
MICROPOLIS USERS GROUP

MUG Newsletter #32 - March 1983

Published Monthly by the MUG
Subscription rates:

North America: $18/year
Elsewhere: $25/year - airmailed

* *
*
*

VECTOR GRAPHIC SPECIAL INTEREST GROUP *
*

THE JOYS OF BUSINESS MICRO-COMPUTING

by Charles T. Goetz, DBI Industries, Inc.
80 Allen Rd, s. Burlington VT 05401

802-863-6873

Let me tell you my sad story.

Small businessmen have to be innovative--right?
Right. So better than five years ago we carefully
speced out a nice little micro system to handle our
accounting and general office work. We bought a
Xi tan box (S-100), good high quality printer and
two Micropolis MOD 1053-II drives. By upgrading
our memory board we had 64K of ROM and 1.2 megs of
storage on line, a good four years before the cur
rent revolution in micros hit. We never did use
the Micropolis operating system, electing CP/M
because we felt that there would be more programs
available for that system.

Pretty good so far. Since we are electronics
oriented there was always some guy in-house who
could write code and we developed a decent set of
programs which have served us well. Still doing
pretty well.

Of course Xitan went down the pipe very shortly
after our purchase. But we had our local dealer
for support.

•Ahh -- what do you mean his phone has been dis
connected?

Well, no big deal. Somebody in-house could always
make little adjustments here and there in the hard
ware and software when needed. And that really was
not very often. Meanwhile, back at the ranch, we
are building all sorts of records and adding a few
bytes here and a few bytes there into our data
file. Like good little fellows, we are getting our
printouts for back-up and, after all, I got enough
things around here that don't work so why should I
worry about something that is working?

Gradually these •in-house guys who can write a
little code• get ideas about upgrading their lot in
life. Electronic technicians suddenly become com
puter consultants and one day there was nobody
around to answer the question, •what do I do--the
computer is saying BAD SECTOR?•

What do you do? You learn in one hell of a hurry.
You learn what MTBF is all about. You learn that
CPU is not CP/M's sister. You learn that the local
computer store does not sell parts for Xitan.
(They look at you like you had a disease). Late
one Thursday evening you begin to wonder what would
happen if that thing smoked before the payroll
tomorrow morning?

So, like a good little businessman, you buy your
self some spares. You see, there is a difference
between relying on a computer for your business op
eration and for some red eye hobby-type fun nights
and weekends.

Every good little manufacturer is suppose to ex
pand. If you do it right, you first make sure that
you have damn good control over your existing oper
ations. Being mightily impressed with the power of

the computer and the descending prices of new
equipment we started to thirk pretty heavy about a
second system. Number one, we wanted to back-up
our existing system in case of a failure and number
two, we wanted to start to put our manutacturing
operations on computer.

Lots of nifty new systems out there with megabytes
of memory and multi-megabytes of storage. What a
grand new world! So why not invest in one of these
systems and, if your Xitan box smokes on Thursday
night, do your payroll on the new system.
Oh yea? •you got a what kind of system?•
kind of disc format?..---.rWell, that's no
lem. We'll just write you a new program
fer all your files over to our system and
have to worry about your old stuff.•

•A what
big prob
to trans
you won't

Doesn't sound right. So you get on the phone and
find out that there is a guy named Buzz Rudow down
in Alabama who knows a littl~ bit about the Microp
olis format and this fine fellow says, •Hey, Vector
Graphic use·s the same format. Why don't you look
into their line?•

Wow! Vector has just come out with a brand new,
hot model--the Vector 4. You can get it with two
double density 77TPI, double sided disc drives.
Since we run, in effect, four drives for our pro
grams (A, B, C and D) 2 times 2 equals 4--right?
You even go for a demo at your nearest dealer (200
miles). The dealer does a Config F and the thing
asks you how you want to configure drives A, B, C
and D--double or single sided?

Bingo! Besides the back-up for your Xitan you have
just about unlimited expandability because this
Vector 4 is designed for a networking system which
would be ideal for inventory control, shop floor
control, scheduling, purchasing, etc., etc., etc.
I must be dreaming.

Purchasing goes out for bids, we get a nice price
and eventually the thing gets here, a little bit
worse for wear, but never-the-less our dream mach
ine is here.

The first thing you find out is that there is no
drive C or drive D. Drive A is either single sided
or double sided--the underside is not drive B or
even drive C or drive D. Sure, if your accounting
equipment is down, you can bring the discs over and
transfer files to a double sided disc. Only trou
ble with that is that you are going to have to re
write your programs and that means a lot more than
just redesignating drives, or drive addresses with
in the programs. A four disc interaction doesn't
transfer that easily. Take my word for it.

A month or so later some of your manuals start to
show up (they cost extra) and you find out that
you've got a couple of vacant S-100 slots inside
the Vector 4. Being the proud owner of a back-up
Micropolis disc driver board and spare drives,
there should not be a great problem in running the
thing with four single sided drives.

So, since you work late nights on this thing anyhow
why not call Vector in California and speak with an
applications engineer? Well, pretty quick you find
out that Vector in California is really an answer
ing machine that says, •I am sorry sir. You will
have to go back to your dealer.•

So, we go back to our dealer, who is really a nice,
accommodating guy. He goes back to Vector (he has
the secret code that gets him past the answering
machine) and he gets back to you to tell you that
the S-100 buss in the Vector 4 is •modified•. This
means, according to them, that configuring for four
single sided drives is nie on to impossible. (I
don't believe it).

O.K. So what about all the external ports on this
magnificent machine? Can't we just designate an
I/O port as drives C and D? •Ahh-Umm. The network
ing programs are not yet available from Vector.•
Etc., etc., etc.

Oh, I also might add that, although both of my sys
tems are CP/M, my Vector programs will not work on
my Xitan.

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

fAGE 2

O.K., I've bored you long enough with my problems.
Now a proposition.

As a small business owner, not particularly sophis
ticated in either computer hardware or software, I
can see that the explosive growth in micros is
going to have a very significant effect on small
businesses. Lots of people are going to jump into
micros as a cure-all for business information sys
tems. I think that they are going to get burned.
I believe that user's groups are bound to become an
absolute necessity. The swapping of information for
mutual benefit could save an awful lot of trauma.

The setting up of a Vector Graphic special interest
group by MUG was really a welcome announcement. For
one, I would be happy to share what little informa
tion I have, and will learn, with anybody who wants
it. We do have some expertise in dealing with the
Micropolis hardware and I would also be willing to
share this. The Vector 4 is a new piece of equip
ment and there probably are not a lot of users out
there yet. (Remember the pioneer? He was the guy
who got the arrow in the back.)

So if anybody out there needs some answers from me
or can give some answers to me, I would be delight
ed to hear from them.

* *
*
*

BASIC/Z SPECIAL INTEREST GROUP *
*

BASIC/Z CORNER 12

bySteven Guralnick
375 South Mayfair Avenue, Suite 205

Daly City, CA 94015

am back.

I mentioned in the last article that Jerry Lenz and
I put together a Client Ledger Program, for this
law office. I purchased BASIC/Z to convert that
program from Micropolis BASIC to BASIC/z. Since
the conversion was a total success and since I then
used BASIC/Z to go on from there, I think it would
be a helpful tutorial to talk about my use of
BASIC/Z for that particular package and I will
start •ith the conversion process. In this, I am
assuming that you have some basic familiarity,
(forgive the pun) with the operation of BASIC/Z,
i.e., that you have turned it on, have used the
editor and have used the compiler. If you do not
yet own BASIC/Z, let me assure you that learning
the routines is quite straight forward. The editor
is almost identical to the editor in Micropolis
BASIC, only it is better.

The first thing you need do to convert from Microp
olis BASIC to BASIC/Z is to be aware that there are
a few special syntactical requirements in BASIC/Z.
What it really comes down to is you should have
written your original code in a proper way. For
example, in Micropolis BASIC you can get away with:
IF A•B THENlOO. BASIC/Z insists on a space between
•THEN• and •100•. TAB statements require semicolons
in BASIC/Z, and so forth. You have two choices:
you can tidy up this type of thing while you are
still in Micropolis BASIC or you can transfer over
and then tidy up with the BASIC/Z editor. Frankly,
it is a little easier to do it later, because you
have a search and replace function. So, if you
have a load of the same type of error, you can usu
ally construct a search and replace routine that
will get rid it. That is the way I did it when I
was converting the Client Ledger Program. If you
are looking for thirty-five TAB statements, it is a
lot easier to tell the editor to go list them for
you than having to scan your code one line at a
time, looking for them.

MUG NEWSLETTER #32 MARCH 1983

The first step of the conversion process is to set
up a blank, formatted disk, with your CP/M opera
ting system on it. To that disk, you should trans
fer the programs called TR/III.BZO, BASIC/Z.COM,
BASIC/Z.OVL and RUN/Z.COM. Place that disk in the
drive that you boot on, usually A:. The reason for
this is that the translator program (TR/III) re
boots the system every time it finishes and you
will always get the CP/M A> when you are finished.
Next, put into another drive a copy of your Microp
olis BASIC source code or codes. Now, enter •RUN/Z
TR/III•. The TR/III program will sign on and ask
you the name of your MOOS file. Enter the name,
and be sure and put the drive designator in front
of it. Then the program will prompt you for the
name of your new CP/M file. Enter the drive desig
nator and you should use the same file name BUT you
MUST use a file name extender of •.Ase•, if this is
a--iource code you are transferring and not a data
file. The reason for this is this: When you try
to load it later into the BASIC/Z editor, it will
only load ASCII files (which your newly transferred
file is) if you indicate that you are loading a
file with an extender of ASC and the file itself
has an extender of ASC. I spent a whole evening of
wasted time on this, until Buzz bailed me out, so
take a les~on from my book. If your MOOS file is a
data file, then you can use the same name in CP/M
as you would in MOOS, provided that it does not
exceed eight characters.

When you have entered the correct CP/M file name,
press <CR> and go get a drink of water. Depending
on the size of the file it should take a little
while.

When the TR/III program has completed, you will be
returned to CP/M. Then, enter •aASIC/z•. When the
editor signs on, enter ·~· followed by the file
name and the ASC extender. The editor should then
indicate to you that the file is loaded. If you
are having any problems with this, I will be happy
to be of any help I can. Start with a small MOOS
file so you don't have to wait a long time for the
translation.

Once the file is loaded into the BASIC/Z editor,
immediately save it, by entering •sAvE•. Then, I
recommend you reload the file by simply entering
•toAo• and the file name, only this time no extend
er is necessary. Your ASCII file is still on disk
but now you will be working with a token file and
now it will LOAD and RESAVE much more rapidly. It
has a •.ezs• extender.

When the file is loaded into your editor, do a
listing and let it run by your screen. If you have
some syntax problems, the editor will place an
apostrophe immediately to the right of the offend
ing line number. You can search for the apostrophe,
using the search routine, or you can just scroll
your text and look at them one at a time. Here are
a few of the typical apostrophe situations: ASSIGN
must be changed, either to LPRINTER or CONSOLE;
WIDTH must be converted into a PAGESIZE statement.

One of the errors that you will not see with an
apostrophe is that your OPEN statements must have a
RECLEN option included if you are opening a random
access file. When TR/III transfers your data files,
it arbitrarily sets the record length to 250 so use
RECLEN 250 for all such OPEN statements, for the
time being. Because this is CP/M, you are not stuck
with such a large record size, if in fact your
record size is much smaller. Later on, after every
thing is running well, you can write some converter
programs that change the record lengths down to
something more reasonable and then you will have to
go back and change those RECLEN statements. If you
are advanced enough, you can write the converter
programs first and save yourself an extra step
later.

Remember to remove the apostrophes each time you
correct the error. If you remove the apostrophes
and the error is not corrected, BASIC/Z will flash
an error mark and point to the location of the
problem. This can be very handy if you are not
sure where the error is; just remove the apostrophe
and press <CR>. Then you will see the location of

MUG NEWSLETTER #32 MARCH 1983

the error. To get out of a situation without
correcting the error, press •o• and you will be
returned back to the original status of that line.

When you have got all the errors out, and have re
saved the program, compile and then run it. I will
quit here on this phase of BASIC/Z and look for
some comments or questions.

In looking over the February MUG letter, I noticed
two articles which tend to affect what I do so I
will use this column to make some comments. One
subscriber hates CP/M and thinks that MOOS is far
superior. It may be; I am not an expert on MOOS,
but CP/M is the choice for thousands of programmers
and this whole column has come about because our
new computers require CP/M. There is no question
that that operating system is the standard of the
microprocessing industry and I think it's beating
one's head against the wall to pretend that it is
not.

Second, I read with much interest Buzz' article on
$29.95 software. I agree with Buzz completely.
There is no free lunch in this business. The days
when one purchased some small game or check bal
ancer for such a low price have passed, and .good
riddance to them. We are running with some exotic,
powerful and reliable applications software in this
office. I know the authors of many of those pack
ages and I know they sweated blood to make them
what they are today. Those people are worth being
paid for their time and expertise. People like
Buzz have to have enough profit incentive to make
it worth supporting people like you and me and I
want to take this opportunity to mention that Buzz'
support for me of BASIC/Z has been nothing short of
super.

One of the problems I will be having with this col
umn is the lead time. This is being finished up on
February 10 so you won't see it for a month. If
you have any bright ideas you would like me to in
clude in the next article, call me if you would, to
get it in right away.

See you soon!

LETTERS

LIBRARY ~ PROTECTION

Buzz: I want to send some programs in for the
library. Any special instructions, such as wrap
ping the diskettes in aluminum foil, stating orig
inating hardware, instructions on outside for
postal handling, magic spells for safe delivery,
etc.?

(Response) Just cut two pieces of cardboard and
pack the disk(s) between them, with tape around the
edges. I don't wrap disks in aluminum foil, though
some members do. There haven't been any problems
that I know of in Library Disk distribution. My
assumption is that disks are MOD II, that is,
single-sided, quad-density. If you are submitting
a MOD IV (double-sided, quad-density) or a MOD I
(single-sided, double-density), its best that you
state so on the disk. No particular instuctions
need be put on the package - they are probably
ignored anyway but you could write "Magnetic
Media - Do Not X-RAY" if you wish.

MICROPOLIS MAINTENANCE ~

Can I use the Micropolis Maintenance Aids for their
disk drives on the Tanden drive in my Vector VIP?

(Response) The Maintenance Manual and Diagnostic
Disk will be of no use at all. I'm not sure about
the Alignment Disk. I'll have to check.

PA.GE 3

Your question brings up a point, however, about the
systems having Micropolis drives but no MOOS. The
last year or two of System-Bs were delivered just
with CP/M. The Diagnostic Disk runs under MOOS.
If you have a local service shop, check to see that
they can align your drives. If not, you'll have to
do it yourself, and you might want to consider get
ting MOOS installed before the drives go bad. If
there is a CP/M version of the Diagnostic Disk, I'd
appreciate hearing about it. The Maintenance Man
ual is useful, no matter what operating system you
are running.

~SOFTWARE

MUG Newsletter readers might want to know about
Sheepshead Software, P.O. Box 486, Boonville CA
95415. They sell CPMUG public domain software for
the Vector 3 for $10 per volume.

I want a second drive, but my dealer wants to
charge me $1000. That seems rather high. I have
an extra connector on my drive cable and it seems
that all that is needed for installation is to plug
the second unit in and tell it to respond to re
quests for drive B. Aren't cheaper drives avail
able? Where?

(Response) Indeed that sounds high for a single
drive. If the purchase was for a double-drive with
power supplies, then the price isn't too bad. It
may be possible to "hang" a drive on your existing
data and power cables. Anyone in the group have a
solution or a suggestion?

David Vergin, P.O. Box 700, Milton WA 98354

I have found what I consider to be a 'bug' in MOOS!
The @DFINXPOS routine does not do what the
Micropolis Manual says. That is, it does not make
the record length equal to the value of the index
position. It makes it equal to the value of the
index position+l. LINEEDIT makes allowance for
this in its operation, but it caught me completely
by surprise. The @DFINXPOSTEOR routine does the
right thing, but not @DFINXPOS.

Maybe Micropolis had a reason for doing it, but not
if the manual is to be believed. It makes things
very awkward when a subsequent program tries to
find the end of file and ends up pointing to a byte
of absolutely no importance.

Could anyone tell me if it really is a bug? Any
comments would be appreciated.

Pete Gorton, 44, Francis St., Castle Hill 2154,
N.s.w. Australia

CLASSIFIED

FOR SALE: Perfect Writer word processor. It re
quires a 56K system with direct cursor addressing.
While I could mod my system to get this, then I
couldn't run my ROBOT software. I've elected to
stay at 48K. Make offer.

Quint Mushik, Rt. 1, Box 408C, Guntersville AL
35976, Phone (205) 586-6061 x240 (days) or (205)
586-7307 (nights)

THE BASIC/Z COMPILER
Product Review ~

By
Joel Shapiro

BONJOEL ENTERPRISES

P.O. Box 2180

Des Plaines, Ill. 60018

One of the nicest programming tools and languages I've
been privileged to use and review is this latest entry of
System/z in CP /M compatible software. What the other
Basie's lack, BASIC/Z seems to have included. What appears
limited in others is expanded and enhanced in this fine system.
Nowadays, it takes more than improved speed to sell people
on a compiler and this system offers that and more.

Having just completed the development of several pieces
of commercial software using the system, I can say it's pretty
easy to learn how to take advantage of the built-in statements
and functions, let alone the excellent editor for getting the
program into the system in the first place. More about these
later.

Basic System Structure

BASIC/Z is considered a native 8080/280 code
compiler. The object code produced by the compiler is
executed directly by the microprocessor without the use of
an interpreter.

BASIC/Z, because of its structure, can be considered
a 'hardware independent' language. Once a program is
developed, it can be used with practically any hardware
using CP /M because of the method of interface used.

The BASIC/Z system utilizes a 'Run-time' program and
it is resident in the computer whenever a compiled program
is being used. The program, Run/z, contains most of the
subroutines used by the compiled program. It is this program
that is interfaced to the selected computer.

The interface or 'Installation' of the Run/z program is
simple and can easily be done by the user. Once completed,
any BASIC/Z compiled software can run on the system.

Possibly one of the reasons a large number of
inexpensive programs using sophisticated CRT displays have
not appeared in the general purpose CP /M marketplace is
they would require a different version for each combination
of computer, terminal and printer. Higher costs are certainly
associated with having to maintain several versions of the
same program. This approach may help reduce software
costs, hopefully to the level of the vertical marketplace. At
the same time it could encourage the development of more,
much needed software.

Once the Run/z program is installed, you have the
capability of using absolute cursor addressing for both the CRT
and the printer. You can have reverse video, blinking video,
erase to end-of-line, erase to end-of-screen, clear screen and
a unique method for editing your data input at run-time.

These are all controlled by your Basic program and
, normally by single statements and functions. Of course, the

video functions must be available within your terminal.
The editing feature is excellent as many of us make

. errors when entering data. This gives us a chance to edit
before ·sending the data into the system. With another
statement, the existing data can be recalled and changed
using the same format as the input editing function.

Using pre-defined control codes or those you define
yourself, there are many editing functions available. These
are: Non-destructive cursor movements to beginning of line,
end of line, left, right; delete left, right, entire line; select
Insert mode or Change mode.

You can even mask the input line for a specific character
count. The system prints a line of dots on the screen; the dots
being replaced with the characters entered. There is never ·~
any doubt as to how much room remains on the input line. ,..,,

String Handling

In today's user friendly environment it's necessary to
provide more prompting and error handling in the program
structure than it has been since the introduction of the micro.
This necessitates storage of string data and the capability of
extracting and presenting it in the most efficient manner.

Perhaps one of the biggest differences between BASIC/Z
and other modern Basics is that string space is allocated
statically instead of dynamically. This means there are no
"garbage collection" routines to take up operating time and
delay completion of program functions. Further, array space
can be dynamically allocated and, after use, erased. The
memory formerly occupied by the array is then available for
the program.

For those not familiar with these techniques let me take
a few lines to explain them both. Dynamic string space
allocation provides string space as it's required by
the program. Because the system doesn't know how long the
string will be, it finds the space required for storing it and sets
a pointer to the location.

If your program line reads; A$="JOHN Q. JONES",
then the system will find a space for the line (13 characters
and spaces), and will set a pointer to the line. If a subsequent
line reads; A$ ="LARRY P. MURPHY", then the system .._)
finds a place for the new line and changes the pointer for A$.
However, the space formerly used for A$ isn't available to
the program at this time. It isn't until all of the available
memory is allocated that the Basic will try to recover any

unused space.
It does this by first finding unused space and moving

current strings into the space. It then sets new pointers and
designates the reclaimed space as available. This can be time
consuming as there can be many strings to be moved around.
If you're using a routine that requires string exchanges such
as sorts, string parsing, etc .. they may require the use of this
reclaiming procedure many times during the operation of just
the one routine.

BASIC/Z does away with this by forcing the
programmer to declare the space required for each string and
string array. This is quite easily done as there are default line
lengths for string variables and it's normally simple to
determine the maximum line length you'll have in an array.
There are also a few less conventional ways to use string
arrays with this Basic but more about that later.

By using this method of allocating string space, A$ will
always occupy the same space in memory so there is no need
for any reclaiming function and the resultant loss in time.
Further, we always know where the string is and can get it~
address from Basic. This allows us to check characters with
PEEKs or change them with POKEs.

BASIC/Z limits the maximum string length to 250
characters which is on a par with most good Basics. Also,
since the string length is declared in a DIM statement if other
than the default length, it's very easy to use only the amount
of string space you need for that particular string variable.

With the addition of functions permitting string parsing
and manipulation, we have capability matching or exceeding
most major Basics. Some other functions and statements for
use with strings are;

UPCASE$, UPCASE, LOWCASE$ and LOWCASE.
These permit forcing lower case characters to upper case at
the console or individual string level and resetting for lower
case when desired.

MID$ can be used for both extraction and insertion of
data as a substring within a string.

MIN$ and MAX$ are used for alphanumeric
comparisons of strings.

INCHAR$ permits recognition of a single input character.
INKEY$ permits acceptance of a specified number of
characters and doesn't echo them to the screen. INPUT$
prints a specified number of dots on the screen and allows
the line to be edited before pressing RETURN. EDIT$
performs almost the same function except that it displays the
existing contents of the string.

VERIFY verifies that all characters of a substring exists
within a string without regard to their sequence. INDEX
locates a substring within a string.

SPC$ returns a string of a specified number of spaces.
REPEAT$ returns a string of one or more characters repeated
any number of times.

One of the less conventional ways of using string arrays
with this basic is with the use of the single-byte, multi
element array. For example, if we DIMensioned an array as
A& (1024) we would have an array of 1024 elements. each
element representing one (1) character.

By visualizing the array as a string, we would then have
a string 1024 characters in length and, by using the built-in
statements and functions, we can parse and manipulate this
string as easily as a standard string. Further, since we can have

a file record length of 1024 characters. System/z saw fit to
include functions that automatically parse file records and
insert them into our array. Naturally, we can write to the file
in this manner as well giving us a very versatile system.

Noteworthy of mention are the functions that normally
do so much more when using a compiled language. The
efficiency and speed are further improved by building them
into the system. An example of these are the built-in SORT
and SEARCH functions.

The sort permits sorting ANY array and ANY type
array. You may select the starting element, ending element,
key length and other options. Sorting is done at the rate of
2,000 elements in 2 seconds according to System/z. We can
safely say it's much faster that most Basic sorts.

The SEARCH function is just as versatile as the sort.
Besides designating the starting and ending array elements,
you can also specify your own relational operators (<.< =, =,
= >. >, <>) to be used in the search. This particular
function does well in a Keyed-Index environment and, since
it requires only a single statement, it fits well in a IF-THEN
ELSE structure.

"all floating point math is done in
BCD which avoids the rounding
errors associated with systems
calculating in binary"

Numeric Data

In most programs the handling of numeric data is
extremely important to the final result. Having a floating point
number range of lE -61 to lE + 61 with a precision of from
six to eighteen digits definitely provides a measure of
comfort in math programs. Having the capability of adjusting
math precision even while a program is running ca11 be
interesting.

In BASIC/Z, all floating point math is done in BCD
(Binary coded decimal) which avoids the rounding errors
associated with systems calculating in binary. Integer
calculations are also done in BCD with their own separately
specified precision of from six to eighteen digits. One and two
byte binary type variables are also included and, used
properly, can improve the efficiency and speed of the system.

The one byte variables are called 'Control' variables and
have a range of from 0 to 255. The two byte variables have
a range of from 0 to 65535.

By using these for counters, flags, menu selectors, etc.,
you can not only save memory but time as well. The system
doesn't have to make complex calculations as it does with
floating point numbers. Because of their contribution to the
overall efficiency of the system, several functions that allow
their exploitation are included in the Basic.

Functions such as INCR and DECR are included for
incrementing or decrementing any numeric value by one (1).
Instead of using a less efficient X = X + 1 or X = X - 1, you
would use INCR X or DECR X with the same result but a
savings in time and code.

File Handling

Perhaps one the most important functions of any Basic
is it's ability to read and write data from the disk files. When
versatility is provided in this function, you find you're able
to become very creative in using it's many features. Most
current disk Basics provide the versatility required for most
applications; I just think BASIC/Z provides more.

First, up to 30 files can be open at any one time and
each with their own file error trap. This way, if a file error
is encountered control can be transferred to a statement
covering a routine for the individual file.

Second, no declaration for the pre-allocation of buffer
space is required as it is in other Basics. BASIC/Z allocates
a 128 byte buffer for each open file as each of them is opened.

Third, and perhaps most important, there is no limit to
the length of a file record. As long as there is enough space
on the disk for the file, it can be successfully opened and
used. Further, you can always interrogate the system as the
program is running to establish the amount of space left on
the disk. This way you can decide dynamically whether or
not you have enough space for a file or additional entries.

Files can be of three types: sequential, random and
Ul'!FMT random and with their unique attributes, make each
preferable for certain applications.

Sequential files allot variable amounts of disk space to
each data item and are therefore most suitable for saving text
and variable length string data. Because the file may only be
written or read sequentially, the records can be packed into
the file, one after the other, with the loss of little disk space.

The disadvantage is that you must read and write the
file from the beginning each time the file is opened as only
one pointer is maintained.

"Sorting is done at the rate of
2,000 elements in 2 seconds"

Still, the capability of using this type of file is valuable.
In fact, BASIC/Z has provided a function called SPOOL that
allows the saving of text from PRINT statements in a
sequential file for printing at a later time.

Random files are probably the type most often used, as
the ability to locate any record within the file is required by
most programs. In using a random file, you're required to
declare (explicitly or dynamically within the program) the
record length associated with the file. The record length
cannot be changed from that point forward.

Since BASIC/Z does not insert delimiters between logical
records, it's necessary to know the record length to know
where each record is on the disk. This packing operation
maximizes the use of disk space.

As the record length may be of any length, the only
limiting factors are the BASIC/Z limit of logical record
numbers to 65535 and the CP /M limit of the logical file size
to 8 megabytes. Also, when the record length exceeds 250
characters, additional buffer space is assigned for the longest
record length used. All files will use the buffer so only one
buffer is used regardless of the number of files open.

"the capability of using absolute
cursor addressing for both the
CRT and the printer"

Another set of pointers is maintained for each random
file that allows sequential read and write of the file in
addition to random access. Whenever a read or write occurs
with use of the RECORD option, the operation will affect only
that logical record. If the RECORD option is not included,
then the sequential, or indexed operation is assumed.

In this case, the read or write affects the next record
pointed to by the PUT or GET pointer for the file. Yes, you
can fi!1d out where the pointers are pointing and can set either
or both to an initial value or anywhere within the file at
anytime during program operation.

BASIC/Z maintains an End-of-file pointer for each open
file which is equal to the greatest logical record ever written
to that file. This remains true unless the logical size of the file
has been reduced with the EOF statement. In any case, you
cannot access a record beyond the end of file with a GET
statement as it will result in an error. Since the EOF pointer
is maintained by the system, you can always access it's value
and establish the current size of the file.

The capability of blocking and deblocking data to and
from the file using an array, the use of separate buffer space,
and the designation of a single buffer for the longer records,
provides an advantage in reading and writing these files. The , ..
result of this is a reduction of time in completing these ...,,,,
operations.

For example, if your logical record length for a file is 10
characters you could, using the array concept, read and write
several records at one time. You would parse them using the
PUTVEC and GETVEC functions of the system. Since disk
access is the most time consuming of a disk operation, it is
reduced using this method.

Further, BASIC/Z is structured to read as much as
possible into as large a buffer as possible automatically,
anticipating another read in a subsequent operation. If, for
instance, your file had a logical record length of 25 characters
and you executed a read of record number 7, BASIC/Z
would, if buffer space was available, read records 7, 8, 9,
10, etc., into the buffer.

If you then executed a read of record 8, BASIC/Z would
not access the file again as it knows it has record 8 in the
buff er. Of course, if you asked it to read record 234 at this
time it would probably make a file access if the data wasn't
in the buffer. The system waits until the last moment before
it writes to the file.

Again, if several record lengths can be held in the
buffer, the system would perform write operations to the
buffer but not to the file until the buffer had to be emptied.
BASIC/Z maintains the system so these file read and write
operations are transparent to the user. It's nice to know
it exists and how the files are handled. . t

BASIC/Z's UNFMT random file is really a method of""111
maintaining compatibility with other languages. The format
of a BASIC/Z file is slightly different than most others so the
UNFMT version has been provided to get around this. It

allows you to work directly with files generated by most other
Basics or read and rewrite them in the BASIC/Z format. Both
are provided; you have only to choose.

The nice part about this is that you could use your
program data with your word processor or access your
accounting files for reports. In other words, the compatibility
feature between systems can help you become very creative.

User Friendliness

The term "User Friendly", has been seen much too often
these days with it's meaning too interpretive. To some it
only means a few additional prompts; to others, covering for
operators mistakes. I prefer a combination of both as the more
that is done for the operator and the quality of input data,
the better the program will perform.

The ability to edit input strings that was covered earlie~
is one of the good things we can present to an operator.
Another is absolute cursor addressing and screen
enhancements.

Using absolute cursor addressing is simple in BASIC/Z
as it is done with the TAB function. In most Basie's (BASIC/Z
included), the statement; PRINT TAB (20); "A", will write
the character A in column 20 on the screen. Using BASIC/Z,
the statement; PRINT TAB (12,20); "A", will print the
character A in line 12 and column 20 on the screen.

A control array (one byte type) can be generated in the
program to produce a 'form' that will be 'filled in' by the
operator as data is entered. This method of entry has been
used suc~essfully by many commerical software writers.

Reverse video can be accessed with a RVIDEO
statement and normal video with NVIDEO. Use BLINK to
set the text blinking, NOBLINK to stop it. FORMFEED clears
the screen and returns the cursor to home. ERAEOL erases
to the end of line and ERAEOS erases to the end of screen.

Of course, these features must be available in the
terminal so BASIC/Z can allow you to use them, but it's nice
to know you have direct control over them instead of having
to write routines to produce the same result.

An extension of user friendliness or perhaps one of its
best contributors is the use of extensive error trapping. Too
many programs I've used, and a few that I've written, seem
to drop dead if I enter an incorrect character, too many
characters, too few characters, etc. In fact, anything different
from what is expected by the programmer will do it with some
programs.

BASIC/Z provides for two (2) levels of error trapping.
The first is declared when a file is opened and causes a GOTO
Line # (or label) whenever a disk error is encountered. The
second, a type of global error trap, effects a GOTO Line #

(or label) whenever an error other than disk (or disk if an
error trap hasn't been declared) is encountered.

The nice thing about these is that BOOS errors in CP /M
which are normally fatal are also trapped by the system. With
the use of the traps the errors can be handled in exactly the
manner you desire.

Another error generated by some programs is caused
by the programmer's inability to query the system forcing
error causing activities. For example, your error handling
routine requires that you close a file but the file hasn't been
opened successfully, you may generate an error when you

attempt to close the file.
In some cases telling the system to close the file causes

a 'File not open' error that takes you back to the same error
trap, and now you're caught in a loop. With BASIC/Z. you
can query the status of the file and take appropriate measures.

You can also get the filename of each open file, the
default drive and the number for the last file specified in a
statement. You can easily determine the space left on disk
or in memory and a few other things that will help prevent
causing your own errors.

Other Goodies and Delights

Keywords such as CONSOLE, LPRINTER, NULL,
ECHO and SPOOL are used to direct the output from PRINT
statements. CONSOLE and LPRINTER direct output to either
device and ECHO provides output to the console and printer
simultaneously. NULL supresses all output from print
statements and SPOOL directs the output to a sequential file.

FMT provides the formatting of numerics required for
columnar printing but, unlike most of the PRINT USING
statements in other Basics, can format numerics regardless
of whether they're being printed or written to file. The
format statement can be used to right-justify a numeric and
place it into a string variable. By having it justified in a string,
it becomes a simple matter to pick off a number using a
LEFT$, RIGHT$ or MID$ function.

"up to 30 files can be open at any
one time and each with their own
file error trap"

Printhead position is returned via the PCOL function and
the print line is returned via PLINE. It's quite easy to control
paging with this information. CCOL and CLINE prn11ide
similar functions for the console. As these are separate
pointers, a console print statement won't change the pointer
for the printer. Also, when spooling to a file, the system will
assume line 1, column 1 for the start of the spooling
operation without affecting the other column and line pointers.

SELECT and SELECT$ specify or return the default
drive for the system. SETUP returns the base address for the
user configuration area so you may get specific information
about the hardware. This is the information that was entered
when instaJling the run-time module.

CHAINing with COMMON variables and arrays is an
excellent feature as with all of this error trapping and
prompting capability, you may find your program became too
large for memory. The CHAIN statement allows you to break
it up and call in the program (or program segment) you need
when it's required.

COMMON permits you to pass the contents of any
variables or arrays between the CHAINed programs without
losing data. In BASIC/Z, the COMMON would be used in
place of DIM when dimensioning arrays or variables if the data
is to be common between segments.

UPCASE forces all alphabetic console input to upper
case. This emulates the CAP-LOCK feature of most

keyboards. LOWCASE returns it to normal. UPCASE$
converts a string to upper case; LOWCASE$ converts a string
to lower case.

This is very convenient for sorts and searches if the data
retained in the file is in mixed case. It is then easily converted
to upper case and placed into an array for the sort or search
operation.

One of the best things I've found in BASIC/Z is the use
of labels as well as line numbers in GOTO. GOSUB, and
RESTORE statements. In other words, a label can be used
wherever a line number would be referenced. Because I tend
to use many of the same subroutines in my programs, it is
a simple matter to merge the subroutines into the program
and call them by label, without regard for their actual
position in the program. As long as I don't duplicate line
numbers during the merge (I'm careful and only do it
sometimes!). the scheme saves a lot of time and debugging.

"no garbage collection routines to
take up operating time"

As the labels can be any length up to 250 characters,
they can easily replace the REMarks statement I'd usually use
to describe the subroutine. Labels always start with a .. @"
character so a typical label in one of my programs may be;
@PRINT.THE.HEADING.FOR.THE.REPORT or
@COMPUTE. INTEREST.

Variable narnes may also be up to 250 characters in
length and with all characters significant. You can get spoil
ed with this feature as the program becomes so well
documented you expect to find it in things you wrote before
you got BASIC/Z.

Since the result of the program is compiled, the length
of the variable name doesn't affect the resultant code and it
really helps you to remember how the program works;
especially if you get into trouble.

Speaking of trouble, there is the handiest DEBUG system
built into BASIC/Z. You can either debug in the TRACE
mode where each line number is displayed as it's executed
or, you can use the SINGLE-STEP mode where the program
will pause after executing a statement. You can then examine
up to four simple variables. The DEBUG affects the group
of line numbers you specify so you don't have to single step
through loops to get to the part you wish to work with.

My preference is to put a lot of print and input statements
in the program to duplicate this but over a broader range of
variables if I expect trouble. The DEBUG statement is a
compiler option so it won't show up in the compiled program
unless you tell BASIC/Z at compile time.

Many loop formats are available to the programmer.
Besides a multiple statement loop, you can have a
FOR-NEXT loop with the STEP option, A DO-UNTIL loop
and a WHILE-WEND loop. This should satisfy many
programming conventions.

PUSH and POP are used to place a line number or label
onto the subroutine stack or remove one. I've used POP in
a loop to clear the subroutine stack when I reenter the main
menu in a program. This helps prevent embarrassment if a

return to an unanswered subroutine call is encountered.
User-defined functions are something I've stayed away

from in interpreter Basics. They always seem to take a lot
of time executing and their only advantage is that your're able
to pass data into them for execution. Because of the
disadvantages, I've used them only occasionally with the
interpreter.

Using BASIC/Z has changed my approach to these as
they execute quite rapidly and offer some good advantages.
For one, BASIC/Z permits multiple line functions. You can
therefore write a rather long mini-program, pass data into it
and get data returned. Another is that data can be passed
as a literal, an expression, a constant or a variable.

You can reference both global variables and those used
within the function (dummy variables) with equal ease. You
can also call other functions from that function so you can

• be flexible in your program design. The local variables remain
in effect for each individual function so the variables used in
one have no effect on the others.

These functions are called recursive as they can call
·· thems~lves and pass variables back into themselves.

Assembly language subroutines can be defined and
linkage is provided. These functions can also be redefined
dynamically at any point in the program.

With the MEMEND statement, you can set the logical
end of memory to provide room for the assembly language
function. The ENDMEM function returns the highest byte you
can use in the system. The statement; MEMEND ENDMEM
- 1500 is therefore both legal and useful. As RUN/Z overlays
part of CP /M, some of the area normally occupied by the
operating system is available for Basic and for the user.

The Editor

BASIC/Z's editor is one of the best I've. used and is
certainly one of the easiest to learn. As each line in the
program has a line number, it is just a simple E 1200 that brings
line 1200 to you for editing. With that command, the line
is displayed. cursor set at the beginning and, you're ready
to go. Yes, even the line number can be changed so the line
can be copied or duplicated elsewhere in the program.

Automatic line numbering, directory display, file and
buffer information display, renumbering and the listing of the
program on the screen or printer are provided with simple
commands. LOAD. SAVE, RESAVE and MERGE handle
the program files.

You can issue commands directly to the printer, set the
length and width of a logical page. write a heading for the
printout and execute a program directly from the keyboard.

The best thing (for me. at least) is that all of your
program input is syntax checked before it is allowed in the
buffer. This prevents your loss of valuable time trying to
compile a program with syntax errors or receiving a rejection
at run-time.

System/z seems to have put a lot of thought into the
program as they've even considered the possibility you may
wish to use programs written for other Basics with BASIC/Z.
Provisions have been made for the BASIC/Z editor to
accept any programs it can read. It will usually read them if
they are in the BASIC/Z format or in ASCII.

' .. .

Most Basics will write the programs out on disk in ASCII
(as an option with some); this can be read by BASIC/Z and
syntax checked during the read operation. When a syntax
error is encountered, BASIC/Z will mark the line as a
REMARK and, with the global search function, the affected
lines are easily found and corrected. .

As BASIC/Z requires line numbers for operation,
programs from editors not requiring line numbers can be
assigned line numbers as they're read into the system by
using an option available to the LOAD command. The
BASIC/Z ability to use programs written for other Basics saves
much typing and testing.

The Manual

The manual is complete and offers the reader a good
explanation of the various features of the system. '"tt does,•
however, leave a bit to be desired in the way of examples
and details or suggestions in the application.

I'm sure the writer anticipated the use of the ~ompiler,..
system by experienced programmers and offered them very
thorough knowledge of it's operation. I personally feel it is
up to it's writer to provide more than just basic (but detailed)
information but also guide the user into getting the most out
of the system. Perhaps there's room for a user's guide here.

The manual, unlike some others we've all seen, covers
all of the features of the system.

·,

Summary

As a language, BASIC/Z offers much more than any other
Basic I've used. As a compiler it offers excellent operating
speed and reliability. I have not tested it against others for
speed or code generation because of the many unique
features and the extended capability of the system. I don't
see either as a problem.

The experienced programmer will enjoy working with
the system and the many statements and functions (See fig
1) available for development into finished applications. The
less experienced programmer may have some trouble
getting used to a compiler if an interpreter is presently used
but, the resultant program, with all of the screen
enhancements available, will be very professional in
appearance and operation.

For those in the commercial software business, there are
schemes built into the system to provide security i!'.nd
System/z doesn't charge for the distribution of software
written with the use of BASIC/Z. The run-time package and
it's installation program can also be freely distributed as long
as it's accompanied by the Basic/z compiled programs. In
other words, no royalties, run-time charges or other charges
for distribution. These are very good reasons to investigate
further.

Additional information can be provided by:

DAMAN Suite 14, 3322 Memorial Parkway, S.W., Huntsville, AL 35801 (205) 883-8113
Support Services Computer Programs • Systems Enhancements • Data Management •

" , , '

\ ! ~~v \ ,,
~ ~ g \ .;. . . \

r~-1- 'C,l> .. , P'--=> ~ , ·. ~ .
I ~ !S ;,t ?"

Ill~ ' f.c-.b . ~
..:l ff • H H I

EXECUTIVE COMMANDS ~ = I

~~I? l ~ ~-W, f I
ti) "

n
ATIRS CONFIG EDIT LIST PAGESIZE SCRATCH ti) • II \e,,-,;=i;:±;:, d __ ~ I'

:n • AUTO DEC E>'EC LISTP PRINTER• SEARCH ~ BIN DELETE FILE LOAD RENUM SEARCHP
u • • CHANGE DISPLAY FORMFEED LOWCASE RESAVE SELECT E-o • * ti)

CLEAR DISPLAYP HEADER MERGE RESET TITLE Pil
COMPILE DOS HEX OCT SAVE UPC ASE

H
Ii.

LOCAL EDIT COMMANDS

ABORT BACKSPACE END LIST SEARCH
ADVANCE CHANGE INSERT QUIT TAB
APPEND DELETE KILL REPLACE ZAP

RESERVED WORDS

ABS DIM GETSEEK MIN READ STEP
AND DDIM GETSEQ MINS REC GET STOP
ASC DISPLAY GETVEC MOD REC LEN STRS
ATN DO GOSUB NAM~ RE£0RD STRING
ATIR ECHO GOTO NEXT REL PUT STRINGS
ATTRS EDITS HEXS NOBLINK REC SIZE TAB
BINS EOF IF NOT REM TAN
BLINK ELSE IMP NULL RENAME THEN
CCOL END IN NVIDE-0 REPEATS TO ,(.. . ._,

CHAIN ENDMEM IN CHARS OCTS RESET UNFMT .> CHARS EQV INCR ON ERROR RESTORE UNTIL
CLEAR ERAEOL INDEX ONGOSUB RETURN UPC ASE
CLINE ERAEOS INKEYS ON GOTO RIGHTS UPCASES
CLOSE ERASE INPUT OPEN RND VAL
COMMANDS ERR INPUTS OR RUN VARADDR
COMMON ERRS INST AT OUT RVIDEO VERIFY
CONSOLE ERRLINE INT PAGESIZE SAVE WEND
cos ERROR LABEL PCOL SCRATCH WHILE
CREATE EXP LASTFILE PEEK SEARCH XOR
<'.:VTC FA LEFTS PEEK WORD SELECT +
CVTCS FILL LEN Pl SELECTS
CVTCD FILLSPC LET PLINE SERIAL
CVTCDS FIX LINK POKE SETUP ..:l
CVTI FMT LN POKEWORD SGN ' H

CVTIS FN LOAD POP SIN I\ ~ ~
CVTR FNEND LOG PRINT SIZE -)/.

CVTRS FNENDS LOW CASE PUSH SIZES > 0. ti)
ti)

DATA FOR LOWCASES PUT SORT < M :s Ill.-!
DEBUG FORMFEED LPRINTER PUTNUM SPACELEFT >= ·rlO u
DECR FRAC MAX PUT SEEK SPCS <• ~CD

Olllf'll 8
DEF FA' FREE MAXS PUT SEQ SPOOL <> Ef'llM ti)

QI M Pil
DEFFN GET MEMEND PUTVEC SQR :E :;"! ~ H

DEGREES GETNUM MIDS RADIANS STATUS ! ff Ii.
II ~. f'll M n U> QI CD

H H .-! CD

~ n ON.-!
n N·rl~

n f'll >Ill
U) A f'll 1110
U) n .j.IN

:s n • c:
n ..,. :;J

u II .-!:I:
II

E-o • QI
U) A ...,
~ II ·rl
H " :;J
rs. II U)

