
I

1
Configuring your computer
to page you

4
CERT I AUSCERT advisory
issued against admintool
5
Scheduling a job for
periodic execution
7
Tracking user logins
9
Writing a script to monitor
your system
12
Enabling additional serial
ports on Solaris x86
14
Creating your own shell
commands with alias

http://www.cobb.com/sun/

~

October 1996 • $11.50
VOL. 2 NO. 10

INSIDE
OLARI~

· riti~!~ of SunSoft Solaris

Configuring your computer to
page you
By Al Alexander

Imagine that you're at home one
night, getting ready to go on a
two-week vacation to a terrific

beach. As you're packing your swim
suit and suntan lotion, your pager
suddenly starts beeping. "Oh no,"
you think, "there goes my vacation."

You look at the pager, fearing
the worst. "Who's calling me, and
what do they want?" Then you see
the number and realize "Aha! My
computer just paged me, an?. it's.
telling me that the root partition is
nearly full." To solve the problem,
you quickly dial up your computer
and move a directory from the root
file system to one that has some
extra space. You also send yourself
some E-mail to remind yourself to
reorganize some files when you
return from your vacation.

You then continue packing and
head to the sun, sand, and water.
Your vacation was rescued because
your computer had the intelligence
to recognize the potential probl~m
and to call you before a larger dis
aster occurred. In this article, we're
going to show you how to turn this
fantasy into a reality. All you need
is a way to make your computer
system(s) page you when it detects
an impending disaster.

How did this happen?
A few years ago, I created a UNIX
daemon named mo n i tor. Its purpose
is to monitor my computer systems

and alert me if something bad is
happening or is about to happen. If
so, the computer should try to con
tact me. Early versions of mo n i tor
sent E-mail, displayed messages on
the console, and sent printouts to a
printer near my cubicle to alert me
of potential problems.

Lately, as my computer system
responsibilities have spread th~ough
out multiple states (and countries),
I extended mo n i tor to fax me and to
send messages to my pager.

This proactive approach to sys
tem management is much better
than a reactionary, defensive ap
proach. Rather than spending
hours fixing problems that have
already occurred, you can spend
minutes to avert them.

This solution is actually very
simple to implement. First, you
need a process that monitors your
system for impending doom, and
you need a way for your computer
to send you a page. For the basics
on a system-monitoring daemon,
see the article "Writing a Script to
Monitor Your System" on page 9.

Solving the paging problem
In order to use this method of mak
ing your computer page you, three
things are necessary:

1. A digital pager

2. A Hayes-compatible modem
connected to your computer

3. The UUCP programs installed

A Publication of The Cobb Group

SINSIDE
OLAR IS

Inside Salaris (ISSN 1081 -331 4) is published monthly by
The Cobb Group.

Prices
U.S $115/yr ($11.50 each)
Outside U.S $135/yr ($16.95 each)

Phone and Fax
US toll free (800) 223-8720
UK toll free (0800) 961897
Local (502) 493-3300
Customer Relations fax (502) 491-8050
Editorial Department fax (502) 491-4200
Editor-in-Chief (502) 493-3204

Address
Send your tips, special requests, and other correspondence to:

The Editor, Inside Salaris
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: inside_solaris @merlin .cobb.zd .com.

For subscriptions, fulfillment questions, and requests for group
subscriptions, address your letters to:

Customer Relations
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: cr@merlin.cobb.zd.com.

Staff
Editor-in-Chief Marco C. Mason
Contributing Editor Al Alexander
Production Artist Liz Palmer
Editors Linda Recktenwald

Karen S. Shields
Circulation Manager Mike Schroeder
Editorial Director Linda Baughman
VP/Publisher Lou Armstrong
President John A. Jenkins

Back Issues
To order back issues, call Customer Relations at (800) 223-8720.
Back issues cost $11.50 each, $16.95 outside the US. We
accept MasterCard, Visa, or American Express, or we can bill you.

Advertising
For information about advertising in Cobb Group journals,
contact Tracee Bell Troutt at (800) 223-8720, ext. 430.

Postmaster
Second class postage paid in Louisville, KY.
Postmaster: Send address changes to:

Inside Safaris
P.O. Box 35160
Louisville, KY 40232

Copyright
© 1996, The Cobb Group. All rights reserved . Inside Salaris is
an independent publication of The Cobb Group. The Cobb
Group reserves the right , with respect to submissions , to revise ,
republish , and authorize its readers to use the tips submitted
for personal and commercial use. Information furnished in this
newsletter is believed to be accurate and reliable; however,
no responsibility is assumed for inaccuracies or for the
information's use.

The Cobb Group and its logo are registered trademarks of Ziff
Davis Publishing Company. Inside Safaris is a trademark of Ziff
Davis Publishing Company. Sun, Sun Microsystems, the Sun
logo, SunSoft, the SunSoft logo, Solaris, SunOS, Sunlnstall ,
OpenBoot, OpenWindows, DeskSet, ONC, and NFS are trade
marks or registered trademarks of Sun Microsystems, Inc. UNIX
and OPEN LOOK are registered trademarks of UNIX System
Laboratories, Inc. Other brand and product names are trade
marks or registered trademarks of their respective holders.

II October 199&

The system is very simple. The
monitor program, not listed here,
must detect system problems. When
a problem occurs, the mo n i tor pro
gram uses a UUCP program to call
your pager and leave you a mes
sage. In order to keep things simple,
we encode the message into a
seven-digit number. The top four
digits identify the system that has
the problem, and the lower three
digits specify the problem.

Sending a page
Once you've set up your system
properly, you can initiate the page
in several ways. The simplest is to
use the cu command, like this:

$ cu Sys temName
Connect failed : CALLER SCRIPT FAILED

Please note the error message
that cu prints after the page is done.
(The error message doesn't occur for
about a minute after you enter the
command.) You can safely ignore
this error because it's a by-product
of the way this method works.

A more complex way to issue
the page is to use the Uu try com
mand. Because the Uu try program
isn' t likely to be in your path, you
need to specify its full pathname,
like this:

$ /usr/lib/uucp/Uutry -r SystemName
/usr/lib/uucp/uucico -r1
'--sSystemName -f -x5 >/tmp/pgr0001
2>&1&
tmp=/tmp/pgr0001
name (SystemName) not found; return
'-FAIL
name (DEFAULT) not found; return
'-FAIL
name (OTHER) not found; return FAIL
attempting to open /var/uucp/.Admin/
'-account
Job grade to process -
conn(pgr0001)
Trying entry from '/etc/uucp/Systems'
'-- device type ACU.

Here, I've trimmed away much of
the output. Please note that when
you use Uu try to page your system,
the Uu try command will wait for
you to stop the program. Thus, it's
not useful for automated paging.

This method of sending the
page is interesting because you can
see the dialog between Solaris and
your modem. The Uutry program
also shows you the best way to send
a page: with the u u c i co program.

Here's why I believe the uuci co
program is the best method to use:

1. You can override any retry
time limits with the - r option.

2. It doesn't emit an error mess
age when it sends the page.

3. You can tell it not to fill
the screen with diagnostic
information.

Like Uutry, the uuci co program
probably isn't in your path. So to
execute the u u c i co program, you
should invoke it like this:

$ /usr/lib/uucp/uucico -r1
'- -sSys temName

Once you set up your system
correctly, you'll be able to send
pages easily. Now let's take a look
at how to set up the system.

Setting up UUCP
In the previous examples, I used
Sys temName without any explana
tion. It turns out that this System
Name is the heart of the paging sys
tem. You simply create a set of fake
systems in the /etc/uucp/Systems file
of each computer that can send a
page. Each Sys temName entry corre
sponds to a particular piece of
problem code the system can send
to you. Figure A shows some of the
entries I placed in my /etc/uucp/
Systems file.

If you want a more detailed
explanation of how to set up the
/etc/uucp/Systems file, you may want
to read the article "Configuring the
Devices and Systems Files for cu" in
the May issue, as well as peruse the
man pages for the UUCP programs.

For the purposes of this article,
all you need to do is create lines
starting with your fake system name,
followed by "Any ACU Any", fol
lowed by the phone number to dial.
We suggest you use pgr WXYZ as the

Figure A

pgr0001 Any ACU Any 5551212,,,,,0001001#
pgr0002 Any ACU Any 5551212,,,,,0001002#
pgr0003 Any ACU Any 5551212,,,,,0001003#
pgr0004 Any ACU Any 5551212,,,,,0001004#
pgr0005 Any ACU Any 5551212,,,,,0001005#
pgr0006 Any ACU Any 5551212,,,,,0001006#
pgr0007 Any ACU Any 5551212 , ,,,,0001007#
pgr0008 Any ACU Any 5551212,,,,,0001008#
pgr0009 Any ACU Any 5551212,,,,,0001009#
pgr0010 Any ACU Any 5551212,,,,,0001010#

This portion of an /etc/uucp/Systems file assigns the
phone number of your pager and the pager code to a
fake system name.

system name, where pgr is the fake pager sys
tem, and WXYZ is the problem code that the
system is reporting.

The pager phone number
As you can see in Figure A, we're manipulat
ing the phone number to do all the work. For
the purposes of this article, let's assume that
your digital pager number is 555-1212. The
phone number for pgrOOOl is
5551212,,,,,0001001#.

The first part of the number is straight
forward-it simply dials 555-1212. For a
Hayes-compatible phone, a comma tells the
modem to pause for two seconds. Thus, the
five commas tell the modem to pause for 10
seconds. Next, the modem emits the code
0001001. Finally, the modem emits a pound
sign(#), just as if you'd typed it on your tele
phone keypad.

The code simply encodes the system num
ber as four digits and the problem code as three
digits. So this code tells us that computer sys
tem 1 had problem code 1.

One problem this paging system has is that
it doesn't automatically hang up quickly. Luck
ily, the system connected at 555-1212 interprets
the pound sign as a command to hang up.

You may have to tune the telephone num
ber to work with your digital pager and phone
system. For example, some systems require that
you dial 9 to get an outside line. For this, you'll
want to insert a 9, at the beginning of the phone
number. Similarly, if you have call waiting,
you'll want to insert the code that turns off call
waiting for the next call. In my area, it's *70, so
I'd add *70, at the start of the phone number. In
both these cases, we add a comma after the
prefix to allow the command to be processed
before we emit the rest of the digits in the
phone number. Some equipment needs this

delay, or digits may be missed. For example, if
we need to do both, we may define a system as

pgr0003 Any ACU Any 9,•70,5551212,,,,,0001003#

I used a 10-second delay because my pager
system normally picks up on the second ring,
then gives a short voice prompt. If you have a
longer voice prompt, you may want to increase
the timeout period.

Lacking elegance?
Two parts of this system aren't elegant. The
first involves calling my pager number, wait
ing 10 seconds, then blindly sending the nu
meric code that indicates the system name and
error code. In a more perfect world, I would
wait for a voice response from the pager sys
tem I'm calling, then send the numeric code.
However, using a simple UUCP dialing sys
tem, this isn't possible. Does that mean this
solution isn't elegant?

I've tested my pager system very heavily
and determined that, 99 times out of 100, the
pager system is ready to receive numeric in
put in five seconds after I dial the last digit of
the pager phone number. At 25 seconds after
the last number has been dialed, if my pager
hasn't received a numeric code, it hangs up.
Given that window between five and 25 sec
onds, I've elected to wait 10 seconds before
transmitting the computer I error code. It may
not seem elegant, but it hasn't failed yet.

The second ugly part of the system is that
I can't hang up the phone properly. After the
computer makes the call and transmits the
computer I error code sequence, the # signal
tells the pager system to hang up on my call
ing computer, which it does. That works fine,
but my calling computer never hangs up the
phone on its end of the line. Again, this ap
pears to be a problem, but in reality the phone
company terminates the connection after a
minute of inactivity. This causes the modem to
tell UUCP that the connection died, so the
problem takes care of itself. The modem is
always ready to receive my call well before the
time I can dial into the system.

Other considerations
If you decide to use this method heavily, you
may fill your /etc/uucp/Systems file with many
fake systems that perform pages. Not only does
this congest the /etc/uucp/Systems file, but you'll
have so many different codes, you won't be
able to remember what they all mean.

Inside Solaris n

An alternative is to have a single fake sys
tem in your /etc/uucp/Systems file. Then, in
stead of having your script file page to one of
many fake systems, you can always page to
the same one. Then your script can send you
E-mail describing which problem(s) have
occurred. When you log in, you can just read
your E-mail to determine the problem. For
more information on using mail in a script, see
the article "Make a Shell Script Mail You a
Summary" in the July issue.

Conclusion
You can use this fairly simple method to have
your computer system page you in the event

SECURITY ALERT

of system emergencies. You can then dial in
and avert a disaster. You can easily extend this
approach to have your system page you for
other events, including the completion of long
batch jobs, intruder detection, etc. The rest is
up to you! •!•

Alvin J. Alexander is an independent consult
ant specializing in UNIX and the Internet. He
has worked on UNIX networks to support the
Space Shuttle, international clients, and vari
ous Internet service providers. He has provided
UNIX and Internet training to over 400 clients
in the last three years.

CBIT I AUSCBIT advisory issued against
admintool
By Marco C. Mason

If you're administering a system on which
you're concerned about security, you may
want to avoid using admi ntoo l. The Aus

tralian Computer Emergency Response Team
(AUSCERT) has uncovered a possible security
loophole in the admi ntoo l program. This advi
sory (AL-96.03) was also adopted by CERT as
document CA-96.16.

What causes the problem?
The problem is that admi ntoo l doesn't handle
some temporary files in a secure fashion. The
ad mi n too l program uses these files to enforce
locking in order to prevent the system files
from being manipulated by two users at once.
Because the temporary files aren't handled
securely, it's possible to coerce a dm i n tool to
write any file with the user ID of the process
that writes the file.

What makes this problem severe is that
with Solaris 2.5, admi ntoo l normally has the
setUID permissions bit set to run as root. Thus,
a clever hacker may be able to gain root access
by running a dm i n tool in order to access its lock
files. While previous versions of Solaris don't
install a dm int oo l with the setUID permission,
the hacker need only wait for the root user to
access admi n tool to gain root privileges.

----11 Dctober 199G

Locking out admintool
CERT advises that you not allow any users to
run a dmi n tool until patches are available. You
can do so by removing the execute privileges
of a dmi n tool like this:

chmod 400 /usr/bin/admintool
ls -l /usr/bin/admintool
-r-------- 1 root sys 303516 Oct 27 1995
-./usr/bin/admintool

You can read the full text of the CERT ad
visory by retrieving document ftp:! /info.cert.
org/pub/cert_advisories/CA-96.16.Solaris_
admintool_vul from the Internet. As this situa
tion unfolds, you'll find updated information
at ftp://info.cert.org/pub/cert_advisories/CA-
96.16.README.

Conclusion
Other interesting information, such as adviso
ries, security information, and contact infor
mation, is available at http://www.cert.org/, at
ftp://info.cert.org/pub/ and in the comp.security.
announce newsgroup. You can also join the
CERT mailing list for other late-breaking news
by sending your E-mail address to cert
advisory-request@cert.org. •!•

ti '.'-'.:\ .,, .. '<• :·~, - ~·v ,_ .. ._~';.,i:'.~'. l;"''h' "'. ''"9 '• , _

~ Atironiui Tic' p '"'osilAM EXECUTION

Scheduling a job for periodic execution
The whole point of having a computer is

having it automate repetitive tasks. As
system administrators, you should al

ways strive to make your job simpler by auto
mating everything possible. Scripts are great
tools because they free you from the keyboard.
Rather than typing dozens of commands and
possibly making typing errors, you simply
type the name of the script, and the system
goes about its business.

You could also arrange it so that your com
puter decides when to run the program for you
so you don't have to start the script manually.
That way, you wouldn't even have to come to
the office to run your month-end reports. In
this article, we'll show you how to use cron to
schedule jobs on a periodic basis.

The cron daemon
When you start Solaris, it starts a process named
cron that manages scheduled jobs. Periodically,
cron examines the files in /var/spool/cron/crontabs
to find out which, if any, jobs need to be run. If
it's time to run a job, cron executes it.

In order to schedule the jobs, you need to
create a file that describes what to do and
when to do it. Figure A illustrates the format
of a job request for cron. You may have as
many job requests as you want.

If you don't want to specify any particular
value for a field, put an asterisk in it. This tells
cron to match it with all legal values. Thus, if
you put an asterisk in each field, except the
first in which you put a 5, you'll have a com
mand that executes every time it's five min
utes past the hour.

You can also use ranges and lists of values
for each field. To specify a range, simply use
two values separated by a hyphen. Values

Figure A

1
2
3
4
5
6

minute
hour
day of month
month
day of week
command

0-59
0-23
1-31
1-12
O(Sunday)-6
any valid command

Each record allows you to specify when to execute any
particular list of commands.

separated by commas indicate individual
values. This allows you to build quite complex
schedules.

Suppose you want to execute a command
every 10 minutes during the workday, exclud
ing the lunch hour. Obviously, you would also
want to exclude Saturday and Sunday. You
could do so like this:

0, 10,20,30,40,508-11,13-17 * * 1-5 command

Here, we specified 0,10,20,30,40,50 for the
minutes field, telling cron to execute the pro
gram every 10 minutes. The hours field is a bit
trickier. Here we use two ranges, specified as:
8-11,13-17. This has the effect of excluding
12:00 through 12:59.

Next, we indicate that it may run on any
day of any month. The next field limits cron tab
by the day of the week. Here, we specify Mon
day through Friday.

Sometimes, a command's desired schedule
can be so complex you just can't write a cron
entry to express it. So you break it down into
multiple entries. There's no reason you can't
run the same command with different entries.

For example, suppose you have a program
you want to run every hour on the weekends,
but only twice a day during the week. This is
clearly impossible with a single cron tab entry.
However, these two crontab entries will do
the trick nicely:

0 * * * 0,6 ComplexJob
0 0, 12 * * 1-5 ComplexJob

The first entry takes care of executing
Comp lexJob hourly on Sunday (day O) and Satur
day (day 6). The second entry runs Comp lexJob
at noon and midnight from Monday to Friday.

The command field can hold any com
mand you'd normally type at the shell
prompt. When cron executes your job, it starts
a sh job at your home directory and executes
the specified statement. If you use a % symbol,
cron will replace it with a new line. If you
want a % symbol, precede it with a \.

Changing your cron jobs
The cron daemon looks in the /var/spool/cron/
crontabs directory for each user's scheduled

Inside Solaris •~--~

jobs. One file exists for each user who has one
or more scheduled jobs. The name of each file
is the username that requested the scheduled
jobs. Because users may have confidential in
formation in their scheduled job requests, you
can't simply modify the files in /var/spool/cron/
crontabs.

You can put a batch of scheduled jobs in
this directory with the crontab command. To
do so, you simply build your list of job re
quests and execute cron tab, which will place
your requested job batch in the /var/spool/cron/
crontabs directory.

Please note that your requested job batch
replaces any job batch that you may already
have. So if you want to keep any jobs in a pre
vious batch, you must be sure to include them
in the current batch. The easiest way to ensure
that you don't accidentally delete important
jobs is to ask cron tab for a copy of the current
job batch. You can then add any new job re
quests to the end of this file. Then when you
tell cron tab to submit the batch of job requests,
you can be sure that you didn't omit any. You
can display the list of job requests like this:

$ crontab -l

Miscellaneous notes
Keep in mind that when cron executes your
jobs, it isn't logging in as you. Therefore, you
must be careful what assumptions you're mak
ing, such as the default path. To ensure that
your c r on jobs succeed, you should probably
write scripts to do the jobs. Be sure to explicitly
set any environment variables, such as the
path, at the beginning of your scripts.

If your cron job emits any information on
the standard output or error streams, it will be
packaged and E-mailed to you. Until you've
completed debugging your cron jobs, this is a
very useful tool. However, once you've de
bugged your cron job, you probably don't
want this E-mail. To stop it, you must ensure
that your cron job emits no information on
these streams. The simplest way is to redirect
these streams to the /dev/null device.

One way to simplify things is to use a
shell script for all but the most trivial cron
jobs. If you use a script, you'll find it easier to
test your cron jobs, because you can set all the
environment variables required at the start.
You can then test your script more simply. In
addition, it's simpler to redirect the standard
error and output streams on your cron line.
Once you get your script working correctly,
test it with a stripped-down account to ensure

~-~------· October 1996

that you haven't depended on something that
you've customized in your environment.

If you want, you can modify some of
cron's default settings by editing the /etc/
default/cron file. Here, you can specify the
default path for root jobs and all others. You
specify the default path for root jobs with
SUPA TH, and all other jobs get the path speci
fied by PA TH. You can also tell c r on whether to
keep a log of its activities by setting the value
of CRONLOG. Suppose for a moment that you
don't want c r on to keep a log, and you want to
run jobs with the path of /usr/bin:/usr/bin/local.
You can do so by setting the /etc/default/cron
file to this:

CRONLOG:yes
PATH:/usr/bin:/usr/bin/local

Please note that changing the path can be
a security hazard. The most obvious security
problem arises when you put a directory in
the path into which an aspiring hacker can
place files. Then it's a simple matter of writing
a subversive script with the name of a file
that's likely to be used in a cron job.

For this reason, it's a better idea to leave
the default path alone and specify it only for
the cron jobs that require it. Even then, be sure
that the path you use doesn't have any poten
tial for headaches. The normal path for user
cron jobs is /usr/bin, while root cron jobs use a
path of /usr/sbin:/usr/bin.

An example
As an example of how to use c r on and the
crontab command, let's submit a couple of
c r on jobs. The first job will be to send an E
mail message to remind us to pay our bills on
the first of the month. The next job will be to
execute the ISOL_Mon it or script every 10 min
utes. (We present this script in the article
"Writing a Script to Monitor Your System" on
page 9.)

First, you need to use c r on tab to retrieve
the current list of cron jobs you have, like so:

$ crontab -l >MyCron

(At this point, your crontab file is probably
empty, but it's better to be safe than sorry.)
Then, invoke your favorite editor and add
these two lines to the end of the MyCron file.

0 6 1 **echo "Pay your bills!"
0,10,20,30,40,50 * * * * ISOL_Monitor >/dev/

•null

Finally, to submit these cron jobs, type

$ crontab <MyCron

to /dev/null so that we aren't overwhelmed by
the reports. (The ISOL_Moni tor script will auto
matically page us when a problem occurs and
E-mail us with the problem anyway.)

As you can see, at 6:00 a.m. on the first of
each month, the first job simply echoes the
message "Pay your bills!" Since it's creating
output, cron will automatically package this
output and E-mail it to us. The second job tells
cron to execute the cron script every 10 minutes.
The cron script generates a report each time
it's run. Since we don't want to wade through
144 E-mail messages a day, we pipe the output

Tracking user logins

Conclusion
You shouldn't be a slave to your computer.
Remembering to run a script every day at
noon is a hassle, but one that your computer
can easily handle. Rather than tying yourself
down to a clock and your computer, use cron
to make your computer watch the clock for
you. •!•

By Marco C. Mason

Last month, we talked about trimming
back log files, lest they become too long.
This calls to mind the obvious question,

"What do we do with log files?" In our ex
amples, we showed you the /var/adm/wtmp file,
which tracks all the user logins on a system.

ASCII and back again. Thus, you can view the
/var/adm/wtmp file by simply creating an ASCII
version and using more to display it, like this:

$ /usr/lib/acct/fwtmp </var/adm/wtmp >wtmp .data
$ more wtmp.data

The /var/adm/wtmp file tracks the account
ing information for all users. This means it
tracks the users' names, the ports they logged
in on, the times they logged in, the times they
logged out, etc. It also tracks

When you do so, you'll see that the
wtmp.data file contains many columns of data,
as shown in Figure A. Since this file has no
column headers, it's nearly impossible to tell
what some of the columns mean.

other things, such as time
changes in the system.

Figure A
Reading lvar/adml

system boot 0 2 0000 0000 837220087 Fri wt mp run-level 3 0 1 0063 0123 837220087 Fri
rc2 s2 62 5 0000 0000 837220087 Fri However, /var/adm/wtmp rc2 s2 62 8 0000 0000 837220123 Fri is a binary file. So you rc3 s3 208 5 0000 0000 837220123 Fri can't just use more or awk rc3 s3 208 8 0000 0000 837220123 Fri

to examine the account- sac SC 228 5 0000 0000 837220123 Fri
ing information. In order ttymon co 229 5 0000 0000 837220123 Fri

LOGIN co console 229 6 0000 0000 837220123 Fri for you to access this in- zsmon PM10 231 6 0000 0000 837220124 Fri formation, Sun provides mar co co console 229 7 0000 0000 837220185 Fri the fwtmp command. mar co co console 229 8 0000 0000 837222753 Fri
Because this command ttymon co console 300 5 0000 0000 837222753 Fri
is related to system LOGIN co console 300 6 0000 0000 837222753 Fri

root co console 300 7 0000 0000 837222756 Fri accounting features, sac SC 228 8 0017 0000 837222781 Fri it's located in the root co console 300 8 0011 0000 837222781 Fri /usr/lib/acct directory. run-level s 1 1 0123 0063 837222781 Fri
You can use this com- run-level s 1 1 0123 0063 837222781 Fri

mand to convert the bi- shutdown 0 0 0000 0000 837222806 Fri
nary formatted file to This is a sample of the output from the fwtmp command.

Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul

12 21:08:07 1996
12 21:08:07 1996
12 21:08:07 1996
12 21:08:43 1996
12 21:08:43 1996
12 21:08:43 1996
12 21:08:43 1996
12 21:08:43 1996
12 21:08:43 1996
12 21 :08:44 1996
12 21:09:45 1996
12 21:52:33 1996
12 21:52:33 1996
12 21:52:33 1996
12 21:52:36 1996
12 21 :53:01 1996
12 21:53:01 1996
12 21:53:01 1996
12 21:53:01 1996
12 21:53:26 1996

Inside Solaris n

Figure B
struct utmp

{
char ut user[8];
char ut_id[4];

Fortunately, you can find the format of the
binary data by executing the man wtmp command.
The columns in the /var/adm/wtmp record have
a one-to-one correspondence with the fields
in the binary record. For your convenience,
Figure B shows the record layout.

I• user login name •I
I• /sbin/inittab id (created by •I

that while only the users root and marco
logged in, other processes, such as rc2, rc3,
and sac did work as well.

When in it starts a process, it fills the sec
ond column with the ID of the /etc/inittab
record that describes the process. Some proc
esses started by in it may fill in this field when
starting other processes. Normally, the third
column holds the device name the user logged
in on. For record types other than 7, the system
may put messages here, such as "run-level" or
"system boot." The fourth column holds the
process ID number.

char ut_line[12];
short ut_pid;
short ut_type;
struct exit_status

I• process that puts entry in utmp) •/
I• device name (console, lnxx) •/
I• process id •I
I• type of entry •I

The sixth and seventh columns aren't that
useful to us. The sixth column holds the pro
cess termination status, and the seventh holds
the process exit status. The eighth column con
tains a large integer value, which represents
the time of the event, measured in seconds
from January 1, 1970. Since Solaris uses a long
integer to store the time, it can store the num
ber of seconds for either 68 or 136 years, de
pending on whether the value is signed or not.
Thus, we won't have a problem before 2038.
The remaining columns simply show the time
in a more easily readable format.

{
short e_termination;
short e_exit;

I• process termination status •I
I• process exit status •I

} ut_exit;

time_t ut_time;
} ;

I• exit status of a process
I• marked as DEAD_PROCESS •I
I• time entry was made •I

This is the binary format used in the /var/adm/wtmp file.

In Figure A, the fifth column is the first
one you need to understand. It tells us what
the rest of the record means. Table A shows
you the different record types Solaris uses.
However, the ones you'll be most interested in
are 7 and 8, which you can use to tell when a
user logs in and out of the system.

For record types 7 and 8, the first column
specifies the user login name. For other record
types, the first column may specify a process
name other than a user logging in or out of the
system. In Figure A, for example, you'll see

Table A
Type
0

Description
Empty

Writing /var/adm/wtmp
The fwtmp program can not only convert the
/var/adm/wtmp file to ASCII, but it can con
vert it back. This capability can be useful if
you need to hand-edit the files. Please note
that we don't recommend that you edit the
files; we're just informing you that it's
possible.

If you need to convert an ASCII data file
back to binary, you can use the fwtmp program
with the -i c switch. This tells fwtmp that the

1
2

Run Level-Tells the new run level when switching levels

Boot Time-The time at which the system boots

II October 1998

3

4
5
6

7
8
9

Old Time-The date and time from which you changed the system time

New Time-The date and time you set the system to

Init Process-The time i n i t starts a process

Login Process-Processes used to control login
User Process-The time at which a user logs into the system

Dead Process-The time at which a process ends

Accounting-A record used by the accounting system

Of these record types in the lvar!adm!wtmp file, the most interesting to us are 7 and 8.

input is going to be ASCII and the output will
be binary. You can convert a file like this:

$ /usr/lib/acct/fwtmp -ic <wtmp.data
-.>/var/adm/wtmp

Keep in mind that if you convert the file
back to binary, any records added to /var/adm/
wtmp since you originally converted it to ASCII
will be lost. So if you're using system account
ing, you'll lose information, unless you can find

SYSTEM ADM/ ISTRATION
I
I

a quiet time on the system to perform any re
quired edits.

Conclusion
With the information we've just presented,
you can now keep track of people who use
your system without learning how to use all
the accounting scripts. If you've ever been
curious about the /var/adm/wtmp file, you
should now have a good grasp on it. •!•

writing a script to monnor your system
By Marco C. Mason

No matter what precautions you take,
occasions always pop up when you
need to drop whatever you're doing

and attend to some urgent task You just can't
avoid it. As long as people use computers,
computers will run out of resources.

As you know, once a computer runs out of
resources, such as disk or swap space, recovery
can be difficult. If the system crashes, you may
spend hours getting it running correctly again.

If you could keep a close eye on your sys
tem, you could find out when a catastrophe is
imminent and take steps to avert it. Any sys
tem administrator would gladly spend a few
minutes to prevent a multihour recovery op
eration. In this article, we'll show you how to
build some tools that help you monitor your
system and prevent major breakdowns.

What do you want to monitor?
The resources you should monitor vary de
pending on the applications you run and the
physical parameters of the system. Some of
the situations you may want a warning about
include:

• Low disk space

• Low swap space

• Too many processes

• Persistent warning messages

• Very high CPU usage over extended periods

• A high rate of network errors

• Heavy disk usage

The monitoring script we create in this
article will monitor disk space on the / and
/tmp file systems, as well as available swap
space and the number of processes running.
Using the basic template we put together here,
you can monitor as many things as you like.

Monitoring tree space on a
tile system
One common cause of program failure is a file
system running out of space. The amount of
free space on a file system normally decreases
as you accumulate data. You can use the df
command to see how much disk space is free
on all your file systems, like this:

df -b I
Fi lesystem
/dev/dsk/c0t0d0s0

avail
354283

As you can see, the / file system has about
350 megabytes of free space. You can examine
the output of the d f command to decide which
file systems are too full for comfort.

For the purposes of the script that we'll
put together later, we want only the number
in the second column of the second line. To do
so, we pipe the results of d f -b to awk, telling it
that we want only the second field on the sec
ond line, like this:

$ df - b I l awK 'NR==2 { print $2 }'
354283

We can place this value in a variable by
enclosing the expression in grave accents(')

Inside SOlarls II __ ~

and treating it just like a value in an assign
ment statement. The completed statement that
puts the free space of the/ directory into the
TEMP variable is

TEMP='df -b I l awk ' NR==2 { print $2 }' '

Monitoring free swap space
Another major catastrophe occurs when the
system runs out of swap space. In this case,
Solaris must start killing jobs to free swap
space. Since Solaris doesn't know which jobs
are the most important, it may easily kill your
mission-critical jobs.

If you've installed Solaris in the normal
way, the swap area shares a disk slice with
the /tmp file system. In this case, you don't
necessarily need any special code to check for
low swap space. Instead, you can simply use
the check for low free space on the /tmp file
system.

On the other hand, if you've separated the
swap space from the /tmp file system, you
need a different method of finding out how
much free swap space you have. In this case,
you can use the swap - l command to list the
swap areas, like this:

$ swap -l
swapfile dev swap lo blocks tree
/dev/dsk/c0t0d0s1 102, 1 8 131752 110784
/extra_swap 8 992 992
/extra_swap_2 8 1408 1408

As you can see here, this system has three
swap areas, with a total of 113,184 blocks free
(nearly 60MB). If you're going to write a script
to monitor your swap space, all you need to
do is add the amount of free space for all
swapping partitions and compare the result
to a threshold value to see if you're running
dangerously low.

You can pipe the output of swap - l to a
simple awk script to compute the total free
space. The awk script must simply add to
gether all the values in the fifth column for
all lines after the first. At the command line,
type the following command to get the
amount of free swap space:

$ swap -l l awk 'BEGIN {ttl:0} NR>1 {ttl+:$5}
• END {print t t l}'
113184

As you'd expect, we can place the amount
of free swap space in a shell variable by en
closing the preceding expression in grave

Ill October 1986

quotes and making the assignment, like this:

TEMP='swap -l l awk 'BEGIN {ttl=0}
•NR>1 {ttl+=S5} END {print ttl}''

How many processes are running?
Perhaps your system has a problem when
too many processes are executing at once.
If so, you may want to monitor the number
of processes executing at any given time.
Counting the number of active processes on
the system is easy. We use the ps -A com
mand to report all processes, one per line.
Then we use we - l to count the number of
lines, as follows:

ps -A l WC -l
44

So, to put the number of processes in a shell
variable, we can use this command:

TEMP='ps -A l wc -l'

Checking your system state
with a shell script
You can check for many other things,
but this is a good start for our system
monitoring script. Once we've obtained the
information we want, we use basically the
same structure to determine whether the
system is in trouble. We use an if statement
to see whether we've violated the limit. If
we have, we append a warning message to a
report file and set the STATUS variable to 1, as
shown in Listing A.

Listing A
if [${TEMP} -lt MIN_ROOT_SPC]; then

echo " Not enough!"

f i

cat <<- XYZZY >>S{REPORT}
Insufficient space on I

(${TEMP}< S{MIN_ROOT_SPC})

XYZZY
STATUS=1

We use this ISOL_Monitor structure throughout to warn
the user about potential problems.

The blue lines of code use a here document,
as described in the article "Automating Appli
cations that Accept User Input" in the June
issue. These lines add a failure warning record
to the file specified by REPORT.

Finally, after the script checks all param
eters, it decides whether to send E-mail and
page the system administrator. It then deletes
the temporary file it used to build the mail
message. (On an early version of the
ISOL_Monitor script, we inadvertently tested
it. We forgot to delete the temporary file, and
eventually the script told us that the /tmp file
system was too full!)

Listing B

#! /usr/bin/ksh
#------------------------------------
#Monitor system statistics. and warn
sysadmin(s) of any impending probs.
#------------------------------------

CONFIGURATION
MIN_ROOT_SPC=1000000
MIN_TEMP_SPC=2000000
MIN_SWAP_SPC:1000000
MAX_PROCS=3
SYSADMIN=marco
PATH=/usr/sbin : /usr/bin

#By default. we're not going to send a
page. or any E-Mail
STATUS:0
REPORT=/tmp/ISOL_Monitor_S{S}
rm ${REPORT}

Is there enough space on I?
TEMP='df -b I I awk 'NR==2 { print $2 }' '
echo ${TEMP} "blocks left on /"
if [${TEMP} -lt MIN_ROOT_SPC]; then

echo " Not enough!"

f i

cat <<- XYZZY >>S{REPORT}
Insufficient space on I

(${TEMP} < S{MIN_ROOT_SPC})

XYZZY
STATUS=1

Is there enough space on /tmp?
TEMP='df -b /tmp I awk 'NR==2 { print $2 }' '
echo ${TEMP} "blocks left on /tmp"
if [${TEMP} -lt MIN_TEMP_SPC]; then

echo " Not enough!"
cat <<- XYZZY >>S{REPORT}

Insufficient space on /tmp
(${TEMP}< S{MIN_TEMP_SPC})

if [${STATUS} -gt 0]; then
mail S{SYSADMIN} <S{REPORT}
cu pgr_S{SYSADMIN} >/dev/null

f i
rm ${REPORT}

Please note that for our purposes, we're
assuming you created a paging system named
pgr_SysAdmin, where SysAdmin is the user
name of your system administrator.

f i

XYZZY
STATUS=1

Is there enough swap space?
TEMP='swap -l I awk 'BEGIN { total=0 } NR>=2 { total += $5 }
•END { print total } ' '
echo ${TEMP} "blocks of swap space left"
if [${TEMP} -lt MIN_SWAP_SPC]; then

f i

echo " Not enough!"
cat <<- XYZZY >>S{REPORT}

Insufficient swap space
(${TEMP}< S{MIN_SWAP_SPC})

XYZZY
STATUS=1

#Are there too many processes running?
TEMP='ps -A I wc -l'
echo ${TEMP} "processes currently running"
if [${TEMP} -gt MAX_PROCS l; then

. f i

echo " Too many!"
cat <<- XYZZY >>S{REPORT}

Too many processes!
(${TEMP} > S{MAX_PROCS})

XYZZY
STATUS=1

If we've detected any bad problems.
#E-Mail the report to the sysadmin
#and then issue a page
if [${STATUS} -gt 0]; then

mail S{SYSADMIN} <S{REPORT}
cu pgr_S{SYSADMIN} >/dev/null

f i
rm ${REPORT}

The ISOL_Monitor script monitors your system and alerts you when a resource is critically low.

Inside Solal'is m

Listing B on the previous page, shows the
entire ISOL_Monitor script we created to moni

- tor the system and evaluate the results. The
configuration section at the beginning sets the
limits we're going to complain about if violated.

As you can see, we set obviously bad lim
its in order that you might see the script send
you E-mail and page you. Also note that you
need to change the SYSADMI N variable to your
username. Once you install the script on your
system, just tune these parameters to values
that suit your needs.

Miscellaneous
The article "Configuring Your Computer to
Page You," on page 1, shows how to set up
your computer so it can page you when the
ISOL_Monitor script detects a problem. You
will probably want to execute this script fre
quently. For information on setting the script
to run automatically, check out the article
"Scheduling a Job for Periodic Execution"
found on page 5". Finally, we rely heavily on
awk for making this script work, so you'll want
to refer to the man page on awk or read the ar-

HARDWARE CONF/6URAT/ON

tide "An Introduction to awk" in our May is
sue.)

Conclusion
The ISOL_Monitor script we presented here is
only a starting point on which you can build a
more sophisticated monitoring system. There
are many ways you can improve it. Here are
some suggestions:

1. Monitor the system for other potential
problems, such as missing processes.

2. Use cron to schedule the script for fre
quent execution.

3. For sites with multiple shifts, set the
SYSADMIN variable based on the time of day.

4. For sites with external access, monitor
hacking attempts. •!•

Marco C. Mason is a freelance computer
consultant and author based in Louisville,
Kentucky.

Enabling additional serial ports on
Solaris x86
You've just read the article "Configuring

Your Computer to Page You," on page 1
and you think it's a good idea. You even

have an old Hayes 1200-baud modem in the
closet you haven't used for years. "Hmmm,"
you think, "that would be cool!" So you dig
your modem out of the closet, plug it into
your Solaris x86 box, set up your /etc/uucp/
Systems file, and type

$ cu pgr0001
Connect failed: CAN'T ACCESS DEVICE

Hey! That's not the message you were
expecting. Why isn't your system paging you?
Usually, this message is telling you that
Solaris can't access your serial port. When you
first install Solaris x86, it tries to configure
ttyOO as connected to COMl so you can use
the mouse in Open Win and CDE. By default,

11 October 1998

any additional serial ports on your machine are
disabled. Since you're (presumably) still using
your mouse, you probably plugged your mo
dem in another COM port. We'll show you how
to configure Solaris x86 for additional serial ports.

The asy.cont file
In order to make Solaris recognize your hard
ware, you have to understand how the asyn
chronous port configuration file, named
asy .conf, works. This file contains a record for
each serial port you're trying to configure, and
it describes to Solaris x86 the hardware you
want it to recognize.

Please note: The driver asy assumes that
your hardware is a standard PC-compatible
serial port, i.e., one based on the 8250, 16450,
or 16550 UART. If you're trying to add a dif
ferent type of serial port, you'll need a soft
ware driver for it.

Now let's take a look at the format of the
asy.conf file. Figure A shows a typical entry for
a serial port. Note that it's a list of name=value
pairs terminated with a semicolon.

Figure A

name="asy" class="sysbus" interrupts=12,4
i..reg=0x3f8,0,0 ioaddr=0x3f8;

This asy.conf entry describes a serial port using IRQ 4
with 110 ports starting at Ox3f8.

The first field, name, tells which driver to
use for the serial port, as y in this case. Don't
change this! The second field, c lass, tells the
generic type of driver being used.

The i n terr up ts field describes the inter
rupts used for this port. This is always a pair
of numbers separated by a comma. You
should never change the first number. This
number tells Solaris what priority the inter
rupts are, between 1and16, where the lower
numbers are the higher priorities.

If you're configuring a high-speed port,
it may be tempting to increase the interrupt
priority (i.e., decrease the first number) to
ensure that you don't lose characters. How
ever, don't succumb to this temptation! If you
do, you may make your system unstable,
since more important interrupts may not get
serviced quickly enough.

The second number is the IRQ number
used by the port, a number from 0 to 15. If
you configure your machine like most stan
dard PC-compatible computers, your serial
ports are most likely set up as shown in
Figure B.

Figure B

Port IRQ 1/0 address
CO Ml 4 Ox3f8
COM2 3 Ox2f8
COM3 4 Ox3e8
COM4 3 Ox2e8

Most PC-compatible computers set up
their serial ports like this.

The reg parameter tells the asy driver the
address for the UART controlling the serial
port. The address is expressed as a set of
three numbers separated by commas, where
the first number, if non-zero, tells the driver
the serial port is connected to a set of I I 0
ports. If this value is non-zero, you should
use the I/ 0 base address. The second and
third numbers, if non-zero, tell as y the UART

is memory mapped. PC-compatible serial
ports are always mapped to 1/0 ports, so
you'll always use zero for the second two
numbers. Figure B shows the I/ 0 addresses
usually used for serial ports.

The final parameter, i oaddr, specifies the
base I/ 0 address for the serial port. This
value specifies the lowest I/ 0 port used by
the serial port. Again, Figure B contains the
information for the default PC-compatible
configuration.

Special note on interrupt sharing
While Figure B shows that four ports use only
two IRQs, you can't always count on it work
ing that way. Normal PC hardware can let
your serial ports share interrupts, but only if
they're on the same card, and sometimes, not
even then.

As an example, suppose your mother
board has two serial ports, and you have a
serial card that provides two more serial ports.
If you configure the motherboard ports as
COMl and COM2 and the serial card ports as
COM3 and COM4 using the PC-compatible
interrupts, you'll have a problem. In this case,
a better solution would be to configure the
motherboard ports as COMl and COM3 and
put COM2 and COM4 on the serial card.

However, even this may not work in some
situations. In this case, you must use other
IRQ channels for the ports that don't work.
For this case, you'll have to explore alternate
configurations.

Alternate configurations
What can you do if you need more than four
ports? What if your hardware won't support
IRQ sharing for your COM ports? And what if
you have an 1/0 conflict with another device?

In all these cases, you have to customize
your asy.conf file. To do so, you need to find a
suitable IRQ and I/ 0 base address for each of
your ports. As your first step, you need to find
out which IRQ ports are already in use, so you
can see which ones remain. Then you can de
cide which port will get which IRQ address.

Next, you need to map out which I/O ad
dresses are available to you. Keep in mind that
the UARTs found on a standard serial card
require eight consecutive 1/0 addresses, and
serial cards restrict the ranges you can choose.

Many serial cards are limited to their IRQ
selection. You may have to buy a "high IRQ"
serial card to access the IRQs you need. Once you
decide on your IRQ and I/0 base selection,
you can modify the asy.conf file accordingly.

Inside Solaris m __ ~

As an example, suppose you want to add
a fifth serial port to your computer, and you've
configured a COM port at I/0 address Ox190
with IRQ 11. You would then write your
asy .conf line as:

name="asy" class="sysbus" interrupts=12, 11
i..reg=0x190 ,0,0 ioaddr=0x190 ;

Ordering in the asy.canllile
In our discussions of ports and IRQs, we
called the ports by their traditional BIOS
names, like COMl, rather than Solaris' device
names, like ttyOO. Why did we do this?

It turns out that Solaris assigns t t y numbers
based on the order of entries in the asy .conf
file. The first entry specifies ttyOO, the next
specifies ttyOl, and so on. Thus, you can con
figure any tty port to be any COM port. This
is one reason you must be careful when recon
figuring serial ports.

Normally, the asy.conf file comes with
default definitions for the four standard PC
compatible COM ports, in order. If you start
your system and configure it with COMl and
COM4, all will be fine. COMl will be ttyOO and
COM4 will be ttyOl. If you go back and add
COM2 later, and you don't rearrange the en
tries, then COM2 becomes ttyOl, and COM4
becomes tty02 !

You should try to leave the first COM port
alone, if possible. Otherwise your mouse will
stop working in Open Win and CDE.

USING SHELLS .

Where's the asy.cantlile?
Before Solaris 2.5, the asy.conf file was located
in your /kernel/drv directory. Starting with
Solaris 2.5, Sun rearranged the file hierarchy
to allow simpler support of multiplatform
networks. Sun created the /platform directory
to support other platforms. Beneath this
they've added a subdirectory based on the
processor type, such as spare and i86pc. Be
neath this, it's business as usual, so the
asy.conf file for Solaris x86 v2.5 is located at
/platform/i86pc/kernel/drv.

Restart Solaris
Now all you need to do is restart Solaris, tell
ing it to reconfigure itself. To do so, execute
the following commands as s u:

$ touch /reconfigure
$ shutdown

When the system comes up, it will automati
cally configure itself with the new serial port
configuration.

Conclusion
Now you know the basics of setting up addi
tional serial ports for Solaris x86. If nothing
else, you now understand what's happening
in Solaris when you uncomment the asy.conf
line for a standard COM port. •:•

Creating your own shell commands
witl1 alias
Everyone has his or her own programming

preferences. UNIX accommodates you
by being incredibly flexible. You have

many ways of customizing UNIX to do what
you want, in the way you want to do it. Some
times, you only need to select the appropriate
command-line switches on a program that
already exists. Other times, you might refor
mat the output from a command using awK.
You can also combine many commands using
shell scripts. You can even create your own

m October 1998

commands with C or some other program
ming language.

In this article, we'll show you how to use
the a l i as command. The a l i as command isn't
as powerful as a shell script, but it's more flex
ible than using the command line.

How does the alias command work?
First, you should know that alias command
support isn't built into the Bourne shell.

However, full support exists in the Korn and
C shells. When you enter a command, these
shells first scan the list of aliases to see if the
first word in the command you entered is
listed. If so, the shell replaces the first word
with the aliased value. An alias lasts as long
as the current session, so if you want an
alias to be in effect every time you log into
your system, you'll need to edit your login
files accordingly.

The a l i as command allows you to define
a shorthand name for a command or a se
quence of commands. You use the a l i as com
mand like this

$ alias name=value

where name is the shorthand name and value is
what you want to replace it with.

Thus, you can use a l i as for tasks as simple
as renaming a command . For example, many
system administrators assist people moving
from DOS to UNIX by creating a couple of
aliases to make their environment more
familiar. These two aliases allow the user to
use the familiar di rand de l commands, as
shown here:

$ alias dir:ls
$ alias del=rm

In this case, the d i r command acts like di r
/w under DOS. In DOS, the di r command nor
mally acts more like ls - l. Thus, if we want to
make things a little nicer for the DOS users,
we could instead alias di r as

$ alias dir='ls -l'

This immediately suggests another use for
the a l i as command. If you often execute a
command with a particular set of arguments
and/ or options, you can simply create an alias
for it and save quite a bit of typing.

Advanced aliasing
As we mentioned earlier, before the C or
Korn shell executes a command line that you
enter, it scans the alias list for a match of the
first word and, if found, replaces the word
with the alias value. Since you can execute
multiple commands on a single command
line by separating them with a semicolon,
you can create an alias that executes a series
of commands.

Suppose that you always like to see the
amount of free space in a directory after the
directory listing. You can create an alias that
does so like this:

$ a l i as ls d =' ls; pwd; d f

This ls d alias first lists all the files in the
current directory, then it displays the current
directory, followed by the disk usage statistics
on the current file system.

$ l sd
Hello worK.c temp a.out
/export/home/marco/worK
/export/home (dev/dsK/c0t1d0s7):
-.450132 blocks 233114 free

Whenever you execute multiple com
mands in a single alias, you must be careful.
If any command other than the last one dis
plays data to the screen, then redirecting
your new command may produce surprising
results. For example, let's redirect your com
mand to a file, like this:

$ l sd >Xyzzy
Hello worK.c temp a.out
/export/home/marco/worK

As you can see, the first two commands
displayed to the screen, and only the last
command's output went to file xyzzy. Fortu
nately, there's a simple way around this.
Just enclose the commands in a parenthesis,
like this:

$ alias lsd='(ls;pwd;df .)'

This tells the shell to execute all the commands
in a single subshell. Then the I/ 0 redirection
will affect the subshell rather than the indi
vidual commands.

There's another way to build a command
from other commands. Using I/O redirection,
you can build a pipeline of commands, piping
the output of one command to the input of the
next to get a job done. For example, to find a
process started by a particular user or a pro
cess executing a particular command, we often
use the construct

$ ps -ef I grep word

lm~idP. lnla11i5t m ___ _

SunSoft Technical Support

(800) 786-7 638

f -· . ·.

SECOND CLASS MAIL
:'1: - ~----~

Please include account number from label with any correspondence.

where word is the user name or command
name of interest. The only part that changes
each time we use it is word. Thus, we can cre
ate an alias named f proc to help us find a par
ticular process, like this:

$ alias fproc='ps -ef I grep'

So, to find a process started by user marco, we
can now type

$ f proc marco
root 676 623 0 11:12:51 pts/5 0:00

•grep marco

Keep in mind that the alias is a simple
substitution. If you use alias to execute
multiple commands, you won't be able to
change the switches on any but the last com
mand. For example, if you create the di r
command as

$ alias dir='ls -l I more '

you can list the contents of the directory and
then page through the d irectory entries with
more. If you want to view all the entries
starting with a period (.),you'll need to
change your alias or enter the command line
with the new parameters. Simply typing di r
-a won't work, because the -a option affects
more, not ls.

Removing an alias
Sometimes, you want to keep an alias only
for the duration of a project. You don't want
to keep hundreds of aliases around. So
UNIX provides the u n a l i as command to
allow you to remove an alias from your
account. To use it, you simply type

$ unalias name

where name is the alias you want to remove.

---11 October 1996

What aliases are defined?
You might want to know which aliases you've
defined. You can find out by simply entering
the alias command with no arguments. This
tells a l i as to print a list of all the aliases cur
rently defined in the system.

Security implications
Now that you know how the alias and una l i as
commands work, you'll probably want to start
using them. However, you should be aware of
the security implications of alias. If you leave
your workstation unprotected, someone could
create an alias on your account that could sub
vert system security.

Let's take a closer look. It's hard to imag
ine a day where you don't execute the ls com
mand in the course of system administration.
Suppose a nefarious user wrote a simple script
named GetRoot that would create a root-level
account. That user may be waiting for you to
leave your seat to execute the command

$ a l i as l s = 'Get Root & ; l s '

Then the user simply clears your screen
and waits for you to return. Chances are that
you'll execute the ls command before you
leave for the day. So our nefarious user will
probably soon have a new root-level account
and can then build some backdoors into
your system.

Conclusion
You can use the a l i as command to make
things simpler for you and the people who use
your system. Not only can you customize
UNIX commands that already exist, but you
can put together simpler commands to build
commands that you find more useful. You'll
probably want to read the man pages for Ksh,
csh, and alias to find more information about
using a l i as. •!•

~-:"-

-r~ -9 Printed in the USA
a~ This journal is printecl on recyclable paper.

