
1

November 1997 • $11.50
Vol. 3 No. 11

Recording terminal sessions

3
Removing escape characters
from your text files

4
Whars the top priority on
your system?

8
Changing the root accounrs
shell

10
Sourcing files to change your
environment

11
A brief introduction to the
sed command

14
Using regular expressions
in Solaris

18
Using wild cards for file and
directory name completion

Vlsn our WBb sna at
http://www.cobb.com/sun/

~T~i'C~BB GROUP ~ \

OLAR IS™
-riJ?.~ & techniques for users of SunSof t Solaris

Recording terminal sessions
by Alvin J. Alexander

Over the years, I've found that
every good system adminis
trator with whom I've worked

keeps good notes when solving com
plex or unusual problems. Keeping
notes helps in Solaris, since it can
be a complicated operating system.
When a problem occurs infrequently,
you may find it difficult to remem
ber which solution fixed the prob
lem the last time.

If you keep good notes, you
needn't reinvent the wheel every
time a problem recurs. Maintaining
good records also makes training
an assistant that much easier, be
cause your assistant can see exactly
what you did to solve a particular
problem. Keeping good records can
mean more free time to work on
other problems.

Simplifying note taking
However, when you're solving a
problem, you're concentrating on
finding the solution-not documen
ting your path. In addition, solving
the problem, especially a compli
cated one, often takes more than
one attempt. Once you've solved
the problem, you may find it diffi
cult to remember the exact sequence
of steps you used. You' re often
forced to jot down notes on a scrap
of paper while you're working on
the problem

Also, taking notes while you're
solving a problem can divert your

attention from the problem itself,
causing you to make mistakes. It
would be much better if Solaris
could take your notes for you. Lucki
ly, Solaris provides a great tool to
help you out-the s c r i pt command.
Using the s c r i p t command, you can
record the exact commands you en
tered to fix a problem. Not only does
this command record everything
you type, it also records every re
sponse that Solaris makes. Once you
use the s c r i pt command to create a
detailed record of your actions, you
can annotate it and review it at any
time in the future to see the exact
steps that were necessary to solve
a problem.

Using the script command
The s c r i p t command is easy to use.
Here's a typical scenario: You're
working at your desk, and a prob
lem pops up. You wish you could
get someone to record the steps to
this solution. Then, an assistant can
take care of it if it recurs. But you
just don't have the time to write it
down. Fear not; here's where the
s c r i p t command comes in to do the
record-keeping for you.

For example, suppose you need
to use the Solaris format command
and you want to take notes. Before
issuing the format command, use
the s c r i p t command to record all
of your terminal input/ output. In
our example, we'll name our log
file /tmp/format_session:

Inside Solaris (ISSN 1081-3314) is published monthly by
The Cobb Group.

Prices
U.S $115/yr ($11 .50 each)
Outside U.S $135/yr ($16.95 each)

Phone and Fax

~:1~:: .. ~~~~.: : : ::: :: :: :::::::::::::: : :: : : : :::::: ::: ::::: :: :: :: : :: ::: . ;r~~H:~~m~
Customer Relations fax (502) 491-8050
Editorial Department fax (502) 491-4200
Editor-in-Chief (502) 493-3204

Address
Send your tips, special requests, and other correspondence to:

The Editor, Inside Solaris
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: inside_solaris@zd.com.

For subscriptions, fulfillment questions, and requests for group
subscriptions, address your letters to:

Customer Relations
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: cobb_customer_relations@zd.com

Staff
Editor-in-Chief Marco C. Mason
Contributing Editors Al Alexander
Production Artists Margueriete Winburn

. Natalie Strange
Editors Karen S. Shields

Joan McKim
Publications Coordinator Linda Recktenwald
Product Group Manager Michael Stephens
Circulation Manager Mike Schroeder
Managing Author Eddie Tolle
Publisher Mark Crane
President John A Jenkins

Back Issues
To order back issues, call Customer Relations at (800) 223-8720.
Back issues cost $11.50 each, $16.95 outside the US. We accept
MasterCard, Visa, or American Express, or we can bill you.

Postmaster
Periodicals postage paid in Louisville, KY and
additional mailing offices.
Postmaster: Send address changes to:

Inside Solaris
P.O. Box 35160
Louisville, KY 40232

Copyright
Copyright© 1997 The Cobb Group, a division of Ziff-Davis Inc.
The Cobb Group and The Cobb Group logo are trademarks of
Ziff-Davis Inc. All rights reserved. Reproduction in whole or in
part in any form or medium without express written permission
of Ziff-Davis is prohibited. The Cobb Group reserves the right,
with respect to submissions, to revise republish, and authorize
its readers to use the tips submitted for personal and commercial
use. Information furnished in this newsletter is believed to be
accurate and reliable; however, no responsibility is assumed for
inaccuracies or for the information's use.

The Cobb Group and its logo are registered trademarks of Ziff
Davis Inc. Inside Solaris is a trademark of Ziff-Davis Inc Sun
Sun Microsystems, the Sun logo, SunSoft, the SunSoft iogo,'
Solaris, SunOS, Sunlnstall, OpenBoot, OpenWindows, DeskSet,
ONC, and NFS are trademarks or reg istered trademarks of Sun
Microsystems, Inc. UNIX and OPEN LOOK are registered trade
marks of UNIX System Laboratories, Inc. Other brand and
product names are trademarks or registered trademarks of their
respective holders.

root:/home/al> script /tmp/
format_session
Script started, file is /tmp/
format_session

The s c r i p t command tells you that
it started and confirms the name of
the log file it will use. Please note
that if you don't specify a filename,
the s c r i pt command will create a
file named typescript in your cur
rent working directory.

Also, after you enter the s c r i pt
command, your shell may change.
When s c r i pt begins, it starts a new
shell of the type specified by your
SHELL environment variable. So if
you're in a different shell, be aware
that your environment can change.
In this example, we're using the
root account to run the format com
mand, since our day-to-day account
has insufficient permissions to ac
cess the raw disk devices. Because
we like the Korn shell, we usually
run Ks h after logging into the root
account. So when we run script,
we're already using the Korn shell
with the prompt root: /home/root>;
after running s c r i pt, the prompt
changes to the Bourne shell's famil
iar pound sign(#).

After issuing the script com
mand, we can now focus on solving
the problem at hand. To illustrate
the operation of the s c r i pt com
mand, we'll start the format com
mand and enter zero (O) to choose
the first disk. (Please note that if we
don't have superuser privileges, we
won't have the option of selecting
a disk.) Then, we'll type quit at the
main menu to return to the shell
prompt. Remember that at this
point, we're still in the environ
ment of the script command. Now
that we've finished, we exit the
s c r i p t subshell and return to the
previous command-line shell by
typing exit or pressing [Ctrl]D:

exit
Script is done, file is /tmp/
format_session

root:/home/al>

~---• November_1_8_87 _______ __.

As the subshell exits, the s c r i pt
command reminds us of the name
of the file we just created and ends,
returning us to our normal shell
command-line prompt.

Making your notes useful
Now that you have a copy of your
terminal session, you can clean it
up and insert any notes describing
special cases or the reasons that
you made certain decisions. To do
this, you can edit the /tmp/format_
session file.

But be forewarned: Because the
s c r i pt command records every
thing you type and everything
that's displayed onscreen, you'll
see things in the script output file
you may not have seen before, such
as backspaces, carriage returns, and
other control characters. For ex
ample, take a look at our sample
format session shown in Figure A.

See that section in blue? That's
where we accidentally mistyped
the format command, then cor
rected it-each "His a backspace
character. You'll also notice that
each line ends with a "M character:
These are the carriage returns that
you send to the computer when
ever you press the [Enter] key and
that Solaris sends back to you every
time it prints to the screen. Normally
you don't see these characters
they' re hidden from you-but they
do exist. Because they're sent to
your terminal, the s c r i p t command
also sends them to your session file.

Actually, in a typical script
session, the backspace and carriage
return characters are the least of
your worries. If you use any of the
screen-oriented utilities, such as
the vi editor, you'll really see some
strange characters in your output
file because these screen-oriented
commands send a lot of escape se
quences to your computer screen
to control your display. The s c r i pt
command saves each of these char
acters into your session file, which
can make editing your terminal ses
sion a bit tricky. For some tips on
cleaning up the text file before you

(continued on page 4)

Figure A

Script started on Tue Aug 19 08:14:42 1997
fo mraAH AHAH AHAH AH rmat"M
Searching for disks ... done"M
"M
c0t2d0: configured wi th capacity of 2.71GB"M
"M
"M
AVAILABLE DISK SELECTIONS:"M

0. c0t1d0 <DEFAULT cyl 2045 alt 2 hd 21 sec 99>"M
/pci@0,0/pci9004,7178@b/cmdk@1,0"M

1. c0t2d0 <SEAGATE-ST43400N-1028 cyl 2735 alt 1 hd
21 sec 99> "M

/pci@0,0/pci9004,7178@b/cmdk@2,0"M
Specify disk (enter its number): 0"M
selecting c0t1d0"M
[disk formatted]"M
Warning: Current Disk has mounted partitions."M
"M
"M
FORMAT MENU:"M

disk - select a disk"M
type - select (define) a disk type"M
partition - select (define) a partition table"M

current
format
fdisk
repair
label
analyze
defect
backup
verify
save
inquiry
vol name
!<cmd>
qui t"M

format> qui t "M
exit"M

- describe the current disk"M
- format and analyze the disk"M
- run the fdisk program"M
- repair a defective sector"M
- write label to the disk"M
- surface analysis"M
- defect list management"M
- search for backup labels"M
- read and display labels"M
- save new disk/partition definitions"M
- show vendor, product and revision"M
- set 8-character volume name"M
- execute <cmd>, then return"M

script done on Tue Aug 19 08:15:35 1997

"/tmp/format_session" 40 lines, 1367 characters "typescript"
12 lines, 462 characters

Now we can use an editor, such as vi, to edit our captured terminal session.

Removing escape characters from your text files
So you have an ASCII file that you want to edit.

But what if it contains so many control characters
that you find difficult to read what's going on? Figure
A shows a section of a vi session as captured by the
script command.

Before you begin editing the file, you might want
to clean it up. Solaris provides a tool, the col command,
that will remove many of the extraneous characters
from a file. You simply pipe the resulting file through
the col command. This command is intended as a
print filter to strip out basic formatting codes from a
stream, so you can print the stream on a printer that
doesn't accept all the formatting codes.

The col command doesn't understand all the
possible escape sequences, so you'll see some unwanted
characters leaking through. Use the -b switch to remove
all backspace characters and partially repair the line.
Please note that if you backspace over characters and

Ruure A
-rw-r--r-- other"[[10C0 Aug 19 09:04 test"M

replace them with white space, the old characters
show through. For example, we'll type 10 underscores
here, then 10 backspaces. On the screen, we've erased
the line. As far as the col command is conceived,
though, we're at the start of 10 underscores.
#script test
Sc r i pt started, f i le i s test
"H"H"H"H"H"H"H"H"H"H a b c d e f g h
sh: a: not found
#exit
Script done, file is test
col -b <test
Script started on Tue Aug 19 08:39:22 1997
a_b_c_d_e_f g h
sh: a: not found
#exit
script done on Tue Aug 19 08:39:41 1997

Now, when we type the letters a through h sepa
rated by spaces, the col command replaces the previ
ous characters (underscores, in this case) with the

letters you type. How
ever, if you type white

-rw-r--r--
root
mar co
root

source 48825 Aug 16 00:33 trsf8001.zip"M
spaces, such as a space
or tab, the original
characters remain.

-rw-r--r-- other"[[8C277 Aug 19 08:34 typescript"M

"W
"H-"[[H"[[49B"test" 20 lines, 1227 characters"[[H
"[[M"[[44B-"[[K"[[5;1H"[[M"[[44B-"[[5;1H"[[M"[[44B-"[[5;1H-rw-r"[[P"[[P"[[P-"[[P "[[P "[[P"H"H"H"H"[[A"[[Arwxr-x

"M"[[45B:wq"M"test" 17 lines, 1030 characters "WM
Sometimes an ASCII file can be almost unreadable because of the escape characters found in the file.

http:/!www.cobb.com/sun/

While the col com
mand is a useful tool
for cleaning up extra
neous characters in
your ASCII files, it's
definitely not perfect.

Inside Bo/arts

begin editing and annotating it, read the side
bar "Removing Escape Characters from Your
Text Files" on page 3.

Whether or not you strip the file of its ex
tended ASCII characters depends on the prob
lem you're trying to solve. If you're debugging
an application that's trying to manipulate the
screen, you may need to keep these extended
ASCII characters so you can see them. How
ever, in our example case, where we're simply
trying to record the dialog with Solaris' format
command, we'd strip all the extended ASCII
characters out of the file before viewing it.

After the rough-cleaning, you can trim the
log file to remove any dead-ends you might
have encountered while trying to solve the
problem and describe what you were trying to
do in some annotations. Be sure to document
any assumptions you made about your envi
ronment while working, since these may change
in the future, and you may need to change
things the next time you solve the problem.

Other uses lor the script command
Other than simply documenting your tracks,
s c r i pt command offers some additional uses
as well. For example, if you want to write a

shell script to perform a particular job, you
can often start by doing the job manually and
edit your terminal session to make a rudimen
tary shell script. Then, add error checking and
other features as you require them.

To illustrate further, I once used the script
command for a different purpose: As the ad
ministrator of a large network, I had a security
concern with a network user. I discussed the
problem with management, and after diplo
matic discussions with the user failed, man
agement and I decided to insert the s c r i pt
command, with a few modifications, into that
user's startup files. We recorded the user's
sessions for a few days until the problem was
resolved.

Conclusion
As you can see from this article, you can
use the Solaris s c r i pt command as a terrific
session-recording tool to keep better notes for
solving problems. Keeping great notes will
help you to solve recurring problems more
easily and will also help you train assistants,
who can see the exact steps you've followed
to solve many of your system-administration
problems. •!•

Whats 1he top priority on your system?

When your system is running slowly,
you must find out why so you can fix
the problem. Your first step might be

to use the p s command to discover which pro
cesses are actually running on the system and
to follow it up with the s a r command. With
some practice, you can use s a r to recognize
when a problem is getting ready to occur and
identify it. However, sar's output can be a bit
difficult to interpret. In addition, s a r shows
only a summary of your system's activity; it
doesn't show you which process is using the
resources.

Using the top command
Fortunately, a third-party utility, named top,
can help you get more information about your
system. The top utility shows you which pro
cesses on your system are consuming the

.___ ___ R November 1991

most CPU time and how much RAM they're
taking. (In the case of a tie in CPU usage, the
utility sorts the processes by RAM usage.) The
output of the top command is arranged in an
easy-to-read format, as shown in Figure A.

The top command, when run on an intelli
gent terminal, will run continuously, showing
you a summary of the system's performance
at the upper part of the screen and a sorted
list of the top CPU consumers at the bottom.
As the system operates, you'll see processes
moving up and down, and appearing and dis
appearing on this display. The screen update
interval defaults to five-second increments,
though you can override the default to use
any value you like.

Here, you can see that the process con
suming the most RAM is the g z i p command
run by the root account. Also, the bottom four

CPU users on our list are consuming no CPU
time. Since the bottom processes use the same
amount of CPU time (i.e., 0), they're sorted by
RAM usage.

The screen is updated every five seconds
(by default) to show you a new picture of
what has happened over the last five seconds.
If you want to select a different number of
processes, just specify the number on the com
mand line. If you'd like a different update
rate, you can specify the new rate with the -s
switch. So, if you want to watch the top five
processes at one-minute intervals, you can
run the command

top -s 60 5

Caveats
Please note that any system-monitoring tool
affects the system you' re running it on, so you
don't want to run top all the time on a heavily
loaded system. It'll just slow everything down.
Figure A shows that the top program is con
suming six percent of the CPU while it's run
ning. On a lightly loaded system, that won't
matter so much, but you shouldn't run pro
grams if you're not going to use the informa
tion they produce. Run top only when you
need it.

lime to use top
So when do you want to run top? Since top
displays information about the CPU and RAM
requirements, you'll probably want to run top
whenever you suspect there's a CPU or RAM
shortage and you want to find the culprit. If
you notice that the system's performance is
lower than normal, you might want to use the

Figure A

uptime command to find out what the current
system load is, like this:

uptime
9:54am up 17 day(s), 8 min(s), 5 users,

load average: 0.34, 0.13, 0.07

The up t i me command shows you the load
average for the previous one, five, and 15 min
utes. The load average is simply the average
number of processes waiting to be run over the
sampling period. In the last minute, during
roughly one-third of the time when one pro
cess was running, another was waiting to run.
Thus, the higher the number, the more heavily
your system is loaded.

Different systems can handle different loads
before the system gives an unacceptable re
sponse. A large factor in determining an accept
able load is user-perception: Does the system
feel too slow? What one person may accept as
merely adequate performance, another may be
very pleased with. In general, if your system
load is continually higher than two or three,
your system probably needs some tuning.

If your system has a light load and plenty
of idle time, top probably won't tell you any
thing you can use. If the system is performing
poorly in this situation, then your system is
most likely I/ 0 bound, and you'll want to use
s a r, vms tat, or i os tat to find the problem. (Of
course, there are exceptions to every rule. If one
of your processes has a huge memory demand
and is randomly accessing parts of its memory,
this situation can force the system to thrash,
causing lots of I/0 to the swap surface. If you
suspect this is the case, top may be able to help
locate the culprit-you'd look at the RAM col
umn, rather than the CPU column.)

last pid: 2722; load averages: 1.10, 0.97, 0.79 07:32:22
67 processes: 64 sleeping, 1 running, 1 zombie, 1 on cpu
CPU states: 0.0% idle, 89.6% user, 10.4% Kernel, 0.0% iowait, 0.0% swap
Memory: 41M real, 1276K free, 35M swap, 61M free swap

PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
2722 root -25 0 1000K 764K run 6:17 93.06% 92.81% gzip
2653 root -25 0 1216K 1008K cpu 1: 21 6.09% 6. 12% top

554 root 31 0 1412K 776K sleep 0:04 0.02% 0.19% nmbd
320 marco 24 0 4964K 1056K sleep 0: 13 0.06% 0.09% dtterm
254 root 34 e 12M 1136K sleep 1 :46 0.07% 0.07% Xsun
204 root 33 e 732K 412K sleep 0:00 0.01% 0.01% utmpd
352 marco 23 €l 6432K 956K sleep 1 :34 0.00% 0 . 00% d t f i l e
319 marco 34 0 5752K 1160K sleep 0: 15 0.00% 0.00% dtwm
88 root 34 0 1120K 388K sleep 0: 15 0.00% 0.00% cryptorand

1068 root 33 0 1044K 872K sleep 0: 11 0.00% 0.00% bash
The top utility shows the processes consuming the most CPU time on your machine, in descending order.

http://www.cobb.com/1unl lnslds Balar/1

What to do with the information
Once you run top and find out which jobs are
consuming all the CPU, you need to decide
what to do about it. For a system with a light
load and plenty of idle time, there's really
nothing you can do. In general, stopping or
killing processes won't accomplish much for a
lightly loaded system, unless you stop a pro
cess that's thrashing the system.

On the other hand, if you have a couple of
large CPU-hungry applications contending for
CPU, you might want to lower their priority
so that other jobs can get more CPU time. An
other option is to stop some of the CPU hogs,
restarting them when some of the ones you left
running finally complete. This step will help
give your system a boost.

Every now and then, you'll find that some
one started a job, forgot about it, and started it
again. In this case, you can probably kill all
but one of the jobs, but be sure to ask the user
which one(s) he wants to keep (in case the jobs
were started with different parameters). If
your user has no preference, you should prob
ably kill the jobs with the least accumulated
CPU time, as they're probably further from
being finished.

Where to get top
Now that we've whetted your appetite, let's
see where you can get a copy of top for your
system. First, do you want top in executable
or source-code form? If you elect to get a pre
compiled copy, you must be satisfied with
the options selected by the person who com
piled it.

One of the best places to get precompiled
versions is the Solaris 2.5 freeware site at http://
www.sunsite.univalle.edu.co/Solaris/Solaris_2.E_
nof.html. Here, you can find packaged versions
that are ready for installation. Just download,
install, and use. The site also has a convenient
link to a page for Solaris x86 users. Another
site you might want to investigate is http://
www.sunsite.unc.edu/pub/solaris/freeware. This
site contains a source-code archive, as well as
compiled versions of various programs for
x86, SP ARC, UltraSP ARC, and a new directory
for Solaris 2.6 versions. (However, it doesn't
yet include a version of top for Solaris 2.6.)

If you get the source code, you must com
pile it, which requires that you have a C com
piler on your system. (If you don't have a C
compiler, you may as well get a copy of gee
while you're on the Internet.) On the plus side,

_____ II November 1997

you have the opportunity to select the con
figuration options you want to use when you
build your own copy.

Building top
If you've gotten top as source code from the
Internet, you'll have to compile it. Luckily, top
is pretty easy to compile and install. We down
loaded the source code to top v3.4 and followed
the instructions in the INSTALL file. Specifi
cally, you must run the Configure script, which
sets up the file Makefile. (This file tells the
compiler how to build top.)

The Configure script will ask you some
questions. For the most part, you can accept
the default responses given in brackets. We'll
walk through the Configure question-and
answer session, but we'll trim most of the
output of Configure to keep it short. First:

What module is appropriate for this machine?

You should answer with sunos54 if you're
running Solaris 2.4 through 2.5.1, or sunos5 if
you' re running an older version of Solaris.
Configure asks if you're sure that this is the
right module. Just press [Enter].

Next, it will ask you for the path to the
Bourne shell and the name of your A WK in
terpreter. Go ahead and accept the defaults for
these. Then, Configure asks for the name of
your C compiler. If you're using Sun's C com
piler, you can accept the default value of cc,
though gee users will want to specify gee.

At this point, the Configure script will ask
several other questions, to which you can ac
cept the default:

Installer [./install]:
Comp i le r options [-0]:
LoadMax [5.0]:

Configure will also ask you how many pro
cesses you want to show on the screen by de
fault. Normally, Configure will use 15, but
you can select any value you like. Here, we're
telling it to use 10:

Def au l t TOPN [15 1 : 10

Configure then asks you how many pro
cesses to display when the output is a dumb
terminal. We'll use 10 here, too:

Nominal TOPN [181: 10

Next, we can choose the time interval be
tween displays. The default is five seconds. If
you choose a shorter time period, top will con
sume more of your CPU, while a longer time
period will decrease t op' s demands accord
ingly. (If you intend to run top continuously
as a status display, even though we don't rec
ommend it, you should use a relatively long
time period, such as one or five minutes.)

Default Delay [5]:

Since we're running Solaris, the Configure
script then remarks:

It looks like you have conventional passwd
file access. Top can take advantage of a
random access passwd mechanism if such exists.
Do you want top to assume that accesses to the
file /etc/passwd are done with random access
rather than sequential? [no]:

Now comes the interesting part. Config
ure compiles a prime number generator so it
can generate the size of an internal hash table.
It does so to make access to the user name as
fast as possible. In order to minimize the RAM
requirements, the Configure script defaults to
selecting the first prime number that's at least
twice as large as the number of users in your
password file.

You can accept this value, but if you're
compiling it on a test machine and you intend
to use it on a machine with a lot more users
on it, you'd be better off choosing a prime
number based on the size of the /etc/password
file on the machine that has the most users.
Here, it suggests a hash-table size of 29, but
since our destination machine has 60 users,
we'll use 127 as our hash-table size:

Enter the hash table size (29]: 127

Next, Configure wants to know whether it
may install the top program as an SU ID pro
gram with root privileges. Generally, using
SU ID programs is a security risk, so be sure to
install top in a location where only the root
account has access to it and take the standard
precautions you would with any SUID pro
gram. We just accept the defaults for the
owner, group, and mode:

Own e r [r o o t l :
Group owner [bin]:
Mode [4 711] :

http://www.cobb.com/sunl

For our installation, we'll be a little pickier
when we specify the location to install the
program:

Install the executable in this directory
[/usr/local/binl: /usr/bin

You can now accept the default values for
the rest of the Configure script:

Install the manual page in this directory [/usr/man/manl]:
Install the manual page with this extension [ll:
Inst a l l the man u a l page as 'man ' or ' cat man '
[man l:

When Configure is finished, it builds the
appropriate Makefile and tells you how to
create and ins tall t op:

To create the executable, type "make".
To install the executable, type "make install".

So, run make, then make install, and you'll
have a copy of top installed on your system.

Installing a precompiled version
If you download a copy of top from the Inter
net, please be sure you trust the source. Since
top is normally an SUID program on Solaris
machines, it's a potential security hole. A ma
licious source could create a version that will
erase files on your machine or grant surrepti
tious access to your machine.

Since top can be built and packaged in
multiple ways, we can't give explicit instruc
tions for installation here. Be sure you read
the installation instructions and/ or the script
before you install t op on your machine from
another source.

Summary
System monitoring is one of the hardest sys
tem administration skills to learn, since there
are so many interrelated factors involved.
However, before you can learn to tune a sys
tem effectively, you need to find out just what
the system is doing at any given time. The top
utility is a great tool that you should get and
use-it'll give you some insight as to what's
happening in your computer. •!•

If you have any ideas for an article, any concerns to
discuss, or any tips and and techniques you'd like
to share, please e-mail us at inside_solaris@zd.com.

"""'' Bolarls

Changing the root account's shell
No matter what your favorite shell is, you

should never change the root account's
starting shell. If you do, your system

probably won't boot properly. Why? When
you start your system, it executes a series of
Bourne-shell scripts that initialize all the sub
systems. Since your system uses the root ac
count to do so, if you change the root account's
shell, the new shell may have a slightly or
radically different interpretation of the script.

However, other shells are more powerful
and easier to use than the Bourne shell, so few
people still use it for anything other than writ
ing shell scripts. But how do you use another
shell for system administration? In this article,
we'll show you a simple modification to your
.profile file that will allow you to automatically
start a new shell.

Manually start a new shell
Obviously, one way to use a new shell on the
root account entails manually invoking the de
sired shell each time you log in. For example,
to use the C shell, your login session would
look like this:

UNIX(r) System V Release 4.0 (Pinky)

login: root
Las t login: Tue Aug 19 07:21:43 on pts/2
Sun Microsystems Inc. SunOS 5.5 Generic
November 1995
csh
Pinky#_

The problem with this approach is that
now you've got two processes in memory: the
original Bourne shell you used to log into the
system and the C shell. You can save RAM
and dispense with a process by replacing your
Bourne shell with the C shell. You do so by
starting the C shell with the exec command.
This way, when you've finished with your
shell, you needn't log out twice:

Pin ky# exit
exit

An automated approach
What you really want, however, is for the ac
count to automatically invoke the desired shell
when you log in. Therefore, you require a

____ g Nov•_be_r_1_ee_1 ______ ___.

method that will differentiate between when
the root account is starting up the system and
when it's running normally. You meet these
needs by recognizing that Solaris performs the
system startup tasks in run-levels 1 and 2, while
interactive use is available at run-level 3. Thus,
adding a bit of code in your .profile file to check
the run-level and invoke the correct shell
comes close to giving you what you want:

RUNLEVEL='/usr/bin/who -r I awk '{ print S3 }''
if [3 = SRUNLEVEL]
then

exec /bin/csh
f i

Here, we use the who command to report
the current run-level, select the third column
(the value we want) with awK, and assign the
resulting value to the RUNLEVEL variable. Then
we test RUNLEVEL to see whether it holds a 3. If
so, we go ahead and exec the C shell.

If you want to use only the C shell, then
that's all you'll need to successfully start the
shell. However, for users of other shells, such
as the Korn and Bash shells, this method
doesn't quite work. Since both the Korn and
Bash shells may also read the .profile file for
startup commands, your account can freeze as
each shell comes up and loads another copy of
the shell infinitely.

In this case, you must know whether or
not the shell is the login shell. To allow you to
detect the login shell, when the in it process
starts your program, it prepends the shell's
name with a hyphen and passes that name to
your shell as its first argument. Thus, if your
startup shell is the Bourne shell, the first argu
ment would be -sh. In this case, you simply
check for the hyphen at the beginning of your
shell's name. This gives the final piece of the
puzzle. You can use the code snippet shown in
Listing A to start the shell you want when you
log in.

Login customization
This technique has a minor shortcoming: Once
you use the exec command to start a new shell,
it's no longer recognized as your login shell.
Normally, this quirk won't cause a problem,
except when you perform a specific procedure
at login time to customize your environment.

For example, if you use the C shell and
normally use the .login file to customize your
environment, you'll be disappointed that it
won't use the .login file to read your customiza
tions. (This isn't, after all, a login shell.) Of
course, you could work around this by explic
itly sourcing your .login file like this:

Devo% source . login

However, since you're trying to automate
the process, a better workaround is to give an
explicit parameter to the C shell when you
exec it. Then, your . cshrc file can check

Listing A: A fragment of .profile

Is this a login shell?
case $0 in

#Yes, it starts with a hyphen ...
-·)

#Are we at the right run-level?
RUNLEVEL='/usr/bin/who -r \

awk ' { pr i n t $3 } ' '
if I 3 = SRUNLEVELJ
then

f i

#Yes, start the desired shell
exec /bin/csh

whether it should source the . login file. Thus, esac
--------------------------------------you can change the exec statement to read

exec csh -s login

Please note that you need the -s parameter to
tell the C shell to read its commands out of the
standard input stream. Otherwise, the C shell
attempts to open and read a file named login.

Now, since each C shell invocation reads
the .cshrc file, you can explicitly source the
.login file when you detect a new login at
tempt, like this:

echo "evaluating .cshrc"

Is this a fake login shell?
if (S#argv == 1 && Sargv[11 "logi n11

) then
echo "sourcing . login"
source . login

end if

When you log in, you'll start the C shell and
get your customizations as well:

login: root
Last login: Thu Aug 21 09:05:33 on
Sun Microsystems Inc. SunOS 5.6
Update August 1997
evaluating .cshrc
sourcing . login
Devo#

console
Beta

Why not just put all your customization
information in .cshrc? You certainly can do so,
but if you make extensive changes to your en
vironment, your .cshrc file will get larger and
larger. Since the C shell will read and parse
this file every time you start a new C shell, it
will take more time to start your shell. Since
no one likes to wait any longer than necessary,
you can put many of your customizations in
the .login file, where your .cshrc file will be
read only once-at login time-and not each

http:llwww.cabb.camlsu11/

time you start a new C shell, (whether from a
script, command line, or whatever) so you'll
save a little time.

The Korn shell reads only the .profile file
for customization information, so go ahead
and put your information in the .profile file.
Some people like to speed the startup of the
Korn shell and often take advantage of the fact
that the first argument to the login shell begins
with a hyphen (as we did earlier to decide
whether we could start the new shell). How
ever, this technique won't be available to you,
since the Korn shell won't be your login shell
when you start it in this fashion. Instead, you
can use the same technique we used for the C
shell. To give it a parameter, just exec your
Korn shell like this:

exec ksh -s login

Now, in your .profile file, you can check for the
parameter to decide whether you're logging in:

Is this a fake login shell?
i f [$# = 1 -a II S 111 = II l 0 g i n II l;
then

f i

#Your Login-only stuff goes here
fortune

Other uses for this technique
There's another great use for this technique: If
you can't get your system administrator to
modify your account to use another shell, you
can use this technique to select the appropriate
shell when you log in. For example, the Bash
shell, zsh, and other shells are available over
the Internet, but your system administrator
may not use them. Nonetheless, that doesn't
have to prevent you from doing so! •!•

lnlltlB Balar/B

Sourcing files to change your
environment
Have you ever wanted to write a program

or script file that would change your
current environment variables? For ex

ample, Listing A contains a simple script,
named AddLocal, that attempts to modify the
PA TH variable to allow access to some pro
grams in the /usr/local/bin directory.

!!,!!!RR A: AddLocal shell script

#!/bin/sh

Al low use of GNU & other u t i l i t i es
PATH:SPATH:/usr/local/bin
export PATH
echo "New path is: " SPATH

It would be great if you could use a script
file to change your environment variables.
But, you can see that it just doesn't work:

S echo SPATH
/usr/bin:/etc:.
S Addlocal
New path is: /usr/bin:/etc:. :/usr/local/bin
S gee --version
ksh: gee : not found
S echo SPATH
/usr/bin:/etc:.

How can you do it?
What went wrong? Why can't we change our
environment variables in the script? Each time
you execute a program or script from the shell,
it starts a new process with its own copy of the
environment-so your programs never actu
ally have access to your environment vari
ables, only to a copy of them. When we ran the
AddLocal script, it changed its copy of the PA TH
variable and printed its new value. But when
the script ended, it dropped us back to our
shell with the previous value for PA TH.

Don't worry: We do have a trick up our
sleeve. (We don't bother telling you that some
thing can't be done unless we have a way
around it, do we?) It turns out that each of the
standard shells that come with Solaris have a
method of executing a list of commands in the
current environment. For both the Korn and
Bourne shells, you use a period(.) to tell the

~--lr!I November 1897

shell to read the named file and execute the
list of commands in the current shell environ
ment. If we want to use our AddLocal script to
change our PA TH, we do so like this:

S . Addlocal
New path is: /usr/bin:/etc: .:/usr/local/bin
S echo SPATH
/usr/bin:/etc:. :/usr/local/bin
S gee --version
2.6.3

The . command simply reads the file
AddLocal and executes each command as if
you had typed it at the command prompt. So
your AddLocal file doesn't even need to be a
script-it only must hold valid commands.

In the c shell
If you use the C shell, you can use an almost
identical workaround. The difference is you
use the source command instead of using a
period(.). Likewise, the command to set the
PATH in the C shell has a different syntax. So
our AddLocal.csh script looks like this:

Al low use of GNU & other u t i l i t i es
setenv PATH "S{PATH}:/usr/local/bin"
echo "New path is: " SPATH

Now, we can execute our new script in the C
shell, like so:

Devo% source Addlocal.csh
New path is: /usr/bin:/etc: .:/usr/local/bin
Devo% gee --version
2.6.3

Possible uses
This technique comes in handy if you perform
several roles in your job. For example, if you
do both system administration and program
development, you may want to write a pair of
command lists to set up each environment in
the appropriate fashion.

You can also use this technique when
you're debugging your shell startup scripts
(e.g., .profile, .login). You'll find it's tedious to
change your startup scripts, log out, and log

in repeatedly to test them. It's also quite
dangerous-if you make a serious mistake,
you may no longer be able to log in to your
account properly. As an alternative, give your
startup scripts a different name and use the
period (.)or source command to execute them.
Then, test your environment. Once it all works
properly, you can replace your shell's startup
files, or use the period (.)or source command

in your shell's startup file to invoke the appro
priate commands.

Closing notes
It's actually a good thing that scripts and pro
grams can't modify your local environment
without explicitly using the period (.)or source
command to do so. Think of the confusion and
security holes that would otherwise result! •!•

A brief introduction to the sed command
It's a fact that different people have differ

ent favorite tools. When you're confronted
with a problem to solve, you tend to think

in terms of the tools you know. Therefore, the
more tools you're comfortable with, the easier
solving problems becomes.

The s e d command is a very powerful tool
with which you ought to familiarize yourself.
Unfortunately, the sed utility intimidates
people because it has a reputation for being
difficult to learn and use. Actually, it isn't dif
ficult to do either. Perhaps sed's biggest fault
is that a beginner may find reading and un
derstanding a s e d expression rather difficult.
That's probably how it gained its reputation.

In this article, we'll introduce you to some
sed basics, so you can begin exploring its
many features. To that end, we'll show you a
couple of the basic sed commands and turn
you loose with them.

What does sed do?
First, we should probably describe the basic
purpose of sed, so you can see where it fits in the
world of UNIX tools. sed gets its name from its
intended purpose: It's a stream editor. Typically,
you use sed to process a stream of data to ei
ther transform the stream or mine it for data.

When you start sed, you give it a script of
commands to execute. Then, for each line in
the input stream, s e d reads a line into the
working buffer, applies (in turn) the appropri
ate commands, and prints the resulting line to
the standard output stream.

Some sed commands
Although s e d offers you many commands to
manipulate text, we'll just introduce you to a

http://www.cobb.com/sunl

few of them here. For a complete list, please
review sed's man page. The command that
you'll encounter the most is the s command,
which performs text substitution. If you use
the vi editor, then you're already familiar
with the operation of this command.

The basic syntax for the command is

s/old/new/f lags

where old represents the text pattern you're
searching for, new represents the text you want
to replace it with, and f lags specifies the op
tions you want for the search command. The
I character separates the components of the
command. Please note that you can use any
character instead of the I, other than a
backslash or newline.

For the old parameter, you can use any
standard regular expression. So if you want to
find a line that ends with a capital M, you can
use the regular expression MS. The new param
eter is simply the text you're substituting for
the o l d parameter. The f l a gs parameter is
most often a g, when it's not omitted alto
gether. Ag tells the s command to repeat the
operation as many times as possible on the
working buffer. If you omit the flags param
eter, sed will perform the replacement only
once. Thus, if you want to replace every in
stance of the word f lash l i g ht in a stream with
the word torch, you'd use the command

s/flashlight/torch/g

The power of this command is limited
only by your knowledge of regular expres
sions. (If you're rusty on your regular expres
sions, you may want to read the companion
article "Using Regular Expressions in Solaris.")

ln1/ds Bolar/1

Another often-used command is they
command, which allows you to replace one
set of characters with another. The syntax for
the y command is

y/oldchars/newchars/

The oldchars string must have no repeated
characters and must have the same length as
newchars. When sed runs they command, it ex
amines the working buffer, and each time it
finds a character in the o l d ch a rs parameter,
s e d substitutes the corresponding character in
the newchars parameter. As an example, if you
have a document that's in mixed case, and you
want only uppercase, then you can use the fol
lowing command to map all the lowercase
characters to uppercase:

y/abcdefghijklmnopqrstuvwxyz/
-..ABCDEFGHIJKLMNOPORSTUVWXYZ/

Quick Tip: If the only transformation you want
to make is to replace one set of characters with
another, you'll probably want to use the tr
command instead of s ed. The tr command not
only translates character sets like sed, it also
allows you to use shorthand notation, while
offering some extras as well.

The last two commands we'll take a look
at are the p and d commands. The p command
simply tells s e d to print the contents of the
working buffer to the standard output. The
d command tells sed to delete the working
buffer, read in another line, and start process
ing at the first command in the list, ignoring
any commands that may not have yet been
processed. For example, if you have the list
of commands

p
s/abc/xyz/
d
s/xyz/pdq/

then sed will print the working buffer immedi
ately after reading it. It will replace the first in
stance of ab c with x y z, if it exists, then delete
the working buffer, loading it with the next
line, and begin again with the p command. sed
will never execute the second replace command.

Conanand addresses
If that's as far as sed went, then sed would be
indisputably useful. However, sed has a fea
ture that makes it far more powerful: You can
specify addresses for the commands, which
turn them on and off for parts of the stream.

~--IFI Novem_b_er_1_e_e1 _______ _

So you needn't perform every operation on
every line of input.

There are three types of command ad
dresses that sed uses: You can use a decimal
number to specify a line number, a$ to specify
the last line in a file, or a regular expression
to locate a line that has a specific pattern in it.
A regular expression used in this way is sur
rounded by I characters.

Most commands may have zero, one, or
two addresses associated with them. (See the
man page for details.) If a command has no ad
dresses, then sed tries to execute the command
for every line in the stream. If a command has
only one address, then sed executes the com
mand only for the specified line in the stream.
sed treats two addresses as a range, first ap
plying the command on the first line matching
the first address and continually applying it to
each line until the second address is satisfied,
or until s e d reaches the end of the file.

You can use command addresses simply
by prefixing the command with the desired
address(es). If you use two commands, you
must use a comma or semicolon to separate
them. A number specifies an absolute line
number, and a regular expression must be
enclosed by forward slashes.

Suppose for a moment that you want to re
place every instance of the word the with XYZ
beginning with the tenth line of the file and
ending with the next line that contains the word
on i on. You could do so with the command

10,/onion/s/the/XYZ/g

Now you can see why sed scripts can be
so difficult to read. If you're not familiar with
command addressing, you'd be confused by
the statement. Here, the 10 is the first part of
the address, the comma separates the first ad
dress from the next, and Ion i on I is the second
address of the command, which specifies a
regular expression that matches the pattern
"onion." The actual command starts with the
letter s, in the middle of the expression.

Now, what happens if you want to execute
a particular set of commands on the same
range? Must you specify the same range for
each command? Thankfully, the answer is no.
s e d allows you to group commands together
as a unit within braces ({ }). This feature allows
you to specify your address range once, then
enclose your command list in braces. Thus, if
you wanted to expand the previous example
to also change THE to xyz, you could do it with
the following statement:

10,/onion/{s/the/XYZ/g;s/THE/xyz/g}

Using sed
Now that we have the basics out of the way,
let's go into more detail on how to use the s e d
command, then try a couple of examples. First,
let's look at how you can specify commands.

The easiest way to tell sed which com
mands you want to use is with the -e clause.
After the -e, just type in the command you
want s e d to execute. You can specify multiple
-e clauses if you want, or you can combine the
commands into a single clause by separating
the commands with a newline or semicolon.

Thus, these three commands do the same
thing: They convert all curly braces to paren
theses and delete any line that contains the
word zero:

sed -e 'y/{ }/()/' -e '/zero/d'
sed -e 'y/{ }/()/;/zero/d'
sed -e 'y/{}/()/
> /zero/d'

When you use sed, you can either specify a
list of files to operate on, or you can use it as a
filter. In both cases, the output of the sed com
mand is the standard output stream.

Quick Tip: If you use multiple input files,
then you must be aware that when you use
numeric command addresses, these addresses
refer to the cumulative count of lines. Don't
expect s e d to reset the line count back to zero
when it opens each file; you'll be disappointed.
So be careful when using numeric command
addresses.

If you're going to use just one -e clause,
you needn't specify the -e part at all. If sed
sees only a single command-line argument, it
assumes that the argument is a command list
and that you're using it as a filter. So, you
could write the second command line above
like so:

sed 'y/{ }/()/;/zero/d'

Quick Tip: You don't need to surround your
command expressions with quotes, but it's a
good habit to get into. The quotes prevent the
shell from interpreting any special characters
in the commands, then modifying the expres
sions before they're passed to sed . For ex
ample, if you don't: quote the previous com
mand, the Korn shell will complain like this:

$ sed y/{}/()/;/zero/d
ksh: syntax error: '(' unexpected

http://www.cobb.com/1un/

Other shells will complain differently.
While you can learn the special symbols for
each shell and quote the command expression
when you use one, it's much simpler to always
quote the command expression.

If you' re going to use several s e d commands
to do a job, you may want to create a sed script.
The simplest way to do so is to create a text
file that contains your list of sed commands,
then tell s e d to use it with the - f switch. For
example, suppose you find yourself making
the same typos all the time, e.g., you use teh
instead of the, oen instead of one, and th i er in
stead of their. You could create a small text
file named myTypos with the commands

s /Teh/The I g
s/teh/the/g
s/Oen/One/g
s/oen/one/g
s/Thier/Their/g
s/thier/their/g

Then, you can go ahead and type your
document. When you want to fix your most
common spelling errerz, you can pipe your
new document through s e d using your new
sed script, like this:

$ sed -f myTypos <ToFix.doc >Fixed.doc

(Please note: This example needs more
work to make it useful. As it stands, if it finds
Teh as a part of word, it will 'correct' it; if you
write about Tehran, you'll have to recorrect
the document.)

Debugging sed commands
When you're working with sed, don't be shy
about adding the p command periodically to
print the current contents of the working buffer.
This way, you can see what sed's doing, and
you needn't guess about what's happening.

One common mistake you should watch
for involves command-address ranges, i.e.,
commands with two addresses. It's a common
assumption that the second address specifies
the line to stop processing the command(s)
associated with the range, rather than the last
line to be processed. For example, suppose
you start each paragraph with four spaces.
Whenever you find the word shout in a para
graph, you want to convert the rest of the
paragraph to uppercase. To do this, you might
think you could use the statement

/shout/,/A /{ y/abcdefghijklm/ABCDEFGHIJKLM/
y/nopqrstuvwxyz/NOPORSTUVWXYZ/ }

Inside 80/ar/1

However, this statement will also capitalize
the first line of the following paragraph.

Hopefully, you'll want to read the man
page for the s e d command and begin playing
with it. Please be sure to read next month's ar
ticle "Displaying a Directory Tree with f i n d
and sed" to see a practical example of how
you might use s ed . We again urge you to read
the next article "Using Regular Expressions in
Solaris," since sed relies so heavily on regular
expressions.

Conclusion
The sed command is a tool that you're going
to run into sooner or later. Either you're
going to run into a problem that's ideally
suited to s e d, or someone is going to hand
you a sed script that you'll want to modify
for your own purposes. Admittedly, when
you begin, you may find sed scripts hard to
read. But once you become familiar with
sed, you'll find it's really not that difficult
to use. •!•

Using regular expressions in Solaris
Of the many skills you'll use in Solaris,

perhaps one of the most important is
learning how to make the most of regu

lar expressions. Many programs allow you to
work with regular expressions: vi uses them
to search and replace, grep uses them to find
text in an input stream, s e d uses them to de
cide which commands to execute, and even
more programs let you use them to navigate
through a file.

Whars a regular expression?
So, if regular expressions are that important
in Solaris, just what are they? A regular expres
sion is a description of a piece of text. Many
utility programs in Solaris use regular expres
sions to locate a particular part of a file or
stream. Regular expressions can be very sim
ple or very complex. The simplest regular
expressions are literal strings: The string
describes itself.

For example, say you're editing a file with
vi, and you're looking for the word tell. You'd
first type the I key, to instruct vi that you
want to search for a regular expression, then
you'd type tell, and press [Enter]. Then, vi
searches for the next occurrence of the word
tell through the file you're editing.

Sometimes, you don't know the exact
character string you're looking for: If you capi
talize it, for instance, you could miss the in
stance you were looking for. So you'd have to
firs t search through your file for the word tell;
if that search doesn't pan out, you would next
sea:rch for Tell. It would be better if you'd
search for either case with the same regular

---m November 1897

expression: You need a method to describe the
strings in a more generalized way.

A bit ol choice
You can add a bit of flexibility by describing
some possible alternatives. Typically, you do
this at the character level, though in some ap
plications you may actually specify multiple
regular expressions to search for. We'll con
centrate on the character level for the pur
poses of this article.

If you have only a couple of selections
from which to choose, you can specify the al
ternatives in a list and enclose the list in brack
ets ([]).Using our example again, we could
search for the word tell with the expression

[T t Jell

This regular expression matches either Tort
followed by ell, so it'll find both Tell and tell.

You can put lists of characters to choose
from in any location in your regular expres
sion. So, if you want to find any instance of
master or mister, you could use the expression

m[ai]ster

Ranges
If you're specifying a list of acceptable charac
ters in brackets with a large range of possible
characters, you needn't type each character if
they're in a range. Instead you can use the
lowest character in the range followed by a
hyphen (-) followed by the largest character in
the range, such as a-z. Even better, you can in-

termix ranges and normal characters. So, if
you want to specify any legal hexadecimal
digit, you could use the expression

[0-9a-fA-FJ

Sometimes, it's simpler to specify all the
illegal characters than the legal ones. You can
do so if you use a caret(") as the first charac
ter after the [in your list. This character tells
the regular expression that the list specifies all
the illegal characters. Thus, if you'll allow
anything other than a digit or the letter M,
you can simply specify:

["0-9mMJ

Repetition
When you want part of the regular expression
repeated, you can specify this with the aster
isk(*), which means that the previous charac
ter may be repeated zero or more times. For
example, if you define a name as any capital
letter followed by zero or more lowercase
letters, you could use the expression

[A-Z][a--z]•

Or maybe you write C ++ programs and
like to start your program headers with a bar
of hyphens using a double-slash comment.
You might use the following regular expres
sion to find the next function:

II--•

Please note that we use two hyphens fol
lowed by an asterisk. If we used only one,
we'd find every double-slash comment in our
program because the* says "zero or more" of
the character. The first hyphen ensures that
there must be at least one.

Special characters
When you're using a simple string as a regu
lar expression, you just type in the string.
Since we also need the ability to describe
strings, Solaris assigns new meanings to some
special characters. We've already seen most of
these: The asterisk (*) allows you to specify
that the last character may be repeated zero or
more times, a period (.) will match any char
acter except a newline, and the brackets ([])
allow you to specify one character of a list.
Also, within the brackets, if the first character
is a caret n, you know that the list specifies
the characters that may not be matched.

http://www.cobb.com/sun/

Two other special characters of note are
the caret (when it's outside of the brackets) and
the dollar sign($). The caret at the start of a
regular expression specifies the beginning of a
line and allows you to locate strings based on
the start of a line. The $ allows you tie a string
to the end of a line when it's at the end of a
regular expression. Otherwise, these symbols
have no meaning, except the caret when it's
used in ranges.

Sometimes, you just want to use a special
character as a literal. In this case, you need to
precede it with another special character, the
backslash(\), which says that the next charac
ter isn't special, after all. So, if you want to put
an asterisk in your regular expression, simply
precede it with a backslash.

A brief example
Now, let's put some of this stuff together so
you can see how it's all used. For our example,
we'll use grep, and a file, named Filelist, con
taining a list of all the files on the system as
our test file. We created this file in the root
account, with the command

find I -print >/Filelist

Suppose we know there's a file some
where on the system that begins with a Q and
ends with a d, and it's the name of a place.
However, we don't remember anything more
about the file. We can find it like this:

$ grep '/Q["/)•dS' </Filelist
/usr/share/lib/zoneinfo/Australia/Oueensland
/usr/dt/share/examples/dthelp/help/graphics/
OuickHelp.xwd

Aha! It was Queensland, and now we know
where the file is. We began the expression
with a IQ because we want to be sure that the
file starts with a Q. Since a I precedes each
filename, this construct only allows a match if
Q is the first letter in the filename. Next in our
filename, we can take any number of charac
ters that don't include a I (which would start
a new part of a filename). Finally, we use a dS
to say that we want ad at the end of our file
name. Since we want to ensure that the d is at
the end of the filename, we end the expression
with$, telling it that no characters are allowed
after the d.

Conclusion
Well, there you have it-a quick introduction
to regular expressions in Solaris. These are

Inside Bo/ar/s

SunSoft Technical Support

(800) 786-7638

PERIODICALS MAIL

Please include account number from label with any correspondence.

only the basics, and some programs allow even
more flexibility in specifying the regular expres
sions. You'll probably want to look over the
man page for regexp for some of the basic rules.
However, the regexp man page actually docu-

ments some functions used in Solaris, so you'll
see a lot of information there that you may not
be able to use. Keep in mind, the interesting
parts are in the sections 'Basic Regular Expres
sions' and 'Characters With Special Meaning.' •!•

Using wild cards for file and directory
name completion

In :he article "Filename Expansion in the C
and Korn Shells" in the September '97 is
sue, we showed you how to use command

line completion in the C and Korn shells. One
reader pointed out that you can also use stan
dard wild-card expansion for command-line
completion. It's not as flexible, but it works in
all the shells.

::-!ere' s the basic technique: You need to
use only the part of the filename that's unique
in the directory. So, if you have a long file or
directory name that you want to work with,
you need only a few characters. Suppose for a
moment that you have a long filename that
you want to work with, but you're not a great
typist and don't want to type the whole name.
You want to uncompress the file samba_1_9 _
16p8_tar.gz. Since you must specify only
enough of the filename to be unique, you
could use the command:

S guRz i p s•gz

if you have no other files that begin with ans
and end with gz in your directory.

Suppose your directory contains the files:

$ ls
samba_1_9_15p8_tar.gz samba_1_9_16p9_tar.gz

In this case, your command will expand to

gunzip samba_1_9_15p8_tar.gz
samba_1_9_16p9_tar.gz

~--m NovembaP 1887

Oops-you' re going to expand two files
instead of only the one you want. In our pre
vious article, we showed you some keystrokes
that would show which files matched to the
specified point. The wild-card technique is a
similar trick: If you want to see if your pro
posed wild-card expression matches too many
files, you can either type ls, as we did above,
and inspect the output, or you can use the
echo command, like this:

echo /u•/S•
/usr/sadm /usr/sbin /usr/share /usr/snadm /usr/
spool /usr/src

Here, we were thinking that /u•/S• might
be a good shorthand for the I usr I sbin direc
tory. As you can see, we forgot about several
other directories. Instead, we can use /u•/Sb•.

Returning to our prior example, we want
to expand one of two files in which the unique
portion of the filename is in the center. Must
we use the expression samba_1_9_16* to
specify the file? No, since the shells allow
us to put wild cards anywhere in a filename
argument, we could use the following com
mand to expand the latest version:

S gunzip •16•

As you can see, it's much easier to type
16 than samba_1_9_16p9_tar.gz. So, the next
time you want to take a shortcut and you're
not in your favorite shell, remember that all
you need to do is take advantage of wild cards
to specify long file and directory names. •!•

.. ,.9'~"'\ Printed in the USA \6o This journal is printed on recyclable paper.

