client-server networks: Agateway employing scripted terminal emulation
The Management of Client-server Systems
Dialogue Manager: Integrating disparate services in client-server environments
Distributed Printing in a Heterogeneous World
Systems Management: an example of a successful Client-server Architecture
PARIS - ICL's Problem & Resolution Information System

Vol.8 Iss.4 - November 1993

Toward the 4th Generation Office: A Study in Office Systems Evolution
IPCS - Integrated Product Configuring Service
CGS - The ICL Configurer Graphics Service
Location Transparency in Heterogeneous Networks
Future Office Interconnection Architectures for LAN and Wide Area Access
Parallel Lisp and the Text Translation System METAL on the European Declarative System
Detecting Latent Sector Faults in SCSI Disks

Vol.8 Iss.3- May 1993

An Introduction to O P E N f r a m e w o r k

The Evolution of the O P E N fr a n ie z u o r k Systems Architecture
Creating Potential for Change
O P E N f m m e i u o r k in Action at DEVETIR
Strategic Information Systems planning: A Process to Integrate IT and Business Systems
Describing Systems in the O P E N f r a m e z v o r k Integration Knowledge Base
Multimedia and Standards for Open Information
VME-X: Making VME Open
A New Approach to Cryptographic Facility Design
CHISLE: An Engineer's Tool for Hardware System Design
Distributed Detection of Deadlock

202 ICL System s Journal May 1997

Vol.8 Iss.2 - November 1992
Open Networks - The Key to Global Success
Infrastructure of Corporate Networks in the Nineties
Broadband Networking
FDDI - The High Speed Network of the Nineties
The Evolution of Wireless Networks
Communications Technology for the Retail Environment
RIBA - A Support Environment for Distributed Processing
Information Technology: Support for Law Enforcement Investigations and Intelligence
Standard for Keyboard Layouts - The Origins and Scope of ISO/TEC 9995
ESS - A Solid State Disc System for ICL System for ICL Series 39 Mainframes

Vol.8 Iss.l - May 1992

Defining CASE Requirements
ICL's ICASE Products
The Engineering Database
CASE Data Integration: The Emerging International Standards
Building Maintainable Knowledge Based Systems
The Architecture of an Open Dictionary
The Use of a Persistent Language in the Implementation of a Process Support System
ALF: A Third Generation Environment for Systems Engineering
MASP/DL: The ALF Language for Process Modelling
The ALF User Interface Management System
A New Notation for Dataflow Specifications

Vol.7 Iss.4 - November 1991

Systems Management: A Challenge for the Nineties - Why now?
The Evolution within ICL of an Architecture for Systems Management
Manageability of a Distributed System
Distribution Management - ICL's Open Approach
Experience of Managing Data Flows in Distributed Computing in Retail Businesses
Generation of Configurations - a Collaborative Venture
Operations Management
OSMC: The Operations Control Manager
The Network Management Domain
An Overview of the Raleigh Object-Oriented Database System
Making a Secure Office System
Architectures of Knowledge Base Machines
The Origins of PERICLES - A common on-line Interface

Vol.7 Iss.3 - May 1991

Introduction to the technical characteristics of ISDN
ISDN in France: Numeris and its market
The Telecoms Scene in Spain
Future Applications of ISDN to Information Technology
A Geographical Information System for Managing the Assets of a Water Company
Using Constraint Logic Programming Techniques in Container Port Planning
Locator - An Application of Knowledge Engineering to ICL's Customer Service

ICL System s Journal May 1997 203

Designing theHCI for a Graphical Knowledge Tree Editor: A Case Study in User-Centred Design
X/OPEN - From Strength to Strength
Architectures of Database Machines
Computer Simulation for the Efficient Development of Silicon Technologies
The use of Vvhrd and Mellor Structured Methodology for the Design of a Complex Real Time System

Vol.7 Iss.2 - November 1990

The SX Node Architecture
SX Design Process
Physical Design Concepts of the SX Mainframe
The Development of Marketing to Design: The Incorporation of Human Factors into Specifi
cation and Design
Advances in the Processing and Management of Multimedia Information
An Overview of Multiworks
RICHE-Reseau d'Information et de Communication Hospitalier Europeen (Healthcare Infor
mation and Communication Network for Europe)
E.S.F - A European Programme for Evolutionary Introduction of Software Factories
A Spreadsheet with Visible Logic
Intelligent Help - The Results of the EUROHELP Project
How to use Colour in Displays - Coding, Cognition and Comprehension
Eye Movements for A Bidirectional Human Interface
Government IT Infrastructure for the Nineties (GIN): An Introduction to the Programme

Vol.7 Iss.l - May 1990

Architecture of the DRS6000 (UNICORN) Hardware
DRS6000 (UNICORN) software: an overview
Electromechanical Design of DRS6000 (UNICORN)
The User-System Interface - a challenge for application users and application developers?
The emergence of the separable user interface
SMIS - A Knowledge-Based Interface to Marketing Data
A Conversational Interface to a Constraint-Satisfaction System
SODA: The ICL interface for ODA document access
Human - Human co-operation and the design of co-operative mechanisms
Regulatory Requirements for Security - User Access Control
Standards for secure interfaces to distributed applications
How to Use Colour in Displays - 1. Physiology Physics & Perception

Vol.6 Iss.4 - November 1989

Time to Market in new product development
Time to Market in manufacturing
The VME High Security Option
Security aspects of the fundamental association model
An introduction to public key systems and digital signatures
Security classes and access rights in a distributed system
Building a marketeer's workbench: an expert system applied to the marketing planning process
The Knowledge Crunching Machine at ECRC: a joint R&D project of a high speed Prolog system
Aspects of protection on the Flagship machine: binding, context and environment
ICL Company Research and Development Part 3: The New Range and other developments

204 ICL Systems Journal May 1997

Tools, Methods and Theories: a personal view of progress towards Systems Engineering
Systems Integration
An architectural framework for systems
Twenty Years with Support Environments
An Introduction to the IPSE 2.5 Project
The case for CASE
The UK Inland Revenue operational systems
La solution ICL chez Carrefour a Orleans
A Formally-Specified In-Store System for the Retail Sector towards a Geographic Information
System
Ingres Physical Design Adviser: a prototype system for advising on the physical design of an
Ingres relational database
KANT - a Knowledge Analysis Tool
Pure Logic Language
The 'Design to Product' Alvey Demonstrator

Vol.6 Iss.2 - November 1988
Flexible Manufacturing at ICL's Ashton plant
Knowledge based systems in computer based manufacturing
Open systems architecture for CIM
MAES - An expert system applied to the planning of material supply in computer
manufacturing
JIT and IT
Computer Aided Process Planning (CAPP): Experience at Dowty Fuel Systems
Use of integrated electronic mail within databases to control processes
Value engineering - a tool for product cost reduction
ASP: Artwork specifications in Prolog
Elastomer technology for probing high-density printed circuit boards
The effects of back-driving surface mounted digital integrated circuits
Reliability of surface-mounted component soldered joints produced by vapour phase,
infrared soldering techniques
Materials evaluation
On the human side of technology

Vol.6 Iss.T -M ay 1988

ICL Series 39 support process
The ICL systems support centre organisation
ICL Services Product Centre
Knowledge engineering as an aid to the system service desks
Logic analysers for system problem solving
Repair - past and future
OSI migration
A Network to Support Application Software Development
Universal Communications Cabling: A Building Utility
Collecting and generalising knowledge descriptions from task analysis data
The architecture of an automated Quality Management System
ICL Company Research and Development Part 2: Mergers and Mainframes, 1959-1968

Vol.6 Iss.3 - May 1989

ICL System s Journal May 1997 205

Vol.5 lss.4 - November 1987

Open Distributed Processing
The Advanced Network Systems Architecture project
Community management for the ICL networked production line
The X/OPEN Group and the Common Applications Environment
Security in distributed information systems: needs, problems and solutions
Cryptographic file storage
Standards and office information
Introducing ODA
The Technical and Office Protocols - TOP
X400 - international information distribution
A general purpose natural language interface: design and application as a database front-end
DAP-Ada: Ada facilities for SIMD architectures
Quick language implementation

Vol.5 Iss.3 - May 1987

What is Fifth Generation? - the scope of the ICL programme
The Alvey DHSS Large Demonstrator Project
PARAMEDICL: a computer-aided medical diagnosis system for parallel architectures
S39XC - a configurer for Series 39 mainframe systems
The application of knowledge-based systems to computer capacity management
On knowledge bases at ECRC
Logic languages and relational databases: the design and implementation of Educe
The semantic aspects of MMI
Language overview
PISA - a Persistent Information Space Architecture
Software development using functional programming languages
Dactl: a computational model and compiler target language based on graph reduction
Designing system software for parallel declarative systems
Flagship computational models and machine architecture
Flagship hardware and implementation
GRIP: a parallel graph-reduction machine

Vol.5 Iss.2 - November 1986

The Management into the 1990s Research Programme
Managing strategic ideas: the role of the computer
A study of interactive computing at top management levels
A management support environment
Managing change and gaining corporate commitment
An approach to information technology planning
Preparing and organising for IPSE
Global Language for Distributed Data Integration
The design of distributed secure logical machines
Mathematical logic in the large practical world
The ICL DRS300 management graphics system
Performance of OSLAN local area network
Experience with programming parallel signal-processing algorithms in Fortran 8X

206 ICL Systems Journal May 1997

ICL company research and development, 1904-1959
Innovation in computational architecture and design
REMIT: a natural language paraphraser for relational query expressions
Natural language database enquiry
The m e to o method of software design
Formal specification - a simple example
The effects of inspections on software quality and productivity
Recent developments in image data compression for digital facsimile
Message structure as a determinant of message processing system structure

Vol.4 Iss.4 - November 1985
History of the ICL content-addressable file store, (C AFS)
History of the CAFS relational software
The CAFS system today and tomorrow
Development of the CAFS-ISP controller product for Series 29 and 39 systems
CAFS-ISP: issues for the applications designer
Using secondary indexes for large CAFS databases
Creating an end-user CAFS service
Textmaster - a document retrieval system using CAFS-ISP
CAFS and text: the view from academia
Secrets of the sky: the IRAS data at Queen Mary College
CAFS file-correlation unit

Vol.4 Iss.3 - May 1985
Overview of the ICL Series 39 Level 30 system
VME nodal architecture: a model for the realisation of a distributed system concept
Processing node of the ICL Series 39 Level 30 system
Input/output controller and local area networks of the ICL Series 39 Level 30 system
The store of the ICL Series 39 Level 30 system
The high-speed peripheral controller for the Series 39 system
Development of 8000-gate CMOS gate arrays for the ICL Level 30 system
Development route for the C8K 8000-gate CMOS array
Design automation tools used in the development of the ICL Series 39 Level 30 system
Design and manufacture of the cabinet for the ICL Series 39 Level 30 system
Manufacturing the level 30 system I Mercury: an advanced production line
Manufacturing the Level 30 system II Merlin: an advanced printed circuit board manufac
turing system
Manufacturing the Level 30 system III The test system

Vol.4 Iss.2 - November 1984

Modelling a multi-processor designed for telecommunication systems control
Tracking of LSI chips and printed circuit boards using the ICL Distributed Array Processor
Sorting on DAP
User functions for the generation and distribution of encipherment keys
Analysis of software failure data(l): adaptation of the Littlewood stochastic reliability
growth model for coarse data
Towards a formal specification of the ICL Data Dictionary

Vol.5 Iss.l - May 1986

ICL System s Journal May 1997 207

The ICL University Research Council
The Atlas 10 computer
Towards better specifications
Solution of the global element equations on the ICL DAP
Quality model of system design and integration
Software cost models
Program history records: a system of software data collection and analysis

Vol.3 Iss.4 - November 1983
Expert system in heavy industry: an application of ICLX in a British Steel Corporation works
Dragon: the development of an expert sizing system
The logic language PROLOG-M in database technology and intelligent knowledge-based systems
QPROC: a natural language database enquiry system implemented in PROLOG
Modelling software support

Vol.3 Iss.3 - May 1983

IPA networking architecture
IPA data interchange and networking facilities
The IPA telecommunications function
IPA community management
MACROLAN: a high-performance network
Specification in CSP language of the ECMA-72 Class 4 transport protocol
Evolution of switched telecommunication networks
DAP in action

Vol.3 Iss.2 - November 1982

The advance of Information Technology
Computing for the needs of development in the smallholder sector
The PERQ workstation and the distributed computing environment
Some techniques for handling encipherment keys
The use of COBOL for scientific data processing
Recognition of hand-written characters using the DAP
Hardware design faults: a classification and some measurements

Vol.3 Iss.l - May 1982
Software of the ICL System 25
Security in a large general-purpose operating system: ICL's approach in VME/2900
Systems evolution dynamics of VME/B
Software aspects of the Exeter Community Health Services Computer Project
Associative data management system
Evaluating manufacturing testing strategies

Vol.2 Iss.4 - November 1981

Architecture of the ICL System 25
Designing for the X25 telecommunications standard
Viewdata and the ICL Bulletin System

Vol.4 Iss.l - May 1984

208 ICL Systems Journal May 1997

Development philosophy and fundamental processing concepts of the ICL Rapid Applica
tion Development System RADS
A moving-mesh plasma equilibrium problem on the ICL Distributed Array Processor

Vol.2Iss.3-Mav 1981
A dynamic database for econometric modelling
Personnel on CAFS: a case study
Giving the computer a voice
Data integrity and the implications for back-up
Applications of the ICL Distributed Array Processor to econometric computations
A high-level logic design system
Measures of programming complexity

Vol.2 Iss.2 - November 1980
The ICL Information Processing Architecture, IPA
VME/B: a model for the realisation of a total system concept
Birds, Bs and CRTs
Solution of elliptic partial differential equations on the ICL Distributed Array Processor
Data routing and transpositions in processor arrays
A Bayesian approach to test modelling

Vol.2 Iss.l - May 1980
Security and privacy of data held in computers
CADES - software engineering in practice
ME29 Initial Program Load: an exercise in defensive programming
Project Little - an experimental ultra-reliable system
Flow of instructions through a pipelined processor
Towards an 'expert' diagnostic system
Using Open System Interconnection standards

Vol.l Iss.3 - November 1979
Meteosat 1: Europe's first meteorological satellite
An analysis of checkpointing
Statistical and related systems
Structured programming techniques in interrupt-driven routines
The content addressable file store - CAFS
Computing in the humanities
The data dictionary system in analysis and design

Vol.l Iss.2-M av 1979
Computers in support of agriculture in developing countries
Software and algorithms for the Distributed Array Processor
Hardware monitoring on the 2900 range
Network models of system performance
Advanced technology in printing: the laser printer
The new frontier: three essays on job control

ICL System s Journal May 1997 209

The origins of the 2900 series
Sizing computer systems and workloads
Wind of Change
Standards for open-network operation
Distributed computing in business data processing
A general model for integrity control

Vol.l Iss.l - November 1978

To order back issues

Contact

Sheila Cox
Research and Advanced Technology,

ICL, Lovelace Road, Bracknell, Berks., RG12 8SN
Telephone +44 (0)1344 472900

Fax +44 (0)1344 472700
Email: S.D.Cox@bra0102.wins.icl.co.uk

or
The Editor, V.A.J. Mailer

Telephone +44 (0)1438 833514
Email: V.A.J.Maller@ste0418.wins.icl.co.uk

210 ICL System s Journal May 1997

mailto:S.D.Cox@bra0102.wins.icl.co.uk
mailto:V.A.J.Maller@ste0418.wins.icl.co.uk

ICL Systems Journal
Guidance for Authors

1. Content
The ICL Systems Journal has an international circulation. It publishes papers of a high stand
ard that are related to ICL's business and is aimed at the general technical community and in
particular at ICL's users, customers and staff. The Journal is intended for readers who have an
interest in computing and its applications in general but who may not be informed on the
topic covered by a particular paper. To be acceptable, papers on more specialised aspects of
design or application must include some suitable introductory material or reference.

The Journal will usually not reprint papers already published but this does not necessarily
exclude papers presented at conferences. It is not necessary for the material to be entirely new
or original. Papers will not reveal matter relating to unannounced products of any of the ICL
Group companies.

Letters to the Editor and book reviews may also be published.

2. Authors
Within the framework defined in paragraph 1, the Editor will be happy to consider a paper by
any author or group of authors, whether or not an employee of a company in the ICL Group.
All papers are judged on their merit, irrespective of origin.

3. Length
There is no fixed upper or lower limit, but a useful working range is 4,000-6,000 words; it may
be difficult to accommodate a long paper in a particular issue. Authors should always keep
brevity in mind but should not sacrifice necessary fullness of explanation.

4. Abstract
All papers should have an Abstract of approximately 200 words, suitable for the various ab
stracting journals to use without alteration.

5. Presentation
5.1 Printed (typed) copy
A typed copy of the manuscript, single sided on A4 paper with the pages numbered in se
quence, should be sent to the Editor. Particular care should be taken to ensure that math
ematical symbols and expressions, and any special characters such as Greek letters, are clear.
Any detailed mathematical treatment should be put in an Appendix so that only essential
results need be referred to in the text.

5.2 Electronic version
Authors are requested to submit either a magnetic disk version of their copy in addition to the
manuscript or an e-mail attached file or both. The format of the file should conform to the
standards of any of the widely used word processing packages or be a simple text file.

ICL System s Journal May 1997 211

5.3 Diagrams
Line diagrams will, if necessary, be redrawn and professionally lettered for publication, so it is
essential that they are clear. Axes of graphs should be labelled with the relevant variables and,
where this is desirable, marked off with their values. All diagrams should be numbered for
reference in the text and the text marked with the reference and an appropriate caption to
show where each should be placed. Authors should check that all diagrams are actually re
ferred to in the text and that copies of all diagrams referred to are supplied. If authors wish to
submit drawings in an electronic form, then they should be separated from the main text and
be in the form of EPS files. If an author wishes to use colour, then it is very helpful that a
professional drawing package be used, such as Adobe Illustrator.

5.4 Tables
As with diagrams, these should all have captions and reference numbers. If they are to be
provided in electronic form, then either a standard spreadsheet (Excel) should be used or the
data supplied as a file of comma/tab separatedvariables. A printed version should also be
supplied, showing all row and column headings, as well as the relevant units for all the quan
tities tabulated.

5.5 References
Authors are asked to use the Author/Date system, in which the author(s) and the date of the
publication are given in the text, and all the references are listed in alphabetical order of au
thor at the end. e.g. in the text: "...further details are given in [Henderson, 1986]" with the
corresponding entry in the reference list:

HENDERSON, P. Functional Programming Formal Specification and Rapid
Prototyping. IEEE Trans, on Software Engineering SE^U, 2, 241-250,1986.

Where there are more than two authors it is usual to give the text reference as "[X et a l ...]".
Authors should check that all text references are listed; references to works not quoted in the
text should be listed under a heading such as Bibliography or Further reading.

5.6 Style
A note is available from the Editor summarising the main points of style - punctuation, spell
ing, use of initials and acronyms etc. preferred for Journal papers.

6. Referees
The Editor may refer papers to independent referees for comment. If the referee recommends
revisions to the draft, the author will be asked to make those revisions. Referees are anony
mous. Minor editorial corrections, as for example to conform to the Journal's general style for
spelling or notation, will be made by the Editor.

7. Proofs, Offprints
Printed proofs are sent to authors for correction before publication. The Editor will, however,
always be prepared to send electronic versions to authors who have access to software com
patible with the production system used for the Journal—Microsoft Word, Microsoft Excel,
Adobe PageMaker, Adobe Illustrator and Adobe Photoshop.

8. Copyright
Copyright of papers published in the ICL Systems Journal rests with ICL unless specifically
agreed otherwise before publication. Publications may be reproduced with the Editor's per
mission, which will normally be granted, and with due acknowledgement.

212 ICL System s Journal May 1997

All rights reserved. No part of this publication may be reproduced (includ
ing by photocopying or storing electronically) without the written permis
sion of the copyright owner except in accordance with any applicable ex
ception under copyright law. Permission is, however, not required to copy
abstracts of papers or articles on condition that a full reference to the source
is shown.

© 1997 International Computers Limited, Registered Office, ICL House, 1 High Street, Putney,
London SW15 1SW. Registered in England 96056

ICL Systems Journal May 1997

ICL Research & Advanced Technology
Lovelace Road
Bracknell
Berkshire RG12 8SN

