
I

In this issue

1
Combining find and grep
to find any file anywhere
3
working with archives
5
How do you erase a file
so it can't be recovered?
7
Trimming your log files
8
Creating a backdoor
entrance to the root
account
10
String extraction in the
Korn shell
11
No matter how you
slice it ...
13
Documenting file system
mount points
14
Adding a tape drive to
your system
15
A shell function to read
a password

http:! lwww.cobb.com/ sun!

September 1996 • VOL. 2 NO. 9
us $11.50

Combining find and grep to find
any file anywhere
By Al Alexander

Have you ever needed to find a
file that contains a particular
string? It gets worse when you

don't even know exactly in which
directory your file resides. Recently, I
had to find a file among hundreds of
source files in a dozen directories. If
you've ever wondered whether you
can easily accomplish this under
Solaris, the answer to this question is
an emphatic "Yes, you can!"

This is the typical situation:
You've lost an important file in the
maze of files within your home
directory structure. You can't re
member the filename, but you do
remember some of the contents of
the file. Specifically, you remember
that the words "treasure map" are
somewhere inside that file. If only
you could find it!

Search files last with grep
As you probably know, the grep
utility will do a large part of this
job. You can tell grep to search a set
of files for a particular string that
matches a pattern. For example, if
we wanted to find all the scripts in
the /etc/rc2.d directory that execute
the n d d command, we'd use the
following commands:

$ cd /etc/rc2.d
$ grep ndd *
S69inet: set /dev/tcp
m.tcp_old_urp_interpretation
S69inet : set /dev/ip ip_forwarding
S69inet : set /dev/ip ip_forwarding 0

In this case,_we're lucky. The ndd
command is used only in the S69inet
script. If the ndd command was used
frequently in many files, the screen
would quickly become unreadable.

We're interested only in the
names of the files that contain the
string. Luckily, grep provides the
-l option, which tells grep to print
the filenames containing the string,
one per line. If you don't know
whether the string is capitalized or
not, you can also add the - i option
to let grep ignore case. Now, let's
find all the scripts in the /etc/rc2.d
directory that change the path.
We'll do so with these commands:

$ cd /etc/rc2.d
$ grep -i l path *
S47asppp
S72autoinstall
S88sendmai l

Using gr e p, our search for the
"treasure map" becomes simpler.
In each directory, all we need to do
is execute the command

gr e p - i l ' treasure map ' *

If only you could instruct gr e p
to search multiple directories. As it
turns out, you can. After you spec
ify the pattern, you can tell gr e p the
filenames that you want to search.
You can specify pathnames here to
instruct gr e p to search multiple
directories. For example, if you
want to find the names of all the

A Publication of The Cobb Group

SINSIDE
OLAR I

Inside Safaris (ISSN 1081-3314) is published monthly by
The Cobb Group.

Prices
U.S $115/yr ($11 .50 each)
Outside U.S $135/yr ($16.95 each)

Phone and Fax
US toll free (800) 223-8720
UK toll free (0800) 961897
Local (502) 493-3300
Customer Relations fax (502) 491-8050
Editorial Department fax (502) 491-4200
Editor-in-Chief (502) 493-3204

Address
Send your tips, special requests, and other correspondence to:

The Editor, Inside Safaris
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: inside_solaris@merlin.cobb.zd.com.

For subscriptions, fulfillment questions, and requests for group
subscriptions, address your letters to:

Customer Relations
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: cr@merlin.cobb.zd.com.

Staff
Editor-in-Chief Marco C. Mason
Contributing Editor Al Alexander
Production Artist Liz Palmer
Editors Linda Recktenwald

Karen S. Shields
Circulation Manager Mike Schroeder
Editorial Director Linda Baughman
VP/Publisher Lou Armstrong
President John Jenkins

Back Issues
To order back issues, call Customer Relations at (800) 223-8720.
Back issues cost $11 .50 each, $16.95 outside the US. We
accept MasterCard, Visa, or American Express, or we can bill you .

Advertising
For information about advertising in Cobb Group journals,
contact Tracee Bell Troutt at (800) 223-8720, ext. 430.

Postmaster
Second class postage paid in Louisville, KY.
Postmaster: Send address changes to :

Inside Safaris
P.O. Box 35160
Louisville, KY 40232

Copyright
© 1996, The Cobb Group. All rights reserved. Inside Safaris is
an independent publication of The Cobb Group. The Cobb
Group reserves the right, with respect to submissions, to revise,
republish, and authorize its readers to use the tips submitted
for personal and commercial use. Information furnished in this
newsletter is believed to be accurate and reliable; however,
no responsibility is assumed for inaccuracies or for the
information's use.

The Cobb Group and its logo are registered trademarks of Ziff
Davis Publishing Company. Inside Safaris is a trademark of Ziff
Davis Publishing Company. Sun, Sun Microsystems, the Sun
logo, SunSoft, the SunSoft logo, Solaris, SunOS, Sunlnstall,
OpenBoot, OpenWindows, DeskSet, ONG, and NFS are trade
marks or registered trademarks of Sun Microsystems, Inc. UNIX
and OPEN LOOK are registered trademarks of UNIX System
Laboratories, Inc. Other brand and product names are trade
marks or registered trademarks of their respective holders.

2 Inside Solaris

scripts that hold the string cat in
the /etc/rcO.d, /etc/rcl.d, and /etc/
rc2.d directories, you could type

grep -i l cat /etc/rc0 . d/• /etc/
•rc1 . d/• /etc/rc2.d/•

As you can see, this is an un
wieldy technique when you have
many directories and subdirecto
ries to specify.

Adding more power
with find
When you want to find a file but
don't know where it is, the find
command is the tool of choice. It
will search a directory tree for files
based on their names, ages, or
other attributes. It turns out that
f i n d offers a unique and under
used option called -exec that, in
combination with the grep com
mand, gives you all the power you
need to locate your file.

The -exec option of the find
command will tell f i n d to execute
a command on each file it finds.
Thus, we can use the f i n d com
mand to find all the files in the
directories we care about, then
instruct gr e p to search through
these files. If we want to search
every file on the hard disk for the
phrase "treasure map," we can do
so like this:

fin d I -type f -exec grep -li
•'treasure map' {} \;

The find command begins at the
root and finds all files that are files
(i.e., not directories, soft links, char
acter devices, etc.). Then, for each file
found, it executes the gr e p command
to search for the phrase "treasure
map." If the phrase is found, grep
prints the name of the file.

The unusual syntax after the
"treasure map" string is part of the
required syntax for the -exec op
tion. The escaped semicolon(\;)
signals the end of the -exec clause.
The curly braces are a placeholder
for each file that find is currently

considering. The brackets hold
each filename, one at a time, while
grep searches through that file. You
can then visualize the command as
running like this:

grep-il 'treasure map' file1
grep -i l 'treasure map' fi le2

grep-il 'treasure map' fileN

Given my notoriously bad
memory, I use this command often.
For instance, recently I was looking
for all of the files on my system
that contained the if con fig com
mand. I couldn't remember where I
had made some network modifi
cations, but I knew my changes
involved the i fconf i g (interface
configuration) command. All I
needed to type to find the list of
candidate files was

find I -type f -exec grep -i l
•ifconfig {} \;

Once I found the files containing
the i f con f i g command, finding the
correct one was simple.

Other -exec applications
In addition to searching for text
strings within files, the -exec op
tion opens up many other possibili
ties. Consider for a moment that
you can now run any Solaris com
mand on every file that matches
your search criteria, and you'll see
that you can come up with some
powerful combinations. For in
stance, if you're short on disk
space, how about compressing ev
ery file in the home directory that
hasn't been accessed in over 90
days. You can do so by typing

find /home -type f -atime +90 -exec
•compress {} \;

Another example might be
to find all of the core dumps on
the system and remove them
as follows:

find I -name core -exec rm {} \;

Or, if you're concerned about system secu
rity and setuid files owned by root, you can
generate a long listing of all of these files by
typing the following command:

find I -user root -perm -4000 -exec ls -ld {} \;

Of course, in addition to built-in Solaris
co-mmands, you can also run your own pro
grams after the -exec option, including shell
and Perl scripts. You'll probably want to read
the man page for f i n d to figure out other uses
for the -exec option. Combining multiple
search parameters and the -exec option gives
you a powerful tool for your toolbox.

TAR TIPS

Conclusion
We've shown how to combine the grep and find
commands with f i nd's -exec option to search for
text strings within files throughout directory
trees. This is a useful way to locate files when
you know part of the file contents, but not neces
sarily the filename.

More importantly, we've also shown you
other general applications of the --exec option
that provide extensibility to the f i n d com
mand. You now have the power to say "find
every file in the file system that matches my
search criteria and run my command on only
those files." This a powerful tool for all of
your file-oriented operations. •!•

Working with archives
I f you' re just starting with tar, reading the

man page gives you a good idea how it
works and how you can use it. However,

the man page doesn't describe some of the con
ventions that experienced system administra
tors use for their tar archives. In this article,
we'll show you two important rules that you
should use when you create archives with tar.

One archive, one directory
The most common mistake beginners make
with tar is to create an inconvenient archive.
Most tar archives, when you extract them,
create a directory with the same name as the
tar file, but without the .tar extension. All the
files are placed in this directory. This is the
expected behavior of a tar archive.

The most inconvenient type of tar archive
is one that doesn't create the subdirectory and
instead places all the files in your current di
rectory. This can fill a neatly crafted directory
tree with lots of undesired undergrowth.

For example, on many Solaris installa
tions, the home directories for new users are
often placed in a specific location, like /export/
home. Thus, your /export/home directory may
look something like this:

$ ls /export/home
marco linda-r liz
misc progs martha

al vi n
j e ff

linda-b bin
august amy

Suppose Liz decides to leave the com
pany. You might save everything in a tar
archive just in case someone needs a file that
Liz created. If you're inexperienced with tar
archives, you might create the tar archive
like this:

s cd /export/home/liz
$ tar cvf /archive/liz •
a letter.1 1K
a l e t t er . 2 4K
a letter.3 1K

data/ 0K
data/addresses 1K

Here, you're inside Liz's home directory,
and you're saving all the files in it to the file
/archive/liz. The problem comes into play when
you need to reinstate Liz's directory. You can
do so by typing

$ mkdir /export/home/liz
$ cd /export/home/liz
S tarxvfliz
tar: blocksize = 18
x letter. 1, 893 bytes, 2 tape blocks
x letter .2, 3584 bytes, 7 tape blocks
x letter.3, 219 bytes, 1 tape blocks
x data/, 0 bytes, 0 tape blocks
x data/addresses, 773 bytes, 3 tape blocks

However, experienced UNIX users ex
pect the tar file to contain a directory, with

September 1996 3

4 Inside Solaris

files and subdirectories beneath it. An expe
rienced UNIX system administrator who
wanted to restore Liz's directory would use
the following commands:

$ cd /export/home
$ tar xvf /archive/liz
tar: blocksize = 18
x letter.1, 893 bytes, 2 tape blocks

At this point, the system administrator
will start cursing, because the /export/home di
rectory is now being loaded with files and
subdirectories. You should create a tar archive
that other people may possibly use, like this:

$ cd /export/home
$ tar cvf /archive/liz liz

This way, when you expand the archive
in the expected way, tar will create a direc
tory named liz to hold all the files. None of
the files.in the archive will mix with files in
the current directory or in other directories.

This is important to system administrators
because you usually want to restore an archive
only for a short period of time. Once you're
finished with the data, you may want to re
move the data from your disk to save space.

When an archive drops files in your current
directory, removing them can be difficult if there
are already files in the current directory. And the
difficulty is compounded if there are multiple
subdirectories. How will the system administra
tor know which files to remove? Luckily, if this
happens, you can use a nifty trick to remove the
files: See the sidebar "Removing an Inconve
nient Archive" following this article.

Consistent naming
Another way you can avoid surprising be
havior is to give your tar file the same name as
the directory that you're copying. Thus, your
archive should be named liz if you're archiving
a directory named liz. This way, other system
administrators automatically know what
directory name tar will create when it extracts
the files from the archive.

Conclusion
Many people have to learn these conventions
the hard way. But you don't have to. If you
use these two simple rules for all your tar
archives, you'll make life simpler-both for
you and your successor. •:•

. . . .

What happens if you get an archive in
an inconvenient format that puts

files all over the current directory and cre
ates multiple subdirectories? It turns out
that you can use this easy trick to get rid
of all these files. Simply execute the com
mand line

$ tar tf filename. tar I xargs rm -Rf

where ti I ename. tar is the name of the ar
chive containing all the files and directories
you want to remove. This tells tar to print
the list of files and subdirectories found in
the file archive and send them to the x a r gs
command, which executes the rm -Rf com
mand for each name in the archive. This
way, if you accidentally get a tar archive
that dumps junk all over your file system,
you can quickly and easily remove it from
your hard drive.

The only disadvantage of this technique
is that filenames with strange characters in
them can cause problems. The typical ex
ample of a strange character in a filename is a
space. This causes the rm command to inter
pret the filename as two files. Thus, not only

will the file still exist after the operation, but
if you have a file with the same name as one
part of the filename, then rm will remove it.

As an example, let's assume that you have
a subdirectory named data, and your archive
file has a file named data files. After you use
this trick, you'll lose your data subdirectory,
and be left with the file data files.

If you' re going to use this trick and
would like to be careful, first execute the tar
t f t ii en ame. tar command by itself. You
can then examine the list of files and direc
tories for names that may cause problems. If
you find some, here's a simple workaround
to this problem. Type the command

tar tf U lename. tar > temp

Now you have a file named temp that contains
all the files. Delete any that contain spaces or
other problem characters. Then delete the
remaining files in the archive via the command

xargs rm -Rf <temp

You can now delete the remaining problem
files, as well as the temp file.

I
FREl}UENTL Y ASHED IJUESTION

How do you erase a file so it can't be recovered?
In a secure environment, it's often impor

tant to be able to erase a sensitive file with
out a trace. You don't want someone else

to view the contents of the file. How do you
erase this file so that it can't be recovered?

What does the rm command do?
When you use the rm command, Solaris simply
deletes the directory entry for the file. If it's
the last directory entry pointing to the file,
then it erases the inode for the file as well.
However, the data remains on your hard
drive. In this state, it's very difficult to recover
the data. Though difficult, it's not impossible
to read much of this information. (You may
want to read the article "Hard and Soft File
Links" in the July issue for more information
about how Solaris stores disk files.)

Destroy the data before you destroy
the file
If you want to erase a file so that there's no
chance of it being recovered by someone else,
you need to destroy its contents before releas
ing it. The simplest way to do this is to zero
the file before releasing it. You can do this
with the following command:

$ dd if=/dev/zero of=fileName count=fileSize
• bs=1

This tells Solaris to read ti I eS i ze bytes
from /dev/zero and write them to ti I eName. The
file /dev/zero is a special file that always re
turns zero for each byte read. Thus, this com
mand copies zeros on top of your sensitive
data, destroying it. Then you're free to rm the
file, knowing that the file can't be recovered.

When you use this technique, you must be
sure that someone else doesn't have a link to
the file. To do so, you should examine the out
put of ls to see how many other places the file
is referenced. Otherwise, you'll zero the file,
and the other references will now point to a
file containing only zeros. Similarly, you want
to be sure that you use the correct value for
ti leSize, or you may leave some of the confi
dential data intact.

In order to make things simpler, Figure A
shows a simple shell script that will do all the
work for you. It will warn you about requests

to wipe a directory or a file that's linked to
other locations. If the file passes these tests,
the wipefile script will destroy the data in the
file and unlink it from the directory.

Let's examine the highlighted lines to see
what the wipefile script does. The first three
blue lines of code find the size of the file in

Figure A

#! /bin/Ksh

usage()
{
echo "wipefile <filelisb - destroy the data in the"
echo "files <filelisb and then remove them."
echo "Note: Will not remove a directory."
echo "Note: Will not destroy/remove a file that has"
echo" additional linKs."
exit
}

#If invoKed with no arguments, show usage
if [$# -lt 1]; then usage; fi

#For each filename on the command line, wipe the file
for i in S•; do

#Fail if the specified file is a directory
if [-d Si]; then

echo "Si: directory: Not removed."
continue

f i

#Find# linKs to file, size of file
LINKS=' ls -al Si I awK '{print S2,"x",S5 }"
FILE_SIZE='expr S{LINKS#•x } I 512'
LINKS='expr ${LINKS% X•}'

#Warn user that the file has extra l inKs
if [SLINKS -gt 1]; then

echo "Si: additional linKs: Not removed."
continue

f i

#Fi le isn't a directory, or multiply-linKed,
#so destroy it.
echo "Si: Clearing & deleting file"
dd if=/dev/zero of=Si count="SFILE_SIZE"

•bs=512 >/dev/null 2>&1
rm Si

done

This script will destroy, then remove, a file so it cannot be recovered.

September 1996 5

Figure B

$ df
I
/usr
/proc
/dev/fd
/var
/export
I tmp
/cont

blocks (i.e., 512-byte increments) and the
number of links to it. We don't want to de
stroy a file that's in use in another location,
so if it has more than one link, we won't de
stroy the file.

The final blue lines do all the work. We
use the d d command to copy the /dev/zero file
on top of the file we want to destroy, then we
remove the file. The /dev/zero file is special: It
acts as if it were an infinitely long file contain
ing only zeros. Thus, when you read it, you'll
always get zeros and never encounter the end
of the file.

The d d command in the script reads
FILE_SIZE blocks from /dev/zero and writes
them to the file we want to destroy. We dis
card the standard output and standard error
output of the dd command, so it doesn't pol
lute the output of our script. After we've
overwritten the file, we remove it with the
rm command.

Other security hazards
Note that this script has a shortcoming. While
it does everything that it's programmed to, it
doesn't totally remove the risk that someone
else will be able to recover data from your
files. You must be aware that some text editors
and word processors leave backup files on
your system.

Even worse, many operations may create
temporary files that hold parts of your data
files. Thus, even when you use wipefile to de
stroy files, there's the chance that the partial
remains of your confidential files exist some
where on your disk drive.

When you allocate disk storage, Solaris
doesn't zero it. Thus, it's possible to write a
program that allocates disk storage and then
looks for "interesting" information inside it. If
you use the wipefile script, you'll lessen the
likelihood that nefarious users will be able to

(/dev/dsk/c0t0d0s0): 684710 blocks 199944 f i l es
(/dev/dsk/c0t0d0s6): 86664 blocks 94549 f i l es
(/proc): 0 blocks 447 f i l es
(f d): 0 blocks 0 f i l es
(/dev/dsk/c0t0d0s3): 145390 blocks 39150 f i l es
(/dev/dsk/c0t1d0s7): 737400 blocks 244401 f i l es
(swap): 122744 blocks 5704 f i l es
(/dev/dsk/c0t1d0s2): I 97243 blocks I 611 f i l es

The d f command can show you how many blocks are available on the
file systems holding your confidential data.

6 Inside Solaris

find your information. Keep in mind, how
ever, that some of your data may linger on the
swap area or on some unused disk area due to
updates or temporary files.

If you're particularly worried about secu
rity of your data, you may want to clear all the
unused space on your file system that contains
your sensitive files. You can do this by using
the mk f i le command to allocate all the free
space on the file system containing your sensi
tive files, then use the wipefile script to destroy
all the data on it.

For example, suppose your sensitive
files are on a separate file system mounted
at /conf. If you want to clear all the free
blocks, you can do so by first finding out
how much space is free on the file system, as
shown in Figure B.

In Figure B, you can see that the /conf file
system has 97243 blocks free. We'll tell mkf i le
to create a file 97243 blocks long named /conf/
filler, and then destroy it like this:

$ mkfi le -v 97243b /cont/tiller
/conf/f i l ler 49788416 bytes
/cont/filler: No space left on device
$./wipefile /cont/filler
/conf/fi ller: Clearing & deleting file

Note that this process can take a long
time, depending on the size of the /conf file
system. Since this process will take a long time
and involve a lot of disk I/0, you'll probably
want to schedule it when no one else is using
the system.

Better security
Since Solaris doesn't zero disk blocks when
they're allocated, it's possible for a clever
hacker to find your confidential data. You can
make it harder for a hacker to steal your data
by keeping all your confidential data on a
special disk partition and restricting access to
only those who need it.

You may also need to reconfigure the
tools that access the confidential data to pre
vent them from leaving data around in de
leted temporary files. However, some tools
may not allow you to specify where they
place temporary files, so you may have to
restrict access to those tools on your most
sensitive data.

The best method of security is to isolate the
entire machine from hackers. Place your ma
chine behind a good firewall and only allow
access to the users who work with the data. •:•

I
MANAGING DISK SPACE

Trimming your log tiles
Once yo~r Solaris system is stable and

workmg, you can almost ignore it.
However, if you ignore it completely,

you'll run into problems. You need to check
on your system periodically.

One thing that you really need to watch is
disk space. If you run out of disk space, your
system will fail. As Solaris runs, it logs vari
ous information for future use. Solaris stores
these log files in various directories in the /
var branch of your file system. The longer
your system runs, the bigger these log files get.

One pair of log files, wtmp and wtmpx,
keeps track of who has logged into the system
and for how long. If you need to see who has
logged into your computer over the past few
days, you can run the last command to find
out, as shown in Figure A.

However, Solaris never clears the wtmp
and wtmpx files. Thus, as the system runs, the
log files increase in size. Eventually you need
to clear them out to ensure that the system can
continue to operate.

If you just delete these files, the system
won't be able to perform any logging. The
login program expects these files to exist and
won't create them. In addition, the wtmp and
wtmpx files need to have a particular owner
and set of permissions or the login program
can't update them. This is why you can't just
rm the files and create new ones.

One way you might clear the log files is to
create a new empty file with the correct per
missions and owner. Then you could delete
wtmp and wtmpx, and then copy this file to
u:tmp and wtmpx. However, when you copy a
file on top of one that already exists, the
overwritten file keeps its permissions, owner,
and group. Thus, a simpler way to trim the
log files is to copy the /dev/null file on top of
the files you want to clear. The easiest way to
clear the wtmp and wtmpx log files is like this:

$ cp /dev/null /var/adm/wtmp
$ cp /dev/null /var/adm/wtmpx

When you do this, you erase all the log
information about the u sers who've logged
into your computer. Therefore, you must
first make sure that you don't need this in
formation or that you have a backup copy
somewhere.

Figure A
$ last
mar co console Wed Jul 31 13:23 st i l l logged in
mar co console Tue Jul 30 13: 13 - 13: 23 (1 +00: 10)
mar co console Tue Jul 30 13:07 - 13:12 (00:05)
reboot system boot Tue Jul 30 12:49
mar co console Tue Jul 30 11:52 - 12:47 (00:54)
reboot system boot Tue Ju l 30 11 : 51
mar co console Tue Ju l 30 11 : 14 - 11 : 1 5 (00:00)
root console Tue Jul 30 09 :45 - 11:14 (01 :29)
reboot system boot Tue Jul 30 09:32

wtmp begins Wed Jul 30 09:32
The last command shows you who has logged in to the computer and
for how long.

Not all log files require that the owner
and permissions remain the same. Some
programs, if you delete their log files, will
simply create new ones, but some won't.
However, if you clear your log files by
copying /dev/null over them, you won't
have to worry about which log files require
special treatment.

You should browse around the /var hier
archy to find other log files your system
uses. When you do so, you'll see that some
files grow faster than others. For example,
/var/adm/messages grows each time you boot
your system-this file keeps track of all the
messages your system displays while boot
ing. The aforementioned /var/adm/wtmp file
grows as people log in. And the more you
use scheduled jobs on your system, the
faster /var/cron/log grows. Once you're aware
of which log files are on your system and
what they log, you can decide how often to
clear them. •!•

We'd love to hear lrom you

If you've come across an interesting Solaris tip, have
questions about articles you've seen in Inside Solaris,

or have ideas for topics you'd like us to cover in future
issues, you can send mail to

Editor-in-Chief, Inside Solaris
The Cobb Group
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220

Or you can reach us via the Internet at
inside _solaris@merlin .cobb .zd.com.

September 1996 7

8 Inside Solaris

• I

SYSTEM ADMINISTRATION

Creating a backdoor entrance
to the root account
By Al Alexander

In this article, I want to explore an idea I've
seen implemented at several different sites.
The idea is to create a backdoor entrance to

the root account. You can use this backdoor in
the event of a severe system emergency that
otherwise would disable access to the root
account, such as a corrupt or missing pass
word file. You can also use it to give other us
ers root privilege so they can assist in your
administration duties.

While these may be highly desirable fea
tures, this procedure has the side effect of cre
ating a potentially serious security loophole.
Backdoor access to the root account can allow
savvy Solaris users to break into your system.
If you're connected to the Internet or other
WANs, you don't want to pursue this method.
In this article, we'll discuss the process re
quired to implement this solution, and we'll
also examine the pros and cons of the approach.

Discussion
I've seen two reasons why people are willing
to create such a dangerous security loophole.
First, they've been in a situation where they
couldn't log in as the root user and ran into
major problems. Perhaps they went on a long
vacation and forgot the password, or maybe
the password or shadow file became corrup~.
In either circumstance, normal root access via
a login or su process won't work properly: .

I've also seen sites where system admims
trators have created a backdoor program to
allow other users to assist in system manage
ment. For example, let's say you've created
the world's best printer management shell
program. Regardless of how good your shell
program is, the person using this program
must have root permission to be able to cancel
another person's print jobs. This situation or
dinarily presents a significant problem.

However, if you create a printer man
agement program named Pri nterMgmt. sh
and a backdoor program named RunAsRoot,
other users can help manage the printer
queues by typing

RunAsRoot PrinterMgmt.sh

Your RunAsRoot program can run any com
mand with the root user permissions. In this
case, the Pri nterMgmt. sh program is run with
the necessary root permissions.

While this approach can be very valuable,
the problem is that people can also type

RunAsRoot ksh

to run a Korn shell with root permissions! This
allows them to do anything they want as root.

Despite these significant security concerns,
many sites create this backdoor access because
for them the pros outweigh the cons. Maybe
they aren't attached to any external networks,
and they trust their employees beyond ques
tion. Or maybe they take the chance of creating
such a program and not telling anyone about it.
For instance, if such a program existed on your
machine, would you be able to find it? (If not,
don't worry, I didn't either for a long time; I'll
show you how to do it shortly.) If you do kn?w
how to find thi~ type of file, do you look for it
on a regular basis?

Implementation
Implementing this solution involves the
following steps:

1. Create a C program that executes
set u i d (0) and the desired program.

2. Set the SUID bit on the program.

I'll assume that you are already logged in
as the root user to implement this solution.
Specifically, you'll need to be logged in a.s ro.ot
to set the SUID bit on the program and give it
proper ownership.

Figure A shows a rudimentary C language
program that will execute programs as if they
were executed by the root user. Please note
that this program does no error-checking and
makes no attempt at disguising its purpose. It
simply invokes the set u i d (0) system call to
change your user ID to 0 (i.e., root), then runs
the program name that you type at the com
mand line, using the system() function call.
While you can make this program far more
elaborate, this is the minimum required. If this

file is named emergency.c, I would compile it
like this

cc -o emergency emergency.c

to create an executable program named
emergency.

The next step is necessary but often over
looked. You must set the SUID bit on the file
using the chmod command. This special setting
tells the operating system that it's okay to ex
ecute the set u i d () function call. In this case,
the proper command to issue is

chmod 4755 emergency

This command sets the permissions to 755
and also sets the SUID permissions bit. If you
look at this file with the ls - l command, you'll
see output similar to the following:

$ ls -l emergency
-rwsr-xr-x 1 root sys 6636 Jul 8
-.22:44 emergency

The s character (the fourth character in
the permissions column) indicates that the
SUID bit has been set on this file. Again, this
means that when a user runs this file, he or

Figure A

I• RunAsRoot.c •I

#include <stdio.h>
#include <string.h>
#define BUFFER_SIZE 8192
int main(int argc, char •argv[])

{
int
char

i;
command[BUFFER_SIZE+1];

setuid(0);

command[0]='\0';

for(i=1; i<argc; i++)
{
strcat(command,argv[i]);
strcat(command, " ");
}

exit(system(command));
}

This program can run a program specified on the
command line as root because it sets the user ID to root.

she will run this command with the effective
user ID of the root user .

. Now you've done all that is necessary to
open a backdoor to the root account. The final
step in the process involves trying to hide this
backdoor somewhere in your file system. Be
aware, however, that no matter where you
hide it, an intelligent user will be able to find
this backdoor program by issuing the follow
ing command:

find I -perm -4000 -print

You can read this command as: "Find all
files with the setuid bit set." The hyphen be
fore the 4000 tells f i n d to treat the Os as
wildcard characters, similar to the meaning of
the question mark in a filename specification.
Actual file permissions can be 4755, 4544, or
anything else beginning with a 4; that's all this
find command looks for, which is one of the
reasons this approach creates such a big secu
rity loophole. Any user who stumbles onto
this file can essentially gain access to the root
user permissions.

Making it more secure
If you're a good C language programmer, you
can come up with other programming meth
ods to prevent people from easily gaining
access to the root user's privileges. These
methods include embedding passwords into
the program and forcing the use of unad ver
tised command-line options, such as -r or -c
to actually run a command. If the user doesn't
include these options, you simply terminate
the program without running s e t u i d (0) .

In this scenario, if a user types

RunAsRoot Ksh

the program does nothing but return the user
to the prompt. However, if the user runs the
command as

RunAsRoot -r Ksh

the program succeeds and sets the user ID
to root.

Another way to improve the security of
this program is to modify it to allow the user
to run only certain programs. Thus, you
could make the program execute only your
Pri nterMgt. sh program, for example. However,
if you do so, keep in mind that users could

September 1996 9

supply their own shell scripts with the desired
name that does what they want to accomplish
as root. One way around this is to reset the
path in the RunAsRoot program to a known path
that users can't change. You could also specify
each program by its complete path.

These improvements won't make the
Ru nAsRoo t program totally secure. By its very
nature, it's an insecure program. However, in
a trusted environment, it can be a valuable
tool, because it can allow some people to per
form simple administrative tasks without
taking your time.

KORN SHELL SCRIPT TIP

Conclusion
If you are working in a trusted environment, this
method of creating backdoor access can pro
vide emergency access to the root account and
can let you have users run your other custom
programs (shell, C, Perl, or other) with root
permissions. There are certainly times when
having additional system administration assis
tance is helpful! •:•

Alvin J. Alexander is an independent consultant
specializing in UNIX and the Internet.

String extraction in 1he Korn shell
Wen writing shell scripts, you need a

large toolbox of tricks to help you
get jobs done. Sometimes, you have

to select the shell in which to write your
script based on the tools you have in each
shell's toolbox.

One task that you often need to do in a
shell script is to take apart a string. In this ar
ticle, we'll describe the Korn shell's pattern
matching operators and demonstrate how you
can use them in a script to break strings apart.

The pattern-matching operators
The Korn shell provides four pattern-matching
operators you can use to take apart string val
ues:%,%%,#, and##. You use all these opera
tors in the form

${ varXpa t tern}

where var is the variable name, Xis the opera
tor, and pat tern is the pattern to match. Table A
describes the meaning of the operators.

Now let's see these operators in use. The
following shell script, named banana, shows
how these operators will work in your scripts:

#! /bin/ksh

TEST=banana
echo TEST=STEST
echo \${TEST%n•}=${TEST%n•}
echo \${TEST%%n•}=${TEST%%n•}
echo \${TEST#•n}=${TEST#•n}
echo \${TEST##•n}:${TEST##•n}

Now run the script as follows. When
you do so, it demonstrates how easily you
can break a string apart with the pattern
matching operators.

$. /banana
TEST=banana
${TEST%n•}=bana
${TEST%%n•}=ba
${TEST#•n}=ana
${TEST##•n}=a

%
%%

Remove shortest pattern match from rightmost part of variable.

Remove longest pattern match from rightmost part of variable.
Remove shortest pattern match from leftmost part of variable.
Remove longest pattern match from leftmost part of variable.

You can use these four operators to disassemble shell variables in your shell scripts.

1 0 Inside Solaris

In our example, we use banana as the string
we want to take apart. By using the % operator
with the pattern n•, we get bana as a result. The
n * pattern matches the letter n followed by any
number of other characters. Since the % operator
takes the shortest possible match from the right
of the string, it removes the rightmost n with
any characters following it. The %% takes the
longest possible match, so it takes the leftmost n
with all the characters following it, so we get ba
as the result.

Specifying a pattern
You can specify _a pattern in the same way that
you do elsewhere in Solaris. You can use num
bers and letters to represent themselves,? to
represent any single character, and* to represent
any combination of zero or more characters.

Thus, if you want to specify a pattern for
the letter n followed by any character followed
by another n, you can use the pattern n ?n. Simi
larly, if you want to find any string that ends
with ing, you can use the pattern •ing. You can

I
DISK MANAGEMENT

find more information about specifying pat
terns in the man pages for grep and regex.

General usage
These operators are very handy when you're in
a situation where you need to remove a suffix
or prefix from a string. These situations appear
very often. You may, for example, want to
break a filename into a path and base filename.
To do so, you can get the path by removing all
the characters to the right of the last I, and you
can get the filename by removing the last I and
all characters preceding it, like this:

PATH=S{FNAME%/•}
NAME=S{FNAME##•/}

Conclusion
If you need the ability to remove a prefix
or suffix from a string, you may want to use
the Korn shell for your script. The pattern
matching operators provide a simple way to
break apart your strings. •!•

No matter how you slice it ...
One topic that Solaris users frequently

debate is the proper way to slice up a
hard drive. Some users prefer to care

fully slice their hard drive into many pieces to
allow detailed storage management. Other
users don't slice the hard drive at all. Many of
us take the middle ground.

None of these positions is wrong-each
allows you to select one set of tradeoffs. In this
article, we'll present some of the tradeoffs
you'll face when you slice your next hard drive,
so you can make the most suitable decision.

A single-slice system
A single-slice system contains a single file sys
tem on a single slice. This makes disk manage
ment simple, in that there's none to do. For
development systems, very simple systems,
or very lightly used systems, this isn't a bad
choice. It allows you to concentrate your ef
forts on other things.

You don't need to worry about rearrang
ing slices when part of your file system fills
up. Similarly, you don't have to worry about

where to install a new software package. You
simply determine whether you have enough
space and install it if you do.

The disadvantages of a single-slice system
are that you have limited control over the file
system. If you enable disk quotas, you enable
them for the entire file system. If you need to
run f s ck to check the file system, you'll need
to reboot your computer.

Few computers have only one slice. Many
have two, however, using one for swap space
and the other for everything else. Please note
that you'll have to start considering disk space
management once you add a second hard drive
to a system. Even though you don't have to
partition your drives into many pieces, you'll
still have to decide where to put the additional
storage in your file system hierarchy.

Multiple slices
Managing a system with multiple disk slices
is more difficult, but it offers more benefits.
Splitting a file system into multiple slices
gives you finer control over all aspects of disk

September 1996 11

management. For example, you can help pro
tect your mission-critical applications, add
disk quotas to some file systems, and simplify
backing up and restoring. Let's take a brief
look at some of the costs and benefits of using
multiple slices.

Mission-critical applications
If you have several mission-critical applications
running, you can put their data areas on their
own slices. Thus, if another job starts consum
ing prodigious amounts of storage on another
disk slice, it won't prevent the mission-critical
application from getting the disk space it needs.

You need to keep in mind that a mission
critical application may require space in other
file systems as well. If your application does so,
you need to be sure that no runaway applica
tions fill that file system. As an example, your
application may use temporary files at /tmp.
For the best protection of your mission-critical
applications, you may want to force your
mission-critical applications to put their
temporary files on their own file system.

Disk quotas
You can also ensure that users don't use too
much disk space by enforcing quotas on cer
tain file systems. This way, one user won't be
able to lock out other users by consuming all
available disk space. It also prevents problems
when a process goes awry and starts writing
vast streams of data to the disk.

Another way to manage disk space is to
put groups of users or departments on their
own slices. This technique doesn't even re
quire you to turn on the disk quota system.

Ease of backup
When your file systems are partitioned into
slices, you can simply back up only selected
parts of the file system at any given time. For
example, you could back up only your appli
cations file systems after each installation. You
could back up frequently changing or critical
data nightly, without consuming the addi
tional time or tape backing up your applica
tions would require.

Restoring a particular file is also easier,
since each backup set is smaller. Thus, if a user
loses a file, the time needed to find and restore
the file in your backup set will be shorter.

Read-only partitions
Another advantage of a multiple-slice system
is that you can mount some of the file systems
as read-only, allowing you to store applica-

12 Inside Solaris

tions where they won't accidentally be dam
aged. Mounting slices as read-only also pro
vides an impediment to hackers. Before they
can change any files on the specified file sys
tem, they must first get the root password so
they can unmount the partition and remount
it as read-write.

File system maintenance
Splitting a file system into multiple pieces al
lows you to perform some basic file system
maintenance functions without bringing down
the entire system. For example, you can run
f s ck on a single file system, other than root, by
simply unmounting it and running f sck.

Disk space management
One of the disadvantages of a multiple-slice
system is that occasionally a slice will fill up
and need to be expanded. You can do so in
several ways. One way is to back up the af
fected slice, repartition your drive, and then
restore the data.

You may be able to avoid the backup/
restore route. If you have disk space available,
you can create a new slice and mount it at a
temporary location, then copy all the data
from the old slice to the new slice. Then you
unmount the new file system from the tempo
rary mount point and the old file system from
its current mount point. Finally, you mount
the new file system at the old location.

Alternatively, you could simply move
some of the data by moving a directory to an
other slice. To do so, create the directory on
the new slice and copy the data to it. Then
delete the directory on the old slice, and create
a symbolic link to it to point to the new slice.
For example, suppose you want to move the
directory /abc/def to /xyz/def. To do so, you can
follow these steps:

$ cp -r /abc/def /xyz
$ rm -r /abc/def
$ ln -s /xyz/def /abc/ def

Here we're telling cp to recursively copy
the contents of the /abc/def directory to /xyz/def.
If you omit the - r, then c p won't copy any
subdirectories. The second step removes the
/abc/def directory and all its subdirectories. In
the third step, the l n command links the newly
created /xyz/def directory to /abc/def. This allows
your scripts and programs that expect to see
directory /abc/def to continue to work.

The biggest disadvantage to a multiple
slice system comes when you want to install a
substantial application that won't fit in any of

the file systems. It's especially annoying when
the aggregate free space on all your file systems
is more than adequate to hold the package.

How big should your slices be?
Deciding how big each of your disk slices
should be is a complicated issue. If you're just
setting up a machine, it can be harder still.
How many applications are you going to
install? How many users are there going to be?
How much space are they going to require?

Some slices are fairly easy to specify. The
root, for example, doesn't need to be very
large. You don't normally store much in the
root except subdirectories and mount points
for other file systems. Many people make their
root slice fairly small, such as SOMB.

The directories under /var typically hold
logging and transient data, so this slice doesn't
need to be very large. Please note, however, that
your log files tend to grow. (See the article
"Trimming Your Log Files" on page 7.) The
larger this partition is, the longer you can go
without purging your logging data. Many system
administrators make this partition small as well.

QUICK TIP

Finally, the /tmp file system is built in your
swap space. This means that you'll run out of
space in /tmp whenever processes require a lot of
memory or temporary file space. Thus, if you
expect your system to require X megabytes of
RAM and Y megabytes of temporary files, you'll
need to make your swap partition at least X + Y
megabytes. If you' re running mission-critical
applications on your computer, you need to be
especially careful with this swap /tmp dichot
omy. If your system runs out of swap space,
Solaris will start killing processes.

Computing the sizes of other slices isn't
quite so simple. You'll have to draw on your
experience, make some "back of the envelope"
calculations, and make some guesses as well.

Conclusion
For some file systems, it makes sense to use
just a single slice. Other systems have many
users, many drives, and many uses, so they
must be partitioned into many pieces. No
matter what your requirements are, think
about how much control you want to exert
over your system before slicing it. •!•

Documenting file system mount points
If you manage a system with many disk drives

and disk slices, you may find it a bit confus
ing to keep track of which file system

mounts where. Once you're experienced with
the system, it's not a big problem-you'll know
where to find each file system.

But what happens when you're sick or on
vacation? Or, if your system operates on mul
tiple shifts, how do you communicate mount
ing information between system administra
tors? Post-It™ notes, however useful, just
aren't reliable enough.

In this article, we'll describe a standard
method of documenting your file system mount
points. Then we'll show you a simple documen
tation method. Using this method, you can be
confident that all system administrators on all
shifts will know where to look and what to do.

Create a DiskLayoutlnlo file
One method you could use is to create a
DiskLayoutinfo file in each mount point directory
that describes which file systems you should

mount there and for what circumstances. How
ever, this method causes you to have lots of little
files scattered across many file systems. An addi
tional disadvantage is that when you mount a
file system at the mount point, you'll no longer
be able to see the DiskLayoutinfo file that de
scribes the file systems.

A better technique would be to create a
single file that holds all the information. You
can describe each file system, where it mounts,
and the circumstances for mounting and dis
mounting it. Then, if you desire, you can
link this file at each mount point of interest.
(You may want to do this so that when you
list a directory, you can tell if it's an unused
mount point by the presence of that file.)
Using a single file allows all the administra
tors to find and update the information
quickly and easily.

The /etc/vlstab file
Solaris provides the starting point for you: the
/etc/vfstab file. This file contains the defaults

September 1996 13

for various file systems. It tracks the default
mount points and mounting options of vari
ous file systems. If you have multiple file sys
tems that may mount at a particular location,
they work well in /etc/vfstab. However, a file
system that may mount at several locations
won't work as well.

This situation doesn't preclude you from
using the /etc/vfstab file for documenting your
system. Since /etc/vfstab, like most configura
tion files, allows you to add comments, you
may add as much additional information as
you want. For example, if you have a file sys
tem on which you store confidential informa
tion p'rior to running a particular job, you
could add an entry to /etc/vfstab like this:

LETTERS

#Confidential geological data. Mount to run
-.geosurvey and dismount afterwards!
/dev/dsk/c0t3d0s4 /dev/rdsk/c0t3d0s4 /conf /
•geodata ufs 2 yes

Here, we have a normal file system descrip
tion augmented with a comment that tells us
when to mount and dismount it.

Conclusion
A large system can quickly become difficult to
manage. By adding information to the /etc/vfstab
file inside comments, you can make managing
the system a little easier. Putting the documenta
tion here makes sense, since you need to be fa
miliar with the /etc/vfstab file anyway. •:•

Adding a tape drive to your system
I've recently added a SCSI tape drive to my

system (a Connor TSM4000R), but Solaris
doesn't seem to recognize it. How can I get the
system to use it?

Antonio Vaca
via the Internet

Most SCSI drives will work with Solaris
after they're configured. We'll first show you
how to reconfigure Solaris to recognize the
tape drive. After that, we'll .show you ~ quick
test you can use to see if your tape drive is
operating properly. This procedure assumes
that you've installed the tape drive correctly.

Telling Solaris to reconfigure itself
You can tell Solaris to reconfigure itself on
bootup via two methods. In the first method,
you simply restart your computer and tell it
to boot with the boot -r command. For you
Solaris x86 users, after you select the disk par
tition you want to boot from, the secondary
boot screen gives you a five-second window
to enter any boot options you want. You can
enter b - r here to tell Solaris to reconfigure
itself on bootup. In either case, booting with
the -r option tells Solaris to reconfigure itself
on bootup.

However, this method has a disadvantage:
If you miss your window of opportunity,

14 Inside Solaris

Solaris will boot up, and you must repeat the
process. If you're in an office where you're
easily distracted, this isn't the method you'll
want to use.

An even better way to tell Solaris to recon
figure itself is to create the file /reconfigure.
When Solaris recognizes this file, it automati
cally reconfigures itself. Once it's finished its
reconfiguration, Solaris removes this file. You
can easily create this file (when you have root
privileges) with the command

touch /reconfigure

If everything goes welt then you'll see a
new item in your /dev directory-the rmt subdi
rectory. The /dev/rmt directory contains multiple
entries; each is a different mode for accessing the
tape drive. The following is a directory listing of
/dev/rmt on one of our machines:

$ ls
0 0cb 0hb 0l b 0mb 0u
0b 0cbn 0hbn 0lbn 0mbn 0ub
0bn 0cn 0hn 0ln 0mn 0ubn
0c 0h 0l 0m 0n 0un

Each file's name depends on the tape
drive number, the storage density, whether to
use BSD behavior, and whether to rewind the
tape after use. The exception is file 0, which

simply accesses the tape drive with the default
density, mode, etc.

The first digit in these filenames specifies
the tape drive number. Therefore, all the files in
the preceding directory refer to the same tape
drive, drive 0. If there are any additional char
acters in the filename, the next letter specifies
the tape density using the letters I, m, h, u, or c.
These stand for low, medium, high, ultra, and
compressed. Please note that ultra and com
pressed are synonyms for the same density.
The appearance of ab means to access the tape
with BSD behavior. The final letter possibility is
n, which tells the tape drive not to rewind after
the operation is complete. Also note that if you
already have one tape drive on your system,
Solaris won't create the /dev/rmt directory
instead, it will simply create new entries, begin
ning with 1, for the new tape drive.

If the reconfiguration doesn't find your
tape drive, check to be sure that you've config
ured the tape drive correctly. Make certain you
have the SCSI ID set correctly, that your cables
are firmly seated, and that your SCSI bus is
terminated at each end, but nowhere else.

Using your tape drive
After establishing that your /dev/rmt directory
exists and contains the proper list of files,
you're ready to test your tape drive. To do so,
we'll save a copy of the /usr/bin directory to
tape. Then we'll read the directory to the
/export /tape _test directory.

Before we run our test, let's reset the ten
sion on our tape. (Please note that you'll occa
sionally want to reset the tension of your tape
during normal use as well. Read the manual
on your tapes and tape drive for further de
tails.) You can reset the tension on your tape
using the mt command as follows:

$ mt -f /dev/rmt/0 retension

The mt command allows you to give di
rect commands to your tape drive. In this
way, we specify the tape drive to use with the
-f /dev/rmt/0 option. Then we tell mt which
command we want the tape drive to ex
ecute-re tension, in this case. If everything
works well, your tape drive should fast
forward your tape to the end and then com
pletely rewind the tape. This may take a few
minutes, so be patient.

Once you've reset the tension on your
tape, it's time to write some files to tape. For
our test, we'll use the tar command. First, let's
save the /usr/bin directory to tape:

$ cd /usr/bin
$ tar cv *
a acctcom 52 tape blocks
a adb 229 tape blocks
a addbadsec 30 tape blocks
a addbib 17 tape blocks

When tar finishes, we'll create the /export/
tape_test directory and extract the archive from
the tape to our new directory. To do this, type
the following commands:

$ mkdir /export/tape_test
$ cd /export/tape_test
$ tar xv
x acctcom, 26580 bytes, 52 tape blocks
x adb, 117064 bytes, 229 tape blocks
x addbadsec, 15008 bytes, 30 tape blocks
x addbib, 8596 bytes, 17 tape blocks

If you've managed to get this far with no
trouble, congratulations! Your tape drive is
now ready for use. •!•

A shell function to read a password
The little shell script shown in Figure A on

the next page is based upon the tips you
described in the article "The Secret of Reading
Keyboard Input One Key at a Time" in the
July issue. In this case, I wanted to get a string
of characters, rather than a single character.
Also, I wanted to echo an asterisk (*) for each
character entered. I terminat~ the input on
receipt of a carriage return.

I encountered only two difficulties when
modifying your script to my needs. First, be-

cause I'm entering a string of characters in the
loop, I must disable character echoing before
entering the while loop. If I don't disable char
acter echoing, then a rapid string of characters
will sometimes echo their true value. I solved
this by moving the relevant code for storing
the tty settings, switching to no-echo and raw
mode, and resetting the t t y settings to within
the main program body.

The second problem was a little harder.
It took me a while to figure out how to get

September 1996 15

r

SunSoft Technical Support

(800) 786-7638

SECOND CL.ASS MAIL

Please include account number from label with any correspondence.

the case statement to compare userChar to
a carriage-return character. The first case

Figure A

#! /bin/ksh -f
#-----------------------
getpass - get a password from the user
#Shawn Clifford
#-----------------------

#Prepare the terminal settings
oldTtySettings="'stty -g"'
stty -echo raw

Prompt the user for the password
userPwd=""
echo "Enter your password: \c"

while true
do

Get the next key from the user
userChar=" 'dd bs=1 count:1 2> /dev /null'"
case SuserChar in

#We're done when user presses [Enter]
#NOTE: case pattern is AM
AM) break;;

#Process [Backspace] & [Del]
#NOTE: case pattern is AHIA?
AH I A ?) i f [-n s u s e r Pw d 1 ; t he n

userPwd=S{userPwd%?}
echo "AH AH\c" >&2

f i ; ;

Add any other key to the password
•) userPwd=SuserPwdSuserChar

echo "•\c" >&2;;
esac

done

restore the TTY settings
stty SoldTtySettings

print the password to the screen
print "\nPassword=[SuserPwd]"

This script file allows a user to enter a password without
leaving any trace on the screen.

16 Inside Solaris

statement below has an embedded carriage
return (AM).

In vi, you can embed a control character
while in input mode by typing [Ctrl]V fol
lowed by the control character to embed.
Therefore, [Ctrl]V[Ctrl]M will embed a car
riage return at the current location. [Note:
We printed all the cont-rol characters in blue in
the script.]

I hope this helps someone else.
Shawn Clifford
Miami, Florida

Thanks for the getpass script, Shawn. As
you can see, we modified your script a little.
Specifically, we added the case where we
handle the [Backspace] and [Delete] keys. To
do so, we first told the script that it had to
be run under the Korn shell. The reason we
did this is that we wanted the [Backspace]
and [Delete] keys to remove the last charac
ter entered.

We don't know of a way to remove a
single character from a string in a Bourne shell
script. In the Korn shell, however, there are
facilities that let you take a string apart. We
describe these fully in the article "String Ex
traction in the Korn Shell" on page 10. In this
specific case, the interesting line is this one:

userPwd=S{userPwd%?}

Here, we use the Korn shell's% pattern
matching operator. This operator removes a
string from the right of the specified variable.
Specifically, it removes the shortest string that
matches the ? pattern. Since the? pattern
matches any single character, this line tells the
Korn shell to remove the rightmost character
from userPwd.

Just as you mentioned, in vi you need to
precede any control character with [Ctrl]V
before entering it. This is how you get a con
trol character in your file. We used it to put
the [Backspace] and [Delete] keys (shown as
AH and A?) in the script. •!•

0-~
~i"\: \"\ Printed in the USA
\ .:::.........,~ ,~ ... ~7' Th' '\.._.!; _ 1s journal is printed on recyclable paper.

