
MICROPOLIS USERS GROUP

MUG Newsletter I 19 - February 1982

**

THE MUG IS A S/W HOUSE

This month has been a very busy one. Setting up
the capability for handling S/W is no easy task.
No single distributor handles all the products a
buyer wants. In addition, there is a lot of good
software that is distributed by the individual
developers.

Three considerations led me to the decision to
handle software. One is that writing this

.newsletter is not a money-making situation. I
wanted to find a means of paying for my time.
Increasing the price of the newsletter didn't seem
reasonable at this point, though it's possible in
July. SOLOS, the Processor Technology (SOL)
newsletter, charges $24/$32 for about the same·
idea.

Secondly, a lot of people want information and
reviews on the available software packages. Since
one has to buy it and use it to review it, I
figured that by becoming a dealer I could cut my
costs for obtaining information for this sort of
story.

Finally, the concept of a users group providing
software at a discount, and providing the knowledge
necessary for a user to ascertain which of a number
of competitive packages is correct for his needs,
was attractive to me.

I decided to use the DAMAN name for servicing the
retailing of software, rather than the MUG. As
I've said before, I've run a mailing-list/invoice
business, out of the house, under the name of DAMAN
for several years. The selling of software will
also be run out of the home.

Between Lynn, Brad and myself, we hope to develop a
complete understanding of most of the packages we
handle. Either Lynn or Brad should always be
around during the day, and I'm around at night.

How does this all affect the newsletter? There
will be more articles on specific packages, such as
the one on Systemation's UTL-1 and TR/II in this
issue •. No~, however, in addition to informing you,
my desire is also to have you purchase the package
from me if you decide that it fills your needs.

What software do we off er? Almost anything is
available. The price list shown in the back pages
only lists those packages I've researched. Many
other packages are available through the
distributors with which I'm dealing - such as the
full lines of Digital Research and Microsoft.

If you are considering the purchase of any
software, give us a call. We can probably get it
for you at a below-list cost. The percentage
discount varies. But as you can see from the price
list, some are large. The popular SPELLBINDER is
only $319 (list at $495), and dBASEII is $589 (list
at $695).

Most of the CP/M software is also available in
formats other than Micropolis, if you happen to
have other computers around, or for your friends
who have other computers.

DIMENSIONING IN MpBASIC

by Buzz Rudow

Dimensioning is the process nf setting aside memory
space for variables used in your program. MpBASIC
performs some default dimensioning by itself.

MUG NEWSLETTER 119 - FEBRUARY 1982 Page 2

Generally, reference to any single variable, such
as, A$, A, Al, automatically allocates space for
that variable without using the DIM statement.
This auto•atic allocation is caused by the default
value of the SIZES statement.

String variables, like A$, are allocated a 40
character maximum width. Therefore, without any
further specific dimensioning, if you try and put
information of greater than 40 character size in
A$, the information will be truncated at 40
characters. You won't get any error - the process
of truncation is a legitimate and useful operation.
You can, of course, put in fewer than the maximum
width. If you want a string variable to contain
more or less than the default 40 characters, you
must specifically dimension it. For example -

DIM A$(80)
or

DIM A$(5)

DIM A$(80) or DIM A$(5) will allocate A$ an 80
, character or 5 character width. If you have

several string variables which must contain
different widths, each must be dimensioned.

DIM A$(80),B$(5),C$(32)
or

DIM A$(80)
DIM 8$(5)
DIM C$(32)

There is no physical requirement on where to put a
dimension statement, but it must logically be
executed before any reference is made to it in your
program. Dimensioning does not have to be done in
one place. Different variables can be dimensioned
where and when you use them.

Once dimensioned, you can't change (redimension)
its width in the program.

If you want to change the string default value of
40 characters in width, use the SIZES statement.
Default SIZES is SIZES(5,3,40) where the 3rd number
specifies the width of all strings which are not
specifically dimensioned. You can make the maximum
size of all such strings smaller, say 15
characters, by executing the statement -

SIZES(5,3,15)

(See newsletter 12 for a discussion of the first
two numbers in the SIZES statement)

An array is a data structure which enables the
programmer to loop through a set of items by
calculated, or pointed, reference, rather than
specific reference. Arrays are referenced by array
variable name and location. A$(3) is the 4th
location (remember, zero is legitemate - 0,1,2,3)
of the A$ array. Understand that A$ is distinctly
different from the array variable A$. You can have
A$ and A$(0) in the same program.

Consider verifying a legitimate state abbreviation.
Suppose A$ contained some string which is suppose
~o be a legitimate abbreviation. One might write
lt -

800 IF A$=•AL• THEN GOTO 1000
810 IF A$=•AK• THEN GOTO 1000

(48 similar statements)

890 IF A$=•WY• THEN GOTO 1000
900 PRINT "ERROR - STATE NOT CORRECT"
910 GOTO SOME ERROR ROUTINE
1000 !CONTINUE - VERIFIED OK

Or, one might set-up an array of 51 legitimate
state abbreviations. The dimension statement would
be -

DIM 8$(50,2)

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

MUG NEWSLETTER 119 - FEBRUARY 1982 Page 3

where 'SO' is the length and '2' is the width. The
length is physically Sl because 'O' is a legitimate
location. If this array were initialized with the
Sl legitimate state abbreviations, then the
previous example could be written -

800 FOR I=O TO SO
810 IF A$=B$(I) THEN GOTO 1000
820 NEXT I
900 PRINT "ERROR - STATE NOT CORRECT"
910 GOTO ERROR ROUTINE
1000 !CONTINUE - VERIFIED OK

Even though you used two numbers in the DIM
statement, this is called a "single-dimension•
array. The dimension is the length, or '50' in
this case. When referencing the data in the array,
you specify its position. B$(0) is the value of
the first string at the first location, B$(10) is
the value of the eleventh string, and B$(I) is the
value of the "i"th string.

The length of an array can be set from O to 60 -
some thousand, though you'll get a memory overflow ,
with large numbers. The width can be set from 1 to
250. You must set a width. An array does not
default to 40 character width if the second number
is left off. In fact, if you leave the second
number off, you haven't defined an array, you
defined the width of the lone B$ as 50 characters.

A single-dimensioned string array, such as DIM
C$(5,4), can be visualized as:

(o) ' ' .+--+-----11 (.1) __

(.2) 1----+--4---+---t Lf.W&fll :.l,

~:; ~-+-----+--J
(5)

~w1D'f"tt:.'1 JI
You can also have multiple dimensioned arrays.
doubly dimensioned string array DIM C$(3,l,6)
be visualized as:

~ Wll1°H :'1----11

The
can

It has a depth of 4, a length of 2 and with each
string having a maximum character length of 6.
When you reference this structure, you use two
numbers, C$(i,j), where 'i' is the depth position
and 'j' is the length position.

Typing in, running, and analyzing the following
program will hopefully finalize the idea of what
dimensioning of strings is all about.

10 DIM S$(3,l,20)
20 FOR A=O TO 3
30 FOR B=O TO 1
40 READ S$(A,B)
50 NEXT B
60 NEXT A
70 DATA "ALABAMA","MONTGOMERY","ALASKA","JUNEAU"
80 DATA "ARIZONA","PHOENIX","ARKANSAS","LITTLE ROCK"
90 PRINT TAB(4);"STATE CAPITOLS"
100 PRINT
110 PRINT "STATE","CAPITAL"
120 PRINT
130 FOR A=O TO 3

MUG NEWSLETTER 119 - FEBRUARY 1982 Page 4

140 FOR B•O TO 1
150 PRINT S$(A,B)
160 NEXT B
170 PRINT
180 NEXT A
190 END
MICROPOLIS PDS DESCRIPTION

by Buzz Rudow

As in most cases, there are exceptions to the
rules, but in general, the Micropolis PDS (Program
Development System) can be broken down into 3
areas. These are RES (RESident routines), an
executive, and application programs. Executives
and application programs change, but RES stays in
the computer.

RES is the accumulation of resident system routines
whi~h are used by the executive, and which can be
used by the application program. The RES routines
perform the input-output (I/O) functions, such as
keypoard to memory, disk to memory, memory to
screen, and memory to disk. If you have other
devices (collectively called peripherals) connected
to your system, then their I/O will also be
serviced by RES. Other peripherals might include
printers, modems, and tape drives.

RES is the one part of the PDS that has different
code for different systems. It has to be
configured for the specific hardware on which it is
operating. RES is physically located in the low
part of memory, normally from 02BOH to 1598H.

The primary Micropolis executives are named MOOS
(Micropolis Disk Operating System) and BASIC
(Beginner's Allpurpose Symbolic Instruction Code).
Other programs function as executives, but we'll
get back to that later.

Most systems have RES configured so that a "cold
boot• brings in RES, which then brings in MOOS off
the disk. One can build a BASIC only system. That
is one in which the "cold boot• brings in RES,
which then brings in BASIC. The point is, BASIC is
an independant executive, not an application
program of MOOS. Most users feel, because BASIC is
normally loaded from MOOS, that BASIC is an MOOS
application program. Not so.

Another unique feature of RES is that when you
first turn on your computer and bring up PDS, you,
in one way or another, transfer control to the ROM
on the Micropolis disk controller. The program in
ROM will read RES from the disk and write it into
the low part of your memory. Although most disk
reads are made by name, the transfer of RES is an
exception. The ROM program reads whatever is in
track one of your disk. It could be named WHOCARES
and it still would read into memory. RES has to be
in track one. Actually, whatever the boot load is,
has to be in track one. Normally, that is RES.

The point to be made here is that when making a
system disk, always place RES on the disk as the
first file. If you aren't ready to place RES, you
can leave room for it by putting on a dummy file.
This is done via MOOS by executing -

CREATE "SPACER"

The SPACER file can later be scratched and replaced
with RES.

The MOOS executive contains expanded disk I/O
routines and a bunch of subroutines for manipu
lating numbers and characters. It does not have
the capability of constructing application
programs. The construction must be done by way of
an editor, such as LINEEDIT. The program then has
to be assembled before MOOS can execute it. MOOS
can load and transfer control (execute) to an
application program which was previously
constructed. The application program will use
routines in MOOS and MOOS will use routines in RES.

J

MUG NEWSLETTER 119 - FEBRUARY 1982 Page 5

MDOS is physically located at the end of RES,
normally from 15988 to 2BOOH.

The BASIC executive is similar in some respects to
MDOS. It also contains expanded disk I/O routines
and a bunch of subroutines for manipulating numbers
and characters. BASIC, however, does have the
capability of constructing its applications
programs. BASIC can execute its programs without
assembling or compiling them first.

FIXING PROGRAMS THAT HANG

by Buzz Rudow

One of the most exasperating situations to be in is
to have a program •hang". It won't run to comple
tion, but it doesn't abort. So you sit there and
wait - and wait, not wanting to press CONTROL c
because, maybe, just maybe, it's doing what it's
supposed to do.

Finally your patience wears out and you press
CONTROL C. The program stops and there is a line
displayed on the screen. What do you do now?

Actually, you can do just about anything except
edit the program. You'll still be able to continue
running the program where it has just stopped.
Editing is the insertion, addition, deletion, or
modification of any line in the program. Don't
type EDIT (or RUN), and don't type anything that
has a numeric digit as the first character. If the
first character is a number, BASIC thinks you are
adding a line, even if you didn't mean to.

Micropolis BASIC is an interactive language. This
means, in part, that it allows you to type in and
execute most of the BASIC commands without giving
line numbers and running a program. You can LIST
or LISTP the program to see what you are working
with.

I would normally analyse the listing in the area of
the line number which was displayed when the
CONTROL C was pressed. I figure out what is
supposed to be happening. I can determine that
certain files are intended to be OPEN, and certain
variables should contain numbers or text which will
enable me to see where the program is in its
execution. You can PRINT any of these variables.
I would probably PRINT my loop variable (the (I) in
the loop FOR I=l to 1000), and the parameters
associated with the disk files.

You can set any of the variables, too. If you
wanted to increase the loop counter to jump it
across bad data at, for instance, record 56, you
type

I=57

The point I'm trying to make is that you can do
anything from the keyboard in •real-time", by
typing the BASIC statement without a line number.
You can do GOSUBs, GOTOs, PUTS and GETs, etc. You
can examine, alter, and correct your program before
you command it to continue its automatic execution.

To continue execution, type

CONT

THE WORST KIND OF 'HUNG'

Now suppose we go back to the assumption that this
program you're running is hung and you have decided
to press CONTROL c. Last time it stopped. This
time - NOTHING HAPPENS!!! You are stuck in some
input/output loop that isn't looking for operator
interruption by CONTROL c.

Most of you know that the only thing to do is RESET
your computer. It is likely that most of you would
also REBOOT MOOS, BASIC, and reload your
application program. However, if you have not
turned off power, you don't have to do a COLD BOOT.

MUG NEWSLETTER 119 - FEBRUARY 1982 Page 6

Do a WARM BOOT. From your Monitor, transfer
control to 04E7H. On my SOL, that's EX 4E7. On
the VG it's G 04E7.

You'll find that BASIC is still there - the program
is still there - in fact, all the variables are
there with the values they contained when you
RESET. Files are still open, and you can now
manually close them and save all that good data.
You have all the capability to examine that you had
when Control-C worked.

If some of you CP/Mers know of a similar entry
point for BASIC-BO, let me know about it.

CONVERSION BETWEEN MOOS & CP/M

by Buzz Rudow

For those of you who aren't content to operate in
. one system, there's a relatively easy way to

convert BASIC, SOURCE, and DATA files between the
MOOS and CP/M systems. Conversion is necessary

, because the systems structure their directories and
their files differently. The tie to Micropolis is
maintained by the way the data is placed on, and
removed from, the disk. Both MDOS and CP/M have
almost identical code for the •primitive• disk
access routines, which, more or less, means the way
a sector is located, read, or written. Each
system's interpretation of the sector's data is
different, however.

Suppose you have a CP/M BASIC-80 program you want
to run under MpBASIC. A four-step process is
required.
(1) Save the BASIC-80 program in ASCII form.
(2) change the CP/M ASCII to MpASCII.
(3) Change MpASCII to MpBASIC.
(4) Change the syntax to suit MpBASIC.

I tried this using a BASIC-80 game, BUZZWORD. It
has a catchy name. To make it ASCII, I saved it as
SAVE "BUZZWORD",A, - the "A" suffix doing the ASCII
task. Here's the program as a BASIC-80 CP/M file.

5 !REM TEST OF SYSTEMATION CONVERSION, CP/M TO MOOS,
12/23/81

10 PRINT CHR$(4) :WIDTH 80
20 PRINT TAB(26);"BUZZWORD GENERATOR":PRINT
30 PRINT TAB(l5);"CREATIVE COMPUTING MORRISTOWN, NJ"
40 PRINT:PRINT:PRINT
50 PRINT "THIS PROGRAM PRINTS HIGHLY ACCEPTABLE

PHRASES IN"
60 PRINT "'EDUCATOR-SPEAK' THAT YOU CAN WORK INTO

REPORTS"
70 PRINT "AND SPEECHES. WHENEVER A QUESTION MARK

IS PRINTED,"
80 PRINT "TYPE A 'Y' FOR ANOTHER PHRASE OR 'N' TO

QUIT."
90 PRINT:PRINT:PRINT "HERE'S THE FIRST PHRASE:"
100 DIM A$(40)
110 FOR I=l TO 39 : READ A$(I) : NEXT I
120 PRINT A$(INT(l3*RND(l)+l));" ";
130 PRINT A$(INT(l3*RND(l)+l4));" ";
140 PRINT A$(INT(l3*RND(l)+27)) : PRINT
150 INPUT Y$: IF Y$="Y" THEN 120 ELSE GOTO 260
160 DATA "ABILITY","BASAL","BEHAVIORAL","CHILD-

CENTERED"
170 DATA "DIFFERENTIATED","DISCOVERY","FLEXIBLE",

"HETEROGENEOUS"
180 DATA "HOMOGENEOUS","MANIPULATIVE","MODULAR",

"TAVISTOCK"
190 DATA "INDIVIDUALIZED","LEARNING","EVALUATIVE",

"OBJECTIVE"
200 DATA "COGNITIVE","ENRICHMENT","SCHEDULING",

"HUMANISTIC"
210 DATA "INTEGRATED","NON-GRADED","TRAINING",

"VERTICAL AGE"
220 DATA "MOTIVATIONAL","CREATIVE","GROUPING",

"MODIFICATION"
230 DATA "ACCOUNTABILITY","PROCESS","CORE CUR

RICULUM","ALGORITHM"
240 DATA "PERFORMANCE","REINFORCEMENT","OPEN

CLASSROOM","RESOURCE"
250 DATA "STRUCTURE","FACILITY","ENVIRONMENT"
260 DATA PRINT "COME BACK WHEN YOU NEED HELP WITH

MUG NEWSLETTER 119 - FEBRUARY 1982 Page 7

ANOTHER REPORT1•:RUN •MENU•

CP/M TO MOOS FORMAT CONVERSION

Then I rebooted, getting out of CP/M and into MDOS.
Next I ran a Systemation utility, named CP/M-MDOS.
The following is an exact reproduction of the
dialog.

>CP/M-MDOS
CP/M-MDOS Utility - Rev. tl.O - Serial 117157
Copyright (C) 1979 by Systemation, inc.

Enter drive and name of CP/M source file (er)
?B:BUZZWORD.BAS

Enter drive and name of MOOS destination file (er)
?O:BUZZWORD

Pack sectors 2/1 (Y or N) ?Y

Insert formatted diskettes in specified units -
Type Y when ready - ? Y

As the destination file was generated in 16K
blocks, it could occupy more disk space than the
source file. However, if any sectors were
appended, they are merely filled with NUL (Binary
0), and may be deleted with MDOS or BASIC.

Copy completed -- BYE ! !

MDOS ASCII TO MpBASIC CONVERSION

At this point I have a MDOS file of TYPE o. The
next step is to use another Systemation routine,
TR/II, to change the ASCII into MpBASIC format. As
shown by Burks Smith last month, that requires the
changing of key words to tokens. TR/II expects any
ASCII file to be a TYPE 84, which is accomodated by
executing -

TYPE "BUZZWORD" 84
Then TR/II was invoked. The following is the dialog.

>TR/II "BUZZWORD" "BUZZWORDS" 10

Translator II - BASIC/ASCII - Rev. 11.00 - Serial
#12106 Copyright (c) 1980 by Systemation, inc.

Translation completed successfully !

Happy Programming !

CORRECT THE SYNTAX

Simple. OK - ready to run. The program is now
executable, though it has syntax errors for
MpBASIC. One finds syntax errors by looking at the
printout or by running it and changing lines when
the computer halts at an illegal syntax.

This particular program required the following
edits.

Line 10 : Delete WIDTH 80, change CHR$ to CHAR$
Line 100 : Change (40) to (40,20)
Line 120, 130, 140 : Change RND(l) to RND(O)
Line 150 : Delete ELSE GOTO 260
Insert new line 155 : GOTO 260

To convert an MOOS program to CP/M, just perform
the same steps in reverse. Change MpBASIC to
MpASCII, MpASCII to CP/M ASCII, and correct the
syntax.

TR/II "BUZZWORD" •suzzWORDB" 84
MDOS-CP/M
Enter drive and name of MDOS source file (er)
?O:BUZZWORDB
Enter drive and name of CP/M destination file (er)
?B:BUZZWORD.BAS

I also converted some LINEEDIT files to CP/M with
the same set of programs. This would allow you to
use the data with CP/M wordprocessors such as
SPELLBINDER and WORDSTAR.

If you're interested in such things, the required
programs are available through the MUG.

MUG NEWSLETTER 119 - FEBRUARY 1982

TR/II
UTL-1

list $55, for the MUG $49
list $95, for the MUG $85

Page ~

UTL-1 contains the CP/M-MDOS and MDOS-CP/M
routines, as well as 7 other utilities. See
newsletter 5, pg. 2, for further discussion of
UTL-1.

These prices are POSTPAID to N. America. Add
$7.50/package elsewhere. VISA and MASTERCARD
accepted. Phone orders, (205) 881-1697.

COMMERCIAL (???) SOFTWARE

An interesting new program has come to my
attention. It will appeal to only a limited set of
people, but might prove very useful to those who
frequent the race tracks. The MUG has no knowledge
of its capability, and is making no guarentees.

PONY - PICK

If you are a thoroughbred racing enthusiast, a
professioal handicapper or just someone who likes
to win more than they lose, then PONY-PICK is the
computer handicapping program you need.

Unlike others that have been written in the past,
PONY-PICK is not sensitive to any one track or any
one type of race. PONY-PICK can be used for almost
any race on virtually every track in America. And,
PONY-PICK the only system that tells you just how
accurate it thinks it is.

The secret of its accuracy is the use of ARTIFICIAL
INTELLIGENCE in performing its forecast. Simply,
it learns about your favorite tracks from the data
you enter for each racing day. This allows it to
"Fine-Tune" itself to these tracks and their
specific racing conditions. Moreover, it's able to
pick up the short term variables, (new jockeys,
etc.) that can make every horse run slightly out of
form and consider these in its forecast.

Because it adjusts itself automatically and is
constantly striving to improve it's accuracy, it
advises you just how accurate it has become and
permits you to change your wagering strategy
accordingly. And, if for some reason its accuracy
is down, it lets you know that too! Try to find
that in another program!

PONY- PICK requires a minimun system of 48K,
dual-drives, CRT with 80 character screen and a
printer capable of_ 80 characters/line. PONY-PICK
was written by BONJOEL Enterprises and is supplied
in object code. It runs under the Systemation,
Inc. RUN/S or RUN/Z Run Time software. PONY-PICK
is available from the MUG for $252 (list $300).
RUN/S or z sell for $58 (list $65) in the Rev. 2
version.

AUTO CONFIGURATION

by Buzz Rudow

There really are two different problems involved in
auto configuration, meaning the ability of software
to run on any system. One is to get a group of
software items that are on a disk to operate on any
one member's single computer without the member
having to do complicated edits to all the programs.
The second is to have all that same group run on
any computer.

This situation is a result of getting inputs from
many members. Our library disks have clear screen
commands that sometimes read PRINT CHAR$(4), OR
CHAR$(11) or CHAR$(27)+"+" - or any of literally
dozens of other variations. The reason for the
confusion is that video display manufacturers have
not standardized their control characters.

To cure the first problem, either you or I have to

MUG NEWSLETTER 119 - FEBRUARY 1982 Page 9

find the clear screen command in each program and
change them so that they are correct for our own
computer. This •configuration• can be done one
time, saved, and then never bothered with again.

It can, as long as you don't want to run the
software with a different terminal. There are some
of us who have more than one kind of computer
systems. If I configure for my SOL, the software
won't run on my Vector Graphic or CCS. I would
need three different versions of each program -
multiple disks - etc. That's a pain, and expensive
in terms of time and money.

The solution to this second problem is either to
have the software recognize which computer it is
running in, or have a menu in which the name of the
system is requested.

My initial work was done with the menu concept,
coupled with a spin-off of Dave Land's
configuration routines (March MUG Newsletter). In
response to the menu, the program POKED a number
into location 165 (ASH) • Each program controlled
by the menu then PEEKed location 165. Based on its
value, one of a set of pre-defined statements was
executed, which placed the proper character codes·
in a variable array chosen as O$(n). If limited to
the clear screen command, the variable was only
0$ (0) •

This solution assumes that location 165 is free for
all members, which may not be the case. The
subroutines also can get very long when all the
various terminals are considered. Finally, the
most troublesome problem was that I would have to
edit each and every program in the library whenever
a new terminal came along.

As far as the software determining what system it's
running in is concerned, one could do this for his
personal group of computers. There is data that
can identify the computer. Then, taking me as an
example, I know what peripheals I have tied to my
Vector Graphics, SOL, and ccs. There isn't any
data in the operating system or montitor that tells
me what peripheals are there. However, I just know
that I have a Televideo on the CCS. Someone else
could have a Hazeltine 1500. So, as I said, this
idea works OK for an individual, but not for the
Group's library disks.

The solution I've settled on for the group is this.
Instead of having a subroutine, I PEEK the actual
characters to be used in the clear screen command.
This takes a few more bytes of memory, but the
benefits are worth it. No more subroutines on each
program that have to be updated, and no longer do
those subroutines take up valualbe program space.

The next question is where do I PEEK, and how does
the proper data get in there. This time I took an
idea from Jerry Factor (MUG newsletter 14) about
saving variables in the Micropolis BASIC prompt
space. Here are 42 bytes of space that are free,
and, I hope, are in the same location for all of
us. The data is put in through a statement in a
master MENU.

This puts one piece of the work on you. You have
to edit one line on each disk. I'll even give you
instructions on what to put in.

There are three other enhansements that will be
incorporated. I put a version of the INKEY routine
in the same 42 bytes. It only takes 21 bytes, so
we still have 7 left after INKEY and the other
configuration data. This INKEY waits for any
keystroke. Youll have to test for validity of the
keystrokes in your program. However, for any
single character response, Y(yes), N(no),
C(continue), P(print), etc., you don't need to
press RETURN. Sometimes it's confusing to have
some responses require using RETURN and some not.
I hope to be able to mod the programs so that any
single stroke doesn't require a RETURN, but
multiple strokes do. The system will even deduce
whether it's running on Ver. 3 or 4 of BASIC.

Secondly, I added two bytes for specifying the

MUG NEWSLETTER 119 - FEBRUARY 1982 Page 10

default drive for programs and data.

The final enhansement is useful only to the MOD I
people. On a MOD II, each master MENU will call
two secondary menus, which in turn call multiple
programs. The MOD Is will have the MASTER and one
of the secondaries on a disk. This should ease the
problems I've had in converting the MOD II disks to
MOD Is. Besides, each menu will control similar
programs, so this is structured programing.

Here's what a Master Menu will look like:

10 ! 11/14/81 MENU
11 J%=16R2F06
12 IF PEEK(l6R04C9)=64 THEN J%=16R2F7A
13 IF PEEK(l6R04C9)=64 THEN DEF FAA=l6R2F80
14 IF PEEK(l6R04C9)=0 THEN DEF FAA=l6R2FOC
20 DIM 0$(1,8)
40 IF CHAR$(PEEK(J%+37))<>•/• OR CHAR$(PEEK(J%+40))<
>•/• THEN GOSUB 59015:GOTO 60: !Configure system
50 GOSUB 57115: ! Read Clear Screen
60 GOSUB 40015: ! Process MENU

' 70 END
40000
40005

• 40010
40015
40020
40025
40030
40035
40040
40045
40050
40055
40060
40065
40070
40075
40080
GROUP
40085
40090
40095
40100
40105
40110
40115
40120
40125
ue.•;

11/14/81 Main Menu

PRINT
PRINT
PRINT
PRINT
PRINT

0$(0)
TAB(2l);"MICROPOLIS USERS GROUP"
TAB(21);.LIBRARY DISK 08, REV oo•
TAB(28);"MAIN MENU"

PRINT •o - EXIT LIBRARY DISK 08"
PRINT •1 - APPLICATION & UTILITY PROGRAMS•
PRINT "2 - GAMES"
PRINT
PRINT "Enter Number of Function Desired. •;
A$=FAA(l)
IF A$<"0" OR A$> "2" THEN GOTO 40065
PRINT A$
IF A$=•o• PRINT 0$(0):PRINT "MICROPOLIS USERS
LIBRARY DISK 08 EXITED.":GOTO 40105
OPEN 8 "DIR" ERROR 40115
CLOSE 8
IF A$=•1• PLOADG "MENU.A"
PLOADG "MENU.G"
RETURN

PRINT
PRINT "*****";ERR$;"*****"
PRINT "Correct Problem, Press RETURN to Cantin

40130 A$=FAA (1)
40135 GOTO 40085
57000
57005 ! 11/14/81 Read Date
57010
57015 0$(1)= 11

•

57020 FOR N%=1 TO 8
57025 0$(1)=0$(l)+CHAR$(PEEK(J%+34+N%))
57030 NEXT N%
57035 RETURN
57100
57105 ! 11/14/81 Read Clear Screen
57110
57115 0$ (0) = 1111

57120 FOR N%=0 TO 2
57125 0$(0)=0$(0)+CHAR$(PEEK(J%+N%))
57130 NEXT N%
57135 RETURN
59000
59005 ! 11/14/81 Configure software for system
59010
59015 FOR N%=0 TO 26
59018 READ l%
59021 POKE(J%+N%)=I%
59024 NEXT N%
59026 ! Data for Clear Screen
59027 DATA 32,32,11,48,49,0
59030 DATA 62,3,50,160,1,62,1,50,161,l,50,162,l,205,
123,7,120,50,163,1,201: I Data for INKEY
59033 GOSUB 57115: !Read Clear Screen
59036 PRINT 0$(0)
59039 FOR N%=1 TO 6
59042 PRINT
59045 NEXT N%
59048 PRINT TAB(lO);"Your System has been Configured

59051 FOR N%=1 TO 200
59054 NEXT N%

MUG NEWSLETTER 119 - FEBRUARY 1982

59057 PRINT 0$(0)
59060 FOR Nl=l TO 6
59063 PRINT
59066 NEXT H%
59069 PRINT TAB(20);•Good Mornin911•
59072 FOR Nl=l TO 200
59075 NEXT Nl
59078 GOSUB 59115: !Set Date
59081 RETURN
59100 l
59105 I 11/14/81 Configure date for system
59110 I
59115 PRINT 0$(0)
59118 FOR Nl=l TO 6
59121 PRINT
59124 NEXT N%

Pa9e 11

59127 PRINT "Please enter Date (MMDDYY) for use in T
oday's Programs."
59130 INPUT 0$(1)
59133 IF LEN(0$(1))<> 6 PRINT "**ERROR**":PRINT "PLE
ASE ENTER 6 DIGIT NUMBER":GOTO 59127
59136 FOR N%=1 TO 6
59139 IF MID$(0$(1) ,N%,l)<"O" OR MID$(0$(1),N%,1)>"9
" PRINT "**ERROR**":PRINT "ALL SIX CHARACTERS MUST B'
E NUMERIC":GOTO 59127
59142 NEXT N%
59145 O$(l)=LEFT$(0$(1),2)+"/•+MID$(0$(1),3,2)+"/"+R·
IGHT$ (0$ (1) ,2)
59148 FOR N%=1 TO 8
59151 POKE(Ji+34+N%)=ASC(MID$(0${1) ,Ni,l))
59154 NEXT Ni
59157 PRINT 0$(0)
59160 GOSUB 57015
59163 PRINT TAB(lO);"THE SYSTEM DATE IS: ";0$(1)
59166 PRINT
59169 PRINT TAB(lO);"Is this correct? (Y) or (N) •;
59172 R$=FAA(l)
59175 IF R$<>"Y" AND R$<>•N" THEN GOTO 59172
59178 PRINT R$
59181 IF R$=•N" THEN GOTO 59115
59184 RETURN

You'll have to edit line 59027 which, in this case,
is set up for a SOL. This is from Library Disk 8,
which incorporates the concept.

Lines 11-14 deduce whether the system is Ver. 3 or
4 of BASIC. Ji is set to the starting location of
the 'Micropolis BASIC' prompt which we are going to
overwrite. Line 40 checks for the slashes. If
they are already in memory, then you have already
configured, and the program falls through to line
so.

If the slashes are not there, subroutine 59015
reads the data values at lines 59027 and 59030 and
puts the values in the prompt area. Line 59027 is
the Clear Screen commands (3 bytes max), two bytes
for selecting default program and data drives, and
one byte left for a spare.

If your clear screen command is less that three
bytes then the leading bytes should be 32, or an
ASCII blank. The drive bytes are 48 for zero, 49
for one, which are ASCII 'O' and 'l'.

Line 59030's data is the decimal representation of
an INKEY routine similar to the one I wrote in
newsletter #9. The subroutine at 57100 reads back
the clear screen data you just wrote to the lower
memory. Subroutine 57100 is repeated in each
program on the disk. We have configured once, and
the data will remain in low memory as long as BASIC
stays in memory. The subroutine at 59100 asks for
the current date. It sets the slashes in low
memory which cause this whole routine to be skipped
the next time you execute line 40. Subroutine
57000 reads the date back in for verification. If
needed in print routines, the subroutine is
repeated in any such program on the disk.

Line 40015 shows my standard way of using 0$(0) for
clearing the screen. All programs use 0$(0).
Lines 40065-40075 illustrate the use of the INKEY
routine. The system will only recognize a 'O',
'l', or '2'. Line 40070, or its equivelent, is
rewritten to mask out illegal responses. Lines
59169-59178 show the same idea for a Yes/No
response.

MUG NEWSLETTER 119 - FEBRUARY 1982 Page 12

OK, there you have it. Let ae know if I've made
some errors in my jud9ement. I hope any of you who
obtain disk-8 will let me know if the ease of
operation is worth my task of setting up all the
pro9rams. Well, actually, it wasn't my task - my
son Brad did all the work.

LETTERS

Buzz,
I have been trying to get up a FORTH system for the
Micropolis from the FIG-FORTH model. Frankly, I
have had problems in debugging the program. Most
of it is ok, as I have checked it repeatiably with
the published code. I have a fair amount of time
into this project already as the source is 80 pages
long. I would be interested in corresponding with
others with an interest in putting FORTH on
Micropolis.

In lieu of a self-made system, I bought and am
currently running a Z-80 FORTH ($50.00) from
Laboratory Microsystems (unfortunately it runs
unde•r CP/M and not MOOS but at least he can sell it
to you on Micropolis Mod II format diskettes). To
give you some idea of the speed of FORTH, when I
ran Jim Gilbreath's benchmark program on prime
numbers (Byte, Sept. 81) my 2 MHz Sorcerer executed
the program in 15 seconds. A 4 MHz Z-80 will run
the benchmark in 7.5 seconds, which is only 0.7
seconds slower than the Z-80 assembly language
routine listed in the Byte article and between 2 to
100 times faster than any other language tested (on
a 4MHz Z-80). I should point out that the
Laboratory Microsystems FORTH is optimized for the
Z-80 and is not an 8080 program like the FORTH
program's tested in the article. Anyway, for a
real time programming envirnoment FORTH is
definitely way ahead of everyone else.

I am enclosing some "fixes" for the Sorcerer
computer running MOOS version 4.0. They originate
from Exidy but I got them through a dealer (Ed
Mentzner of Mentzner Electronics) • These patches
eliminate problems with early carriage returns,
erase rubbed out characters instead of printing an
underline on the screen, and telling MOOS Basic to
stop grabbing memory before it overruns the monitor
stack area. All of the patches work as I have
implimented them and have had no problems to date.

I am also enclosing the details for modifying a
Sorcerer I or II computer so that the Micropolis
controller can reside at FCOO where normally the
user graphics are placed. This mod involes one
trace cut, adding one 74LS21 chip, and soldering
about a dozen connections. This allows the user
the option of having a full 48k of memory, use of a
ROM PAC of BK additional memory in the S-100
expansion box, and use of the disk all at the same
time, without the disk controller taking any memory
space. The modification allows the user to switch
back to the 'normal' mode if he/she wants to run a
game which uses the graphics area. I also have
details on modifying the Micropolis disk controller
for those 48K Sorcerer owners who would like to put
the controller at BCOO so they can use the disk and
a ROM PAC (only a trace cut and a couple of wires
to solder). I will be happy to send out copies to
interested Sorcerer owners, if they care to write
me.

Dr. Richard s. Neuman
Faculty of Medicine, Memorial University,
St. John's Newfoundland AlB 3V6 CANADA

CLASSIFIED

FOR SALE: Processor Tech •soL" Computer with SOLOS
monitor. S-100 system with 56K RAM. Micropolis
MOD II disk drives, controller and software. CP/M

. .

MUG NEWSLETTER 119 - FEBRUARY 1982 Page 13

and T-MAKER II. Complete System $2,200 or parts.
Call evenings •csT• (608)-788-6677.

Pete Eversole

DAMAN
604 Springwood Cir.
Huntsville AL 35803

(205) 881-1697

==·====·=====
Software Price List - 02/01/82

MDOS MOOS MOOS MOOS MDOS

AFB MICRO CONTROLS

LIST SALE
Complete Attorney's Business Pkg •••••••••• $495 XXX
Invoice-Writer •••••••••••••••••••••••••••• 275 XXX
Medical/Dental •••••••••••••••••••••••••••• 495 XXX
Mfg. Order-Entry/Inventory Cntl ••••••••••• 495 xxx
Payroll/Job Cost ••••••••••••••••••••••••.• 275 xxx

DATABASII
MODFILE
MODIMATH
INVEN-1
WAMSORT
REACT
PONY-PICK

GAME 1
GAME 2
GAME 3

BONJOEL

Data Base Generator ••••••••••••• $ 50

Aux Pkg for DATABASII •.•••••.••• 50
Small Business Inventory Mgmt ••• 50
Assembly Language Sort •••••••••• 40
Calendar Reminder •••••••.••••••• 50
Thoroughbred Handicapping ••••••• 300

CHAMELEON SOFTWARE

' .

$42

42
42
34
42

252

Balrog Sampler ••••••••••.••••••• $ 30 $ 27
Stone of Sisyphus ••••••••••••••• 30 27
Morton's Fork ••••••••••••••..••• 30 27

DAMAN

CATALOG I MOOS Disk Cataloging •••••••••••• $ 30 $ 22
MAILSYS I General Mailing System •••••••••• 50 37
MEMSYS I General Group Membership System. 50 37

G/L
PAYROLL
MULMERGE
SMASH
SYSLIST
TEXTCONV
VARLIST

DATAMGR

MDOC
MAX-MIN
GAMED I SK

FL I ST
BAS PAK
XFILES

XTYPE
PLOADG

DATASMITH

General Ledger •••••••••••••••••• $250
Payroll ••••••••••••••••••••••••• 350
Merge BASIC into multiple pgms •• 30
Reduces BASIC pgm size •••••••••• 30
List multiple BASIC pgms •••••.•• 30
BASIC to LINEEDIT and back ..•••• 75
Lists BASIC variables & arrays •• 30
Set of 5 above utilities •••••••• 150
. • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • 450

GMS SOFTWARE

$189
263

27
27
27
60
27

116
398

Document Processor in BASIC ••••• $
Remove/Restore FEATURES ••.••.•••
Blackjack, Biorhythm,

75 $ xx
30 xx

Banner & Lucas •••••••••.•.••••••
LIST Multiple ASM or BAS ••••••••
Deletes I comments & blanks •••••
Directory in alpha order*
size ••••••••••••••••••••••••••••
Sets attributes* ••••••••••••••••
Direct boot to BASIC program ••••

35 xx
25 xx
30 xx

5 x
5 x

30 xx

* with any other GMS order

LENZ SOFTWARE

DBANK Disk Banking (PER or BUS) ••••••• $ 75 $ 62

MONK SOFTWARE

BEST Custom Building Estimation •••••• $295 $231

MUG NEWSLETTER 119 - FEBRUARY 1982 Page 14

ORGANIC SOFTWARE

TEXTWRITR Text Formatter •••••••••••••••••• $125 $110

AUTO/EXEC
BASIC/S
BCOMPARE
BEM
CRUNCH
DSM-1
EDIT/S
RUN/S
SORT/A
TR/II
UTL-1
XREF

SYSTEMATION

System Generator •••••••••••••••• $ 40
Extended BASIC Compiler ••••••••• 345
Basic Comparison •••••••••••••••• 35
Basic Expansion Module •••••••••• 65
Basic Compactor................. 35
8080-8085 Disk Disassembler ••••• 65
Text Editor ••••••••••••••••••••• 45
BASIC/S Run-Time Package only ••• 65
Hybrid Sort (for Mp BASIC) •••••• 75
Translator II - BASIC/ASCII ••••• 55
Disk Utility Package •••.•••••••• 95
Cross Reference Generator ••••••• 85

$ 36
308

31
58
31
58
40
58
67
49
85
76

• Prices and availability subject to change without
notice.

Software Price List - 02/01/82
CP/M CP/M CP/M CP/M CP/M

on Micropolis Formatted Disks

ASHTON-TATE

LIST SALE
dBASE II •••••••••••••••••••••••••••••••••• $695 $589

BONJOEL

PONY-PICK Thoroughbred Handicapping .•••••• $300 $252

CHARLES MERRITT

SPELL MENU •••••••••••••••••••••••..••••••• $ 95 $ 72

COMPILER SYSTEMS

CBASIC2 •••••••••••••••••••••••••.••••••••• $150 $126

COMPUTER HEADWEAR

WHATSIT? •••••••••••••••••••••••••••.•••••• $150 $131

BUSINESS PLANNING SYSTEMS

PLAN 80 •••••••••••••••••••••••••••..•••••• $295 $253

G/L
PAYROLL

DATASMITH

General Ledger •••••••••••••••••• $250 $189
Payroll ••••••••••••••.•••••••••• $350 $263

INNOVATIVE SOFTWARE

SPELLGUARD ••••••••••••••••.••••••••••••••• $29 5 $25 3

INVESTMENT SYSTEMS ANAL

PROPERTY MANAGEMENT SYSTEM II ••••••••••••• $725 $690
PROPERTY ANALYSIS SYSTEM ••.•••••••••.••••• 250 242
BUSINESS SUPPORT SOFTWARE ••••••••••••••.•• 65 65

LEXI SOFT

SPELLBINDER ••••••••••••••••••••••••••••••• $495 $319
SPELLCHECK •••••••••••••••••••••••.••••••.• $295 253

MUG NEWSLETTER f 19 - FEBRUARY 1982 Page 15

ORGANIC SOFTWARE

MILESTOHE ••••••••••••••••••••••••••••••••• $295 $253
DATEBOOK II••••••••••••••••••••••••••••••• 295 253
PERSONAL DATEBOOK ••••••••••••••••••••••••• 150 131
TEXTWRITER II or III •••••••••••••••••••••• 125 110

SORCIM

ACT I 8080/Z80 •••••••••••••••••••••••••••• $175 $161
PASCAL/M.................................. 395 358
SUPERCALC................................. 295 253

BASIC/Z
RUN/Z
SORT/B
UNDELETE
UN PROTECT

SYSTEMATION

Extended BASIC Compiler ••••••••• $345
BASIC/Z Run-Time Package only ••• 65
Hybrid Sort (for BASIC-80) •••••• 75
File Recovery ••••••••••••••••••• 45
Basic Source Recovery ••••••••••• 70

TECHNICAL SOFTWARE

$308
58
67
40
62

PASCAL SORT •••••••••••••••.••••••••••••••• $195 $169

TOPAZ SOFTWARE

SBASIC •••••••••••••••••••••••••••••••••••• $295 $253

Prices and availability subject to change without
notice. Most CP/M software available in formats
other than Micropolis.

. '

Published Monthly by the MUG
Subscription rates:

U.S., Canada, Mexico; $18/year: Other, $25/year

FIRST CLASS MAIL FIRST CLASS MAIL

==

MICROPOLIS USERS GROUP

Buzz Rudow, Editor
604 Springwood Circle
Huntsville AL 35803

(205) 881-1697

FIRST CLASS MAIL

0 .2. 0

