
Volume 12 Issue 2 November 1997 Edition

Journal

ICL Systems Journal
Editor
Prof. V.A.J. Mailer
ICL Professor
Department of Computer Studies, Loughborough University,
Loughborough, Leicestershire, LE11 3TU.

Editorial Board
V.A.J. Mailer (Editor)
A.J. Boswell
P.J. Cropper
D.W. Davies FRS
G.E. Felton
PH. Forbes
J. Howlett
N. Kawato (Fujitsu)
M.H. Kay
F.F. Land

C. J. Mailer (Board Secretary)
M.R. Miller (BT Laboratories)
W. O'Riordan
J.V. Panter
D. F. Picken
E. C.P. Portman
A. Rowley
M.J. Rigg
B. C. Warboys (Univ. of Manchester)
P.G. Wharton

All correspondence and papers to be considered for publication should be
addressed to the Editor.

The views expressed in the papers are those of the authors and do not nec
essarily represent ICL policy.

Published twice a year by Research and Advanced Technology, ICL,
Bracknell.

1998 subscription rates (including postage & packing):
UK and Europe Rest of World

Annual subscription £72 $120
Single issues £43 $72

© 1997 International Computers Limited, Registered Office, ICL House, 1 High Street, Putney,
London SW15 1SW. Registered in England 96056

ISSN 1364-310X

ICL Systems Journal
Volume 12 Issue 2

Contents

Workflow—A Model for Integration 213
David Hollingsworth

SuperVISE—System Specification and Design Methodology 233
S. Hodgson and M.M.K. Hashmi

Process Modelling using the World Wide Web—ProcessWise™
Communicator 251

Peter Davies

Mobile Applications for Ubiquitous Environments 264
Jean Bacon and David Halls

Middleware Support for Mobile Multimedia Applications 289
John Bates, David Halls and Jean Bacon

INDEPOL Client—A 'facelift' for mature software 315
S. B. Southerden

Using the ECL<PSe Interval Domain Library in CAD 330
T. M. Yakhno, V.Z. Zilberfaine and E.S. Petrov

Conference on Teaching of Computer Science—A Personal Review 349
Michael H. Kay

Obituary—J.M.M. Pinkerton 358

Previous Issues 364

Guidance for Authors 374

ICL Systems Journal November 1997 i

Front cover: Workflow System components. See the paper, "Workflow—A Model for Inte
gration," in this issue.

ii ICL Systems Journal November 1997

Workflow—A Model for Integration
David Hollingsworth

Skill Centre, ICL Enterprises, Windsor, UK

Abstract
This article reviews the nature of a workflow system from a systems
integration perspective, focusing on points of interaction between the
workflow control software and other system components, such as
process design tools, legacy applications and messaging infrastruc
ture. The characteristics of the underlying business model and its
representation to the workflow system are also discussed, including
requirements for business processes to span organisational bounda
ries. The complexity of systems integration is identified as a major
constraint on effective exploitation and indicative of the need for
standards to support more effective product usage and
interoperability. The article draws on the Author's experience in de
veloping workflow related standards and concludes with an assess
ment of their potential impact, particularly on opportunities for their
use in electronic commerce.

1. Introduction
Workflow is often seen as a key integration technology, bringing together
business processes with the information to support them, and linking legacy
and desktop applications into a flexible and adaptable distributed
infrastructure. The external image of such systems can be deceptively
simple, based on the notion that once the business process is defined, its
automation merely requires the integration of a few simple tools.

According to the Workflow Management Coalition1 [WMC, 1995-1997],
workflow represents, "the automation of a business process, in whole or part,
during which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rides".

Whilst not explicitly stated in the above definition, a key motivation for
the deployment of workflow technology is that it should provide flexibility
for the business process to evolve with minimum re-engineering. This is a
concept simply captured within Openframework [Pratten and Henderson,
1993] as “potential for change".

Workflow technology typically achieves this by enforcing separation

1 The Workflow Management Coalition (WfMC) is a non-profit making consortium of ven
dors, users, analysts and academia, with the goal of developing standards for workflow sys
tems operation and promoting knowledge of the technology within the industry.

ICL Systems Journal November 1997 213

between:

• the definition of the various activities within the business process
and their data requirements

• the business rules governing the flow of control between activities
within the process

• the roles and responsibilities associated with the work undertaken
within the process activities

• an underlying organisational model, which relates roles and respon
sibilities to the actual work performers

In theory any aspect can change independently by simple amendment
of the relevant control parameters, without affecting the ongoing operation
of any other aspects of the process.

Despite this apparent utopia, the reality in many workflow systems
implementations has been much more earthly - substantial systems inte
gration issues to be faced in bringing together the component systems ele
ments, lack of interoperability between different systems, major cultural
and organisational issues to be resolved in the introduction of new work
ing practices, and so on. Once operational, many systems prove less adap
tive than expected to the future organisational or business changes.

2. Integration Requirements
Reliable statistics from within the industry are not always easy to find.
However a recent market survey undertaken by the Workflow Manage
ment Coalition indicates that for virtually all workflow systems, integra
tion with other industry software is vital - and a major cost component of
implementation. At the time of writing the full survey results are still being
collated but preliminary findings are as follows:

Integration Requirement % of Respondents
World Wide Web 89%
Java Applications 75%
Legacy Applications 73%
CORBA based infrastructure 69%
Security Services 66%

Other technologies frequently mentioned included Business Process
Modelling tools, Document Management and Imaging systems.

Informal estimates have indicated a ratio between workflow software
implementation and overall project integration costs of between 1:5 (for
ad-hoc office based systems) to 1:7 or more (for highly structured produc

214 ICL Systems Journal November 1997

tion workflow applications). Even in an industry where integration is in
creasingly the major cost component in the introduction of new technol
ogy, these are high figures.

This informal view is supported by a recent study from Ovum Group
[Ovum Group, 1996], which shows workflow vendor revenues split be
tween product and service currently in the ratio of 1:4.5, with a fall pro
jected by end 2000 to 1:3. This is consistent with an increasing degree of
standardisation, de jure or de facto, and of product consolidation leading
to simpler integration.

The following sections consider two factors, the fragmented emergence
of workflow within the market and the technical complexity of product
interfaces, which have contributed to this cost.

3. The Evolution of Workflow Technology
One of the reasons for the complexity of the systems integration task is the
fragmented way in which workflow technology has developed in the mar
ket.

3.1 Workflow—the first phase market
Software to control process operations is not a new concept. Many types of
product in the IT market have supported certain aspects of workflow func
tionality for a number of years, although often embedded within other, re
lated products rather than as a technology in its own right.

Image Processing
Workflow has been closely associated with image systems and many im
age systems have some workflow capability built-in. Once paper based in
formation has been captured electronically as image data, it is often required
to be passed between a number of different participants for different pur
poses within the (previously paper based) process.

Document Management
Increasingly, the management of electronic documents has included facili
ties for routing documents (in whole or part) between individuals and re
positories, for example to facilitate shared authoring or filing services. Stand
ardisation within the document management area has already recognised
the requirement for extensions into workflow2.

Electronic Mail & Directories
Electronic mail provides facilities for distributing information to individu

2 The Open Document Management Association (ODMA) first identified an API for simple
workflow functionality in 1995. More recently the DMA (Document Management Association,
representing major vendors of document management software) has entered discussions with
the WfMC to address the integration of workflow and document management standards.

ICL Systems Journal November 1997 215

als; associated directories provide a means of recording information about
user attributes, such as organisation roles or other attributes relating to
business procedures. Through the addition of routing mechanisms to de
fine a sequence of recipients for a mail item, electronic mail systems have
themselves been progressing towards workflow functionality.

Groupware Applications
Groupware applications are designed to support and improve interactions
between groups of individuals. Initially many of these applications sup
ported improvements in group working via informal processes, accessing
group bulletin boards or diary/scheduling applications on an ad-hoc ba
sis. As the scope of such applications has spread towards more formal
business processes there has been an increasing move to incorporate
workflow into work-group software3.

Project Support Software
Software to handle complex IT project developments has often provided a
form of workflow functionality within the project environment, for the
sequencing and routing of development tasks between individuals and rout
ing information between individuals to support these tasks.

Transactional Workflow
As traditional TP applications have become more distributed in nature some
have moved to fully distribute transactional tasks to desktop environments.
In parallel workflow vendors have been adding transactional characteris
tics to workflow systems, particularly in the area of task commitment and
recovery co-ordination. In these situations there is an increasing degree of
overlap between the two technologies.

BPR and Structured System Design Tools
Whilst workflow has been emerging as a fragmented technology, Business
Process Re-engineering tools have appeared in significant numbers. These
provide IT based support for analysing, defining and modelling the busi
ness processes of an organisation and the potential effects of change in such
processes or organisations. The use of such products forms a natural pre
cursor to workflow implementation.

In summary, there are now many products in the market providing
workflow capability4. Such products are often derivatives of products from
other market areas, incorporating elements of workflow technology in an
incompatible manner, making integration costly and negating the "poten

3 Examples of this include the integration of Lotus Notes product with several workflow pack
ages and the introduction of Fujitsu/ICLis TeamWareFlow as the workflow component within
Team Office.
4 Of the WfMC membership, there are approximately one hundred different organisations
which categorise themselves as product vendors.

216 ICL Systems Journal November 1997

tial for change" factor.

3.2 Workflow—the second phase market
The GIGA group recently presented an interesting analysis of the develop
ment of workflow technology and concluded that the industry is entering
the second phase of automation [GIGA Group, 1997]. Most of the first phase
automation projects have been at departmental or workgroup level, with
relatively little co-ordination5. The continuing business pressures of
globalisation, contracting and electronic trading are leading organisations
to reassess their business processes at enterprise level with ever increasing
frequency.

small &
mid-sized
companies

growing

second
wave
t

future

mass
market

1
plateauing emerging

large
companies first

wave
next

* wave

“railroads” application- general ..roads
specific purpose

Figure 1: Workflow & the shift to IT Infrastructure
(Giga Information Group, adapted from CAP Ventura)

The GIGA view is that, "second phase, messaging based enterprise-wide
workflow ΐυίΙΙ be dominant in 1-2 years time". This will see workflow posi
tioned as general purpose middleware across the enterprise. Electronic
trading between organisations will increasingly push workflow into smaller
and medium sized organisations, leading towards ubiquity of use.

This prognosis, however, depends upon the consolidation of the indus

5 At a recent conference a large multinational organisation indicated that of the eight workflow
applications implemented to date all were incompatible in terms of interoperability and use
of common infrastructure components.

ICL Systems Journal November 1997 217

try around a cohesive set of standards to support integration and
interoperability considered in Section 6.

4. Workflow and Software Integration
Integration complexity arises from the requirements of most workflow sys
tems to interact with numerous other software components, ranging from
standard desktop tools such as forms, spreadsheets and word-processors,
to server applications such as document repositories and legacy applica
tions, often based upon TP technology.

A key aspect of many workflow system is the incorporation of an or
ganisational model, enabling workflow procedures to be defined relative
to organisational roles and responsibilities. These may be separately main
tained, for example by means of a directory subsystem, with associated
role privileges.

Workflow systems may also require integration with process definition
and modelling tools so that a proposed system can be fully specified and
simulated prior to introduction.

Finally, as with any distributed application, integration with the under
lying infrastructure (Electronic Mail, Object Request Broker domains, etc.)

Figure 2: W orkflow System com ponents

218 ICL Systems Journal November 1997

is a further requirement.
The schematic, shown in Figure 2, gives some indication of the poten

tial components and points of integration of a typical workflow system.
Several different systems construction paradigms exist within the in

dustry. Common models include:

• Object based, using CORBA as the main distribution mechanism
• Electronic mail based with autonomous desktop environments
• Centralised workflow engine with tightly coupled desktop task man

agement
• Document-centric with shared repository

The boundaries of the workflow management software are often un
clear, for example some vendors include a directory component or inter
faces to access legacy systems, others see this as part of the system integra
tion task.

5. The Characteristics of the Business Process
Workflow is a process centred technology. To quote from Koulopoulos
[Koulopoulos, 1995] of the Delphi Group (a Boston based workflow con
sulting group): "Workflow emphasises the importance of the process, which acts
as a container for the information. ... This is a process-centred model, as opposed
to an information- centred model."

5.1 The nature of the business model
Although the majority of workflow systems have tended to automate ad
ministrative processes (the so called "paper factory") in an essentially hu
man environment, there are often certain activities which are wholly auto
mated by software components. In the manufacturing or process indus
tries many activities are fully automated with little or no human involve
ment. In this context the specification of the work "performer" for a par
ticular activity must incorporate the concept of machine automata.

Various characteristics of a business process need to be considered.

5.1.1 Responsibilities
"Ownership" of a business process is often an alien concept, but once

an electronic representation is achieved, this becomes an important attribute
of the process, if only to determine who has permission to modify the proc
ess and under what circumstances.

The realignment of business thinking from organisation to process marks
a major shift in organisational culture, likened by Giga Group to the "dis
mantling of the industrial age"[GIGA Group, 1997].

This emphasises the move away from functional organisation towards

ICL Systems Journal November 1997 219

virtual teams and processes supporting business collaboration.

Figure 3: Dismantling the Industrial Age
(source: ICL & Nortel)

This emphasises the move away from functional organisation towards
virtual teams and processes supporting business collaboration.

Since responsibility is increasingly defined in terms of role rather than
person, there is a requirement for workflow systems to maintain an audit
trail of the work performer who actually undertakes a particular activity.
In some cases this is complemented by a supervisory role for individual
activities or the overall process which is invoked if various criteria (for ex
ample deadlines) are not met. The concept of responsibility also needs to
cope with activities which are wholly automated with no human involve
ment (for example by IT application).

5.1.2 Process Modification
Adaptive processes are fundamental to the ongoing value of workflow; in
practice adaptation can occur in several ways with different associated com
plexities of automation.
(i) An ongoing change to the process, introduced by the owner. An ex

ample might be the introduction of some additional checking on an
authorisation task, or amendment of the value at which additional
checking is undertaken. The changes may need immediate application
to all existing open business cases, or may just apply to new cases.

(ii) A variation to the normal process behaviour may be pre-defined un
der certain conditions, for example an activity may be skipped or del-

220 ICL Systems Journal November 1997

egated to a subordinate role if a certain business criterion is met. This
variation is defined as part of the persistent business rules applied
within the process behaviour, but needs to be separately monitored
(and reported) in each case.

(iii) In some cases process behaviour (i.e. the business rules) may be arbi
trarily adapted or developed during operation, without any prior con
straints imposed when the process was designed. This is a behaviour
pattern often associated with ad-hoc workflow systems in co-opera
tive workgroup situations, where only a skeleton process may be de
fined within the process definition. This is amended dynamically as
process execution proceeds to add new tasks or amend responsibili
ties, etc.

5.1.3 Process Structure & Organisational Boundaries
One consequence of the flattening of organisational structures and increas
ing business integration across organisations is that process scope is ex
tending not just across departmental boundaries but also between enter
prises. A model of workflow put forward by the Japan Standards Associa
tion (JSA) Groupware Committee (1997) illustrates this industry direction
by a three tier framework embracing workflow at departmental, enterprise
and inter-enterprise levels.

Figure 4: Inter-organisation Business Processes

This leads to requirements to support process structures which:
• enable a sub element of a process to be initiated in a different organi

sational domain (hierarchic or chained sub-processes)
• support the periodic synchronisation of process activity between two

(or more) essentially independent processes operating in different do
mains (parallel synchronised processes).

ICL Systems Journal November 1997 221

Such process models often impose additional constraints on automa
tion in the areas of security between domains and conventions for object
naming and organisational mapping.

5.1.4 Process Duration
This impacts a number of engineering issues, particularly the likely
concurrency of active process instances and possible requirements for the
support of a dormant process state. Most typical processes have a rela
tively short duration, typically from seconds to weeks. Some, which are
customer-centric, may be defined in terms of a customer life cycle lasting
many years. Since most workflow systems carry a significant overhead per
process instance there may be a requirement is such cases to remove dor
mant cases to some form of secondary process data storage.

5.1.5 Activity navigation
One characteristic of all business processes is the thread of control which
links together the various activities during the life of the process instance.
Typically this involves conditional logic and a number of alternative routes
(navigation paths) through the process. These paths generally need to sup
port a mixture of sequential and parallel activities within a process.

This logic may be defined in quite different ways within different proc
ess definition methodologies:
Transition Based—Typically derived from Petri Net methodology, the proc
ess is represented graphically as a network of activity nodes and explicit
transitions between them. Edges connect nodes to transitions (input arcs) or
transitions to nodes (output arcs). Parallelism within a process is supported
by transitions with multiple output arcs (a split into multiple execution
threads transferring to different activities) or with multiple input arcs (a
join of several execution threads into one). Alternative routes between ac
tivity nodes are evaluated by reference to conditions associated with the
transitions. Although arbitrary complexity can be supported, multiple tran
sitional expressions involving complex conditional evaluations can become
cumbersome to represent in a machine processable form.
Block Structured decomposition—In this approach any single node in a
model may be decomposed to a lower level of underlying process (a para
digm based upon the hierarchic sub process model). In this approach par
allelism is constrained to operate only within the context of a single level of
decomposition (i.e. parallel threads cannot transcend block boundaries). A
product based upon this approach cannot cope with an arbitrary complex
ity of split and join constructs (for example an unbalanced split where one
path continues beyond the context of the current block).
Activity Pre- & Post-conditions—In this approach no explicit transitions
222 ICL Systems Journal November 1997

between activities are declared. The process is defined as a set of activities
each having entry (pre-) and exit (post-) conditions; parallelism is implicit
and when pre-conditions are met the activity is initiated, independently of
the status of other activities within the process. To provide sequential op
eration, pre-conditions may relate to the completion of a particular prior
activity (and by extension to multiple prior activities, providing an "and-
join" capability). Post-conditions may be used to control looping within an
activity.

Each of the above approaches has its pros and cons and its own par
ticular devotees. The problem for the systems integrator is that it is not
easy to transfer process information between design tools and/or workflow
control software based upon the different design paradigms.

5.1.6 The Organisational Model
Virtually all business processes are based around the concept of an indi
vidual's roles and responsibilities for the various activities within the proc
ess. As far as possible processes need to be isolated from the vagaries of
organisational change, leading to the requirement for a (dynamic) organi
sational model. This can map the ongoing roles and responsibilities at proc
ess level against the current organisational entities and the current set of
individuals who undertake the various roles.

The identification of an activity "performer" within a process may em
brace a mixture of organisational and role information (... "the fault ana
lyst in the European Customer Support Unit"). Organisational relation
ships often expressed include:

• manager of
• deputy to
• alternative to (proxy)
• role or skill profile.
Responsibility models may introduce additional constraints on work

performers (for example .. "not the person who authorised the original
loan"), which require process history to be maintained.

Thus in many cases an organisational model will need to accompany a
business process to enable its automation.

5.1.7 Security
Security is often developed separately from the business process and may
have to added at automation stage by reference to a separate organisation
security policy document. Many of the security requirements during auto
mation will be related to roles, responsibilities and authority within the
process.

ICL Systems Journal November 1997 223

5.2 Representing the Business Process
In order to provide automated support for a process, it must be first be

captured in a machine interpretable representation. This representation
must have the flexibility to structure and maintain all the process related
information necessary to enable co-ordination of enactment using IT infra
structure.

The WfMC glossary introduces the term "Process Definition" for this
representation, describing it thus:

"The automation of a business process is defined within a Process
Definition, which identifies the various process activities, procedural
rules and associated control data used to manage the workflow dur
ing process enactment".

The process definition may be represented by a combination of any or
all of textual script, graphical notation, or formal programming notation,
with many different process development tools available to manipulate such
information. Typically their use follows a cycle of analysis, modelling, im
plementation, feedback and further analysis.

Several attempts have been made to define a standard representation
of all or part of a process specification.

IDEF [IDEF, 1997] is a series of modelling notations introduced by the US
Air Force, several of which are published as FIPS by NIST. Included are
methodologies for modelling business functions (IDEFO), information mod
els (IDEF1X) (both widely used), dynamic system behaviour (IDEF2) and
Process Description Capture (IDEF3).

CDIF [CDIF, 1997] has defined a core architecture for CASE tools and data
interchange bindings, based around a meta-meta-model. Foundation and
Common meta-models are defined and work has been completed on data
definition, data flow and data modelling. An extension to cover business
process modelling is under discussion, but work is not yet mature. UML
(unified modelling language) is a similar initiative under the auspices of
the OMG, with its own modelling notation and meta-model.

None of the above currently provide a machine processable process
definition as a basis for workflow automation.

PIF (Process Interchange Format & Framework) [PIF, 1997] has been devel
oped by a working group drawn from a number of US and UK universities.
Its underlying philosophy is that of generality over computational efficiency;
this is reflected in the organisation of its entity classes which is not neces
sarily well suited to the performance of any specific task, such as workflow
management or process simulation. It has been used for experimental trans
lation of process related information within the research group. As with
other process representations it has been found necessary to structure into

224 ICL Systems Journal November 1997

a minimal core set with add-on classes. PIF is designed to be machine
processable, but is not specialised to the entities and attributes required for
workflow.

The NIST PSL (Process Specification Language) group [NIST, 1997] is a
study group formed by NIST in April 1997, working towards a common
process specification language, rather than interchange format. It has mem
bers drawn from industry, government and academia but has a particular
interest in the application of process technology to manufacturing indus
try. There is no current specification produced by the group, but it is re
viewing inputs from other industry organisations.

WPDL (Workflow Process Definition Language) [WMC, 1995-1997] is speci
fied by the WfMC and despite its name was conceived as a text-based,
machine processable interchange format, rather than a definition language.

The WfMC has produced a process definition meta-model, shown be
low, which attempts to capture the highest level objects and relationships
which, as a minimum, must be defined to support process automation. This
meta-model underpins the WPDL grammar.

Figure 5: The Process Definition Meta-Model

The route followed by the WfMC is to define as standard attributes the
most commonly required properties of these top level objects, but to allow
extensibility through an extended attribute list and library functions within
the WPDL grammar.

The model and the WPDL constructs are focused specifically on
workflow and provide more detailed structures for defining the workflow

ICL Systems Journal November 1997 225

related aspects of a process. They do not attempt to incorporate the level of
generality of other approaches such as PIF. WPDL will shortly be released
in beta form and several prototype implementations have been made against
interim specifications with reasonable success.

One key difficulty with all approaches remains the capture of all the
potential dynamics of a business process within a single model. It is prob
able that automatic translation of 100% of such business processes between
different products is an unreachable goal in the foreseeable future. How
ever the meta-model provides a structure for mapping a large part of the
business process into WPDL or, potentially, other interchange forms.

6. The Systems Integration Model
The WFMC is the principal organisation defining standards for workflow
and is attempting to cover much of the ground discussed in earlier sec
tions. The standardisation programme is based upon the "Reference Model"
[WMC, 1995-1997] shown in Figure 6.

Figure 6: The WfMC Reference Model

Whilst this is an oversimplification of workflow from the integration
perspective, it has proved useful within the industry as a focus for stand
ardisation work. It concentrates on modelling a workflow service as a black
box object viewed from its external interfaces, whilst ignoring the internal
construction architecture (and hence a number of the integration problems).

ICL Systems Journal November 1997226

The internal components of the "workflow service" are assumed to be
homogeneous, and typically supplied by a single vendor's product(s). This
avoids issues associated with service administration and security, which
essentially lie inside the "box". Also no distinction is made between a sin
gle centralised “engine" and co-operating, “distributed engines", which need
to support shared process state data in order to support a single homoge
neous service image. The model also attempts to avoid dependence on the
nature of the underlying distributed infrastructure through the specifica
tion of APIs, or interchange formats, by which system components interact,
which are assumed to be supportable through the infrastructure6.

Five "interfaces" are identified within the Reference Model, realised by
a combination of APIs, protocol and format conventions.

6.1 Process Definition Interchange
The purpose of this interface is to support the exchange of process defini
tion information between BPR tools, workflow systems, and process defi
nition repositories. The interface is based upon die meta-model described
in Section 5; information exchange is supported in two ways:

1. the WPDL grammar supports the transfer of complete process models
via file transfer, typically using an import/export mechanism from na
tive product formats. The import process can check the process model
for structural integrity, for example flagging isolated activities with no
transitions. The export process must flag any structures which cannot
be represented in WPDL

2. APIs are defined for reading and writing individual objects and attribute
data within the Process Definition. These are typically used for ad-hoc
process modification or control functions, rather than bulk process trans
fer. There is no automatic mechanism for checking the integrity of the
resultant modified process.

6.2 Client Applications Integration
This provides a standard interface for work allocation to the desktop envi
ronment, allowing desktop applications portability and re-use across dif
ferent workflow environments. APIs are defined for:

1. Process & Activity Control functions, for example starting, suspend
ing, terminating a process instance or sets of process instances

2. Worklist Handling, to allow users to log on and process (or re-assign)
individual work items.

* One exception to this is the interoperability protocol between workflow domains, which is
discussed later.

ICL Systems Journal November 1997 227

6.3 Applications Invocation
This provides a single interface which may be used for two purposes:
1. To provide a common framework for the integration of software agents

providing access to other industry services such as document reposi
tories, meeting schedulers and email which use their own specific in
dustry APIs

2. To support access to legacy applications via application specific meth
ods (for example terminal emulation or proprietary TP protocols).
A simple API set supports Connect/Disconnect, Invoke Application,

Request Status and Terminate Application.

6.4 Process interoperability
This supports the remote invocation of a sub-process on a different workflow
system, allowing a single business process to be implemented over two or
more workflow systems.

Two variants of interchange protocol are defined:
1. MIME (Multipurpose Internet Mail Extensions) defined in RFC 1341
2. IDL bindings for use with CORBA (typically via ORB interoperability

services).

This interface uses essentially the same API set as that for process ini
tiation from client applications7.

A missing element in the current specifications is support for synchro
nisation points between parallel execution threads; this is identified for fu
ture development.

The sub-process interoperability model as currently specified makes
no requirement to dynamically share state data between the two
interoperability domains and specifies a minimal level of prior co-ordina
tion. (This is essentially limited to a knowledge of the called address for a
particular sub-process and any related security attributes.) Thus it is more
suited to "loosely coupled" distributed process enactment across different
organisational entities than tightly bound workflow systems within a sin
gle department or workgroup.

Some issues of detail still remain; for example, which properties of sub
process operation are inherited from the superior calling process and which
from the local process definition. In general, it is an accepted principle that
where remote process "hand-off" occurs it will not be feasible to retain all
process attributes through the call and return. Details of name space usage
across the two environments also remains to be fixed in detail.

7 Since remote invocation can occur via an asynchronous interface such as e-mail some addi
tional optimisations are provided to allow grouping of calls (or call responses) into an under
lying MIME transfer.

228 ICL Systems Journal November 1997

6.5 Audit and monitoring
Auditing is an important requirement for many workflow systems. This
"interface" comprises a specification of standard audit events and their re
cording format, thus enabling the integration of audit trails across different
systems during workflow interoperability. The means by which audit data
is accessed or retrieved on any particular system is undefined but is typi
cally via SQL for many workflow products.

APIs are also defined to retrieve status information on current process
instances or activities.

7. Ongoing Standardisation Work
The standards currently defined will make a significant contribution to
workflow systems integration—provided they are adopted by product ven
dors. An important indicator of intent is the current OMG standards ap
proval cycle for workflow technology [Object Management Group, 1997],
in which the WfMC standards are currently supported by more than thirty-
five organisations.

Various important extensions have been identified to improve the po
tential of the model as a basis for integration.
Object Integration—the work with OMG has identified potential require
ments for developing the architecture "internal to the workflow manager",
to facilitate the integration of other complimentary OMG services such as
OTS (transaction services), naming, security and versioning, etc.. This ap
proach can support closer integration between different workflow prod
ucts where all use the same underlying object services architecture. There
is also interest in positioning workflow within the OMG Business Objects
Framework to identify reusable service elements which can be consolidated
into a business application environment.
Security—the approach here is to specify how existing security standards
should be applied in the context of workflow. The most important area is
seen to be the use of authentication, integrity and confidentiality services
applied to workflow interoperability, particularly between domains in dif
ferent organisations.
Support for Event synchronisation—Event synchronisation represents a
significant extension of the interoperability model to support transitions
(and potentially associated data flow) between different, essentially inde
pendent processes, running in different domains. Issues to be resolved in
clude process, thread and event naming and event management functions
applied across distributed, heterogeneous products (e.g. to detect and pre
vent deadlock and persistent wait states).
Process Integrity and recovery—This is an area which has not been widely

ICL Systems Journal November 1997 229

addressed and will take some time to mature. Recovery may require the
basic process state data, shared workflow and application data and wholly
application related data (for example within legacy applications). Differ
ent techniques include 2-phase commit and rollback (whose use may be
impractical through asynchronous messaging infrastructure and/or long
transaction times), compensating transactions, or alternative transactions.
Many products rely on at least some manual recovery elements.
Internet and electronic commerce—There is considerable interest in sup
port for inter-organisational workflow functionality carried via the Internet.
Existing functionality via electronic mail will be augmented by support for
more dynamic process binding (for example using traders or yellow page
services). The use of XML8 to encode process based exchanges is also un
der discussion.

8. The Future
We shall not know for a year or two whether this standardisation programme
will really contribute to the integration task. There are encouraging signs
that the industry has recognised the benefit of a common architectural frame
work to assist with product interoperability and most products are struc
tured in broad alignment with the reference model. In practice the number
of conflicting products is bound to fall, if only through market consolida
tion. Interest continues in capturing and reusing automated process frag
ments within an applications framework architecture.

The notion that workflow will evolve into ubiquitous middleware, in
the same way as, say, electronic mail, is perhaps more questionable. This
requires both standardisation and a re-orientation of commercial thinking
towards the value of automated processes. There is certainly every likeli
hood that workflow interoperability will substantially increase in inter-com
pany trading situations. A demonstration of an automated supply chain
process scenario [Anderson, 1997], in which the overall business process
was automated across seven diverse organisational systems, attracted huge
industry interest9.

Within this style of operation it is possible to enact business processes
which automatically call other organisations to implement those parts of
the process which lie within their domain of responsibility, for example
manufacturing, wholesaling or supply logistics. Such business interactions
go far beyond the simple transfer of order data or supply notes, bringing
opportunities for expressing a complete supply chain business logic in a

* XML (Extended Markup Language)—a more generalised version of HTML, also derived
from SGML principles.
* Workflow Canada, Toronto, June, 1996 and repeated at the Giga Workflow conference, Am
sterdam, October, 1996.

230 ICL Systems Journal November 1997

manner which can be seamlessly automated across diverse business enti
ties. This may well point the way towards a second generation of elec
tronic commerce based on process interoperability rather than simple elec
tronic data interchange.

Acknowledgements
Many colleagues within the WfMC have contributed important ideas to
the subject of workflow integration and interoperability. Particular thanks
are due to Mike Anderson, from the TeamWare Integration Centre, who
provided comments on this paper and was also responsible for the WfMC
interoperability specifications.

Bibliography
WORKFLOW MANAGEMENT COALITION; Documentation: Glossary,
1996; The Workflow Reference Model, 1995; Workflow API Specification,
1995; Workflow Interoperability Specification, 1996; Process Definition In
terchange Specification (draft), 1998. Details available via h ttp ://
www.wfmc.org
PRATTEN, G.D. and HENDERSON, P., "Creating Potential-for-Change,"
ICL Technical Journal, Vol 8, Issue 3,1993.
OVUM GROUP, "Ovum Evaluates Workflow," 1996.
GIGA GROUP, "Business Process & Workflow," Conference Proceedings,
London, 22-24, October, 1997.
KOULOPOULOS, T., "The Workflow Imperative," Van Nostrand Reinhold,
1995 (ISBN 0-442-01975-090000).
IDEF, (Integrated Computer Aided Manufacturing Definition), details of
IDEF0, IDEF1X, IDEF3, plus work in progress available via the IDEF home
page http://www.idef.com.
CDIF, (CASE Data Interchange Format) specifications available via http: / /
www.cdif.org.

PIF (Process Interchange Format), details available via PIF home page http:/
/ soa.cba.hawaii.edu / pif /
NIST Process Specification Language (PSL) project documents: Proceed
ings of the First PSL Roundtable, NISTIR 6081, National Institute of Stand
ards and Technology, Gaithersburg, MD (1997). Unified Process Specifica
tion Language: Requirements for Modelling Process, NISTIR 5910, National
Institute of Standards and Technology, Gaithersburg, MD (1996). Both avail
able via NIST PSL home page http:/ / www.mel.nist.gov/psl/
OMG, Object Management Group, Framingham, MA 01701-4568, RFP for

ICL Systems Journal November 1997 231

http://www.wfmc.org
http://www.idef.com
http://www.cdif.org
http://www.mel.nist.gov/psl/

Workflow Technology, 1997 and associated proposals, details via OMG
http:/ / www.omg.org/library/schedule/Workflow_RFP.htm
ANDERSON, M.J., "Workflow Engine Interoperability—What's in it for
Users," Document World (May/June 1997).

Biography
David Hollingsworth has spent in excess of 25 years in the IT industry. His
career with ICL spans roles in product development, market requirements,
strategic planning, systems architecture and major projects consultancy
assignments. His interest in workflow systems dates from 1992 and as ICL
architect working on future office systems he was involved in the establish
ment of the Workflow Management Coalition as the industry standards
body for workflow. He is currently chairman of its Technical Committee
and has authored several of its reference documents. He holds an honours
degree in Economics from the London School of Economics and is an ICL
Distinguished Engineer.

232 ICL Systems Journal November 1997

http://www.omg.org/library/schedule/Workflow_RFP.htm

SuperVISE— System Specification
and Design Methodology

S. Hodgson and M.M.K. Hashmi

ICL High Performance Systems, Manchester, UK

Abstract

This paper describes the system design methodologies and tools be
ing developed by ICL under the name SuperVISE [ICL/WWW, 1997].
The paper covers the origins and principles of the methodologies,
and explains the benefits of the SuperVISE tools which support these
methodologies. The SuperVISE language VHDL+ is introduced and
the key features of the SuperVISE products are described. SuperVISE
won the 1997 ICL Innovation Award for Technology.

1. Introduction
The creation of the SuperVISE methodologies, languages and tools grew
from the basic need to 'Improve Time-to-Market' for large electronics sys
tems which include significant hardware design content. The requirement
was for more than just an incremental improvement in conventional de
sign methodology. What was needed was a 'step function' improvement,
which would cope with the increasing size and complexity of the systems
expected over the next 20 years and beyond.

These requirements came initially from the mainframe development
group at the ICL High Performance Systems Division in Manchester. The
mainframe systems designers were about to embark on a major new de
sign—significantly larger and more complex them anything developed be
fore at ICL—a design that turned out to be a system of more than 10 million
gates. The design had to be complete in less time than the previous, smaller,
mainframe design and with less engineers.

To meet these ambitious timescales, the whole system design had to be
'right first time'. There would not be time for redesigns or chip iterations,
so a major improvement was essential in the design verification phases.

The good news is that the design mentioned has been completed—the
ICL Trimetra (SY) [Allt et al., 1997]. The methodology and tools achieved
their objectives and, in fact, exceeded the ambitious quality targets set at
the start of the project. The methodology used (originally called CHISLE
[Jebson et al., 1993], but since extended and now called 'the SuperVISE
methodology') is now being introduced across the Fujitsu Group and pro
moted externally.

Having defined the methodology and the language extensions, it was
ICL Systems Journal November 1997 233

recognised that the introduction of these new concepts would take time.
So the SuperVISE User Group was formed to bring together a set of com
panies, individuals and universities who together have the objective of de
veloping and establishing SuperVISE as a major step forward in system
design. Active members of the User Group include Ericsson, Nortel, Alcatel
and, of course, various members of the Fujitsu Group.

2. Requirements
2.1 Business Needs
Design capture and verification at the earliest possible stage increases the
commercial viability of a product by reducing the overall time to market.

One way to compress and effectively manage the complete product
timescale is to formally capture the design earlier in the design cycle so that
it can be verified earlier, and problems conforming to the requirement speci
fication solved before reaching the later phases of the design cycle.
SuperVISE makes this possible by introducing powerful specification-level
features within a VHDL design environment.

Ensuring the correctness of a design early on in the design cycle not
only improves the specification phase, but also has a beneficial 'ripple' ef
fect on later stages. This is magnified by the growing complexity of the
design; see Figure 1.

Figure 1: Benefits of early error detection

Traditionally, in the electronics industry, system specifications and re
quirements have been captured as natural language documents. These speci
fications are then refined and elaborated in a series of manual design steps
until they are detailed enough to be captured formally in schematic or tex-

234 ICL Systems Journal November 1997

tual form for simulation.
Normally, the first simulatable level that is formally captured is at Reg

ister Transfer Level (RTL) or below. Once captured, the design can be veri
fied by simulation with test patterns or a test harness. It is then refined
until it can be synthesized or manually translated into a gate level descrip
tion.

SuperVISE brings the process of design verification up to the specifi
cation level, removing the conventional design 'gap', by supporting multi
level simulation from concept through to implementation; see Figure 2.

Figure 2: Simulation from Concept to Implementation

Since specifications are by nature 'loose' rather than 'fixed' descriptions
they tend to be reusable and capable of supporting many design imple
mentations.

2.2 Technical Needs
To achieve the overall objectives, three technical requirements came to the
fore:
• In previous complex designs which involved many engineers and even

many teams of engineers, the definition of the interfaces between teams
and between individual engineers was of great importance. These in
terface definitions needed to be much more than a static definition, since
they had to describe the communication protocol between units of de
sign in enough detail to allow the separate design units to be devel
oped independently. What was required was a language to support
the capture of such protocols and these descriptions had to be separate
to the unit descriptions themselves. The methodology needed the con
cept of separate interface specifications

• A means of specifying the design at a very high level was vital. System
and architectural design decisions had to be made before moving to the
next level of design. For this to be possible there had to be a language
capable of supporting higher design levels

ICL Systems Journal November 1997 235

• Once captured this specification had to be checked for correctness. Find
ing system design errors later in the design flow was too expensive in
time and resources. So the new methodology had to include an execut
able specification. Having captured and verified the system design at the
highest level, it was vital that this description could be taken forward
to the lower levels of design. It is inevitable in the development of
large systems that different parts of the design progress at different rates.
To support this, the methodology had to support mixed multi-level mod
elling.
To provide the higher levels of abstraction needed, a new set of lan

guage features were defined. The capability of the language had to include
the ability to define, and reuse, interface specifications. Simulation tech
nology also had to be advanced to support these new language features
such that the specification was executable. Finally, this specification envi
ronment had to extend into the implementation phases of design such that
the methodology supported many levels of design within the same system
description [Hashmi and Bruce, 1995].

To meet the last of these criteria, it was decided that the first SuperVISE
language should be an extension of VHDL [IEEE, 1994] and this has been
provisionally named VHDL+.

The SuperVISE methodology is, however, applicable to more than just
a VHDL design environment and additional languages will be supported
in the future.

3. Methodology
3.1 The Interface Specification
The Interface serves three purposes:

• It serves as an unambiguous specification of the protocols to which all
users (units) must conform

• Permits units to communicate despite being at different stages of de
sign

• Provides a firewall between units, enabling them to be designed sepa
rately, but guaranteeing that they can communicate.

A high level interface specification tends to be declarative whereas, gen
erally, a unit description represents an implementation and is therefore more
likely to be imperative.

3.2 Interface Items
An Interface Specification is composed of interface items—messages and
transactions—which can be hierarchically decomposed. The lowest mes
sage level, at which communication with pure VHDL models takes place,

ICL Systems Journal November 1997236

is composed of signals.
The Interface Specification contains all the information necessary to al

low units, which can be defined at different levels, to communicate; see
Figure 3.

Figure 3: Interface between units

SuperVISE uses this information to automate the translation of infor
mation across the interface and to check that the communication obeys the
interface protocol.

Interfaces can have one, two or more ends. Also, since they do not
need to know to which units they are connected, interface specifications can
be reused.

The main items in an interface definition are:
• Transaction definitions specify two-way conversations across an inter

face
• Messages define a one-way stream of information from one end of the

interface to another end. They can be decomposed into other messages
and can be defined at any level

• Messages at the lowest level specify static connectivity and are defined in
terms of signals. If the designer wishes to co-simulate with VHDL mod
els or to decompose into pure VHDL, this level is essential.

3.3 Multi-level Interface Specification
A SuperVISE interface specification describes the communication between

ICL Systems Journal November 1997 237

design units. This single specification defines the communication at ALL
levels. At the highest level the specification will be loosely defined—in
time, data and resource. As the specification develops more detail is added
and more design decisions are recorded, until eventually all time, data and
resources are fixed; see Figure 4. These different levels of information are
described using transactions and messages. Finally the interface is defined
in terms of VHDL ports.

Figure 4: Multi-level Interface

4. Description Levels
As designs become larger and more complex the need for working at dif
ferent levels of description becomes more important. The design of a com
plex electronic system is often a task that necessitates deployment of the
best concurrent engineering practices. Different parts of the design will be
developed at different speeds using different design styles.

For example, some functionality may be bought 'off-the-shelf' by pur
chasing or reusing models ('Intellectual Property Blocks') already proved
against a specification. The descriptions of these 'off-the-shelf' models may
be quite detailed with little or no abstraction (i.e. all decisions concerning
the design have been concluded). The properties required of the language
used to described these models demand little by way of abstraction fea
tures.

Other areas of the design may be designed 'top-down' starting with
little or no constraint on the design characteristics. Here the designer needs
to defer any decisions until later in the overall design flow. It may be that
only when other areas of the design are complete constraints will become
clear. The designer, therefore, needs a language which will not force un
necessary decisions.

238 ICL Systems Journal November 1997

4.1 Implementation
Register Transfer Level (RTL) and gate-level are implementation levels. The
models represent the actual hardware and data is closely mapped to physi
cal implementation. All timing is absolute and resource characteristics are
fully defined. The move from RTL to gate-level is often via synthesis; see
Figure 5. The most popular two languages used to define RTL and gate-
level are VHDL [IEEE, 1994] and Verilog [IEEE, 1995].

Figure 5: RTL and gate-level Implementation Levels

4.2 Design
Design levels are normally considered to be behavioural or algorithmic
ICL Systems Journal November 1997 239

descriptions; see Figure 6. Not all decisions have been made (i.e. designed).
Data is often still defined using enumeration and integer types. The de
signer may like to defer decisions on timing, but the HDLs available do not
support timing abstraction. The designer is probably also forced to decide
on resource allocation during this stage of design.

Figure 6: Design Levels

4.3 Specification
The system specification level is concerned with the overall design archi
tecture, the partitioning of the functionality into separate units and accu
rate specification of the interfaces between units; see Figure 7.

Traditionally, this area of design has been poorly supported by design
tools. SuperVISEnot only supports this specification level, but also bridges
the gap between the specification, design and implementation levels.

Figure 7: Specification Levels

240 ICL Systems Journal November 1997

5. Verification
5.1 Executable Specification
Simulation is an established and essential verification tool in hardware de
sign [Hodgson et al., 1995]. Today, most simulation occurs at RTL and gate
level and simulation of the design described at a higher (e.g. specification)
level is rarely achieved.

Achievement of an executable specification is fundamental to the
SuperVISE methodology. It must be possible to simulate a SuperVISE
specification and, furthermore, it must be possible to simulate a SuperVISE
specification with lower levels of descriptions.

5.2 Mixed level modelling
SuperVISE tools manage the connection of different levels of unit specifi
cation to the interface and, where necessary, automatically perform the trans
lation between different levels of communication.

Figure 8: Mixed Multi-level Modelling

One very useful application of the Mixed Multi-level Modelling capa
bility, supported by SuperVISE, is the reuse of a test harness across the
many levels of unit description; see Figure 8. A test harness can be devel
oped at a very high and abstract level, and then applied throughout the
design cycle. The test harness remains unchanged despite the many itera
tions of design on the other side of the interface. Translation across the
interface is automatically performed by the SuperVISE tools.

ICL Systems Journal November 1997 241

6. Language Requirements
6.1 Interface Modelling
The most important addition in SuperVISE methodology is the Interface
Specification. The interface specification is not just a repository for the static
data connections between units, but provides a full description of the com
munication protocol between units—it specifies the valid ways of using
the interface. With a conventional, static, interface definition, if an error
occurs in the protocol between two units (say) it is difficult to determine
which end is 'at fault'—each unit will implement its understanding of the
protocol and that will be assumed to be correct. However, if the protocol is
defined as part of the interface where both ends must be considered the
specification is agreed by the using units and there is a common under
standing of the communication. It then becomes much easier to detect and
diagnose protocol faults.

Also, it is necessary to consider the implementation of the protocol in
the units. Normally, this has to be done before any implementation of the
unit functionality because the unit cannot otherwise communicate with other
units and therefore cannot be tested. However, the implementation of most
protocols is not a trivial task and can take considerable effort to implement.
With a separate interface specification the implementation of the protocol
can be delayed until the overall, high level, design of the whole system is
defined and verified. Specifying the protocol in the Interface Specification
allows earlier testing of the protocol and also enables communication be
tween the units at an earlier stage since the Interface will take care of the
protocol. In cases where the protocol implementation is being reused from
an earlier design, the Interface can check conformity to that specification.

So, for a language to support the SuperVISE methodology it must sup
port the separate capture and specification of an interface specification. This
is fundamental to the SuperVISE concepts.

An interface specification is used to specify the communication proto
col and transformations between unit specifications. There are a number
of key benefits to using interface specifications:
• Interface specifications are freestanding and can be usefully developed

in their own right
• Unit specifications, communicating with one another only via interface

specifications, are assured of working to the same protocol without risk
of different interpretation

• An interface specification can be used to define communication between
unit specifications that have been described at different levels of ab
straction

• The interface specification itself can be defined at many levels of ab
straction

242 ICL Systems Journal November 1997

• Interface specifications are not dedicated to any particular unit specifi
cations. Unit specifications wishing to use a particular interface speci
fication can do so by mapping themselves on to named 'ends' of the
interface specification. So, interface specifications can be reused be
tween different combinations of unit specifications

• At high levels of design, almost all communication functionality is han
dled by the interface specifications. As design work progresses down
the levels towards gate level, the balance of communication functional
ity changes until it is eventually all hard-wired into real functional hard
ware at a traditional VHDL level.

The interface construct is used to declare an interface specification.
Like VHDL entity, configuration and package declarations, the in
terface declaration is a primary unit. An interface has a name, a list of
end identifiers and a list of interface items.

Any interface item of an interface can be instantiated by unit specifi
cations as long as the unit specification is mapped to the appropriate end
name of the interface.

As the design implementation progresses, the communication protocol
between unit specifications is implemented in the unit specifications them
selves and less of the interface specification provides functionality. Thus
the driving functionality in an interface specification is eventually imple
mented in the unit specifications; see Figure 9. Finally, the whole design
may be described using ports rather than instantiating interface items.
However, at all stages of design it is the interface specification that defines
the communication rules and this can be used to check the correctness of
any implementation (e.g. statically or via simulation).

Figure 9: Interfaces

ICL Systems Journal November 1997 243

During a project, it is likely that units will be at different stages of im
plementation at any one time and interfaces between units often change
their form at the different levels even though the interface capability re
mains the same. Therefore, it is often impossible to co-simulate the differ
ent units until they have all reached the same stage of development, but
Interface Specifications can contain the specification of the interface at many
levels and it will automatically translate any communication between lev
els thus allowing Mixed Multi-level Modelling.

Capturing the different forms of the interface at the different levels also
allows the designer to verify a new level earlier since the Interface Specifi
cation will check that the different levels adhere to the same overall proto
col, and that one is translatable to the other.

At a low level, every message sent or received needs an explicit connec
tion between the relevant units, but at higher levels there may not be ex
plicit connections between units or these connections may need to change
quickly. Basically, the semantics of connections at low levels attempt to
model the hardware equivalent whereas, at a higher or system level, we are
more concerned with the design and content of protocols, transactions and
messages than with their detailed implementation.

In SuperVISE, a connection at the interface level merely states that there
is some communication between the units. The content of the interface
specifies the types of messages that can be exchanged and these can be
complex and/or composite in themselves. The unit can use any message
or transaction it chooses from the interface—it does not need a new signal
added to the network and across hierarchies every time a new message is
used by the unit.

SuperVISE allows the system designer initially to capture the system
specification naturally as a set of communicating processes without hard
ware inferences, then to design the high level using this specification, add
ing only as much detail as required and to validate the high level imple
mentation against the system level specification.

6.2 The Unit specification
A unit specification is defined as an entity/architecture pair; i.e. a descrip
tion that defines functionality. A unit specification can be very complex
(e.g. a description of a computer system) or very simple (e.g. an OR gate).
A unit specification can be composed of other unit specifications communi
cating through ports, as in a normal VHDL structural description, or it can
be composed of unit specifications communicating via interface specifica
tions. The extensions of VHDL+ enable instantiation of interface compo
nents in a manner similar to instantiation of architecture components.

Unit specification descriptions reference the interface specifications that
they use, and the unit specifications into which they decompose. Note that

244 ICL Systems Journal November 1997

interfaces are in themselves multi-level—so in Figure 10, unit AB would
communicate with units B, or BA, via the interface 'i'.

Figure 10: Specification Decomposition

A unit specification can, therefore, communicate with another unit speci
fication via an interface specification or through ports. It is possible, and,
in the early stages of a design, quite likely, that a design will have no ports
and all communication is via interface specification using send and re
ceive statements.

In VHDL+ the unit specification may describe behaviour using the ac
tivity. The activity is a behavioural item which may be used to describe
serial and parallel behaviour. The activity is instantiated and acts as a
behavioural resource; e.g. an attempt to use an activity which is in use
will cause queuing. The statements available within an activity include
the VHDL+ statements pause, after, choose, send and receive (see be
low).

6.3 Design Abstraction
6.3.1 Timing Abstraction
SuperVISEhas also relaxed the specification of time in its models. At lower
levels, timing delays in sequences need to be precisely defined but at higher
levels it is more convenient to specify simple sequences of activities and
place requirements on the start and finish of these activities. This is one of
the main reasons most system specifications are not written in traditional
HDLs.

SuperVISE allows events to be specified in sequence and in parallel,
and to relate events to the beginning or end of other events. Time relation-
ICL Systems Journal November 1997 245

ships can be unspecified, bounded intervals or precise—either as absolute
time or clock intervals—and these can be simulated and validated with the
SuperVISE tool.

At the implementation level, all data is in bits or composite forms made
up of bits.

However, this is not enough at the highest levels. For example, for
some forms of modelling we need typeless data items which can be sent
and received, and placed in queues. So, VHDL+ permits the use of typeless
data (e.g. a message without parameters).

6.3.2 Time
Time in VHDL is defined in absolute terms. Every event has a specific
time. So, for example, every simulation run for a model, given the same
stimuli, should follow exactly the same path.

However, at higher levels the designer may not wish to describe the
exact time of every event as this may not yet have been determined.

So, instead of precise absolute time, the designer may want to define
events in terms of clock cycles or time ranges.

A model with such constructs can be analysed to check performance or
simulated. During simulation a pseudo-random choice of time in the range
is made. This simulation will then check that the functionality can cope
with the time range. Obviously the more simulation performed the better
the check.

At even higher levels, there is sequence or concurrency of activities in
the model even when the overall timing has not been determined. So the
language needs to enable the designer to describe dependencies between
activities without having to connect them explicitly.

The pause construct introduces time ranges. The after construct pro
vides a method for describing dependencies between interface or activity
items. VHDL+ also introduces a clock declaration such that an interface
can be defined in terms of more abstract time units.

6.3.3 Resource Abstraction
System design is like software design with resources being created as needed
rather than as in traditional hardware design where resources are precious
and difficult to get. This is simply because a system level design spends
much time in an experimental phase with ideas being tried out and dis
carded. It is more useful simply to provide any extra resource necessary
and also allow the designer to view the number and type of resources be
ing used at any one time by the model.

In SuperVISE it is possible to just specify that a resource or activity
may be needed more than once and the tool will clone new concurrencies
as required. A maximum concurrency can also be specified, and the

246 ICL Systems Journal November 1997

concurrencies can be constrained to be pipelined. Information on
concurrency creation and use can be kept during simulation for later analy
sis.

The full set of VHDL+ extensions does include fixed and open
concurrency. In VHDL+ the message and the activity are treated as re
source and instantiation of a resource which is in use will cause that instan
tiation to be queued.

6.4 Statement Scheduling
There are three basic statement scheduling mechanisms which may be used
in VHDL+ specifications:
• Statements that activate in sequence: A after B after C ...

This applies to statements between a serial... end pair.
• Statements that activate in parallel.

This applies to statements between a parallel... end pair.
• One, and only one, of a choice of statements will activate.

This is achieved in a message with the choice ... end construct,
and in an activity using the choose ... end construct.

Figure 11: Statement Ordering

ICL Systems Journal November 1997 247

Additionally, there are two methods of order and time specification :
• Synchronizing the end or beginning of an item with another.

This uses the after ... then ... end construct.
• Specifying some passage of time.

This uses the pause statement.

The diagrams shown in Figure 11 illustrate some examples of state
ment ordering.

7. Future Developments
As mentioned earlier, the development of SuperVISE is being driven by
the SuperVISE User Group and the pilot studies currently underway in a
number of major electronic systems companies. In particular the telecom
munications industry is showing great interest and VHDL+ is being extended
to fully support their requirements.

VHDL+ is now the subject of an IEEE Study Group which is looking
into standardizing language extensions for system and interface descrip
tions. ICL is chairing this group.

The first of the SuperVISE tools, the SuperVISE Compiler, has been
distributed to the members of the User Group. The SuperVISE Compiler
accepts a VHDL+ description and translates it to VHDL which can then be
simulated using any commercial VHDL simulator. The next SuperVISE
product will include a close integration with the leading commercial VHDL
simulator, ModelSim [ModelSim, 1997], providing VHDL+ debugging fea
tures.

ICL, sponsored by the Fujitsu CAD Group at Kawasaki, is developing a
direct VHDL+ simulator, which will greatly improve the simulation per
formance. Links to other commercial products enabling graphical capture
of VHDL+ are being investigated.

These developments will provide a powerful and unique environment
for system design based on VHDL+, but to support system design fully in
the future we need a variety of languages to be available—C, C++, JAVA,
SDL [SDL Forum Society, 1997], Verilog and analogue descriptions. This
can only be achieved through collaboration—both across the Fujitsu Group
and externally.

This paper has been concerned with the design of complex hardware
systems. However, the concepts of 'separate interfaces', 'timing, data and
resource abstractions' and 'mixed modelling' may be relevant in many other
areas. For example, large system integration projects exhibit many of the
issues addressed by these concepts. ICL and Fujitsu are currently investi
gating the value of further research in this area.

248 ICL Systems Journal November 1997

8. Conclusions
The new methodology introduced for the Trimetra (SY) project proved

an exceptional success. SuperVISE has enhanced that methodology and
made it acceptable to a wider set of applications.

Further developments to SuperVISE are underway with the ambitious,
but achievable, goal of establishing a new standard for the design of large,
complex electronic systems.

Bibliography
ALLT, G„ DESYLLAS, P., DUXBURY, M„ HUGHES, K„ LO, K„ LYSONS,
J.S.M. and ROSE, P.V., "The SY Node Design," ICL Systems Journal, Vol
ume 12, Issue 1, May, 1997.
HASHMI, M.M.K. and BRUCE, A.C., "Design and Use of a System-Level
Specification and Verification Methodology," Proceedings of EuroDAC
Conference, 1995.
HODGSON, S., SHAAR, Z. and SMITH, A., "A High Performance VHDL
Simulator for Large Systems Design," Proceedings of the IEEE European
Design Automation Conference, 1995.
IEEE, "Standard VHDL Language Reference Manual," IEEE Std 1076-1993,
The Institution of Electrical and Electronic Engineers, New York, USA, 1994.
IEEE, "Verilog Hardware Description Language Reference Manual," Draft
Std 1364, The Institution of Electrical and Electronic Engineers, New York,
USA, 1995.
ICL/WWW, http://www.icl.com/da
JEBSON, A., JONES, C. and VOSPER, H„ "CHISLE: An Engineer's tool for
hardware system design," ICL Technical Journal, Vol. 8, No. 3, May, 1993.
MODELSIM, www.model.com
SDL FORUM SOCIETY, ww.sdl-forum.org

Further information may be obtained from:
Steve Hodgson, ICL MAN05
+44 (0) 161 223 1301
email: sh@wg.icl.co.uk)

Biographies
Steve Hodgson
Steve Hodgson joined ICL West Gorton in 1973 after graduating from the
University of Manchester with a BSc in Physics. He has worked on a number
of projects, nearly all of which have been connected with the production

ICL Systems Journal November 1997 249

http://www.icl.com/da
http://www.model.com
mailto:sh@wg.icl.co.uk

and support of high performance Design Automation tools. Steve was one
of the originators of the MSIM simulator which has been used for hard
ware design in West Gorton for over 15 years. Since 1992 Steve has been
the manager of the Design Automation (DA) department. During this time
DA have formed a close relationship with the Fujitsu CAD Group in Japan,
who are key supporters of the SuperVISE technology. The DA group in
Manchester are now responsible for establishing the use of SuperVISE and
VHDL+ worldwide.

Kemal Hcishmi
Kamal graduated from Leeds University with a BSc. in Mathematics. Fie is
an Associate Fellow of the Institute of Mathematics and a member of IEEE.
He joined ICL West Gorton in 1982, where he initially worked on data man
agement systems. In 1987 he led the development of a new version of the
DGEN test generation system and then, in 1992, started work on CHISLE.
Over the last few years his time has been dedicated to the creation and
promotion of SuperVISE and VHDLL He is involved in many system-de-
sign related activities in Europe, the United States and Japan.

250 ICL Systems Journal November 1997

P r o c e s s M odelling u sin g th e World
W ide W eb— ProcessW ise™

C om m unicator

Peter Davies

Process Solutions, ICL HPS, Kidsgrove, Staffordshire,UK

A bstract

This article describes the exploitation of Web technology to provide
business process modelling capabilities across the Web. It was driven
by the vision of putting process modelling on everyone's desks in an
organization with minimal cost per seat. The concept for this solu
tion is based on the experience of designing ProcessWise WorkBench,
a PC based application for process modelling. The new solution,
called ProcessWise Communicator, uses JAVA™ to provide the edit
ing facility on the desktop and also a JAVA application on the Web
server to control the multi-user and database aspects.

1. Introduction
The following statement was the main motivation behind the implementa
tion of ProcessWise Communicator.

"Put Business Processes on everyone's desks so they can
see, understand and change their way of working."

Firstly, in order to put process descriptions on everyone's desks, the
technology must be widely available and not platform dependent. It also
implies that the cost of the client solution must be minimal, otherwise or
ganizations will not be able to afford the solution for everyone. The em
phasis on "see and understand'' means the solution must be highly graphi
cal and tailorable to different styles of process description. Finally, to change
their way of working, the process description must be easily modifiable by
the person looking at the diagram. Any complex editing and publishing
mechanism will slow down improvements in the process description.

2. Structure for viewing models
The following diagrams describe the main components and structure of
ProcessWise Communicator. ProcessWise Communicator is a JAVA based
solution for use across an Internet or Intranet, although it can be used lo
cally on one machine. The ProcessWise Communicator Applet resides on a

ICL Systems Journal November 1997 251

Web server along with HTML files which contain references to the Applet.
This is shown in Figure 1.

Figure 1: Viewing—Set-up

When the browser visits one of the HTML pages, the JAVA Applet is
also automatically downloaded and run. The Applet extracts data from the
rest of the HTML page which describes the diagram which should be dis
played. There is therefore one generic Applet and many HTML files, each
containing the data for the generic Applet, to display different diagrams.
As the browser displays different pages there may be several copies of the
Applet running at one time displaying different diagrams. The browser is
responsible for navigating around the diagrams as each diagram is a sepa
rate HTML page. The standard browser "Forward", "Back" and history
list are used to jump to different diagrams. Bookmarks can also be used in
the browser to mark particular pages. The following diagram, Figure 2,
shows one diagram downloaded into the browser.

252 ICL Systems Journal November 1997

Figure 2: Viewing—at Runtime

3. Drivers, issues and benefits
The above mechanism for viewing process models was driven by working
closely with a large international telecommunications company. They had
a large volume of quality manuals and had also invested significant effort
in producing process diagrams which they wanted published across the
Web. The solution had to be platform independent since they had a mix
ture of UNIX, PC and MAC machines. The global nature of the company
also required a solution which could be accessed from any location without
any special software on the client machine. This directed the solution to be
delivered through a Web browser. The options which were considered at
this stage were converting the process diagrams to images in GIF format or
developing a JAVA Applet which could draw the required diagram based
on data supplied to it. Although the GIF approach would have been rela
tively simple to implement, it provided only limited functionality. The JAVA
approach was more complex but allowed a much richer functionality. The
customer preferred the richer functionality solution.

In designing the JAVA Applet several criteria were taken into account.
Firstly, when in use each diagram would be accessed randomly and not
always from the "first"/"top" page. When viewing the diagram the user
would want it to be visible as quickly as possible and, therefore, it was
important that the Applet was small in code size, since it would be
downloaded on demand, and could also draw the diagrams quickly. This
was matched with the requirement to deliver a solution to the customer
and, therefore, dictated the use of JAVA 1.0 as this was the only version
supported in available Web browsers at that time. To use this version to
draw the types of diagrams required, it was necessary to implement an
arrow drawing algorithm (based on trigonometry) and a text centring and
wrapping algorithm. Both of these facilities were not available in JAVA 1.0.

To ensure the design was viable, it was compared with a solution using
GIF images for the pictures. The comparison showed that the GIF images
are around 2 to 3 times larger in file size than the data for the JAVA Applet.
If the overhead of the size of the Applet is included, (which is downloaded
once) then after viewing six diagrams the amount of data downloaded for
the JAVA option will be less that the equivalent GIFs. The JAVA approach
also includes all the information about the attributes and their values for
each object and link information to other diagrams. This comparison is
therefore only useful as a guideline. In terms of speed the time to display a
diagram was broken down into the browser load time, the Applet load time
and the drawing speed. This was compared to typical load times for a GIF
file e.g. for a 14.4id?s Modem, a 10KB GIF file takes 7 seconds. This gave a
typical target of "a few seconds" to display the diagram. Depending on the
complexity of the diagram this was achievable.

In summary, the viewing mechanism allowed processes to be published

ICL Systems Journal November 1997 253

successfully, allowing access to all, irrespective of platform. No special soft
ware or licence (apart from the browser) was needed on the client machine
and, because JAVA uses UNICODE characters, it supports all language re
quirements (e.g. Japanese Kanji characters).

4. Structure for editing models
There are two JAVA classes in the Applet which allow diagrams to be drawn.
The first class will only allow viewing of the diagram as described so far.
The second class, which is a subclass of the first, will also allow editing. If
the HTML data names the second class, the Applet will start in view only
mode but there is an option to allow the diagram to be edited. To control
editing of the diagram a component called the Model-Manager is run on
the Web server. This will listen for calls from many clients and when a
request to edit arrives, it will lock the requested file and stop other clients
from editing that file. Once the client has finished editing that diagram it is
saved through the Model-Manager back into the file system on the Web
Server. This is shown in Figure 3.

This facility to edit models now puts the capability to edit the process
model on everyone's desks provided they have Internet/Intranet access
and a Web browser. Demonstration models can be put on a Web server and
potential customers can test it out without needing special "demonstra
tion" software. A process modelling service could also be provided by rent
ing out space on a Web server where all the models are saved. Note that
because of the client/server architecture, if the Applet comes from a Web
server, files will be saved back to the Web server and therefore provide a
controlled environment for developing models. The Web browser can load

ICL Systems Journal November 1997254

HTML files from the local machine and, in this mode, a local copy of the
Model-Manager is needed to save the data. This way of working allows
“off-line'' or local process modelling.

The Model-Manager can also link to a database so that the information
held in each HTML file can be shared within a model. This structure is
shown in Figure 4. Whenever a diagram is saved the Model-Manager popu
lates the linked database with the same information that is stored in the
HTML files. The HTML files are retained for speed, so that diagrams can
be browsed quickly without needing to open and query the database. The
database link is built from the Java Database Connectivity (JDBC) package.
This allows the Model-Manager to link to any registered ODBC or SQL
compatible database. It has currently been tested with Microsoft Access. If
no suitable database is provided, the Model-Manager will continue operat
ing but will not support the sharing facilities described next.

Each diagram that is created is assumed to be self contained in that an
object called X on one diagram is separate from another object called X on
another diagram. However, with the database, objects can be shared be
tween diagrams. There is one diagram where the object is defined, but on
other diagrams, the Applet can fetch the definitions from the database of
other existing objects. These can then be added to the current diagram.
These objects can be linked (to/from) and moved around but they are only
references to the real object definition on another diagram. The user is
therefore not allowed to edit the attributes of this object reference.

By using an external "standard" database to store all the process infor
mation, it becomes very easy to integrate the information with other sys-

ICL Systems Journal November 1997 255

terns. This openness allows a corporate asset of process models to be built
up where standard database reporting utilities can be used to access the
information. The database also allows consistency to be maintained be
tween different diagrams. The database and Web server components are
the only components which will affect the performance as models become
larger and larger. This architecture is expected to cope with models con
taining many thousands of diagrams.

5. The Meta Model
When diagrams are created through the JAVA Applet only certain types of
objects can be created and only certain links (or lines) can be added be
tween objects. Also, the way objects and links are displayed on the dia
gram depends on the types of objects and links. This information is called
the Meta Model and is also stored in the HTML file. This means that differ
ent diagrams can be based on different styles of editing. The Meta Model
(see Figure 5) will describe the types of objects that can be created and their
attributes. It also describes the types of relations that can be created. For
example, there may be a class of object called a "Process" and a class of
object called a "Data Item". Instances of these types can therefore be cre
ated. There may also be a relation class called "Outputs" which allows
links from a "Process" to a "Data Item". This would therefore allow a link
(relation) to be created from an instance of "Process" to an instance of "Data
Item". Unless other relation classes were defined, it would not allow links
between one instance of "Process" and another instance of "Process". To
ensure the logical and presentation information is separated, each "visual"
is defined by name for the object classes and relation classes and the classes
refer to the visual information. For example, the "Process" class may refer
to the "ellipse" visual. The "ellipse" visual will describe all the graphical

256 ICL Systems Journal November 1997

Figure 5: Structure

information needed such as size, colour, text size, font, etc.. Graphical in
formation about the lines between two objects is handled similarly.

6. Modes
When a diagram is viewed in Process Wise Communicator it can be in one
of three modes: Read Only, Read Only + Request and Read/Write. The
modes can be changed as shown in Figure 6.

Figure 6: Changing Modes

7. Editing Diagrams
When a user wants to edit a diagram, the Model-Manager is contacted

and, if the diagram is not already being edited, the Applet is allowed to
switch to edit mode. This causes a toolbar of available types of objects to be
displayed down the left hand side. New objects can be created by simply
clicking on the required toolbar icon. This causes a new instance of this
type of object to be drawn on the screen which the user can move around
using the usual mouse dragging operations. The new object can be linked
to other objects by using the Link Mode and dragging out the required
lines. Only lines (relations) which conform to the relation types described
in the Meta Model will be drawn. Other attempts will produce error mes
sages about incorrect lines. These operations together with delete allow
the user to build up a diagram of different interconnected objects based on
a set of object types and relation types. An example diagram is shown in
Figure 7.

ICL Systems Journal November 1997 257

This diagram shows that each object that is created can have up to three
"hot spot" icons below the object. The right hand "notebook" icon is used
to access the attributes, the middle "down arrow" icon is used to create or
go to an expansion (or sub) diagram and the left hand icon is used to navi
gate to any other required Web address (URL).

To capture further information each object has a set of attributes (possi
bly different for different types of object) which can have specific values.
Three of the attributes have special meanings for the Applet. The first is
"name". If the value of this attribute is changed, the text name of the object
on the screen is changed. The second is the "expansion" attribute. If the
"expansion" attribute is changed, the new value is used as the URL to go to
when the centre "down arrow" icon is pressed. This attribute is normally
updated automatically when a new expansion is created by clicking the
"down arrow" icon while in edit mode. Editing the attribute directly al
lows a manual mechanism to link up otherwise disconnected diagrams. If
the "expansion" attribute was previously empty, the shape of the object
may change on the screen. This is because the Applet allows two alterna
tive "visuals" to be used; one if there is no expansion and another if there
is. The Meta Model may be set up to use the same "visual" in both cases, in
which case there will be no difference on the screen. The third is the "link"
attribute. If the "link" attribute is changed, the new value is used as the
URL to go to when the left "world" icon is pressed. In the context of the
Applet the URLs can be any valid URLs such as "http:", "mailto:", "news:",
"ftp:", "javascript:", etc.. This allows the process diagrams to be linked to
supporting documentation or other multi-media information. The javascript

258 ICL Systems Journal November 1997

Figure 7: Example of editing

URL can allow the diagram to invoke some external functionality, written
in javascript, which can use the JAVA APIs described in the appendix to
carry out specific tasks on the process model data. For example, a javascript
program can be created to add up all the values in the "cost" attributes in
the diagram. Javascript can also be used to create programs which allow
alternative ways of inputting and displaying the process model informa
tion. For example, a tabular data entry mechanism can be produced which
updates the attributes stored in the model. For published quality processes
the use of the "mailto:" URL is very useful in providing a feedback mecha
nism where comments on the process can be automatically e-mailed back
to the author.

8. Database Tables
When a model is saved the following tables are updated in the database by
the Model-Manager.

Objects
Relations
Object Classes
Relation Classes
Object Visuals
Relation Visuals
Views

These are generic tables since there is no a priori information about the
types of objects which will be in the model. Attributes for a particular type
(class) of object are therefore stored in one field as a list of name/value
pairs. The "Objects" table contains references to the "Object Classes" table
which in turn contains references to the "Object Visuals" table. The "Rela-

Figure 8: Example Database

ICL Systems Journal November 1997 259

tions" table refers to two objects in the "Objects" table and the name of its
class in the "Relation Classes" table. The "Relation Classes" table refers to
the two types of objects which could be linked by references to the "Object
Classes" table and also a reference to the "Relation Visuals" table. The
"Views" table is a triple of view name, object reference and position infor
mation. An example Access database is shown in Figure 8.

9. Support for Internationalization
JAVA supports 16 bit UNICODE characters as standard within the language
so support for different character sets is built in. Where Java communi
cates with files or other applications the translation to/from UNICODE is
as shown in Figure 9.

One important feature of this structure is that the Model-Manager will
be running in the same locale as the stored HTML files on the Web server.
It can therefore encode the UNICODE characters in the right character en
coding. The client can be running in a different locale to the server and the
data will be encoded correctly. Provided the client has an appropriate font,
editing can be carried out anywhere.

Resources Table
Provided with the JAVA Applet is a resource file which contains a table of
all the strings which are used in the Applet. This JAVA file can be copied to
the locale specific name and the strings translated. This locale specific named
file can be added to the JAVA Applet and it will now display using that

260 ICL Systems Journal November 1997

Figure 9: Translation to/from UNICODE

information when it runs in that locale. Note that there is still only one
version of the software and it will choose at run-time which language to
use depending on the locale of the client machine. This means that a Japa
nese person in Japan looking at a model on a Web server in the UK, will see
all the buttons and messages in Japanese. The model itself will still be in
English. Below, in Figure 10, is shown an example model running under
Netscape1'1 on a Japanese PC.

Figure 10: Example Model running on a Japanese PC

10. Future
One of the more obvious applications for process modelling is to provide
the necessary input for a Workflow or Process management system. This is
the current focus of development in partnership with a US based computer
manufacturer who has launched a new Workflow and Process Engine. The
ICL group, ProcessWise, where this work was carried out, no longer exists
so the development work will probably continue outside ICL.

11. Conclusions
This article has described a new way of modelling processes based on the
latest JAVA and Internet technology. This solution is commercially viable
and is currently in use by several companies. The benefits of easy access
ICL Systems Journal November 1997 261

and providing process capabilities on everyone's desks have also been de
scribed.

Acknowledgements
The author would like to thank Ian Horton for his unfaltering belief in the
above approach and his skill in selling these ideas to customers. The au
thor would also like to thank all the customers who were bold enough to
take up this new technology.

Appendix
APIs
The ProcessWise Communicator provides several public interfaces which
can be called from outside the JAVA Applet. These can be used to extract
data and store data back in the Applet. The following methods are visible
from the "pwcomm" Applet:

getAttribute— this method takes the object and attribute name as
parameters and returns the attribute value. The object and attribute
must exist.
setAttribute—this method takes the object name, the attribute name
and the value. If the object and attribute exist the value is set.
f etchlnstances—this method takes the name of a class of object and
fetches all the instances of that class. The instances are stored in a table
within the Applet and nothing is returned. Each instance can be re
trieved using getNextlnstance.
getNextlnstance—this method takes no arguments but returns the
next object name stored in the table created by f etchlnstances or
f etchRelated. If there are no more objects the empty string is re
turned.
fetchRelated—this is similar to f etchlnstances in that the result
is stored in a table in the Applet for retrieval by getNextlnstance.
This method takes the name of the start object, the name of the type of
relation to follow and a boolean flag. If the flag is true, the relation is
inverted and therefore the start object name will be treated as the end
object name and the objects returned will be the start objects.
getSelected—this method takes no arguments but returns the cur
rently selected object or the empty string if no objects are selected.

Server Functionality
The server functionality is provided by the Model-Manager which is a JAVA
application. This application is run in a continuous loop on the Web server

262 ICL Systems Journal November 1997

(or locally) waiting for calls from different Applet clients. The following
calls can be received from the client:-

NEW—this is used to create a new sub-diagram. The client passes the
name of the parent diagram and the MASTER page to be used as a
template for the new diagram.
EDIT—when an edit is requested, the name of the requested HTML file
is checked in a "lock" table. If the file is already locked a message is
sent back to the client refusing the edit request. If it is not locked the
filename is entered in the lock table and the edit allowed. The lock
information is held internally in the Model-Manager and therefore re
starting the Model-Manager will reset all the lock information.
SAVE—when the client saves or publishes a diagram this command is
used. All the Applet data is passed from the client which the Model-
Manager saves into the HTML file. The Applet data is also converted
into SQL statements which are used to update the connected database.
The old HTML file is backed up to a file with a ".bak" extension before
the new HTML file is created. Information in the HTML file other than
the Applet data is preserved when the file is updated so that headers,
footers and other HTML information can be in the files. For example, a
MASTER page could contain the Meta Model for a diagram but also
javascript functionality and company standard page layout informa
tion including logos etc.. This will then be used in all new diagrams.
Once a diagram is saved it is unlocked.
CANCEL—-if the Applet is destroyed without the diagram being saved,
the cancel command is used. This causes the Model-Manager to un
lock the file to allow other users to edit the diagram.
SELECT-—this command causes a query on the database to find all the
instances of a particular type of object. The list of objects found in the
database is passed back to the client.
GET—this command is used to extract the details (attributes) of a par
ticular object from the database. The details are sent to the client so that
the object may be created on the screen.

Biography
Dr. Peter Davies is a Senior Consultant within ICL Services and has been
active in the area of Business Process Modelling for ten years. He has been
involved in several UK and European funded research programmes ad
dressing different aspects of process modelling. He developed the com
mercially available process modelling product, ProcessWise WorkBench,
in 1992. He has a first class honours BSc in Computing and Electronics
from Durham University where he also completed his PhD in 1986.

ICL Systems Journal November 1997 263

M obile A p p lica tion s for U biqu itous
E nvironm ents

Jean Bacon and David Halls

University of Cambridge Computer Laboratory, Pembroke Street,
Cambridge, UK

Abstract

Future ubiquitous computing systems are predicated on plenti
ful net-work bandwidth. End-systems for this mass marketplace must
be cheap and, above all, simple-to-use. Proposals are already being
made for this style of ubiquitous environment, augmented by proc
essor banks and storage services.

We have exploited network bandwidth to make both clients and
servers stateless, that is, needing to maintain no application-specific soft
ware. All persistent knowledge about applications is maintained in
the documents they exchange. We have achieved this as one style of
use of a platform which supports mobile and distributed computa
tions. The platform allows mobile continuations to be used to termi
nate an application at any point, transfer its state in the form of plain
text, and resume it elsewhere.

Advantages of the approach include trivially simple client soft
ware, the ability to maintain and upgrade applications transparent
to their clients, client-server session maintenance, application mobil
ity, server reselection in response to user mobility or server overload,
application history logging and the ability to resume an application
from any point in its history for backtracking or failure recovery.

The platform is fully implemented as is its support for stateless
clients and servers. We illustrate the approach by means of examples
based on Web servers.

1. Introduction
1.1 Motivation
Ubiquitous computing systems involve many machines. For deployment
on a large scale, each should be as simple and inexpensive as possible. We
believe that end-user machines should ideally do nothing more than dis
play information, rather than run applications loaded from the network.
Obtaining an application (from a storage server) should be a simple matter
of selecting from a catalogue. It is difficult to store state or maintain execu
tion threads on servers permanently for each client since their number is
potentially unbounded, as is the duration of any client-server session. Stra
tegic use should therefore be made of powerful processing servers that pro

264 ICL Systems Journal November 1997

vide execution facilities only.
Commercial development of the network computer [Oracle, 1996] has

achieved simpler workstations, for example the JavaStation [Sun, 1996a]
and the Acorn Network Computer [Acorn, 1997a], but at the expense of
making servers more complex. All permanent storage is associated with
servers and network computer clients download applications from them.

As computers become faster, it becomes feasible to build inexpensive
machines from commodity hardware which act as general processing serv
ers [Becker et al., 1995], [Anderson et al., 1995]. Their only task is to read
code sent to them by clients, execute it and return the results. Knowledge
about application functionality can be held elsewhere and sent to them.
Permanent storage is provided as a separate facility; they simply provide
processors and memory on which anyone can rent time. This paper shows
how applications can be written to execute on such machines but not to
reside there continuously during their lifetimes.

Interactive applications without a real-time requirement do not need a
long-term presence on client machines. They only require to interact at
certain times with the user through an interface that is perhaps specified in
a document mark-up language. Client machines for these applications can
be simpler than network computers because they do not have to run new
software; the applications are run on servers and user interfaces are sent to
the client when appropriate.

It would be inappropriate to run interactive applications on general
processing servers because they would require a permanent presence there
while waiting for the users' input. The number of such users could be large
and too many applications permanently residing on a server might result
in it being overloaded or charging clients for excessive use. In the case that
a client does not return with the user's input, its state would be left resid
ing on the server indefinitely.

Network bandwidth is becoming more plentiful. Video-on-demand is
planned for the home [Acorn, 1997b], which requires data transfer rates in
the order of 3 megabits per second. With high-speed networks, it is feasible
to hold application state in the messages exchanged between client and
server.

1.2 Exchanging application state
Servers which support state-saving of whole programs can save applica
tions as dormant parts of the user interfaces they generate. We have built
applications which move to the server when they need to be executed and
move to the client as dormant state when they need to interact with the
user. Servers are stateless because they hold no permanent knowledge of
applications. User interfaces (documents) are stateful because they are used
to store application state.

ICL Systems Journal November 1997 265

Figure 1: Application residence
(a) On a server
(b) On a client
(c) On both client and server
(d) Alternating between client and server

Any application running on a computer has a state. The state of an
application that runs to completion on a single machine is held at all times
in the memory and processor of that machine. A client-server based appli
cation involves interaction between a client process and a server process
over a network. Its state can at any one time be held in a combination of the
following three locations:

The client: A process on the client side might be running.
The network: The client may have dispatched a request or the server
may have returned some pertinent results. Communication also passes
through their operating systems.
The server: A process on the server side might be running.
Where application functionality is maintained varies according to re

sources available on the client side, server side and in the network. The
complexity of the application and of the data sent across the network are
also relevant. In current systems, knowledge of application functionality
persists in the client side, in the server side or in a combination of both (see
Figure la-c). The term session is used to denote an instance of related inter
actions (and connections) between the client and server components. Ses
sion state may be retained in the client, in the server or in the data trans
ferred between the two.

We have designed and implemented a mechanism for remembering an
application session's state in information exchanged between the comput-

ICL Systems Journal November 1997266

ers used to provide client side and server side computation. Persistent
knowledge of an application is held in neither the client nor in the server
(see Figure Id).

Exchanging application state between client and server places a greater
burden on the network than holding it permanently in client or server.
Distributed systems that have large numbers of lightweight client machines,
high bandwidth networks and servers that must handle many requests,
and are therefore supplied with substantial processing power and memory,
are particularly suited to this technique. Ubiquitous computing environ
ments have precisely these characteristics.

Section 2 shows how a mobile code system can be used to capture and
save application state. Section 3 discusses related work. Section 4 discusses
the security implications of our approach. Section 5 describes an imple
mentation made using the World-Wide Web. Section 6 discusses the rela
tionship between an application and the user interfaces into which its state
is embedded. Section 7 presents an application written using the Web-based
implementation that embeds its state in Web pages and performs only tran
sient computation on servers. Section 8 shows how the ability to save ap
plication state can provide a powerful logging mechanism. This can be
used to resume an application from any saved state either to recover from
failure or to backtrack within the application. Section 9 discusses the ad
vantages of being able to move application state around once it is saved
into user interface documents. Examples are that a mobile application can
rebind to a new server after moving or when a given server appears to be
operating under heavy load. Also, automatic load balancing would be easier
to build for anonymous processor banks than for dedicated servers. Fi
nally, Section 10 summarises and concludes the paper.

2. Exchanging Application State with Mobile Code
2.1 Saving state using higher-order mobile code
A mobile code system is ideal for placing application state in data sent be
tween a client and a server. Higher-order mobile code systems, which sup
port state-saving of closures1 and continuations1 2, allow (parts o f) applica
tions to be transparently saved into byte-streams. Applications can be re
stored and restarted from saved byte-streams.

We have gained experience from building and deploying our own mo
bile code system, the Tube [Halls, 1997]. It provides a transparent and port
able method for saving applications written in Scheme and is briefly de
scribed here.

1A closure is a function together with its defining scope.
2A continuation is a closure that represents the current state of execution. Calling a continua
tion results in the computation resuming from where the continuation was captured.

ICL Systems Journal November 1997 267

For a host to be able to send and receive mobile code it must run an
instance of a Tube site. Programs are written in the Scheme language; they
are transmitted over a network as marshalled expressions. If tagged as
executable, they are passed to an interpreter for execution. The marshal
ling respects duplicate objects and cyclic references. We are able to trans
mit the full range of expressions, even closures and continuations. This
means that programs can create arbitrary functions and send them else
where, with their closing environments.

Through being able to transmit continuations, a program can be stopped,
moved and restarted elsewhere in a single call. The Tube does much more
than just execute byte-code compiled scripts remotely—programs can
modify themselves, create and dispatch other programs and treat their func
tions and state as first class, transmissible data.

Mobile programs are given a special environment within which they
can access only certain symbols. They execute in a restricted interpreter
and are only allowed to access those functions that the platform's owner
makes available.

Tube sites are multi-threaded. Full access to a POSIX threads interface
provided by the underlying operating system is given to programs. A
noticeboard is provided, which a program can post messages to or read
messages from. Data values can thus be left by a mobile program for oth
ers that may arrive later to use. The noticeboard can be divided into differ
ent areas; an access control list is associated with each.

Tube sites can dynamically load at run-time compiled libraries of code
and call functions contained in them. This allows facilities to be added
without having to stop and recompile.

A user interface toolkit has been integrated with the Tube. Functions to
create and manipulate widgets are available to programs. We have also
enhanced the toolkit with the ability to return the state of any user inter
face, along with any call-backs registered on widgets, as a series of bytes. A
corollary function takes a saved user interface and recreates it in a visible
form. This allows a mobile program to create user interfaces on one ma
chine and retain them as embedded state when it moves. We have also
written a Netscape plug-in that allows the Tube to be used for writing
Applets embedded in World-Wide Web pages.

The core state-saving functionality of the Tube is written entirely in
Scheme. It is portable across Scheme interpreters and compilers, and thus
also across operating systems. Code to interface with other systems, such
as POSIX functions or a user interface toolkit, is not portable between oper
ating systems. Currently, the implementation is UNIX-based. We use the
Bigloo [Serrano and Weis, 1995] Scheme compiler/interpreter and the
XForms [Zhao and Overmars, 1997] user interface toolkit. Versions are run
ning on DEC Alphas under Digital UNIX, SUN SPARCs under Solaris, Intel

268 ICL Systems Journal November 1997

Pentiums under Linux and HP 9000s under HP-UX.
Besides stateless servers, the Tube has been put to use in building dis

tributed object systems [Halls et al, 1996], ATM network control [Halls and
Rooney, 1998] and supporting mobile users of multimedia applications
[Bates et al, 1996]. More details on the Tube and its uses can be found in

[Halls, 1997].
Figure 2: Application state in documents

2.2 Running applications on stateless clients and servers
Using higher-order mobile code, applications can be marshalled for saving
to persistent store or transmitting over networks. This can be used to em
bed client-server applications in a user interface displayed at the client when
input is required. The following progression is proposed for such an appli
cation so that it does not impose a permanent burden on the server and the
client does not have to run any new code (see Figure 2):

1. The user simply clicks on the name of an application in a document
browser. The browser extracts the application from the document and
sends it to a generic mobile code server for execution there. The appli
cation starts up on the server.

2. If execution can proceed until termination without further user interac
tion, results are sent back to the client (browser) and the application
terminates. If on the other hand user interaction is required, the appli
cation embeds its current state in a document sent back to the client
asking for some input. The application then terminates itself at the
server. It has become dormant and moves back into the client.

3. The client renders the document it receives, allowing the user to enter
the required input. When the input has been entered, the user simply
clicks on a button to submit it. The client extracts the application's state
from the document and sends it, along with the user's input, to the
mobile code server. The mobile code server restarts the application in

ICL Systems Journal November 1997 269

its previous state and gives the user's input to it.
4. The application sends itself and some results to the client and the cycle

repeats.
There are two points to note here. Firstly, the application's state always

accompanies its point of control. That is, when the user is providing input,
the application is there with the document in the client; when the user has
provided input and is waiting for the server to respond, the application has
moved there to do the processing.

Secondly, the application can store different states in the document sent
to the client containing the results. Each one might represent the applica
tion following a different path of execution. The user controls which one is
sent back to the server for restoration through the input he provides.

A client-server application using this technique has the following char
acteristics:

• Clients are lightweight and stateless. They only have to render results
and submit embedded data to servers. Therefore, they will not be suit
able for user interfaces with real-time requirements (e.g. three-dimen
sional graphics viewers, multimedia presentations and games).

• Servers are completely stateless.
• Documents exchanged between clients and servers are heavyweight.

They are stateful documents. This is not necessarily a problem if net
work resources are plentiful.

• A document sent to the client replaces the previous one. If the docu
ment's mark-up language does not support splitting it up into areas
that can be updated individually, the user will see the whole display
being refreshed each time. This might be a problem for applications
that require finer grain control of a user interface.
Using stateful documents is not proposed as a way to do all client-server

computing. Rather, it matches specific requirements—non-real-time appli
cations that have to operate in distributed systems with very lightweight
clients (e.g. display tiles), servers with large processing capabilities but
without dedicated storage to maintain many persistent application states
and a high-performance network (see Figure 3). Servers might not want to
maintain application (session) state both because of storage limitations and
due to the nature of the applications likely to be run on them—they might
be expecting a large number of clients to connect for example.

To support stateful documents, a server has to provide facilities for ex
ecuting applications and saving, marshalling and unmarshalling their states
to and from the network. This places an extra load on them.

The rest of this paper discusses the use of stateful documents to make
servers stateless in more detail. An implementation made over the World-

270 ICL Systems Journal November 1997

Wide Web and some experiments made with it are presented. First, we
provide a context by discussing related work.

Figure 3: Stateful documents, stateless servers and lightweight clients

3. Related Work
The design trade-offs explored in the 1980s for LAN-based distributed sys
tems for the workplace are being revisited for the ubiquitous environments
of the 1990s. Diskless workstations were used in the V system at Stanford
[Cheriton and Zwaenepoel, 1983] and the idea has reappeared in the net
work computer proposals. The Cambridge Distributed Computing Sys
tem (CDCS) was the first to investigate the potential of a "processor bank"
[Bacon et al., 1990]. The CDCS processor bank comprised heterogeneous
hardware, to allow for system evolution, and support for loading heteroge
neous software into processor bank machines. Our approach has this func
tionality but employs a different mechanism.

Simple mobile code can be used to install software on client and server
machines as it is needed. This is just a convenience, comparable with in
stalling compiled binaries from traditional transportable media. The fol
lowing issues remain:

• Application-specific code has to persist on clients and/or servers
• Clients and/or servers have to maintain session state (whether in the

form of data or program threads)
PYTHON [CNR, 1997], ML [Rouaix, 1996], JAVA [Arnold and Gosling,

ICL Systems Journal November 1997 271

1996] and many other languages can be sent to run on client machines
through the World-Wide Web. The TACOMA project has allowed its mo
bile processes to be uploaded from clients to servers via Web documents,
where they are launched and carry out their tasks [Johansen et alv 1996].
Jeeves, the Java Web Server [Sun, 1997], similarly allows a server dynami
cally to load functionality. Neither considers subsequent relocation to the
client of processes at the server.

Some World-Wide Web services (for example indexers like AltaVista
[Seltzer, 1996]) have been able to eliminate the need to run application-
specific code on clients and the need to maintain state on the server by
returning results in HTML and embedding session state inside those re
sults. The Web client re-submits the state when the user clicks to see more.
This is essentially the method described above in Section 2.2 except that by
using higher-order mobile code:

• arbitrary applications can be saved into documents by marshalling con
tinuations—no special code needs to be written—and

• no prior or persistent knowledge is required on the server of what the
user wants to run.
Web* [Almasi et al., 1995] allows scripts to be embedded inside World-

Wide Web pages and executed by a server. When a page containing em
bedded scripts is requested from the server, a new page is formed for re
turning to the client by substituting each script with the output that results
from executing it. This allows page elements, for example the current date,
to be dynamically generated. Web* is similar to the Common Gateway
Interface (CGI) [W3C, 1997], which allows scripted generation only of whole
Web pages.

Web* also provides support for returning a script's state in Web pages.
The state is then given to scripts embedded in pages subsequently retrieved
by the user. However, Web* differs from the work described in this chapter
in the following ways:

• Web* can only save variable values in Web pages. This means that a
script's author must explicitly name global variables to be put into a
Web page. The implementation described below in Section 5 provides
a transparent mechanism to authors for saving state. It can save a pro
gram's execution state in a single call.

• Web* is page-oriented whereas the implementation described below is
program-oriented. Web* applications have to be split into parts that
are separately defined as scripts in Web pages. The implementation
described in Section 5 allows programs to be written normally and pro
vides a facility for saving their state simply in pages that they generate.
User interaction via Web pages is implemented in a way that is inte
grated with program execution (see Section 6). Using Web*, programs

ICL Systems Journal November 1997272

have to be adapted to fit the Web's model of interaction; the implemen
tation described below adapts the Web to become part of program flow.

• Web* assumes that pages containing scripts already exist and continue
to exist at the server. This chapter describes a technique that places no
such burden on the server—no permanent knowledge of an applica
tion is held there.
The Network Computer [Oracle, 1996] with its thin clients and applica

tion servers is a vision of the future particularly relevant to the work de
scribed here. However, network computers have to be able to execute arbi
trary code downloaded to them. This makes them more expensive than
they would otherwise be and is not always necessary.

The rest of this paper discusses sending applications to the server when
they need to execute and putting them dormant into the documents sent to
the client when user input is required. First, we discuss the security impli
cations of our approach and then how we have applied it to the World-
Wide Web.

4. Security
The security both of application state that is transferred over the network
and of servers that execute arbitrary application state must be ensured.

The fact that application state is placed alongside sensitive data leads
to the concern that should untrusted parties breach security, they obtain
not only the data but also code that can be used to interpret it. We argue
that if someone is prepared to expend considerable effort to obtain some
sensitive data then they have the wherewithal to make use of it, with or
without the associated code. The necessity to assure the security of net
work traffic is not unique to our approach; data is vulnerable in any large-
scale, ubiquitous environment used for personal or financial purposes.

The security of executing code delivered over a network is an impor
tant research area. In our environment, application state that is sent over
the network to general processing servers must be denied access to any
sensitive resources held there.

The prototype implementation described in Section 5.2 implements only
very basic security, that is to isolate application state from sensitive resources
by executing it in a restricted environment. This is done in user-space, which
is inadequate for a production system. There should be operating system
support for this [Zakinthios and Lee, 1997] to help avoid naive implemen
tation in user space [McGraw and Felten, 1996], [Felten, 1997] and to pro
vide a flexible system that is secure from the lowest level upwards. Cur
rent practice involves users having to trust software vendors that their code
is safe; this applies as much to applications installed from CD-ROM as it
does to code delivered over the network. Moving towards lower-level sup

ICL Systems Journal November 1997 273

port for restricted environments of execution would allow more software
to be run more securely [Ali-Reza et al., 1996].

Work on Java is addressing the security of executing code delivered
over the network [Gong, 1997]. We can learn from this work, although
there is still a debate about the merits of restricted environments of execu
tion [Sun, 1996b], [Wulf et al., 1997] and research into Java security is on
going [Gong et al, 1997], Some recent work [Farmer et al., 1996a], [Farmer
et al., 1996b] has addressed the notion of trust in mobile code systems. Other
work [DARPA, 1997], [Cardelli and Gordon, 1997] has started to examine
fundamentals of mobile code security.

We believe there are some things which help to mitigate the security
concerns of the work described in this paper:

• Users' machines are dumb clients of servers. They simply display data
and do not install any code from the network.

• Processing servers maintain no persistent application state nor have
any requirement for a persistent store. Once a server has finished ex
ecuting some (part of) an application, it can return to the same machine
state it was in before starting. If necessary this machine state might be
defined in read-only hardware, so that it cannot be corrupted by appli
cations. This would isolate the effects of security breaches by individual
applications from one another.
To ensure that a server always returned to its 'clean' state, a time limit
would have to be imposed on executing applications. This would be
necessary anyway, to ensure that an application's use of processing time
could be limited.
A server able to restore and execute many application states in parallel
on the same hardware would not be able to return to a 'clean' state after
executing a particular application since there may be other executions
in progress. In this case, support would be required to prevent applica
tions from interfering with one another. As mentioned above, it is pref
erable that the operating system provides this support.

• Any resources such as databases or commonly used libraries of code
can be deployed on different machines from the servers. Applications
executed on the server communicate with these resources using tradi
tional methods such as messaging or remote procedure call. This iso
lates the effects of security breaches on general processing servers from
the rest of the system. We use these servers to provide only processing
for applications when they need it and no more. For increased security,
access to other resources can be made off-machine across the network.
We believe that the security requirements on single-tasking processing

servers are comparable to those on storage servers across other architectures

274 ICL Systems Journal November 1997

for ubiquitous systems.
From the user's perspective, in order to use a very lightweight client

machine, he must trust a remote general processing server to execute the
applications he wishes to use. We argue that users already put their trust in
the applications they use and the programmers that write them. We also
argue that running applications remotely over the network involves no
higher level of trust than installing and running them locally on one's own
computer.

5. Application to the World-Wide Web
5.1 The Web as a testbed
The Web is suited for stateless servers and stateful documents because:

• A Web server potentially deals with requests from large numbers of
diverse, widely distributed clients and maintaining their states in one
place for long periods of time is burdensome. Their needs cannot be
generalised and their physical connections may be unstable.

• The Hypertext Transfer Protocol (HTTP) [FGM+ 97] is stateless so serv
ers do not by default maintain information about clients.

• Browsers are lightweight clients which simply display documents writ
ten in the HTML markup language.
In the system proposed here and detailed in the next section, servers

provide general processing to browsers. They are written to treat requests
for pages as programs to execute and send back to browsers the output of
executing those programs. They forget about a program once it terminates.
Browsers send applications to a server and then display their results as
they are produced. If applications save their states in the results, they can
be restarted at the server when the user provides input in the browser.

This allows for an application's state to be maintained whilst keeping
both browsers and servers stateless. A server remembers nothing about
the applications it executes when they finish running there and are sent
ICL Systems lournal November 1997 275

Figure 4: Counter in a stateful document

back to the client. Browsers simply display the pages that servers return -
they just need to render mark-up. Application state is contained in the
links and forms contained in the pages. When the user provides input, the
state is sent to the server and the application starts running again. It can
then repeat the process by returning a new Web page containing new state.

Putting application state in Web pages increases the size of data sent
between browser and server (see Section 7 for an indication of how much).
Putting application state in documents is suited to fast networks. When a
computation has to reside on the user's machine (e.g. for real-time graphi
cal displays or polling user interfaces), then some application code must
execute on the client side. Putting application state in documents is not
proposed as a replacement for client-side execution. However, it does pro
vide an alternative that places computation on the server side, does not
require servers to maintain session state or a thread of execution for each
client and works with very lightweight clients.

5.2 Implementation
An implementation has been made using the World-Wide Web as a con

text for client-server interaction. It provides lightweight clients in Web
browsers (text or graphic) and a simple document mark-up language in
HTML (that can be used for embedding application state).

Web browsers expect to communicate with servers that understand
HTTP. An HTTP server has been written with the Tube higher-order mo
bile code system. It is installed simply by sending it to a Tube site.

Once installed, Web browsers can connect to this server. It treats any
requests for pages it receives as (mobile) code to execute. The code is ex
ecuted and any output produced sent back to the browser. This allows the
Web to be used to provide convenient access to the Tube's compute servers.

The programs sent by browsers as page requests act as transitory Web
servers; they run on the Tube Web server and disappear after producing
their tasks' output as Web pages. They can be complete Web applications
that implement an active and stateful user interface to generic services pro
vided on the server side. They are novel because they are able to embed
(part of) themselves into the documents they return to their browsers. They
can do this because they are written as higher-order mobile code and can
marshal arbitrary closures and continuations as plain text. The Tube mo
bile code system provides this facility.

The states are made part of links within HTML pages returned to brows
ers. Link addresses are set to point to the Tube HTTP server. After an
application finishes sending its HTML document back to the browser, it
terminates. The states it embedded in the document represent potential to
execute again.

When the user clicks on one of the links in the browser, the embedded

276 ICL Systems Journal November 1997

state becomes a request to the Tube HTTP server and the application starts
running there again. It can then repeat the process by returning a new Web
page with new states embedded in it. To summarise, an application runs
on the HTTP server until interaction with the user through the client browser
is required. At this point, it is removed from the server and its dormant
state passed back with the interface presented to the user. After the user
enters his input, it is sent back to the server with the application, which is
restarted.

In the current implementation, a whole new HTML document is re
turned to the browser so that the user sees the whole page being updated.
One might be able to achieve finer grain control over update by using
Netscape's non-standard frame or layer enhancements to HTML.

A simple example is shown in Figure 4. It is a monotonically increasing
counter. When started, it displays its initial value, zero. Every time the
user clicks on the Next link, a new page is returned displaying the next
value. This is because the next stage of the computation (that increments
the counter and returns a new page) is stored as a marshalled continuation
in the link. The size of the counter's marshalled state is around 10 kilo
bytes. However, the marshalling format is particularly amenable to com
pression—when compressed, the counter's state is just over 2 kilobytes in
size. Section 7 contains further discussion of application state and the time
it takes to compress and marshal it.

Figure 5: Separation of user interface and application functionality

ICL Systems Journal November 1997 277

6. User Interface and Program Structure
The implementation benefits from the clean separation between user inter
face and application functionality that generating document mark-up pro
motes. That is, an application can proceed with its computation until it
requires user input. It then generates from its data structures a fresh docu
ment to present to the user and waits for input. After the user provides
input, the application can resume exactly in the same state as it was before
waiting. The input can be processed and computation proceed accordingly.

This method of handling user input means that computation is driven
by the application rather than by the user interface. Traditional call-back-
based methods use the user interface to drive applications. The problem
with using call-backs is that a side-effect must be used to note that a par
ticular input has occurred. Subsequent call-backs can then tell what has
happened before. The programmer must maintain some global state that is
side-effected with the application's state each time something happens. Call
back driven applications can be converted into application-driven ones by
using a continuation-passing style [Fuchs, 1996].

For client-server applications, a stateful server that maintains applica
tion threads can support application-driven user interaction by blocking
after sending a user interface to the client until receiving input back from it.
Stateless servers that are enabled by stateful documents achieve this too
because while the user is providing input, the application is dormant and
stored as part of the interface for later resumption (see Figure 5). Program
flow is controlled not only by matching on the input when the application
resumes on the server but also by placing different continuations in differ
ent links; the application is implicitly told which one the user selected by
the state it is resumed in. The actual user interface is separated from appli
cation functionality but the events it provides are handled more naturally
as part of program flow.

7. An Information Retrieval Query Interface
An existing application written in Java [Mills et al., 1997] has been rewrit
ten to use HTML and stateful documents. The Java version uses client-side
presence to remember session state. The stateful document version remem
bers all application state in the HTML document. It does not require Java
support from the Web browser—the text-based Lynx browser can be used,
for example. Neither the browser nor the Tube HTTP server that it con
nects to maintains persistent knowledge of the application.

The interface is shown in Figure 6 displayed by the Netscape Web
browser and in Figure 7 by the text-based Lynx browser. It allows the user
to search a collection of historical material covering the lives and events of
the English village Earls Colne between 1400 and 1750. The COBRA infor
mation retrieval system [Mills, 1997] is used to carry out indexing and search

278 ICL Systems Journal November 1997

ing. The interface has to remember more state than a simple one such as
AltaVista [Seltzer et al., 1996] because it supports relevance feedback. Rel
evance feedback allows the user to mark results that are relevant and present
them as hints to the retrieval system for use in query refinement. A review
of work on relevance feedback can be found in [Frakes and Baeza-Yates,
1992]. A user interface supporting relevance feedback must remember the
complete context of a query; i.e. the user's search terms, search terms sug
gested by the system and any results marked as relevant to the query.

This state and the functionality of the interface must be held somewhere.
The Java version holds them in the client. They could be held in the server
if scripts were pre-installed, implementing the application's functionality,
and space made available for persistent storage of state. The stateful docu
ment version remembers both the application's functionality and query
context in the HTML documents displayed in the browser. At any one time,
the state of the application is contained either in its execution at the server
(in between user interaction), in a document sent to the browser for display
or in a request sent from the browser to the server.

The average size over ten queries of the Earls Colne application's state
when saved in a Web page is 42 kilobytes, which includes ten sets of re
sults. This compresses to just over 7 kilobytes in size. On a lightly-loaded
DEC Alpha running Digital UNIX at 166MHz, it takes about 0.3 seconds to
compress the state and 0.2 seconds to decompress it. Whether it is worth
spending the extra time compressing and decompressing the state depends
on network conditions. For slow connections, it might take more than 0.5
seconds to transfer the extra 35 kilobytes both ways.

The most expensive operations in the current implementation are mar
shalling to and unmarshalling from plain-text representations of program
state. The 42 kilobyte state takes 0.6 seconds to marshal into a document
and 0.7 seconds to unmarshal from one on the same DEC Alpha. Commer
cial implementations would have to optimise these operations. One possi
bility would be to unmarshal program state on demand; that is, a part of
the state would only be unmarshalled when required for execution. This
would be a simple matter of using delayed evaluation in the Tube's Scheme
implementation.

More detail on how the Earls Colne interface is used can be found in
the description of the Java version that requires support for client-side ex
ecution [Mills et al., 1997]. The user can enter queries, see matching docu
ments and terms suggested relevant by the retrieval engine and mark some
results as relevant.

8. Logging
The ability to put all of an application's state inside a document is very
useful for the Earls Colne query interface. By logging the documents re

ICL Systems Journal November 1997 279

turned to the browser, a history of the user's activity can be formed. One
can then jump backwards in the log to a particular query and its context.
For instance, a user might find that he has degraded results over time
through questionable relevance feedback choices and wants to backtrack
to a previous context. All he has to do is reload a previous document from

Figure 6: The stateful information retrieval interface displayed by
Netscape

280 ICL Systems Journal November 1997

the log. A simple annotation facility is provided in case he wants to re
member particular instances of the interface by name.

Figure 7: The stateful information retrieval interface displayed by
Lynx

It should be emphasised that no special support is required here for
logging. The application does not have to undo changes itself in order to
backtrack to a previous state since each log entry is a complete and auto
matically-generated instance. When an entry is restored, it is the complete
application that is restored, with the same context as when it was logged. It
is not just the application's appearance that is restored, because potential
new execution states are embedded as continuations within the user inter
face's hypertext links. Using stateful documents makes logging easy; us
ing code resident in clients or on server machines requires bespoke solu
tions.

Logging can be carried out in the client (by the Web browser) or in the
server (by the Tube HTTP server). If done on the server side, the states can
be sent anywhere for storage—the client may tell the server to send them
back to its local domain or may have contracted storage facilities from a
third party. In the current implementation, the server saves states to disk
and then makes them available for users to navigate via a management
interface.

Web browsers can be made to log applications either by saving docu
ments to disk or by bookmarking their addresses. The latter works because
ICL Systems Journal November 1997 281

application state is contained in links within documents. These links also
contain the address of the server on which the state should be restored.
When one clicks on the link, the browser “goes to" that location, delivering
the state to the server. The application is then resumed and produces a
document. The browser's current location thus contains the application's
continuation, i.e. how the document was produced, and can be bookmarked.

This logging facility might be useful in analysing how a Web applica
tion is used since one can recreate the complete history of its execution.
There is an option in the Tube HTTP server's management interface that
prevents logged states from being logged themselves when they are re
played so that one can view a user's activities without generating copious
amounts of new information. Storage and analysis of logging information
is outside the scope of this research.

Logging can help to cope with failure. Servers can send application
states they receive to a persistent storage service before unmarshalling and
executing them. If a server crashes then it can retrieve from storage (he
states of the applications it was running before the crash. A client (browser)
can send application states to a persistent storage service as well as to a
server, so that it can resubmit them if it crashes.

9. Changing Servers
Keeping all state in documents allows the user easily to move applications
between servers, simply by changing the address of a link. Since servers
keep no application-specific code, any one can be used, wherever it is lo
cated. This is useful if the user has to rent time on servers and a cheaper
alternative is found, or if he moves and wants to use a server local to his
new location. In this case, he can save the document to a file, change the
link's address to the new server's location and simply load it into a browser
at his new location. The server's address might be held in a well-known
location, for instance in a trader.

Another use is for publishing programs. One could list stateful docu
ment Web applications in a Web page. Then either:

• The user saves that page, editing links to fill in his local server's ad
dress. This might be automated with support from the browser and
involve a trader lookup. Or:

• The author might allow his server to be used for priming applications
for use on a user's local server. The user would type in his server's
address and a document containing links ready for launching the ap
plication in his domain would be returned.
Alternatively, the link containing the application's state might be e-

mailed to the user, who would just fill in his local server's address and
point his Web browser to it.

282 ICL Systems Journal November 1997

Figure 8: Embedding external user interfaces in a stateful document

Since browsers download the initial states of applications from a cen
tral site, updating applications with new versions is simple. The new ver
sion of an application is installed at the download site and browsers use it
for sending to a server for execution. This results in the decreased admin
istration costs often cited for Network Computers [Oracle, 1996]—users
cannot corrupt the installation of an application.

Finally, stateful documents have been extended to enable applications
employing traditional user interface toolkits, such as Motif and XForms, to
be launched and suspended from a Web browser. An example using the
Tube's user interface state-saving facility is shown in Figure 8. It is launched
by clicking on a link in which its code is embedded. The dialogue box is
then displayed, which the user can manipulate by typing in a message or
setting the counter.

At the same time, a page is returned to the Web browser which can be
used to stop the dialogue box and place its state into another page returned
to the browser. This page can then be used to restart the box in exactly the
same state, with all of its components working. One can carry on saving
and restoring its state indefinitely.

Just like stateless server Web applications, the dialogue box in this ex
ample can be moved between servers and saved to disk once it is captured
inside a Web page. Its state as it is suspended and restarted can also be
logged. One can also clone its state instead—as many copies of the dia
logue box can then be made as required from the same page.

ICL Systems Journal November 1997 283

10. Summary and Conclusions
Using higher-order mobile code, application state can transparently be
embedded in documents. Making documents stateful can remove the need
to keep persistent knowledge of a client-server application from both client
and server. This is particularly suited to distributed systems with light
weight clients, heavily used servers and high-speed networks; the charac
teristics of ubiquitous environments.

An implementation was discussed that uses a higher-order mobile code
system for executing applications at a server and a networked hypertext
system for moving their states into user interfaces at the client when input
is required. An existing information retrieval interface was re-implemented
to demonstrate the feasibility of the approach.

For ubiquitous environments, the approach compares favourably with
traditional client-server systems which are based on dedicated servers, in
terface trading and RPC. It allows an application to be changed or extended
transparently to its clients. The default is that the most recent version of an
application is acquired from a storage service at the start of a session. Pre
vious versions continue to exist for as long as the sessions which use them.

An application history may not only be logged conveniently but the
history may be resumed from any point in the log if a user wishes to back
track to an earlier state or recover from failure.

Security concerns are comparable with those for alternative forms of
ubiquitous environment, except that clients and servers hold no persistent
state so are less vulnerable to penetration than dedicated servers and stateful
clients. Storage services hold logs which contain sensitive data and must
be protected. Encryption is expected to be available for documents in tran
sit.

The stateful document can run at any server; if a user moves a new
server can be used simply by rebinding to any local server in a processor
bank. Automatic load balancing is facilitated by the ability to select any
server to run a computation.

Most important, the client system need only be able to render the docu
ment interface, a desirable attribute for a ubiquitous environment.

Acknowledgements
David Halls gratefully acknowledges the support of EPSRC for his gradu
ate studentship and both authors extend their thanks to ICL for general
support of their research group.

Bibliography
ACORN (a), "The Acorn Network Computer," Acorn Computer Group,
May 6,1997. http://www.acorn.co.uk/acorn/products/nc/.

284 ICL Systems Journal November 1997

http://www.acorn.co.uk/acorn/products/nc/

ACORN (b), "Acorn Online Media," Cambridge Interactive TV Trial, March
18, 1997. h ttp ://w w w .a co m .co .u k /a co m /n ew s/r e lea ses /1 9 9 7 /m a rc h /
trial.html.

ANDERSON, T.E., CULLER, D.E. and PATTERSON, D.A., "A case for net
works of workstations," IEEE Micro, February 1995.

ARNOLD, K. and GOSLING,]., "The Java Program m ing Language,"
Addison-W esley, 1996.

ALMASI, G., SUVAIALA, A., MUSLEA, I., CASCAVAL, C., DAVIS, T. and
JAGANNATHAN, V , "Web*— a technology to make information available
on the web," Fourth IEEE Workshop on Enabling Technology: Infrastruc
ture for Collaborative Enterprises (WET ICE'95), 1995.

ADL-TABATABAI, A., LANGDALE, G., LIJCCO, S. and WAHBE, R„ "Ef
ficient and language-independent mobile programs," Proceedings of the
ACM SIGPLAN '96 Conference on Programming Language D esign and
Im plem entation (PLDI), pages 127-136, May 1996.

BATES, HALLS, D. and BACON, J.M., "A framework to support m obile
users of m ultim edia applications. ACM M obile N etworks and N om adic
Applications (NOM AD), 1(4), 1996.

BACON, J.M., LESLIE, I.M. and NEEDHAM, R.M., "Distributed com put
ing w ith a processor bank," Proceedings of the Workshop on Distributed
Com puting, a European Update, number 433 in Lecture N otes in C om pu
ter Science, pages 147-161 (edited by Schroder-Preikschat and Zimmer),
Springer-Verlag, Berlin, Germany, 1990.

BECKER, D .J., STERLING , T., SAVARESE, D ., D O R B A N D , J.E.,
RANAWAK, U.A. and PACKER, C. V , "Beowulf: A parallel workstation for
scientific computation," International Conference on Parallel Processing,
1995.

CARDELLI, L. and GORDON, A., "Abstractions for M obile Computation,"
1997. h ttp ://w w w .research .d ig ita l.com /SR C /person al/L u ca_C ard elli/
A m b it/A m b ith tm l.

CNR, Corporation for National Research Initiatives, Grail H om e Page,
March 12,1997. h ttp ://m 0n ty .cnri.reston .va .us/grail/.

CHERITON, D.R. and ZWAENEPOEL, W., "The distributed v kernel and
its performance for diskless workstations," Proceedings of the ACM Sym
posium on Operating System Principles, pages 129-140, October 1983.

DARPA, Foundations for Secure Mobile Code Workshop, Monterey, Cali
fornia, USA, March 26-28,1997.
http: / / w w w .cs.nps.navy.m il/research/languages/w kshp.htm l.

ICL Systems Journal November 1997 285

http://www.acom.co.uk/acom/news/releases/1997/march/
http://www.research.digital.com/SRC/personal/Luca_Cardelli/
http://m0nty.cnri.reston.va.us/grail/
http://www.cs.nps.navy.mil/research/languages/wkshp.html

FRAKES, W.B. and BAEZA-YATES, R. (editors), Information Retrieval Data
Structures and Algorithm s, Prentice Hall, 1992.

FELTEN, E. W., "Java Security: Frequently Asked Questions," Princeton Uni
versity Secure Internet Programming Team, April 28,1997.
h ttp ://w w w .cs.prin ceton .edu /sip /java-faq .h tm l.

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H. and BERNERS-LEE,
T., "Hypertext transfer protocol _ H T T P /1.1," IETF Request for Com m ents
2068, January 1997.

FARMER, W.M., GUTTMAN, J.D. and SWARUP, V. (a), "Security for m o
bile agents: Issues and requirements," National Information System s Secu
rity Conference, Baltimore, Maryland, USA, October 22-25,1996.

FARMER, W.M., GUTTMAN, J.D. and SWARUP, V. (b), "Security for m o
bile agents: Authentication and state appraisal," Fourth European Sym po
sium on Research in Computer Security (ESORICS '96), num ber 1146 in
Lecture N otes in Computer Science, pages 118-130 (edited by Elisa Bertino,
H elm ut Kurth, Giancarlo Martella and Emilio M ontolivo), Springer-Verlag,
September, 1996.

FUCHS, M., "Escaping the event loop: an alternative control structure for
multi-threaded GUIs," Engineering the Hum an Computer Interface (EHCI
'95), (edited by Unger, C and Bass, L.J.), Chapman and Hall, 1996.

GONG, L„ MUELLER, M„ PRAFULLCHANDRA, H. and SCHEMERS, R.,
"Going beyond the sandbox: An overview of the n ew security architecture
in the Java developm ent kit 1.2," Proceedings of the USENIX Sym posium
on Internet Technologies and Systems, Monterey, California, December, 1997.

GONG, L., "Java security: Present and near future," IEEE Micro, 17(3):14-
19, M ay/June, 1997.

HALLS, D., "Applying M obile Code to Distributed Systems," PhD thesis,
University of Cambridge Computer Laboratory, June, 1997.

HALLS, D., BATES, J. and BACON, J.M., "Flexible distributed program
m ing using m obile code," Proceedings of the Seventh ACM SIGOPS Euro
pean W orkshop, Connemara, Republic of Ireland, September, 1996.

HALLS, D. and ROONEY, S., "Controlling the tempest: A daptive m anage
m ent in advanced atm control architectures," To appear in IEEE Journal on
Selected Areas in Comm unication, 1998.

JOHANSEN, D„ VAN RENESSE, R. and SCHNEIDER, F.B., "Supporting
broad internet access to tacoma," Proceedings of the Seventh ACM SIGOPS
European Workshop, Connemara, Republic of Ireland, September, 1996.

286 ICL Systems Journal November 1997

http://www.cs.princeton.edu/sip/java-faq.html

MCGRAW, G. and FELTEN, E., "Java Security: Hostile Applets, H oles and
Antidotes," John Wiley and Sons, 1996.

MILLS, T.J., "Content M odelling in Multimedia Information Retrieval," PhD
thesis (in preparation). University of Cambridge Computer Laboratory, 1997.

MILLS, T.J., MOODY, K. and RODDEN, K., "Providing w orld w id e access
to historical sources," Proceedings of the Sixth World-Wide Web Confer
ence, Santa Clara, April, 1997.

ORACLE, "Network Com puting Architecture W hite Paper," Oracle Cor
p o ra tio n , S ep tem b er, 1996. h t t p : / /w w w .o r a c le .c o m /n c a /h t m l /
nca_wp.htm l.

ROUAIX, F., "A w eb navigator w ith applets in caml," Proceedings o f the
Fifth World-Wide Web Conference, INRIA, Paris, France, May, 1996.

SELTZER, R., RAY, E.J. and RAY, D.S., "The AltaVista Search Revolution:
H ow to Find Anything on the Internet," Osborne McGraw-Hill, 1996.

SU N (a), "JavaStation—A n Overview," Sun Microsystems, Inc., 1996. h ttp:/
/ w w w .sun.com /javastation /w hitepapers/javastation /javast_chl.h tm l.

SU N (b), "JavaSoft Security Forum," Sun Microsystems, Inc., 1996. h t tp : / /
java.sun.com /forum /securityForum .htm l.

SU N , "The Java Server Product Family," Sun M icrosystem s, Inc., 1997.
h ttp ://jeeves.javasoft.com /.

SERRANO, M. and WEIS, P., "Bigloo: a portable and optim izing com piler
for strict functional languages," Second Static Analysis Sym posium , Lec
ture N otes in Computer Science, pages 366-381, Glasgow, Scotland, Sep
tember, 1995.

W3C, "CGI— Com m on Gateway Interface," World Wide Web Consortium,
1997. h ttp ://w w w .w 3 .o rg /p u b /W W W /C G I/.

WULF, W.A., PERI, R., TJADEN, B., W ANG, C., KIENZLE, D., N AH AS, M.
and COOPER, D., "Legion W orldwide Virtual Computer: Legion Security,"
1997. h ttp ://w w w .es .v irg in ia .edu /~ legion/Security.htm l.

ZAKINTHIOS, A. and LEE, E.S., "A least privilege mechanism for user proc
esses," D ependable Com puting for Critical Applications (edited by Iyer,
R.K., Morganti, M., Fuchs, W.K. and Gligor, V), IEEE Computer Society,
March, 1997.

ZHAO, T.C. and OVERMARS, M., XForms, 1997.
h ttp ://b ragg .p h ys.u w m .ed u /xform s.

ICL Systems Journal November 1997 287

http://www.oracle.com/nca/html/
http://www.sun.com/javastation/whitepapers/javastation/javast_chl.html
http://jeeves.javasoft.com/
http://www.w3.org/pub/WWW/CGI/
http://www.es.virginia.edu/~
http://bragg.phys.uwm.edu/xforms

Biographies
Jean Bacon
Jean Bacon is a Lecturer in Computer Science at the University of Cam
bridge Computer Laboratory. She teaches in the system s area and is the
author of books on computer architecture and concurrent system s. Her
research interests are in distributed com puting, focussing on system sup
port for em erging applications which include multimedia.

David Halls
David Halls recently com pleted his PhD at the University of Cambridge
Com puter Laboratory. His research involved the investigation of the po
tential applications of mobile code. He now works for Persim mon, a Cam
bridge based IT company.

288 ICL Systems Journal November 1997

Middleware Support for Mobile
Multimedia Applications

John Bates, David Halls and Jean Bacon

University of Cambridge Computer Laboratory, Pembroke Street,
Cambridge, UK

Abstract
This paper describes a system we have developed to enable applica
tions to follow mobile users as they move. If an application built
using our system has made connections to distributed information
resources, then these connections are re-established seamlessly after
movement. It is thus possible to support mobility within applica
tions as complex as multi-user distributed multimedia applications.
The support system to achieve this is provided at the middleware
level, i.e. between the environment (OS, network and system serv
ices) and the application levels. The interface can thus be system-
independent and the system more easily extended than if it was im
plemented within the operating system. One system requirement is
tracking the location of users and equipment and to this end a loca
tion-awareness service has been developed. Another requirement is
the availability of components for constructing mobile applications
and, for this, two types of mobile object are available. Firstly, mobile
agents which allow complex state migration. Secondly, mobile me
dia endpoints which provide lightweight migration for objects with
a minimal amount of state and which benefit from minimum imple
mentation overheads. A scheme for locating and binding to mobile
objects is also outlined. We have implemented and experimented
with the system described. The applications we have built include a
mobile multimedia conferencing system in which the sessions of a
mobile user can pop up on the nearest workstation so he/she can
continue to communicate with colleagues whilst on-the-move.

1. Introduction
1.1 Motivation
The m otivation for this work is to provide support for user m obility within
distributed m ultim edia applications. M obile telephony has indicated the
attraction of transportable m edia endpoints. M obile professionals w ho
rely on com puting resources can benefit from multimedia applications which
are aware of user location and are them selves able to m ove w ithin and be
tw een networks, rem apping endpoints, such as cameras, microphones and
user interfaces, on to current user locations. M obile networking technol

ICL Systems Journal November 1997 289

ogy is not required for users to participate; com puter deploym ent is in
creasing and users w ithout networked portable com puters w ill be able to
m ake use of com puters available in m ost sites they visit.

Som e exam ple applications which w e can support are as follows:

• Sending running programs to other users - D avid can prepare and send a
m ultim edia presentation about his latest project to John's current loca
tion, w ith an enclosed questionnaire. John can exam ine it, annotate it,
fill in the questionnaire and send it back.

• Location-triggered media presentations - An application can be configured
to m onitor for w hen Jean and Ken are in the same room, go to that
location and play a v ideo clip from John.

• Mobile multimedia - Distributed m edia endpoints, such as software ab
stractions of cameras and m icrophones as w ell as user interface com
ponents such as v ideo display w indow s, can be part of a m obile appli
cation. A sim ple exam ple is tracking a user w ith video. W hen the user
m oves, the im age sw itches to the nearest camera. Another exam ple is
for m usic to be relayed to different speakers as a person m oves around
a hom e.

• Mobile co-operation - A n enhancement of m obile m ultim edia is to sup
port m obility for a cooperating set of users. In a m ultim edia confer
ence, if a user m oves then the camera, microphone, speaker and user
interface endpoints m ust be m oved to the new location. Connections
to the other users involved m ust then be re-established.

We envisage the m ost com m on requirement w ill be supporting user
m obility w ithin a single com puting domain. Each dom ain provides a set of
services to support this mobility. More infrequently, a user m ay m ove to
another domain. Supporting this involves a handover from one set of serv
ices to another.

1.2 Related Work
In this section w e discuss three projects w hich have targeted m obility sup
port for application users. ORL's Teleporting project redirects the user inter
face of a m obile user to the user's current location. The Total Mobility envi
ronment provides support for users w ho m ove between m achines and work
over low bandw idth or disconnected network links. The work on Migra
tory Applications using Obliq em ploys a m obile agent system w hich sup
ports a m obile user interface.

1.2.1 Teleporting
Teleporting [Richardson et al., 1994] is a technique to support user m obility
by the user interface of an application follow ing a m obile user. In order to

290 ICL Systems Journal November 1997

teleport, a user clicks a button on their active badge (a type of electronic tag:
see Section 2.5) w hile in proximity to a workstation. Their current session
then pops up on that workstation.

The teleporting system is based on the technology of the X w indow
system . A proxy X server is able to forward X protocol requests to another
server thus providing a level of indirection. The display of X applications
can thus m ove with a mobile user. A sim ple database provides a m apping
betw een current location and workstation display.

Teleporting is a powerful technique, the main advantage being that it
m akes any existing X application mobile. This approach also has som e
disadvantages in that:

• It is tied to the X system . Only the display connections follow a user;
there is no dynam ic reconfiguration at an application level. If it is used
with any m edium that does not go through X, e.g. audio, then the ap
proach fails.

• It is potentially inefficient as control m essages have to go to the original
site and then be forwarded. The system performance varies in accord
ance w ith the bandwidth of the network connection betw een the hom e
site and the teleport site.

• The applications do not them selves m ove, are unaware of their user
interface m oving and are not built around the prem ise of m obile users.
This m eans that factors explicitly related to m obility cannot be capital
ised on; e.g. the application behaving differently depending on loca
tion.

The user m obility framework described in this paper allow s applica
tions as w ell as their user interfaces to migrate betw een com puters, thus
avoiding these disadvantages.

1.2.2 Total Mobility Environment
The Total M obility environment (TM) [W achowicz and H ild, 1996] v iew s
com puters as "replaceable tools, which can be hired, used and given up
once no longer needed". Like the work described in this paper, it aim s to
support the use of locally available com puting resources w henever a user
m oves, to elim inate the need to carry equipm ent w hen it is not useful. It
addresses the problem of providing users w ith access to their data even
w hen using m obile devices that are not connected to a network.

TM provides location information about users and com puter equip
m ent and a data m anagem ent system based on a disconnected file system
architecture. Users register and de-register for use of a m obile com puter in
disconnected operation. Their files are replicated at the mobile devices w hen
they register. A logging process is used to identify m odifications that users
m ake w h ile they are on the m ove and disconnected. W hen the user d e

ICL Systems Journal November 1997 291

registers with the mobile device, or network connectivity is available again,
the main copies of the files are updated with the modifications. The log
ging process also helps to cope with conflicting modifications made by
multiple users sharing the same set of files.

Our work differs from TM in that it concentrates on support for mak
ing (multimedia) applications mobile over broadly uniform networks rather
than providing generic access to user files over low-bandwidth links. TM
does not address migration of applications to follow users. However, com
bining the two would provide migratory, follow-me applications with sup
port for working in low-bandwidth and disconnected environments.

1.2.3 Migratory Applications
A large number of mobile agent systems have been and continue to be de
veloped. The applications of these systems include active documents
[Arnold and Gosling,1996], managing hypermedia [DeRoure et al., 1996],
network management [Halls and Rooney, 1997] and information gathering
[Rus et al., 1996]. One mobile agent system which has specifically linked
user and application mobility is the Migratory Applications work using
Obliq [Bharat and Cardelli, 1995]. This work employs the Obliq mobile
agent system so that applications can move from one user to another or can
be configured to follow users from machine to machine. Support for state
saving in Visual Obliq allows applications to take their user interfaces with
them when they move.

The Migratory Applications work is similar to that described in this
paper in that it employs mobile agents and knowledge of user location.
However, it produces monolithic applications for single users in which the
mobile agent contains all control functionality and the user interface. The
following sections describe a framework for user mobility which subsumes
this functionality but also has the advantage of being able to support mo
bility for distributed multimedia applications involving more than one user.

1.2.4. Conclusions
The main limitation of these projects is the lack of mobility support for
distributed, multimedia and cooperative applications. Teleporting moves
only the X user interface and does not consider reconfiguration of multi-
media streams. TM is concerned with uniformity of access regardless of
location but does not address real-time issues. With Migratory Applica
tions, only what is encoded within the application moves; there is no no
tion of reestablishing existing communication channels after movement.

1.3 Overview
We elected to build the framework described in this paper at the middleware
level; i.e. between the environment (operating system, network and system

292 ICL Systems Journal November 1997

services) and the application. This is so that our system is not dependent
on any particular operating system. Also, since it is not within the operat
ing system, new components can more easily be added over time. Figure 1
outlines the main components in our framework.

Figure 1: Components in our mobile applications framework

The first requirement of our system is to allow applications to monitor
the locations of users. To this end we have designed and built a location-
awareness system, described in Section 2.

It must be possible to move applications or components of applications
in response to changes in user location. One technology we deployed to
this end is a location-aware mobile agent system, described in Section 3. Agents
can detect user movements and respond by moving to the user's nearest
computer or taking other action.

Our experiments showed that mobile agents were too heavyweight for
use as media components in mobile multimedia applications, e.g. as video
sources, processors or sinks. To address this problem we developed light
weight moveable media objects, described in Section 4.

It must be possible to locate and bind to objects, such as mobile agents
or multimedia endpoints, before communication is possible. In Section 5
we describe how trading technology can be adapted for naming and locat
ing mobile objects.

The integration of location-awareness and mobile objects into a mobile
application support framework is described in Section 6. The deployment

ICL Systems Journal November 1997 293

of and experimentation with this framework is described in Section 6. Sec
tion 8 summarises and concludes the paper.

2. Supporting Location-Awareness
2.1 Requirements
The basic requirement of a location-awareness system is to allow applica
tions to find out about the location of users. To enhance support for loca
tion-awareness, it is useful to be able to find out other factors about the
environments which users inhabit, for example the deployment of com
puting equipment.

There are various technologies which can be used to support user track
ing, for example monitoring the location of user logins or users wearing
electronic tags. A location-awareness paradigm should be independent of
underlying technology.

It is beneficial for clients of a location-awareness system if the system
can perform some filtering on their behalf. The location system can do this
more cheaply than clients by generalising the filtering process for multiple
users. This also cuts down on the amount of traffic sent to clients by the
location system.

Run-time location events can be viewed in the same way as
parameterised run-time occurrences from other systems. In selecting an
event filtering and propagation system, it is beneficial to use technology
which is applicable generally. This enhances the interchangeability of events
between different systems, encouraging interoperability.

2.2 A Model for Active Location
We have developed a mechanism of event-based programming which we
use to support location-awareness [Bacon et al., 1995]. The motivation be
hind event-based programming is that many applications, including those
associated with mobility, are active in nature; i.e. run-time actions are trig
gered in response to asynchronous occurrences (events). This situation is
complicated within an open distributed context since applications can be
composed of components running on separate machines, each of which is a
potential source of events. It is desirable to avoid providing interfacing
code to handle occurrences from every potential source.

To address these circumstances we have developed a generalized model
in which events are transmitted as parameterised run-time occurrences. An
event service is defined as any network service which publishes a specifi
cation of classes of occurrence it can inform a client of. Clients register
interest in the set of occurrences they wish to be informed of. Services no
tify clients asynchronously if an occurrence matching the registration crite
ria is detected. The registration paradigm enables scalable and flexible con
struction of active applications and avoids communication saturation by

294 ICL Systems Journal November 1997

filtering at source and/or intermediate nodes.
The event approach aims to augment rather than replace current dis

tributed programming methods (such as CORBA [OMG, 1991]). We have
therefore extended an existing Interface Definition Language (IDL) to han
dle events. This enables a server to declare, in a strongly-typed way, the
events it can notify. It also allows a client to see the server's specification of
events and to select those of interest.

In the case of location-awareness, applications can register interest with
a location service (see Figure 2). The service can advertise location moni
toring facilities, declared in an IDL, for example:

LocEvent: EVENTCLASS [person : USER,location : PLACE];

A location service inherits the properties of an event service; i.e. generic
support for handling and storing registered events, for comparing signalled
instances with those registered and for notifying any matches. A mecha
nism for querying the specific location technology is contained within the
location service. Related work is currently underway which involves the
correlated use of multiple location technologies to increase the accuracy
and flexibility of a location service [Nelson, 1997].

An event client inherits facilities for registration and for handling noti
fications. Structural information generated by processing an event inter
face can be used by both client and server for the transmission of event

ICL Systems Journal November 1997 295

Figure 2: Event-based location awareness

instances. A client provides an event template; the parameters of the event
are given as values which must be matched, or variables which are
wildcards. Examples of location event templates are:
• LocEvent ("John.Bates", L) — Report wherever John is seen
• LocEvent (p, "Meeting Room") — Report when anyone is seen in the

meeting room
• LocEvent (p, L) — Report when anyone is seen anywhere.

When event instances are notified to clients, all parameters are given;
e.g. the instance, LocEvent ("John. Bates", "Meeting Room"), means
John has been seen in the meeting room.

In the above example we have simplified the event class for illustrative
purposes. In the example we are assuming there is one location service per
computing domain, so a client is aware of the computing domain implic
itly. An alternative approach is to federate location services so that a regis
tration is propagated to location services in other domains or to intermedi
ate event brokers. The event class would include a domain field to inform
the client where the event was generated and to allow clients to select do
mains of interest, using event templates. In such a scheme, users must be
uniquely identifiable worldwide.

2.3 Monitoring for Complex Occurrences
Often, activity within applications is triggered not just by a single event but
by a complex pattern of events. Such composite detection can involve pa
rameter checking of event occurrences, state lookup and monitoring for
particular event orderings. An example query is "tell me everyone who is
still in the building 20 seconds after the fire alarm goes off". This form of
event composition is simplified by using our general event architecture,
since events, despite coming from different systems, all inherit generic event
features. We have developed a mechanism for efficient composite event
monitoring based on non-deterministic finite state machines. Further in
formation on the techniques involved is given by Bacon [Bacon et al., 1995].

2.4 Environment Location Information
It is beneficial if other information is available to enhance location-aware
ness, for example the following types:

• The names of rooms and their geography; i.e. how they interconnect.
This is a useful measure of proximity. For example, monitoring can be
extended to detect when two or more users are on the same floor of the
building

• The equipment stored in each room. This information can either be
static or equipment can be electronically tagged. Using this informa

296 ICL Systems Journal November 1997

tion it is possible to determine whether a specific room or part of a
room offers a certain facility, e.g. live video

• The names and capabilities of pieces of equipment. For example, the
architecture, operating system, hardware facilities, attached peripher
als and software configuration of a workstation.
It is envisaged that each computing domain would offer such a data

base, detailing its geography and facilities. Such a service is a useful com
ponent of adaptive location-aware multimedia applications. For example,
if an application is following a user or is dispatched to a new location it can
check that the required facilities are available there. If the application re
quires video and audio and these facilities are not supported in a particular
location then it can adapt and use text-only conferencing instead.

2.5 Our Experimental System
We have implemented our event architecture as part of an ODP-ANSA com
pliant distributed programming platform [Bates, 1996] and are working on
integrating it with a CORBA platform. Within this work we have enhanced
IDL processing tools to generate stubs for event code. We have also devel
oped server and client libraries to provide generic event operations, such
as registration and notification.

Using this technology we have built a location service and a location
information database. The location technology employed by the location
service is the active badge system [Harter and Hopper, 1994] deployed in
our laboratory. Each user wears a badge which periodically transmits a
unique infra-red signal. A network of detectors allows the location of the
user to be pinpointed. Our location service collects badge events and then
passes them to the event server library using the operation Signal. If an
event matches any registered templates, the event system will notify the
appropriate client(s).

The location information database contains data about the organisa
tion of rooms and the names and capabilities of equipment stored in each
room. Our implementation was based around an entity-relationship data
model, which we implemented in Prolog. An example from the model is
shown graphically in Figure 3. This illustrates how the interconnected ge
ography of a building, containment of items in rooms and item properties
can be described. The database is given an initial set of data and is updated
using events describing the latest locations of people and equipment. It is
possible to add new rules as well as to submit queries to the database. Ex
amples are, "is there a workstation with video capability at John's current
location?" (video in room(john.bates — see Figure 3) and, "is there a
route out of the building avoiding my supervisor?!"

ICL Systems Journal November 1997 297

Figure 3: Entity-relationship model from location database

3. Location-Aware Mobile Agents
3.1 Mobile Agents
Mobile agent systems facilitate mobile applications. Application code and
execution state, sometimes including the user interface, can be migrated
from one host to another. Each host within the system must run a service
which can send, receive and execute agents. Mobile agent systems differ
from process migration systems in that they are implemented in user space,
allowing system independence. Many useful applications of such systems
have been documented (see Section 1.2.3).

In this work we introduce a new range of applications of mobile agents.
By making location information available to mobile agents, the integration
of user mobility monitoring and mobile applications is facilitated. This
enables mobile agents to be sent to users rather than to a named host. By
using location information, the host nearest to the user's current location
can be determined. Many existing applications involve mobile agents tra
versing a number of hosts. Location information enables agents to traverse
a number of user locations. Most interestingly, it is possible for mobile
agents to follow users by triggering movement in response to location events.
This is beneficial since much state is set up in the course of using an appli
cation and it is a waste of time and resources if this state has to be recreated
manually at various hosts. If the user becomes mobile for an extended
period of time, it is possible to persistently store agents on disk or trans
portable smart card.

The alternative to using mobile agents is for an application to create
and control an object remotely. This method involves factories and protocols.
298 ICL Systems Journal November 1997

Factories are distributed services which can create objects of certain classes.
Protocols which are understood by both client and server are used to man
age the process of object creation and control. Mobile agents have various
advantages over using such an arrangement. Firstly, it is quick to proto
type a new application, since no compilation or service setup is required.
Creating and controlling an application remotely involves network traffic,
whereas a mobile agent for this purpose can be sent to an execution point
near to the resource required. Also, mobile agent platforms are system-
independent, so there is no requirement to comprehend an system-depend
ent API.

There are two main ways in which mobile agents can be used for loca
tion-oriented applications. Firstly, the mobile agent can be the entire appli
cation, containing all functionality including the user interface. Secondly,
the mobile agent can be used for high-level mobile control. In this case the
agent is responsible for setting up and controlling distributed connections
using other services. It is possible that these services are distributed around
the environment, however, if they are not location-specific they can be linked
dynamically to a mobile agent. This enables a wider range of applications
them coding the entire application into one monolithic agent. For example,
as will be described later, distributed multimedia applications involving
multiple users can be supported. Using mobile agents for control also aids
the management of heterogeneity. By binding dynamically, mobile agents
can access domain-specific functions. Mobile agents are appropriate for
this high-level management role since it can be prototyped rapidly and
moved flexibly.

3.2 The Tube: Our Mobile Agent System
We have gained experience from building and deploying our own mobile
agent system, the Tube [Halls, 1997]. This section describes features of the
Tube, including many which we found essential for its use in an active lo
cation-aware environment. The integration of the Tube with other envi
ronment features to support mobile multimedia applications is described
later in Section 6.

For a host to be able to send and receive mobile agents it must run an
instance of a Tube site. Agents are written in the Scheme language (a dia
lect of Lisp); they are transmitted over a network as marshalled expres
sions. If tagged as executable, they are passed to an interpreter for execu
tion. The marshalling respects duplicate objects and cyclic references. We
are able to transmit the full range of expressions, even closures1 and con
tinuations* 2. This means that these agents can create arbitrary functions

'A closure is a function together with its defining scope.
2 A continuation is a closure that represents the current state of execution. Calling a continua
tion results in the computation resuming from where the continuation was captured.

ICL Systems Journal November 1997 299

and send them elsewhere, with their closing environments.
Through being able to transmit continuations, an agent can be stopped,

moved and restarted elsewhere in a single call. The Tube does much more
than just execute byte-code compiled scripts remotely — agents can modify
themselves, create and dispatch other agents and treat their functions and
state as first class, transmissible data. Agents execute in a safe interpreter
and are only allowed to access those functions that the platform's owner
makes available.

Tube sites are multi-threaded. Full access to a POSIX threads interface
provided by the underlying operating system is given to agents. A
noticeboard is provided, which an agent can post messages to or read mes
sages from. Data values can thus be left by an agent for others that may
arrive later to use. The noticeboard can be divided into different areas; an
access control list is associated with each.

Tube sites can dynamically load at run-time compiled libraries of code
and call functions contained in them. This allows facilities to be added
without having to stop and recompile.

A user interface toolkit has been integrated with the Tube. Functions to
create and manipulate widgets are available to agents. We have also en
hanced the toolkit with the ability to return the state of any user interface,
along with any callbacks registered on widgets, as a series of bytes. A cor
ollary function takes a saved user interface and recreates it in a visible form.
This allows an agent to create a user interface on one machine and retain it
as embedded state. We have also written a Netscape plug-in that allows
the Tube to be used for writing applets embedded in World-Wide Web pages.

The core state-saving functionality of the Tube is written entirely in
Scheme. It is portable across Scheme interpreters and compilers, and thus
also across operating systems. Code to interface with other systems, such
as POSIX functions or a user interface toolkit, is not portable between oper
ating systems. Currently, the implementation is Unix-based. We use the
Bigloo [Serrano, 1994] Scheme compiler/interpreter and the XForms [Zhao
and Overmars, 1996] user interface toolkit. Versions are running on DEC
Alphas under Digital Unix, SUN SPARCs under Solaris, Intel Pentiums un
der Linux and HP 9000s under HP-UX.

4. Mobile Multimedia Endpoints
4.1 Requirements
The use of distributed multimedia introduces new problems for mobile
applications. In this discussion we are assuming a system is available which
offers an object-based abstraction of media source and sink endpoints, such
as cameras, microphones, video displays and speakers. These objects can
be created on distributed hosts and connected together flexibly using stream
abstractions, e.g. a video stream connecting a live video source to a video
300 ICL Systems Journal November 1997

window. This is reasonable since such systems have been developed suc
cessfully [Wray et al, 1994].

To move one or more objects involves transfer of object communication
state. For example, assume David is looking at a video window of Kerry
which is connected to a live video capture object at Kerry's location. If
Kerry moves then we must remap the video source onto the nearest camera
and reconnect to David's window. Such re-routeing of streams is known
as handoff. This is commonly provided by the network layer (see for exam
ple [Rajagopalan, 1995] or [Porter and Hopper, 1994]), though application
support for handoff has been proposed [Pope, 1996]. Our implementation
of handoff, described below, is done entirely in user-space and is specialised
for multimedia objects which can tolerate data loss. We plan to capitalize
on research which is being carried out into allowing application-specific
policy for mobility to be closely bound at runtime with network control
functionality [Rooney, 1997].

Media endpoints can be implemented as mobile agents. It is more likely
that they would be built using more traditional distributed programming
techniques (e.g. an enhanced CORBA platform) and created dynamically
at run-time using distributed factories. The assumptions behind this rea
soning are as follows:

• that an application involving media connections will have some form
of intelligent controlling program, responsible for setting up the con
nections. In the case of a multi-user program, each user may have such
a program. Therefore this program can be responsible for location-
awareness and subsequent moving of connections

• media objects generally perform simple memory-less functions and
therefore do not need the advanced state-saving of a mobile agent sys
tem such as the Tube

• media functions generally involve the manipulation of large amounts
of data and thus should be as fast as possible. Mobile agent systems
involve more heavyweight execution overheads due to code interpre
tation and migration mechanisms. It is therefore often desirable to use
compiled code for media objects.

4.2 A Media Object Implementation
In our implementation we support mobility of media endpoints in user-
space, by saving the communication state of media objects and using this
information to re-instantiate a copy in the new location (see Figures 4-6).
Media objects are themselves responsible for re-establishing connections to
the objects they were previously connected to.

We have developed media endpoints as active objects, autonomous en
tities which can send and receive messages and process data concurrently.

ICL Systems Journal November 1997 301

Each object class is developed to support distribution, with an interface
that can include invokable methods, events that the object can notify (see
Section 2.2) and connectable stream endpoints. Stream endpoints are named
and typed; for example vidsource and vidsink of type videoStream.

In order to configure a multimedia session, first the appropriate objects
must be created on the appropriate hosts and then they must be connected
together. Media objects are created by making a creation request of an ob
ject factory on the appropriate machine, by spawning an object as a new
process or by linking dynamically to the object code and instantiating a
new instance. Factories are services at which objects of certain classes can
be created. For instance, on every workstation with live video capture fa
cilities there will be a factory capable of creating live video source objects.

If an object must be created remotely or a connection to an existing
object is required then an interface reference for the appropriate object/
factory must be located. A trader is used to this end. Object references are
stored in the trader using attributes to aid retrieval (see Section 5.3). For
example, a live video source factory can be annotated with the location
attribute set to Meeting room. If multiple cameras are available in one
location then they can be distinguished with an attribute describing their
proximity to computing equipment or active badge sensors. When objects
are created they are allocated unique attributes to distinguish them from
other objects of their class.

In order to support stream operations we have extended a distributed
programming platform. Our implementation is available on DEC Mips
running Ultrix and Alpha platforms running Digital Unix. Enhanced stub
generation tools build functions to read and write stream data and gener
ate interfaces to allow third parties to set up and connect stream endpoints.
Third parties use a library, written to manage this process. Once interface
references have been obtained, the third-party client invokes a connect
operation with the two objects in question as parameters. The underlying
implementation is that the source object is sent a message detailing the sink
object. The source and sink objects make a stream connection, handshake
and exchange their unique naming information. Data can then be sent from
source to sink using stubs generated by processing the object interface. Our
implementation of the stream library uses sockets. Appropriate protocols
can be selected to satisfy particular application requirements.

The stream library supports a mechanism to allow a third party to ac
cess the communication state of an object. The object stream library sup
ports using this information to re-instantiate the streams when required.
The trader from the domain in which the other object(s) existed is contacted
(see Section 5.3) to get the reference to its stream interface. A stream con
nection is then re-established.

302 ICL Systems Journal November 1997

We have developed various media object classes using our enhanced dis
tributed programming platform. These include sources for live and stored
video and audio, audio players, video windows and shared drawing and
text components. There is also a component which enhances a Web browser
for mobility. It queries the URL of the page currently being accessed by the
Netscape browser on a particular host, using Netscape's socket API. Using
the API on another host it can instruct the browser running there to display
the saved URL.

4.3 Implemented Mobile Media Objects

Figure 4: Stage 1 in moving an application instance

5. Naming and Location of Mobile Objects
5.1 Requirements
We have introduced two types of mobile object: mobile agents and mobile
multimedia endpoints. For objects to communicate, the remote object must
first be located (in physical terms a mapping to host and port) and the two
objects bound. There are several circumstances in which location of remote
ICL Systems Journal November 1997 303

objects for communication must be determined, for example:
• If a specific class of multimedia endpoint is required on a specific host,

then the factory on this host must be located
• For a new user to bootstrap themselves into a distributed cooperative

application, it may be required to bind to another user's instance and
run a join protocol

• If two multimedia endpoints are joined using a stream and one endpoint
moves, then the stream must be re-established. If this is done in user
space then after movement a third party must locate and rejoin both
ends or one of the end-point objects must find the other and reconnect.

Figure 5: Stage 2 in moving an application instance

5.2 Trading Services
The traditional way of locating an object is to use a trading service. An
object's interface reference is required to bind with the object for communi
cation purposes. Interface references are registered in a trader's namespace,
indexed by the object class and other naming information. If objects move,
304 ICL Systems Journal November 1997

interface references are of no use, since they encode physical location infor
mation. Regular access to trading information is thus a requirement in a
mobile object system. An object naming scheme should allow the adver
tisement of specific characteristics to assist in locating a specific instance,
for example name, class, owner and the host on which it runs.

If an object moves then a mechanism to alert applications which may
try to contact it is required. During movement, the object can be marked in
a trader as mobile or the object can remain alive to inform clients of its sta
tus. If the object moves to another domain it must be possible to locate it.
One method is to federate the namespaces of trading services. Another is
to leave tombstones (forwarding information) in a trader to enable objects to
be located in their new domain. Updating references is at the discretion of
moving objects. Additionally, this method introduces a problem of gar
bage collection. A further mechanism is to associate a home trader with
each object and keep it up-to-date with the object's current location.

Figure 6: Stage 3 in moving an application instance

ICL Systems Journal November 1997 305

We have built a trading service which supports a rich object naming scheme,
based on SGML tags. An object advertises its functions with a trading serv
ice, e.g. the video source object in Figure 7. Clients of the trader can query
objects associatively, for example a search, obj ectName contains "John",
objectType == "Tub videoCamera" would return the object from Figure
7 and any others matching the search criteria. Tags are used at the discre
tion of applications. For example, the htmi tag allows arbitrary HTML
markup to be inserted for use by Web browsers. We have implemented a
graphical interface to the trading service, using the Web (see Figure 8). By
using information from traders to update large information repositories
(analogous to Web search sites like http://altavista.digital.com) it is
possible to search and locate active services worldwide, based on their char
acteristics.

In our implementation, an object in the process of moving can mark its
reference in the trader as mobile. When an object has moved and the handoff
process is complete, the reference can be updated with the new object loca
tion. If an object has moved to another domain, it can also register with the
trader there; local applications that wish to bind to the object can thus avoid
communication with external services.

<Agency>Tuba </Agency>
<Naming>address</Naming>
<addressType>content</addressType>
< addre ssContent>
<obj ectType>Tub VideoCamera</objectType>
<htmlxbr>

</html>
<objectName>John's camera</objectName>
<objactOwnersJohn.Bates@cl. cam.ac.uk</obj ectOwner>
</addre s sContent>
<addressQuery>
#BAND(#FIELD(objectType=Tub) #FIELD(objectType=VideoCamera)

#BAND(#FIELD(objectName=John's) #FIELD(objectName=camera)))
</addressQuery>
<resolvesType>Tube</resolvesType>
<resolvesHostname>britten.ol. cam.ac.uk</resolvesNostname>
<resolvesPortnum>1270</resolvesPortnum>

5.3 An Example Implementation

Figure 7: Advertisement for a video source object

6. The Integrated Mobility Framework
This section describes how the location awareness and mobile object tech
nologies were integrated. Since mobile agents are the controlling entities
in a mobile application, integration work was centred on the enhancement
of our mobile agent system.

306 ICL Systems lournal November 1997

http://altavista.digital.com
http://www.ol.cam.ao.uk/users/dah28/images/camera

6.1 Enhancing Mobile Agents for Management
The Tube has been enhanced to make it location-aware and able to configure
distributed multimedia objects. In our integrated architecture, the Tube is
a client of both the location service and the multimedia framework. To
enable this we linked the relevant client code into the Tube.

Mobile agents are able to register interest with the location service and,
due to the multi-threaded implementation of the Tube, handlers can be set
up in scripts to respond to asynchronous notification of user movements.

Scripts can also create objects on remote hosts, connect stream endpoints
together, invoke operations on media objects and save communication state.
Other versions of media objects have been developed which enable dy
namic linking. These are more tightly coupled to a mobile agent as they
run in the same address space. It is also possible to write user interface
components using the Tube directly since it contains the state-savable
XForms library.

6.2 Communication Systems
The ability to move applications partially or wholly between computing
domains introduces the issue of communication system interoperability. It
is acceptable to assume that communication standards, such as TCP/IP
sockets and CORBA will be available. Incorporating events and streams
into the CORBA standard will support inter-domain operation of all fea
tures described in this paper. There may be circumstances when the use of
other communication technology will be required. A mobile agent system
should provide the ability for agents to bind dynamically to code for differ
ent communication mechanisms.

In our specific implementation three communication systems were avail
able: TubeRPC, MSRPC and CORBA RPC. It is possible for a mobile agent
system to use any of these.

TubeRPC is a novel mechanism which involves installing an optimised
Tube interpreter within a compiled object. Scripts can be despatched to
execute within an object, using its local interface as an API. Some experi
mental multimedia objects feature a TubeRPC interface. TubeRPC also al
lows the publishing of object proxies in traders to abstract above communi
cation semantics.

7. Experiments
Multimedia workstations on our local area network run instances of multi-
media object factories and Tube sites. We deployed individual instances of
our trading and location services. We wrote a number of experimental ap
plications using this apparatus.

ICL Systems Journal November 1997 307

Figure 8: Trader advertisements in a Web browser: a multimedia
object factory and a video camera

7.1 Experimental Schedule
The first phase of experiment involved building a number of small applica
tions to illustrate rapid prototyping using Scheme scripts. We illustrated
the principle of specifying host machines by their proximity to users rather
than their name. Tube mobile agents have the ability to go directly to a

ICL Systems Journal November 1997308

particular Tube site or perform a traversal of a number of sites. Using the
location-awareness information, it is possible instead to traverse the hosts
nearest to one or a number of users. For example, a questionnaire about
the time of a meeting can be sent to all proposed participants, one after
another. The next iteration is signalled by clicking on a button.

For the second phase of experiments we carried out various multime
dia experiments. One example is follow-me video and audio. Follow-me
video is useful if one wants to monitor a particular person continuously,
e.g. a child-minding application. The video display window follows the
application user, and the live video source follows the person being moni
tored. The follow-me audio application allows music to follow a user around
their environment. Additonally, we have developed a follow-me Netscape
Web browser, which pops up showing the last used Web page whenever a
user moves.

The third phase of experiments involved developing a complex illus
tration of our architecture in action: the mobile multimedia conferencing
application, shown in Figures 4-6. We built two versions, centralised and
decentralised, in order to study their comparative behaviour and perform
ance. In the decentralised version, each user has a mobile agent controlling
their source and sink endpoints. The agent registers interest in the move
ment of its own user. When the user moves, the agent receives an event
detailing his/her new location, saves the state of its objects, moves itself to
the new location and recreates the objects using the saved state informa
tion. The objects are responsible for reconnecting themselves to the media
endpoints of other users.

Instead of using mobile agents, the centralised conference, known as
Mobocop (see Figure 9), holds all information about connections in an agent
managed by the chairman. The Mobocop agent only moves to follow the
chairman. This version has the advantage that it is much simpler to author
and user movement is managed slightly more rapidly (see below). The
decentralised version is more elegant and scalable.

7.2 Measurements
Timings were taken using the conference applications described in the pre
vious section. An audio and video conference was set up between three
people with access to three DEC Alpha computers, each in a different room,
equipped with a video camera, microphone and speakers, connected to a
local-area ATM network and running a Tube site under Digital Unix. One
of the users was designated chairman and the Mobocop application was
able to follow him as he moved.

Each user was able to see and hear the others as they moved between
rooms. All the timings given below include a constant overhead of 2 sec
onds for the active badge system to report badge sightings to Tube sites.

ICL Systems journal November 1997 309

Figure 9: The Mobocop video conference manager

The average time taken for a user's multimedia objects to appear at his
destination when he moved between rooms was 8.9 seconds (815 millisec
onds to close the old connections, 1.614 seconds to destroy the old objects,
2.934 seconds to create the new objects and 1.509 seconds to recreate the
connections between the new objects). The time taken between him arriv
ing at a new room and the other users seeing him there was 9.2 seconds on
average. Movement of the controlling agent adds an additional 500 milli
seconds to this total. This is experienced in the centralised version only
when the chairman moves and in the decentralised version when anyone
moves.

These times proved adequate for conferences with only sporadic move
ment. They are also respectable given the heavy load placed on the com
puters. Each user had outgoing audio and video connections to the other
users and to himself. That is, each user had six outgoing connections and
there were eighteen connections in total. The video objects had to send and
receive 1.33 megabytes of data over each connection per second (there were
12 frames per second, each of which was 384 by 288 pixels in 8-bit colour).
The audio objects had to send and receive 22 kilobytes of data over each
connection per second (it was sampled at 11kHz, using 16 bits per sample).

The DEC Alpha computers were overloaded by this amount of data, so
that the playing of audio became intermittent and the display of video jerky.

310 ICL Systems Journal November 1997

Handling of user mobility had to compete with the processing of this mul
timedia data, without help from the Digital Unix scheduler which cannot
impose quality of service guarantees. Use of an operating system designed
to provide such guarantees would have helped here [Leslie et al., 1996].
Performing stream handoff at a lower level, instead of tearing down and
re-building connections, would have reduced the amount of software in
volved in re-routeing data (see Section 4.1). Using a separate device for
sending data from video cameras to the network [FORE, 1997] would have
reduced the load placed on the computers.

Note that the related projects cited in Section 1.2 give no performance
measurements. Our system is experimental and we plan to work on im
proving these times significantly.

8. Summary and Conclusions
We have investigated general-purpose support allowing applications to
follow mobile users, for example by hopping to the nearest computer. We
have built and deployed a framework to test our ideas.

A location monitoring system is required to track users and to provide
information about resources available in various locations. Providing fil
tering support in a service so a client is only informed about location events
of interest is realistic and cuts down on network traffic and client process
ing. Clients should be informed asynchronously when events of interest
occur.

A mobile agent system allows script-level programs to move from site
to site whilst retaining user interface and execution state. Multimedia
endpoints can be made mobile by providing support for the saving of stream
connections and their re-establishment after movement. A mechanism for
locating mobile objects such as agents and multimedia endpoints is required.
Standard trading technology can be used here, assuming an appropriate
naming scheme and a policy of indicating objects which have moved to
another domain.

Our integrated architecture places mobile agents at the centre of appli
cation coordination. We have found this paradigm works well since scripts
are easily prototyped and agent support works flexibly between heteroge
neous domains. We have also found that compiled media endpoints, built
using distributed programming mechanisms, such as CORBA, are appro
priate as mobile media endpoints. Our initial experiments are encourag
ing; we have found we can support complex applications, such as a multi-
media conference in which users can move between hosts and connections
to other users are re-established automatically.

ICL Systems Journal November 1997 311

Acknowledgements
David Halls gratefully acknowledges the support of EPSRC for his gradu
ate studentship and John Bates would like to thank Michael and Morven
Heller and St Catharine's College, Cambridge, for supporting his research.
All three authors extend their thanks to ICL for general support of their
research group.

Bibliography
K. ARNOLD and J. GOSLING, "The Java Programming Language,"
Addison-Wesley, 1996.

J. BATES, "A framework to support large-scale active applications," SIGOPS
European Workshop, ACM, 1996.

J. BATES and J. BACON, "Supporting interactive presentation for distrib
uted multimedia applications," Multimedia Tools and Applications, 1(1),
47-78, March 1995.

J. BACON, J. BATES, R. HAYTON and K. MOODY, "Using events to build
distributed applications," 2nd International Workshop on Services for Dis
tributed and Networked Environments, IEEE, 1995.

K. BHARAT and L. CARDELLI, "Migratory Applications," Proc. ACM Sym
posium on User Interfaces Software and Technology, Pittsburgh, USA, No
vember, 1995.

D. DEROURE, W. HALL, H. DAVIS and J. DALE, "Agents for Distributed
Information Management," Presented at Practical Applications of Intelli
gent Agents and Multi-Agents (PAAM '96), London, UK, 1996.

FORE Systems, Inc., "FORE ATM Video Solutions, 1997," URL
http://www.nemesys.co.uk/products/video/index.html.

OBJECT MANAGEMENT GROUP, "The Common Object Request Bro
ker: Architecture and specification," Technical Report 91.9.1, Object Man
agement Group, December, 1991.

DAVID HALLS, "Applying Mobile Code to Distributed Systems," PhD the
sis, University of Cambridge Computer Laboratory, June, 1997.

A. HARTER and A. HOPPER, "A distributed location system for the active
office," IEEE Network, 8(1), 1994.

D. HALLS and S. ROONEY, "Controlling The Tempest: Adaptive manage
ment in advanced ATM control architectures," Position paper, January, 1997.

I. LESLIE et al., "The design and implementation of an operating system to
support distributed multimedia applications," IEEE Journal on Selected

312 ICL Systems Journal November 1997

http://www.nemesys.co.uk/products/video/index.html

Areas in Communication, September, 1996.

G. NELSON, "System Support for Location Aware Computing," PhD the
sis, University of Cambridge Computer Laboratory, 1997 (in preparation).

J. PORTER and A. HOPPER, "An ATM Based Protocol for Wireless LANs,"
Technical Report 94-2, Oracle Olivetti Research Limited, Cambridge, 1994.

S. POPE, "Application Support for Mobile Computing," PhD thesis, Jesus
College, University of Cambridge, October, 1996.

B. RAJAGOPALAN, "Mobility Management in Integrated Wireless ATM
Networks," Proceedings of Mobicom, IEEE, Berkeley, 1995.

T. RICHARDSON, F. BENNETT, G. MAPP and A. HOPPER, "Teleporting
in an X Window System Environment," IEEE Personal Communications,
August, 1994.

D. RUS, R. GRAY and D. KOTZ, "Autonomous and adaptive agents that
gather information," Proceedings of the AAAI 96 Workshop on Intelligent
Adaptive Agents, 1996.

S. ROONEY, "The Structure of Advanced ATM Control Architectures," PhD
thesis, University of Cambridge Computer Laboratory, 1997 (in prepara
tion).

M. SERRANO, "Bigloo User's Manual," INRLA, B.P. 105, Rocquencourt,
78153 Le Chesnay Cedex, France, 1.7 edition, 1994.

S. WRAY et al., "The Medusa applications environment," 1st IEEE Interna
tional Conference on Multimedia Computing and Systems, 1994.

M. WACHOWICZ and S. G. HILD, "Combining location and data man
agement in an environment for total mobility," Proceedings of the Interna
tional Workshop on Information Visualization and Mobile Computing,
Rostock, Germany, February 1996.

T. ZHAO and M. OVERMARS, "XForms,"

URL http://bragg.phys.uwm.edu/xforms, 1996.

Biographies
John Bates

John Bates holds the Heller Senior Research Fellowship in Object-Oriented
Computing, at St Catharine's College, Cambridge and his research is based
at the University of Cambridge Computer Laboratory.

The main thrust of his work is in applying object and event technologies, to
support end-user requirements of distributed computer systems. Areas of

ICL Systems Journal November 1997 313

http://bragg.phys.uwm.edu/xforms

application to date include multimedia, CSCW and support for mobility.

David Halls

David Halls recently completed his PhD at the University of Cambridge
Computer Laboratory. His research involved the investigation of the po
tential applications of mobile code. He now works for Persimmon, a Cam
bridge-based IT company.

Jean Bacon

Jean Bacon is a Lecturer in Computer Science at the University of Cam
bridge Computer Laboratory. She teaches in the systems area and is the
author of books on computer architecture and concurrent systems. Her
research interests are in distributed computing, focussing on system sup
port for emerging applications which include multimedia.

314 ICL Systems Journal November 1997

INDEPOL Client—A ‘facelift’ for
mature software

S. B. Southerden

ICL Enterprises, ICL, Bracknell, UK

Abstract
The purpose of this paper is to describe the lessons learnt through
the development of a client component of a mature software product
which runs in a high performance server environment. The original
product, INDEPOL, (INtelligence, DEfence and POLice) was devel
oped in the early 1980's by ICL Defence Systems in collaboration with
the Ministry of Defence. INDEPOL, which provides a toolkit for gen
erating applications and runs on VME systems under TPMS, was
designed to exploit to the full the CAFS Information Search Proces
sor.

1. Introduction
Research in ICL, during the late 1970s and early 1980s, had demonstrated
that the standard relational model, although satisfactory for many busi
ness applications, was semantically weak in those situations where both
data types and structures were complex [Crockford, 1982]. This led to the
development of a prototype system based on binary relations and a di
rected graph representation of the database schema, in which both fixed
format data, loosely structured text and free text could be handled in a
homogeneous manner [Mailer, 1996]. INDEPOL, a fourth generation sys
tem, was based on this research and was designed specifically to meet the
requirements of both the military and the police intelligence market.

The pairing of INDEPOL and CAFS provided a powerful capability to
retrieve information, containing a mix of structured data and/or free text,
with very short response times. The product was first launched in 1986
and is now considered 'mature'.

2. INDEPOL Background
It may be helpful to the reader if a brief description is given of the type of
applications for which INDEPOL is used. The key feature of the applica
tion is that it will be investigative; i.e. the primary purpose is to investigate
the data and particularly relationships within the data. Secondary features
are likely to include:

ICL Systems Journal November 1997 315

• the value of information over time, leading to the building up of
large libraries of data

• data comprising a mix of numeric information and text (either may
be used) singly or in combination for retrieving records

• data of variable structure and variable length
• the improbability of being able to specify in advance the nature of

the users queries and the need therefore to iterate through queries
• the need to support effective searching with fuzzy matching

(wildcard) and 'near miss' (quorum searching) selection
• the need for fast response times
• the need to be able to specify the content and format of the results

of enquiries
• in some cases the need to provide a data entry capability for users

to add new records
• in other cases, data is imported from some other source (including

external to VME systems)
• special security applied to field and content level.

Real applications for which INDEPOL has been used include:
• crime reporting and criminal intelligence (police)
• share fraud investigation (police and financial services)
• management information of corporate data such as personnel, lo

gistics and events (defence, commercial including ICL)
• audit trail analysis (government)
• fraud investigation (police, government)
• Royal Commissions (government).

Significantly, several of the current applications may fairly be described
as data warehouses: users have taken snapshots of operational logistics
databases and used INDEPOL applications to provide a management in
formation source for their enterprise. This demonstrates how many of the
features, originally specified for INDEPOL to satisfy a specialized set of
users, have been delivered in a form permitting generic applicability.

Other lessons which were learned from exploitation of INDEPOL by
customers included:

• the benefits of rapid prototyping and incremental system develop
ment

• the ability to support a multi-user interactive query system on very
large volumes of data

316 ICL Systems Journal November 1997

• the resistance of some non-technical users to creating free format
queries (and in other cases the reluctance of IT departments to give
them this capability)

• and consequently, in some instances, the under exploitation of
INDEPOL's features by some customers.

Sales of INDEPOL were made between 1986-1993 and the last release
of INDEPOL (310) was made in December 1992. This was declared to be
the last version which would be produced and the development team was
disbanded and the product passed into support. The marketing strategy
for further enhancements has been to build 'surround' products which could
add value to the types of applications for which INDEPOL was being used
without change to the core, hence providing added value while retaining
stability and improved quality for the customers. Examples of such prod
ucts and utilities include Intelligence Analyst Workbench (IAW)
[Southerden, 1992], High Speed Data Matching (HSDM) and INDEPOL Data
Update and Conversion (IDUC), the last two being developed by Peter
Sweetser, then of ICL Australia.

Prior to the decision to make 310 the final version, the ICL Product
Authority commissioned market research, which was carried out over a six
month period in 1991, to identify potential future requirements for the prod
uct as well as to test the hypothesis that a business case existed for a UNIX
version to be developed. This research became known as INDEPOL-X and
took cognizance of the developments then being undertaken within ICL
into SCAFS [Martin, 1994]. While the market review captured valuable
and supportive information, both from many of the INDEPOL customers
and the sales channels within ICL, the commercial decision did not sup
port the investment required to build a new product.

The story then moves forward to 1995, by which time INDEPOL 310
had been released to customers and, more importantly, installed by all of
them. It has to be recognized that most, if not all, of the customers were
running INDEPOL as part of a suite of services and the introduction of the
new version had to take the appropriate priority alongside their other busi
ness activities. It was therefore not until mid-1994 that all sites had moved
their operational applications over to the new version.

Other technologies had advanced over the period since the INDEPOL-
X study. In particular, the proliferation of PCs was leading to a desire for
those facilities, which were becoming available in PC software, to be pro
vided within the INDEPOL environment. This had to be considered, how
ever, in the context that some organizations were still using 'dumb' termi
nals and for security reasons did not want PC type facilities to be added for
their users.

While some steps were taken to provide a PC type interface, typically
through the provision of a 7561 terminal emulator, neither 'tight' integra

ICL Systems Journal November 1997 317

tion, nor a true Client component had been developed.
At the end of 1994 the INDEPOL-X report was reconsidered by the Prod

uct Authority and further investigations were made to determine users'
key requirements. The results of this study established that the following
facilities should now be added:

• an improved interface including a windows environment with drop
down menus and icons, integrated business graphics, seamless in
terface into word processing and spreadsheets, cut and paste capa
bility between INDEPOL data and other applications, integration
with images, photographs and fingerprints

• new development tools including painting tools for screens and re
ports, easy to develop macros

• provision of searching capabilities, including ability to save 'hit'
files, and the performance of joins to be raised to, at least, the stand
ard of relational databases

• new features to be made available to applications, including the
provision of improved text entry, word wrap, ability to sort data
once retrieved and graphical representation of data.

While this list is not an exhaustive description of all the points made,
many respondents emphasized requirements, already met by INDEPOL,
in order to highlight essential features which any new development to re
place INDEPOL must possess.

The 'business drivers' generating these requirements included the need
to reduce technical support in the formulation of complex queries and ex
porting data, the desire by users not to have to 'double handle' data after
retrieving it in order to put it into a more understandable display format,
and increasing recognition of the value of the accrued data, if only it could
be exploited by more users who were increasingly resistant to the mono
chrome screen display and the command query language.

Other work was being carried out within ICL to provide similar kinds
of capabilities to other VME based and non-ICL databases. One of these
[Thompson and Robertson, 1994] describes the background and develop
ment of the Dialogue Manager product and Beer [Beer, 1994] provides a
description of a similar project with one customer and also identifies some
of the technical issues which have to be considered at a generic level. Con
tact was also made with a development group who had provided a similar
capability on two ICL internal systems, SAMIS and Configurer, and in par
ticular had addressed two problems: firstly how to keep PC based (client)
software updated when the VME (server) application changes and, sec
ondly, how to provide a maintainable and replicable communications in
frastructure for connecting Client applications to the server. As is so often
the case, solutions are potentially available from a variety of sources but

318 ICL Systems Journal November 1997

real world issues such as the releasing of those resources or the provision
of appropriate levels of skills transfer can preclude immediate benefits from
being realized. Fortunately on this project a collaboration was possible.

A case was formulated to develop INDEPOL Client and for this to be a
true client component of the INDEPOL 310 product, with requirements to
deliver a targeted set of the enhancements identified in the INDEPOL-X
study. Approval to proceed was given in mid-1995 and a development
team set up, comprising one newly joined graduate, a part time team leader
and some pre-existing software and technical consultancy from a collabo
rating unit within ICL.

In support of the business case, a prototype of some of the key features
was developed in Visual Basic. These features included drop down menus
and several of the 'standard' offerings of Windows based clients. Features
which particularly stimulated discussion and interest included a visual rep
resentation of the data model, which we called the data map, exploitation
of business graphics and integration with a set of geographic tools.

The first implementation with a customer focused on data entry, not an
area where a Windows GUI would obviously be of benefit as data entry
staff tend to have fast keyboard skills and mouse controls are likely to slow
down input. The implementation demonstrated the advantages of validat
ing the data in the Client as the application did not permit backward navi
gation between templates. The client solution allowed several pages of
data to be available with tabs allowing any one to be brought to the front as
required.

Figure 1: An illustration of multi-page data
ICL Systems Journal November 1997 319

The INDEPOL application already carried out validation at the field
level, as well as cross field validation. The rules for this validation are held
within the data model and so are easily incorporated within the Client.
The extent to which further cross field validation might be carried out is a
trade off between a more complex product, in which all data is entered
through INDEPOL Client, and the benefits which may be achieved by re
ducing the size of the data model. There are advantages affecting the sup-
portability of the INDEPOL application if the data model remains the source
of such validation tables.

The prototype suggested how improved information could be made
available to users to assist them in searching the database. Applications
represent real world objects and may include files such as people, addresses,
vehicles, telephones and documents. A police application with this infor
mation may be required to support a query' to find all people aged 25 - 40
years, over six feet tall, who own or are known to be connected with a red
Ford saloon car having 'Ν' as a prefix in the registration mark and who live
in Kent. Such a query would require INDEPOL to perform a join across
three files (people, vehicles and addresses) and is likely to be carried out
using the query language rather than by completing a template. While the
query language of INDEPOL is 'English-like' the precise syntax which has
to be followed can be prone to error, particularly by inexperienced or infre
quent users.

The INDEPOL Client data map provides a graphical schema of the data
which, together with drop down menus for each file, allows the user to
identify the search fields needed to be used to formulate the query. Using
drag and drop techniques the fields can be added to a query palette, the
search values added, and the Client will then translate the contents of this
palette into a syntactically correct INDEPOL query. A safety check could
potentially be constructed at this point, inhibiting searches which require
more than, say, three file joins. It is not unknown in some user sites, where
there are many tens of files, for queries to be asked which take many hours
to run because of the many file joins required.

The prototype and an early customer implementation demonstrated
the extraction of data into an Excel spreadsheet. Excel provides various
tools to turn data into business graphics and this working example showed
how commonplace software products can be used for providing manage
ment information in a readily understandable form. Without INDEPOL
Client, applications are limited to producing the output as tables or histo
grams. The power of office tools from any supplier, is enhanced by the
capability of importing data direct from the source and presenting the analy
sis in colour, in graphics, and in a document.

While graphical display is the desired end product, the analytical capa
bilities which can be performed by moving data into a different software

320 ICL Systems Journal November 1997

Figure 2: Dynamic Query Formatter

ICL Systems Journal November 1997 321

environment are greatly enhanced. This had long been recognized as a
desirable objective and INDEPOL 310 did provide the capability of provid
ing reports and extracts from the database. Users frequently required the
intervention of technical support in order to produce the output and a de
lay often occurred before the results appeared at the user's desk. INDEPOL
Client using FTP is able to transfer the output very quickly. It is demon
strable in one minute with simple enquiries and small files, which com
pares with response times of hours or days when the user is remote from
the technical support location.

Increasingly organizations are seeking to gain added benefit from their
systems through detailed data analysis. One form of such analysis is spa
tial analysis, using geographic or map based tools. Crime report informa
tion has a spatial dimension and plotting crime events is an increasingly
desirable requirement. For the purposes of the prototype a PC based map
ping tool was used to import and display INDEPOL data. The standard
INDEPOL export capability was used and the mapping tool's ability to
import data as comma separated values was employed.

3. The development perspective
The original development question, which had been addressed in 1991, was
whether a UNIX version of INDEPOL should be developed. The prevail
ing view was that the investment required, particularly for the new prod
uct to compete with the increasingly dominant relational database prod
ucts, was too large. Consequently the strategy was developed to provide
'surround' tools and utilities which would add value for INDEPOL appli
cations while the core product remained unchanged and therefore stable.

Discussions with existing customers showed them to be generally happy
and loyal to the product. Predictions were made which forecast that there
would be a dramatically reduced INDEPOL base by 1995, brought about
by migration to relational products and general strategies of down-sizing.
In reality this did not happen. So when the 1991 documents were re-exam
ined in 1995, the adopted strategy identified the benefits of developing an
improved interface and offering additional features, as well as exploiting a
client-server architecture. Existing products were investigated which might
have provided a basis for exploitation or collaboration, in particular, Dia
logue Manager, and the view was formed that a major part of the require
ment was to decode INDEPOL templates. INDEPOL is a macro based lan
guage which can display 'fixed' or pre-set templates, or dynamically form
them on the fly from parameters entered by a user as an output require
ment to a query statement. Both approaches are supported with equal effi
ciency. Picking out fields from a dynamically formatted template requires
flexibility in specifying where a field is. Often this is done by matching the
prefix or suffix string, but the logic behind the provision of such facilities

322 ICL Systems Journal November 1997

comes from an understanding of the INDEPOL template mechanisms.
To validate this approach an exercise was constructed to take the re

search and map new functionality on to a Client Server architecture. This
identified four core sets of users:

1. those who primarily used INDEPOL templates either for data en
try or enquiry

2. those who predominantly used the data for simple investigation,
research or analytical purposes using the free format facilities

3. experts, who typically built queries on behalf of others and may be
experts in category 2 or technical support staff

4. technical developers and support staff of the applications.

Clearly a client component should seek to add value to the product for
each of these groups if possible and a specification was produced which
included:

• providing high quality templates with local validation of data
• retaining the characteristics of the INDEPOL language
• ensuring that all facilities available to the second group continued

to be supported
• providing tools for support staff actually to create the application

on INDEPOL Client.

Two lessons were learned from this exercise. Firstly, a system could not
be produced that replicated all existing templates or, at least, doing so would
have led to a closed application and overall loss of functionality. The prob
lem, therefore, of querying INDEPOL 'head-on' had to be solved.

The second lesson was that the number of people in categories 2-4 was
small on a site to site basis. Typically there may only be a single person in
group 3, and a small handful in group 4. Thus the potential of the original
product was not being realised by the user organizations, primarily due to
the complexity of the INDEPOL language. The fact is that for enquiries
against a single file, INDEPOL is reasonably English-like. Complexities are
introduced either through the database structure or the desire to do things
like producing a print of enquiry results. Concatenating actions makes the
syntax of the query more complex and not necessarily 'English-like' although
this had always been the aim. Perhaps the designers had forgotten how
complex the English language is!

Features of INDEPOL which, when originally implemented, had been
perfectly acceptable (e.g. printing of histograms comprising asterisks and
printed via dot-matrix type printers) are no longer the standards required
by customers in the late 1990s when the output of management informa
tion via PC spreadsheet tools provides attractive, 3-dimensional, colour
charts, perhaps incorporating the logo of the department or enterprise pro-
ICL Systems Journal November 1997 323

Figure 3:

324 ICL Systems Journal November 1997

ducing the information. Similar quality output was required to support
INDEPOL reports and highlighted the need for the INDEPOL data to
interwork with PC applications. The prototyping phase of the develop
ment confirmed the feasibility of providing this level of integration through
demonstrations of interworking with a spreadsheet and a mapping appli
cation. The philosophy behind the design was not to reinvent wheels but
to exploit tools already available in the PC environment.

Experience within the development team of interacting with legacy
systems led INDEPOL Client to be designed around three concepts:

1. the definition of templates
2. a window painter
3. a scripting language to implement interactions between 1 and 2.
Collectively these facilities became known as the 'personality' for a spe

cific implementation.
A debate occurred on whether a script language was needed or whether

Visual Basic should be used. Visual Basic has the advantage of being both
quicker and more flexible, but it could not be constrained and therefore the
benefits of using the INDEPOL system model to achieve consistent valida
tion would have been lost. Using Visual Basic a simple working system
could have been produced within an estimated three weeks, but it would
not have gone further than displaying the VME screen and would not have
delivered the value added features that were desired.

A further essential component was the INDEPOL system model inter
rogator, which retrieves information about fields in the application, their
names, size and screen positions.

It was apparent that to support the appropriate levels of de-bugging
which might be required a mechanism was needed to move one step at a
time through scripts and to be able to examine variables. To facilitate this,
a screen capture mechanism was developed which also allowed off-site
development (i.e. away from the INDEPOL application) and supported a
free standing demonstration capability.

To address the query component of INDEPOL, a 'drag and drop' ap
proach was produced which allowed the user to drag field names on to a
query formatter which ensured that the correct INDEPOL syntax was con
structed.

Finally, to retain the spirit of the Server application, the ability to store
INDEPOL queries, and subsequently to re-load, modify and re-launch those
queries was provided.

To support these features a visual representation of the INDEPOL data
base can be incorporated which allows users to look up fields, perform
'drag and drop' query building and to understand the complexity of the
search they may be seeking to perform, with the consequential impact on

ICL Systems Journal November 1997 325

response times for their query. A significant improvement was offered
through this approach, as the validation of a query could be performed by
the Client before launching it to INDEPOL. This ensures that only valid
queries get to the Server and that the number of searches which fail are
considerably reduced.

The results of a query are displayed to a user in a table. This was set up
so that if a table entry contained a unique key then the INDEPOL Client
window showing the full details of the appropriate entry was displayed.
This mechanism is crucial in bridging the gap between template users and
free format query users. The need to type lists of data items has been re
moved.

4. Customer experiences.
The development of INDEPOL Client was assisted by the first customer
organization to commit itself to the product. Their desire was to provide a
mechanism which, in addition to providing an improved data capture/
entry mechanism, also allowed other data which was available at the same
time, to be keyed in and then directed to a second (non-INDEPOL) system.
The original decision to include the INDEPOL data model interrogator paid
off handsomely and underpinned the swift painting of screen templates. It
also helped to improve the legibility and consistency of the application.
The development of scripts was also relatively quick and this enabled the
user's navigation of the application to become visible at an early stage.

The limitations of Visual Basic 3 in its screen handling abilities with
large numbers of fields were learnt to our cost. The physical limits and
performance, which were documented, had seemed acceptable for the size
of INDEPOL applications, but the data capture requirements of the first
customer exceeded these design limits.

The second customer implementation was carried out by way of a pilot
exercise to install up to ten copies of INDEPOL Client with a full 'personal
ity' to enable all the facilities of the customer application to be used. It was
agreed that the pilot period would be six weeks, divided equally into three
weeks of implementation and three weeks of testing and feedback by the
users. Prior to the use of INDEPOL Client the customer's system would be
searched to obtain a sub-set of data which would be displayed at a termi
nal. There was an expectation that further manipulation of that data would
be done using a spreadsheet package. This would have caused the user
particular problems:

1. if the user wanted to count Totals, all the detail, potentially many
hundreds of records, would have to be im ported into the
spreadsheet, yet the totalling facility already existed within
INDEPOL.

2. some of the user's macros produced computed fields which were

326 ICL Systems Journal November 1997

sufficiently important to the users that it was unacceptable to make
it a two stage process by using a spreadsheet. For example, the
concept of stock value exists which can be derived in a number of
ways according to circumstances. The write off value of the stock
may be used, or alternatively a cost value. Dependent upon the
values used, a complex series of calculations can be performed across
a number of the data attributes. These could be replicated in a
spreadsheet but a better quality result is obtained by performing
these functions in INDEPOL as:
• a centrally controlled set of macros is used (providing consist

ency)
• no additional programming effort in the spreadsheet was re

quired.
So the capability to exploit these macros had to be incorporated in the

personality of the application.
To bring the story up to date, INDEPOL Client has now been 'ported'

to a Windows NT environment. A conversion to Visual Basic 5 (via VB4)
was carried out to give 16 and 32-bit versions. The previously employed
communications interface was replaced by a HLAPPI interface to insulate
the product from communications differences and by delegating all com
munications functionality to the VME Client product component on which
the product now relies.

The positive reaction of users of INDEPOL has been expressed by an
acceptance of some of the evidence recorded in this paper, including the
under-utilisation of some of INDEPOL'S features and a serious intention to
make further use of the tools through application enhancement and the use
of the Client component.

5. Conclusions
With the speed of change in technology, businesses have to be increasingly
selective in where they make their investments, not just because of the cost
but with pressures on resources to implement change, the opportunity cost
may be high. The value to businesses is in the information they have, not
necessarily the technology which stores and processes the information. The
advent of Client Server technology provides capabilities for adding value
to the enterprise information through improved analytical capabilities which
were not available in the server component, hence we have seen the devel
opment of the data warehouse. The author [Southerden, 1992] explained
the intelligence process as employed in law enforcement, but the model is
generic to government and business sectors. Intelligence is the process of
adding value to information through the processes of collection, collation,
evaluation, analysis and dissemination: our customers are seeking to ob

ICL Systems Journal November 1997 327

tain similar benefits, although without necessarily using these terms.
INDEPOL with CAFS provides a unique solution for effective informa

tion storage and retrieval, PC based tools provide commonly available tools
which support complex analysis. INDEPOL Client now provides the 'glue'
between the two which enables intelligence to be developed from the origi
nal information.

Acknowledgements
At various times during the development phase we had involvement and
advice from INDEPOL experts, both from within ICL, and externally. In
particular the suggestions made by members of TCMS Ltd. (who were con
veniently located close to us in Slough) and by Tony Colville led to im
provements in the usability of the product and we offer them our grateful
thanks.

I would also like to record my thanks to Torstein Muldal (ICL Systems)
who conceived the original idea of INDEPOL Client and who, as Technical
Design Authority, developed and breathed life into the product, and into
this paper. Any errors of fact or opinion however, are mine alone.

Bibliography
CROCKFORD, L.E., "Associative Data Management System," ICL Techni
cal Journal, Vol. 3, Issue 1, pp 82-96, May, 1982.
MALLER, V.A.J., "Criminal investigation systems: the growing dependence on
advanced computer systems," IEE Computing & Control Engineering Jour
nal, April, 1996.
SOUTHERDEN, S.B., "Information technology: support for law enforcement in
vestigations and intelligence," ICL Technical Journal Vol. 8, Issue 2, pp 302-
315, November, 1992.
MARTIN, M.W., "The ICL search accelerator, SCAFS: functionality and ben
efits," Ingenuity, The ICL Technical Journal, Vol. 9, Issue 2, pp 325-340,
November, 1994.
THOMPSON, R and ROBERTSON, I., "Dialogue Manager: Integrating dispa
rate services in client server environments," Ingenuity, The ICL Technical Jour
nal, Vol. 9, Issue 1, pp 138-150, May, 1994.
BEER, A., "From a Frog to a handsome Prince: Enhancing existing character based
mainframe applications," Ingenuity, The ICL Technical Journal, Vol. 9, Issue
1, pp 81-101, May, 1994.

328 ICL Systems Journal November 1997

Biography
Stuart Blair Southerden
Blair Southerden joined the Kent County Constabulary in 1967 and served
as a police officer for sixteen years. As a mature student at the University of
Kent he was introduced to computing studies, and on return to the force he
worked for four years on a computer project team.

He left the police in the rank of inspector and worked for three years in
a systems house. He joined ICL in 1987 as an industry consultant and sup
ported the marketing work leading to the establishment of a focused line of
business within ICL Australia intending to exploit the INDEPOL product.
He became Product Authority for INDEPOL in 1994.

ICL Systems Journal November 1997 329

Using the ECL'PSe Interval Domain
Library in CAD

T.M. Yakhno, V.Z. Zilberfaine and E.S. Petrov

Institute of Informatics Systems, Russian Academy of Science,
Novosibirsk, Russia

Abstract
This paper describes the Interval Domain Library, a new logic pro
gramming tool, developed at the Institute of Informatics Systems of
the Russian Academy of Sciences, for solving non-linear constraints
over sets of real numbers. It accepts equations and inequalities writ
ten in standard mathematical form and produces as output variables
ranging over continuous intervals. Such constraint propagation is
regarded as an efficient way of processing incomplete information in
what the authors have called sub-definite models. The paper also
discusses some technical aspects of the integration of the library into
ECL'PS'' and how the resulting system may be used to solve a practi
cal problem. The project was carried out in collaboration with IC
Parc (Imperial College, London) and ICL (Bracknell).

1. Introduction
Solving non-linear constraints over real numbers is necessary in econom
ics, mechanics, engineering, and many other areas. Due to the computa
tional complexity and the numerical issues involved, finding all the solu
tions of a system of non-linear constraints with high precision is a hard
problem.

Methods and tools for solving non-linear constraints can be classified
into first, classic techniques, e.g. Newton's method, which is built into such
systems of computer mathematics as Mathematica, MathCad, etc. and, sec
ond, interval techniques. The latter class may be split into the following
groups.

The first group consists of libraries which include interval extensions
of real functions [Knueppel, 1994]. Such a library is conventionally used in
an imperative environment for performing explicit computations, in which
users are free (or forced) to design their own algorithms for solving non
linear problems.

The second group bridges the gap between interval libraries and non
linear applications by using constraint programming (CP) languages as in
BNR-Prolog [Older & Vellino, 1990], CLP(BNR) [Benhamou & Older, 1995],

330 ICL Systems Journal November 1997

Newton, Helios [van Hentenryck, 1996]. Usually, CP systems of this kind
hide the process of solution from the users.

Although a well-known CP system, such as ECL'PSf (ECRC Common
Logic Programming System), provides a user with a number of libraries,
such as the Finite Domains (FD) or Finite Sets library [ECRC, 1995], to help
to solve discrete problems, there are no corresponding tools for solving non
linear constraints over real numbers. The Interval Domain (ID) library was
designed to overcome this difficulty. It has been developed as a new logic
programming tool specifically to solve non-linear constraints over real num
bers. It accepts equations and inequalities written in normal mathematical
form and, for each variable, it produces results in the form of continuous
intervals.

All the CP systems, although they may differ in detail, do the same
thing; they propagate constraints. The utility of some systems is often lim
ited because they are free-standing. The benefit of the library approach is
that it brings the power of CP methods into conventional programming
languages. Another merit is that having ECL'PS'' as the base language gives
the user the possibility of combining the ID library with the other facilities
available under ECL'PSe.

The paper is structured as follows: Section 2 briefly introduces major
notions of Prolog and its dialect SEPIA, which is used in ECL'PSf; Section 3
demonstrates some of the capabilities of the ID library1; Section 4 focuses
on some important features in the implementation of the ID library; Sec
tion 5 describes a detailed example of an application of the library and,
finally, Section 6 outlines the directions of future work.

2. Prolog and ECL'PS®
Prolog is a logic programming language. It provides a means for specify
ing both application knowledge and declarative queries. The application
knowledge is put into a program consisting of facts and rules. A Prolog
interpreter infers the answer to a user's query by resolving the logical ex
pression represented by the program in terms of the available facts. This
will involve algorithms for backtracking and unification. An interpreter
for Prolog always processes the program "from top down and from left to
right", i.e., it tests facts and rules in their textual firing order.

The following simple program expresses parent-ancestor relations in
a family:

parent(peter,john).
parent(peter,ivan).
parent (john, j antes) .

1 see also ftp://ai200.iis.nsk.su/pub/papers/ID/id_description.ps.gz

ICL Systems Journal May 1997 331

ftp://ai200.iis.nsk.su/pub/papers/ID/id_description.ps.gz

ancestor(Χ,Υ):- parent(Χ,Υ).
ancestor(Χ,Υ):- parent(X,Z), ancestor(Ζ,Υ).

The first three are assertions are facts and the rest are rules. The state
ments ancestor and parent are predicates or relations; peter,
john, ivan, james are atoms and X, y , z are variables. A fact of the form
parent (x, Y) states that x is a parent of y. The relation ancestor states that
(1) x is an ancestor of y, if x is a parent of Y (the first rule) and (2) x is an
ancestor of y, if x is a parent of z and z is an ancestor of y (the second rule).
To find all the descendants of peter, it suffices to give the Prolog inter
preter the following query:

?- ancestor(peter,Y).
The interpreter will then instantiate the variable Y to give the first answer:

Y = john More? (;)
Upon receivingfrom the user, the interpreter backtracks and the next

answer is retrieved. This process can be continued until no more answers
are found.

ECL'PS1’ is a system based on SEPIA Prolog. Its aim is to serve as a
platform for integrating various logic programming extensions [ECRC,
1995]. Its "glass box" architecture makes it possible to design extensions
directly at the ECL'PSf level and achieve efficiency by using various built-
in predicates.

ECL'PS1' has a number of powerful capabilities, unavailable in pure
Prolog, two of which are of major importance in the current context:

• handling delayed goals
• manipulating meta-terms

Usually, ECL'PS" delays the execution of any goal with a built-in predi
cate, if neither failure, nor success of this goal is logically sound. For exam
ple, ECL'PS1' delays the goal x =< y ("x is equal or less than y" when both X
and Y are not instantiated.

[eclipse 1]: X = < Y.
X = X
Y = Y
Delayed goals:
=<(X,Y)
yes.

Modification of the state of some variables (e.g., instantiation) may en
able normal execution of some delayed goal, for example:

[eclipse 2]: X =< Y, X = 9.0, Y = 3.0.
no (more) solution.

Users are able to program the handling of delayed goals directly in
332 ICL Systems Journal May 1997

ECL'PSf. For example, the function sum defined below computes the sum
of a list of numbers. Obviously, it should be delayed, if the list contains
uninstantiated variables, i.e., is nonground. This is done as follows using
the in-line compilation facility of ECL'PS':

[eclipse 3]:[user].
sum([X|Xs] , Sum):- number (X), Sum is X +

sum(Xs).
sum([],0).
delay sum(Xs,_) if nonground(Xs).
*D
user compiled traceable 676 bytes in 0.0
second(s).
yes.
[eclipse 4]: sum([X,1,3,7],S).
X =* X
s = s
Delayed goals:
sum([X, 1, 3, 7], S)
yes.

Meta-terms assist in attaching additional information to standard Prolog
variables. For example:

V{enum([red, white, green, blue]))
is a meta-term which associates a Prolog term (say a domain) with the vari
able v. Involving this information in unification makes unification stronger
and helps reveal failures. The way unification works for meta-terms is de
fined by the unification handler. For example, the handler may check
whether the value of the meta-term as instantiated belongs to the domain:

[eclipse 5]: V{domain([red, white, green,
blue])} * red.
V = red
yes.
[eclipse 6]: V{domain([red, white, green,
blue])} * black,
no (more) solutions.

Handling delayed goals and manipulating meta-terms together allows
users easily to programme various constraint programming techniques, e.g.,
most notably constraint propagation.

In the ID library, delayed goals behave as agents; i.e., a goal, after infer
ring some information and letting other goals know about it, re-delays it
self until a further inference is enabled by the activity of some other goal.
Meta-terms are used to organise all these information flows between de
layed goals.

ICL Systems Journal May 1997 333

3. The Interval Domain Library
The Interval Domain library is a new extension to ECL'PS''. The library is
based on the use of sub-definite models [Narinyani, 1983] and implemented
in the UniCalc system [Semenov et al., 1993]. It significantly simplifies the
process of solving complicated non-linear problems.

3.1 Functions & Predicates
The syntax of terms which may appear in constraint predicates follows
SEPIA Prolog conventions. The list of available functions defined in the
library includes comparison operations along with extra logical functions
such as basic arithmetic and trigonometric functions. In addition to these
there are special predicates:

Var s * * Domain associates the real interval domain Domain with the vari
able or list of variables Vars. The domain is written as Min. .Max,
where Min and Max are real or integer numbers. If vars is unde
fined, it becomes a domain variable. If vars is already a domain
variable, its new domain becomes the intersection of its old do
main and that specified by the interval domain. If no initial inter
val can be specified, the keyword undefined can be used instead,
which designates the interval (-°°, +«>).

range (Var, Min, Max) is used to retrieve the current domain of a vari
able. It returns the minimum and maximum values in the domain.

set_accuracy (Epsilon) sets the accuracy. The value of Epsilon deter
mines the residual range of the output intervals. The solution proc
ess terminates, when all domains become smaller than Epsilon.

locate (Vars) starts procedures for locating the roots of a system of con
straints. The predicate uses a branch-and-prune algorithm. Vari
ables are taken from the list vars one at a time and their domains
are split. The list is treated as if it were circular. Domains smaller
than the current accuracy are not split.

assign (Var, NewMin, NewMax) destructively sets the domain of the vari
able var equal to NewMin.. NewMax. The new domain may not over
lap with the previous one.

3.2 Defining a New Function
The library can handle user defined functions, for example, the hyperbolic
sine·.

334 ICL Systems Journal May 1997

can be defined by:

sinh(X, Res):- Res *== (exp(X) - exp(-X)) / 2.

A function of more than one argument (for example, harmonic mean)
is defined in the same way:

hm(X, Y, Res) :- Res *=» 2/(X/X + 1/Y).
A function can accept an arbitrary number of parameters, which may

be either Prolog terms or domain variables. For example, the harmonic
mean of a list of domain variables may be defined as follows:

hm(L, Res):-
sum_inv(L, Sum),
N is length(L),
Res *== N / Sum.

sum_inv([X], R es):- !, Res 1/X.
sum _inv([X|Rest], Tot) :-

sum_inv(R est, SubTot),
Tot *== SubTot + 1/X.

This function can now be used in the following constraint:

hm([X1,X2,X3,X4]) + hm([SI, S2, S3]) * «
hm([Z1,Z2]).

3.3 Using the Library
All variables used in non-linear constraints, must be initialized first. The
syntax for initialisation is:

<Variable> ·* <MinValue> .. <MaxValue>
<List of variables> ** <HinValue> .. <MaxValue>

e.g. v · · 0 .5 . . 9 . 2 turns v into a meta-term with the range 0 .5 . . 9 . 2 . v
can then be used in a constraint expression, e.g. sqr<v) *=< 2 , and such
constraints may be arbitrarily complex.

3.4 Some Capabilities of the Library
The process can be illustrated by finding the roots of the equation:

To solve the problem, the following program is enterd at the ECL'PS1' prompt:

X ** -1000..1000, XA3 - 3*X + 1 **= 0
The computation results in a range for X

X = [-1.8859, 1.5632]

ICL Systems Journal May 1997 335

which is guaranteed to contain all the real roots of the equation.
To separate, say, the negative roots, the inequality x *=< o has to be

added. The computation then produces a much narrower interval which
contains the negative root:

X - [-1.8793, -1.8794].
A more precise interval that still contains the root can be obtained by

changing the accuracy with set_accuracy/l and repeating the computa
tion. Setting the accuracy to 10"8, the following values are obtained:

[eclipse 1] :
set_accuracy(le-8),
X ** -1000..1000, XA3 -3*X + 1 *== 0,
X *■< 0.
X - X_{[-1.87938526, -1.8793852]}

To locate all roots, other intervals need to be examined. For example,
adding the condition x*>=0, x*=<i leads to the second root x=[0 . 3 4 7 2 ,
0 . 3473] and adding the further condition x*=>l will lead to the third root
X» [1 . 5 3 2 , 1 . 5 3 2 2] . If an inconsistent restriction is applied (say, x*>=10),
then ECL/PSf issues the standard message no (more) solutions.

3.5 Locating Roots with locate/1
Another method of locating real roots employs a binary splitting. This is
activated by calling the locate/1 predicate:

X *« -1000..1000,
XA3 - 3*X + 1 *== 0,
locate ([X]).

which automatically searches for roots of the equation from left to right.
On backtracking, all multiple roots are returned.

4. Features of the Implementation
4.1 Constraint Propagation
The interval domains of the variables are narrowed by constraint propaga
tion. The library decomposes each equation and inequality into primitive
constraints, i.e., those binding two or three variables, such as a +b *=*c . A
primitive constraint essentially is a set of calculation functions, each being
evaluated for a particular variable. For example, a +b *==c consists of:

C:> A+B (1)
B:= C-A (2)
As- C-B (3)

336 ICL Systems Journal May 1997

Whenever the domain of some variable is changed, every other func
tion that also references that variable is executed. This may in turn change
the domains of yet other variables and thus trigger execution of further
functions and so on.

From the point of view of implementation, each function is a delayed
goal. The list of functions to be executed on changing the domain of a
variable is stored in its meta-attribute wait_any. In the example we have:

A{wait_any:[1, 2]>
B{wait_any:[1, 3]>
C{wait_any:[2, 3] >

4.2 Using Dynamic Priorities
Experiments with the library show that over 50% of the goals are checked
for consistency. The ID library therefore applies constraint propagation
with dynamic priorities so that each time a goal fails to reduce any interval,
its priority is lowered. Although this minor innovation does not extend the
functionality of the library, it improves its performance significantly.

4.3 Locating Roots
Two distinct algorithms for reducing the domains of variables are imple
mented in the library. The first uses conventional constraint propagation.
Whenever the domain of a variable is changed, the constraint handler checks
all the constraints which reference that variable. This will propagate do
main reduction activity into other constraints to the point where no further
reductions are possible or because the variables involved now have do
mains within the required accuracy limits. At this stage the intervals are
usually very narrow, but not always. (Some problems are not amenable to
solution by constraint propagation or may yield more than one solution).
Once all a priori constraints have been propagated, a further stage in solv
ing the problem can be adopted, such as branch-and-prune. In operation,
the constraint handler splits a variable's domain in two symmetric halves
and tests whether each still satisfies the constraints. This is practicable for
a single variable but gives rise to problems if many variables need to be
split since performance can be strongly order dependent. Since this choice
cannot be automated, it is up to the user to make a decision. A further
problem of using the locate/1 predicate is that, when the problem is large,
the library may fail to find a single interval containing the actual root and
will yield a number (up to ten or so) of intervals. This situation is common
to a number other constraint solving systems. To reduce this undesirable
behaviour, a locate/2 predicate is available, which performs some addi
tional checking after each split. This procedure involves splitting the do
main into two parts of unequal size and testing only the smaller subdomain

ICL Systems Journal May 1997 337

for a solution—for small intervals this is a relatively efficient process. If a
solution exists, the part of the interval represented by the subdomain is
pruned from the domain of the variable. This process of testing small re
gions at the ends of the interval for solutions and pruning them is solutions
are found, a process sometimes known as shaving, is continued until a
subdomain is encountered which does not give a solution—this is retained.
The process can then be applied to the remaining variables. This process
can reduce the amount of splitting actually required significantly but again
at the expense of performance. The value of this technique over a symmet
ric split is apparent where the original interval is wide:

λ ** 1 .. 4, Y ** 4..9, A*A *== Y.
Where the interval for a needs to be reduced as much as possible, local

propagation cannot reduce the domain for A, nor can symmetric splitting.
Although the roots for a can be found in sequence, this may not be what is
wanted. If instead only the lesser parts of the split are tested then the required
interval for A can be quickly reached. The predicate locate/ 2 can be used
for this purpose in the form:

locate![<List of variables?], [<List of vari
ables?])

The elements of the first list are the variables to which the standard
symmetric split is to be applied, those of the second list are the variables
for which an asymmetric split is more appropriate. The program fragment:

A ** 1 .. 4, Y ** 4 .. 9, A*A *== Y,
locate![],[A])

will give

A*A_{[1.887, 3.177]}.
The reason this is not a =a_{ [2.0, 3.0]} is that a condition is en

forced that the lesser part of an interval should be at least 10% of the entire
interval length, otherwise the procedure would be extremely inefficient.
Experiments have shown, that with the right initial choice of variables for
splitting, no variables need to be put into in the second list. Usually this
can be achieved after a few trials. Where there are many variables, it is
more effective to put some of them in the second list as symmetric splitting
will sometimes not lead to a reliable result at the required precision leading
to number of very narrow intervals around the actual root.

4.4 Advanced Example
A predicate for minimising a function is given as a worked example. This
is based on the well-known branch-and-bound technique. The arguments

338 ICL Systems Journal May 1997

of the predicate are the variable to minimise and the variables upon which
it depends. The domains of the latter will be split.

minimise(+Var, +ListOfVariables, Minimum)
A sample definition of the predicate is given below. This definition is not
complete, since in practice the predicate may produce neither success nor
failure. This problem can be easily solved by introducing a block to infinite
branching.

minimise(V, List, Min):-
rang«(V, ΤΙ, T2),
assign(Min, ΤΙ, T2),
V *»< Min,
split(V, List, List, Min),

split(_, [], [], _):- l.
split(V, [], L, Min):- split(V, L, L, Min),
split(V, [Var|Tail], L, Min):-

range(Var, ΤΙ, T2),
Mid is (T1+T2)/2,
(Var *■< Mid,· Var *> Mid),
range(V, _, V2),
range(Min, Ml, M2),
(V2 < M2 -> assign(Min, v 2); true),
split(V, Tail, L, Min).

5. Wiring Application
An important stage in the design of an aircraft is its electrical wiring. The
problem, which arises when all the mechanisms and sensors are being placed
on an aircraft, is how to connect these devices into a number of systems. It
is helpful to assign a different colour to each sub-system and its associated
cables. The objective is to minimise the total costs while satisfying some
constraints put on the parameters of the different sub-systems. A number
of applications have been developed to cope with this, and related, prob
lems, e.g.[Kuper & Wallace, 1995], [Mezhoud et al, 1996],

The above is a very general statement of the wiring problem. It neither
specifies whether some interconnections require pre-determined positions
nor what other constraints need to be considered, and does not define "to
tal costs". The next sections will show how the ID library can be applied to
wiring problems with constraints placed on the position of interconnec
tions.

5.1 Formal Model
Because all the interconnections are already fixed, the topology of the air
craft is adequately represented by the graph G = (V, E), where the set of

ICL Systems Journal May 1997 339

vertices V includes both devices and interconnections and the set of edges
E lists all pairs of vertices that can be directly connected by a cable. The
cost of connecting two vertices is given by the weight function W : E —» R+

All the devices of the system coloured i form the set V) c V, the nth set
of required vertices. Some systems are not noise proof (e.g. sensors and
gauges). Their wires must therefore be kept away from others which can
induce that noise (e.g., power cables). Constraints of this kind produce a
binary relation C which is true of colours i and j if and only if cables col
oured i match cables coloured j.

The requirements concerning co-routing of wires depend on their loca
tion in the aircraft. This information is summarised by the function
T : E —> N which evaluates to the maximum number of cables wired be
tween two vertices.

The cost function can express the real costs of the solution, or its qual
ity, or particular preferences, etc. As many parameters are usually involved,
it can be quite complex. The example will only deal with the simplest one
which expresses the total length of wired cables where if the wiring cost is
minimum, then necessarily each system is connected by a tree, (with the
simple case of minimising the total length of wired cables, which implies
that each system is necessarily interconnected by a tree.

The problem can be expressed as follows: find trees 7) such that

1. 7] connects the required vertices Vt

2. for each j, -i C(i,j) => 7) n 7) = 0

3. for each e e E, the inequality JT l(e e 7]) < T(e) holds, and

4. the Σ ,-Σ ^ ί W{e) is a minimum.

Here /(e e 7]) is 1, if ee7J, and 0 otherwise. When T: occurs inside a
formula, it is treated as a set of edges.

5.2 Interval Domain Constraints
The above four items can be re-written in terms of constraints and a number
of interval domain variables. For each colour i and each vertex v (edge e),
the domain variable v_i_v (E_i_e) indicates that the vertex (edge) is in
the tree 7). For each required vertex v in Vt, v__i_v is bound to 1.

For each colour i, the graph 7) should be a tree; i.e., a connected graph
with n edges and n+1 vertices. The latter property prompts the following
constraint:

340 ICL Systems Journal May 1997

where V = {u.... w} and E = {d,...,f}.
Connectivity is define as follows. A graph is connected if and only if all

its vertices are reachable from any vertex. To express connectivity of 7J, it
is sufficient to select some vertex c, in Tt, compute the distances between
c, and the other vertices of 7), and ensure that these distances are "less
than infinity", c,· is termed the centre of 7]. The centre can be selected from
the set Vj.

Computing distances between c, and the other vertices of the tree 7J
causes problems, because initially 7] is not known. Instead the distances
between c, and the other vertices of the entire graph G are computed. These
distances are computed with respect to 7j; i.e. if a path between c, and
some vertex goes through a vertex or an edge not in 7j, then its length is
"infinity".

For each vertex v coloured /, the domain variable d_±_v designates the
distance between c, and v . Let vertices v , v , etc. be connected to v * c, in
G by edges e , e , etc. Let infty be a constant that is larger than the length
of any acyclic j^ath in G (the "infinity"). The variables D_i_v, D_i_v_l,
D_i_v_2, etc., and E_i_e_l, E_i_e_2, etc. must satisfy the following con
straint:

D_i_v *== min [(1+D_i_v_l)*E_i_*_l+(1-E_i_e_l) *Infty,
(1+D_i_v_2)*E_i_e_2+(1-E_i_e_2)*Infty, ...]

which says that to reach v from c, in D_i_v steps is equivalent to reaching
its neighbour in D_i_v-l steps and then making the last step along some
edge in 7]. The constraint can then be reduced to

New_D_i_v**» l+min[New_D_i_v_l*E_i_e_l,
New_D_i_v_2*E_i_e_2, ...]

by substituting n*w_d_1_v for D_i_v-lnfty+l.
The connectivity constraint itself is equivalent to the following con

junction:

D_i_c_i *=* 0,
D_i_u * V_i_u *■< Infty-1,
D_i_w · V_i_w **< Infty-1.

The lower the value of infty, the tighter the constraints will be. How
ever, inf ty should be chosen carefully, because if inf ty is too small, the
optimum solution may occasionally be pruned. Stating other constraints is

V _ i_ u + . . . +V_i_w *== 1 + E _ i_ d + . . . + E _ i_ f

ICL Systems Journal May 1997 341

easy, e.g. 7]n7} = 0 is equivalent to E _i _ d *E_j_d +. . . + E _ i _ f * E _ j _ f

0 etc..

5.3 Analysis, Experiments and Comments
It can be easily proven that conditions 1, 2 and 3 of the formal model for a
solution are equivalent to the constraints shown in the preceding section.
However, interval techniques are not sufficient and do not infer some logi
cal consequences of these three conditions from the constraints. Therefore,
some redundant constraints can be added, e.g., the constraint which as
serts that every vertex in a tree should be incident to some edge:

V _ i_ v *== max [E _ i _ e _ l , E _ i _ e _ 2 , . . .] .

Here the edges e , e , etc. are incident to the vertex v in the graph G, and
E _ i _ e _ l , E _ i _ e _ 2 2, etc. and v _ i _ v are their respective interval domain
variables.

In dealing with problems of combinatorial optimization, the use of
branch-and-bound mechanisms is almost universal. However, constraints
can express some properties of optimum solutions; e.g. if some leaf v of the
7] is not in V) , then 7] cannot be an optimum solution (because is is possi
ble to remove v from Ti and get a cheaper tree). This consideration is im
plied by the following constraint:

2 * V _ i_ v *=< E _ i _ e _ l + E_ i _ e_ 2 + . . . ,

where the edges e , e , etc. are incident to the vertex v £ V.■, and E _ i _ e _ l ,
1 2

E _ i _ e _ 2 , etc., and V _i_v are their respective interval domain variables.
The wiring problem can be reduced to a set of non-linear constraints

which involve the min, max and arithmetic operations included in the ID
library. The only further addition to the library was the in t constraint
which enforces an interval domain to have integer bounds. This constraint
is applied to the variables D _i _v , v _ i _ v and E _ i _ e for each vertex v, edge
e and colour i.

Wiring cables of the same colour is equivalent to the Steiner tree prob
lem studied in graph theory [Christofides, 1975]. If two, or three, or all
vertices of the graph are required, then the Steiner tree problem is provably
solvable in polynomial time. However, in the general case, the problem is
NP-complete.

The Interval Domain Library has been tested on a series of problems
with four colours and a wiring space having approximately 400 edges and
200 vertices. A typical problem involves about 800 domain variables and
about 800 equations and inequalities. Figures 1,2 and 3 show screen snap
shots taken of the solver devised for the wiring application. The tests were
run on a Pentium©-66 processor under Linux©. Each figure shows the first

342 ICL Systems Journal May 1997

Figure 1: Differently coloured cables are mutually exclusive

Figure 2: Similar to Figure 1, but any colour matches any other

ICL Systems Journal May 1997 343

solution constructed by the solver; none of these solutions are guaranteed
to be optimum. Proving that the solution found is the optimum is fairly
hard. For example, for wiring problems with 25 vertices, 40 edges and two
mutually exclusive colours, it takes about 200 seconds whereas (1) finding
the first solution takes 6 to 15 seconds, and (2) usually, this first solution is
almost optimum. Thus, using a first good solution is acceptable.

Figure 3: Steiner tree problem with 225 vertices and 420 edges

5.4 Interval vs. Finite Domain Library
The Finite Domain (FD) library is an EC D PS ’ library intended for solving
polynomial, especially linear, equations and inequalities (constraints) over
integer domains. Constraints are written in the usual mathematical nota
tion, with equality and inequality signs preceded by a hash, #. Each vari
able occurring inside a FD constraint is automatically associated with a
finite domain. If needed, the domain of a variable can be specified explic
itly, e.g., X :: -7..3.

It will be seen that the constraints involved in the wiring problem actu
ally involve integers and contain many polynomial items. Thus one might
be tempted to use the FD library. The FD library has been successfully
applied to solving many combinatorial problems. However, when used in
the wiring application, the FD library proved to be less effective than the ID
library. This is mainly because the evaluation of polynomial constraints is

344 ICL Systems Journal May 1997

delayed by the FD library until they become linear but in the case of the ID
library are processed from the very start of the solution process.

Both libraries were tested on the same set of examples. In the interests
if fairness, the min and max constraints were changed so as to access FD
variables as well. As more information is inferred from constraints, the non-
determinacy is reduced. The number of non-deterministic choices made
before reaching a solution was therefore taken as a measure of the ineffec
tiveness of each library.

Some results were quite unexpected. For example, in the version of the
FD library, multiplication with negative numbers gave faulty results. For
example,

[eclipse 1]: lib(fd), X :: -10 .. 0, Y :: -7 .. -5, X
* Y #= 20.
X=X{[-4..-2]>
Y“Y{[-7..-5]}
Delayed goals

X{ [-4 . . -2]} * Y{[-7..-5]}#=20
X{ [-4 . . -2]} *' Y{[-7..-5]>#-20

yes.
whereas

[eclipse 2]: X :: 0 .. 10, Y :: 5 .. 7, X * Y #= 20.
X=4
Y=5
yes.

and even worse

[eclipse 3]: X :: 0 .. 1, Y :: -5 .. -3, X * Y #= 0.
no (more) solution.

whereas

[eclipse 3]: X :: 0 .. 1, Y :: 3 .. 5, X * Y #= 0.
X-0
Y=Y{[3..5]}
yes.

However, processing negative integers is vital to the wiring applica
tion because New_D_i_v«= D_i_v-infty+l (recalling that D_i_v is tire dis
tance in Tj between its centre c, and the vertex v) is usually negative. For
tunately, by declaring the connectivity constraint "as is", without New_D_i_v,
causes no problem to the FD library.

The major drawback to using the FD library is the low sensitivity to the
value of inf ty and, as a consequence, to the connectivity constraint. Sup
posing that white, red and green cables were to be wired in pairs, then,
with white and red cables are already laid, the wiring space remaining for

ICL Systems Journal May 1997 345

the green cable usually is very constricted. Thus connectivity becomes the
major requirement.

In wiring problems with 100 vertices, 10 of which are required, 180
edges, and one colour, values obtained for the ineffectiveness(FD)/
ineffectiveness(ID) ratio ranged from 1 to 1.5; with two colours, the range
was from 1 to 5. With three colours, the very first test gave a value of
ineffectiveness(FD)/ineffectiveness(ID) greater than 20 (with "greater than"
meaning that with the help of the FD library no solution was found within
sixty minutes on a Pentium-66 processor under Linux). However, with the
ID library, the search times were within three minutes on the same plat
form.

Conclusions
The Interval Domain library is a new logic programming tool for solving
non-linear constraints over real numbers. It accepts equations and inequali
ties written in normal mathematical form and, for each variable, it pro
duces as output the residual continuous intervals over which the variables
range.

The library falls naturally into a set of calculation functions and a set of
Prolog predicates primarily needed to perform constraint propagation.
Originally, the set of calculation functions was designed to handle incom
pletely specified numerical data in sub-definite models. Constraint propa
gation was chosen as the most adequate algorithm for sub-definite compu
tations. In fact, sub-definite computations are an advanced variant of con
straint propagation. To model constraint propagation in ECL'PSf is easy
due to such built in mechanisms as goal suspension and meta-term ma
nipulation.

The Interval Domain Library has been tested on many benchmarks for
non-linear constraint solvers [Hillstrom et al., 1981], and at present the li
brary is being used to develop a number of applications for resource plan
ning and non-linear optimisation.

Each improvement to the library (or any other software) will influence
either its effectiveness, or its ease of use. In terms of effectiveness of the ID
library, it is obvious that the smaller the number of variables and opera
tions in the equations to be solved, the tighter will be the output intervals
obtained with constraint propagation. Currently a symbolic pre-processor
is under design which will automate that elimination of "extra" variables,
thereby increasing the effectiveness of the library.

Acknowledgements
The integration of the ID library into ECL'PS·’ has been completed at IC Parc
(Imperial College, London) and ICL (Bracknell). Working there was really
pleasant and fruitful and we extend our special thanks to W. O'Riordan,

346 ICL Systems Journal May 1997

M.J. Rigg and M. Wallace for their help and kind support. We wish to thank
O.V.D. Evans, in particular, for his great effort in correcting errors and im
proving the readability of the paper. We would like to thank also our home
institutions, the Institute of Informatics Systems of the Russian Academy
of Sciences and the Russian Research Institute of Artificial Intelligence.

Bibliography
BENHAMOU, F. and OLDER, W., "Applying Interval Arithmetic to Real,
Integer and Boolean Constraints," Journal of Logic Programming, 1995.
CHRISTOFIDES, N., "Graph theory: an algorithmic approach," Academic
Press Management Science, 1995.
ECRC, ECL'PS1, 3.5, ECRC Common Logic Programming System, ECRC,
1995.
MORE, }., GARBOW, B. and HILLSTROM, K., "Testing Unconstrained
Optimization Software," ACM Transactions on Mathematical Software, Vol.
7,1, pp 17—4 1 ,1981.
KNUEPPEL, V, "PROFIL / BIAS - A Fast Interval Library," Computing, Vol.
53,3-4, pp 323-335,1994.
KUPER, G. and WALLACE, M., "Constraint Databases and Applications
Lecture," Notes in Computer Science, Vol. 1034, Springer-Verlag, 1995.
MEZHOUD, A., DUFOURD, J.C. and DARBEL, N., "Performance-Driven
Interconnection Optimization based on Constraint Programming," Proceed
ings of PACT'96, London, pp 179-191,1996.
NARINYANI, A.S., "Subdefiniteness and Basic Means of Knowledge Rep
resentation," Computers and Artificial Intelligence, 2(5), 443-452,1983.
OLDER, W. and VELLINO, "Extending Prolog with constraint arithmetics
on real intervals," Proceedings of Canadian Conference on Computer and
Electrical Engineering, Ottawa, Canada, 1990.
SEMENOV, A., BABICHEV, A., KASHEVAROVA, T. and LESCHENKO, A.,
"UniCalc, a Novel Approach to Solving Systems of Algebraic Equations,"
Proceedings of the International Conference on Numerical Analysis with
Automatic Result Verification, Lafayette, La, USA, pp 29-47, Feb, 1993.
VAN HENTENRYCK, P., "Helios: A Modeling Language for Global Opti
mization," Proceedings of PACT'96, London, pp 317-335,1996.

Biographies
Tatyana Yakhno
Tatyana Yakhno currently is the head of the Laboratory of Artificial Intelli
gence at the Institute of Informatics System (IIS) of the Russian Academy of
Sciences and an associate professor of Novosibirsk State University. She

ICL Systems Journal May 1997 347

received her PhD in Computer Science in 1987. Her research interests in
clude knowledge base technology, constraint programming and distrib
uted AI.

Slava Zilberfaine
Slava Zilberfaine graduated from Novosibirsk State University in 1996 with
an MSc degree in Computer Science. His major scientific interests are com
puter graphics, logic programming and genetic algorithms. Currently he
is studying for aPhD at IIS.

Evgueni Petrov
Evgueni Petrov is a PhD student currently enrolled at IIS as a member of
the Laboratory of Artificial Intelligence. He graduated from Novosibirsk
State University in 1996 with an MSc degree in Computer Science. The
topic of his PhD work is combining methods of discrete mathematics with
constraint logic programming.

348 ICL Systems Journal May 1997

ICL & University of Newcastle
Conference on Teaching of Computer Science

1-5 Sept 1997

A Personal Review

Michael H. Kay, ICL Fellow

ICL, Bracknell, UK

This annual conference, sponsored by ICL and chaired by Brian Randall
at the University of Newcastle, brings together by invitation leading aca
demic computer scientists and industrialists to consider the developments
in a field of computer science that is expected to have significant impact on
the future teaching of the subject.

The theme of the 1997 conference was "The Web" and, as one might
expect, it steered well clear of the mundane to focus on those current devel
opments that have real strategic significance. In the sections below I report
very much from a personal perspective what I learnt from each of the speak
ers.

These summaries are personal impressions and they have not been en
dorsed in any way by the speakers or by the conference organizers.

The Future of Telecommunications and Networking
Professor David Farber, University of Pennsylvania
Farber's first talk concentrated on the technical aspects of the future of net
working, while his second talk concentrated on the political influences.

• Wide-area bandwidth will continue to grow inexorably, the question is
how we take advantage of it.

• Distributed systems haven't really happened yet in any real sense. They
will, but we still have software engineering challenges to build them.

• The increased bandwidth on the network will cause a change in proc
essor architecture. We cannot afford to lose all the bandwidth by mov
ing the messages through multiple layers of application software. Spe
cialist video server machines are leading the way. The future is for the
network to reach the processor chip directly, eventually with direct
optical connection to the chip.

• We must stop treating computers and networks as separate subjects.

ICL Systems Journal November 1997 349

Rights and their management
Rober Weber, Senior Vice-President, InterTrust Technologies Corpo
ration
• Weber's basic premise is that electronic commerce should mirror the

trust and rights relationships that have evolved in commerce over the
centuries.

• The aim of the InterTrust technology is to allow the application devel
oper to create any rights structure, rather than imposing the supplier's
own ethical judgements. Different societies have different views on
issues such as censorship, freedom-of-speech, rights of employers to
monitor communications, rights of governments to impose a tax on
transactions, and so on. A technology supplier should support all these
models (even if it means supporting some models that we consider re
pressive).

• InterTrust is a system for defining such rights and enforcing them. The
idea is that in a value chain each participant can assert his own rights
but cannot violate the rights claimed by others.

• InterTrust does not provide the administrative apparatus for collecting
royalties, etc.: this has to come from a third party.

• There is potentially a problem that many information rights (e.g. fair
dealing in copyright law) are very fuzzy in their interpretation. Codify
ing them more precisely is not necessarily in any party's interest.

Steganography
Ross Anderson, Cambridge University
• Steganography means "hidden writing", it is the technique of putting

hidden information in an apparently clear message. It is an ancient
science!

• There are applications in watermarking and fingerprinting. A water
mark is like a hidden copyright notice: an early example being printed
logarithm tables which contained the occasional deliberate error, to
enable copying to be detected and proved. A fingerprint is like a hid
den serial number, used to identify the individual copy so that the copy
right violator can be traced.

• Like other security techniques, steganography can be used equally by
good guys and bad guys. (And of course, we can have our own views
as to who the good guys and bad guys are).

• There are many techniques that work very well if you aren't too wor
ried about the hidden message being spotted, intercepted, or destroyed

350 ICL Systems Journal November 1997

(and thus, for the many situations where no one suspects you are using
the technique). Secure techniques that will withstand attack by a "ca
pable motivated opponent" are much more difficult and tend to be very
low bandwidth.

• Naive fingerprinting techniques can always be defeated by buying sev
ered legitimate copies and comparing them.

• Ross talked about "breaking" a steganographic message without al
ways saying whether this involved detecting, reading, or destroying
the hidden message. I would have liked to have seen this explained
more clearly.

• The details vary by information type (image, audio, and text being the
most common) but the underlying principles are similar. Examples:

• use the least-significant bits of an image or audio stream

• similar, but using a secure key to determine which bits are affected

• exploit the sensory redundancy in the data stream; e.g. trailing
spaces in text, high frequency sound, colour details in image

• with text, exploit semantic redundancy; e.g. spelling variations or
synonyms. Very hard to automate effectively.

• To create a fingerprint, e.g. a serial number on each copy of a software
or information product, one desirable idea is to have a single ciphertext
with a different key for each user, such that each user gets a different
plaintext copy. There are algorithms that achieve this quite well, unless
lots of legitimate users collaborate to produce a clean copy. (The history
of satellite decoders shows that such collaboration is quite likely!)

The use of the web for access to information: The
Stanford University Libraries program
Jim Coleman, Stanford University Library
This talk discussed the changing role of the university library (and the schol
arly publisher) in the age of the web. There is a need to distinguish the
traditional roles of the library and to ensure none of these is lost: repository,
archive, place of study, hub of information access, broker of data and
metadata resources, content creator/publisher. Stanford University Infor
mation Services (=Library + Computer Service) employs 500 people to serve
20,000 students and staff, and has a correspondingly large budget.

I felt the speaker was too complacent about the need for organizational
change. The value chain (via publisher and librarian) is bound to change,
and the cross-institution relationships will also need to change. Currently
everything Stanford puts on the web is available to students at every other

ICL Systems Journal November 1997 351

institution in the world, including small institutions that cannot match
Stanford's resources but are competing for the same students and research
grants. In my view, this traditional approach to collaboration in the library
community will come under increasing strain as resources become accessi
ble worldwide.

Having said that, the demonstration—a classic example of the World
Wide Wait—proved merely that for a Newcastle University student to rely
on a library in Stanford is not yet a practical proposition!

Document Formats for the Web
Vincent Quint, INRA/W3C
This talk was mainly an update on progress on HTML 4.0 and XML.

Quint also talked about MathML, an application of XML for defining
mathematical formulae, either at layout level (subscripts, superscripts) or
at semantic level (sum from 0 to n o f ...). There was some scepticism in the
audience: why hadn't they just put XML tags around a LaTeX mathemati
cal formula?

The speaker was most enthusiastic about, but didn't spend much time
on, DOM, the Document Object Model. This is an API allowing scripts to
manipulate documents, including their logical structure, presentation, and
content. It is designed to be platform and language independent and to
work with HTML and XML. It is event based (e.g. allowing actions to be
defined on mouse clicks) and related to the hierarchic structure of the docu
ment, so events not taken at one level are passed up to the next level.

URL’s Considered Harmful (Information Management for
the Web)
Wendy Hall, University of Southampton
This was mainly a talk about hypermedia: the speaker apologized for the
catchy but misleading title.

Hall pointed out that there are two kinds of links in a typical web site,
the structural links and the semantic links. Generating HTML from a data
base helps you to automate the structural linking but the semantic linking
is still ad-hoc.

She reminded us of the original vision of hypermedia (e.g. Tom Nelson,
Vannevar Bush, Berners-Lee) and pointed out how much of this was absent
from today's Web:

• Bush: information pioneers or trailblazers find a way through the maze
of information and leave a trail of links for others less expert to follow

• Nelson: the potential interconnectedness of everything

352 ICL Systems Journal November 1997

• Berners-Lee: the Web as an interactive medium; every browser is an
editor.
The biggest difference in a true Open Hypermedia System is that the

links are separate from the base content. This means you can view the
same content via different sets of links. This allows great flexibility in
customization, personalization, etc.

Hall talked about Southampton's experience with the Mountbatten
Archive (250K documents, 50K photos, some film, video, and audio). Be
cause of the archival nature of the material the links must be separate from
the archived content. There can also be copyright considerations (appar
ently in the case of the Churchill papers, the UK government has purchased
the physical materials but not the copyright!)

The Microcosm model, implemented in the Southampton system, is as
follows:

• layer 1, tools such as WP, spreadsheet, query

• layer 2, presentation services

• layer 3, link services

• layer 4, document management

• layer 5, text / image / video / audio content.

The Southampton system implemented the link services in a Web proxy
server.

Networking Futures - the politics
Professor David Farber, University of Pennsylvania
Prof. Farber talked specifically about US activities to take the internet for
ward. There are two separate activities, which are often confused but
shouldn't be: Next Generation Internet, which is primarily government
driven, and Internet II, which is an academic initiative. Both are about in
creasing bandwidth and reducing congestion. Individual communities (in
cluding the academic community) want to improve their own quality of
service by sharing fewer resources with other communities.

There is some tension between doing networking research and just pro
viding a better service. How to achieve Quality of Service without the enor
mous overheads of a fine-grained charging model is still a contentious is
sue.

Societal issues (freedom of information, governmental / international
control, the cryptography debate) are slowing progress.

ICL Systems Journal November 1997 353

Distributed Middleware Tools
Rober Weber, Senior Vice-President, InterTrust Technologies Corpo
ration
I felt this talk was a little too commercial for this event, with lots of claims
("We have invented a fundamental new form of security architecture") that
were not substantiated—a dangerous tactic with a distinguished academic
audience, even if the claims were true.

InterTrust use the concept of a DigiBox (which at first sight seems not
too dissimilar from IBM's cryptolope) as a secure container for access rights;
the DigiBox is programmable so you can define any rights model you like.
It is separate from the (encrypted) content which might arrive later, e.g.
you can get rights to watch a boxing match that hasn't been shown yet. The
box can only be opened at an "Interrights Point" which is a small secure
piece of software that enforces the rules.

Weber talked about the model of "superdistribution" of content: any
purchaser becomes a potential reseller, with the rights owners collecting
micro-payments from each reader.

Some of the academics found the whole thing culturally an anathema:
their Utopia is a world where the taxpayer finances the creation of informa
tion and everyone then has free access to it. Weber had to take the defen
sive, arguing that his technology was neutral to the rights policy you chose
to adopt.

Global Searching
Udi Manber, University of Arizona
Udi is the author of the Glimpse and Harvest products. He claims that all
his co-workers have become millionaires but he preferred to stay in research!

There are two types of search site, spider-based search engines (AltaVista
etc.) and manually created catalogues (Yahoo). Spiders can't cope any more,
because the Web is too big. They now sample each site rather than looking
at all its pages, and visit some sites more frequently than others. Also, an
increasing amount of information is hidden behind registration forms or
database queries making it inaccessible to the spiders.

The search sites are starting to see themselves as content venues financed
by advertising. (An interesting side-effect is that they want you to be at the
site a long time—improvements in search speed are not necessarily in their
commercial interest!)

Web site creators are using crazy techniques to increase their rankings
in search results (the cyberspace equivalent of calling your company "1A
Taxis") but the search engines are fighting back. One vendor (OpenText)
started accepting money from Web sites to increase their profile but this
failed.

354 ICL Systems Journal November 1997

Manber has a new tool called the Search Broker which tries to mix
manual categorization and search: you select a category first, then search.

Virtual Education
Peter Cochrane, BT Labs
A stimulating if chaotic talk, with little structure, but lots of interesting and
challenging ideas about the future impact of technology on society in gen
eral and education in particular.

He got a pretty rough ride from the academics for using unfounded
assertions and statistics (interjection from the floor: "90% of all statistics are
made up on the spur of the moment") and for talking about exciting con
cepts like software breeding without saying in technical terms what he meant
by them. Probably the real reason he aroused their wrath, though, was that
if his predictions about the changes in society over the next twenty years
are true, then universities as we know them are dead in the water.

Highwire Press, the Internet Imprint of Stanford Univer
sity Libraries
Jim Coleman, Stanford University Library
Stanford has set up a publishing operation called Highwire. Its aim is to
change the economics of the STM (Scientific, Technical and Medical) pub
lishing process, and to create a more direct link between the writers and
readers of scholarly journals. In practice, however, I find it hard to see how
it differs from "yet another STM publisher".

It has 17 journals on-line at http://highwire.standford.edu, and claims
these are very high-use journals, mainly published by professional socie
ties. He says they have another 50 signed up. The service looks very simi
lar to (say) the Academic Press IDEAL service designed and operated by
ICL. They rely on the original publisher to do subscription management:
they just produce the on-line version of the journal.

The academics present all seemed to share a universal dislike of the
STM publishers, viewing them as entirely parasitical with no real added
value. (Most of them haven't grasped the fact that the main added-value is
in fact in deciding which papers to reject).

One thing they have been working hard on is citation-following. They
are working on automatic linking protocols and industry standards to fa
cilitate this. They offer as a special bonus "toll-free linking": if you sub
scribe to an article in journal A and it has a link to an article in journal B,
you are allowed to follow that link even if you haven't paid for access to B.
(I don't know if this applies recursively!)

ICL Systems Journal November 1997 355

http://highwire.standford.edu

Tools for Intercreativity on the Web
Vincent Quint, INRIA
The original concept of the Web was that every user should be able to read
and write. It was never intended to create the strong division that now
exists between publishers and consumers.

Quint talked about a project called Amaya that is trying to design a
collaborative authoring environment: see http:// www.w3.org/Amaya for
details. Amaya is the W3C testbed client software. On the authoring side it
is really just a syntax-directed editor. It doesn't attempt to solve the server-
side issues in collaborative working, such as version control, checkin/
checkout, change notification, etc. It just uses the standard (but not always
implemented) PUT method in HTTP 1.1.

Future Web Search techniques
Udi Manber, University of Arizona
Manber described a number of interesting projects, mainly, but not exclu
sively, his own.

• A category-based searching tool. Basically he has (single-handedly and
with no librarianship training) carved out about 400 "databases" on
the Web (many of them true databases, some just collections of pages/
sites) and provided a uniform keyword search interface to all of them.
So you say something like "fly London Paris" and it searches its fa
vourite database of airline flights for you.

• webGlimpse is a tool to search the neighbourhood of any page. When
a page is displayed he adds a keyword search form at the bottom; if
you enter a query on this form it searches all the pages reachable in less
than n links for the keywords supplied.

• John Kleinberg and Cornell has prototyped a promising way of using
the citation structure of the web to find key pages. For example, if you
do a search for "relational database" on AltaVista you will get thou
sands of hits. If you analyse all these hit pages looking for inward and
outward links, you will eventually determine some useful "hub" and
"authority" pages. H u b s are pages that contain the greatest number of
useful outward links, a u th o r itie s are pages that everyone likes to link to.
It seems that this technique might enable the search engine to identify a
small number of really useful hit pages for some otherwise very diffi
cult queries.

356 ICL Systems Journal November 1997

http://www.w3.org/Amaya

Dependable Web Services
Santosh Shrivastava, University of Newcastle
Most of what Shrivastava described was uncannily close to the techniques
we use in the ICL COMMANDS product (replication., clustering, load shar
ing, and so on). He described it as a box of tricks rather than a coherent
architecture, but said it was the best you can currently do. He thinks there
is potential to make the DNS (Domain Name Server) much more intelligent
(or perhaps to add another level of indirection?). He said he hadn't really
got any answer to the problem of wide-area load balancing (nor have we).
Arguably, since load sharing is only necessary when the workload is high,
allocating work to servers at random is as good a technique as any.

For transactional services such as on-line banking Shrivastava sees the
CORBA object transaction service as the way forward. This has a Java in
terface called JTS. He also believes distributed workflow technology is the
right way to script the application logic.

Safety and Privacy Issues for Clinical Information Sys
tems
Ross Anderson, University of Cambridge
Anderson had been engaged as a consultant by the British Medical Asso
ciation which was building a model to inform the debate on security and
privacy in the health service.

This was a talk about the politics and ethics of security, not about the
technology or the mathematics. The journalist who wants to find out
whether a public figure is being treated for depression does not hack into
the computer system, he phones the hospital receptionist, says he is a rela
tive, and asks whether he can visit that afternoon. Anderson argued, there
fore, that a great deal of the investment in security in the health service was
based on an incorrect threat model. In particular, there was a tendency
within the health service to centralize medical information and make it avail
able to every health professional in the service (about a million of them),
whereas the only possible way of retaining any patient confidentiality, in
some cases, was to allow the GP to keep the record, on paper, in the bottom
drawer of his desk. The clinical benefits of making information more widely
available, he argued, had not been scientifically researched or proven.

ICL Systems Journal November 1997 357

Obituary
Dr John Maurice McLean Pinkerton,

Chief Engineer of the project that built the
world's first routinely working electronic
business computer, LEO, died suddenly
at his home on 22 December, 1997, in his
79th year. His career spanned the era of
electronic computing from the very begin
ning to the present day. He joined J. Ly
ons & Co in 1949 to develop LEO and re
tired from ICL in 1984. He remained very
active during his retirement pursuing a
broad portfolio of activities, one of which
was editing the ICL Technical Journal be
tween 1990 and 1996.

Colleagues of John Pinkerton, who
had known him at different periods during his career, offered the fol
lowing contributions to this obituary, for which the Editor is extremely
grateful.

Maurice Wilkes, FRS, writes:
I first met Pinkerton in 1939, when Watson-Watt and Cockcroft organ

ized a scheme whereby some ninety physicists from various universities,
but mostly from Cambridge, would spend a period of five weeks on a coastal
radar station in order that they might acquire experience that would be
useful if war came. Pinkerton was a member of a group led by Ratcliffe
and attached to the CH station at Dover. I was in charge of a similar group
attached to a station near Canterbury and my acquaintanceship with
Pinkerton dated from this time. Pinkerton had just taken his BA degree
and it seems likely that he had made arrangements to start research under
Ratcliffe, but the outbreak of war meant that he went straight to a war ap
pointment at TRE.

After war service, John Pinkerton returned to Cambridge and began
research in the Cavendish Laboratory under J.A. Ratcliffe, who had been
my own PhD supervisor when I was a research student, and it was during
this time that I became well acquainted with him. Pinkerton's subject of
research was the propagation of ultrasonic waves in liquids. Whether this
topic was his own choice, or whether it was suggested to him by Ratcliffe, I
do not know. At all events, it was of interest to me since I was then head of
the mathematical laboratory, where we were engaged on the design and
construction of an electronic computer based on a memory with mercury
ultrasonic delay lines.

358 ICL Systems Journal November 1997

When Pinkerton had written his thesis and was about to look for a job,
Lyons were ready to go ahead with their project to build a computer based
on our work and were looking for a chief engineer. Accordingly, I pointed
Pinkerton in their direction. They recognised his quality at once and he
joined their staff. He was ideally qualified for the assignment and it was
very largely due to him that the project was such an outstanding success.
The Lyons team was also very strong on the application and business side
but without Pinkerton's brilliant engineering skills this would have counted
for little.

After the success of LEO I, Pinkerton went on to design other comput
ers and, by the early 1960s, Leo Computers had the best offerings for busi
ness applications of any British computer company. Unfortunately, Lyons
could not conveniently provide the continued injection of capital that was
required and they arranged a forced marriage with the English Electric com
puter interests. English Electric was not only the dominant partner but its
management style and background were as different as could be from those
of Leo. The effect was to bring the development of the Leo range of com
puters to an end. If Leo Computers had remained an independent com
pany with Pinkerton as chief engineer, it would, in my view, have had a
much better chance of survival than any of its British competitors.

The merger with English Electric was followed by other mergers until
the identity of Leo was completely lost in ICL. It is a sad fact that, although
Pinkerton remained active in ICL at a senior level, he never found a role
that in any way matched his track record or gave full scope for his abilities.

David Caminer (former Director of LEO Computers) writes:
John joined J. Lyons and Co. in January, 1949 to implement the decision

of the company, then Britain's best known caterer, to build a computer of its
own to cope with its mass of paperwork. There was no alternative sup
plier. Indeed, there was no other stored program electronic computer in
operation anywhere at that time. John was recruited from Cambridge Uni
versity where he was undertaking research after graduating in Natural Sci
ences and spending the war years on vital radar work at the Telecommuni
cations Research Establishment, Swanage and then at Malvern.

John's first task was to create an engineered version of the scientific
EDSAC computer that was being completed at Cambridge. This he accom
plished with a very small team enabling the world's first regular, routine,
time-critical business application to start its ongoing life in November 1951.
This was followed at the end of 1953 by the full LEO 1, which with multiple
inlets and outlets, concurrent computing and automatic conversion, pro
vided the facilities required for full-scale, integrated office work. In Febru
ary 1954, the first such application anywhere in the world, the Cadby Hall
Bakeries payroll began its weekly operations.

ICL Systems Journal November 1997 359

John Pinkerton, still with his tiny team by present standards, went on
to design LEO II, embodying the technological advances over time and the
experience that had been gained of intensive live-running. In 1959 he was
appointed a Director of LEO Computers Ltd, which had been formed by
Lyons to market the system. Versions were installed on the premises of
several leading organisations, among them the Ford motor company.

In his LEO years, John Pinkerton's culminating success was with the
LEO III range that followed. The system that he designed, working closely
as always with the 'users', the applications and programming team, incor
porated both timesharing and microprogramming as well as being faster
and smaller than previous models. One of the first to be sent out into the
field went to goldmining interests in South Africa. This was in 1962, two
years before the a n n o u n cem en t of the IBM 360 series. John followed this
with the LEO 326, much faster still, which, in competition with every sys
tem in the market, won from the Post Office the largest order ever placed
with any European computer company up to that time.

Derek Hemy (a colleague at J. Lyons & Co.) writes:
I knew John Pinkerton during the period I worked with him at Lyons

from 1949 to 1954. Thereafter, I met him only occasionally, although I did
have a number of telephone conversations with him during the last few
years.

I first met him in early 1949, when he had just come to Lyons. I found
him very easy to talk to, though his manner struck me as quite distant. I
soon realised that this was very understandable—the result of his starting
to take charge of an engineering project that must have seemed pretty far
fetched: to design and produce a working business computer in a firm with
no background in electronic engineering. He had, moreover, to report to a
Director of Lyons who, although enthusiastic, had had no engineering ex
perience.

In fact his job was made more difficult by the fact that he was a new
comer in a company that prided itself on an intimate and family atmos
phere and where the existing members of the LEO team were already es
tablished. However, he soon settled in without any particular difficulty,
which I think was because we all found that he was a man with whom it
was very difficult, if not impossible, to fall out.

He had a most disarming way of listening intently to what others said
and was never afraid to admit ignorance or doubt. This was not due to any
lack of assurance: he was able to make up his mind quickly and express his
opinions very firmly but always quietly and reasonably. His leadership
was not of the extrovert, demonstrative sort but he was not in the least
afraid of 'calling the shots' and he was always unfailingly polite and shunned
exaggeration.

360 ICL Systems Journal November 1997

In those early years of computing, a sense of humour was needed and
in that John was not lacking, though his was a quiet dry humour. In par
ticular, I remember a meeting chaired by John's director in Lyons to review
progress and to try to solve some recent problems. The director ended the
meeting by stating that he wanted to avoid unexpected problems in future
and told John to give him a detailed note of them! After a pause, as we all
tried to envisage such a note defining the unknown, John remarked, "Surely
you are asking me to make a list of all the towns in China that I do not
know;" a statement to which there was no possible reply.

John's engineering competence I can leave to others for comment, but
to me his outstanding achievement was the way he handled the senior man
agement. He usually got his way, not by any Machiavellian deviousness
but by patience, good sense and an almost simple minded honesty.

I, certainly, am very grateful to have worked with John during those
years.

Jack H ow lett (founder Editor of the ICL Technical Journal) writes:
I had known John Pinkerton well by name in the early days of the dig

ital computer, as one of the key people in the LEO project; it's possible that
we met, neither knowing the other, at one or more of the meetings in the
classic series organized by Maurice Wilkes in the Mathematical Laboratory
at Cambridge in the early 1950s. What became a close association begem in
1978, in connexion with the ICL Technical Journal. The company had agreed
to a proposal to publish such a journal and Peter Hall, the Director respon
sible, had asked me to edit it and had strongly supported the idea of an
independent Editorial Board with both ICL and non-ICL members. As a
consequence of the series of mergers that had led to the creation of ICL in
1968, John was then an ICL employee (I should say here that I had a Con
sultancy attachment to ICL) and was a very obvious choice for member
ship of this Board: on the grounds of sheer scientific and intellectual strength,
wide experience of the computer world and, by no means unimportant,
experience with the production and publication of scientific literature gained
from his involvement with the Institution of Electrical Engineers, of which
he was a Fellow.

From the start John took a keen and active interest in the journal. He
was always a very positive contributor to the discussions at the Board meet
ings, always with plenty of ideas on any of a great range of subjects and,
invaluably, a fine, critical but constructive intelligence brought to bear on
any paper or proposal. The journal gained a great deal from him; I found
him an excellent colleague from whom I learnt a great deal, and we worked
together increasingly closely in this relationship for a dozen years.

Around 1990 I began to feel that it was time for a change of Editorhip;
John was the clearest choice, and accepted the offer. I wrote a valedictory

ICL Systems Journal November 1997 361

Editorial for my last issue in November 1989 and John what might be called
an inaugural one for his first issue in May 1990. He asked me to continue
not only as a Board member but also to look after the mechanics of the
production and distribution of the Journal: each of the twice-yearly issues
was of at least 200 pages, and we printed and distributed about 7000 copies
of each, world-wide. I was very hapy to do this, and we continued this
active and enjoyable collaboration until John in turn retired in 1996.

It scarcely needs to be said that John took the task of editing the journal
with great seriousness, energy and enthusiasm, and spared no effort in en
suring that the papers for each issue—on subjects agreed, at a greater or
lesser level of detail, at Board meetings—were produced on time and were
of a standard that met his exacting standards for content, presentation and
written English. He was very good indeed at discussing the content and
form of a possible paper with a potential author and, with an inexperi
enced author, was especially good at helping to sort out the essential ideas
and put them in the right logical order. His considerable scientific knowl
edge and wide experience were of great value here.

Altogether, I worked with John for about 20 years. He had as keen a
critical intelligence as anyone I've ever met—you'd never get a phony ar
gument past him—an enviable ability to handle detail and, as I've said
several times in what I've written, was a true scientist. If ever I wanted to
know something about physics or electronics I'd ask John if I could, know
ing that I could rely on whatever he would tell me. But there were plenty
of other sides to his character: he knew a lot about music, for example, and
about English literature and had a lively appreciation of good food. It was
my good fortune to have had this association with him.

John Aris (form er D irector of the N ational C om puter Centre) writes:
I knew John Pinkerton for nearly forty years. When we first met he

was already covered in glory (although he seemed quite unconscious of
this) and I was the newest trainee. His friendliness and kindness to the
likes of me, not in the least d e h a n t en bas, were immediately striking—and
of course typical.

But I would like to write about a much more recent period. John was
one of the original Court members, from 1988, of the City of London's newly
founded Worshipful Company of Information Technologists, and was the
mainspring of their Apprenticeship Scheme. This is an imaginative adap
tation of the mediaeval concept of apprenticeship to the modem world and
to a modern craft. It is aimed at selecting, training and encouraging a group
of able teenagers new to the world of work. Setting it up was far from easy.
It needed creativity, energy, persistence, authority, ability to enlist and en
thuse the talents of others, and meticulous care over detail—a rare combi
nation—but an exact fit for John. Some twenty-five young people who

362 ICL Systems Journal November 1997

have already benefited will remember him with gratitude and affection,
and many more in the future will have cause to do so.

Anonymous Contributions:
Other former colleagues wrote to the Editor but, due to what they felt

were the limited nature of their comments, they requested that their mate
rial be unattributed. Three additional aspects of John's career, not men
tioned by the named contributors, follow.

• When English Electric Computers and LEO Computers merged both
companies were heavily engaged in the development and introduction of
important new computer systems. Their architectures, technology and for
ward strategy had nothing in common, a situation which could have led to
prolonged and costly internal conflict. John Pinkerton played an impor
tant part in focusing the technical teams on shared objectives—perhaps
thereby easing the future merger between English Electric Computers and
ICT to form ICL.

• ECMA, the European Computer Manufacturers' Association, was
formed to meet a need for rapid development of standards such as those
for computer codes and languages. Serving for many years as its Presi
dent, Pinkerton helped to build ECMA into an organization respected
worldwide for the quality and timeliness of its work, most of which was
subsequently endorsed by the necessarily slower processes of the official
international standardization bodies.

• After his retirement from ICL in 1984. Pinkerton continued his active
involvement in Information Technology. As well as working with BSI he
made many contributions to the wider general understanding of the sub
ject by lectures, articles and books, as well as making contributions to docu
menting the history of its development, as, for example, in the Science
Museum's recorded interviews with UK pioneers.

ICL Systems Journal November 1997 363

Previous Issues
Vol. 12 Iss. 1 - May 1997
Java™—An overview
Mobile Agents—The new paradigm in computing
The SY Node Design
Discovering associations in retail transactions using Neural networks
Methods for Developing Manufacturing Systems Architectures
Demystifying Constraint Logic Programming
Constraint Logic Programming
ECL'PSe—A Platform for Constraint. Programming

Vol. Π Iss. 2 - Tanuary 1997

The Year 2000 Problem
Working with Users to Generate Organisational Requirements:
The ORDIT Methodology
Network computing with remote Windows
Neural Networks
Short-term currency forecasting using neural networks
Helping Retailers Generate Customer Relationships
The Systems Engineering Excellence Model
Cochise: a World Wide Web interface to TPMS applications

Vol. 11 Iss. 1 - May 1996

The Internet and how it is used
An Architecture for a Business Data Warehouse
Virtual Reality as an Aid to Data Visualization
Re-engineering the Hardware of CAFS
An Innovative Solution for the Interconnection of Future Component Packaging
Development of Practical Verification Tools
Coupling ORACLE with ECL'PS1'
Integrating the Object Database System ODB-II with Object Request Brokers
SAMSON and the Management of SESAME

Vol. 10 Iss. 2 - November 1995
The Architecture of the ICL GOLDRUSH MegaSERVER
The Hardware Architecture of the ICL GOLDRUSH MegaSERVER
CAL in Higher Education - Potential and Pitfalls
The UK Technology Foresight Programme
Making the Internet Safe for Business
Developing Financial Services Kiosks
High Availability Manager
The Virgin Global Challenger
Design of the Format for EDI Messages Using Object-Oriented Techniques
New Aspects of Research on Displays

364 ICL Systems Journal November 1997

Object databases and their role in multimedia information systems
The ICL Multimedia Desktop Programme
Multimedia Information used in Learning Organisations
The Software Paradigm
Single Sign-on Systems
Why is it difficult producing safety-critical software?
Experiences using the Ingres Search Accelerator for a Large Property Management
Database System
RAID
Improving Configuration Management for Complex Open Systems

Vol. 9 Iss. 2 - November 1994
Establishing Co-operation in Federated Systems
An ANSA Analysis of Open Dependable Distributed Computing
An Open Architecture for Real-Time Processing
Updating the Secure Office System
POSIX Security Framework
SQL Gateways for Client-Server Systems
Asynchronous transfer mode - ATM
The ICL search accelerator™, SCAFS™: functionality and benefits
Open Teleservice - A Framework for Service in the 90s
LEO, A personal memoire

Vol. 9 Iss. 1 - May 1994

Client-server architecture
Flow ICL Corporate Systems support Client-server: an Architectural Overview
Exploiting Client-server Computing to meet the needs of Retail Banking Organisations
A practical example of Client-server Integration
From a Frog to a Handsome Prince: Enhancing existing character based mainframe applications
Legacy systems in client-server networks: A gateway employing scripted terminal emulation
The Management of Client-server Systems
Dialogue Manager: Integrating disparate services in client-server environments
Distributed Printing in a Heterogeneous World
Systems Management: an example of a successful Client-server Architecture
PARIS - ICL's Problem & Resolution Information System

Vol. 8 Iss. 4 - November 1993
Toward the 4th Generation Office: A Study in Office Systems Evolution
IPCS - Integrated Product Configuring Service
CGS - The ICL Configurer Graphics Service
Location Transparency in Heterogeneous Networks
Future Office Interconnection Architectures for LAN and Wide Area Access
Parallel Lisp and the Text Translation System METAL on the European Declarative System
Detecting Latent Sector Faults in SCSI Disks

Vol. 10 Iss. 1 - May 1995

ICL Systems Journal November 1997 365

An Introduction to O P E N f r a m e w o r k

The Evolution of the O P E N f r a m e i u o r k Systems Architecture
Creating Potential for Change
O P E N f r a m e w o r k in Action at DEVETIR
Strategic Information Systems planning: A Process to Integrate IT and Business Systems
Describing Systems in the O P E N f r a m e w o r k Integration Knowledge Base
Multimedia and Standards for Open Information
VME-X: Making VME Open
A New Approach to Cryptographic Facility Design
CHISLE: An Engineer's Tool for Hardware System Design
Distributed Detection of Deadlock

Vol. 8 Iss. 2 - November 1992
Open Networks - The Key to Global Success
Infrastructure of Corporate Networks in the Nineties
Broadband Networking
FDDI - The High Speed Network of the Nineties
The Evolution of Wireless Networks
Communications Technology for the Retail Environment
RIBA - A Support Environment for Distributed Processing
Information Technology: Support for Law Enforcement Investigations and Intelligence
Standard for Keyboard Layouts - The Origins and Scope of ISO/TEC 9995
ESS - A Solid State Disc System for ICL System for ICL Series 39 Mainframes

Vol. 8 Iss. 1 - Mav 1992
Defining CASE Requirements
ICL's ICASE Products
The Engineering Database
CASE Data Integration: The Emerging International Standards
Building Maintainable Knowledge Based Systems
The Architecture of an Open Dictionary
The Use of a Persistent Language in the Implementation of a Process Support System
ALF: A Third Generation Environment for Systems Engineering
MASP/DL: The ALF Language for Process Modelling
The ALF User Interface Management System
A New Notation for Dataflow Specifications

Vol. 7 Iss. 4 - November 1991
Systems Management: A Challenge for the Nineties - Why now?
The Evolution within ICL of an Architecture for Systems Management
Manageability of a Distributed System
Distribution Management - ICL's Open Approach
Experience of Managing Data Flows in Distributed Computing in Retail Businesses
Generation of Configurations - a Collaborative Venture
Operations Management
OSMC: The Operations Control Manager
The Network Management Domain

Vol. 8 Iss. 3 - May 1993

366 ICL Systems Journal November 1997

An Overview of the Raleigh Object-Oriented Database System
Making a Secure Office System
Architectures of Knowledge Base Machines
The Origins of PERICLES - A common on-line Interface

Vol. 7 Iss. 3 - May 1991
Introduction to the technical characteristics of ISDN
ISDN in France: Numeris and its market
The Telecoms Scene in Spain
Future Applications of ISDN to Information Technology
A Geographical Information System for Managing the Assets of a Water Company
Using Constraint Logic Programming Techniques in Container Port Planning
Locator - An Application of Knowledge Engineering to ICL's Customer Service
Designing the HCI for a Graphical Knowledge Tree Editor: A Case Study in User-Centred Design
X/OPEN - From Strength to Strength
Architectures of Database Machines
Computer Simulation for the Efficient Development of Silicon Technologies
The use of Ward and Mellor Structured Methodology for the Design of a Complex Real Time System

Vol· 7 Iss. I - November 199Q
The SX Node Architecture
SX Design Process
Physical Design Concepts of the SX Mainframe
The Development of Marketing to Design: The Incorporation of Human Factors into Specifi
cation and Design
Advances in the Processing and Management of Multimedia Information
An Overview of Multiworks
RICHE-Reseau d'Information et de Communication Hospitalier Europeen (Healthcare Infor
mation and Communication Network for Europe)
E.S.F - A European Programme for Evolutionary Introduction of Software Factories
A Spreadsheet with Visible Logic
Intelligent Help - The Results of the EUROHELP Project
How to use Colour in Displays - Coding, Cognition and Comprehension
Eye Movements for A Bidirectional Human Interface
Government IT Infrastructure for the Nineties (GIN): An Introduction to the Programme

Vol. 7 Iss. 1 - Mav 1990
Architecture of the DRS6000 (UNICORN) Hardware
DRS6000 (UNICORN) software: an overview
Electromechanical Design of DRS6000 (UNICORN)
The User-System Interface - a challenge for application users and application developers?
The emergence of the separable user interface
SMIS - A Knowledge-Based Interface to Marketing Data
A Conversational Interface to a Constraint-Satisfaction System
SODA: The ICL interface for ODA document access
Human - Human co-operation and the design of co-operative mechanisms
Regulatory Requirements for Security - User Access Control
Standards for secure interfaces to distributed applications

ICL Systems Journal November 1997 367

How to Use Colour in Displays - 1. Physiology Physics & Perception

Vol. 6 Iss. 4 - November 1989
Time to Market in new product development
Time to Market in manufacturing
The VME High Security Option
Security aspects of the fundamental association model
An introduction to public key systems and digital signatures
Security classes and access rights in a distributed system
Building a marketeer's workbench: an expert system applied to the marketing planning process
The Knowledge Crunching Machine at ECRC: a joint R&D project of a high speed Prolog system
Aspects of protection on the Flagship machine: binding, context and environment
ICL Company Research and Development Part 3: The New Range and other developments

Vol. 6 Iss. 3 - May 1989
Tools, Methods and Theories: a personal view of progress towards Systems Engineering
Systems Integration
An architectural framework for systems
Twenty Years with Support Environments
An Introduction to the IPSE 2.5 Project
The case for CASE
The UK Inland Revenue operational systems
La solution ICL chez Carrefour a Orleans
A Formally-Specified In-Store System for the Retail Sector towards a Geographic Information
System
Ingres Physical Design Adviser: a prototype system for advising on the physical design of an
Ingres relational database
KANT - a Knowledge Analysis Tool
Pure Logic Language
The 'Design to Product' Aivey Demonstrator

Vol. ή Iss. 2 - November 1988

Flexible Manufacturing at ICL's Ashton plant
Knowledge based systems in computer based manufacturing
Open systems architecture for CIM
MAES - An expert system applied to the planning of material supply in computer
manufacturing
JIT and IT
Computer Aided Process Planning (CAPP): Experience at Dowty Fuel Systems
Use of integrated electronic mail within databases to control processes
Value engineering - a tool for product cost reduction
ASP: Artwork specifications in Prolog
Elastomer technology for probing high-density printed circuit boards
The effects of back-driving surface mounted digital integrated circuits
Reliability of surface-mounted component soldered joints produced by vapour phase,
infrared soldering techniques
Materials evaluation
On the human side of technology

368 ICL Systems Journal November 1997

ICL Series 39 support process
The ICL systems support centre organisation
ICL Services Product Centre
Knowledge engineering as an aid to the system service desks
Logic analysers for system problem solving
Repair - past and future
OSI migration
A Network to Support Application Software Development
Universal Communications Cabling: A Building Utility
Collecting and generalising knowledge descriptions from task analysis data
The architecture of an automated Quality Management System
ICL Company Research and Development Part 2: Mergers and Mainframes, 1959-1968

Vol. 5 Iss. 4 - November 1987
Open Distributed Processing
The Advanced Network Systems Architecture project
Community management for the ICL networked production line
The X/OPEN Group and the Common Applications Environment
Security in distributed information systems: needs, problems and solutions
Cryptographic file storage
Standards and office information
Introducing ODA
The Technical and Office Protocols - TOP
X400 - international information distribution
A general purpose natural language interface: design and application as a database front-end
DAP-Ada: Ada facilities for SIMD architectures
Quick language implementation

Vol. 5 Iss. 3 -M av 1987

What is Fifth Generation? - the scope of the ICL programme
The Alvey DHSS Large Demonstrator Project
PARAMEDICL: a computer-aided medical diagnosis system for parallel architectures
S39XC - a configurer for Series 39 mainframe systems
The application of knowledge-based systems to computer capacity management
On knowledge bases at ECRC
Logic languages and relational databases: the design and implementation of Educe
The semantic aspects of MMI
Language overview
PISA - a Persistent Information Space Architecture
Software development using functional programming languages
Dactl: a computational model and compiler target language based on graph reduction
Designing system software for parallel declarative systems
Flagship computational models and machine architecture
Flagship hardware and implementation
GRIP: a parallel graph-reduction machine

Vol. 6 Iss. 1 - May 1988

ICL Systems Journal November 1997 369

The Management into the 1990s Research Programme
Managing strategic ideas: the role of the computer
A study of interactive computing at top management levels
A management support environment
Managing change and gaining corporate commitment
An approach to information technology planning
Preparing and organising for IPSE
Global Language for Distributed Data Integration
The design of distributed secure logical machines
Mathematical logic in the large practical world
The ICL DRS300 management graphics system
Performance of OSLAN local area network
Experience with programming parallel signal-processing algorithms in Fortran 8X

Vol. 5 Iss. 1 - May 1986

ICL company research and development, 1904-1959
Innovation in computational architecture and design
REMIT: a natural language paraphraser for relational query expressions
Natural language database enquiry
The m e t o o method of software design
Formal specification - a simple example
The effects of inspections on software quality and productivity
Recent developments in image data compression for digital facsimile
Message structure as a determinant of message processing system structure

Vol. 4 Iss. 4 - November 1985
History of the ICL content-addressable file store, (CAFS)
History of the CAFS relational software
The CAFS system today and tomorrow
Development of the CAFS-ISP controller product for Series 29 and 39 systems
CAFS-ISP: issues for the applications designer
Using secondary indexes for large CAFS databases
Creating an end-user CAFS service
Textmaster - a document retrieval system using CAFS-ISP
CAFS and text: the view from academia
Secrets of the sky: the IRAS data at Queen Mary College
CAFS file-correlation unit

Vol. 4 Iss. 3 -M ay 1985
Overview of the ICL Series 39 Level 30 system
VME nodal architecture: a model for the realisation of a distributed system concept
Processing node of the ICL Series 39 Level 30 system
Input/output controller and local area networks of the ICL Series 39 Level 30 system
The store of the ICL Series 39 Level 30 system
The high-speed peripheral controller for the Series 39 system
Development of 8000-gate CMOS gate arrays for the ICL Level 30 system
Development route for the C8K 8000-gate CMOS array

Vol. 5 Iss. 2 - November 1986

370 ICL Systems Journal November 1997

Design automation tools used in the development of the ICL Series 39 Level 30 system
Design and manufacture of the cabinet for the ICL Series 39 Level 30 system
Manufacturing the level 30 system I Mercury: an advanced production line
Manufacturing the Level 30 system II Merlin: an advanced printed circuit board manufac
turing system
Manufacturing the Level 30 system III The test system

Vol. 4 Iss. 2 - November 19S4

Modelling a multi-processor designed for telecommunication systems control
Tracking of LSI chips and printed circuit boards using the ICL Distributed Array Processor
Sorting on DAP
User functions for the generation and distribution of encipherment keys
Analysis of software failure data(l): adaptation of the Littlewood stochastic reliability
growth model for coarse data
Towards a formal specification of the ICL Data Dictionary

Vol. 4 Iss. 1 - May 1984

The ICL University Research Council
The Atlas 10 computer
Towards better specifications
Solution of the global element equations on the ICL DAP
Quality model of system design and integration
Software cost models
Program history records: a system of software data collection and analysis

Vol. 3 Iss. 4 - November 1983

Expert system in heavy industry: an application of ICLX in a British Steel Corporation works
Dragon: the development of an expert sizing system
The logic language PROLOG-M in database technology and intelligent knowledge-based systems
QPROC: a natural language database enquiry system implemented in PROLOG
Modelling software support

Vol· 3 Iss. 3 -M av 1983
IPA networking architecture
IPA data interchange and networking facilities
The IPA telecommunications function
IPA community management
MACROLAN: a high-performance network
Specification in CSP language of the ECMA-72 Class 4 transport protocol
Evolution of switched telecommunication networks
DAP in action

Vol. 3 Iss. 2 - November 1982

The advance of Information Technology
Computing for the needs of development in the smallholder sector
The PERQ workstation and the distributed computing environment
Some techniques for handling encipherment keys
The use of COBOL for scientific data processing
Recognition of hand-written characters using the DAP

ICL Systems Journal November 1997 371

Hardware design faults: a classification and some measurements

Vol. 3 Iss. 1 - May 1982

Software of the ICL System 25
Security in a large general-purpose operating system: ICL's approach in VME/2900
Systems evolution dynamics of VME/B
Software aspects of the Exeter Community Health Services Computer Project
Associative data management system
Evaluating manufacturing testing strategies

Vol, 2 Iss. 4 - November 1981
Architecture of the ICL System 25
Designing for the X25 telecommunications standard
Viewdata and the ICL Bulletin System
Development philosophy and fundamental processing concepts of the ICL Rapid Applica
tion Development System RADS
A moving-mesh plasma equilibrium problem on the ICL Distributed Array Processor

Vol. 2 Iss. 3 -M ay 1981
A dynamic database for econometric modelling
Personnel on CAFS: a case study
Giving the computer a voice
Data integrity and the implications for back-up
Applications of the ICL Distributed Array Processor to econometric computations
A high-level logic design system
Measures of programming complexity

Vol. 2 Iss. 2 - November 198Π
The ICL Information Processing Architecture, IPA
VME/B: a model for the realisation of a total system concept
Birds, Bs and CRTs
Solution of elliptic partial differential equations on the ICL Distributed Array Processor
Data routing and transpositions in processor arrays
A Bayesian approach to test modelling

Vol. 2 Iss. I - May 1980

Security and privacy of data held in computers
CADES - software engineering in practice
ME29 Initial Program Load: an exercise in defensive programming
Project Little - an experimental ultra-reliable system
Flow of instructions through a pipelined processor
Towards an 'expert' diagnostic system
Using Open System Interconnection standards

Vol. 1 Iss. 3 - November 1979
Meteosat 1: Europe's first meteorological satellite
An analysis of checkpointing
Statistical and related systems

372 ICL Systems Journal November 1997

Structured programming techniques in interrupt-driven routines
The content addressable file store - CAFS
Computing in the humanities
The data dictionary system in analysis and design

Vol. 1 Iss. 2 - May 1979

Computers in support of agriculture in developing countries
Software and algorithms for the Distributed Array Processor
Hardware monitoring on the 2900 range
Network models of system performance
Advanced technology in printing: the laser printer
The new frontier: three essays on job control

Vol· 1 Iss. 1 - November 1978
The origins of the 2900 series
Sizing computer systems and workloads
Wind of Change
Standards for open-network operation
Distributed computing in business data processing
A general model for integrity control

To order back issues

Contact
Sheila Cox

Research and Advanced Technology,
ICL, Lovelace Road, Bracknell, Berks., RG12 8SN

Telephone +44 (0)1344 472900
Fax +44 (0)1344 472700

Email: S.D.Cox@bra0102.wins.icl.co.uk
or

The Editor, V.A.J. Mailer
Telephone +44 (0)1438 833514

Email: V.AJ.Maller@ste0418.wins.icl.co.uk

ICL Systems Journal November 1997 373

mailto:S.D.Cox@bra0102.wins.icl.co.uk
mailto:V.AJ.Maller@ste0418.wins.icl.co.uk

ICL Systems Journal
Guidance for Authors

1. Content
The ICL Systems Journal has an international circulation. It publishes papers of a high stand
ard that are related to ICL's business and is aimed at the general technical community and in
particular at ICL's users, customers and staff. The Journal is intended for readers who have an
interest in computing and its applications in general but who may not be informed on the
topic covered by a particular paper. To be acceptable, papers on more specialised aspects of
design or application must include some suitable introductory material or reference.

The Journal will not usually reprint papers already published but this does not necessarily
exclude papers presented at conferences. It is not necessary for the material to be entirely new
or original. Papers will not reveal material relating to unannounced products of any of the
ICL Group of companies.

Letters to the Editor and book reviews may also be published.

2. Authors
Within the framework defined in paragraph 1, the Editor will be happy to consider a paper by
any author or group of authors, whether or not employed by a company in the ICL Group. All
papers will be judged on their merit, irrespective of origin.

3. Length
There is no fixed upper or lower limit, but a useful working range is 4,000-6,000 words; it may
be difficult to accommodate a long paper in a particular issue. Authors should always keep
brevity in mind but should not sacrifice necessary fullness of explanation.

4. Abstract
All papers should have an Abstract of approximately 200 words, suitable for the various ab
stracting journals to use without alteration.

5. Presentation
5.1 Printed (typed) copy
A typed copy of the manuscript, single sided on A4 paper with the pages numbered in se
quence, should be sent to the Editor. Particular care should be taken to ensure that math
ematical symbols and expressions, and any special characters such as Greek letters, are clear.
Any detailed mathematical treatment should be put in an Appendix so that only essential
results need be referred to in the text.

5.2 Electronic version
Authors are requested to submit either a magnetic disk version of their copy in addition to the
manuscript or an e-mail attached file or both. The format of the file should conform to the
standards of any of the widely used word processing packages or be a simple text file.

374 ICL Systems Journal November 1997

5.3 Diagrams
Line diagrams will, if necessary, be redrawn and professionally lettered for publication, so it is
essential that they are clear. Axes of graphs should be labelled with the relevant variables and,
where this is desirable, marked off with their values. All diagrams should be numbered for
reference in the text and the text marked with the reference and an appropriate caption to
show where each should be placed. Authors should check that all diagrams are actually re
ferred to in the text and that copies of all diagrams referred to are supplied. If authors wish to
submit drawings in an electronic form, then they should be separated from the main text and
be in the form of EPS files. If an author wishes to use colour, then it is very helpful that a
professional drawing package be used, such as Adobe Illustrator.

5.4 Tables
As with diagrams, these should all have captions and reference numbers. If they are to be
provided in electronic form, then either a standard spreadsheet (Excel) should be used or the
data supplied as a file of comma/tab separated variables. A printed version should also be
supplied, showing all row and column headings, as well as the relevant units for all the quan
tities tabulated.

5.5 References
Authors are asked to use the Author/Date system, in which the author(s) and the date of the
publication are given in the text, and all the references are listed in alphabetical order of au
thor at the end. e.g. in the text: "...further details are given in [Henderson, 1986]" with the
corresponding entry in the reference list:

HENDERSON, P., "Functional Programming Formal Specification and Rapid
Prototyping," IEEE Trans, on Software Engineering SE 12,2,241-250,1986.

Where there are more than two authors it is usual to give the text reference as "(X et a l ...]".
Authors should check that all text references are listed; references to works not quoted in the
text should be listed under a heading such as Bibliography or Further reading.

5.6 Style
A note is available from the Editor summarising the main points of style—punctuation, spell
ing, use of initials and acronyms etc. preferred for Journal papers.

6. Referees
The Editor may refer papers to independent referees for comment. If the referee recommends
revisions to the draft, the author will be asked to make those revisions. Referees are anony
mous. Minor editorial corrections, to conform to the Journal's general style for spelling, punc
tuation or notation, will be made by the Editor.

7. Proofs, Offprints
Printed proofs are sent to authors for correction before publication. The Editor will, however,
always be prepared to send electronic versions to authors, either in PDF or as output files of
the production system used for the Journal—PageMaker, Illustrator and Photoshop.

8. Copyright
Copyright of papers published in the ICL Systems Journal rests with ICL unless specifically
agreed otherwise before publication. Publications may be reproduced with the Editor's per
mission, which will normally be granted, and with due acknowledgement.

ICL Systems Journal November 1997 375

All rights reserved. No part of this publication may be reproduced (includ
ing by photocopying or storing electronically) without the written permis
sion of the copyright owner except in accordance with any applicable ex
ception under copyright law. Permission is, however, not required to copy
abstracts of papers or articles on condition that a full reference to the source
is shown.

© 1997 International Computers Limited, Registered Office, ICL House, 1 High Street, Putney,
London SW15 1SW. Registered in England 96056

ICL Systems Journal November 1997

ICL Research & Advanced Technology
Lovelace Road
Bracknell
Berkshire RG12 8SN

