
MICROPOLIS USERS GROUP

MUG Newsletter t30 - January 1983

SORTING BASIC ARRAYS (PART 2)

by Burks A. Smith of DATASMITH

Box 8036, Shawnee Mission KS 66208

Last month we discussed the Shell sort method and
developed a simple program in BASIC that would sort
a string array. We defined the sort data as fixed
length strings (records) with each record being
composed of one or more fixed-length fields. The
program sorts the records according to a a set of
keys, which designate the starting position and
length of the key data within the record string.
The first key is most important, with additionaJ
keys being used if the first keys are equai.

This month we present an 8080 or Z-80 assembly
language program which uses the same technique as
the BASIC program, although they have slightly
different logic. The assembly language program
will sort a one-dimensional string array 'A$(x) on
several keys in only a few seconds and can be
called from BASIC. Actual times will vary
according to data, but there is approximately an 80
to 90' reduction in the time BASIC would require
using the same program.

Micropolis Basic allows the use of assembly lan
guage subroutines with the use of DEF FAx, which
defines the routine's execution address. Basic
will pass up to three parameters to the routine and
expects to get data back, since this linkage works
like a function in Basic. In our application, we
have more than three parameters to pass and don't
care to get a value back, since this program is
supposed to sort an array in memory. However, we
are bound to language convention so Basic passes
nothing and the program returns a string value •A•
if the operation was successful, and •E• if it was
not. This particular version only returns •E• if
the array A$(x) is anything but a one-dimensional
array. Since the program returns a string you use
it by setting it equal to a string. Example:
Q$•FAS, where FAS has been defined as the sort
function. You can ignore Q$, but you have to use
it or some other string.

To pass the sort parameters and keys to the func
tion it is convenient to use POKE statements. One
16-bit value, the number of elements in the array
to be sorted, and one or more three byte keys
designating start, length and sorting sequence.
The POKE statement is especially useful because we
want to convert Basie's binary coded decimal number
format to 8-bit binary values that the processor
can use directly. In the case of the 16-bit value,
the Basic program calculates and POKEs two bytes in
the proper Intel low-high format expected by the
microprocessor. To keep everything together, the
first three bytes the program are a jump instruc
tion to the main program, with ~he parameter data
following. The size of array parameter is stored
at FAS+3, and the keys start at FAS+S. The program
has provided for storage of up to 10 keys, with a
START value of zero indicating the LAST KEY + l.

The sorting program is composed of several subrou
tines representing different logical levels of the
program. The main routine, starting at the label
SORTLOOP makes processing passes through the array,
calling the SWAP routine to compare data and swap
if necessary. The routine makes as many passes as
necessary through the array with a certain index
between the two data pointers until no swaps need
to be made to put the data in order. It then
divides its index by two and repeats the process
until the index value has been reduced to zero.
Control is then passed back to Basic.

.....
Most of the work is done by the SWAP routine, whose
job it is to compare two strings. When this sub
routine is called, it expects the array indexes of
the data to be compared in the DE and HL registers.
It calculates the actual memory address of the data
to be compared and calls the KEYCOMP subroutine.
Depending on the result of the comparison and
whether or not an ascending ?r decending sort has
been specified, the data is exchanged and the
routine returns. The calculation of the address of
data in memory is accomplished by knowing the
address of the start of the array A$, the maximum
length of each string, and the data's index in the
array. In Micropolis Basic version 4 the 16-bit
address stored at location 33B9H points to the
beginning of array A$ and the maximum length of
each string is in the array's header information.
In effect, the index is multiplied by the length of
each string and this value is added to the array's
starting address. Since the processor can't act
ually multiply, the length of a string is success
ively added to the array address.

The balance of the program consists of additional
subroutines that do the the actual comparing, swap
ping, and housekeeping functions of the routines at
a logically higher level. The source code is com
mented, so if you are familiar with assembly lan
guage you shouldn't have any trouble figuring out
how the program works. If you don't know assembly
language, be very careful when implementing the
program and don't leave anything out. While this
program is designed to order blocks of memory, it
can just as easily create chaos if it gets away
from you. For example, one of the parameters POKEd
is the number of elements to sort in the array.
The program doesn't check to see if this exceeds
the array's dimensioned size (although it could),
so it could be made to •sort" outside of the array
and scramble other data or system parameters like
Basie's subroutine stack. It also doesn't check to
see if a key's starting position is within the
string. Garbage In, Garbage Out, if you are lucky.
If you aren't lucky it will crash your system.

The program uses less than 512 bytes of code and
should be placed as high as possible in memory,
above Basic. The program illustrated assumes a 48K
system, but the ORG can be changed to suit any
system. Vector Graphic owners with Qume printers
should avoid using the block of high memory above
the screen RAM, since the printer and video hand
lers use it for temporary storage.

Next month this column will discuss methods for
sorting disk files using this program.

The assembly language and Basic code is listed on
pages 2, 3, & 4. The programs are also contained
in MUG Library Disk 30, for those of you who don't
want to type it all in.

BASIC SUBROUTINES

by Buzz Rudow

The use of subroutines is a subject we've touched
on before (see newsletter 2, page 2). Since
BASIC/Z is a compiler, rather than an interpreter,
I decided to do a bit of re-evaluation of the use
of subroutines.

These tests were run with Micropolis Basic as the
interpretive, and BASIC/Z as the compiler standard.
However, to the best of my knowledge, the results
hold generally true for all languages of their
type. That is, for the most part, BASIC-80, CBASIC,
UCSD Pascal, Pascal/M and other interpretative
languages work like Microp0lis Basic. BASCOM (com
piled BASIC-BO), CB80 (compiled CBASIC), most "C"
languages, FORTRAN, and PASCAL/Z work like BASIC/Z.

(Continued on page 5)

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

#>-

~··~'"

M
a>
O'I
>t a:
o<
~
z
o< ...,

0
M ...
a:
ra:i
f-<
f-<
w
..J
[I)
)::
w
z
g
llE:

N

w
~
o<
0.

~ ·~

Title: SORT.ASH

0000 * **** SORT.ASH ***
0010 *
0020 *
0030 *
0040 *
0050 *

COPYRIGHT 1981 BY BURKS A. SMITH
RELEASED FOR THE PRIVATE USE OF MICROPOLIS USERS GROUP.
SALE PROHIBITED WITHOUT WRITTEN PERMISSION OF THE AUTHOR.

0060 ***
0070 *
0080 * WRITTEN BY
0090 *

BURKS A. SMITH 4-15-81
DATASMITH

0100 *
0110 *
0120 * MOD
0130 *

BOX 8036
SHAWNEE MISSION KS 66208

10-8-81

0140 ***
0150 * SUBROUTINE EQUATES MOOS VS. 4.0 *
0160 ***
0170 ARGl EQU 04BCH ;ARGUMENT 1
0180 ARG2 EOU 04BEH ;ARGUMENT 2
0190 ARG3 EOU 04COH ;ARGUMENT 3
0200 NARGS EOU 04C4H ;I OF ARGUMENTS
0210 RSIZE EOU 04CSH ;REAL PRECISION
0220 !SIZE EQU 04C6H ;INTEGER PRECISION
0230 SSIZE EOU 04C7H ;STRING PRECISION
0240 RESULT EQU OlAOH ;RESULT
0250 @CBRK EQU 785H ;BREAK CHECK
0260 @DISKERROR EQU 1C8FH • ;ERROR ABORT ADDRESS
0270 *
0280 * MICROPOLIS BASIC VS. 4.0 DATA ARRAY POINTERS
0290 *
0300 AARRAY
0310 *

EQU 33B9H ;START OF A$ ARRAY

0320 ***
0330 ORG OBEOOH ;ASSY ADDRESS **** 48K VERSION ****
0340 ***
0350 *
0360 *
0370 BEGIN
0380
0390 *

JMP
NOP

SORT ENTRY ;SORT ENTRY POINT
;JUST A PLACEHOLDER

0400 * THE FOLLOWING MUST BE POKED BEFORE EXECUTION
0410 *
0420 SIZE
0430 KEYi
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550

KEY2
KEY3
KEY4
KEYS
KEY6
KEY7
KEYS
KEY9
KEYlO

0560 *

DW
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

0570 * TEMPORARY STORAGE

00
0
0
0
0,0,0
0,0,0
o,o,o
o,o,o
o,o,o
0,0,0
0,0,0
o,o,o
o,o,o
0

;LAST INDEX TO SORT+!
;KEY 1 STARTING ADDR
;KEY 1 LENGTH TO CHECK
;KEY 1 SEQUENCE (O=ASC,
;KEY 2 START,LEN,SEO

;MUST ALWAYS BE ZERO

Page 1

l=DEC)

~

Title: SORT.ASH

0580 *
0590 START DB 0 ;CURRENT KEY START
0600 LEN DB 0 ;CURRENT KEY LEN
0610 SEO DB 0 ;CURRENT KEY SEQUENCE
0620 LASTKEY DW 0 ;KEY INFO ADDRESS
0630 SWAPFLAG DB 0 ;SWAP INDICATOR
0640 STRLEN DB 0 ;STRING LENGTH
0650 INDEXl DW 00 ;SHELL BOTTOM INDEX
0660 INDEX2 DW 00 ;SHELL TOP INDEX
0670 ADDRl OW 00 1ADDRESS OF START OF DATA
0680 *
0690 **
0700 * SORT ROUTINE
0710 **
0720 *
0730 * SORT KEYS ARE PASSED TO ROUTINE WITH POKE COMMANDS.
0740 * THIS PROGRAM EXPECTS TO FIND DATA TO BE SORTED IN ARRAY A$
0750 * AND RETURNS ARRAY A$ IN SORTED CONDITON.
0760 *IF AN ERROR OCCURS, THE PROGRAM RETURNS THE CHARACTER 'E'.
0770 *IF THE SORT IS SUCCESSFUL, THE PROGRAM RETURNS THE CHARACTER 'A'.
0780 **
0790 SORTENTRY LHLD AARRAY ;GET START ADDRESS
0800 MOV A,M ;GET t OF DIMENSIONS
0810 CPI 1 ;MUST BE 1
0820 JNZ SERROR ;ELSE ERROR
0830 INX H ;POINT TO t OF ELEMENTS
0840 INX H ; (IGNORE IN THIS VERSION)
0850 XCHG
0860 LHLD SIZE ;LOAD t OF ELEMENTS
0870 SHLD INDEX2 ;PRIME SHELL
0880 XCHG
0890 INX H ;POINT TO LEN
0900 HOV A,M ;GET LEN
0910 STA STRLEN ;SAVE
0920 INX H ;lST CHAR
0930 SHLD ADDRl ;SAVE START OF ARRAY
0940 *
0950 SORTLOOP CALL SETINDEX ;CALCULATE SHELL INDEX
0960 LXI D,O ;ZERO FOR COMPARISON
0970 CALL COMPARE
0980 JZ SEXIT ;NORMAL EXIT IF HL=O
0990 SORTLOOPl LXI H,O ;00 TO HL
1000 SHLD INDEX! ;INIT START
1010 XRA A ;MAKE A ZERO
1020 STA SWAPFLAG ;INIT SWAP FLAG
1030 LHLD INDEX! ;BOTTOM OF SHELL
1040 XCHG ;TO DE
1050 LHLD INDEX2 ;TOP OF SHELL TO HL
1060 SORTLOOP2 CALL RESET ;SET TO FIRST KEY
1010 CALL @CBRK ;CHECK FOR Ac
1080 JZ @DISKERROR ;EXIT IF SO
1090 CALL SWAP ;SWAP IF NEEDED
1100 INX H ;BUMP TOP
1110 INX D ;AND BOTTOM
1120 PUSH D ;SAVE BOTTOM
1130 XCHG
1140 LHLD SIZE ;t OF ELEMENTS
1150 XCHG

Page 2

C1

Title: SORT.ASH

1160
1170
1180

CALL
POP
JNZ

COMPARE
D
SORTLOOP2

1190 * SHELL PASS
1200

COMPLETE
LOA
ORA
JNZ
JMP

SWAP FLAG
A
SORTLOOPl
SORT LOOP

1210
1220
1230
1240 *
1250 * DIVIDE SHELL INDEX BY TWO
1260 *
1270 SETINDEX
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370 *

LHLD
MOV
ORA
RAR
MOV
MOV
RAR
MOV
SHLD
RET

INDEX2
A,H
A

H,A
A,L

L,A
INDEX2

1380 * COMPARE TWO STRINGS
1390 *
1400 SWAP
1410

PUSH D
PUSH H

1420 * FIRST FIND
1430

ADDRESSES OF STRINGS
LHLD ADDRl

1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570 * UNEQUAL
1580 SWAP!
1590
1600
1610
1620
1630 SWAP2
1640
1650
1660 *
1670 SWAPRET
1680
1690
1700 *

LOA STRLEN
MOV B,A
CALL INCREMENT
POP D
PUSH D
PUSH H
LHLD ADDRl
LDA STRLEN
MOV B,A
CALL INCREMENT
POP D
CALL KEYCOMP
JZ SWAPRET

COMPARISON
JNC
LOA
CPI
JZ
JMP
LDA
CPI
JZ

POP
POP
RET

SWAP2
SEO
01
EXCHANGE
SWAPRET
SEO
00
EXCHANGE

H
D

1710 * EXCHANGE TWO STRINGS
1720 *
1730 EXCHANGE LOA STRLEN

;SEE IF DONE
;RESTORE
;LOOP IF NOT

GET SWAP FLAG
SET FLAGS
ANOTHER PASS NEEDED IF NZ
ELSE DECR SHELL

;GET INDEX
;HIGH BYTE
;CLEAR CARRY
;DIVIDE BY 2
;REPLACE
;LOW BYTE
1DIVIDE BY 2 & SHIFT CARRY
;REPLACE
;BACK IN MEMORY
;AND RETURN

;SAVE BOTTOM
;AND TOP

TO COMPARE
;ARRAY START
;LENGTH OF EA STRING
;TO B
;POINT TO ELEMENT
;GET TOP BACK
;BUT LEAVE ON STACK
;SAVE BOTTOM ADDR
;ARRAY START
;STRING LENGTH
;TO B
;POINT TO ELEMENT

(

;BOTTOM ADDR IN DE -TOP IN HL
;COMPARE THE TWO STRING
;RETURN IF EQUAL

;DECENDING COMPARE JUMP
;GET SEQUENCE
;DECENDING SORT?
;SWAP IF SO
;NORMAL EXIT
;GET SEQUENCE
;ASCENDING SORT?
;SWAP IF SO

TOP INDEX
BOTTOM INDEX
NORMAL RETURN

;LENGTH OF STRING

Page 3

Title: SORT.ASH

1740
1750
1760 EXCHl
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880 *

MOV
OCR
LDAX
MOV
MOV
STAX
MOV
INX
INX
OCR
JNZ
MVI
STA
JMP

1890 * COMPARE DE AND HL
1900 *
1910 COMPARE

. 1920
1930
1940
1950
1960
1970 *

MOV
CMP
RNZ
MOV
CMP
RET

B,A
B
D
C,A
A,M
D
M,C
H
D
B
EXCHl
A,01
SWAPFLAG
SWAPRET

A,D
H

A,E
L

1980 * INCREMENT TO START OF STRING
1990 *
2000 INCREMENT
2010
2020
2030
2040
2050 *
2060 * EXIT ROUTINES
2070 *
2080 SERROR
2090
2100
2110 *
2120 SEXIT
2130
2140 SEXITl
2150
2160
2170
2180
2190
2200
2210 *

DAD
OCR
JNZ
INX
RET

LXI
MVI
JMP

LXI
MVI
DCX
MVI
DCX
MVI
DCX
MVI
RET

2220 * RESET TO FIRST KEY
2230 *
2240 RESE'!'
2250
2260
2270
2280
2290 *

PUSH
LXI
CALL
POP
RET

D
B
INCREMENT
H

H,RESULT+3
M, 'E'
SEXITl

H,RESULT+3
M, 'A'
H
M,01
H
M,01
H
M,03

H
H,KEYl
NEWKEY
H

2300 * SAVE NEW KEY PARAMETERS
2310 *

;TO B
;SET UP FOR LOOP
;BOTTOM
;SAVE TEMPORARILY
;TOP
;TO BOTTOM
;BOTTOM TO TOP
;BUMP ADDRESSES

;AND COUNTER
;LOOP IF NEEDED
;MAKE A 1
;AND SET FLAG
;OR RETURN

;GET D
;COMPARE WITH H
;RETURN NOT EQUAL
;ELSE GET E
;COMPARE WITH L
;AND RETURN

;INDEX

(

;DECREMENT COUNTER
;CONTINUE TILL DONE
;LENGTH (IGNORE)
;NORMAL RETURN

;RETURN FLAG
;ERROR INDICATOR
;AND GO

;RETURN FLAG
;OK INDICATOR
;CURRENT LEN

;MAX LEN

TYPE
STRING TYPE
GENERAL EXIT

;SAVE REGISTER
;POINT TO FIRST KEY
;GET THE KEY
;RESTORE REGISTER
;EXIT

Page 4

3

8
2!
P.I
:E: en
t'"
P.I

~
P.I
:0 ..
w
0

C,,j

~
c::
~
><
.....
'° CX>
w

'U
>
G'l
P.I

w

M
CX>

°'

>t a:
o<
:::>

~ ,..,

0
M ...
a:
(IJ
f'4
f'4
(IJ
..l

~
(IJ

:z:

g
E

"l:t'

(IJ
C>

~

~

Title: SORT.ASH

2320 NEWKEY
2330
2340
23SO
2360
2370
2380
2390
2400
2410
2420 •

MOV
STA
INX
MOV
STA
INX
MOV
STA
SHLD
RET

A,M
START
H
A,M
LEN
H
A,M
SEO
LASTKEY

2430 * COMPARE TWO STRINGS BY KEY DATA
2440 •

;START INDEX

;LENGTH INDEX

;SEQUENCE INDEX

;SAVE ADDRESS
;AND RETURN

~

24SO * RETURNS ZERO SET IF COMPARISON EQUAL
2460 * RETURNS C IF 'ASCENDING'
2470 * RETURNS NC IF 'DECENDNG'
2480 •
2490 KEYCOMP
2SOO
2Sl0
2S20 KEYCOMPl
2S30
2S40
2SSO
2S60 * DO
2S70
2S80

COMPARISON

2S90 KEYCOMP2
2600
2610
2620 KEYRET
2630
2640
26SO •
2660 KEYCOMP3
2670
2680
2690
2700
2710 •

LOA
PUSH
PUSH
INX
INX
OCR
JNZ

LOA
MOV
LDAX
CMP
JZ
POP
POP
RET

OCR
JZ
INX
INX
JMP

2720 * POINT TO NEXT KEY
2730 •
2740 NEXTKEY
27SO
2760
2770
2780
2790
2800
2810
2820
2830 •
2840

LHLD
INX
MOV
ORA
JZ
CALL
POP
POP
JMP

END

START
D
H
H
D
A
KEYCOMPl

LEN
B,A
D
M
KEYCOMP3
H
D

B
NEXTKEY
D
H
KEYCOMP2

LASTKEY
H
A,M
A
KE YR ET
NEWKEY
H
D
KEYCOMP

BEGIN

;LOAD KEY START INDEX
;SAVE STRING START ADDRESSES

;BUMP ADDRESSES

; DEC-REM ENT COUNT
;UNTIL POINTING AT KEY FIELDS

;LENGTH TO COMPARE
;TO B
;COMPARE BYTE OF EACH FIELD

;CONTINUE COMPARISONS IF •
;ELSE RESTORE POINTERS

;AND RETURN

;DECR CHAR COUNT
;GET NEW KEY IF DONE WITH THIS ONE
;ELSE BUMP POINTERS

;AND LOOP

;GET LAST KEY ADDR
;POINT TO NEXT KEY START
;FETCH THE BYTE
;SET FLAGS
;DONE IF LAST KEY
;ELSE GET THE KEY INFO
;RESTORE STRING START ADDRESSES

;REPEAT FOR NEXT KEY

Page S

~

Title: ASORT.BAS

**** ASORT •••• Written by Burks A. Smith 10
lS
20
2S
30
3S
40
4S
so
SS
60
6S I

BASIC PROGRAM TO USE ASSEMBLY LANGUAGE SORT OF A$
DATA IS EXPECTED TO BE IN FIXED FIELD LENGTH FORMAT.
ARRAY K• HOLDS START POSITION AND LENGTH Of ALL KEYS.

A$() - ARRAY HOLDING STRINGS TO SORT
K•(X,O) - KEY X START
K•(X,l) - KEY X LENGTH
K•(X,2) - KEY X SEQUENCE O•ASCENDING, l=DECENDING
I• - NUMBER OF KEYS

100 MEMEND 16RDDFF: !LEAVE SPACE FOR SUBROUTINE
110 DEF FAS•l6RDEOO: !DEFINE ENTRY POINT
120 M=l6RDE04: !ADDRESS OF DATA AREA FOR PARAMETERS.
130 LOAD "SORTPGM": !LOAD SUBROUTINE
140 I
200 I SAMPLE PROGRAM TO SORT A DATA FILE
210 OPEN 1 "DATAFILE" END 300
220 DIM A$(SIZE(l),2SO), K•(2,2)
230 N••O
240 GET 1 L$,F$,N
2SO A$(N•)•LEFT$(L$+REPEAT$(" ",20),20): IFIX LENGTH
260 A$(N•)•A$(N•)+LEFT$(F$+REPEAT$(" ",20),20)
270 A$(N•)•A$(N,)+FMT(N,"ZZZZZ")
280 N••N•+l
290 GOTO 240
300 N•=N•-1: I••2
310 K•(l,O)•l: K•(l,1)•20: K•(l,2)•0 :!KEY 1
320 K•(2,0)•21: K•(2,1)•20: K•(2,2)=0: !KEY 2
330 GOSUB 1000: !SORT
340 I< PGM USES SORTED DATA >
3SO CLOSE 1
360 STOP
370 I

1000 I< SORT ARRAY A$ SUBROUTINE
1010 I
1020 POKE(M)•(N•+l) AND 16ROOFF: !LOW ORDER SIZE TO SORT BYTE
1030 POKE(M+l)•((N•+l) AND 16RFF00)\16RFF: !HIGH ORDER SIZE
1040 M=M+2
lOSO FOR X••l TO I•: !POKE IN ALL KEYS
1060 POKE(M)=K•cx•,O)
1070 POKE(M+l)=K•cx•,l)
1080 POKE(M+2)=K•CX•,2)
1090 M=H+3
1100 NEXT X•
1110 POKE(M)•O: !END OF KEYS MARK
1120 A$=FAS : !SORT THE FILE
1130 IF A$="E" THEN PRINT "ERROR": STOP
1140 RETURN

MUG NEWSLETTER 130 JANUARY 1983

Suppo~e you have a routine that is used more than
once in your program. I have one that I use after
I've displayed something to the screen. I'm wait
ing for the user to review the material and tell
the program to continue. It goes like this.

010 DIM R$ (1)

100 R$•" II
110 PRINT
120 INPUT "When Ready to Continue, Type: 'C<RETURN>

"':R$
130 IF R$<>•c• THEN GOTO 100

200 R$•" II
210 PRINT
220 INPUT "When Ready to Continue, Type: 'C<RETURN>

• 11:R$
230 IF R$<>"c• THEN GOTO 200

In interpretive Basics, the rewriting of this code
each time you use it costs you memory space equal'
to the sum of the number of characters the routine
takes. Generally, this is four bytes for each line
number, and one byte for each other character or
space. The exception is that key-words are token
ized. That is, •PRINT•, •INPUT•, etc., each take
only one byte.

Writing one of the above interpretive routines as a
subroutine saves 60 bytes. The code looks like the
following.

010 DIM R$ (1)

100 GOSUB 500

200 GOSUB 500

500 R$•••
510 PRIBT
520 INPUT •When Ready to Continue, Type: 'C<RETURN>

••:R$
530 IF R$<>•c• THEN GOTO 500
540 RETURN

What you lose is some speed of execution. The
interpreter must find the subroutine. In Micropo
lis Basic, this lost time is directly proportional
to the location of the routine in the program. For
any GOSUB (or GOTO), Micropolis BASIC goes back to
the front of the program and looks through each
byte of code until it finds the proper line number.
It pays to have subroutines which are executed
repetitively, be up front in your program.

So, for interpretive languages, using subroutines
gains you approximately a byte for byte savings of
memory space, and loses an indeterminate, and often
sizable, amount of execution speed.

The code I use for the same function looks somewhat
different in BASIC/Z, but I'm sure you can see it's
the same result. I could have used R$, but I tend
to make my variable more descriptive.

010 DIM RESPONSE$(!)

100 RESPONSE$•••
110 PRINT
120 INPUT "When Ready to Continue, Type: 'C<RETURN>

••:RESPONSE$
130 IF RESPONSE$<>•c• THEN GOTO 100

200 RESPONSE$•••
210 PRINT
220 INPUT "When Ready to Continue, Type: 'C<RETURN>

'":RESPONSE$
230 IF RESPONSE$<>"C" THEN GOTO 200

A compiling language generates the total code
required to perform the routine. The lengthy
variable names do not impact compiled code size,
since they are transcribed to a memory location
number, regardless of the length of the name. The
length of the code generated for each routine
should be much larger, however. This is because

PAGE 5

the code will execute in line, rather than having
the interpreter do the bulk of the execution.
Rewriting of the code should prove very expensive
in terms of memory space.

Writing the above compiling routines as a subrou
tine saves 56 bytes. I was somewhat surprised that
the savings weren't greater. I suppose it has
something to do with the BASIC/Z compiled code
being calls to routines in the RUN/Z module, rather
than pure in-line code. The code looks like the
following.

010 DIM RESPONSE$(!)

100 GOSUB @WAIT.TO.CONTINUE

200 GOSUB @WAIT.TO.CONTINUE

490 @WAIT.TO.CONTINUE
500 RESPONSE$•"•
510 PRINT
520 INPUT "When Ready to Continue, Type: 'C<RETURN>

'":RESPONSE$
530 IP RESPONSE$<>"C" THEN GOTO @WAIT.TO.CONTINUE
S40 RETURN

You still lose a bit of execution speed.
though. Just the time to do a machine
CALL to a memory location and a RETURN
of milliseconds.

Not much
language
a couple

For compiling languages, then, using subroutines
gains you a variable number of bytes of memory
space with the loss of a very small, fixed, amount
of execution time.

From my point of view, given the limited memory
space in our micro-computers, the use of subrou
tines in an interpretive language is generally an
advantage, if you watch out where you put them.
When using a compiling language, the use of subrou
tines is almost a must.

It was interesting to find out that the repetitive
setting of any variable could be constructed as a
subroutine in BASIC/Z with a resultant saving of
memory space. Consider the following two subrou
tines.

10 1 Test 1 10 1 Test 2
20 R$••" 20 GOSUB 50
30 INPUT R$ 30 INPUT R$
40 RETURN 40 RETURN
so R$•"" so R$•""
60 RETURN 60 RETURN

In BASIC/Z, Test 2 takes 6 bytes less memory space
than Test 1. In Micropolis Basic, Test 2 takes 1
byte less space than Test 1. The same result holds
true whether you're setting a string variable like
"R$•, or a real number like "T".

A last little tid-bit of information is about
•structured programming•. It seems that BASIC/Z
allows one to write structured code without losing
memory space. The following code is a structured
version of @WAIT.TO.CONTINUE which takes 3 bytes
less code than the former version.

010 DIM RESPONSE$(!)

100 GOSUB @WAIT.TO.CONTINUE

200 GOSUB @WAIT.TO.CONTINUE

490
500
510
520
530

S40
5SO

@WAIT.TO.CONTINUE
DO

RESPONSE$•""
PRINT
INPUT "When Ready to Continue, Type: 'C<RET
URN>'":RESPONSE$

UNTIL RESPONSE$•"C"
RETURN

PAGE 6

NEW AREAS OF ATTENTION

by Buzz Rudow

Special Interest Groups (SIGs)

Most general purpose computer clubs have SIGs to
support areas of hardware and software interest.
The MUG has always had areas which received more
attention than others, but nothing has been form
alized. The areas that I find interesting are
certainly not the same as what interests each of
you. To start, I've established two SIGs: one
hardware, one software.

~ Graphic

The hardware SIG is for Vector Graphic systems. A
large percentage of the MUG members have alwars
been Vector Graphic owners. The percentage is
rising. VG owners have more interest in their ver
sions (dozens of versions) of CP/M, of monitors, of
VG software, and in the setup and use of the Flash
writer and Bitstreamer boards.

A monthly column will cover areas of interest to
the VG owners. Exactly what is printed is up to
the VG membership. You people have to supply the
material. At the moment, there is no groups leader
for the VG. Send your material, questions, and
thoughts for direction to me. If you wish to be
responsible for the monthly column, drop me a line.
The VG column starts this month with an article by
Herbert Spirer.

Basic/z

A second area of monthly attention will be Basic/z.
Baaic/z is truly a fine package. A large number of
our members have bought either the MDOS or the CP/M
version. A few have bought both. Being a fine
package isn't the same as saying it's simple to use
all of Basic/z' power. Steve Guralnick has
conunitted himself to writing the Basic/z column,
which will start in February. You can contact
Steve at 375 s. Mayfair, Suite 205, Daly City CA
94015, or call him at 415/992-9200 (days) or 415/
991-0155 (nights). Let him know what you'd like to
see in his articles. Send him articles of your own
that can be used, or contribute bits of information
you've learned which can be mentioned by Steve.

Anymore?

The above two areas are certainly not the total of
special interests of the MUG membership. There are
a large number of Exidy and SOL owners, but they
have external clubs which cover their hardware. The
COMPAL system is a possible candidate, however, and
perhaps CDS. From what I hear, COMPAL has some nice
system software, i.e., enhancements of, or inova
tive use of, the MDOS package. Some of you may
wish to establish SIGs for Basic-80 or C-Basic.

I'm willing to establish as many SIGs as you wish.
The "you" is the key. I'm willing to provide the
space in the newsletter, but am not able to provide
the special interest material. Write or call if
you wish to discuss the degree of MUG interest in
your particular special interest.

GETTING UPDATES FOR YOUR LIBRARY DISKS

---------------------------- -
The new format of the library has disks being es
tablished for an area, such as games, or home. When
the disk is first released, it generally is not
"full" - full being a MOD I worth. Members buy
this disk for $3 and a program submitted on their
disk, or for $10 outright. If I add another program
to the disk, it is unfair for me to charge another
program submittal or another $10 for that update.

MUG NEWSLETTER 130 JANUARY 1983

The MUG policy, therefore, is that updates to any
previously purchased library disk can be had for
$3, if you supply the disk. No additional program
need be submitted.

* * * VECTOR GRAPHIC SIG *
* *

VECTOR GRAPHIC TIPS I
--•m--••-----•••-=-

By Herbert F. Spirer
University of Connecticut, Stamford, CT

(NOTE: These comments refer to my experience with a
Vector Graphic System B, CP/M 2.2.)

COMMUNICATING, CONTROL-E:

In MUG Newsletter t27, page 8, Susan Kleinman
reports on difficulty BREAKing and gave the right
fix, to insert control-E after the automatic load
~uery wtten running CONFIG. She also said that this
fix "is undocumented in Vector literature." How
ever, it is documented. On page 12 of the Vector
CONECT Users Manual, Revision B, September 17,
1982, Vector instructs the user to carry out the
same action as Susan recommends.

COMMUNICATING, RECEIVING !!:£2 !, ~
In the INTERACTIVE mode, CONECT allows you to put
incoming data into a file. The file name is
defined by the user by executing control-Y and
entering disk identification, file-name and exten
sion in a predefined field which looks like this:

A:--------.---
The user is not warned that the file name must be
left-, not right-justified.

If you enter a file-name as

A: T E L E C 0 M • M E M

you will be unable to retrieve it using standard
CP/M file handling (which includes MEMORITE). As
is clear from examination of the directory, CONECT
will have created a file-name with a leading blank
and the file is inaccessible if you request it as
TELECOM.MEM. Also, since leading spaces in your
keyboard entries for file access are ignored, you
will not be able to simply prefix a space.

To recover such a file, use the wild card •1" for
the inserted blanks, provided this does not create
an ambiguity. Thus,

TYPE TELECOM.MEM

will not type the file, but

TYPE ?TELECOM.MEM

will.

It is good practice to use a unique file-name
structure for communications files so that you can
always recover them should you accidentally insert
a space.

CIVILIZING MEMORITE ~

MEMORITE files are random, and for this reason are
not accessible to SCOPE and not directly SENDable
by telecommunications. In fact, the Vector SCOPE

(Continued on Page 10)

r ((

3

8
MICROPOLIS USER'S GROUP NEWSLETTER INDEX - CUMULATIVE YEARS 1 & 2 MICROPOLIS USER'S GROUP NEWSLETTER INDEX - CUMULATIVE YEARS 1 & 2 z

~

PGMNAME/TOPIC CATEGORY CO./AUTHOR PGM/ARTICLE TYPE VOL-PG PGMNAME/TOPIC CATEGORY
~

==·=·····=···=============·=·=========·====--····=·=========·========~~~=~~ I~
CO./AUTHOR PGM/ARTICLE TYPE

======•====•••••••==========•••••••••======•=•==••••••========s•~••=•••s•••
A-FORTH
A-FORTH COMPILER
A-FORTH PATCHES
ACCESSING DISK FILES*
ACROPOLIS UTILITIES
ACROPOLIS UTILITIES
AMO RT
ASCII MEMORY DUMP
ASMTEXT*
ASSEMBLER PGMING BOOKS
ASSEMBLER PROGRAMMING*
AUTO-CONFIGURATION*
BANKING PGM
BAS>LIN
BASIC BUGS
BASIC LOAD+GO
BASIC PGMING
BASIC PGMING
BASIC PGMING
BASIC PGMING
BASIC PGMING BOOKS
BASIC PGMING*
BASIC TOKENS
BASIC TOKENS
BASIC TOKENS*
BASIC TOKENS/KEYWORDS
BASIC UTILITIES
BASIC VARIABLE POINTERS
BASIC/S + BASIC/Z
BASIC/S + BASIC/Z
BASIC/S COMPILER
BASIC/S COMPILER
BASIC/S COMPILER
BASIC/S COMPILER
BASIC/S COMPILER
BASIC/S COMPILER*
BAS PAC
BATCHCOPY*
BLACKHAWK COMPUTER
BOOKKEEPING
BOOKKEEPING
BSS
CCA OMS
CCA OMS
CDS VERSATILE COMPUTER
CHEAP COMPUTER
CHEAP COMPUTER
CHEAP COMPUTER
CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS

ACROPOLIS
ACROPOLIS

B.RUDOW
ACROPOLIS
ACROPOLIS
B.SMITH
ACROPOLIS
B.RUDOW

B.RUDOW

DATASMITH

MICROPOLIS

B.SMITH

W.POWERS

GMS

SYSTEMATION
SYSTEMATION
SYSTEMATION
SYSTEMATION
SYSTEMATION
SYSTEMATION
SYSTEMATION
SYSTEMATION
GMS
C.SINGER

DATASMITH
DATASMITH
INV ANAL SYS
CUSTOM ELEC
CUSTOM ELEC
CDS

HIGH LEVEL LANGUAGE
HIGH LEVEL LANGUAGE
HIGH LEVEL LANGUAGE
BASIC PGM TECHNIQUE
BOBO UTILITY PGM
BOBO UTILITY PGM
BASIC APPL PGM
BOBO UTILITY PGM
BOBO APPL PGM
BOBO PGMING
BOBO PGMING
BASIC PGM TECHNIQUE
BOBO APPL PGM
BOBO UTILITY PGM
BASIC DOC
BOBO UTILITY PGM
BASIC PGMING
BASIC PGMING
BASIC PGMING
BASIC PGMING
BASIC PGMING
BASIC PGMING
BASIC DOC
BASIC DOC
BASIC DOC
BASIC DOC
BOBO UTILITY PGM
BASIC DOC
HIGH LEVEL LANG
HIGH LEVEL LANGUAGE
BASIC SYSTEM PGM
BASIC SYSTEM PGM
BASIC SYSTEM PGM
BASIC SYSTEM PGM
BASIC SYSTEM PGM
BASIC SYSTEM PGM
BOBO UTILITY PGM
BOBO UTILITY PGM
HARDWARE
BASIC APPL PGM
BASIC APPL PGM
BASIC APPL PGM
BASIC APPL PGM
BASIC APPL PGM
HARDWARE
HUMOUR
HUMOUR
HUMOUR
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO
GENERAL INFO

COMPILER
COMPILER
COMPILER
DISK FILES

BUSINESS

TERM 1/0
REFERENCE

TERM 1/0
BUSINESS

REFERENCE

REFERENCE

REFERENCE
REFERENCE
REFERENCE
REFERENCE

REFERENCE
COMPILER
COMPILER
COMPILER
COMPILER
COMPILER
COMPILER
COMPILER
COMPILER

DISK FILES

BUSINESS
BUSINESS
BUSINESS
DATA BASE
DATA BASE

012-03
020-02
024-19
020-03
022-14
023-03
OOB-05
023-05
005-05
008-04
005-01
019-08
012-05
024-03
022-01
006-10
012-04
013-01
015-01
016-01
012-06
014-01
009-03
018-02
014-05
020-13
023-10
021-01
022-06
020-06
001-01
006-06
010-06
012-01
013-01
014-01
023-12
017-06
022-07
006-03
020-09
OOB-03
003-07
004-13
014-02
022-02
023-02
024-02
009-06
011-06
012-06
013-06
014-08
015-0B
016-16
017-16
OlB-16
019-12
020-14

CLASSIFIED ADS
CLASSIFIED ADS
CLASSIFIED ADS
CLEAR SCREEN
CLEAR SCREEN*
CLEAR SCREEN*
CLEAR SCREEN*
COMMUNICATIONS
COMPAL-8200
COMPRESS
COMPUTER NO'S
CONTROL-P
CONTROL-P*
CP/H
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M - MOOS COMPARISON
CP/M - MOOS COMPARISON

B.RUDOW
B.RUOOW
J.CALLAWAY

ACROPOLIS

B.CARIGNAN

CP/M - HOOS CONVERSION* B.RUDOW
CP/M HANG FIXES
CP/M*
CRUNCH·
CRUNCH
CURSOR CONTROLS*
CURSOR CONTROLS*
DATABASE
DATABASE
DATABASE TWO
DATABASE TWO
DATE ACCESSES*
DATE ACCESSES*
DEBUG
DFILE
DIM
DISASSEMBLER
DISK BANKING
DISK CATALOG SYSTEM*
DISK DRIVE BELTS
DISK DRIVE SALE
DISK ERRORS
DISK FILE ACCESS
DISK FILE ACCESSES*
DISK FILE ACCESSES*
DISK HUB RINGS
DISK I/O ERRORS
DISK MAINTENANCE
DISK RUDIMENTS
DISK RUDIMENTS
DISKDUMP
OMEM.
DOC GEN
DOUBLING KEYS
DRIVE TURN-OFF
EXECUTION TIME*

;S.TATTERSALL
SYSTEMATION
SYSTEMATION
DAVE LAND
J.FACTOR
J.SHAPIRO
BON JOEL
BONJOEL
BONJOEL
D.O'BRIEN
ED BURKHARDT

DATASMITH

CUSTOM ELEC
J.LENZ
B.RUOOW

PRIORITY ONE

B.RUDOW
B.RUDOW

DATASMITH
DATASMITH

B.RUDOW

GENERAL INFO
GENERAL INFO
GENERAL INFO
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
80BO SYSTEM PGM
HARDWARE
BOBO UTILITY PGM
PGMING THEORY
BOBO SYSTEM PGM
BOBO SYSTEM PGM
BOBO SYSTEM PGM
BOBO SYSTEM PGM
BOBO SYSTEM PGM
80BO SYSTEM PGM
8080 SYSTEM PGM
80BO SYSTEM PGM
BOBO SYSTEM PGM
BOBO SYSTEM PGM
80BO SYSTEM PGM
80BO SYSTEM PGM
UTILITY PGM
B080 SYSTEM PGM
B080 SYSTEM PGM
BASIC PGMING AID
BASIC PGMING AID
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC APPL PGM
BASIC APPL PGM
BASIC APPL PGM
BASIC APPL PGM
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BOBO SYSTEM PGM
BOBO UTILITY PGM
BASIC DOC
BOBO SYSTEM PGM
BASIC APPL PGM
BASIC UTILITY PGM
HARDWARE
HARDWARE
DISK MEDIA
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
BASIC PGM TECHNIQUE
HARDWARE
DISK MEDIA
HARDWARE
DISK MEDIA
DISK MEDIA
BOBO UTILITY PGM
BOBO UTILITY PGM
BASIC APPL PGM
80BO SYSTEM PGM
HARDWARE
BASIC PGM TECHNIQUE

TERM 1/0
TERM I/O
TERM 1/0
TERM 1/0

OP SYSTEM
OP SYSTEM
OP SYSTEM
OP SYSTEM
OP SYSTEM
OP SYSTEM
OP SYSTEM
OP SYSTEM
OP SYSTEM
OP SYSTEM
OP SYSTEM
OP SYSTEM

OP SYSTEM
OP SYSTEM

TERM
TERM
DATA
DATA
DATA
D1\TA

1/0
1/0
BASE
BASE
BASE
BASE

DEBUGGER

REFERENCE
DISl\SSM
BUSINESS
DISK DIR

DISK FILES
DISK FILES
DISK FILES

WORD PROC
OP SYSTEM

~
~
~

021-15
022-15
024-20
006-06 1-:
001-02 0

002-01
006-05
OlB-03
016-11 '-I

023-06 ~
017-01 c
018-0B ~
018-12 t<
004-06
006-01 ~
006-02 w
OOB-05
011-02
012-03
013-02
014-02
014-06
024-01
019-06
020-12
010-05
004-09
008-07
OOB-01
013-03
003-07
005-01
006-07
006-08
009-03
012-05
017-04
024-07
019-01
003-07
022-11
017-10
016-13
004-12
014-06
004-05
021-03
024-05
023-14
005-10
023-13
010-04
011-03
024-07
024-07 "O

OlB-09 1~
018-0B ~
016-03i

002-02

~~ ~ '~

M
~I MICROPOLIS USER'S GROUP NEWSLETTER INDEX - CUMULATIVE YEARS 1 & 2 MICROPOLIS USER'S GROUP NEWSLETTER INDEX - CUMULATIVE YEARS 1 & 2
~

>t PGMNAME/TOPIC co./AUTHOR PGM/ARTICLE TYPE CATEGORY VOL-PG PGMNAME/TOPIC CO./AUTHOR PGM/ARTICLE TYPE CATEGORY VOL-PG
~ ============================•================s=•=======s====•==========•=== =mm=============•==========•=======================z=======================
:::> EXECUTION TIME* 8.RUOOW BASIC PGM TECHNIQUE 012-04 MICROPOLIS HARD DISKS MICROPOLIS HARDWARE 006-02
~ FILE OPEN ROUTINE* 8.SMITH BASIC PGM TECHNIQUE DISK FILES 009-04 MICROPOLIS HARDWARE MICROPOLIS HARDWARE REFERENCE 001-02
~ FINANCIAL PLANNING PGMS SYNTAX CORP. BASIC APPL PGM BUSINESS 006-04 MICROPOLIS HARDWARE MICROPOLIS HARDWARE 013-02

FLASHWRITER II VECTOR GR HARDWARE 011-01 MICROPOLIS HARDWARE MICROPOLIS HARDWARE 013-05
FLIPPY DISKS MICRO-SERVE HARDWARE 012-06 MICROPOLIS NEWS MICROPOLIS GENERAL INFO 003-06
FLIST GMS B080 UTILITY PGM 023-08 MICROPOLIS NEWS MICROPOLIS GENERAL INFO 006-02

0 FMT BASIC DOC REFERENCE 009-03 MICROPOLIS PDS SUMMARY MICROPOLIS 80BO SYSTEM PGM OP SYSTEM 019-04
M FMT* B.SMITH BASIC DOC REFERENCE 012-01 MICROPOLIS PREV MAINT HARDWARE OlB-04

FORMATTED INPUT* J.FACTOR BASIC PGM TECHNIQUE TERM I/O 022-05 MICROPOLIS REPS MICROPOLIS REFERENCE LISTING LIST 003-09
~ FORTH HIGH LEVEL LANGUAGE COMPILER 013-02 MICROPOLIS S/W GENERAL INFO REFERENCE 018-01
~ FORTH HIGH LEVEL LANGUAGE COMPILER 013-03 MICROPOLIS SOFTWARE REFERENCE LISTING 020-14
w FORTH HIGH LEVEL LANGUAGE COMPILER 023-16 MICROPOLIS SOFTWARE REFERENCE LISTING LISTING 022-0B
~ FORTH CONCEPTS HIGH LEVEL LANGUAGE COMPILER 024-04 MICROPOLIS SYSTEM TIPS MICROPOLIS GENERAL INFO 009-02
~ FORTH* R.NEWMAN HIGH LEVEL LANGUAGE COMPILER 021-02 MODEM D.C.HAYES HARDWARE 005-10
z FORTH* R.NEWMAN HIGH LEVEL LANGUAGE COMPILER 022-03 MODEM PGM DAVE LOGAN 80BO SYSTEM PGM 006-01
~ GENERAL LEDGER PGMS MODERN MICRO BASIC APPL PGM BUSINESS 013-03 MODEM PGM FOR SOL* BOB BARNUM 8080 SYSTEM PGM 007-03
~ GENSORT* ED BURKHARDT BASIC UTILITY PGM SORT 007-01 MODI-MODI! CONVERSION HARDWARE 002-01

GET-TRAX B080 UTILITY PGM DISK FILES 018-06 MODI-MODI! CONVERSION HARDWARE 014-05
GOTO* 8.RUOOW BASIC DOC REFERENCE 002-02 MODI-MODII CONVERSION HARDWARE 014-06
GRAPHICS BASIC PGM TECHNIQUE 010-01 MODII-MODI CONVERSION HARDWARE 013-02
GRAPHICS* 8.SMITH BASIC PGM TEC~IQUE 011-01 MOTION* A.PICKERT BASIC PGM TECHNIQUE 016-02
GRAPHICS* A.PICKERT BASIC PGM TECHNIQUE 016-02 MTEST ACROPOLIS 8080 UTILITY PGM 023-04
HAM PGMS AVAILABLE 80BO APPL PGM HAM RADIO 005-12 MUG CONTROL OF MOOS GENERAL INFO OlB-03
HIGH LEVEL LANGUAGES GENERAL INFO 005-11 MUG DIRECTORY REFERENCE LISTING MENTION 006-06
HIGH LEVEL LANGUAGES GENERAL INFO 012-02 MUG DISK MASTER MENU* B.RUOOW BASIC PGM TECHNIQUE TERM I/O 019-12
I/O PORTS BASIC PGM TECHNIQUE TERM I/O 006-05 MUG LIBRARY CONTENTS-DISK06 REFERENCE 014-04
IBM/MICROPOLIS FORMATS HARDWARE 020-12 MUG LIBRARY CONTENTS-DISKlOOl REFERENCE 020-10
IMS INV ANAL SYS BASIC APPL PGM DATA BASE 003-06 MUG LIBRARY DISKOl DIR LISTING REFERENCE 009-01
INKEY ROUTINE* B.SMITH 8080 PGM TECHNIQUE TERM I/O 009-04 MUG LIBRARY DISKOl DIR LISTING REFERENCE 016-06
INTERNAL DATA FORMAT BASIC DOC REFERENCE 020-01 MUG LIBRARY DISK02 DIR LISTING REFERENCE 011-04
INTERRUPTS HARDWARE 015-05 HUG LIBRARY DISK02 DIR LISTING REFERENCE 016-07
INVENTORY ONE BONJOEL BASIC APPL PGM BUSINESS 006-09 MUG LIBRARY DISK03 DIR LISTING REFERENCE 011-04
JUMBLE PUZZLES* G.RIDING BASIC APPL PGM GAME 016-04 MUG LIBRARY DISK03 DIR LISTING REFERENCE 016-0B
KEYBOARD INPUT* 8.RUOOW BASIC PGH TECHNIQUE TERM I/O 001-02 HUG LIBRARY DISK04 DIR LISTING REFERENCE 016-0B
KEYBOARD INPUT* B.RUOOW BASIC PGM TECHNIQUE TERM I/O 002-01 MUG LIBRARY DISK05 DIR LISTING REFERENCE 016-09
LATAH HARDWARE 017-02 HUG LIBRARY DISK06 DIR LISTING REFERENCE 016-09
LEFT-FILL WITH ZEROS BASIC PGH TECHNIQUE 008-07 HUG LIBRARY DISK06 DIR LISTING REFERENCE 021-10
LIFE BASIC APPL PGM GAME 018-05 MUG LIBRARY DISK07 DIR LISTING REFERENCE 016-10
LIN>BAS DATASMITH BOBO UTILITY PGM 024-06 MUG LIBRARY DISK07 DIR LISTING REFERENCE 021-10
LIST GMS B080 UTILITY PGM 023-09 MUG LIBRARY DISKOB DIR LISTING REFERENCE OlB-11
MAX-MIN GMS BOBO UTILITY PGM 023-10 MUG LIBRARY DISK09 DIR LISTING REFERENCE OlB-11
MOOS ALTERATIONS MICROPOLIS 8080 SYSTEM PGM OP SYSTEM 008-09 MUG LIBRARY DISK09 DIR LISTING REFERENCE 021-11
MOOS ALTERATIONS MICROPOLIS BOBO SYSTEM PGM OP SYSTEM 012-06 MUG LIBRARY DISKlO DIR LISTING REFERENCE OlB-12
MOOS ALTERATIONS BOBO SYSTEM PGM OP SYSTEM 014-04 MUG LIBRARY DISKll DIR LISTING REFERENCE OlB-12
MOOS DISK RECORD ADDR BOBO SYSTEM PGM OP SYSTEM 009-03 MUG LIBRARY DISKll DIR LISTING REFERENCE 021-11
MOOS HANG FIXES 80BO SYSTEM PGM OP SYSTEM 019-05 MUG LIBRARY DISK12 DIR LISTING REFERENCE 021-12
MOOS HANG FIXES B080 SYSTEM PGM OP SYSTEM 020-12 MUG LIBRARY DISK18 DIR LISTING REFERENCE 021-12
MOOS ON EXIDY BOBO SYSTEM PGM OP SYSTEM 021-04 MUG LIBRARY GENERAL INFO 006-01
MOOS PDS VERSION 4.0 MICROPOLIS BOBO SYSTEM PGM OP SYSTEM 014-03 MUG LIBRARY GENERAL INFO 009-01
MOOS RELOCATION 80BO SYSTEM PGM OP SYSTEM 021-0B MUG LIBRARY GENERAL INFO 011-02
MOOS UTILITIES GMS BOBO UTILITY PGM 023-07 MUG LIBRARY GENERAL INFO PRICE LIST 011-05
MOOS UTILITIES DATASMITH BOBO UTILITY PGM 024-03 MUG LIBRARY GENERAL INFO PRICE LIST 016-05
MDOSPATCH BOBO SYSTEM PGM OlB-09 MUG LIBRARY GENERAL INFO 021-09
MEMORY ALLOCATION BASIC PGM TECHNIQUE 009-03 MUG LIBRARY MODIFICATIONS-DISK06 REFERENCE 016-12
MERGE DATASMITH BOBO UTILITY PGM 024-06 MUG LIBRARY - STDS GENERAL INFO 020-11
MERGE DATASMITH BASIC PGMING AID 020-09 MUG LIBRARY RULES GENERAL INFO 020-14

mlMICOPOLIS SOFTWARE DIR REFERENCE LISTING MENTION 004-07 MUG MEMBERSHIP DIR GENERAL INFO 010-04
w MICRO-LINK BOBO SYSTEM PGM 016-14 MUG NEWSLETTER GENERAL INFO 009-01
~ MICROPOLIS HARD DISKS MICROPOLIS HARDWARE REFERENCE 003-05 MUG NEWSLETTER INDEX GENERAL INFO REFERENCE 015-05
0.

(' r ("

3

5
MICROPOLIS USER'S GROUP NEWSLETTER INDEX - CUMULATIVE YEARS 1 & 2 MICROPOLIS USER'S GROUP NEWSLETTER INDEX - CUMULATIVE YEARS 1 & 2 z

l:IJ

PGMNAME/TOPIC co./AUTHOR PGM/ARTICLE TYPE CATEGORY VOL-PG PGMNAME/TOPIC CO./AUTHOR PGM/ARTICLE TYPE CATEGORY
~

VOL-PG ~
•====msmmc=:=a•amam=============·======·=======m••=====··~======·======••z• ==•••=====•=••=z:mza•=====ma:m=====•a=s=:===================·============== ~
MUG NEWSLETTER INDEX GENERAL INFO REFERENCE 021-13 SORCERER S/W UTILITY PGM 016-15 ::I
MUG OBJECTIVES GENERAL INFO 001-01 SORCERER USERS GROUP HARDWARE g~t~~ ~ MUG OBJECTIVES GENERAL INFO 006-01 SORCERER/MOOS PATCHES HARDWARE
MUG OBJECTIVES GENERAL INFO 007-01 SORT RETAINING SEO BASIC PGM TECHNIQUE SORT 003-03 ~
MUG OBJECTIVES GENERAL INFO 014-07 SORT/A SYSTEMATION 8080 UTILITY PGM SORT 001-01 0

MUG OBJECTIVES GENERAL INFO 023-01 SORT/A SYSTEMATION 8080 UTILITY PGM SORT 003-01
MUG SOFTWARE HOUSE GENERAL INFO 019-01 SORT/B SYSTEMATION BASIC-80 UTILITY PGM SORT 010-05
MUG SUPPLIES GENERAL INFO PRICE LIST 024-18 SPELLBINDER 8080 APPL PGM WORD PROC 021-16
NEVADA COBOL ELLIS COMP HIGH LEVEL LANGUAGE COMPILER 012-03 STATISTICS PGMS MODERN MICRO BASIC APPL PGM BUSINESS 013-04 ~
OSM 8080 SYSTEM PGM OP SYSTEM 023-14 STRING ARRAYS* B.RUOOW BASIC PGM TECHNIQUE STRINGS 019-02 ~
P/DIM SYSTEMATION BASIC UTILITY PGM 010-02 STRING OPERATIONS* K.FINDLAY BASIC PGM TECHNIQUE STRINGS 016-13 ;
PAS INV ANAL SYS BASIC APPL PGM PROP MGMT 003-06 SUBROUTINE LIBRARY BASIC PGM TECHNIQUE 010-01 :xi
PAS INV ANAL SYS BASIC APPL PGM PROP MGMT 008-03 SYSLIST DATASMITH 8080 UTILITY PGM 024-07 ><
PASSWORDS BASIC PGM TECHNIQUE 018-08 SYSTEM MEMORY 8080 PGM TECHNIQUE 017-03 ~
PAYROLL DATASMITH BASIC APPL PGM BUSINESS 006-03 SYSTEMATION DISCOUNTS SYSTEMATION GENERAL INFO 009-01 CXI

PENSION PGMS BASIC APPL PGM BUSINESS 014-06 TABLE HANDLING BASIC PGM TECHNIQUE 014-02 w
PGM DOCUMENTATION* J.SHAPIRO BASIC PGMING 015-03 TABLE HANDLING* J.HARDEN BASIC PGM TECHNIQUE 014-07
PGMING AIDS. AVAILABLE DATASMITH BASIC PGMING AID REFERENCE 006-03 TABLE HANDLING* N.DEMBINSKI BASIC PGM TECHNIQUE 015-01
PLOADG GMS 8080 UTILITY PGM 023-12 TAPEREC BASIC APPL PGM MUSIC 011-06
PMS CUSTOM ELEC BASIC APPL PGM PROP MGMT 003-07 TAX PGMS SYNTAX CORP. BASIC APPL PGM BUSINESS 006-04
PMS II INV ANAL SYS BASIC APPL PGM PROP MGMT 008-03 TAXPRO 8080 APPL PGM BUSINESS 017-04
POLY TO MOOS ASSM* M.KONOPICK 8080 UTILITY PGM 022-04 TEXTWRITER l B080 APPL PGM WORD PROC 017-05
PONY-PICK BON JOEL 80BO APPL PGM 019-08 TICTACTOE MUG LIBR BASIC APPL PGM GAME OOB-06
PUBLISHED SOFTWARE GENERAL INFO 013-04 TOKENIZE ACROPOLIS BOBO UTILITY PGM 023-06
QUIKSORT* B.RUDOW BASIC UTILITY PGM SORT 003-03 TRACK DENSITIES 8080 SYSTEM PGM OP SYSTEM 017-04
R'S AND E'S BASIC PGM TECHNIQUE 011-02 TX* EP.RUDOW ~ASIC UTILITY PGM DISK FILES 004-01
REACT BONJOEL BASIC APPL PGM BUSINESS 008-03 UNPROTECT SYSTEMATION CP/M UTILITY PGM 009-05
READING DISK DIR ED BURKHARDT BASIC UTILITY PGM DISK DIR 012-04 UTILITY PGMS AVAILABLE BONJOEL GENERAL INFO 006-07
READING DISK DIR B.ZALE BASIC UTILITY PGM DISK DIR 014-04 UTILITY PGMS AVAILABLE SYSTEMATION UTILITY PGM REFERENCE 007-09
RECOVER ACROPOLIS 8080 UTILITY PGM 023-05 UTL-1 PGM PACKAGE SYSTEMATION 8080 UTILITY PGM DISK FILES 005-12
RES-CONDENSED 8080 SYSTEM PGM OP SYSTEM 006-06 VARIABLE ALLOCATION* B.SMITH BASIC PGM TECHNIQUE OOB-06
RESTORE FILES 8080 UTILITY PGM DISK FILES 018-05 VARLIST DATASMITH 8080 UTILITY PGM 024-03
RIGID DISKS HARDWARE 018-03 VECTOR GRAPHIC SYSTEM VEC GRAPH HARDWARE 003-05
ROUNDING* B.RUDOW BASIC PGM TECHNIQUE 002-03 VERIFY ACROPOLIS 8080 UTILITY PGM 023-06
ROUNDING* J.CALLAWAY BASIC PGM TECHNIQUE 006-05 VERSATILE CDS HARDWARE 017-14
ROUNDING* DAVE !AND BASIC PGM TECHNIQUE 008-01 VIEW ACROPOLIS 80BO UTILITY PGM 023-03
SAVING BASIC PGMS BASIC PGM TECHNIQUE 018-15 WAMSORT BONJOEL 8080 UTILITY PGM SORT 006-09
SAVING RES 80BO SYSTEM PGM OP SYSTEM 023-13 XFILES GMS B080 UTILITY PGM 023-07
SAVING VARIABLES BASIC PGM TECHNIQUE 004-08 XREF SYSTEMATION BASIC PGMING AID 004-10
SAVING VARIABLES B.MITCHELL BASIC PGM TECHNIQUE 008-08 XTYPE GMS 80BO UTILITY PGM 023-09
SAVING VARIABLES* B.RUDOW BASIC PGM TECHNIQUE 008-08 YES/NO INPUT RESPONSES* B.SMITH BASIC PGM TECHNIQUE 009-04
SAVING VARIABLES* BASIC UTILITY PGM 010-02 YES/NO INPUT RESPONSES* ED BURKHARDT BASIC PGM TECHNIQUE 012-05
SCREEN DISPLAY TEST* J.CALLAWAY BASIC UTILITY PGM TERM 1/0 006-06 ZBO ASSEMBLER BOBO PGMING AID ASSEMBLER OlB-10
SCREEN DISPLAY TEST* 8.RUDOW BASIC UTILITY PGM TERM 1/0 006-07
SCREEN DUMP BOBO SYSTEM PGM OP SYSTEM 018-08
SCREEN EDITOR BOBO UTILITY PGM EDITOR OlB-08
SEARCH BOBO SYSTEM PGM OlB-09
SGN FUNCTION BASIC PGM TECHNIQUE 014-05
SIZE(N)* G.RIDING BASIC PGM TECHNIQUE DISK FILES 016-02
SIZES BASIC DOC REFERENCE 002-03
SMASH DATASMITH BOBO UTILITY PGM 024-07
SMASH DATASMITH BASIC PGMING AID 020-09
SOFTWARE AVAILABLE REFERENCE LISTING UPDATES 022-14
SOFTWARE VENDOR DIR MICRO-SERVE REFERENCE LISTING LIST 005-05
SOFTWARE VENDOR DIR MICRO-SERVE REFERENCE LISTING UPDATES 006-02

I~
SOFTWARE VENDOR DIR MICRO-SERVE REFERENCE LISTING MENTION 007-10
SOFTWARE VENDOR DIR MICRO-SERVE REFERENCE LISTING NOTES 011-03
SOL 80-COLUMN DISPLAY HARDWARE OlB-14
SORCERER BASIC HIGH LEVEL LANGUAGE INTERPRET OlB-13

PAGE 10

Reference Manual, Revision A, Feb. l, 1980, ['age 1-
2, states that MEMORITE uses an incompatible opera
ting system.

If you try to read a MEMORITE file into SCOPE, the
system returns the message:

BAD TEXT FILE

Appending a CRLF to each line of a MEMORITE file is
all that is necessary to make them accessible to
SCOPE or useful in SENDing by telecommunications.
A simple ED instruction does this, but this is a
nuisance. There is a direct way to achieve the
same result, not documented in my Vector MEMORITE
III PRIMER Version 1.1, Revision A, Feb. 1, 1981.

As is revealed in the VECTOR CONECT Users Manual,
it is possible to create a "raw• file while in
MEMORITE. Although the instruction is not expli
citly given there, the consistent use of mnemonics
by Vector suggested writing a document in MEMORITE
using:

WO R

for

>.cWD <R>aw

This worked and is convenient for the user. I
often generate MEMORITE files which I want to pro
cess as both standard MEMORITE files and under
other programs as ASCII files: by writing a MEMO
RITE version (CLASSM) and a •raw" version (CLASSR),
I can have it both ways.

MUG NEWSLETTER 130 JANUARY 1983

SPECIAL VECTOR SALE

A Vector Graphic dealer here in Huntsville is
having a special sale which will be of interest to
any of you contemplating an update of your current
Micropolis-based system.

~ ~ ~

Vector 2600 3,99S 2,996
Vector 300S S,49S 4,121
Vector SOOS 7,990 S,993
SOOS Terminals l,6SO l,2SO

All the Vectors use a double-sided drive which can
read your MOD II or MOD IV disks. The 2600 has two
external floppy drives, with 64K, S S-100 slots and
a memory mapped video built into a terminal. The
300S substitutes a SMb hard disk for one floppy.
The SOOS is a multi-user (maximum of S) system. It
comes vith one terminal.

If you're interested, contact Bill Hill at Techni
cal Data Systems, 205/882-1300, or write him at
2227 Drake Ave SW, Huntsville AL 35805.

It's amazing what is going on in the microcomputer
.world.- It was just last March that I bought my

Black Hawk, which is essentially a Vector 3005, for
$5,SOO - wholesale.

Vector has introduced the Vector 4. It is an 8-
bit/16-bit system with color capabilities. Prices
are similar to the list prices above. I guess
that's why they're having a sale on the "old"
equipment.

Published Monthly by the MUG
Subscription rates:

FIRST CLASS MAIL

MICROPOLIS USERS GROUP

Buzz Rudow, Editor
604 Springwood Circle
Huntsville AL 35803

(205) 881-1697

U.S., Canada, Mexico~ $18/year: Other, $2S/year

FIRST CLASS MAIL

FIRST CLASS MAIL

.~ r~ _··~:-·• ,,• - ·- • -• ~-- •

i'
~ J;'\'.l-5'83

.''"\ .-~ ""'
~} "'~::. LI

\ .:.~· ~: - ... · ... ~::

