
•

•
MICROPOLIS USERS GROUP

MUG Newsletter t28 - November 1982

CUT YOUR DISK COST IN HALF
====•s==•=====•=•••-======

by Lynn Rudow

The MOD I and MOD II Micropolis Drives only write
to a single side of a disk. As we discussed in
earlier newsletters, the reverse side of the disk
is most likely as reliable as the front. Perform
ing the modifications shown below will give you a
"flippy" floppy disk. Don't confuse the writing to
either side of a £lippy independently with a single
head, with the normal double-sided disk which
writes to both sides simultaneously with two heads.

As we've said before, all disks of a manufacturer
are produced identically. They go through some
testing to validate for various performance
requirements. Purchasing a single-sided, single
density disk doesn't necessarily mean that the disk
won't support double-sided quad-density. We have
found one out of a hundred won't initialize on the
reverse side after modification is performed. This
is approximately the same ratio of failure as we've
experienced with the "good" side.

It cuts down your storage space, it halves your
disk costs, and takes about three minutes to per
form. We make flippies out of all our disks and
thought you'd be interested in how its done. While
there are kits on the market which sell for $20 to
$40, all you need is a few simple tools that you
probably have or can easily get.

A B c. D

1) Tools you'll need are, yellow felt-tip marker,
thin cardboard (we use a business card), single
hole punch and manicure scissors. The yellow mark
er is not a "MUST", but we've found it shows better
on the black disk.

F

A B

.i

2) Take disk B and align a see-through hole of the
disk in the center of the cover hole, as shown in
the picture at the lower left.

3) Turn B over, face down, onto A so the hole is on
the left side of A. Make sure the disks are lined
up. I use the bottom two cut-outs just above the
letter A. Holding the disk in place with one hand,
mark through the hole of B onto the face of A.

4) Now mark the write protect slot.

• ••
A

5) Remove the top disk and your disk should look
like the above. We used white-out to show the
places we've marked, which are the places we'll
punch.

*
*
*
*

SEE THE CHRISTMAS SALE
OFFER AT THE END OF THE NEWSLETTER

*
*
*
*

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

PAGE 2

A

6) Slide the cardboard between the
disk. This protects the disk when
hole puncher.

disk cover and
we insert the

7) Insert the hole punch with the thinner portion
next to the cardboard. Try to line-up the hole
punch so you are positioned over your marking. Now
punch the hole. Tilt the disk so the punched-out
part falls out onto the cardboard.

8) Since there is a cotton fiber between the cover
and the disk, the hole punch doesn't always cut
this. Therefore you need a pair of small sharp
scissors to finish the job.

9) Punch the side hole where you see your marker.
~y-the-way, don't get concerned because you have a
round circle and not a square.

io) Now you must turn your disk over and punch the
back side following the same procedures in steps 2
through 8, except exclude step 4.

A

11) You now have two holes, one on either side of
the disk. You're through and ready to initialize
the back side for use. HAPPY PUNCHING!

WRITING OVER SYSTEM MEMORY

by George Maschino

In the series of articles "Building a Cheap Compu
ter," there was a video driver routine that was to
run intermixed inside the RES module of the system.
There was a comment that the system would not
permit you to load a file below the user program
area, as that could overwrite part of the system.
In other words, the system protects itself.

•

•

•
MUG NEWSLETTER #28 NOVEMBER 1982

Zot went to a lot of work to assemble the code with
an offset, and then to load and move the parts of
it together into the new system to disk. Most of
that work was not necessary as you can load direct
ly into any location in RES or MOOS if you do it
right, and if you do not overwrite any necessary
code already there.

For example: I have 2 printers on line. Each uses
its own driver routine and is connected to its own
set of output ports. One of the drivers is in ROM
and the system boots up with the RES module set up
to call that driver routine. When I want to use
the other printer, all I do is load a file called
PRINTS. This is a file that loads the needed dri
ver into upper RAM, and a part of PRINTS is auto
matically loaded into RES, changing the LDOUT call
inside RES to call the driver just loaded. It
works every time. I do not have to use any poke or
move or anything. I just load the driver and start
using it. Here is how:

In the assembly language version of the driver,
there are several org statements. They have the
function of telling the assembler where the fol
lowing code is to be placed. They result in the
next code going into the next sector on disk, with
a new address in the header where that sector is
loaded, and the previous sector will not be a full
sector.

At the top of the assembly program is the statement
ORG ODDOOH. This is where the first part of PRINTS
goes. They are the routines that comprise the dri
ver. Below it is another ORG statement that gives
the location of the lookup table for conversion
into the Selectric Code, which is located else
where. At the bottom of the routines is an ORG
statement that says ORG [ADDRESS INSIDE RES], and
the very next statement is CALL ODDOOH. The next
statement is the ORG statement that locates the
lookup table.

WHAT HAPPENS:
The system checks
sector it reads in
ODDOOH,' and that is
will load there and
it reads the disk.
the first part, the
tory.

the load address of the first
the file, finds it loads at
ok. It assumes the whole file
does not check every sector as
It does not notice that after
rest is in the forbidden t~rri-

If the Video Driver routine in the Cheap Computer
series had used the ORG statement as the first line
in his assembly language version to send a l to S
or so bytes of needless code into a ROM of into
never never land where there is no memory, then he
could have put all the rest of his code wherever he
wanted it inside RES, or wherever, as long as he
did not overwrite any of the code that RES uses to
access the disk. He could even overwrite vital
code if he wasn't careful, but the system would
have let him.

*
*
*
*

SEE THE CHRISTMAS SALE
OFFER AT THE END OF THE NEWSLETTER

*
*
*
*

MICROPOLIS BASIC ACCURACY

by Morris Barwick
1S29 Monaco Dr., Slidell LA 704S8

An article on page 22 of the April 1982 Microcompu
ting caught my eye. The point of the story was
that a lot of the connnon Basics make mistakes. The
following program was the object of the article.

10 FOR C=l TO 100
20 IF SQR(C)<>INT(SOR(C)) THEN 40
30 PRINT C
40 NEXT C

PAGE 3

The program finds the ten perfect squares between l
and 100. According to the article, and Apple and a
PET can only find six perfect squares. I ran the
program on a TRS-80 Model III and also only get six
answers. Microsoft BaS'ic, the "standard" of the
industry, finds nine correct answers.

Guess what? Micropolis Basic (Version 3 and 4) and
BASIC/Z get all ten answers correctly.

UNREADABLE FILE NAMES

by Buzz Rudow

If, under Micropolis Basic, you try to name a file
with an embedded blank, the system normally stops
you. For example, the statement:

OPEN 1 "N:FILE ONE" (blank between 'E' and 'O')

gets a response of:

INVALID FILE NAME

However, sometimes you can get in trouble, either
in your own program or with commercial software
which use the RENAME function. If you:

OPEN 1 "N:FILENAME"
.PUT 1 "TEST"
CLOSE 1
OPEN 1 "FILENAME"
RENAME(l)•"FILE BACK" (blank between 'E' and 'B')
CLOSE 1

you'll find it works. That is,
illegal statements. Now, however,
reopen the file:

OPEN 1 "FILE BACK"

you get:

INVALID FILE NAME

there
if you

are no
try to

This problem isn't too hard to solve, but the
answer can be very useful. This is especially true
if you have just renamed SOO entries of a general
ledger file "NOV SAVE", its your only copy, and
you're going to have to key them all back in if you
can't solve the problem.

MOOS doesn't care about embedded blanks, so you
simply:

LINK "MOOS"
RENAME "NOV SAVE" "NOVSAVE"

A slightly more difficult problem occurs if you
happen to name a file with a legal drive designa
tion as the first two characters. There's at least
one connnercial program that has a rename utility
that can get you into trouble. It asks you which
drive has the file you want to rename. Suppose you
answer "l". Then the program asks for the file
name. Suppose it is TEST. Then it asks what the
new file name should be. Let's say you want it to
be TESTBAK, but you mistakenly think the program
also needs to know the drive, and you type in
"l:TESTBAK". Whoops! That's what it gets named -
l:TESTBAK.

Now, when you try to access the file by:

OPEN l "l:TESTBAK"

the system trys to open TESTBAK on drive 1, but it
isn't there. Its name is l:TESTBAK. You figure out
what the problem is and you try:

OPEN 1 "l:l:TESTBAK"

You get an:

pAGE 4

INVALID FILE NAME

Again, MOOS comes to the rescue. To solve this one:

LINK "MOOS"
RENAME "l:l:TESTBAK" "TESTBAK"

or
RENAME "O:l:TESTBAK" "TESTBAK"

if the file is now on drive o.

CHANGING DISK FILE CONTENTS

by Buzz Rudow

When I originally started looking into the above
problems, particularly the second one, I didn't
figure out how to do it with MOOS and solved the
problem with several of the programs on System/z'
DISK UTILITY Package.

I'll use a different example. Suppose you have one
byte you want to change in a program, but don't
want to reassemble the whole thing. The easiest
example to illustrate is to change the Micropolis
prompt from MOOS VS 4.0 to MOOS VS 4.2.

Executing the program DMAP produces a list of files
and the tracks they occupy. On my particular disk,
MOOS was on tracks 03 and 04. Using DDUMP, I read
these tracks and displayed the data to the screeh.
It prints one sector at a time, showing both the
HEX and the ASCII interpretation. The Micropolis
prompt was very evident as an ASCII string in track
4, sector 7.

Now, I used DEDIT to edit track 4, sector 7. Just
pushing RETURN steps through the sector, again
showing both HEX and ASCII, and making no changes.
When the "O" of "4.0" showed up, I typed "32" (for
the HEX representation of "2", though there's a way
to use ASCII input). Then I typed "R" to resave
the edited sector. Sure enough, resetting the
computer and rebooting brought up a prompt of MOOS
vs 4.2.

These programs aren't limited to use on MOOS disks.
While DMAP won't work on a CP/M disk (because it
looks for the DIR file), DDUMP and DEDIT allow you
to change CP/M data. The CP/M directory starts on
track 2, sector 1, for instance, and you can
rename, unscratch, or change user numbers with no
problem. The CP/M system is on track 0 and 1, and
it can also be patched with DEDIT.

The DISK UTILITY Package (UTL-1) also contains pro
grams for a sorted file listing, for unscratching
files, for recovering disks with PERM I/O ERRs, for
copying disks with PERM I/O ERRs, for verifying
disks, for comparing disks files, and the MOOS to
CP/M, CP/M to MOOS conversion programs.

SEE THE CHRISTMAS SALE
*
*
*
*

OFFER AT THE END OF THE NEWSLETTER

*
*
*
*

CP/M EXTENTS

by Lynn Rudow

A few MUG members have asked me to give my opinion
on new software. Since CP/M and BASIC/Z happen to
be the latest things I've worked with, here are a
few of my thoughts.

BASIC/Z running under CP/M is really
fast, allows me to have large files on
disk, and I do believe Zale must have

nice.
the

It's
hard

written it

MUG NEWSLETTER #28 NOVEMBER 1982

with me in mind. Such as, he tells me when I've
left out a THEN, FOR, etc. Anyway, as long as a
piece of software does what I want it to do, I tend
to think "HEY, it's suppose to do that. So what?".
I only speak up when I don't like something. In
this case, I don't like trying to print a data
file, using a pointer file under CP/M.

In data file structuring, the data is written in
records. If you have an alphabetically ordered
mail list file, which I do, and you want to print
labels in zip order, we generate a zip pointer
file. This file consists only of the record
numbers of the ordered zip codes in the prime data
file. A pointer file might look like 0410 0001
0900 0950 1174 0700 etc., meaning that prime record
400 contains the lowest zip code, and prime record
700 contains the highest zip code.

Now, according to my source (Buzz), CP/M opens an
extent (16K block, or 128-128 byte records) for the
first label to print. After it prints it, the
system looks at the next record number to be
printed. If it is not in the same extent, it
closes the first extent and opens the new extent.
This means if the new record isn't within 128
records of the first, if you're using 128-byte
records, - or within 64 records of the first if
you're using 256-byte records - you are continually
opening and closing extents, which takes a lot of
time. This really slows down the printing time.
It takes one minute to print 36 labels. Before,
running under MOOS, I could print 48 labels in the
same time.

I could, of course, speed up the printing time if I
reconstructed the file to sequential zip order, but
that also takes considerable time and consider
able disk space. Never-the-less, it would solve
the problem. Since I do not wish to reconstruct a
file every time I add new addresses to it, is there
any way to make CP/M not care about closing an ex
tent? If the answer is no, then it seems the real
answer is to convert the programs back to good ol'
BASIC/Z under MOOS. Buzz says the problem doesn't
exist there, and Bob Zale tells me the MOOS BASIC/Z
also runs faster than the CP/M one. For those
applications that don't require file sizes larger
than a floppy, this is the only way to go. Time is
money. Guess what Buzz is doing?

'TINY' PASCAL -------------
The Chung/Yuen Tiny Pascal is a subset of standard
Pascal. The CP/M version of Tiny Pascal includes
the following features:

* Random & sequential disk I/O.
* Compiles completely to 8080 native code.
*WHILE, REPEAT/UNTIL, FOR, CASE, IF .•• THEN .••

ELSE, PROCEDURES, FUNCTIONS, ARRAYS.
* Easy to use •
* Recursive.
* Self compiling.
* Integer arithmetic.
* Complete source code provided.
* External routine CALL instruction.
* Inport and outport instructions provided.
* More.

~ £2!!! is provided to ~ entire compiler ~
runtime l~brary with ~ diskette. This means
that you will have every line of source code used
in the Tiny Pascal system:---Most of the source code
is in Tiny Pascal (the runtime library is in 8080
assembler). You can easily re-compile the compiler.
Features may also be added (this, of course, re
quires some knowledge of compiler design).

Tiny Pascal generated object code
fast. This makes Tiny Pascal very
substitute for assembly programming.

is extremely
useful as a

Requires: 36K CP/M, most disks formats available.
Pi-om Supei-Sott.

•

• MUG NEWSLETTER #28 NOVEMBER 1982

ALLEN PROGRAM DEVELOPMENT EXTENSIONS
=====-==============================

for Micropolis Program Development System vs. 4.0

Copyright 1981: Thomas A. Ceska and Jeffrey A. Bell

The Allen Program Development Extensions greatly
increase the power of MOOS vs 4.0. The programs in
this package enhance the Micropolis POS with the
abilities to:

-- Assemble Z-80 instructions using the 8080-com
compatible TDL Z-80 mneumonics,

Assemble undocumented Z-80 instructions,

Assemble relocatable binary files which are lo
cated and linked after assembly,

Use macros within assembly language programs,
and

-- Debug documented and undocumented Z-80 instruc
tions.

The Allen Program.Development Extensions diskette
contains the files listed below. All executable
files are in 8080-compatible machine code except
ZEBUG-GEN which must be executed on a Z-80-based
system.

Executable files:

ZSSM-GEN -- modifies ASSM to add extended assembler
capabilities.
ZEBUG-GEN modifies any version of DEBUG-XX to
add Z-80 debugging capabilities.
RLDR -- is a relocatable linking loader.
EXRB allows one to examine relocatable binary
files.
BATCH executes MOOS system commands which are
contained in a LINEEDIT file.

LINEEDIT Information files:

ALPHA8080 -- alphabetically lists the mneumonics
for 8080 instructions.
ALPHAZ-80 -- alphabetically lists the TDL mneumon
ics for Z-80 instructions.
ALPHAPLUS -- alphabetically lists the mneumonics
for undocumented Z-80 instructions.
MCODE8080 -- lists the 8080 instruction set sorted
by machine code.
MCODEZ-8080 lists the Z-80 unique instructions
sorted by machine code.
MCODEPLUS -- lists the undocumented Z-80 instruc
tions sorted by machine code.

LINEEDIT ~ Files:

TEST.S, MTEST.S, TESTl.S, TEST2.S, TEST3.S, and
MESSAGES.S are six files which illustrate the use
of relocatable binary files and macro calls.

MACROl.O and MACR02.D are macro definition files
which illustrate how macros are defined.

LINEEDIT BATCH File:

TEST.B is an example of a batch file for use with
the BATCH utility.

The LINEEDIT source files provided should be used
as examples of how ZSSM, IUiDR, and BATCH may be
used and how they interact.

PAGE 5

BASIC/Z NOTES

Two items of importance for Sorcerer Users need to
be mentioned. One, be sure to state a proper MEMENO
in the configuration routines. You have the same
problem with the Exidy monitor using the upper few
bytes of memory as you do with Micropolis Basic.
Two, the Sorcerer Speedup patches discussed by John
Donaldson (MUG newsletter 18, column 13) must be
removed and the original Micropolis code replaced.

BASIC "LOAD AND GO" PROGRAM

--.SS----------·-==------===
Several members have asked about the text that goes
with the LOADGO program on MUG Library disk 2. The
fdllowing is reproduced from Vol. 4 of the Micropo
lis News.

This program is used to patch PDS version 4.0 of
BASIC, so it will begin execution of your BASIC
program upon booting your system. Note that in
line 260 the word "GO" is the BASIC program name of
the file to be loaded. You must substitute your
own program name for the word "GO", or create a
file named "GO" which will PLOAOG your program.

Using your PDS 4.0 system diskette, you will need
tG follow the steps in section 4.4 of your Micropo
lis User's Manual to key in, name and save your
source file. Next, proceed to section 4.5 of your
User's Manual to assemble your program into an
object file. When the assembly is completed,
insure the file type of the "LOAD and GO" object
module is 08 so that it can be loaded from BASIC.

The BASIC interpreter must now be patched. First,
create a BASIC only diskette as outlined in section
2.2.7 of the manual. Perform the patches outlined
in the Software Information Bulletins tl2 and #14
to correct errors in the BASIC interpreter. At
this time, if you want to eliminate the EDIT,
RENUMBER and MERGE commands, follow the procedure
in Appendix G of the manual and execute the fea
tures program on the PDS diskette. (See option
below to save the shortened BASIC.) Bring BASIC up
so as not to destroy the patches you have just made
and load the "LOAD and GO" program object module.
Basic should prompt "READY" when the load is
completed.

All patches to BASIC are now implemented. Resave
BASIC as follows:

A) Type OPEN l "BASIC" : ATTRS (l) =8 (return)
B) Type SAVE "BASIC" 16R2Bl, 16RSOFF (return)

or optionally, if features were removed -
Type SAVE "BASIC" 16R2Bl, 16R5700 (return)

C) Type ATTRS(l)=3:CLOSE 1 (return)

This will allow you to save the modified and
patched BASIC that will PLOADG your program.

MUG LIBRARY

Enclosed in this mailing is a complete listing of
the MOOS and CP/M disks in the MUG library. Hope
fully, this will finally clear up the confusion I
created when I reorganized the library.

PAGE 6

****SALE****

OK, fellows and gals, time for some high-class mar
keting stratagies. DAMAN would love to get a few
of your Christmas dollars. To influence your atti
tude, we've decided to have a ****SALE****·

For the period of November l to December 15, 1982,
you may deduct 12.5% from the prices listed in the
accompanying price lists. Buy some games for the
kids (or yourself). Casually mention the sale to
the spouse. Leave the price list laying around
with a few well placed check marks beside the pro
grams you want. Call us and discuss your needs at
(205) 883-8113 (the DAMAN office), (205) 881-1697
(an office phone in the house which has an answer
ing device, if we're not here), or on our personal
number, (205) 883-2621.

Most Formats Available

We aren't limited to Micropolis format on the CP/M
software. If your office is considering a purchase
for their Brand-X, we want that business, too.

~ Apple

Though we don't consider ourselves knowledgeable,
DAMAN will supply the APPLE games of Avalon Hill,
Broderbund, Sirius (and many more), the education
programs of EDU-WARE - lots of stuff I know nothing
about postpaid for a minimum of 10% under lisit.
We can make your Apple a full CP/M machine for $659
postpaid. The conversion kit by Microsoft includes
their softcard (CP/M and BASIC-BO), a 16K RAM card,
and the BO-column Videx board. Then you have the
capability of running BASIC/Z on your Apple (at
slightly additional cost).

MUG NEWSLETTER #28 NOVEMBER 1982

CATCHUM
+-------------------+ +

I ~-------------------+
• • •• • • • ••• • I

I I •

1

. +-----+ . +-----+ . +-----+ . +-----+ .
I I I I

0
I I I I

0
I I I I • I

. +-----+ . +-----+ . . +-----+ . +-----+ .
I • • • • •

------+------
'

I
•I •• • • • • I

+---------+ . +------ ------+ . r---------+
' • I
I

----------+ . +-~--- -----+
I A A A I
I I

----------+ . +-----------+
I
I

+---------+ . ------+------I ' I • • • • • • • • I

------+
I
I
I

• c • 0
I 1------
I • I'

I

I

·' ·

• I
I

. +----------

. +----------
' I

. +---------+

. r------ .
• I 0

• I ------+
• I

I • ----------+------ . ------+---------- • I

I
• I

+-------------------+ + +-------------------+
'l'he arcade type maze game b1
Yahoo Sottware ia tinally here.
Requires CP/M

LIST HORM CASH
40 20 19

plua $1 shipping to Horth
America, $3 elsewhere.

Published Monthly by)the MUG
Subscription r.at.~:

U.S., Canada, Mexico: $18/year: Other, $25/year

FIRST CLASS MAIL

MICROPOLIS USERS GROUP

Buzz Rudow, Editor
604 Springwood Circle
Huntsville AL 35803

(205) 881-1697

FIRST CLASS MAIL

FIRST CLASS MAIL

•

