
MICROPOLIS USERS GROUP

MUG Newsletter I 10 - May 1981

GRAPHICS PRIMER for VECTOR GRAPHIC

by Burks A. Smith of DATASMITH
Box 8036, Shawnee Mission, KS 66208

The first thing everyone should understand about
computer graphics is that graphics capability is
primarily a function of HARDWARE. Almost all "Home
Computers" have some kind of graphics and a library
of games because no one would buy them if they did
n't. Business computers, on the other hand, almost
never have fancy graphics. They are supposed to
work, not play, and purchasers are more concerned
with a crisp, readable display. I suspect that
most MUG members own computers that both work and
play. Our systems are more expensive and powerful
than the "home" variety, but we still like to get
some recreation out of them.

To use graphics at all (other than plotting letters
of the alphabet), you need a video display with
graphics capability. There are numerous "video
boards" on the market that will plug into your com
puter and produce graphics. However, the VECTOR
FLASHWRITER II is probably the most common among
MUG members because it is standard equipment on
MICROPOLIS equipped VECTOR GRAPHIC computers. The
FLASHWRITER II is the business end of VECTOR'S
"MINDLESS TERMINAL", which is nothing more than a
black-and-white TV monitor. The FLASHWRITER
generates the video signal that makes the patterns
of little dots in the shape of letters appear on
your screen. It will also generate 64 different
"graphic characters" for special purposes.

All of the characters displayed on your terminal
are stored in your computer in the form of number
codes. The code used is the "American Standard
Code for Information Interchange" or "ASCII" (pro
nounced Ask-ee) for short. These numbers are
translated into a picture in the following way:
First, the ASCII code is sent to the video board
which uses the code to access its own Read Only
Memory (ROM), which contains information on the
pattern of dots that make up that character. Next,
the video board changes the memory image into a TV
signal that will make dots appear on your terminal
screen in the appropriate shape.

Computers that have graphics capability use a type
of display storage called "memory-mapped video",
which means that the codes for all the characters
currently appearing on the console screen are
stored in your computer's own memory and your com
puter's microprocessor time is "stolen" to update
the display. This is opposed to "smart" terminals
(such as Hazeltine) which have their own memory and
processor for these tasks and don't add any over
head to the host system. A memory-mapped video
system such as VECTOR's with an 80 X 24 display
uses one byte for each character displayed or 1920
bytes of the host system's memory just to store the
screen information.

On the FLASHWRITER II video board, the 64 graphics
characters consist of all the possible arrangements
of six small near-squares that fit in the space
normally occupied by a single letter on the screen.
These squares are arranged two-across and three
down for each displayed position on the 80 X 24
screen, making a grid of 160 X 72 small squares
(11840 positions) possible. By arranging the
graphics characters on the screen in clever ways, a
picture with crude-to-fair resolution is possible.
A key to the graphics produced with the FLASHWRITER
II can be found in its manual, which is included
with all VECTOR systems. The codes used for the
grapics characters are in the range 0 to 31 for the
basic set, and 128 to 159 for the reverse of the
basic set, giving all possible combinations of 6
squares set in a rectangle. ·

The problem in using graphics with MICROPOLIS-based
systems, is that BASIC doesn't support any graphics
commands. Actually, there is no way it could since
graphics depend on hardware and MICROPOLIS BASIC is
a general-purpose language that can be used on a
variety of machines. Only specialized single ma
chine Basics like APPLE BASIC can possibly include
commands to create graphic displays. Therefore,
all graphics using MICROPOLIS BASIC must be
programmed by the user. Furthermore, the PRINT
command can not be used to generate graphics
because the codes for the graphics characters
overlap standard ASCII control codes such as
carriage return, control-C, etc.

The solution is to put the graphic codes directly
into the area of memory used by the video display
with the POKE command. The syntax of this command
is:

POKE(address)=byte

The command stores a number in the range 0-255 (a
byte) in the memory location designated by the
address (0-65535). On most VECTOR GRAPHIC com
puters using the FLASHWRITER II board, video memory
starts at address FOOO Hex. This is written in
Basic as 16RFOOO or by its decimal equivalent of
61440. Therefore, the command POKE(61440)=12 will
write the graphic character represented by the code
12 to the upper left-hand corner of the display
screen. Other screen locations can be calculated
from this value. Add 80 for each line down you
want to travel and then the amount you want to
travel left to right. For example, the middle of
the screen is 12 lines down and 40 characters
across (61440+12*80+40=62440). POKE(62440)=27 will
write the character represented by code 27 to the
middle of the screen.

Using the POKE command to write graphic characters
to the screen from Basic is a slow and difficult
process which discourages most would-be computer
artists right away. It is certainly no good for
real-time shoot-em-up games like you see in ar
cades. What is needed is a fast assembly language
utility that can take care of the details of
writing graphic characters and let Basic do the
number crunching. You might want to experiment
with POKEing some graphic characters, however, just
to familiarize yourself with the available graphic
characters.

NEXT MONTH we'll discuss some real programs that
use graphics and an assembly language plot utility.

PROGRAMMING WITH ~ SUBROUTINE LIBRARY

by Joel Shapiro, of Bonjoel Enterprises
P.O. Box 2180, Des Plaines IL 60018

Copyright (C) 1981

There are many ways of generating an application
proqram. Some require the use of rather rigid
structures and others defy the use of structure
altogether. The exponents of both these extremes
can make a good case for their concepts. One sug
gests the rigid approach is necessary for further
development of the program and optimum efficiency
of its operation. The other makes a case for a
program that works well regardless of how it's put
together.

BASIC lends itself to the use of subroutines for
functions that are used several times in a program.
This allows the use of a modular concept in the
structure of the program and the economies of. sav
ing some core. I tend to take the concept a few
steps further and consider the use of a duplicate
set of subroutines in all application programs that
I write for myself and my clients.

The thought behind this is the simple fact we will
probably establish a good means of performing a
function that we wish to incorporate into other
proqrams. Instead of picking these subroutines out

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

PAGE 2

of several programs, why not put them into a lib
rary so they're readily available. A further step
is to give each subroutine its own set of line
numbers so you will remember the lines for your
subroutine call from the main body of your new
program. The subroutines can then become the
beginning of your new program and used as a base
for the rest.

Each of the subroutines can be optimized for ef f i
c ient operation and reduction of code. Subroutines
not needed for the application can be deleted from
the program after it is completed. Structuring
around a defined set of subroutines decreases the
probability of error and duplicate code.

The efficiency of the program is certainly affected
~y the use of ~ubroutines and in many cases will be
improved. The important fact supporting the use of
subroutines is it's an effective means of generat
ing an application program in a short period of
time. By using our subroutine library properly the
loss of efficiency can been reduced as well as the
time required for writing, testing and debugging
the programs.

The subroutines in your library should be those
you're most likely to use in more than one program.
Subroutines for; CLEAR SCREEN, CENTER TEXT, OPEN
FILES, SEARCH DRIVES FOR A FILE, CONTINUE OPERA
TION, ERROR MESSAGE PRINTING, FORMAT DATES,
CALCULATE DATES, PRINT PAGE HEADINGS, CHECK FOR
SPECIAL CHARACTERS, etc., are all worthy of
consideration for your library. As you develop
your own style of programming, additional subrou
tines will become apparent and these can be added.

By now, you should be able to define quite a few
subroutines you would like to have for your next
programming endeavor.

There are a few rules and tricks I use in the
library concept that may be helpful to you. First,
make each subroutine self-contained. If you're
feeding data to the subroutine, place the data into
the proper variable BEFORE calling the subroutine.
When the subroutine is going to feed back data to
the body of the program, move the data from the
subroutine's variables to the program's variables
AFTER returning to the program. This way the
integrity of the subroutine is protected.

Define a set of variables for use in the subroutine
library and DON'T use them for the main body. DON'T
use the subroutine's variables for holding data
beyond the step before, or the step after the sub
routine is called. By following these rules the
same variables can be used in each of the subrou
tines without problems. Just make sure a value, a
zero or a null is forced into the variables used in
the subroutine by either the subroutine itself or
the main program.

Take care in not calling too many subroutines from
other subroutines. If you find yourself doing this
it probably indicates you're trying to customize
your subroutines to the application and that really
defeats the purpose of the library. If this is the
case it may be better to include the code in the
main program or write a larger, more specific
subroutine.

Your subroutines should be toward the beginning of
the program. This helps increase the speed of their
operation and groups them in one area of your list
ing. My own preference is to use lines 110 through
1999 for my general subroutines.

Don't be afraid to make improvements. If you find a
better way of doing the job, rewrite the subrou
tine. I seem to keep learning as I write programs
and like to incorporate my latest ideas into the
library as time permits. Don't be surprised if you
find yourself adding and replacing subroutines with
each new program you write.

Remember, programming with a subroutine library is
only another concept used in generating programs. I
feel all programmers have a library of sorts, whe
ther in their minds or readily available on disk.

MUG NEWSLETTER # 10 - MAY 1981

In either case, time and sometimes frustration can
be eliminated with its application in your
programs.

by Bob Zale, of Systemation
PO Box 75, Richton Pk. IL 60471

~e have noticed somewhat of an ongoing discussion
~n the.M?G.Newsletter regarding the possibility (or
impossibility!) of saving a large block of vari
ables in a single disk operation. We have put
together two small BASIC programs to illustrate
that this concept is not only feasible, but rela
tively straight-forward.

As a review of the listings will show, these pro
grams have not been optimized, nor do they include
appropriate limit-checking on the parameters passed
to the main subroutine at line 1000. I'll leave
this to the creativity of MUG members.

This concept can be valuable for several reasons.
It can elimiate a multitude of long PUT and GET
statements, as well as avoiding the need to block
~nd deblock data records. Additionally, it util
izes all 256 bytes of each record, not just 250.
In the c~se of numeric variables, efficiency is
further increased as they are stored in a com
pressed BCD format, rather than in ASCII.

The first program "P/DIM" creates an array in high
memory and saves it to disk as an object file. The
second program "RETRIEVE" loads the data into an
array in high memory.

These programs use the object file version of the
LOAD and save commands to read and write variables
to disk. However, since the LOAD command does not
allow specification of a load address, the array
must always be stored at the same absolute memory
~ddress. As BASIC allocates variable space dynam
i7ally: we must "fool': BASIC into thinking it has
dimensioned an array in high memory above an add
ress specified by a MEMEND.

BASIC main~ains three 26-entry DW tables for point
ers to active arrays. Any time an entry is found
to be non-zero, it is assumed to be the absolute
address of the array data. The sub-routine at line
~480 plugs the address of our "high-memory array"
into the appropriate position of one of the tables.

Sufficient space must be allowed for the entire
array as follows: A single dimension array
requires a four byte header plus (t elements *
element length) bytes. The element length for a
~umeri7 array is that specified by RSIZE or ISIZE
in a sizes statement. For strings it is the
specified length +2, as a max length and current
length byte is maintained for each element.

A final word of caution -- please do not attempt to
utilize this concept on "live data" until you
understand it throughly. Since this sub-routine
alters BASIC, a minor error could "bomb" the
srstem •. Also, as this concept is not supported by
Micropolis, non-standard or future releases of the
BASIC interpreter might render this technique
totally u~usable. We do hope, however, that this
concept will help to provide some insight into the
"inner workings" of your system software.

Of course, if any specific questions should arise,
we will be more than happy to provide any possible
assistance to MUG members.

MUG NEWSLETTER # 10 - MAY 1981

Title:

30
40
50
60

100

120

140

160

170
180

200

P/DIM

Pseudo-Dimensioning Subroutine

MEMEND 16RCFFF
e array
ZO = 16RDOOO :
for the array

by Systemation, inc.

Set aside room for th

Define the base address

Z$ = "A$" : l Define the array name - Don
't execute a DIM l
Zl = 11 : l Define the number of elements
in the array
l Don't forget element zero l
l i.e. A$(0) through A$(10) =
11 elements
Z2 = 20 : l If a string array, define the
length

220 GOSUB 1000 : l Do the 'pseudo-dimension'
240 FOR Z% = 0 TO Zl-1 : l Fill up the array

250
260
280
300
970

1000 >*

*
*

with data
A$(Z%) = REPEAT$(CHAR$(65+Z%),Z2)

NEXT Z%
SAVE "N:ARRAY/FILE" ZO, ZO+Z3
END
l

ON INDEX("$%",RIGHT$(Z$,l))+l GOTO 1040,
ll30, 1230
l
l Real variable arrays

1010
1020
1030
1040

* l
*> Z2 PEEK(l6R4C5) : l Get the length from

RSIZE
1050 * GOSUB 1320 : Fill the block with binary

O's
1060
1070

* GOSUB 1400 :
* Z4 = 16R3385

ay table

Fill in the array 'header'
l Base address of real arr

1080 * GOSUB 1480 : Tell BASIC where the arr

1090 <*
llOO
1110
ll20
ll30

ll40
1150
1160

ay is located
RETURN
l
l String variable arrays
l

> Z2 Z2 + 2 : l Strings require two lengt
h bytes
GOSUB 1320
GOSUB 1400
GOSUB 1550 : l Plug a max length byte int
o each element

1170 Z4 = 16R33B9 I Base address of string a

ll80
1190 <*
1200
1210
1220
1230

1240
1250
1260

1270
1280 <*
1290
1300
1310
1320 >*

1330 *
1340 *
1350 *
1360 <*
1370
1380
1390
1400 >*
1410 *

1420 *
1430 *

1440 <*
1450
1460

rray table
GOSUB 1480
RETURN
l
I Integer variable arrays
l

> Z2 PEEK(l6R4C6) : l Get the length from
!SIZE
GOSUB 1320
GOSUB 1400
Z4 = 16R33ED l Base address of integer
array table
GOSUB 1480
RETURN
l
l Fill the block with binary O's
l
Z3 Zl * Z2 + 4 :
quirement
FOR Z% = ZO TO ZO+Z3

POKE(Z%) 0
NEXT Z%
RETURN

Calculate memory re

Fill in the array 'header'
l
POKE(ZO) = 1 : l A single dimension array
POKE(ZO+l) MOD(Zl,256) : l Size in DW f
ormat
POKE(Z0+2)
POKE(Z0+3)
lement
RETURN
l

Zl \ 256
Z2 l Number of bytes per e

I Tell BASIC where the array is locat
ed

1470 l
1480 >* Z4 Z4 + ((ASC(Z$)-65)*2) l Index into

1490 *

1500 *
1510 <*
1520
1530

1540
1550 >*

1560 *

1570 *
1580 *
1590 <*

PAGE 3

the table
POKE(Z4) = MOD(Z0,256) l Array address
in DW format
POKE(Z4+1) = ZO \ 256
RETURN
l

l Plug a max length into each string
element
l

Z2 = Z2 - 2 : l The length bytes aren't c
ounted
FOR Z% = Z0+4 TO Z0+4+((Zl-l)*(Z2+2)) STE
P Z2+2

POKE(Z%) = Z2
NEXT Z%
RETURN

Title: RETRIEVE

30
40
50
60

100

I
I
l
I
MEMEND
e array

Array Retrieval Subroutine

by Systemation, inc.

16RCFFF Set aside room for th

120 ZO = 16RDOOO : Define the base address
for the array

140 Z$ = "A$" : I Define the array name - Don
't execute a DIM I

160 Zl = 11 : I Define the number of elements
in the array

170 l Don't forget element zero I
180 I i.e. A$(0) through A$(10) =

11 elements
200 Z2 = 20 : I If a string array, define the

220
240
260
270
280
300
970

length
GOSUB 1000 : I Do the 'pseudo-dimension'
LOAD "ARRAY/FILE"
FOR Z% = 0 TO Zl-1

PRINT A$(Z%)
NEXT Z%
END
I

1000 >* ON INDEX(II$% II I RIGHT$ (Z$, 1)) +l GOTO 1040,
ll30, 1230

* I

* I Real variable arrays
1010
1020
1030
1040

* I
*> Z2 PEEK(l6R4C5) : I Get the length from

RSIZE
1050 *
1060 *
1070 *

1080 *

1090 <*
1100
1110
1120
1130

1140
1150
1160

1170

GOSUB 1320
O's
GOSUB 1400
Z4 = 16R3385
ay table
GOSUB 1480 :
ay is located
RETURN
l

Fill the block with binary

Fill in the array 'header'
l Base address of real arr

Tell BASIC where the arr

I String variable arrays
l

> Z2 Z2 + 2 : I Strings require two lengt
h bytes
GOSUB 1320
GOSUB 1400
GOSUB 1550 : I Plug a max length byte int
o each element
Z4 = 16R33B9 I Base address of string a
rray table
GOSUB 1480
RETURN
I
I tnteger variable arrays
1

1180
1190 <*
1200
1210
1220
1230 > Z2 PEEK(l6R4C6) : 1 Get the length from

ISIZE
1240
1250
1260

1270
1280 <*
1290
1300
1310
1320 >*

GOSUB 1320
GOSUB 1400
Z4 = 16R33ED I Base address of integer
array table
GOSUB 1480
RETURN
l
I Fill the block with binary O's
1
Z3 Zl * Z2 + 4 :
quirement

Calculate memory re

1330 * FOR Z% = ZO TO ZO+Z3
1340 * POKE(Z%) = 0

PAGE 4

1350 *
1360 <*
1370
1380
1390
1400 >*
1410 *

1420 *
1430 *

1440 <*
1450
1460

1470
1480 >*

1490 *

1500 *
1510 <*
1520
1530

1540
1550 >*

1560 *

1570 *
1580 *
1590 <*

NEXT Z%
RETURN
1
1
1

Fill in the array 'header'

POKE(ZO) =
POKE(ZO+l)
ormat
POKE(Z0+2)
POKE(Z0+3)
lement
RETURN

1 : 1 A single dimension array
MOD(Zl,256) : I Size in DW f

Zl \ 256
Z2 1 Number of bytes per e

Tell BASIC where the array is locat
ed

Z4 = Z4 + ((ASC(Z$)-65)*2) : I Index into
the table
POKE(Z4) = MOD(Z0,256) : I Array address
in OW format
POKE(Z4+1) = ZO \ 256
RETURN
I
I Plug a max length into each string
element
I
Z2 = Z2 - 2 : ! The length bytes aren't c
ounted
FOR Z% = Z0+4 TO Z0+4+((Zl-l)*(Z2+2)) STE
P Z2+2

POKE(Z%) = Z2
NEXT Z%
RETURN

DISK RUDIMENTS

The disk is divided into tracks - circles. Visu
ally, the disk looks like a phonograph record. The
physical reality is more like a magnetic tape on a
tape recorder. The disk's tracks are not grooved
like a record: they are each a separate entity. A
phonograph record's grooves are not separate, but
part of one long spiral. Reading and writing to a
track is not accomplished therefore, by placing the
read head in a "groove". There are no physical
features on the disks to specify "this is a track".
Any part of the disk surface can be written to and
read from.

Information transfer is accomplished at whatever
point the head is positioned. What portion of the
disk to be used for information storage is there
fore determined by head position, rather than any
thing on the disk. Head position is specified by
conunanding a stepping motor. Stepping motors move
in "jumps", rather than smoothly. Just as you
can't walk up a half a stair, a stepping motor
can't move half a step. The movement is limited to
the internal mechanics of the drive which are
physically adjusted to some standard.

MOD I's and MOD !I's read and write to different
portions of a disk. That is, the step size of the
stepping motors are different. That's why data
written by one can not be read by the other. Phy
sically, through, the same disk can be initial
ized and used on either type drive.

VARIATIONS

It is confusing to see all the different drives
manufactured and all the various qualities - hard
sector, soft sector, ten hole, sixteen hole, sin
gle, double, quad density, IBM compatible. Is
everybody doing something unique? More on this
next month.

RENEWAL TIME

A year has almost gone by since the start of the
MUG. The rates for next year will be $18 for the
U.S., Canada, and Mexico: $25 airmailed elsewhere.
I suppose I could go into a long dissertation in an
attempt to justify the fee, but I'm not going to.
From your point of view, the information is worth

MUG NEWSLETTER # 10 - MAY 1981

the cost, or it isn't. From my point of view, if
I'm going to do this at all, I'm going to do it as
well as I can. That translates to a lot of time
and sizable monetary costs for phone calls, produc
tion and distribution expenses. I have to break
even, both in terms of reimbursement of expenses and
in justification of time.

I won't be sending back issues with mid-year sub
scriptions anymore. Any particular month's news
letter will be printed in quantities sufficient for
the current membership. Back issues will probably
be obtainable, but at an increased cost.

Your mailing label now contains the expiration date
of your subscription. I truely hope you have en
joyed the newsletter and the other MUG benefits,
and will renew for another year.

MEMBERSHIP DIRECTORY

Many of you have asked for the membership direc
tory. It will be available next month, (MOD I and
MOD II). One problem is that many of you have not
returned your information forms. I will not in
clude the name of a member who has not specifical
ly chec~ed "NO" to the question "Would you object
to ••••

Look at the second label which is affixed under the
end of the text on page 6. The letter in the upper
left-hand corner is either "Y", "N" or "U". If
it's "U", I haven't received any information form.
If it's "N", you told me not to release your name.
"Y", of course, means you're on the distributable
membership list.

Other items on the label are:

MFM Manufacturer of your computer
DPY Type of video display - If you have a

terminal, its name should be listed here,
i.e., HAZL-1400
If memory mapped, the designation is
vague but is meant to be the software
(firmware) used to drive the display.
VDM Proc. Tech. Video Display (SOL)
MT Vector Graphic Mindless Terminal
EVD Exidy Video Display
VTI Poly-88 Video Display

MEM Amount of contiguous memory
TYP Type of drives, "I" or "II"
HPN Home Phone
PER Peripherals

IMPORTANT NOTICE

It has been brought to my attention that the list
can be used by a thief as a shopping list.. With
that thought in mind, if you want to be taken off,
drop me a postcard.

YES AND NO? -- -- --
PLEASE NOTE: Some of you have said "Yes" to re
leasing data to members, "No" to releasing data to
vendors. You have been entered as "NO". For the
record, I won't be releasing the data to non-mem
bers. However, that doesn't mean that members
can't release the data to non-members. Nor does it
mean that I won't use the availability of such data
as an incentive to get vendors to join the MUG. If
you read this newsletter, you are certainly aware
that we already have vendors in the MUG. They are
contributing the bulk of the material.

Never-the-less, the point is not to pick on those
of you who prefer not to be on mailing lists. The
point is, -NOTE11- if you're on the list, anyone
might get access to it, though, as I said, I will
release it only to members.

The Membership Directory Disk will be available in
the same manner as a Library Disk. Contribution of
software or an article plus $3 ($5 overseas), or
$15 ($17 overseas), will get you the disk. The
same bartering rules also apply. See last month's

MUG NEWSLETTER# 10 - MAY 1981

MUG LIBRARY story for details.

Finally, I welcome any suggestins on what addition
al information should be contained in the data
base. Perhaps an INTEREST field, SOURCE number,
HAM call letters - what do you want?

CP/M TECHNICAL TIPS

by s. Tattersall, of ITT
London Rd., Harlow, Essex England CM17 9NA

A BACK-SPACE RUBOUT MODIFICATION - ---
One feature of CP/M that is particularly annoying
is the way it handles deletions. As distibuted,
CP/M echos the deleted character on the console
device. As this simple feature is buried within
BOOS it is not easy to alter. A simple method of
implementating this feature is to arnrnend CBIOS.

The first step is to arnrnend the console keyboard
routine, i.e.,

RBOUT:

DELF:

Normal input routine (character in regis
ter A)

CPI 7FH :IS IT RUBOUT
JZ RB OUT :IF so JUMP TO ROUTINE
CPI 5FH :IS IT AN UNSHIFTED RUBOUT
RNZ :IF NONE OF THE ABOVE RETURN

:TO BOOS
MVI A,OlH :SET DELETE FLAG (CURSOR

:LEFT)
STA DELF :STORE IT
MVI A, 7FH :RESTORE RUBOUT CHARACTER
RET :RETURN TO BOOS
DB 00 :DELETE FLAG STORE LOCATION

The above routine will detect the shifted and
unshifted rubout key.

The next stage is to alter the console output
routine, i.e.,

VIOOUT: EQU EOlB :SORCERER VIDEO OUTPUT
CON!: LDA DELF :LOAD DELETE FLAG

CPI OlH :IS IT SET?
JNZ CONlA :IF NOT GO TO NORMAL ROUTINE
CALL VIOOUT :SEND DELETE FLAG (LEFT

:CURSOR) TO CONSOL
MVI A,20H :PUT A SPACE IN REGISTER A
CALL VIOOUT :SEND TO CONSOL
MVI A,OlH :PUT CURSOR LEFT CHARACTER

:INTO A
CALL VIDOUT :SEND TO CONSOL
MVI A,OOH :RESET DELETE FLAG
STA DELF :STORE
RET :RETURN TO BOOS

CONlA: :NORMAL OUTPUT ROUTINE

The above program will backspace, space, then
backspace again to achieve rubout on the screen.

As you can see from the above code, if you press
the rubout key when there is nothing in the input
buffer, the next character will not be displayed.

HIGH-SPEED SORT FOR CP/M

Systemation has released SORT/B, an assembly lan
guage sort callable from Microsoft BASIC-80 (Rev.
5.0 or later). SORT/B, except for the CP/M &
BASIC-80 linkage, is the same as SORT/A, which has
been extensively discussed in previous newsletters.
Available on MOD I & II for $75 ($67.50 to MUG
members, at least for the month of May) from
Systemation, Inc., PO Box 75, Richton Park IL
60471.

PAGE 5

FREE CLASSIFIED ADS

Enclosed is a card from Computer Shopper which
enables you to place a free classifed ad in their
publication. Plea~e note, though, that the only
allowable ads in the classified section are for
used equipment, software (no software trading) and
equipment wanted. New equipment, books and se
rvices must run as display ads. Those rates are
available on request.

LETTERS

CP/M LIBRARY: COMMUNICATIONS

Buzz,
We should consider buying the entire CP/M library
which is now about 48 volumes and put them on
Micropolis Mod II discs. Doing this as a group
would be very inexpensive.

We should also consider buying as a group a driver
for a conunon phone modem which would allow us to
communicate and save programs and files. If we
could do this, it would save us a lot of money and
provide inexpensive back up with friends that have
large amounts of data storage.

~ FOR DOCUMENTATION

We should also consider publishing, in most ele
mentary form, exactly how to determine the memory
map of our systems.

Finally we should consider some way of determining
the various configurations in which the Micropolis
systems are used. This would allow us to exchange
drivers that we have developed very simply.

Peter R. Senn
1121 Hinman Avenue, Evanston IL 60202

Peter,
Several people have mentioned the CP/M library.
The CP/M Users Group will soon have the library on
Micropolis disks. I think we should wait for that.

I'd love to get a common driver for modems. I'll
get to work on the problem and let you know the
progress next month.

I agree with your documentation ideas. Several
people have also made this suggestion. We'll work
on it (along with 111 other things, so don't look
for it next month).

Buzz,
I have a couple of questions for the MUG members.
It would ease my task of keeping track of all disk
files if it were possible to read the disk direc
tory itself as a BASIC data file, and thus access
the information you get from a FILES command in
MOOS. All I've been doing so far to create my
SYSDISK file is entering the data, field by field,
from the keyboard to create the record for each
disk file. A few updates to the disk, and I'm way
behind again. Perhaps Systemation would be able to
help here as their programs have a nice directory
display.

MOVE MOOS? -----
Also, would it be possible to re-locate MOOS so
that the shared subroutines, especially the disk
access ones, could be called as assembler func
tions from BASIC. This would allow a lot of flexi
bility and avoid conflicts with some older programs
I have for the SOL which run in low memory where
MOOS is. Perhaps Micropolis could write and sell a
program allowing the user to specify where RES and
MOOS would reside and execute. I would be willing
to pay for such a program.

PAGE 6

MORE DOCUMENTAION

I'll finish with one suggestion for the long run.
This involves the creation of an extended documen
tation manual for MOOS, BASIC, etc., from all the
information which the MUG gathers from its members
and software sellers such as Systemation and DATA
SMITH, and whatever help the Micropolis Software
Engineering Group could provide. I'm thinking
something along the lines of organizing the mater
ial by software product, i.e., extended notes on
MOOS (a perfect example is the @RFILESECTOR and
@WFILESECTOR routines mentioned in the April '81
Newsletter). There would be other sections on
LINEEDIT, ASSM, BASIC, etc., which would be a
supplement and further explanation of those areas
not covered or not fully explained in the Microp
olis manuals. These items would only be published
when they had been fully tested and clearly docu
mented, so that the MUG could offer a reasonable
guarantee as to their accuracy. To make such a
manual easily maintainable, the data could be
released by program and category on separate loose
leaf sheets, much as IBM issues updates to their
manuals. This would mean that if the notes for one
section changed, it would only be necessary to
re-issue that section's pages, not the rest of the
manual. All pages could be dated, and every so
often all the updates consolidated into a complet
ely new issue of the whole manual.

MUG INDEX -----
In regard to the above, I've been thinking of
making a disk file index of the articles and
information in the MUG newsletters (I have all of
the issues so far). I should have a little more
time to devote to this around the middle of May,
and perhaps I could use this project to trade for
Volume 2 of the MUG Disk Library. I find myself
remembering a helpful hint from a past newsletter,
and then end up looking through them page by page
to find it. If you could send me an idea of what
type of informaion would be most useful to a
general index before mid-May, I'll go ahead and
work on it.

FIRST CLASS MA IL
=== ===

MUG NEWSLETTER # 10 - MAY 1981

Anyway, keep up the excellent work. The MUG has
certainly been a great help to my Micropolis pro
gramming so far, and I can see it becoming even
more valuable in the future. Thanks.

Ken Findlay
937 Briar Hill Ave, Tornto, Ont., Canada M6B lMl

Ken,
I'd be most happy to take you up on your trade. An
index of Topics, S/W reviews, BASIC statement ex
plainations, etc., would be very useful. Perhaps
the members will write you directly with sugges
tions on categories that would make the index
useful to them.

Again, I certainly agree on the need for documen
tation. I haven't found time to do it yet.

SYSTEMATION'S COMPILER

Yup. I made you wait 'till last for the best. I
have been GUARANTEED that the compiler will be
released in May. We will certainly have a review of
the specifications next month. With but a few
execptions (you have to have THENs, you can't use
EXECs), you can run your current programs after
compiling with what we hope is a dramatic increase in
speed and decrease in memory utilization. Can't
wait to see. Cost? $345.

05/01/81

FIRST CLASS MAIL
== ===== ===

Subscription (August through July) rates:
u.s., Canada, Mexico: $12/year: Other~ $25/ye~r

Mid-year subscribers receive current year s back issues.
Published rnonti1ly by the MUG

==~===~==

mcROPOLIS USERS GROUP
Buzz Ruoow, EDITOR

604 SPRINGWOOD CIRCLE
HUNTSVILLE AL 35803

(205) 883-2621

FIRST CLASS MAIL
=== ====

