
MICROPOLIS USERS GROUP

MUG Newsletter 125 - August 1982

A COMPARISON OF MICROPOLIS AND MICROSOFT BASIC ---------
by Burks A. Smith of DATASMITH

Box 8036, Shawnee Mission KS 66208

Probably the most widely used BASIC in the world is
from Microsoft. Designed for use on 8080 or Z-80
microcomputers, Microsoft Basic is available for
several different operating systems, and is
extremely popular even on the Apple, where it
requires its own processor. Microsoft is not
available to run under MDOS, but if you use CP/M it
is probably the language you will see most often.
This article provides a comparison between
Microsoft Basic and Micropolis Basic, written from
the perspective of someone who is more familiar
with Micropolis. I have tried to be fair in the
comparison, but I do have my own opinions, which
are identified as such.

Since both languages are versions of Basic, most of
the commands and functions are the same, as you
would expect. I have found it relatively easy to
convert programs from one language to the other
once I learned the implications of the differences
betw-n them. However, the differences are
important, making some types of program structures
difficult or impossible to translate.

ENTERING, LOADING, AND SAVING PROGRAMS

Entering a program is quite similar in both
languages. BASIC is started by typing BASIC from
the operating system level, which loads the_
interpreter and executes it. Basic statements are
entered in exactly the same way, and both languagea
have identical program edit facilities. Microsoft,
however, has an AUTO command which generates line
numbers automatically. This is a useful timesaver
when entering a new program. If an automatically
generated line number already exists in the
program, Microsoft warns you by printing an
asterisk after the line number, preventing
accidental overwriting of existing program lines.
A very nice feature of Microsoft Basic is that it
allows long variable names instead of the simple
letters used in the minimal configuration provided
by Micropolis. In both languages a variable
terminated by a t sign is an integer and a variable
terminated by a $ is a string. Microso~t allows
this to be overriden, however, by declaring
variables real, integer, or string.

Both Basics save programs on disk with a SAVE
ccmmand, but Microsoft does not differentiate
between old files and new files. If the file being
saved does not exist on disk, Microsoft creates it.
If the file does exist on disk, Microsoft replaces
it. This is in contrast with Micropolis, which
requires that you specify whether the file is new
or not with the N: prefix. The Microsoft scheme is
convenient but more dangerous. If you accidentally
give different programs the same name, the
previously existing program will be destroyed.
Microsoft also has three different formats for
saved files.

Ordinarily, a program is saved in a binary form
with all keywords converted to tokens like
Micropolis does. However, a program can also be
saved as ASCII text or in a "protected" format.
The ASCII text format is very useful because it
allows the use of a text editor on the program or
transmission through a modem. ASCII programs can
be loaded and executed by Basic, but the loading
process takes longer because each line must be
tokenized before it is stored in memory. The
protected format is similar to the regular binary
format, except each byte is somehow encrypted
before it is written to disk, so that the file

looks like so much garbage except to Basic. The
first byte in the file tells Basic whether or not
it is protected so that when it is loaded, it may
be decoded back to an executable form. Once a
program file is stored in a protected format, it
may not be listed, changed, or unprotected, even by
the original programmer. In theory, this feature
should protect your software from being stolen by
unscrupulous third parties, but it actually only
provides protection against the ignorant. Once a
protected program is loaded, its memory image is
the same as an unprotected program, so the debugger
can be used to do a little fiddling with the
protect/unprotect byte and the memory image can be
saved on disk in an unprotected format. I found
this much easier than trying to figure out what the
encryption scheme was.

PROGRAMMING STRUCTURE

The way the FOR - NEXT loops work in the languages
is different. In Micropolis, a FOR-NEXT loop is
always executed once even if the ending condition
is exceeded at the outset, and the loop always
exits with the loop variable equal to the TO value
(last value used). This is nonstandard. The
standard way, and the one Microsoft uses, is that a
FOR-NEXT loop will not be executed at all if the
end condition is exceeded at the start. For
example, FOR X•9 TO 5 •••••• NEXT X won't do
anything in Microsoft. Microsoft always exits the
loop with the looping variable exceeding the TO
value (first value not used). It is important to
remember this distinction. Microsoft also has a
WHILE - WEND loop, nice, but it can be duplicated
in Micropolis with the same number of statements.
The fact that Microsoft has an ELSE clause
associated with an IF - THEN statement is a
definite advantage, however.

NUMBER CRUNCHING

Both versions of Basic have the same or very
similar math operators and functions, so they will
both perform the same types of mathematical
operations. The few differences that exist are
that Microsoft has an XOR function and a SWAP
function (useful in sorts), but is missing MIN,
MAX, LOG (common), and FRAC, which are included by
Micropolis.

The big difference is in the precision and the way
math is performed internally. Micropolis has
variable precision that varies anywhere from 4 to
53 significant figures, as set by the SIZES
statement. This allows scientific or engineering
computations about as accurate as you would ever
need them, sufficient for interstellar navigation
if you care to install Micropolis Basic on your
starship. Variable precision is a unique feature,
and gives little Micropolis based micros a
computational accuracy that beats many high level
languages on big mainframe computers.

Microsoft Basic gives you two choices of precision.
Single precision, which is 6 digits accuracy, and
double precision, which is "about" 16 digits
accuracy. Both single precision and double
precision variables may be mixed in the program. A
double precision variable is identified by
terminating it with a t sign or by declaring it as
double precision. Integer variables in Microsoft
are strictly 15 bit numbers with a sign, limiting
them to+ or - 32767.

The languages differ considerably in internal
storage format. Micropolis uses BCD (Binary Coded
Decimal) where decimal digits are packed two to a
byte and math is carried out much like humans do
it, in decimal. Microsoft, however, uses pure
binary storage and arithmetic, which means that
numbers entered in decimal from the keyboard must
be converted to binary for storage and values to be
printed must be converted from binary to decimal on
the way out. Since all the math is carried out in
pure binary, Microsoft introduces rounding errors
with double precision that are extremely annoying.
For example, dividing .1 by 10 in Microsoft's
double precision does not result in .01, but some
number that is about 150 trillionths more, much

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

PAGE 2

less accuracy than the 16 digits claimed. This
means that, unless the programmer adds some kind of
round-off routine, balance sheets don't always
balance exactly, and numbers that should be zero
don't always compare equal to zero. The binary
math means that Microsoft is generally a faster
number cruncher than Micropolis, because the
variable precision and BCD arithmetic slow up the
latter. BCD also requires more storage. If I were
progranming for accuracy, however, I'd wait the few
extra milliseconds for the right answer.

STRINGS

All the common string functions are present in both
languages, but there are a few differences. The
REPEAT$ function in Micropolis is called STRING$ in
Microsoft, but Microsoft only repeats a single
character, rather than a whole string as is done by
Micropolis. Both languages have a function to find
substrings (INDEX vs INSTR), but Microsoft has no
counterpart of the Micropolis VERIFY. Also missing
from Microsoft is the extremely useful FMT
function. In its place, PRINT USING may be used
for formatting output, but there is no general
purpose formatting function that can be assigned to
a string. Included by Microsoft, but not by
Micropolis, are BEX$ and OCT$ functions which
convert numbers to strings in hexadecimal or octal
notation. This is extremely handy for utilities,
memory dumps, etc. String lengths in Microsoft are
dynamically allocated, so it is not necessary to
dimension strings because Basic will automatically
provide space for up to 250 characters per string.
Micropolis, on the other hand, has fixed length
strings and forces you to specify string lengths
with the SIZES or DIM statements.

Microsoft's dynamic string allocation is a two
edged sword. On one hand, it makes the
programmer's job much easier by giving you as much
string length as you need up to the 250 character
maximum. On the other hand, the internal scheme
for string allocation causes serious performance
problems in large programs that do a lot of string
handling. Every time a string is assigned (or
reassigned) a value, the old string storage for
that variable in memory is abandoned and the new
value for the string is stored in previously unused
memory elsewhere. Actually, this is a fairly fast
operation since all that is required is for an
internal pointer to be changed, but the memory used
by the old contents of the string is not recovered.
The result is that Basic gobbles up a little more
memory each time a new value is assigned to a
string. Eventually, when there is less than 256
bytes of memory left, all that abandoned memory
must be recovered with a procedure called "garbage
collection" (really). This is a complete
reorganization of variables in memory and can take
longer than JO.seconds to complete! Long programs
that don't have much memory left over for variables
need garbage collection more often and suffer by
being much slower than short programs.

The last big difference between the languages are
the disk storage functions. Micropolis has one
kind of file, random access, and Basic can only
write ASCII characters (usually) to the file.
However, there are a large variety of disk related
functions in Micropolis Basic that make using disk
storage very easy and efficient as far as coding is
concerned. Programs can be made very user friendly
and error tolerant, because disk errors can be
trapped and handled with software, and the status
of the disk drives and files can be tested,
avoiding disk errors through information. The
Micropolis file system has the disadvantage of
being of fixed record length. This means that,
unless you provide your own blocking and deblocking
logic, short records waste a lot of disk space and
records longer than 250 characters are not
possible.

Microsoft has two kinds of disk files. Sequential
(more properly called "strear.1") files, and Random
files. Sequential files have no record structure
at all and are accessed with PRINT and INPUT
statements. A Sequential file is composed of data
separated by commas, carriage returns, and

MUG NEWSLETTER 125 - AUGUST 1982

linefeeds, just as if it were being entered from
the keyboard, and is read and written accordingly.
With a Sequential file, you can write blocks of
data in varying lengths and in any format you want,
but you have to make sure you read it back in the
exact way it was written. There is no way to
extend a sequential file without rewriting it
completely, so they are not suitable for large
files that must be added to or updated frequently.
Opening a Sequential file for output will either
replace any file with the same name, or create a
file if the name isn't in the directory, so you
have to be careful to first open the file for input
to see if it exists if you are concerned about
destroying data.

Microsoft Random files have the advantage of being
opened with any record length you desire, with
Basic providing all blocking and deblocking
functions without regard to the disk's physical
sector size. Fields within a record are generally
of fixed length, with a number of record packing
and unpacking functions provided for this purpose.
Numeric data in a Random file is written to disk in
binary format which uses less space, so this
feature, coupled with user-defined record length
allows much more efficient storage of data than
Micropolis provides. The price you pay to use
random files to advantage with Microsoft may
require as much as ten times more code to implement

. than with Micropolis, and much more careful
planning of record layout. Microsoft Basic is not
tolerant of disk errors and there is no way to trap
drive not up or permanent I/O errors. When these
kind of disk errors occur, it invariably results in
a crash, sending you back to the operating system
with no opportunity to close files or otherwise
provide an orderly retreat. This makes it
difficult, if not impossible, to write an
error-tolerant program in Microsoft.

While both languages have facilities for calling
and passing parameters to assembly language
subroutines, Microsoft (at least version 5.2) does
not have a command to load such a subroutine! We
assume that the user has to use the ·debugger or
some other facility to load this program before
getting Basic up. I note , however, that the IBM
Personal Computer Basic (which is also Microsoft)
has fixed this with binary load and save commands.

SUMMARY

Which one would I choose? If you aren't using
Micropolis drives there isn't much choice. If you
are, it depends on what you want to do and your
progranming style. I prefer Microsoft's long
variable names generally faster numeric processing
if accuracy isn't too important. For accuracy and
error handling ability Micropolis is hard to beat.
I am particularly fond of the FMT function, which I
use for all sorts of general purpose numreric
formatting. It is also much easier to use than
PRINT USING, even in print statements. If I had to
make a choice, I'd say that Micropolis Basic is the
more powerful language, all things considered.

A Basic Cross Reference Listing is shown, starting
on page 7, following Zot's assembly listing.

BUILDING THE CHEAP COMPUTER, PART IV
wwmw•

By Zot Trebor

If you've followed me through the previous
~rticles, yo~'ll appreciate that the major problem
is not the simple replacement of one monitor
routine with another. If I had a working PROM
progranmer this whole idea of stuffing a video
driver into our RESident module would never have
come up. But I don't. So it did.

The open space left in the RES is akin to a natural
resource for we MUGgers. I hate to waste it on

• somet~ing that properly should be frozen in a PROM.
If I g'et a PROM programmer working, expect to see

MUG NEWSLE'l"l'ER t2S - AUGUST 1982

me telling about it in the Newsletter: perhaps we
can come up with a Cheap Computer Standard Monitor
or something equally silly.

This article will describe how to install the video
driver within the RES without crashing the system,
something I did countless times until I got the
hang of it.

The source program is named "VIDEO" and is
reasonably well documented via imbedded comments.
The program is assembled in the usual manner except
its object code is offset in memory. This is
necessary because the MDOS does not allow loading a
program, by either the LOAD or MOVE commands, into
an area of memory occupied by the operating system.

ASSM "l:VIDEO" "l:VID.OBJ" "PTS"

will generate the necessary documentation and make
a master history or backup file of the program. A
further assembly,

ASSM "l: VIDEO H.. "M" "8000"

will produce the offset program. The assembly
should inmediately be followed with a

SAVE "l:VID.OBJl" 8618 8740 4

to preserve the offset program.

With both MDOS and RES in memory, the offset
program should be loaded as ••• LOAD "l:VID.OBJl".
Now all the necessary parts of the conversion are
in memory.

It is now necessary to reset the system and return
to your primitive monitor, as MDOS will not allow
the direct overlay of the RES area. Using your
monitor, move the new program from its offset area
into its proper area as in the form ••••

M861B 8687 061B<cr> (using the SSM monitor form)

M87ll 873S 07ll<cr>

Notice that the driver is loaded in two parts. The
console routines in RES, which are being replaced
by the driver, run from 618 to 6CA, at which point
the printer drivers begin. Rather than re-assemble
the printer drivers, I've simply loaded around
them, starting the second portion of the video
routines at 711. This is more fully explained in
the assembler listing.

Now the new video driver is in place but is not
connected to the rest of the system. Connection is
made by plugging the new subroutine addresses for
CDIN, CDOUT, CDBRK and CDINIT into the lookup table
beginning at 04F8. CDIN does not need a new
address: the address stays the same as it is the
first subroutine.

The new addresses are:

04F8

04FA

04FC

CDOUT 064E

CD8RK 062C

CDINIT • 0637

If you enter these using the SSM monitor, your
input should look like this:

S4F8 38-4E 06- S4-2C 06- 68-37 <er>

Notice that you don't have to enter anything if you
are not changing that locations contents. Pressing
the space bar advances the address. In the case
above we changed only the low-order positions of
three addresses.

Now the new video driver has been inserted into
memory and the new addresses have been entered in
the console table. Again, using the SSM monitor,
go to the warm-start address and let's see if it
flies. Enter G4E7<cr> and you should get an
inmediate screen clear and the printing of the MDOS
legend on the screen. If you didn't, it's back to
the drawing board.

PAGE 3
But we aren't done yet. Micropolis doesn't allow
distructive backspaces, they like to put slashes
and stuff on the screen. We've taken care of that,
but we must adjust our character count: each time
we backspace, we are reducing the character count.

I wish I had some neat little routine to take care
of this, but I don't. What I've done is to put a
patch on the MOOS and it is very crude.

Backspaces are handled by MDOS in a routine called
DEVOlO. It's in Appendix E, page 7 of your manual.
Memory address is S99 thru SAO. Here is what I
did. I put an unconditional jump at location S9E
to take us down to a clear area at SE4. At SE4 I
put a little routine to decrement the ff-register,
ie, reduce the character count for the line. In
the next routine, the character count is compared
to line length, so everything works out.

To install this patch, make the following entries
under MDOS

ENTR S9E

C3 E4 OS/<cr>

Which takes us down to the patch •••

l!!NTR SE4

OE SF 2S C3 Al OS / <er>

which does the work and takes us back to the next
routine, DEV020, where the line length gets
checked.

Now we've done it. We have a neat little video
driver nestled down in our RES module. To save it,
just save RES. See para. 2.2.6, page 2-33 of your
Micropolis manual to save RES.

We now have a video driver tucked away in RES,
always available and certainly much more useful
than the one in the SSH monitor. But should we
stop there? I don't think we should. For one
thin9, the video is still addressed at BOOO and
that takes a devil of a chunk out of our memory
space. I'd like to tuck the video away up at high
memory, say about FOOO. The only problem here is
the fact that the SSM monitor is also at FOOO.
Hummmm.

If we look at the SSH cpu card we see that we can
shut off the PROM's that hold the monitor ••• and if
we no lon9er need the monitor: the video driver
now bein9 in RES, why not try it? This leads to
the problem of how to bring up the system if we
don't have a monitor. Again, looking at the SSH
cpu card we see that we can address the vector jump
on reset to anywhere, and that includes to the
start of the Micropolis boot-strap routine. If we
want to keep our high memory usage compact it would
be nice to strap the Micropolis to, say E800 where
it can tuck itself in under our new video location
of FOOO. Lets see how that works.

Re-strapping the Micropolis is done by physically
unsoldering and removing one jumper on the
Micropolis board. The instructions for doing this
are covered in para. 2.1.4.1, page 2-4 of the
manual. Pages 2-S and 2-6 are full-page
illustration~ that make the job virtually
goof-proof. So re-strap the board (the little
jumpers are called 'straps': old-time computerese
to confuse the novice) and try it out. Don't
chan9e anything else until you are satisfied that
your re-strapping works okay.

With the controller board working at ESOO we now
shut off the PROM's on the SSH cpu card by pushing
the right-hand side of switch S2-P. Thats the
third switch position up from the bottom of switch
s2. The PROM's are now turned off. The monitor is
dead. Long Live the RES modulel

Now we need to get the reset to take us to the
Micropolis bootstrap at location E800. Switch S2
is also used to set the address. ES is 1110 1000
but we are only setting the h~gh-order five bits

PAGE 4

(1110 1---). The high-order position is the top
switch section on S2 and a switch section is a '1'
when the left-hand side of the switch is down. Use
a pencil or something similiar to set the sections
to 11101. Now try it. Press your reset button and
latch down the disk at the same time. You should
hear the familiar click and in a moment the legend
should appear on the cleared screen. It's almost
like having a real computer!

Now lets look at the problem of moving our video
display up to high memory. The video board is set
to locaction BOOO as required by the SSM
monitor ••• which we are no longer using. we can put
it anywhere we want now, so long as the video
driver in the RES module knows where it is. The
problem here is that once we re-address the video
we can no longer see what the devil is going on.
Risky. Better to make any changes to the program
first and then reset the video board address.

The new video driver is designed to accept new
video start and end addresses dynamically so it is
no problem to get in there and set up for a
different location. Look at the assembly listing,
line numbers 670 thru 900. The constants shown in
lines 690 and 760·allow the video initialization
subroutine (CDINIT) to set-up the starting and
ending addresses of the video screen, as well as
the starting position of the cursor. If we were
changing the start of the screen from a program,
for example, to partition the screen to preserve a
heading or operator instructions, we would poke the
new value into the buffer we have assigned
(SCRNEND). Each time the system was initialized,
the standard start and end addresses would be used.
Neat. But we want to actually change the standard
addresses and that means that once we do, we had
better change the video board switch settings to
match those addresses or else the 'video' will be
down in RAM somewhere, displaying its heart out to
a neighboring resister. Here is how we do it.

Using the MDOS routine for ENTR'ing data,
(remember, the SSM monitor has died and gone to
Corona).

ENTR 63A

FO F4 /<er>

ENTR 641

F3 /<er>

You just did it. The next time you initialize the
system, the video will be addressed at FOOO to
F3FF. It doesn't do it now because you haven't
changed the screen locations in the buffers.

Now reset the address of the video board. This one
is a snap because the difference between 8000
(1011) and FOOO (1111) is so obvious: just push
the second switch element into alignment with the
other three. Bingol The screen just went dead.
Now don't touch anything for a minute. It wouldn't
show up on the screen if you did. Being
super-careful, type in EXEC 4E7<cr>. Micropolis
will warm-start and re-initialize the video to the
new addresses.

Now you have a different RES module than that which
is on your disk. What's more, if you were to hit
the reset button at this point you would get
nothing because your video board is now at a
different location than the video driver in the RES
module. Be Careful! We need to copy the RES
module to disk. Follow the same instructions as
before.

Complicated, isn't it? With the new RES safely
backed up on at least two disks, give it the acid
test: shut down the system completely. Now power
back up, depress the disk latch and hit reset. If
it dosen't work, take two aspirin and call Buzz in
the morning.

MUG NEWSLETTER 125 - AUGUST 1982

LETTERS
---=-==

DOUBLE-SIDED DRIVES

Buzz,
I've just recently acquired the 1053-M4 dual drive
unit (double sided drive). Micropolis informs me
that currently no vendor supplies CP/M configured
with double-sided disk drives in its BIOS.

With the help of some friends in my SORCERER's user
group, I hope to modify a single-sided BIOS to
drive these new drives. However, I am having some
difficulty in getting technical information/method
ology for driving the controller. Micropolis has
sent me some information, but not really enough.

Does perhaps someone in your organization have some
more information on this subject?

Also, since EXIDY is no longer in business, I'm
having difficulty in getting the 'patches' neces
sary to bring up MDOS & MICROPOLIS BASIC on my
machine.

I'm hoping that someone else in your group has also
been this route, and might be able to help.

~ The versions of software supplied on the diskettes
are all V4.l. I am confused about the need to
apply the V4.0 patches to the RES & MDOS, as the
enclosed documentation has suggested (SIB's 112
thru 116). Any suggestions of yours would be most
appreciated.

And finally, my eventual desire is to get CP/M.
However, I don't want to start to acquire a large
set of files, until I am certain they can be con
verted into CP/M formatted files. If anyone has
done these things, I would appreciate hearing of
their experiences.

Jonathan Burnett, 904/358-1480
5422 Missouri Ave., Jacksonville FL 32205.

Jonathan:
I've been asking around about a CP/M for the MOD
IV, but haven't found one yet. There supposedly is
one. I'll keep looking.

En~losed is an Exidy patch from MUGie Bruce Taylor
which may help with the Micropolis system. If you
are having further problems, give me some specific
examples. We'll see what we can do.

My guess is that you should put in all the Version
4.0 patches. Though I've never seen Version 4.1
it must be compatable with 4.0. I would think that
the major differences are in the disk access rou
tines. All entry points should be the same as 4.o.
I've never heard of software being incompatible.
Since the patches have to do with BASIC strings and
stuff. I think the code is identical.

Yes, you can convert MDOS files to CP/M files. You
will find an article on this in newsletter tl9,
page 6. Another option is to use BASIC/S while you
are on MDOS, and then use BASIC/Z when you go to
CP/M. I think these BASICs are super. Actually,
they are both called BASIC/Z, now. Nothing like
them in the CP/M world.

By-the-way, you might get some help from Dynasty,
14240 Midway Rd., Dallas TX 75234, (214) 386-8634.
I hear that they have taken over the Exidy pro
ducts, though I don't know if there is a Sorcerer
anymore. I assume you know of The Sorcerer's
Apprentice. See newsletter 121, page 9.

If any of the MUG members have gotten CP/M running
on the MOD IV, please let both Jonathan and me know
about it.

Ill

~
~I Title: VIDEO
ci.

N
CD

°'
f'4
Ul

~
Ill
N
~

E
r.:I

I
~

0010 ***
0020 *
0030 *
0040 *
ooso *
0060 *
0070 *

TITLE: VIDEO
This is a video driver program written to fit within
the Hicropolis RESident module.
Written by Zot Trebor, Dec. 1980.

0080 **
0090 *
0100 * First, an explaination: The system is brought up under
0110 * control of the SSH monitor which requires the video to be
0120 * addressed at BOOO and the keyboard at ports 2 (status)
0130 *and 3 (data). Initial values in this program are to
0140 * satisfy the SSH monitor. Additional instructions have
OlSO * been provided via the Hicropolis Users Group for the
0160 * actual installation of this driver.
0170 *
0180 * A few EOUates for information
0190 KBStatus EOU 02H : The keyboard status port
0200 KBData EOU 03H : The keyboard data port
0202 BellOut EOU OFEH : The 'Bell' Outport
0210 *
0220 *
0230
0240 *

ORG 061BH : Start at the normal COIN address

02SO ***
0260 * CONSOLE DEVICE INPUT ROUTINE
0270 **
0280 *
0290 COIN
0300
030S
0310
0320
0330
0340
03SO
0360
0370
0380 *
0390 INOlO
0400
0410
0420
0430 *

IN
ANI

XRI

JZ
JNZ
NOP

IN
HOV

RET

KBStatus
1

0

INOlO
COIN

KBData
B,A

Get Key Board status •
.AND. with the flag mask •••
This isolates the low-order bit
•• I use InPort 2 for several types of status
•• bit 1 is for the KB,
.OR. with status mask
This determines if it is a 1 or zero
Is it a zero?
No, loop until it is
Placeholder

Get key board data
All Hicropolis software expects
the character in the 8-reg

0440 ***
04SO * CONSOLE DEVICE BREAK CHECK ROUTINE
0460 **
0470 *
0480 CDBRK
0490
osoo
OSlO
OS20 *
OS30 CDBRKO
OS40
OSSO
OS60 *

IN
ANI
XRI
RNZ

IN
HOV
RET

KBStatus
1
0

KBData
B,A

: Get Key board status
: Isolate LOBt
: Is it a 1?
: RETurn if it's a 0

: It was a 1, get the data
: Put into B for Micropolis

Page 1

Title: VIDEO

0570 ***
OS80 * CONSOLE DEVICE INITIALIZATION
0590 ***
0600 * NOTE
0610 * A memory-mapped video device does not require initial-
0620 * ization as would an I/O-mapped device which must comm-
0630 * unicate with the computer via USART. Initialization
0640 * in this case is merely setting the initial screen para-
0650 *meters.
0660 *
0670 CDINIT
0680
0690
0700
0710
0720
0730
0740
07SO
0760
0770
0780
0790
0800
0810
0820
0830
0840
08SO
0860
0870
0880
0890
0900 *

PUSH
PUSH
LXI

SHLD

LXI

SHLD

MVI
CALL
POP
POP
XRA

RET

H
B
H,OBOB4H

SC RN END

H,083FFH

CURS POT

B,OCH
CDOUT
8
H
A

We are going to destroy these
registers, so save contents
Get screen address hi-order
bytes, BO & 84. These are
for the SSH monitor and will be changed
when the program is installed in RES.
Store the hi-bytes in SCRNHOHE
and SCRNEND. They are adjacent so we
need only address SCRNEND
Get the last screen address for
screen-clearing
Store it in the the Cursor
Position buffer
Get the Screen Clear code ••
•• and clear the screen

Restore the registers •.•
•• and turn off the Carry Flag (CY)
to tell Hicropolis we're done.
Done with initializing the screen.
We will start with the screen clear
and the Micropolis legend in the upper
left corner

0910 ***
0920 * CONSOLE DEVICE OUTPUT ROUTINE (VIDEO)
0930 **
0940 *
09SO CDOUT
0960
0970
0980
0990
1000
1010 *

PUSH
PUSH
PUSH
PUSH
MOV
LHLD

1020 CNTRLX EOU
1030 CPI
1040 JZ
1050 *

PSW
B
D
H
A,B
CURS POT

: Save ALL registers

Get the character into A-reg
Get cursor address into HL

18H : Clears current line
CNTRLX : is A = 18H?
CLEARLINE : Yes, go clear the line

1060 * Read the following carefully
1070 *
1080
1090
1100
1110 *
1120
1130
1140 •

LXI
PUSH

MVI

D,SCROLL
D

H,20H

Get the Scroll Routine address ••.
: •• and stuff it on the stack (I)

Local RETurn's will now fall through SCROLL

Get a space character and erase
the cursor. Fall thru •••

Page 2

'-, J J J

//

N
00

~ ~ ~

~I Title: VIDEO Title: VIDEO
8 m
6
p
<

Ill
N

•
~
~

~
~
m
t
lZi

" i

"'
~
~

llSO RBOUT EQU
1160
1170

SFH Micropolis has chosen to change the
normal Backspace (08) into SF .•.
I have no idea as to why.

1700
1710
1720 *

CMP
JNZ

H
CURP

Have we run off the screen?
No, go restore the cursor

1180
1190
1200
1210
1220

CPI
JZ
CPI

RBOUT
RUBBIT
20H

So, SF is a BS and must be treated
Is A = SF?
Yes, go rub it out.

seperately. 1730
1740
17SO

LHLD SC RN END Get the two-byte hi-order bytes
showing screen home and screen end
H=screen home, L= screen end

1230
1240
12SO *

JNC PAINT

No. Is A a printing char?
ie, >20H?
Yes, A was < 20H so go
to printing character routines

1260 * At this point we know the character is not a line erase, not
1270 * a backspace and not a printable character, therefore it must
1280 * be a control character.
1290 *

EOU ODH

SUI CR
JZ CARTN

EQU OCH

INR A
JZ FFRTN

EQU OBH

INR A
JZ VERT AB

Carriage Return Code

Subtract OD from the A-reg
If equal, go do a carriage retrn

Form Feed Code
FF will clear the screen and
home the cursor
Follow the logic here •••
Go do a rorm feed -

Vertical Tab Code
We get this for free,
put it ih '
If A = 0, char is OB
Homes the cursor

so

1300 CR
1310 *
1320
1330
1340 *
13SO FF
1360
1370
1380
1390
1400 *
1410 VT
1420
1430
1440
1442
14SO *
1460 *
1470 *
1472 *
1473 *
1480 *

No other useful control codes. If you have a special
application, include the codes here or before the RET

Don't assemble the following unless you have space

07H
A
A
A
A

: This
OA
09
08
07

1490 *BELL EQU
lSOO * INR A
lSlO * INR A
1S20 * INR A
1S30 * INR A
1S40 * JZ Bell If it's
lSSO RET
1S60 *

one is just for fun

a 7, go to Bell
: We will fall through SCROLL

1S70 **
1S80 * PAINT - PUTS PRINTING CHARACTERS ON SCREEN
1S90 **
1600 *
1610 PAINT MOV
1620 INX
1630 RET
1640 *

M,A
H

Put the character into screen memory
Advance the pointer
We will fall through SCROLL

16SO **
1660 * SCROLL ROUTINE (NORMAL EXIT)
1670 **
1680 *
1690 SCROLL LDA SC RN END : Get Screen End hi-order byte

Page 3

1760
1770
1780
1790
1800
1810
1820
1830
1840
18SO
1860
1880
1890
1900 *
1910 *
1920 *
1930 *
1940 *
19SO *
1960 *
1970 *
1980 *
1990
2000
2010
2020 *

MOV A,H Put start into A
SUB L Follow the logic here:

Start = BO, End = B4
Subtract B4 from BO = FB, a negative
number

MOV
MVI

D,H
L,40H

: Put the hi-byte into D-reg .••
: •• and line length into L

HL now represents the start of
the 2nd line on the screen (B040)

HVI
HOV
HOV

E,O
C,L
B,A

Set E to zero .•.
Get 40H into C
And put the result of our sub
traction into C

At this point the registers contain the following:
HL = 8040, start of 2nd line
DE = BOOO, start of 1st line
BC = FB40, BC will equal 0 when we have moved the

characters for lS lines, ie, line 2 will
to line one, line 3 to line 2, etc. The
line is handled seperately by CLEARLINE

CALL
DCX

REV OM
H

Call the backwards move routine
Adjust the HL register

••• and fall thru to CLEARLINE

move
16th

2030 **
2040 * ERASE THE CURRENT LINE
2050 **
2060 * NOTE
2070 * Erases the current line if a Control-X. Erases the 16th
2080 * line if fallen into from SCROLL
2090 *
2100 CLEARLINE MVI A,3FH
2110 HOV D,A
2120 ORA L
2130 HOV
2140 ERASE MVI
2150 DCX
2160 DCR
2170 JNZ
2180
2190 *

L,A
M,20H
H
D
ERASE

Get the line length ••
••• into D-reg
Find logical end of current line
Set HL to logical end of line
Write a space to the location
Backup HL to next position
Backup the line length counter

: Keep erasing til D=O
: ••• then fall thru to CURSOR RESTORE

2200 **
2210 * CURSOR RESTORE ROUTINE
2220 **
2230 *
2240 CURP
2250
2260
2270
2280

LOA
HOV
SHLD

CURS CHAR
M,A
CURS POT

Get the cursor character
Write it to the screen
Save the location for the next

, character .••
: •.. and fall thru to the normal exit

Page 4

" w
C>

~

"' a>

°'

E-4
Ul

~
Ill

"'
ix:

~
I
g

• :E .,

Title: VIDEO

2290 •
2300 ••
2310 * RESTORE REG'S & RETURN
2320 **
2330 •
2340 EXITER POP
2350 POP
2360 POP
2370 POP
2380 XRA
2390 RET
2400 *
2410 •

H
D
B
PSW
A

: Restore all registers

: Turn off the carry flag as signal ••
; ••• to Micropolis

2420 **
2430 * BACKSPACE ROUTINE
2440 **
2450 •
2460 RUBBIT DCX
2470 RET
2480 •

H Backup the screen pointer
.•• Return via SCROLL & CURP

2490 ***
2500 * CARRIAGE RETURN ROUTINE
2510 **
2520 *
2530 CARTN
2540
2550
2560
2570
2580
2590
2600 *
2601 *
2602 *
2603 •
2604 •
2605
2606 •

LXI
MOV
AN!

MOV
DAD
RET

B,40H
A,L
OCOH

L,A
8

Get line length+ 1 ••
Get cursor·positon lo-byte into A
.AND. with mask 1100.000 to find
start of current line •••
Put the masked address back into L •••

; ••• and add 64 to it= start of next line.
via SCROLL 6 CURP

The printer drivers start at 06CB so we must assemble
around them, starting below them at 0711. The alternative
is to also re-assemble the printer drivers, which is
not justified for this small program

ORG 0711H

2610 **
2620 * FORM FEED ROUTINE
2630 ***
2640 * NOTE
2650 * Clears the entire current screen and homes the cursor.
2660 * On Reset or start-up this routine is automacticaly
2670 * called by CDINIT.
2680 *
2690 FFRTN
2700 FFIN
2710
2720
2730

CALL
MVI
INX
CMP
JNZ

VERT AB
M,20H
H
H
FFIN

2740 *
2750 *
2760 *

Read carefully

2770 VERTAB LHLD SCRNEND
2780 HOV A,L
2790
2800 MVI L,O

~ ..

Get start and end addresses
Blank the location
Advance the address •••
(A=B4) Are we done?
Nope, keep strokin'

H = BO, L = B4
Put screen end address hi-byte '
into A - reg
Set HL to screen home, ie, BOOO

Page 5

Title: VIDEO

2810
2820 *
2830 *
2840 *
2850 *
2860 *

RET

If we entered VERTAB by a call, we will return via the
caller, but if we fell into VERTAB we will return via
SCROLL & CURP.

2870 **
2880 * MOVER ROUTINE FOR SCROLL
2890 **
2900 * NOTE
2910 * This routine is similiar to @TRANSDHBCR. See page 4-37
2920 *of your Micropolis manual. The routine will transfer
2930 * -BC bytes, from the location pointed to by HL
2940 * to the location pointed to by DE
2950 *
2960 REVOM
2970
2980
2990
3000
3010
3020
3030

A,M
D
D
H
c
REVOM
B
REVOM

Get a• character from the location
• •. and put it in location in DE.
Advance destination pointer
Advance source pointer
Add 1 to character counter
More?
Add 1 to character counter
More?

3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140

MOV
STAX
INX
INX
INR
JNZ
INR
JNZ
RET No, all done. Returns to SCROLL

; and falls thru to CLEARLINE

* SOME BUFFERS •.•
**
*
CURSCHAR DS
SCRNHOME OS
SCRNEND OS
CURSPOT DS

END

1
1
1
2

Stores the cursor character
Stores screen start hi byte
Stores screen end lo byte
Stores current cursor location

aAllC STAT••••T caoas-a1r1a1wc1

HICIOPOLIS BASIC MICROSOFT BASIC
flOCUIMIWC ITATlllllltl

by Burks Smith

SYSTEH/14 BASIC DESCRIPTION

in HL .•.

DELETE
DILITI
DISPLAY
EDIT

AUTO
MEW
DILETI
flLIS
IDIT

AUTO
CLEAR
DEL
--
n.r.

Auto .. tlc line nu•bering
l•pty progra• buffer
Delete aelected line•
Dieplay diek directory
ldit a line

COT0 1 CONT
LIST
LISTP
n.r.
LOAD
HllCI
UNUM
&UN
SAVI II:
SAVI
SCRATCH

J

COTO. CONT
LIST
LLIST
n.r.
LOAD
MERCI
UNUM
IUN
SAVI
SAVE
llLL

co
LIST
LISTP ..
LOAD
MERGE
UNUM
IUN
SAVE
REPLACE
PHI

Page 6

leetart aa Interrupted progra•
Liet on coneole
Liat on printer
Line continuation
Load a prograa fro• disk
Merge in proaraa lines
lenu•ber a prograa
lun a pro1raa
Save a new prograa
Replace an old progra•
Delete a file

J

~ i"

N!
a>
0\
.-4·

E-<
II)
::>

~

U"I
N

•
~

E
~

i
CJ

i

a>

tJ
~

... ,,
ll&TB AllD LOGIC
DATA
RESTORE

DEF FA
DEP FN
EXEC
LET
REH,
+

•
I

' "
>
<
<>
>
<·

OR

AND
NOT
TUllSFD or COllDOL
CHAIN
n.r.
n.r.
GOTO
MICIOPOLIS BASIC
Ir-THEN
BRR OR
ON-COTO
ON-GOSUB
RETURN
FOR-NEXT

STOP
END
nu I/o
PUNT

INPUT

n.r.
OPEN "*T"
OPEN "*P
PUT I
uae FMT
ASSIGN

n.r.
n.r.
n.r

OPEN
OPEN

GETSEEK I
PUTSEEK I

DATA
RES TORI
RANDOMIZE
DEF USR
DEF FM

LET
REM, I

+

•
I

' ,..
SWAP
>
<
<>
>
<-

OR
XOR
AND
NOT

CHAIN
COMMON
CALL
GOTO

MICROSOFT BASIC
IF-THEN
ON ERROR
ON-GOTO
ON-GOSUB
RETURN
FOR-NEXT
WBILE-wEND
STOP
END

PRINT, WRITE
LPRINT
INPUT

LINE INPUT

Pitta USING

n.r.
n.r.
n.r
OPEN "O","I"
OPIN "R"
OPEN "R"
INPUT I
PRINT I
RESTORE
RESTORE

DATA
RESTORE
RANDOMIZE
n.a.
DEF FN

LET
REM,
+

*
I

' .,

>
<
<>
)•
<·

MAT
01

AND
HOT

CHAIN
USE
n.a.
GOTO •

SYSTEH/34 BASIC
IP-THEM
ON condition
ON-GOTO
ON-GOSUB
UTUIN
FOR-NEXT

STOP
IND

PRUIT

INPUT
INPUT FIELDS
LINPUT
n.r.
OPIN PRINTER
PRINT I
PRINT USING

PRINT FIELDS
FORM
IMAGE
PIC
OPEN STREAM
OPEN SEQUENTIAL
OPEN RELATIVE
GIT I
PUT I
RESTORE
RESTORE

~

Internal data definiton
Reaet internal data pointer
Initialize randoa no•·
Define machine prograa
Define function
Execute a atrlng
Optional aaalgnment atateaent
Remark
Add
Subtract
Multiply
Divide
Integer Divide
Exponentiation
Aad1n11ent
lxchanae two variable•
Greater than
LeH than
Not equal
Greater than or equal
Leas than or equal
Logical equality
Array aaaignaent
Logical OR
Logical exclualve OR
Logical AND
L?gical inverse

Load and run new prograa
Pa•• variable• throuah CHAii
Call .. chine proaraa
Ubconditional ·tranafer

DESCRinION
Conditional execution
Error tranaf er
Conditional tranafer
Conditional call
Return fro• subroutine
Repeat - If loop
While - Do loop
Terainate prograa
Optional end of proara•

Direct conaole output
Direct liat output
Direct keyboard input
lead CIT diaplay
Unforaatted keyboard input
Logical con•ole open
Loaical liat open
Logical diaplay output
Forutted output
Logical device aaalanaent
Directed output
Output foraat
Output f oraat
Output foraat
Open a atreaa file
Open a sequential record file
Ope• a random-ace••• file
lead a atreaa file
Write a atreaa file
Set aequential pointer
Set aequential pointer

GET I GET I -- --
PUT I PUT I -- --
GET I GET I
PUT I PUT I
n.r. LSET, RSET
Ants
STRING
FREE SPACE --
n.r. FIELD
RENAME MAHE
!OF -- WAIT
CLOSE CLOS!

HICIOPOLIS BASIC MICROSOFT BASIC
m1ucc1mc PACILITDS
n.r. n.r
STOP STOP
FLOW TRON

NO PLOW TROFF
ODii. n&TUUS
+ +
SIZES --

OPTION BASE

n.a. n.a.
SAVE ,P

LINI --
IN IN
OUT OUT -- --
PIEK PllK
POD POD
n.a. n.a.
HEHEND CLEAR

SISTEM

RETRY
READ I
REREAD I
WRITE I
REWRITE I
READ I
WRITE I
n.r.

n.r.
FORM

n.a.
CLOSE

SYSTEH/34 BASIC

DEBUG-ON
BREAK
TRACI
STEP
DEBUG-OFF

' on ION
OPTION BASE
HELP
LIBRARY
LOCK
--
n.a.
n.a.
PAUSE
,.a.
n.a
PllOC
n.a.
orr

'1
Retry •tmt where error occured
Read sequential
Reread last record
Write sequential
Rewrite laat record
Read randoa
Write randoa
Hove date to diak buffer
Set file attribute•
Set string dellalter
free dhk apace
Define record format
Rename a file
Set end of file
Walt for port input
Close • file

DESCRIPTION

Turn on debug facility
Interrupt debugging aeaslon
Start progra• tracing
Execute one stat at a time
Turn off debug facility

String concatenation
Set preciaion
Set array base
Help facility
Chen1e libreriea
Protect proira•
Tranafer to object progr•~
Input fro• a port
Output to a port
Teaporarily auapend execution
lead memory
Change aeaory
Execute a procedure
Set end of memory. clear memory
Return to ayatea

I A I IC fUICTIOI caoss-RIPllBRCI

lllllUC IDCTIOD
MICIOPOLIS BASIC HICIOSOPT BASIC SYSTIH/34 BASIC DESCRinlON
lis(x) AIS(X) AIS(I) Abaolute •alue of X
ATN(I) ATN(X) ATN(X) Arctangent in radian& of X -- -- CllL(X) First integer)•I
n.r. CDBL(I) n.r. Convert X to double precialon
n.r. CINT(l) n.r. Round I to an integer
n.r. CSNG(l) n.r. Convert I to single precision
COS(X) COS(I) COS(X) Cosine of I radian•
n.a. a.a. DATE Date H YYDDD -- -- DEG(X) Convert I radians to degree•
llP(l) llP(l) IXP(X) Value of ex
rIX(X) PIX(I) IP(X) Integer part of I
FIAC(X) -- fP(X) Fracional part of X -- -- INF Largeat rational nuaber
INT(I) INT(I) INT(X) Largeat integer in X
LN(I) LOC(I) LOC(I) Natural log of X (baae e)
LOG(X) -- -- CollllOn log of I (baae 10)

MAX(ll'Xz)
MIN(ll'Xz)
MOD(l,Y)

IND(X)
--
SGM(X)
SIN(X)
SQl(X)
TAN(l)
SDl.C racTIOllS
ASC(A$)
CBAR$(X)
n.a.
fHT(X,A$)

INDEX(X$,Y$)
LEPT$(A$,X)
LIN(A$) ---
HID$(A$,X,Y)
MAX(X$ 0 Y$)
HIN(X$, 1$)

IEPE.AT$(X$,1) --
REPEAT$(" ",X)
RIGHT$(.A$ 0 X) --
HICROPOLIS BASIC
VAL(.&$)
STR$(X)
VERIFY(l$,Y$)
n.a.
--
DISK ruKllOU
ATTR(N)

n.r

~I
ERR

"'
ERR$

......

II FRHTR(N)
n.a.
n.a.
n.r.

in NAHE(N)
N --• RECGET(N)
i:.: IECPUT(N)

E n.a.

~
SIZE(N)

fl) TR.ACIS(N)

! n.a.
n.a.

~

• j •
' '

I HOD Y

IND(l)
--
SGN(X)
SIN(X)
SQR(X)
TAN(X)

ASC(A$)
CHR$(X)
a.a.

HEX$(X)
INSTR(X$,Y$)
LEPT$(A$,X)
LEN(A$)

HID$(A$,1,Y)

OCT$(1)

;;RllG$(1$,1)1

--
SPACE$(1)
IIGHT$(.A$,X) --

HICROson IASIC
VAL(A$)
STR$(1)

n.a.
--

CVI,CVS,CVD
IOF
ERL
ERR

n.a.
n.a.
LOF(N)
HKl$,HKS$,HICD$

LOC(N)
LOC(ll)

n.a.
n.a.

HAX(X1 ••• ,Xn)
HIN(Xp •• ,Xn)
HOD(X,Y)
Pl
UH(l,Y)
RND(X)
IOUND(l,Y)
SGN(l)
SIN(X)
SQR(X)
TAN(X)

OID(A$)
CHl$(1)
DATE$
CNVRT$(A$,X)
HEl$(.A$)
POS(X$,Y$)
A$(1sl)
LIN(A$)
LPAD$(.A$, Y)
LTRH$(.A$)
LVRC$(A$)
At(l:X+Y)

PIC$((1$))
aPT$(1$,I)
RPAD(A$,Y)
Rn$(" •,1)
At(!.EN(A$)-l:I)
SUPl(W$,l,Y$,Z$)

SYSTIH/34 BASIC
V.AL(A$)
8~~$(1)

TIHE$
UPRC$(1$)

n.r.
n.r
LINE
IU

PILE(I)
FILINUH
n.a.
lLH(N)
KPS(N)

n.r.
FILl$(N)
UC(N)

ILN(N)

n.a.
AnRllUTl$(1$)
CHDKIY
CNT
CODE

Haximu• argument
Kinimu• arau•ent
I 110dulo Y
Value of pi
Re•inder of l/Y
Rando• nu•ber with I aa aeed
Round I to Y dec188la
Sign of I attached to 1
Sine of I radian•
Poaitive aquare root of X
Tanaent of I radians

Code of A$
Character whoae code 1• X
Date aa "YI/MM/DD"
String of I for .. tted by A$
Bexadect .. 1 repreaentation
Position of Y$ in 1$
Laf t1101t I character• of A$
Length of A$
Pad A$ vith blank• on left
Strip leading blank•
Convert to lower ca1e
Y Chari fro• A$ 1tartin1 at I
Greater atrlng
Leaser atring
Octal repreaentation of I
leturn or aet currencr •J•bol
Repeat 1$ I ti .. •
Ped A$ vith blenka on right
I apacea
I rt1ht110at character• of A$
~arch and replace

DISCllnIOR
Convert At to a nu•ber
Convert I to a atring
_!•t Char in 1$ not in Y$
Tt .. •• "RH1HH1ss·
Convert to upper ca1e

Attribute• of file I
Unpack nu ... r1 fro• diak
true if IOf on laat ace•••
Line nu•ber of la1t error
La•l error detected
Text of laat error .. a1a1e
File atatua
file nu•ber of laat error
Free track• available
Key lenath of file N
l,y poaition of file N
Length of current "extent"
Pack nu•bera to diak
Na .. of file R
Laat record proceaaed
Value of aequential get pointer
Value of aequential put pointer
Record length
Sise of file in records
Tracks uaed bJ file I
Attribute& of display station
I of co ... nd leJ preaaed
Count of input ite ..
Stop or Ind code

j

IN(X) INP(X) -- LPOS
n.a. n.a.
PEEK(X) PEEK(l)
PGHSIZE ---- -POS
a.a. a.a.
a.a. a.a.
SP.ACELIFT fU(l)

n.a. n.a.
V.ARPTl(V)

n.a. n.a.

n.a.
n.a.
HSG$(X,Y$)
a.a.

PROCIN
PROCVL
a.a.
SRCH(array,x,y)
SUH(array)
UDIH
UPSl$(1$)
a.a.
WSID$

Input fro• a port
Poaition of line printer
Heaaage f roa a me•ber
lyte fro• memorr
Size of progra•
Poaition of cursor
True if input fro• procedure
Mu•ber of procedure• active
le•ining ••ory
Search an array
Sua an array
Un-dimension array
Progra ... ble awitch letting
Addre•• of variable
Workatation ID

D1' TO SllllOLS:

The function ta not present in the language.

n.a. Not .Applicable. Because of operating environaent, the function
ha• no value, or can not be i•ple•ented.

a.r. Rot Required. lecauae of the intern1l vorkinga of the lanauage,
the function la not required or ta perfor .. d autoaatically.

DAMAN PRICE CHANGES
•••=•=•=••==•=•s•=•

Listed below are the latest prices for software
available from DAMAN, with further discounts to the
MUG included. I've gone to a two-level pricing.
The "normal" price, and a "cash" price. "Cash"
means check or money order.

DAMAN, 604 Springwood Circle
Huntsville AL 35803
Phone (205) 881-1697
MOOS S/W PRICE LIST

08/01/82 LJST ,, MUG
PROGRAM PRIC' PRICE

ACROPOLIS ,-.\

FORTH 150.00 153.00
UTIL 45.00 48.59
H/W MOD 20.00 21.50

BONJOEL _:,,.;'
DATABASE TWO 50.00 46.50
MOD/MATH 50.00 46.50
INVENTORY ONE 50.00 46.50
WAMSORT 40.00 38.20
REACT 50,0tr 46.50
PONY-PICK 300.00 254.00
PONY-PICK II 125.00 108.75

CHAMELEON
BALROG 30.00 33.90
SISYPHUS 30.00 33.90
MORT FORK 30.00 33.90

MUG
CASH

146.12
46.50
20.00

44.41
44.41
44.41
36.48
44.41

242.57
103.86

32.37
32.37
32.37

J

"

PAGE 10

COMPUMAX
MICRO-LEDGER 140.00 134.30
MICRO-A/R 140.00 134.30
MICRO-A/P 140.00 134.30
MICRO-INVENTORY 140.00 134.30
MICRO-PERSONNEL 140.00 134.30
ORDER ENTRY 3SO.OO 322.2S
MAXI-LEDGER 3SO.OO 322.2S

CUSTOM ELECT.
CCA DATABASE 150.00 133.SO
DISASSEMBLER so.oo so.so
PROPERTY MGMT. 10.00 67.10

DAMAN
CATALOG 30.00 26.00
MAIL SYSTEM so.co 40.00
MEMBER SYSTEM so.oo 40.00

DATASMITH
BOOKKEEPING 2so.oo 180.00
PAYROLL 350.00 210.00
MULMERGE 30.00 26.00
SMASH 30.00 26.00
SYSLIST 30.00 26.00
TEXT CONVERT 7S.OO 57.SO
VARIABLE LI STER 30.00 26.00
UTILITY SET 150.00 110.00
DATA MANAGER 450.00 427.50

GMS SOFTWARE
FILE UTILITY 49.00 42.49
BASIC UTILITY 49.00 42.49
GAMEDISK 3S.OO 31.78

LENZ SOFTWARE
DISK BANKING 7S.OO 12.2s

MONK SOFTWARE
BUILDERS EST. 295.00 254.8S

MICROPOLIS
MOOS V4 7S.OO 12.25
MAINT. MANUAL 50.00 51.SO
ALIGNMENT DISK so.oo 49.50
DIAGNOSTIC DISK 50.00 49.50

ORGANIC SOFTWARE
TEXTWRITER II 125.00 112. 7S

128.26
128.26
128.26
128.26
128.26
307.7S
307.7S

127.49
48.23
64.08

24.83
38.20
38.20

171. 90
257.85

24.83
24.83
24.83
S4.91
24.83

105.0S
408.26

40.57
40.57
30.35

69.00

243.38

69.00
49.18
47.27
47.27

107.68

MUG NEWSLETTER t2S - AUGUST 1982

SYSTEM/Z
AUTO/EXEC 40.00 38.20 36.48
BASIC/Z 34S.OO 291.3S 278.24
BASIC/Z MANUAL 35.00 34.0S 32.S2
BCOMPARE 3S.OO 34.0S 32.S2
BEM 6S.OO S8.9S S6.30
CRUNCH 35.00 34.0S 32.52
DSM-1 65.00 S8.9S S6.30
EDIT/S 45.00 42.3S 40.44
RUN/Z 6S.oo 58.95 S6.30
SORT/A 7S.OO 67.2S 64.22
TRANSLATOR II ss.oo S0.65 48.37
UTL-1 9S.OO 83.85 80.08
XREF 8S.OO 75.55 72.lS

*WORDCRAFT *
MICRO-LINK 89.00 78.87 75.32

Availability and price subject to change
without notice. Prices include shipping to
N. America. Add $7 per item for shipment
(airmailed} outside N.A. VISA & M.c.
accepted.

CLASSIFIED ---
WANTED: CDS Versatile 4. Need not be working, but
must be clean and complete. Send history and

- price: ·

Dave Montgomery, Box 166, Mt. Pocono PA 18344

Published Monthly by the MUG
Subscription rates:

U.S., Canada, Mexico: $18/year: Other, $25/year

FIRST CLASS MAIL

MICROPOLIS USERS GROUP

Buzz Rudow, Editor
604 Springwood Circle
Huntsville AL 3S803

(205) 881-1697

FIRST CLASS MAIL

FIRST CLASS MAIL

•

