

REMar
Volume 5, Issue 2 • February 1984

on the stack

Thoughts of Summer Margaret Bacon , 5

Buggin' HUG 6

A Tutorial On Random Numbers Kenneth Mortimer 10

Implementing Heath Escape Sequences for
CP/M and Z-DO S William Adney 13

Simple Printer Controls For The Z-100 Charlie Layman 16

Files and File Handling David Warnick 17

COBOL Corner IV H. W. Bauman 20

ZBASIC Mapping Program: BASMAPER Ted Miller, Jr. 23

Making the CP/M DUMP Program a Useful Utility
Charles Horn 28

Introduction To Data Structures Emily Yount 29

An Introduction to IC' Part IV Brian Polk 32

HUG New Products 34

Get Rid of "Echo O n Delete" In CP/M-86 Pat Swayne 37

The Stupid Computer Walla ce Theodore 38

Improved Error Recovery For CP/M Pat Swayne 40

So, Your Computer Can't Add David Pelowitz 42

Disk Access By Tracks and Sectors David Vinter 48

Getting Started W ith Assembly Language (#9) Pat Swayne ... 50

Train Paul Hinson 56

dBASE II Programmer's Notebook Tom Huber ' " 57

Squeezing The Most Out of Your HDOS Diskettes
Glenn Roberts 58

Simply Graph It! Crawford MacKeand 63

ON THE COVER: A Valentine design done on an H/Z-lOO by John Gillespie (Walt's son)
using PALETTE, a ZDOS graphics package by Dale Wilson (distributed by Software Wizar­
dry, 51. Charles, MO).

HUG Manager Bob Ellerton
Software Engineer Pat Swayne
HUG Bulletin Board

and Software Developer Terry Jensen
Software Coordinator Nancy Strunk
HUG Secretary Margaret Bacon

REMark Editor Walt Gillespie

Assistant Editor Donna Melland

Printers Imperial Printing

51. Joseph, MI

REMark is a HUG membersh ip magazine published
12 times yearly. A subscription cannot be purchased
sparately without membership. The follOWing rates
apply.

Initial
Renewal

U.S.
Domestic

$20
$17

Canada &
Mexico
$2 2*
$1 9*

Interoational
$30·
$24*

·U.S. Funds.

Membership in England, France, Germany, Bel­
gium, Holland, Sweden and Switzerland is acquired
through the local dislributor at the prevailing rate.

limited back issues are availble at $2.50 plus 10%
handling and shipping. Check HUG Product list for
availability of bound volumes of past issues. Re­
quests for magazines mailed to foreign counlries
should specify mailing method and appropriate
added cost.

Send Payment 10: 	 Healh Users' Group
Hilltop Road
5t. Joseph, M1 49085

616-982-3463

Although it is a pol icy to check material placed in RE­
Mark for accuracy, HUG offers no warranty, either
expressed Or implied, and is not responsible for any
losses due tathe use of any material in this magazine.

Articles submitted by users and published in REMark,
which describe hardware modifications, are not sup­
ported by Heathkit Electronic Centers or Heath Tech­
nical Consultation.

HUG is provided as a service to its members for the
purpose of fostering the exchange of ideas to en­
hance their usage of Heath equipment. As suc h, little
or no evaluation of the programs or products adver­
tised in REMark, the Software Catalog or other HUG
publications is performed by Heath Company, in
general and HUG in particular. The prospective user
.s hereby put on notice that the programs may con­
tain faults the consequence of which Heath Com­
pany in general and HUG in particular cannot be
held responsible. The prospective user is, by virtue
of obtaining and using these programs, assuming full
risk (or all consequences.

REMar~ is • registered tradem.rlc of the Heath U"",' Croup.
St . Joseph. Michigan

Copyright © 1984, Heath Users' Group

REMark • February • 1984 3

Thoughts of Sum

Margaret Bacon
HUG Secretary

The groundhog is just about to pop out his head and we don't dare
wait any longer to start preparations for the International Heath/Ze­
nith Users' Group Conference. Yes, this year we must recognize that
HUG is International.

As good as the 1 st HUG Conference was, most of what we have
heard about the 2nd HUG Conference indicates that those who at­
tended felt that it was much improved . We are going to try again !
The general format we are considering turns the normal conventi on
scheme upside down. We are going to turn you loose on the vendo rs
long before we start tying up your time w ith general meetings, semi­
nars, etc.

After two very successful years at the Hyatt Regency O 'Hare, the
Conference is moving. We don't want you to get bored. The 1984
Conference will be held at Pheasant Run Resort in St Charles, il­
linois, the weekend of July 27-29. W e have arranged a weekend
package (like those get-away weekends you hear about) so, plan to
arrive Friday and stay until Sunday afternoon.

Pheasant Run and St. Charles are nestled in the Fox River Valley
about 45 minutes from O 'Hare Airport in Chicago. The Hotel is very
experienced in various ways of getting you there, but more about
this in the March Issue of REMark. The DuPage County Airport is lo­
cated adjacent to Pheasant Run for those of you who are pi lots .
Pheasant Run was originally a farm . The original farmhouse is st ill
there and the exterior of the barn can be seen in the buildings. As
the resort has expanded and added accommodations, several room
choices have become avai lable. More about th is next month.

Many of you have commented that whi le you were having a great
time, there was nothing for your guest(s) to do . That is one of the
reasons we are moving to Pheasant Run. Now your spouse (fami ly)
can have a vacation while you are "bit-bashing". The fac il ities in­
clude abundant recreat ional opportunities. Pheasant Run offers an
18 hole golf course, tennis courts, the largest health club in the Mid­
West, and shops. The night l ife available is famous in Chicago . The
model of Bourbon Street is a delight with live music and that Bour­
bon Street atmosphere (I wanted to hold the entire conference there
but Bob said it wasn't big enough). The D inner Theater is the pride
of the resort. There are six eating areas available. St. Charles and the
surrounding area are rich w ith quaint shops, antiques around every
corner, and turn-of-the-century and earlier buildings to see. There
could be a riverboat trip down the Fox River, a side trip to Long
Grove Village (I think they shou ld have called it W alnut Grove) or
you might enjoy wandering through neighboring Geneva, Il linois.
It's beginning to sound like you should plan to come for a week.

The general theme for the Conference this year is "Adventure" . Not

only the adventure of the Pheasant Run Resort and the surrounding
area, but the adventure of the Heath/Zenith Computer World. We
have many ideas about subject matter that would be an adventure
for you, but we would appreciate your suggestions. We are hoping
that ti me w ill be avai lable for special interest groups to gather.
Pheasant Run has the space that wi II make this possible. If you have
a group that wants to meet, let us know as soon as possible. We will
see if we can help. Try to estimate the number of HUGgies that might
want to join you. We have a b it more space for Vendors this year
so the opportunity to see what is new, or just what is available, will
be good .

We would like to take this opportunity to thank each of you who at­
tended the First and/or Second National H UG Conference for your
support and confidence in the HeathlZenith Users' Group. For those
of you who have not yet attended a Conference, we welcome you
to partic ipate in w hat is hoped to be an even bigger and better
chance to get to know fellow HUGgies from all over the United
States and the world.

Watch for the Official Registration Form in coming issues of REMark
along with additional details as they become available. Please wait
for the O fficial Registration Form before contacting us or Pheasant
Run. There will be a special card for arrival and accommodation in­
formation for Pheasant Ru n. Please DO NOT contact the hotel until
you have this card. This card is to help the personnel at Pheasant
Run make your arrival as smooth as possible.

~9iun
RESORT

*REMark • February • 1984 5

Corrections To "The Single Step Approach
To Recovering Deleted Files" in Issue #45

DearHUG,

I would like to thank you for publishing my
article "The Single Step Approach To Recov­
ering Deleted Files". It really does make me
feel good to see it in print.

There were some differences between my
listing and the one that appeared in REMark
Issue 45 that will make the program work
differently than I had intended. In fact, it wi 11
probably fail to run properly at all. I will list
the differences below.

1. My label "syntax" should follow the "jnz
chkarg" so that the example of proper syntax
will be displayed if no arguments are pro­
vided. The label "exit" should follow im­
mediately thereafter so that the program can
be entered with the proper command line.

2. The label "du" is misplaced and the rest
of that subroutine ended in my subroutine
labeled "continu" where a "scali .close" and
a "jmp exit" should be. The result of this is
an error message and exit when "du" is
called (a failure every execution). Also, con­
fusion and no close of the restored file at the
end of the "continu" routine, although that
wi II never be reached.

3. I misspelled the word "Usage" in my syn­
tax message.

C. FWebber
34 Mills Street
Morristown, NJ 07960

COLD HUG Now Has Bulletin Board Sys­
tem

DearHUG,

Please place a notice in your magazine stat­
ing that COLD HUG now has a Bulletin
Board System. The hours are 9 p .m. to 7
a.m. (Alaska Time Zone). The phone
number is 907-895-3284. Other hours are
by prior arrangement only. System contains
useful programs for CP/M & HDOS written
in BASIC and Assembler and soon will have
some Apple programs as the majority of
computers in this area are Apple/Franklin.

Stan Lockhart
P. O. Box 229
Fort Greely, AK
APO Seattle, WA 98733

creation, sucking his thumb in silent won­HS'sWanted
der. Then with a wild squeal of glee, he

WANTED - H8's. I will pay up to rushes forward to kick, knock asunder, and
$150.00 per unit. My phone number is 212­ otherwise demolish the short-I ived tower.
380-1004, ask for Gerald Pindus or write to

My husband was in a two year old frame ofthe address below.
mind the other day. (I was notf-Bob.) I was -..../

Gerald Pindus struggling with a computer program for Data
78-40 1 64th Street Structures class when he sneaked up behind
Flushing, NY 11366 me, tapped me on the shoulder, and grinned

into my unenthusiastic face. "Forget the
SMHUGNEWS homework!" he crowed. "Do you want to

see a computer program that blows itself DearHUG,
up?" Naturally, I thought he was referring to

Effective with the January 14, 1984 meeting, his attempts to solve the Data Structures
the Southwest Michigan Heath Users' problem - we are taking the same course,
Group (SMHUG), will meet on the second you see. The thing that bothered me was the
Saturday of the month at 10:00 a.m. in fact that he seemed so cheerful about the
Room 4010D of the main building of the failure of his program. Perhaps he was fi­
Kalamazoo Valley Community College. The nally going off the deep end?
new contact person is Bob Hamel, 1054

"This is something I have to see!" was myBlanchard S.W., Wyoming, MI 49509. The
mumbled reply as I left my drudgery withphone number is 616-532-3875.
combined relief and dread. (Bob's programs

A. Robert Hamel always work, eventually. Why is he so ex­
Editor, SMHUG News cited now?) He ushered me into the com­

1054 Blanchard S. W .
 puter sanctum and politely pulled out my
Wyoming, MI49509 chair, something I've been trying to get him

to do in restaurants for some time now.
Without another word, he pointed to the

BOOM BOOM!
screen, which said "RUN" - mycuetohit

DearHUG, thecarriagereturn.ldid.

Have you ever watched a two year old play­ The screen cleared and the word
ing with blocks? First he (or she, but hereaf­ "B 0 0 M" appeared, dead center. I
ter "he" for clarity-and to save my poor fin­ looked at Bob in puzzlement. He told me to
gers the extra writing), what was I saying? listtheprogram.ltried, itwasn'tthere.lthad
Oh, yes . First, he builds a tower, block by self-destructed. Imagine that: a computer
carefully placed block, teetering this way program that blows itself up so completely
and that, until it reaches the sky (or so it that you have to rewrite it to run it again. If
seems to him). He stands back to admire his you ever feel like a bored two year old in

1180 '*************************************+************************
1190 *
1200 ' PS: ~IEAN DIDN " T KNO~ IT AT THE TIME, BliT THIS PROGRAM SAVES *
1210 ' ITSELF TO DISf(AS A FILE CALLED "TEMP . DAT" *
1220 *
1230 '**
1240
1250 READ N
1255 N=INT(SQR(N*8)+.I)
12&0 FOR 1=1 TO N
1270 READ A
1275 A=INT(SQR(A*3)+.I)
1280 PRINT CHRt(A);
1290 NEXT I
1300 READ N
1305 N=INT(SQR(N*8)+.I)
1310 F0R 1=1 TO N
1320 READ P
1325 P= 1NT (SOR (P*8) +. 1)

1330 P~=Pl+CHR$(P)

1340 NEXT I
1350 SAVE P$
13&0 NEW
2a00 DATA 21.1 25, '11.12:1, 595.125, 91.125 , 990.125, 2~:1.125, .561.125
2010 DATA 544.5, 128, 780.125, 123, 780.125, 123, 741.125
2020 DATA 8, 882, ~,95 . 125, 741.12:1 , .800, 264.:1 , .578
2040 DATA 528. 125, 882

REMark • February • 1984 6

need of something to do (or undo), here's the
listing for you to play with.

Jean (and Bob) Hall
Rt. 10 Box 478B
Moore, OK 73165

Comments To Two Previous Buggin' HUG
Letters

DearHUG,

I just finished reading issue 45 ; another great
issue! I am writing to comment on two of the
letters in the Buggin' HUG column.

To Mr White: HDOS absolutely, positively
DOES read NULLs from the disk. A NULL is
nothing more than 8-bits of binary zero. If
HDOS couldn't read binary zeros from the
disk, then it would be next to impossible to
run assembler programs. For example, the
following assembler instructions generate
binary zeros :

Instruction Octal Representation

LXI H,10 041012000
MVI B,0 006 000
SCALL .EXIT 377 000

I believe the problem with NULLs that Walt
was referring to is that the TI: device driver
deletes NULLs entered from the keyboard.
This is why PIE can't process them. If you
have a copy of the HDOS 2.0 source listings,
check the first listing in Volume 1, page 84,
around line 3877; this code shows how
NULLs and Line Feeds are deleted by TT: in­
terrupt service.

To Mr. Bronosky: Yes, it is possible to elimi­
nate labels with relative addressing, but it's
not a good habit to get into. There must be
a bunch of good reasons to not use relative
addressing in JMP instructions, two come to
mind right now.

First, you can't count on the assembler to
catch type-o's for you . For example

MOVE EQU *
MOV A,M
STAX 0
INX H
INX 0
OCR B
JNZ MOBE

. ... would generate an error because 'MOBE'
is an undefined label, while

MOV A,M
STAX 0
INX H
INX 0
OCR B
JNZ *-6

.... would not be caught by the assembler at
all, and would most certainly cause hard-to­
catch run-time errors (it should be --5) .

Second, consider the maintenance night­
mare you would have if you decided to in­
sert a CALL to a routine to convert lowercase
characters to uppercase characters after the
MOV A,M instruction. You'd have to re­
member to add three to the relative jump ad­
dress. This type of house keeping is best left
to the assembler to do for you.

Don't worry too much about running out of
label space in the assembler . The largest as­
sembler program I have written on my H8 is
151 pages long and just littered with labels.
There are 1682 labels defined, and I would
guess that in my system there is room in the
symbol table for 600-700 more.

David A. Shaw
469 N. Howard
Elmhurst,IL60126

Changes To Morse Code Program

DearHUG,

I have amended my copy of Robert Horn's
Morse Code program and found the changes
to be correct but incomplete. Make the fol­
lowing additional changes to complete the
corrections.

Change line 440 to read:

440 FOR T=1 TO N1:NEXT T

Change line 450 to read:

450 FOR T=1 TO N2:NEXT T

Insert line 455 as follows:

455 NEXT J

Change line 460 to read:

460 FOR T=1 TO N3:NEXT T

I am using CP/M MBASIC 80 Rev. 5.21 .
Using Dr. Milam's changes with the changes
listed above, the program runs well. I have
additional changes for those people who are
working on the higher class licenses. The
following two lines will allow you to run the
program at approximately 18 words per
minute code speed.

Add the following:

125 PRINT "0---) XFAST (18WPM) "
175 IF CHi="D" OR CHi="d" THEN PRINT

"XFAST":PRINT:N1=20:N2=70:
N3=320:N4=IIGOTO 200

Are there any printing or other errors in the
revised CHEAPCALC program in the article
"CHEAPCALC Another Look" on page 35 of
Issue 44? I have been unable to get it to run.
I have had the previous CHEAPCALC par­
tially running but some of the functions did
not work.

I am also looking for anybody who is inter­
ested in using their computer for Astronomy
(specifically optics and the Amateur Space

Telescope) for an exchange of information
and programs.

I think you are doing a great job with RE­
Mark. Keep up the good work.

James Hauser
29732 Taylor
St. Clair Shores, MI48082

Feedback On the Updated MAPLE

DearHUG,

The same month that my letter containing
comments on MAPLE (Modem Applications
Effector) was printed (Oct. '83), an updated
version was offered through HUG . I' m writ ­
ing to give my initial impressions of the up­
dated version.

First I want to say that the items which
caused frustration for me in the first version
have been effectively dealt with. Dr. Parke
has done a fine job of taking off the rough
edges present in the first version. With the
prior version , the keypad was left in the al­
ternate keypad mode when MAPLE was
exited. The new version allows you to select
which mode the terminal will be put on an
exit from MAPLE. No more problems going
directly to another program which expects
the keypad in a different mode. Another nice
feature is the ability to send a file with CR-LF
pairs, just line feeds or just CR' s to designate
the end of lines . No longer are double
spaced files a problem when sending files to
the local campus computer system.

The new version has other expanded com­
munications options, a nicer disk directory
(including size of files), and the ability to
control MAPLE from a remote system. To get
a good feel for the expanded abilities of
MAPLE you need to read the manual, which
has also been improved. Thanks to HUG
and Dr. Parke, it was well worth the $1 0 up­
date fee.

Daniel Gilbertson
24 N. Fourth St.
P. O . Box 158

Platteville, WI53818

Problems With The LPMX80 Driver

Dear HUG,

I recently upgraded my MX80 to Graftrax
and encountered the problem described by
Mr. White in REMark Issue #45; the un­
wanted 'G' or 'H' in the first pOSition of out­
put upon opening the device.

I cured the problem by issuing the SET LP:
commands to specify PAGE 66 and
LENGTH 66. The escape sequence gener­
ated: <ESC> C 0 apparently has the zero
byte dropped on output, and the following
<ESC> G or H to set or reset. DOUBLE

REMark • February • 1 984 7

STRIKE has the <ESC> used as form length
and the G or H then prints.

There are other problems with the lPM X80
driver if you attempt to use 8 line-per-inch
output, which I use for assembler output of
software programs.

1. The SET processing for PAGE and
LENGTH rejects as INVALID any values
over 66. Standard 11 inch paper has 88
lines.
2. The SET LP: LPI 8 has no affect.

I changed the compare constants for PAGE
and LENGTH to accept 88 as valid, but this
had no affect on the output.

To correct this situation, I created a patched
version of LP: speci ficall y for COM­
PRESSED,8 LPI pri nting the following:

1. The < ESC> 2 for 6 lPI was changed to
< ESC> O.
2. The constant moved into the < ESC> C
LENGTH sequence was changed to octal
130.
3. The <ESC> F sequence was patched to
000,017 to set COMPRESSED mode print­
ing.

I have not included specific patch com­
mands for these changes, because I made
them using the HUG dump program.

Robert C. Mann
11260 Alger
Warren, M I 48093

Answer To Letter On 'e'

DearHUG,

Concerning Mr. Pepper' s article, "Using 'e'
For Fast Action Games", in REMark Issue
#42, and Mr. Gillies letter, "More on 'e'
Language" , in REMark Issue #44, I would
like to make a small suggestion . Instead of
entering in the program non-printing char­
acters, such as the ESCape character, w hich
may cause trouble when printing, edi ting
and/or compiling, it is better to use the 'e'
language conventional escape sequences.
These are described in appendix A, section
2.4.3 of "The C Programming Language" by
Ritchie and Kernighan, and in section 7.6 of
the "Manual forC/80, Version 2 .0".

Thus, instead of using the statement

printf("[E[x5[xl ");

to clear the screen, erase the cursor and ena­
ble the 25th line, where [is PIE' s representa­
tion of the ESCape character, one could use

printfl" \ 033E \ 033x5\033xl");
#define ESC ' \033'
printf("7.cE7.c x57.c xl", ESC, ESC, ESC);

Here, the backslash """-" introduces the es­
cape sequence, and 033 is the ASCII code

(in octal) for the ESCape character .

Dr. W . Luis Mochan
Institutode Fi sica, UNAM
Apdo, Postal 20-364
01000 Mexico, D . F.
MEXICO

PeachCaIc Patch

Dear HUG,

Since my recent purchase of an H-l00 sys­

tem and of the PeachText 5000 program

package, I can heartily endorse the recent

article and letters praising both. How ever,

Peachtree Software, like many other houses,

pursues a policy of minimal support which

is primari ly to their advantage, not the

users' . This manifests in the 90-day support

service wh ich comes wi th the package:

questions are readily and rapidly answered

for each individual user, but the problems/

answers of other users are not generally dis­

tri buted . Thus, each user can have software

with severe 'bugs', but if he has not yet uti­

lized a particular feature, thei r existence re­

mains undiscovered. 'Time bomb' is a much

used, but accurate description.

I would be very much in favor of a HUG

forum to disseminate purchased software

package. changes/patches resulting from

each users' experiences. It should be to ev­

eryone's advantage (i ncluding software ven­

dor!) and should, perhaps, be addressed

separately from the general letters column .

As a start, the following defines a PeachCalc

patch.

Program: PeachCalc, Version 1.01

Problem: Unable to Save/load spreadsheet

by Values, as defi ned in documentation.

Symptoms: l oading by values (w hile com ­

bin ing spreadsheets) obtained on ly partial

copy of original values, and often resulted in

a spreadsheet wi th many incorrectly blank

entries.

Action: Called Peachtree, and was im ­

mediately given a patch . Apparently others

have had the problem, and the information

was readily avai lable to the Peachtree soft­

ware expert . W as told that problem oc­

curred randomly, as a function of session

history and fi le activity. True!

Solution: Modify two program modules

WC.OVL and PC.PGM) using DEBUG util ­

ity.

Setup: 1) Place ZDOS disk in drive A. 2)

Place PeachCalc d isk in drive B.

Patch #1:

DEBUG B:PC. OVL (cr >

E2C9 (c r) (address locat io n 2C9 h.x)

9F.50 (cr) (c h~ng. v~ lu . 9F h~ x t o 50 h. x)

J.J (c r)

Q (c r)

Patch # 2:

DEBUG B: PC .PGM (c r >

E4~35 <cr> (go t o ~ddr es s 4~35 hex)

08 C0 F9 74 (cr > (cha nge data t o that shown)

J.J <c r >
Q (cr')

All told, the Peachtree people were most
helpful once they returned my calls , and the
changes worked perfectly . Now, if only the
EDIT and PRINT functions utilized a 'current
file' rather than requiring constant re-entry
of the same file name during composition
and checking of text fi les .. "

If anyone else has more data, please let us all
know. Eventually we w ill be able to debug
theentireprogram package!

Richard A. Pabst
18 McAdams Road
Framingham, MA 01 701

Help Needed To Get PeachText 5000 To
RunOnanH29

DearH UG,

First, let me pass out the flowers. I just re­
ceived my second H/Z-l00 . I had built some
major Heathkits in the past and Heath's
technical literature and factory backup are
super. Before buying a PC, I studied as many
systems as I could and finally chose Heath/
Zenith for service, economy, expandability,
quality, and compatibility. I was not disap­
pointed!

~
I bought my first one in July for my small
business and took it home to get acquainted
with. My wife (a writer) and twelve year old
son soon let me know there was no way I
could be inconspicuous about taking it to
my office . So three months later, my Two
Year Plan for a second system is here. My
wife became permanently hooked on the
PeachText 5000 and my son is a rea l ZBASIC
fan.

I also bought an H29 terminal for my secre­
tary to use. I finally got the H29 tied to my
new H/Z- l 00 using the SWAP program from
REMark Issue #38 by Marc Aagenas.

I had to overcome a few problems getting the
terminal system operat ing. I am using Con­
dor file manager and it works great for our
production control , material control, and lit­
erature files control. Also the PeachCalc
works fine by using Cll U, R, L, & D for cur­
sor movement.

I have one remain ing problem : The
PeachText won' t work with my H29 be­
cause the function keys send an ESCape
< letter> code to the computer and the
PeachText responds with the escape func­
tion instead of the "F" function. I call ed both
Peach and Heath and they say they don't

Vectored to 65 a

REMark • February • 1984 8

the - 9 TWOETSYSTEMS
lJt,1e've got a great idea for your H-88, 89 or 90. It's a dual internal half height

drive system. Two of our half height 5V-!" drives can replace your built-in disk
drive, doubling your information storage capacity.

Floppy Disk Services provides you with everything you need. That's two double­
sided, double or single density, half height drives in either 48 or 96 tpi format, ail
hardware, cables and power connector adaptors. And most important, you get
easy, step-by-step instructions, in the Heath/ Zenith tradition of good, clear
documentation.

We've thoroughly tested the TWOET / Heath set-up. Remember that a double sided
48 tpi will work perfectly as a single sided drive right out of the box! Hard or soft
sectored-so you can even use this system with your H-17 controller. And ofcourse
we have the software drivers (additional cost) to run 48 or 96 tpi double sided, single
density drives on the H-17.

Model TWOET 455
2 Shugart SA-455 half height
48 tpi double sided
All hardware
Metal, shielded mounting plates
Data cable with chassis connector
Power 'Y' connector
Complete documentation
Price $605.00 complete

Model TWOET 465
2 Shugart SA-465 half height
96 tpi double sided
All hardware
Metal, shielded mounting plates
Data cable with chassis connector
Power 'Y' connector
Complete documentation
Price $755.00 complete

Wondering what to do with your Internal drive «you buy this
system? Here's the solution. If you purchase a dual half height system for your
Heath computer from Floppy Disk Services, just include an extra $50.00 plus
shipping and receive a single 5y.. case with power supply and data cable ready to
receive your SIEMENS internal drive! The case with data cable is normally a
$70.00 item. And the cable that comes with your TWOET system includes the
external chassis disk I/O connector.

Due to production deadlines. prices in this ad are 2
months old. so we encourage you to call
current prices and new product info. Prices and
specs subject to change without notice.

Dealer Inquiries Invited.

H-88/89/9O are regi tered trademarks of Heath Corp.

PAYMENT POLICY - We accept MasterCard.
us for 	 VISA. personal checks and Money Orders. We

reserve the right to wait 10 working days for personal
checks to clear your bank before we ship. An
shipping standard UPS rates plus shipping &. hand­
ling. NJ residents must add 6% tax.

FLOPPY
tDISK

SERVICESTM

_INC.
741 Alexander Rd. Princeton, NJ 08540

A Tutorial On
Random Numbers

and The Random Function

Random Numbers - What Are They?

Everyone who has played a game of cards, dice, or a board game
has used a random number generator. When one casts a pair of
dice, one never knows (if the dice are honest - and they had better
be or I'll send some of my friends to break your leg) what side
will come up. In other words, a die is a random number generator
capable of generating in random sequence the integers 1, 2, 3,
4, 5, and 6. Similarly when one draws a card from a deck of
ordinary playing cards, one is not sure what card he will draw.
A deck of "bridge" cards is therefore a random generator capable
of generating randomly and one of 52 values in a rather peculiar
numbering system . When one participates in a lottery or drawing,
the cards or balls and the drum make up a much larger random
numbering system.

Since these historic random number systems are used in so many
games, it is not unusual that a random number generator of some
sort should be used in making the random decisions required in
a computer game and even in more serious business or scientific
simulation. Fortunately for those of us who play with computers
there is a random number generator built into most BASICs . It
is the RANDOM FUNCTION and you might want to read a bit
about it in your manual before you proceed further .

The Random Function

In most BASICs there is a Random function generator and most
of them have the same basic form. (Not all, but both the Benton
Harbor BASIC and the Microsoft BASIC follow the same format.)
The random number function in most eight bit BASICs is of the
form:

RND(narg)

The function returns a pseudo random number which generates
a random number by some manipulation of a seed or the previous
random number. The algorithms for generating the pseudo random
(this is the last time I will be accurate and use the word pseudo)
are subjKt to much discussion among computer scientists and
mathematicians. The argument (narg) provides both a seed and
a control number for the Random function generator. If narg is
a positive real number, the function returns the next number in
the series of random numbers. If narg is equal to zero, the function
returns the last previously generated random number. If narg is
a negative real number, the function uses that number as a seed
to start a new sequence of random numbers. This is all in your

Kenneth Mortimer PE
352 Green Acres Drive

Valparaiso, IN 46383

manual but let us write a simple program to ask for the seed and/or

control number and write the output of the random number

generator on the screen. This program is listed as RNDTEST1. BAS

and shou Id be self-explanatory. The output is short enough so that

the results of three run throughs will be displayed on the screel'1

at one time.

00010 REM RNDTESTl.BAS A TEST PROGRAM FOR THE RANDOI1 NUMBER GENERATOR
00020 REM PR I NTS OUT A LI ST OF 20 RANDOM NUMBERS REst'- TI NG FR!JI A SEED S
00100 REM S=SEED
00105 REM SI=CONTROL NUMBER FOR REPEATED RANDOM NUMBERS
00110 REM R=RANDOM NU11BER
00120 REM 1=COUNTER
00200 INPUT "ENTER SEED NUM8ER ";S
00210 INPUT 'ENTER CONTROL NUMBER FOR LATER RANDOM NlJI1BERS '; 51

00220 R=RND (S)

00240 PRINT 'FIRST RANDOM NUMBER ';R '--'
00330 FOR 1=1 TO 5
00340 R=RND(Sl)
00350 PRINT R
00360 NEXT I
00370 GOTO 200

RNDTEST1.8AS

Enter this program into your computer and run it. When the com­

puter asks for the seed number enter 1. When the computer asks

for the control number for the later (succeeding) random numbers,

again enter 1. The terminal will now display six different numbers

that are larger than 0.000000 and less than 1.000000. Repeat the

process and you will see six more random numbers. Repeat the

process with any positive number and the same thing wi II happen.

Now enter a positive number when the computer asks for the seed

number and zero when the computer asks for the control number

for the later random numbers. This time the terminal will display

the same number six times. Repeat this process and you will find

that the zero control number will always cause the function to

return the previous " random number". This is a very handy feature

for use in testing programs because you will always know that

you will be repeating the last previous " random number" .

This time enter a negative number when the computer asks for

the seed number and a positive number when the computer asks

for the control number. You will see six different numbers on the

screen. Rerun the program uSing the same negative number as

a seed and a different positive number as the control number for

the later random numbers. You should see the same set of six

numbers on the screen. The numbers entered may be integers or

real (decimal) numbers. Repeat the process with a different seed .

REMark • February • 1984 10

You should get a new set of six "random" numbers which you
can repeat. I say you should get a new set of random numbers
but the way that the algorithm uses the seed may cause two differ­
ent seeds to generate the same "random" number. My experience
has been that any seed number that is twice the previous number
will return the same random number in Benton Harbor BASIC.
Any integer seed will return the same random number in Microsoft
BASIC. This now gives you an even more elaborate method of
generating either a single random number or a series of random
numbers for testing.

Continue to play with this program until you are confident that
you know how the control or seed number works.

Testing For linearity

When one rolls a die, the probability that one will roll a three
is one in six. When one draws a card from a bridge deck, the
probability of drawing an ace of spades is one in fifty two. The
probability of drawing any card is exactly the same. If the random
number generator is to be used in most forms of gaming and simu­
lation, there should be exactly the same probabi lity of any number
being returned by the function . How can you test the random
number generator for linearity? It would take a long time and a
great deal of storage to check for the generation of all of the random
numbers within the range. A simpler method would be to generate
one thousand random numbers, divide them into ten ranges and
see if the number of random numbers in each range is approxi­
mately the same. The method used will also serve as an introduc­
tion to converting the output of the random number into a series
of random integers. What we would like to do is count the number
of values returned that fall between .000000 and .099999, be­
tween .100000 and. 199999, etc .

00010 REM RNDTEST2. BAS A BASIC PROGRAM TO TEST THE LINEARITY OF THE
00020 REM RANDOM NUMBER GENERATING SUBROUT I NE BY OEV I DING THE RESULTING
00030 REM OUTPUT INTO TEN EQUAl.Y SPACED GROUPS
00040 REM FOR 1000 RANDOM NUMBERS
00100 REM S~SEED NUMBER
00110 REM R=GENERATED RANDOM tiUMBER AND ITS MODIFICATIONS
00120 REM 51= SUM OF ORIGINALY GENERATED RANDOM NUMBERS
00130 REM M=ARITHMETIC MEAN OF GENERATED RANDOM NUMBERS
00140 REM G(I)=NUMBER OF GENERATED RANDOM NUMBERS IS THAT DECILE
00200 DIM G(12)
00210 REM ZER0 SUM
00220 SI=0
00230 REM ZERO ALL GRotiP COUNTERS
00240 FOR 1=0 TO 12
00250 G(I)=0
00260 NEXT I
00270 INPUT 'ENTER SEED NUMBER ';S
00300 REM GENERATE AND SORT THE NUMBERS
00310 FOR 1=1 TO 1000
00320 R=RND (S)
00330 SI=SI+R
00340 R=INT(R*10)
00350 G(R)=G(R)+I
00360 NEXT I
00400 REM PRINT OUT RESUlTS
00410 11=5111000
00420 PRINT 'ARITHMETIC MEAN OF DISTRIBUTION = ";11
00430 FOR 1=0 TO 12
00440 PRINT I,G(I)
00450 NEXT 1
00460 END

'---'"

RNDTEST2.BAS

Program RNDTEST2 .BAS has been written to do this checking.
If you multiply the output of the random number generator by
ten you will get a number greater than .000000 and equal to or
less than 9.99999. If you take the integer value of that result, you
will get an integer value in the range between and including 0
and 9. This is done in statement number 340 of RNDTEST2. In
this program I have used the output of statement 340 as an index

is generated, the value of G(l) is increased by 1.0. In a lineal
di stribution between zero and one, the average (arithmetic mean)
should be 0 .50000. Let us see how the program works .

1) Set the sum of the random numbers to be used to determine
the mean at zero (Stmt. 220).

2) Set each element of the vector G to be used to determine the
distribution to zero (240 to 260).

3) Enter a seed or control number (270).

4) Repeat 1000 times (310 and 360).
4a) Generate a random number (320) .
4b) Add that number to the sum of the random numbers (330) .
4c) Convert the random number to an integer (340).
4d) Add one to the appropriate vector element (350).

5) Compute the average (410).

6) Print out the average (420).

7) Print out the number of values in each range (430 to 450).

8) End of program (460) .

Note that three elements of the vector were included to check
if a random number equal to or greater than one was generated .

Run the program and see how linear the distribution actually is.

Using the Random Number Generator

There are many ways to use the random number in simulation
or gaming. O ne of the simplest is the comparing the generated
random number with a known or assumed value. Let us assume
that we are trying to simulate a baseball game. Our batter has
a batting average of .234 . From what we have seen so far, the
probability of the random number generator returning a number
less than .234 is 23.4 per cent. This is the same as our batter'S
probability of getting a hit. Therefore, if the random number gener­
ated is equal to or less than .234, we can say that the batter got
a hit, if it is greater he is out. A BASIC program element could
be w ritten thus :

1000 REM HI TTI NG SUBROUTINE

1010 H = RND (l. ll)

1020 IF H > . 234 THEN GOTO 1200

1030 REM SUBROUTINE TO HANDLE HIT

1040 ------- ­
1050 -._- ­

1090 RETURN

1200 REM SUBROUTINE TO HANDLE OUT

1210 ----------- ­
1220 ------- ­

1250 RETURN

Of course you would w ant to have a much more complex program
that would take into account each pitch and what would happen
after each hit and that of course will result in a program as complex
and taki ng into account as many factors as you feel your game jus­
tifies.

If you know the probability of any event happening, you can gener­
ate a simulation program involving that event.

We previously converted the output of the random number
generator to a series of integers from 0 to 9 by multiplying the
output of the random generator by ten and taking the integer of
the product. If we had wished to generate a number from one
to ten, we would have had to add one to our result. If we want
to generate an integer from 1 to N, we should multiply the output
of the random number generator by N, take the integer or theof a vector G. Every time a number between .10000 and .199999

REMark • February • 1984 11

http:RND(l.ll

product and add one to the result. A program element to simulate
an ordinary six sided die is as follows.

2000 REM SUBROUTINE FOR SIMULATING A SINGLE DIE
2010 N =RND(S)
2020 N = INT(N*6)+1.0
2030 RETURN

The random integer can be used in many ways in BASIC programs.
Some are:

1) As one would use dice in any game.

2) As the index of a computed GOTO.
ON N GOTO 2000,2500,2700, 2200,4000

3) As the index of a computed GOSUB.
ON N GOSUB 123,456,789,999

4) As the index in the Line Number Function LNO(iexp).

As you can see, the random number generator is a useful tool
in generating random numbers or random events for gaming and
simulation .

Normally Distributed Random Numbers

Some of the more mathematically sophist icated of you w ill now

argue that there are many instances where the results of a random

occurrence will not be linearly distributed. A good example of this

might be a target game of some sort. If the player's aim is good, the

probabil ity of the projectile hitting the center of the target is high and

the probabi lity of the projectile missing the target completely is very

small . The distribution of the h its about the center of the target would

be "'normal" or distributed accord ing to the Gaussian or "bell"

curve. It would be handy to have a subroutine that would change

the linearly distributed random number to a normally distributed

random number. One method is suggested in the National Bureau

of Standards Handbook of Mathematical Functions (AMS 55) on

page 953 . The algorithm consists of generating two linear random

numbers (Rl and R2) and manipulating them according to the equa­

tions:

Nl = (SQR(-2*LOG(R1)))*COS(2 .0*P*R2)

N2 = (SQR(-2*lOG(R2)))*SIN(2 .0· P*Rl)

where Nl and N2 are each normally distributed random numbers

with a mean of 0.0 and a standard deviation of 1 .0.

SQR,lOG,SIN and COS are the regular basic functions .

P =pi=3.1415926

Program RNDTESn.BAS demonstrates the generation of normally

distributed random numbers afld RN DTEST4 .BAS tests the normal­

ity of the values generated.

00010 REM RNDTEST3 A PROGRAM TO DEMONSTRATE Tt£ GENERATION OF NORMilLY
00011 REM DISTRIBUTED RANDOM NUMBERS
00020 REM R1 = FIRST LINEAR RANDOM NUMBER
00025 REM R2 ; SECOND U NEAR RANDOl! NlJ1BER
00039 REI'l NI = HRST NORMAl RANDOM NUMBER
00035 REI'! N2= SEDOND NORMAL RANDeI'I NtlMBER
00040 REM S = SEED FOR VER¥ FIRST RANDOM IIIUl'lBER
00050 REM .I = INDD
00060 P=3. 141 ~926 :REM PI
00100 REM BAS I C PROGRAM
00110 INPUT "ENTER SEED FOR INITIAL RANDOM NUMBER "; 5
00120 Rl=RND(SJ
90130 FORI = 1 TO 20
00140 GOSUB 1000
091.50 PRINT I , Nt, N2
0011>0 'NEXT I
eeH0 END
01000 REM SUBROUTiNE IF'OO SENERAJING .tJCR1'IAU DlSiBlBOiED RANDQ/'I MlMBERS
91010 R1=RND<11
01020 R2=RND(1)

01030 ,NJ='fSQR,(-2*.lOG{IU~HilCOS,j2.P.R2J

01040 N2~ (SQRI -2* LOO ('R2JH~IN(24P*RIl
0Y050 RETrnN

:RNDT.ESn.BAS

000 10 REM RNDTEST4 A PROGRAM TO CHECK TJ£ NORIIAlITY OF NORMALY DISTRIBUTED
000 11 REM RANDOM NUI1BERS
00020 REM RI = FIRST LINEAR RANDOM NUM&'ER
00025 REM R2 = SECOND LINEAR RANDOM NUl1BER
00030 REM NI = FIRST NffiMAl RANDOM NUMBER
e0035 REM N2 = SECOND NORMAL RANDOM NUMBER
00040 REM S = SEED FOR VERY FIRST RANOOM Nll1BER
00050 REM I ~ INDEX
00060 P=3.1415926 :REM PI
00070 DIM ZI(HI) ,Z2(10) :REM MATRIX OF DISTRIBUTION
00080 REM 51 AND S2 ARE THE SUt1 OF THE PAIRS OF GENERATES
00 100 REM BASIC PROGRAl1
0e110 INPUT "ENTER SEED FOR INITIAL RANDOt1 MJMBER "is
00120 RI=RND(S)
00130 FOR 1=1 TO I>
00 140 ZI(1)=0
0e150 Z2(I)=0
0e1 69 NEXT I
00170 SI=0
00180 S2=0
001 90 REM TABULATE AND AVERAGE
00200 FOO 1=1 TO 1000
0e210 GOSUB 1000
0021:5 PRINT 1
00220 SI=SI +NI
00230 S2=S2+N2
00240 J=INT(ABS(2*Nl»
00250 ZI (J)=ZI (J)+1
00260 J=INT(ABS(24N2»)
00270 Z2(J)=Z2(J)+1
00280 NOT I
00282 SI=SII I000
00294 S2=S211000
00290 PR I NT "SlJ\S" , 5 I, 51
00295 PRINT ' r, · ZI", "Z20
00296 ZI=0
90297 Z2=0
00300 FOR I=0 TO I>
00310 J=I12+.5
00311 ZI=ZI+Zl!l)
003 12 Z2=Z2+Z2{ I)
00313 Z3=(ZI+Z2)/2
00320 PRINT J,ZI,Z2,Z3
90330 NEXT I
00340 ENIl
91000 REM SUBROUTINE FOR GENERATING NORI'1Al..Y DISTRIBUTED RANDOM NUMBERS
01010 RI=RND(I)
01020 R2=RND(1)
01030 NI =(S!lR(- 2*LOG(RI))) • COS {24P*R21
01040 N2= (SOR I - 2*LOG (R2)))4SINC2*p4RI)
0 1050 RETURN

RNDTEST4.BAS

Most of you w ill never worry about the normally distributed ran­
dom number and those of you who know enough statistics re­
member that the normal distribution with a zero mean and a unit
standard deviation (Z form) can be converted to a normal distribu­
tion w ith a mean M and standard deviation 5 by the relationship

N3 = M + S * N1

where Nl is the Z form normally distributed variable and N3 is
the sh ifted normally distributed variable.

Study this material carefully and you should be able to add some
valuable tricks to your programming toolbox.

12 REMark • February • 1984

On The Leading Edge _

Implementing
Heath Escape Sequences
for CP/M and Z-DOS

William M. Adney
4821Sunnybrook

Buena Park, CA 9062 1 , .

If you read other microcomputer magazines regu larly, you proba­ flt••* *t-.*...*4.H **" .*••4...**.***I****~ J .. *.* •••1**
bly noticed that a well known columnist was having trouble "getting

Ustina1rid of the keycl ick" on his new Z-100. Since it's not immediately ob­

viou~ to a new Heath/Zenith user how this .is done, we will tC!.ke a iGloar Su.~n PrOgra .. for· H/~-39 a,nd H/Z-) 00 tH!"i .nah

look at implementing the Heath escape sequences using assembly

For CP/ I'Hl0 .r,d CP/tl--85

language programming,
Th i s prograll us. s t~. Huth E$r;~ E ~.qu~n ~ .

In this month's column, I have provided two sllort assembly lan­ t o ~ I ~~r t he <c.r~en and h9 ~to . cursor,

guage programs (one for CPIM and one for Z-DOS) which can be

;Creat~d: 9~:)e~ by W. II. Adneyused to implement the Heath escape sequences. I have also in­ ;
cluded a program for CPIM which will display a 25th line ruler dis ­ jMod ifi~~ti on Date De.criptjon

N/A
play for Magic Wand, Assembler commands for each program are
iincluded in each listing so that you can quickly implement these pro­ BOOS EQ(J 000~,"

grams. ESC EG!U IBH ,E«ap. functio"

QRG 100H
MA IN: ~XI D,Cl.S jLoad HHth c l ea r <creen fYJlct ion

One of the best features of the HeathlZenith line is the fact that most
of the technical and programming information is available in their .MVI C,9 ;CP /" prir,t string funct ion

documentation. As a matter of fact, CP/M-8S, Z-DOS, and the Z- CAli BOOS ;<:. 11 CP/ M
'---' m;:r ; }l.tur~ to cp/M100 ar~ so we ll docu.mented that it is sometimes difficult to find an

answer to a specific question. For that reason, it js extremely impor­ i

,
H.t" "4tt·tHtt.., ..t.H~"*

tant that you review the Table of Contents for each of your appJica­ •

Heath Escape Codes +tion programs, and it's a good idea to take a few minutes to scan each ;

of the sections to get a feel for the overa ll contents. ;" ,................,....." ,.........

;

Finding the Information CLS: DB ESC, 'P t " l' ;C lnr Sc.r~en-Es~.p. E
CRTR: DB ESC, I Z' t'i ' ;Rese t 19 pO"'fr up ~or, fi9ur.t io r,--E~ c.po z

The Heath escape sequences are documented on page 11 -10 of the CllFF: DB ESC,'x' . ' 2' t ' t' ; .Ko y c lick o.ff--Escape x' 2
KSFJ.: DB ESC, 'x) t '6'. '1' ;Koypad 5hitt f d--E~c ~ p" x 6 H- 89 manua l. For the Z-l 00, the escape sequences are listed in Ap­ BCUR; D\> ESC,' .X I ,t ' .4 ' , , t' ;BIgclj Cyr ~or--E scapo x 4

pendix B (page B.14) of the Z- loo User's Man ual and page 10. 38 HOt.D: DB ESC , I [' t't ' ;Ho J ~ sc.r e~n ..9d• ...;.Es ~.p~ [(H~89 ol)l~)

of the Z-l 00 Technical Manual. Detailed descriptions of the escape iA11 "". us. of H-E<9 scr'oll key
; P.ge 1 .1 ~1 4 of H-89 op~r ati." ..~,u.)

sequences begin on page 10.4:! of the Z. l 00 Te<;hnjc;al Manual, if /IIBlK : DB ESC t ' x', ' ; I t ' I' ;Non~link i ng cursor·--Es ci.p" x (H- I~ only)
you need them to write your own programs. FCJlMF: DB 0CH, ' 1' ; Print er fOf" fe ed(•. g. H.n~25)

pS 0J 4H ;Re,.,ye > p~ce foT' 1~ o~tri'sDeveloping the Programs
STACK; OS % IH i J op of It, ck i s h"r ~
!nH 'ER; ; Stor~!lI b.g i ij5 hettOne of the best techniques for programming is to write the code so

END 1'\A[1'j ifNI) OF f'Rf.!GR~
that it is rnodvlar and Can be used for several pt,lrposes, Since tbere

is nO reason to waste disk space with a slJ'lall .ASM program which

can be coded to provide multiple functions, I wi.1I only show a gen­
 Cr.~~e pr·og'·"-", ..i tt. ~ d}t or .as e, ASJ1

eral program which can clear the CRT display using the "ESCAPE E" All f i I.s mu. t be on drive A

ASM .COt!
function (See Listing 1). Notice that the first line under "MAIN!" in LOAD. COM
the listing moyes the "Cl5" line to a register, and the program will C. ASH

cle<lr the scree.n.lf you W<l.nt to lise this ge neral progrilm to tum the i

keyclick off, change the "(lS" to "COFF". Then ehql)ge the fjJe ; U s~ ~ tlo fo II owj n9 C9""",n9s ~o ~rtate C.CO,M

; ASM C,At!Z
name from C. A5M. to CUCKOFF.ASM, gnd mcx;ljfy tile a~seml»er LOAD C
commands accordJngly. You can eyen control the form f~s on a I;RA e, Ijg.~

printer (e,g. H/Z.2S) by .impJementing the "FO~MF' ljne and cre!lt­
ing FF,COM ..Additiona) escape sequences are jncluded in the If yOll are n9t famjJjar wJth ~s~mb)y)i1J)gyage, J recommend that

"-' .Heath E~C;:!lpe Code~ s~tion, an.d these may be imp)eme.nted by you fO/lJlat a new disk for use wIth these assembly language pro­
adding the apPfOpriqte ~ape sequences. . grams, and bac)(it up after you code the source fil es. In some ca~es,

REMark • February , 1984 13

http:scree.n.lf
http:or,fi9ur.tior,--E~c.po

typos in assembly language can cause strange things to happen, and
I have wiped out the directory on a disk just because of a typo during
some experimenting with a program.

The Z-DOS version of the program is shown as Listing 2. The same
technique has been used, and the Z-DOS assembler commands are
shown in the listing.

The same programming techniques are used to write a program for
CP/M which will display a ruler line in reverse video (See Listing 3).
I use this program with Magic Wand and PeachText 5000 when I
want to see the column positions on the edit screen. This program
can be converted to 8086 assembler (Z-DOS) code by following the
example in Listing 2. If you don't like the reverse video, either delete
the labeled lines or place a semicolon (;) in front of the appropriate
lines of code. The assembler assumes that anything following a
semicolon is a comment and does not assemble it. I recommend the
use of a semicolon because it is easy to delete if you want to change
a feature ofthe program.

Assembly Lanugage and C

For the assembly language experts who will argue that all of this
code is not the most EFFICIENT way to implement these features, this
is not intended to be an assembly language course. If you are inter­
ested in learning assembly programming, I can recommend the
Heath Assembly Language course (EC-11 08) as an excellent in­
troduction for learning 8080 coding for CP/M-80 and CP/M-8s . I
have taken that course, and I believe that it is an excellent way to
learn the fundamentals of assembly language programming. Al­
though I have learned some of the 8086 assembler code for Z- DOS,
I have concluded that the C programming language is the language
to learn. The biggest advantage of C is that you don' t have to learn
a new assembler every time a new microprocessor chip is de­
veloped . In general, the C language is "portable" because the source
code is supposed to be standard. C compilers can be developed for
each microprocessor chip, and at least theoretically, the source
code does not have to be changed. In the real world however, that
doesn't seem to be true since a lot of the C compilers are "non-stan­
dard" in one way or another.

For anyone interested in the standard definition of the C language,
I recommend that you read "The C Programming Language" by Ker­
nighan and Ritchie (Prentice-Hall) . Another book that I particularly
like is the "C Programming Guide" by Jack Purdum (Que Corpora­
tion-Indianapolis). It has a lot of good examples plus it includes
some useful programs. My favorite is the file copy program on page
1 83. It's a lot easier to use than PI PI

Speaking of Software

Although Heath has an excellent line of software, they obviously
don't handle everything that's available on the market. For that
reason, you will probably want to buy some software (e.g. WordStar
version 3.30) at some point that is not usually available in the Heath
stores. My favorite place to buy that kind of program is 800-Software
in Berkeley, CA. In addition to discount prices, they provide techni­
cal support by telephone if you need it. And even more important,
they stand behind everything they sell . It's a good place to get soft­
ware that the Heath stores do not carry as a stock item.

I recently bought the WordStar Pro-Pak which contains WordStar
3.30, SpellStar, Mail Merge, and Star Index. That version of
WordStar is amazing in its capabilities, and I am very pleased with
it. At the risk of opening Pandora's box, it is better than Magic Wand
for most of the writing that I do. I primarily use Magic Wand for pro­
gramming, although it has most of the same capabilities of
WordStar.

........... f*' I .. *t*.... ********'*'****..***.....*.. 1,111*"""""-If It""..11

jCl.ar Screen Progr.. H/Z-100 ter"inals

For Z-DOS ONLY

This program us.. th. Heath ESCAPE E sequence
to clear the screen and home the cursor.

4-23-83 by W. 1'1. Adney

j
jModification Oat. Description

N/A

• XLIST
INCLUDE DEFASC Jl. ASI'1
JNCLUOE OEFMS. ASM

•LIST

PGI'1SEG 	 SEGMENT
ASSUME CS:PGMSEG, SS:PGMSEG, DS: PGMSEG, ES: NOTHING

ESC mu IBH jEscape functior,

ORG 100!i

MAIN: MOV OX, OFFSET CLS ;Load Heath clear screen functi on
MOV AH, DOSF _OUTSTR jZ-DOS print string function

INT DOSF _FUNC jea.l1 Z-DOS to print messa.ge
INT DOS I_TERM j Return to Z-DOS

j

;****f""",*********** *************
*

Hea th Escape Codes *
j *
;**1*1 *'' ***************"".. ,""
j
CLS: DB ESC,'E','i' jCl.ar SccHn--Escape E

CRTR: DB ESC, ' z' t '1 ' jReset to power up configuratior,--Escape z

COFF: DB ESC, 'x ' , '2' t . "" ;Key click off-Escape x 2

KSFT: DB ESC, 'x' t '6" 1 '~' jKeypad shifted--Escope x 6
BCUR: DB ESC. ' xJ

, '4' 1 '~' jBlock Curs or·--E,cape x 4
HOLD: DB ESC,' [' , '·1' jHold "reen mo<Je--Escape [I H-S9 onlyl

jAllo~s use o f H-89 scroll key
jPage 11-14 of H-39 opuation manual

NBLK: DB ESC, ';w(' I J; ', 1'$' ;N{.nblinking cursor--Escape x IH-100 only)

FORMF: DB 0CH, ' 1' ;Printer f orm feedle.g. H/ Z-251

;
PCiMSEG ENDS

END MA IN ; END OF PROGRAM

Create program witt. editor as C.ASH
All fi les must be on drive A

MASH. COM
LINK. COM
EXE2BIN.COM
C.ASH

;
jUse the following como,ands to create C.COM

MASH C
LINK C
EXE28JN C. EXE. COM
DEL C. EXE

If you have any version of WordS tar (or even if you don't), HUG has
some new programs that really make your system hum. One of the
best programs that I've seen is the KEYMAP (HUG disk #885-1230)
program. It allows you to configure all of the special H-89 keys and
most of the H-l 00 keys to do just about anything. It includes a setup
version for WordStar so that all you have to do is copy it to your disk.
I have used KEYMAP to duplicate the Magic Wand special function
keys so that I don't have to think about them when I switch to a differ­
ent word processor. You can also create a version of KEYMAP to dis­
playa disk directory or execute STAT or just about anything else you
want. As a side note, I was disappointed to find out that Pat Mc­
Nally's 100-Star program would not work with WordStar 3.30. After
fooling around with DDT, it looks like MicroPro has changed the
user patch areas and increased the size of the WS .COM program.

REMark • February • 1 984 14

http:EXE2BIN.COM

I will look forward to seeing an updated 100-Star program which will
work with version 3.30.

If you're interested in learning the C programming language. I have
found that Walt Bilofsky's (Software Toolworks) C compiler is a
worthwhile investment. It's hard to beat for the purchase price of
$49. 9S. Although it doesn't have all of the standard C features, it still
is an excellent value. I have converted all of the programs in this arti­
cle to C because I don't have the time to learn any more of the new
assemblers.

By the way, I am always interested in new software (and hardware
too!) for the Heath/Zenith computers. If you have something that
would be of interest to our user community. send it to me at the
above address.

Books and Hardware

When I first started working with CP/M. I found that it was very diffi ­
cult to make any sense of some of the commands. Because of the
frustration that I experienced at that time. I have written the FlipFast
Command Guide series published by S-A DeSign in Brea. CA. The
first book in the series includes all CP/M-80 and CP/M-8S com­
mands for the Heath/Zenith family of computers. I have also com­
pleted the Z-DOS FlipFast Command Guide which should be avail­
able in January. For anyone who does a lot of programming, I have
included appendices which contain technical information on the
operating system. If you have ever accidently erased a file, you can
use the ERAFIX program to help you recover the erased files.

As a partofworkingon these books with S-A Design, I had an oppor­
tunity to test an 8" disk drive from Floppy Disk Services. I have the
dual drive slimline version which very closely resembles the Heath
HS-207-42 or Zenith Z-207 -42. I have really put these drives to work
in the last few weeks, and their performance is excellent. We did
not get an instruction sheet with the evaluation units. and it did take
me a few minutes to figure out how to plug in the data cable cor­"--"
rectly. Once they are connected properly, they work quite well with
both CP/M-8S and Z-DOS. Since they are a frequent advertiser in
REMark, you might want to check with them if you need some disk
drives. They also advertise hard disk drives for HeathlZenith com­
puters ... moreon that if I can get an evaluation unit.

Next Month

The slowest part of any computer system is the printer, and it is espe­
cially irritating when the computer is tied up during the printing of
a long file. One of the solutions is to use a hardware print buffer to
reduce that time. I have received the ANGEL print buffer from Ligo
Research, and we' II take a look at that impressive piece of hardware
next month .

.. t* ••"*••*4 *••••*H**••*•••••*4 *................._•••••••••••**...

Listing 3

j2STH LINE MAGIC WAND DISPLAY FOR RULER FUNCTION

This program "i 11 cl~.,. the screen and provide a display
on the 25th line which displays a ruler line in rever..
video for the M~9ic Wand text procHsor.

,
JBY WILLIAM M. ADNE Y--2-07-83
j
BOOT 	 EQU 0000H
BOOS 	 EQU 0005H
CONIN 	 EQLI 1
CONOUT 	 EOO 2
PLINE EClU 9

CR EQU 0DH

LF 	 EQU 0AH

-.........- EQU 1BH
ESC

OOG 0100H

MAIN: 	 LXI D,CLEARIT j CLEAR FUNCTION
CALL SENDLINE j CLEAR THE SCREEN
LXI 0, L1NEl JAND DISPLAY COMMENTS ...
CALL SENDLINE
LXI D, LINE2
CALL SENDLINE
LXI 0, L1NE3
CALL SENDLINE
LXI D,L1NE4
CALL SENDLINE

j
iRemember 	 thE' cursor position

LXI D,CURPOS j REMEMBER CURSOR PClSIT ION
CALL SENDLINE

,
jEnable tt" 25th lin~

LXI D, ENABLE25 j 25TH LI NE ENABLE
CALL SENDLINE

,
jPosition cursor at the b~ginnin9 of 25th lir,e

LXI 0, BEGIN25 j25TH LINE BEGINNING
CALL SENDLINE

j
; Entfr Reverse vi d£lo mode

LXI D, RVIDEO j REVERSE VIDEO

CALL SENDLINE

,
jPrint 25th lin~

LXI D, L1NE25 j 25TH LINE HEADINGS
CALL SENDLINE

,
;Exit r-eYerse video

LX I 0, RVIDEND
CALL SENDLINE

j

jSet cursor to preyious ly saved position

LXI D, CURSAVE jCURSOR TO SAVED POSITION
CALL SENDLINE
RET

,
; •••• * •••••••••••••••••••••••••••• ***

*
SUBROUTINES

j

;**....******** ••••**.**.*************
,
SENOLlNE: 	 /IV I C, PLINE

CALL BOOS
RET

j
RVIDEO: DE< ESC,' pI , ' 1 1 i ENTER REVERSE VJ[lEO MODE
j
RVIDEND: DB ESC,' q' t "'J1 j EX IT REVERSE V I DEO MODE .
ENABLE25: DB ESC,'x ",ll ' , ' 1) j25th LINE ENABLE
j
BEGIN25: DB ESC, 59H, :<8H,20H,'~' ;CURSOR-2~,t h line--ESC Y 8 Sf'

L1NE25: 	 DB · 1. •• +••• 10•••• +••• 20.... +••• 30.... +••• 40.... '
DB '+.•• 50•••• +••• 60•••• +••• 70.... +••. B0~'

,
CLEARIT: 	 DB ESCt}E ' ,'~ J j CLEAR DISPLAY
,
CURPOS: DB ESC, ' j', '~. 'jREMEHBER CURSOR POSITION

j

CURSAVE: DB ESC, ·k'. '$' j CURSOR TO SAVED POS IT ION

i

LINE!: DB 'This progra.. sets the 25th 1in~ for Hagic Wand.' ,CR,LF, .~'

L1NEZ: DB 'A ruler is displayed for conyenience.· ,CR,LF, ' ~'

L1NE3: DB I ,CR,LF, 'i '
I

UNE4: DB 'To reset th~ CRT, use the co.... and CRTRESET ' ,CR,LF,'~'
OS 0!4H RESERVE SPACE FOR !0 ENTRIES

STACK: DS 001H TOP OF STACK IS HERE
BUFFER: EQU ~ STORAf'.>£ AREA STARTS HERE

END /lAIN
*..*** * **..........* ... H* **..****.............******....

\.~

~,

Simp e Printer Controls

For The Z-l 00

The lack of printer device drivers as such for the Z-l00 pre­
cludes of setting the printer to its various mode characteristics
easily. For instance, the driver H25.DVD in the HIZ-89 world
allows you to set anyone of 8 different units to be any of the 4
character densities or 2 line densities you might want using the
HIZ-25 printer. Unit 1 might be set to 10 characters per inch
(CPIl, unit 4 might be set to 13.2 CPI, and unit 5 might be set
to 16.5 CPI with 8 lines per inch for a real dense application.
Then when the driver is invoked by a particular un it number, the
correspond ing character density wi II be called.

Unfortunately it is not quite that easy on the Z-l 00. There are no
drivers to be configured to your liking. You are more or less stuck
with the DIP switch default settings unless you bury escape se­
quences in the file itself. When using something like Multiplan,
it's no problem because you can stick the escape sequence for
16.5 CPI in the set-up field of the Print option should you want
to compress your spread sheet.

But what do you do if you want to print a compressed data base
listing from Condor File Management System? The escape se­
quence cannot be buried anywhere (at least not where I have
tried). Whatdo you do if you print a text file at, say 12 characters
per inch, you don't like it and now you want to pri nt it at 13 .2
CPI? You could change the switch settings on the back of the
printer or better yet, just use your favorite editor and add the es­
cape sequence for 13.5 CPI to yourfile. This will then presetthe
printer when the file is sent out with the PRINT command from
Z-DOS.

Now that to me is a big waste of time! There is a far easier method
to accomplish many of these simple tasks under Z-DOS. And that
is to make use of the BATCH capability. Sure, there are other
ways of doing the same thing but, I think this is about as easy as
you can get.

I have created 8 different batch files to do the popular HIZ-25
printer conditioning. You can certainly add to these as you see
fit. The files and their contents are listed in the table which fo l­
lows:

FileName Contents

lOCPI .BAT PRINT SETl OCPI
12CPI .BAT PRINT SETl2CPI
13CPI .BAT PRI NT SETl3CPI
16CPI .BAT PRI NT SETl6CPI
6LPI .BAT PRI NT SET6LPI
8LPI .BAT PRINT SET8LPI
RESETPRT. BAT PRI NT SETRESET
FORMFEED.BAT PRINT SETFMFD/F

You can probably guess that these individual files contain the es-

Charlie Layman
35 Kendall Road

Sudbury, MA 01776

cape sequences that are necessary to set the printer according to
the file desc tiptor name. And you woLild be right except that they
contain some additional information also. First, let me explain
that my batch file processing caused an extra line feed to be sent
to the printer, and in the case of the form feed, I could not get
rid of it no matter what I tried. The solution here was to simply
print a null fi le with a form feed switch tagged on to the PRINT
command. Thus the reason for the "IF" shown above. Let me
show you the other fi les here:

FileName Contents (1)

SET10CPI t[[lwtlM
SETl2CPI t [12w tIM
SET13CPI t [[3w tIM
SETl 6CPI t [[4w tIM
SET6LPI t [[1 x t 1M
SET8LPI t [[2x tIM
SETRESET tIc tIM
SETFMFD (2)

(1) The symbol t [designates an ESC character.
(2) Th is is an empty file.

The Escape-M sequence does a reverse index to compensate for

the line feed introduced by the batch processing. This leaves the
print head on the same line that It started oh.

Now, when I want to set the printer to 16.5 characters per inch,
I simply type 16CPI at the Z-DOS prompt fo llowed by a RE­
TURN. If I need a form feed, all it takes is to type FORMFEED
at the prompt followed by a RETURN. By typing RESET followed
by a RETURN, the printer gets reset to its power Lip condition.

The above control codes are for the HIZ-25 printer. However the
same scenario is appl icable to other prihters to a lesser or greater
extent. Look in your printer manual for the sequences necessary
to give you si mi lar controls.

Keep in mind that batch processing can be useful in small appli­
cations as well as the big overnight jobs. There are probably
many more similar problems that can be resolved with this ap­
proach.

About the Author:
Charlie Layman started working with microcomputers in 1976
and has been actively engaged in the enjoyment of them eVer
since. He is responsible fOr writing the popular UD. DVD device
driver for HeathlZenith computers. Charlie is a department man­
ager for GTE Sylvania in Needham, MA. and has a BS degree in
Electrical Engineering from Northeastern University.

REMark • February • 1984 16

BASIC Computing _.

Files and File Handlin~~~

Of all the things a computer can do, the handling of large amounts
of data, organizing it, sorting it, and providing the information you
want when you want it, is perhaps the most useful and the most pow­

David E. Warnick
RD #2 Box 2484

Spring Crove, PA 77362

erful application you can use.

'i1)11'
11/1'1'

IIIill
Random files . Sequential files. Records. They're all scary to the un­
initiated, but with very little time and not too much effort, they be­
come quite clear. And when they do, they become very valuable
tools, tools you won't want to do without. So, don't put it off any
longer. Learn about data storage and manipulation now. This is the
first in a series of articles designed to make files and file handling
as easy as booting up your computer. So come along for the ride.
You'll be glad you did.

lust a word about the information you'll find in the series. All HUG­
gies are most welcome to make use of it for their personal appl ica­
tions, and the knowledge gained is yours for any purpose you desire.
It is, however, to be considered proprietary and my property . I write
the software for Applied Computing, a commercial venture, and am

"-" contemplating writing a book, but I would be very selfish and quite
remiss if I failed to share these articles with the organization I turn
to when I want to learn something new. ' Nuff said . Lets go on w ith
the first article of our series .

File handling, what is it and why do it? What earthly purpose could
it serve? Is it worth the time and the effort to learn how it's done?
Each of these questions can have more than one answer. In this and
future articles, I'll try to give you the information necessary to answer
them for your particular set of circumstances. Those with firm an­
swerswill be laid out in detail for you.

To answer the last question first, yes, file handling is definitely worth
the effort involved. As you learn file handling, you'll discover more
and more uses for it. You'll also find that it's not at all difficult. There
seems to be a lot of mystery and claims of magic with ominous titles
like uSEQUENTIAL" and "RANDOM ACCESS" . For now, believe
me when I tell you it's quite easy. We'll take things a step at a time
and, hopefully, give thorough explanations of what's going On and
why we do what we're doing.

If we' re going to handle files, we have to know what files are. Every
separate program you store on your disk or tape is a file . It has a file
name and you can copy it or make changes to it. So, in a sense, you
have already been handling files. The article you're reading right
now is stored on my disk with the name NUMBERS. TXT. But files
go beyond this. There's much more you can do with them. Let's just
say that a file is a collection of information. Information you may
want to read, print, rearrange, or modify. The classic example of a
file is the name and address list. But a file could just as well be the

'--"" closing prices of a stock which an investor wishes to watch . For the
homeowner, it could be a list of house payments with dates, check

numbers, amounts, etc., all ready to be retrieved and processed or
whatever you want. The ham radio operator could keep track of all
the stations he's talked to and sort them by call, country, or any way
he likes. Small businessmen can keep track of their inventory.

So you can see that uses for files are endless. I'm sure you can envi­
sion many applications you'd like to try for yourself. By the time this
series is finished, it'll be a piece of cake and you'll be making some
very practical use of your computer.

The items I pointed out above all contained similar pieces of infor­
mation, repeated over and over within a file . The stock market
quotes, for example, would record a date and a price. There may
even be an opening, closing, high and low price with the date. The
same information would appear every time we make an entry into
our file and would be included when we retrieve data from our file.
We should have a name for this item, so we'll call it RECORD. We
now have two definitions.

fiLE. A file is information which can be stored, retrieved, changed,
sorted, and processed. It consists of several related records arranged
systematically .

RECORD. A record is the smallest complete collection of data to be
entered into or retrieved from a file.

Notice I said that a record is the "smallest complete collection" . In
other words, a record is a collection of data. Each item of that data
would be meaningless by itself, but when grouped together it gives
very meaningful information. What do we call these pieces of data
which make up a record? FIELDS. Each record within a file must be
arranged the same way as every other record . In the example of the
stock prices above, if the date is the first piece of data or " field" in
one record, it must be the first field in every record within that file.
If the opening price is the second field in one record, it must be the
second field in every record within that file, In a separate fi Ie the rec­
ords could be arranged differently, but, within a given file, the rec­
ords must all be arranged the same way. Thus, if we wanted to print
a chart of all the closing prices for our imaginary stock, all we'd have

to tell the computer is:

1) Read each record in the file.
2) Print the first field within each record (date).
3) Print the nth field within each record (closing price) .

Now w e havea third definition.

FIELD. A field is a sub-division of a record. It is usually the lowest

REMark • February • 1984 17

distinct order of data within the record.

Bel ieve it or not, once you understand the concept of fields, records,
and a file, you've made it well on your way to file handling. The rest
of the way you'll just be applying these concepts to practical uses.
Figure 1 shows pictorially how these elements interrelate to form a
file.

IIIlCQJIIDI 1
~~

I I I I I I I I I I I I
1 ! 1 1 1 I r f

Structure of a Data File

Figure 1

Ok, so you understand that you can pick items l ike date, check
number, amount, interest, and principal and call each of them a
field within a record. Then every time you make a house or car pay­
ment, you can type this information and save it in a file . But how
will the computer know where anything is on the disk? How w ill it
know where one record ends and the next record begins, or even
more amazing, w here the fields wi th in a record begin or end ?

There are two ways to know these things and each is quite easy. In
the example above, we could say that each of the fie lds is 10 charac­
ters long, thus making each record 50 characters long. If the infor­
mation to be placed in any of the fields requires less than 10 charac­
ters, just fill the rest with spaces. Then to print out the dates, amount
paid and principal, just instruct the computer to read 50 characters
and print characters 1 to 10, 21 to 30, and 41 to 50. Just repeat this
process of reading 50 characters at a time until all data is exhausted.
Not only would we know where every field is w ithin a record, but
also where every record is within a file. We could print every 5th
record by telling the computer to skip 200 characters, read 50 and
print, skip another 200, read 50 and pri nt, etc. Th is would allow us
to get into and out of the fi le and select records at random, just be­
cause we know where every one must be. Did you catch that word
random? You've just been through a RANDOM FILE. The secret to
finding anything in this type of fi le system is that everything has an
assigned space and must be there.

But there's a price we must pay for this simpl icity. W hi le none of
the information in the fields of our last example is likely to be 10
characters long, we allowed that much space. Each field could have
been assigned a different length within a record, but all records must
be the same. If we assign 7 spaces to the first field of one record,
it must be 7 spaces in every record . Thus we waste space w here
there's no information. In large files w ith many records, this can be­
come a considerable amount of waste and be quite objectionable.
What can we do to conserve this space? If we just write one item
after another, there's no way to tell w here one ends and the next be­
gins.

Obviously I wouldn't have babbled o n through the last paragraph
if there wasn't a way to do what we want. The easiest way to tell
one field from another is to pick a character that won't appear in any
field and insert it between each field of the record. An asterisk (*)
is one good choice . We could write our record like this:

Date*Check Number*Amou nt* I nterest* Principal

Now we can instruct the computer to read from the file, checking
each character until it comes to an * and put the information into
the first field of our record, then read to the next * and call that infor­

mation the second field , and so on. So how can we tell when the
whole record is fi nished? It should be obvious by now that we'll use
another character, say the spl it vertica l line (I). Actually, we could
have used a double asterisk (**) as well. When the I is read, we
stop because the record is complete. We'll call the special symbols
we assign to indicate the limits of records within a file or the limits
of fields with in a record - DELIM ITERS. Thus we've added one
more word to ourfile- handling vocabulary.

By using delimiters to show where one piece of data ends and the
next piece begins, we can pack items against each other, in se­
quence, w ithout w asting any space in memory or on our storage
media, be it tape or d isk. Again, note that all data items are in se­
Quence. Th is is the w ay a "SEQUENTIAL FILE" is arranged. It puts
the most data in the least space. The price we pay for this memory
savings is the inability to go directly to just any record. Because not
all records are the same size, we have no idea what memory address
is assigned to the record we want. To find it, we must start at the be­
ginning ofthe file and read each record till we get to the right one.

Thus far we have discussed and you should know the meaning of
the following six terms.

FILE
RECORD
FIELD
DELIMITER
RAN DOM FILE
SEQUENTIAL FILE

The terms random and sequential file will gain more meaning as we
go along, but you've been introduced to them and have some back­
ground to build on . Each type of file is handled differently by
MBASIC and we must learn a different set of programming instruc­
tions for each. By taking them one at a time and drawing parallels
between the two, w e should progress quite easily and get the most
out of this subject.

Most authors present sequential files first, a throwback to the days
when tape storage was all we had and things could only be done
that way, and then just present random fi les as an afterthought. I feel
that random files are easier to work with and understand so I will
present th em first. Both types will be covered thoroughly before this
series is over as each has specific uses, advantages, and disadvan­
tages. Before we get into actual file operations, let's look at these file
types and some of the characteristics of each.

RANDOM FILES

Advantages
1) Very fast access of any record.
2) Records can be added more easi Iy.
3) File may be opened for both read and write operations.
4) Permits use of key files (to be discussed later) .

Disadvantages
1) Takes more storage space on disk or tape or in RAM.
2) M ust be sorted to allow random access.

SEQUENTIAL FILES

Advantages
1) Takes least space on disk ortape or in RAM.
2) Processes fastest for list print-out type jobs.

Disadvantages
1) Requires addition and removal of delimiters.
2) File may be opened for Read or Write-not both.
3) Modification of fi Ie requires use of a temporary fi Ie.

That should be enough to digest this month . Next month we'll look

18 REMark • February • 1984

ARE YOU
MOVING?
Don't leave your

at the MBASIC operations which are used with random files. For

those of you who wish to look ahead, they will be :
 W FOR YOURZ-100OPEN NFIELD
LSET

RSET

PUT

GET
 ZBERT is a video arcade game that
MKI$ will challenge the entire family.
(VI

Package includes "ARTIST', a graphics
See you next month . editor,~

Requires ZBASIC & full Video Ram,

ONLY $29,95

DUA L PORT will intelligently

parallel your Z-100* & Z-29* or Z-19*

Terminal either direct or through a

modem. Requires: ZOOS
REMark behind. ONLY $39 ,95

Send your change of address in
• Z·l00. Z·29 , Z-1 9 ARE ZENITH Trademark s

nowto:
Available at Heathkit Electronic Centers or when

Heath Users' Group ordering direct add $2 S/H, Kansas orders
Add 4 %, VISA & MASTERCARD ACCEPTED ,

Hilltop Road
SUNFLOWER SOFTWARE. INC. (9 13) 631 -1 333St. Joseph, MI49085

13915 Midland Drive. Shawnee, KS 662 16

'--" ttl Controlled Data Recording Systems Inc.

ANNOUNCING THE FOC-H8
DOUBLE DENSITY 8" AND 5.25" CONTROLLER FOR THE H8 COMPUTER

Has all of the capabilities of our popular FOC-880H controller, with the added features of;

• 	 Direct memory access (OMA) data transfer.
• 	 Hard sectored controller (H17) incorporated on the board,
• 	 Runs with the standard 8080 CPU card and with Z80 CPU upgrades,
• 	Accesses both hard sectored disk formats and soft sectored disk formats through the same

drives attatched to the FOC-H8 without hardware additions. Price $495.00

NEW PRODUCTS FOR TH E FDC-8aOH
DM-1 DUAL BOARD MODIFICATION KIT $29.95

Allows for both the FOC-880H and the H88-4 controller cards to interlace with the same 5.25"
drives. Drives will run as both hard sectored format and soft sectored format depending upon the
logical drive letter.

CDR BIOS by Livingston Logic Labs $60.00
Enhanced version of Heath/Zenith CP/M 2.203 BIOS with ZCPR Supports all Heath/Zenith disk
formats through the FOC-880H and the H1 7 controllers.

CDR DVD by Livingston Logic Labs. $40.00
HOOS driver for running double density HOOS through the FOC-880H

Shugart Slimline 5.25" 40 track double sided drives 	 $275.00

Shugart Slimline 8" double sided drives 	 $525.00

Contact: C. D. R. Systems Inc.
72 10 Glairemont Mesa Blvd, San Diego GA 92111

5-20 day delivery-pay by check, C.O.D., Visa, or MI G Telephone: (619) 560-1272

REMark • February • 1 984 19

COBOLPROGRAHM IHG
lWMeIeRQ

~~
lli1C~IITI

__ i

I

COBOL Corner IV

H. W. Bauman
493 Calle Amigo

San Clemente, CA 92672 IIII I!!!I
Introduction

Welcome back to "COBOL Corner". I hope that you have obtained
your HUG COBOL Corner Disk-I. If you have not, you can still
work along with this article, but will need it by the next "COBOL
Corner". We will not dwell on the previous articles. I will assume
that everyone is up and running with their CO BOL systems and
knows how to FORMAT a COBOL Program Structure, as well as
how to compile and run a COBOL program . Ifnot, review past
articles NOW!

We will start our COBOL programming by learning how to develop
the program Phase by Phase!

Four (4) Phases To Develop A COBOL Program

Phase I - Specification Phase including illustrative layouts of
the Input and Output Records.

1 - Print Chart. D iagram the output format.

a) Grid-like form wi th 132 columns used to define an OUTPUT

Record.

b) Serves as a preview of how the report w ill look.

2 - Record Chart. Diagram the input format.
a) Modeled after an 80 column "punch-card".
b) Programmer describes the pOSition and size of each fie ld.

3 - General Spec ification of the Program. English Narrative.

4 - System Flowchart . Graphic description of INPUT, PROCESS­
ING and OUTPUT flow.

PHASE II - Design Phase (Program Design Tools)

1 - Structure Chart. Graphic Hierarchy of tasks to be performed.

2 - Pseudocode. English-like documentation of Program.

3 - Program Flowchart. Graphic showing of Program logiC flow.

4 - Structure Walkthrough. Rev iew of design by a colleague.

(Note: Most Programmers do either step 2 or 3, not both.)

Phase III - Coding Phase (Do not confuse this to mean just
Keying!)

1 - Write Program Code on COBOL coding forms.

2 - Key the Source Code w ith your Editor from the coding forms.
Th is is NEVER done until step 1 has been checked with Phase
I and II program tools ! NEVER key a program until you have a
"Good" design that w ill compi le and execute without errors, pro­
duce the correct output format, and be capable of UPGRADING
and be MAINTAINABLE.

3 - Compile your Source Code. Remember the compiler will only
catch syntactical errors (use of COBOL Language) and typos. Keep
correcting the ERRORS until you obtain a ·Clean Run" ("NO ER­
RORSORWARNINGS").

Phase IV - Testing Phase

1 - Link and Execute your compiled program with a set of test

data, called a Transaction File.

2 - Remember, just because the compiler shows no errors that

does not mean your program w il l RUN or MEET Phase I Format

and Specifications.

a) Your design may have lOGIC ERRORS-Used wrong COBOL

Verbs to solve the program.

b) Your design may not produce the correct OUTPUT FORMAT.

3 - Go back to PHASE II, after reviewing PHASE I, and redesign,

recode, and key-in the corrections.

User-Define Names (Created by the programmer for use in the

program.)

1 - Data Names . Group of contiguous characters, each data­

item must be assigned a unique data-name.

2 - Procedure Names. Paragraph or section names.

3 - Condition Names. ASSigned to an item that may have various

values or set of values or range of values, used in the PROCEDURE

DIVISION to spec ify certain conditions for branching.

Rules for Assignment of Names

1 - Must be composed of only digi ts, alphabetic characters, and

hyphens.

2 - Must contain at least one (1) letter.

3 - Cannot exceed 30 characters.

4 - Cannot begi n or end w ith a hyphen.

S - Cannot have imbedded blanks or periods.

6 - Cannot be a CO BOL reserved word.

7 - Should be descriptive, meaningful, and readable (self- docu­

menting)!

Spacing and Punctuation of COBOL Words

1 - There must be one (1) or more spaces between words.

2 - Periods ARE important in COBOL. REQUIRED in many

places. You MUST remember these places.

3 - Period, comma, semicolon MUST be followed by one (1)

or more spaces.

REMark • February • 1984 20

Developing Sample Program # 1

(Note: We do not have sufficient space on REMark's pages to show
complete Print Charts, Record Charts, and Coding Forms; so, I
suggest that you obtain a pad of each from your Computer Supp ly
Store. The Print Chart has 132 columns and the Record Chart has
80 columns (a computer Punch Card can be used). The COBO L
Coding Form is also a standard form at your supply store. We will
showonlyaportion ofthe form below.)

Phase I - Step 1 Print Chart for "PKGM01"

12345b789012345b789012345676W'1234567B9~12~5678901234Sb7B9~12~5b7890
I : I I : ::

CUSTOtIER CUSTOrlER CUSTO!1ER : :ST:ZIP
/WE ADDkESS CITY "

: x xx xxx XX XX XX XX xx XX xXX: : XXXXXXXXXX xx xxx xxx XX XX : : XXXXXXXXXXXXX: : XX : xx x

: XX XXXXX XX XX XX XX XX XX XX : : XXXXXXXXXXXXXXXXXXXXXX: : XXXXXXXXXXXXX:: xx: xxx
I:

(Note: We show where the print-out will occur with an "X" and
blank spaces between. We also show three (3) lines of print-out to
show that we want double spaced output. Because we lacked line
space we did not show the complete ZIP CODE field offive (5) "X"'s
on right side ofthe chart.)

Phase I - Step 2 Record Chart for "FILEL1.DAT"

I2345b7890 12~5b7B901234567890123456 7890123456 7890123456 7990123450 79~
CUST. CUSTO!1ER CUSTO!1ER CUSl(J£R 51 ZIP
ACC!. NAI'E ADIIlESS CITY
99?9'/XX XXX xx XXXX x x xx xxx xxx x xx x x xx x x x x X • • 999't9

(Note: This Transaction File has some other data that we will use
later, but this covers the Fields we will use with this program.)

Phase I - Step 3 Programming Specifications

'-" Pro!!r•• tkMl CUlloMr Li it Progr.. IDa PRG/1t1.OOC

Program Description

This program reads a customer account, name, and address data

file (Transaction File-more about this in later articles) and prints

a customer name/address list.

Input File

Customer account number-name-address disk file.

Output File

Customer name and address list.

List of Program Operations
1 - Read each customer account number-name-address record

from disk-FllEl1 .DAT.

2 - For each record, print the followi ng fields on the customer

list in accordance with the Print Chart :

Customer Name
Customer Address Customer City-State-Zip

3 - Double space each printed line.
4 - COBOL w ill be the programming language.

Phase I - Step 4 System Flowchart

SYSTEr. CHART - -ctISTO!1ER LIST PROOAAII

: ACCCWT
: HAI£
: ADDRESS
I FILE

CUSI011ER

LIST

OUTPUT

:CUSIOt1ER
LIST

:PRINT :OUT

Phase II - Step 1

(Note: We are going to use MODULES (/ike sub-routines in BASIC)
with our Structured COBOL Programming.}

Hi.rorch~ ChortA-"'[u,to... Lht Prog'"

IlAIN­
CUSTOI'oER

-i.IST

INI1IAlIZE PROCESS­
-VARIABLE I CUSTCK:R

-FIELDS -i.IST

Phase II - Step 3 Program Flowchart

(Note: We are going to choose Phase II-Step 3 Program Flow­
charts over the Phase II-Step 2 Pseudocode in our early programs.
As the programs get more complex we will use Pseudocode. With
complex programs, the flowcharts get too elaborate and are hard
to follow. Remember it is the programmer's choice.}

The FLOWCHARTS are shown separately in this article .

Phase II - Step 4 Structure Walkthrough

At this point, if possible, you should have your program design
reviewed by a co lleague or friend to check your logic and Structure
with the above programming tools. This is where you want to
find your errors, on paper, not with the computer!

Data File (Transaction File)

If you have your HUG COBOL Corner Disk-I you can copy the
file, FILEl1.DAT, from the HUG disk to your Disk A for this Sample
Program #1 using the same name. Now, print out FllEl1 .DAT
with your pri nter. Can you find the fields on it that we will use
with this program? It has some fields that we do not use this time
but w ill use w ith a later program. It should MATCH the PHASE
11- STEP 2 RECO RD CHART.

If you do not have the HUG CO BOL Corner Disk-I, the FIlEl1 .DAT
is shown below:

(Note: This line of numbers is just to show the field columns!
Do not include them in your work!)

REMark • February • 1984 21

1234567890123456789012345678901234567890123456789012345678901234567890123
LI00e02ABBOTT, ANTHONY 14255 CAVENDI SH PLACE SAN FRANCISCOCA94122 &0014489
L10eee5SIP'lt()NS, RCtlALD 12 WALNUT AVENUE An£RT~ CA94025 ee033250
L1000I0WHEELER, EDI10ND 1240 AlDERBROOI< LANE SAN JOSE CA95101 00120056
LI0001IPENITENCIA , JOSE 101 GISH ROAD SAN JOSE CA95129 000011eN
L100012STEWART, JANET 1002 MARSHALL LANE LOS DATOS CA950Je 0ee3ee75
L100015JOHANSON, PALL 14901 S08EY ROAD LOS DATOS CA94402 eeee4421
L190019JAP'lES, JACQUELINE 42 WARREN AVENUE SAN KATEO CA94402 &0056356
L100022COLLINS, BRUCE 1200 RACE STREET SAN JOSE CA95114 &0033994
LI&0026REILLY, JACK 14101 JUNIPER LANE SARATOGA CA95070 e0084498
LI00031COOPER, ROXANNE 10305 LOVELAND COURT SARATOGA CA95070 00022165
LI0003SCASHP'lAN, BARBARA II PENNSYLVANIA AVENUELOS GATOS CA95030 0000458R
LI 00040WI LP'lER , PATRICE 6612 LAKEWOOD TERRACE SANTA CLARA CA95050 00002300
L10004 2YANCi, CYNTHIA 1282 BENTON AVE~E SANTA CLARA C:A9505I 00010203
LI00047KACINTYRE, JOHN 10200 TERESITA BlVD CUPERTINO CA95014 00090054
L100048BROWN, BRUCE 1104 EL CAMINO REAl LOS ALTOS CA94022 00003200
LI00050HUMPHREY, STAN 133 HILLVIEW ROAD LOS ALTOS CA94022 00033221
L100053LOGAN, I'IATHIU)A 4",221 ROSS ROAD PALO ALTO CA94043 00009943
L100054ROGERS, WALTER 1600 ORCHARD AVENUE MENLO PARK CA94025 00023559
L1000C0SCHULTZ, CIIARLES 99B TASMAN DRIVE SUNNYVALE CA940B6 00004479
LI00062CARVER, GEORGE 6621 WILLDW ROAD KENlD PARK CA94025 00113680
LI00063C~RTOZIAN, ARAM 1550 BIRCHTREE LANE REDWOOD CITY CA94084 00016260
LI00066FORSYTHE, DOUGLAS 220 MAGNOLIA DRIVE HILLSBOROUGH CA94010 00018320
LI0008IHARRIS, CLIFFORD 50102 CYPRESS STREET SAN JOSE CA95130 00011990
L1000B3ALVAREZ, ELENA 1060 PALOS VERDES ROADLOS AlTOS CA94022 00212100
LI 00088KNOlL, DONALD 330 ANDERSON LANE MORGAN HILL CA95037 00013210
LI00I00XAVIER, FRANCIS 100 CORPUS CHRISTI WAYMOUNTAIN VIEWCA94942 00314340
LI00103LANDUSKY, FRED 8823 CRESTVIEW DRIVE CUPERTINO CA95014 00015620
LI00IIIQUINTANA, VINCENT 402 CANDY LANE BURLINGAME CA94010 00015670
L100113HELP'I, SIGRID 11005 VIA GRANDE DRIVESARATOGA CA95070 06012750
LI00116THOMPSON, CHARLES 62 GLEN BRAE DRIVE SARATOGA CA95070 0&817290
L1001 33PICCATA, BEVERLY 222 I1AU(£ AVENUE SAN CARLOS CA'l4070 0&812350
L100149WESTOVER, LEE 1077 NOTRE DAME ROAD BELI10NT CA94002 "015964
L100IBSPAPPAS, IRENE 44 20 IIHPPLE ROAD RE[1oj()()D CITY CA94064 *19130
L10020~LAN, ROD 11 00 WINCHESTER ROAD CAIf'BELl CA9500B 00011970
LI0020I CORVlNO, GERALD 5504 SAN T~AS ROAD CAMPBELL CA95008 00810420
L100205WAGNER, GUY II WASHINGTON SQUARE SAN BRUNO CA94086 00012310
LI&0210HA11ILTON, BRUCE 8BI PEMBERTON PLACE BURLINGAME CA94010 00013510
L100213WH ITNEY, DAV I D 10002 C(UlMB INE AVENUERE!J0400D CITY CA94084 02014630
LI00214PARSONS, LAURETTE 335 STONYDALE DRIVE BURLINGAME CA94010 0&802489
L10022LSNOW, P'lEREDITH 411 OAK RIDGE DRIVE P'lILLBRAE CA940Je 0e0067~

L100227CARSON, JAP'lES 992 LOP'lITA AVENUE SAN JOSE CA9~128 &0004252
L100244WHITE, BERNARD 2200 THE AlAIIEDA SAN JOSE CA95131 000089t8
LI0027 1JOHNSON, SARAH 2009 PARK PLACE P'lILLBREA CA94030 00002111
Llele02PAUlSEN, PATRICK 122 NIGHTINGALE LANE SAN CARLOS CA94070 00008114
LI01004JACKSON, ANDREW 2133 TILLMAN PLACE SAN P'lATEO CA94402 00011970
LI0110ISTERLINr., RONALD 42 WEST 27TH STREET REDWOOD CITY CA94084 te004415
L10110BGUSTAFF~, HARRY 665 /\CALLISTER STREET BEL/lOtH CA94002 00023312
LI02162CALLAHAN, KATHEEN 286 STATE STREET LOS ALTOS CA94022 &ee62213
Ll02225GCUlP'IAN, RAQ£L 133 MASON STREET SUNNYVAlE CA94087 000~719
L102294SANDERS, GARY 10204 37TH STREET SUNNYVALE CA94686 00062610
LI02407ENDICOTT, PAI1ELA 88S HILLVIEW TERRACE I10UNTAIN VIEWCA94043 000b9512
L1052521«lO, CELIA 754 GLEN BRAE [flIVE SARATOGA CA95070 00001411
L106280CHAVEZ, RAFAEL 1220 KINGP'IAN ROAD LOS GATOS CA950Je 00080913
L11182i9STEWART, JAt£T be'!) BUBB ROAD ClHRTINO CA95e14 MMJelb
L108231'1ARBOOOUGtl, JEFFREY 12076 CAROLINA STREET I10UNTAIN VIEWCA94042 00012185
LI08722ABINGTON, CARL 886 PICKWI CK COURT SANTA CLARA CA95050 000e5174
L110L15ADOLPH, CHARlOTTE 1402 DISNEY LAt£ SAN JOSE CA95130 00028513
LlI0222ASHTON, WILLlAI't 99722 LAKEVIEW WAY SANTA CLARA CA95051 00002827
L110273YOUNG, RODGER 122 CONSTITUTION ROAD P'lILPIAS CA95e35 ee0532b8
LI1033~FREDERICkS, PATRICIA3212 FOOTHILL BLVD CUPERTINO CA95014 ee012~

Now, for practice in preparing a Data File, use DiSk A, your editor,
and key-in the above file putting only the fields required by our
program as diagrammed on the RECORD CHART making sure that
each field is in the specified columns! When completed, SAVE
it on Disk A with the name FILED1 . DAT. Prepare a print-out and
compare your work with the file FILEL 1. DAT.

Closing

In the next "COBOL Corner" we will start with Phase III - Cod­
ing! We will write it out on coding forms and describe each
COBOL Division . For your "Homework" please review the Select
Entry, FD Entry and Working-Storage Section in your COBOL-80
Reference Manual.

In our future Sample Programs I will not do all the Phases for
you . I will supply Phases to specify what the program will be re­
quired and leave the rest for you to work out.

This might be a good time to mention that we will be dealing with
Line Sequential Files for this and many of the coming pro­
grams. Random Files are really advanced COBOL; thus, we will not
work with these programs for many months. We have a lot of
COBOL Language, Structured Programming, and "Good" Pro­
gramming to work with first.

REMark • February • 1984 22

ZBASIC
Mapping

Program:

BASMAPER
Ted W. Miller, Jr.

PO Box 347
APOSan Francisco, CA 96555

The program BASMAPER generates a refer­
ence map of statement numbers, variable
names, literal values, and constant values
for a ZBASIC program. Output to a disk file,
to the line printer arto the screen is optional,
as is report selection. BASMAPER is written
in ZBASIC, for ease of update or user modifi­
cation . It is executed by first MERGEing and
then RUN 65500 (defaults all reports to the
printer). Limitations on the program being
mapped: Length = 29899 characters, and
maximum statement number = 65499 .

'--' 50ft limits: number of statements = 400,
number of referenced elements = 1000,
and number of references = 3000. (See the
dimension statement at 65001 of the listing.)

After four years of programming in
APPLESOFT on my APPLE II computer, I was
delighted with ZBASIC on my new Z-100.
The full screen editing, the many new func­
tions, variable types, and graphics control
gave programming a new dimension . How­
ever, the absence of programming support
tools made the overall task of program de­
velopment and checkout a chore. When in
checkout, performing program documenta­
tion, and most especially when revising a
program, it is mandatory for me to know
what references what. 50, after suffering a
while trying to put together a data file man­
agement set of programs, I took out the time
to write a reference mapper. In doing so, I
learned some things about the internal stor­
age of a ZBASIC program which I found use­
ful. I hope you will too.

Figure 1 is the syntactic definition of the in­
ternal form of a ZBASIC program to the ex­
tent analyzed by BASMAPER. The symbol
<= > is read "is defined as" . The program is
stored as a chain of tokenized strings which
is common to all versions of BASIC. The link

Figure 1

ZBASIC Mapper: ZBASIC Definition - Internal for~

ZBASIC Pro9ra~ (=) [Basic Statement]:[Basic ShtePlent],[ZBASIC Program]

Basic Statement (=> [Numbered String]:[Nurnbered String],[RelAark]

Numbered String (=) [Link AddressJ,[Stmt Number],[Token String):

[Link AddressJ,[Null]

Link Address (=) [Unsigned Integer]

Unsigned Integer(=) ·0·:·1· ••• ·65535·

Strnt Number (=) [Unsigned Integer]

Token String (=> [String VariableJ:[String Variable],[Token Stringl

String Variable (=) [Map Element]:[Spacesl:[Otherl

Map Element

StPlt Reference

Statement Token

Link Token

Variable Name

Name

Letter

Alphanumeric

Digit

Type Char

Function Name

Function Token

(=) [St~t Referencel:[Variable NaMel:[Function Name]:

[Literal Value]:[Constantl

(=) [Statement Token],rStmt Numberl:[Link Token],[

(Link Address]

(=) ·14'

(=) ·13·

(=) [Namel:rNalllel,"("

(=) [Letterl:[Letter],[Alphanumericl:[Namel,rType Char]

(=) "A·: "a" •.. : ·Z"

(=) [Letter]:[Digit]:"."

(=) ·0·:·1· ... :·9"

(=) "r..:"!":",.:".'

(=) [Function Tokenl,rSpacesl,[Namel

(=) "216· u

REMark • February • 1984 23

" ,Spaces (=) ",n ·,[SpacesJ:[NuIIJ

Null (=)

Li tera I Va lue (=) [ASCII QuoteJ,[StringJ,[ASCII QuoteJ

ASCII Quote (=) "34'

Str i ng (=) [CharacterJ:[CharacterJ,[Stringl

Char·act.. r

Constant (~> [Digit Tokenl:[Byte Tokenl,[Bytel![Integer Tokenl,

(Unsigned Integerl:[Single Tokenl,[Four Byte Real]:

[Double TokenJ,[Eight Byte RealJ

Digit Token (=) ·17":"18· ••. :"27" (Represents "0-9')

Byte Token (=) '15'

Integer Token (=) [Octal Tokenl:[Hex TokenJ:[Decimal Tokenl

Octal Token (=) '11'

Hex Token (=) °12'

Deci~al Token (=) °28"

Single Token (=) "29"

Four Byte Rea I (=) "0" ... ·1. 701412E+/-38"

Double Token (=) "31'

Eight Byte Real (=) ·0· ••• ·1.70141IB34~4b92D+/-38"

Other (=) rCharacter]:[Other Tokenl

Other Token

Remark (=) [REM Tokenl,rOtherJ

REM Token (=) '143"

Note: '(=)" is 'is defined as"; ":. is a logical OR; ',' is "followed by.

the user program. "K" is initialized as the ad­

dress of the next numbered statement and "J"
is the statement number of the first state­
ment. Phase 1 is performed at 65522, after
which all the statement numbers are found
in the string array "X$", ready for display.
Phase 2 is the workhorse performed by state­
ments 65523 through 65526. During this
phase, the statement number of the state­
ment being parsed will be displayed. This is
done so you'll know your machine really
didn't go south, it's just busy. Each statement
is parsed, bytewise, for map elements.
Bytewise parsing is required because con­
stants, in their internal form, may take the
value of any ASCII character or token . While
this task would be speeded up considerably
if it were programmed in machine language,
the trade off was ease of modification, oper­
ation, and understanding. Since you will
probably not map your program more than
two or three times, execution speed was a
secondary consideration .

The statement being parsed is set up as the
string "J$" in statement 65523, this allows
access either by PEEKs or the ZBASIC string
operators. Statement 65524 checks for map
elements, using the subroutines at 65510
through 65521 to isolate them and "move"
them to "1$". This "move" for variable
names and literals is simply pointing the "1$"
descriptor to the element within the program
(saves string space). The subroutine at
65507 is then used to find the element, or
where it should be, in "X$". This is an indi­
rect lookup through a pointer list in "Y%". It
is a very quick method of finding an element
in a sorted array. Finally, if the element is not
found, the subroutine at 65507 inserts it at
its proper sort position and the number of the
statement being parsed is added to the refer­
ence chain for that element in "X%".

address at the start of each string points to the All constants and statement references are Phase 3 is performed by statements 65526
beginning of the next token string. The state­ stored as tokens or in their internal form . through 65529, which by the way, is the
ment number of the string follows the link highest statement number allowed byFinally, on the negative side, spaces are not
address. The remainder of the string is a RENUM. Phase 3 is the report generation tokenized. So, while the ZBASIC documen­
codified representation of the statement en­ phase. "RPRT$" is used to select the reports tation espouses the structuring of your code,
tered. It consists of tokens representing re­ to be produced, and "FLNM$" identifies the if you do, you are wasting memory. Maybe
served words, operators, punctuation, and on a later revision. device and/or filename to use for output.
possibly a REMark in addition to the map The subroutine at 65008 is used for line
elements of interest. Now to the program. You'll have to refer­ printer initialization. It is written for an

ence the listing (see Figure 2) during the fol­ EPSON MX-80 printer, so you might have to I was impressed when I found that ZBASIC
lowing discussion. The statements 65500

uses the token "13" to identify a direct refer­ change it to be compatible with your line
through 65005 are for program initializa­

ence to another statement, which eliminates printer. The spacing on the reports is set for
tion. The first of three phases of operation is

the scan '-... m the top of program on all trans­ a 132 character line length (or more prop­
displayed on screen, a dummy buffer is set

fers as performed in APPLESOFT. erly, a line length divisible by 6 with no re­
up to hold temporary strings (this avoids the mainder) . If you can't set your printer up for

The major difference is the use of tokenized horror of garbage collection), arrays are di­ that format, you may want to take the time
constants by ZBASIC. In APPLESOFT, it is mensioned, functions are defined, and poin­ to change the spacing so that your reference
not good programming practice to use con­ ters are set to the user program. In statement statement numbers will not wrap around.
stants. They are stored as ASCII strings and 65501, you will find "I" initialized to the in­

converted at execution time (faster to use teger value at PEEK 343. This is the address Installation: Simply key in the program,

variables). In ZBASIC, the opposite is true. used by ZBASIC to identify the start point of modifying it as you want, and then type

REMark • February • 1984 24

........

Figure 2

ZBASIC Mapping program: SASMAPER

65500 	CLS: LOCATE 12,24 : PRINT "WORf<ING PHASE 1";: OPEN "CoM1: " AS # 2 LEN~80:
FIELD # 2 ,6 AS 1$: DEF FN XX(I)=256*PEEKI I+l)+PEEK(I) :
IF RPRT$="" THEN RPRT$="1234"

65501 DHl X$1 10(0),Y'l.Cl,400 ,3),Xt. C1,3000) ,IXC 3) : I=FNX X(3 4 3) : J=FNXXCl ... 2):
K=FNXX(I): J$= " ": IF FLNM$="" THEN FLNM$="LPT1: "

65502 DI!'l L$(3): L$CO)="State nlent Numb er Reference Map " :
L$(1)=" Variable Names Reference Map
L$(2)=" Literal Values Reference Map ":
L$(3)="Constant Values Reference Map"

65503 DEF FN FDCCI,J)=INSTRCI,J$,CHR$CJ» : DEF FN PINT=J+65536'*CJ)32767):
DEF FN CLTH=ABSC IX>14 AND X(28)+IX=15)+3*CX>10 AND X(13 OR X=28)+5*CX=29)
9* CX=31»

65504 DEF FN STMT=ABSCX=14)*FNXXCI+N+l)+ABSIX=13)*FNXXCFNXXCI+N+1)+3):
DEF FN NAM=X)64 AND X(91: DEF FN DEC=X'l. Cl,NA+I)-65536!*CX'l.C1,NA+I)(0):
DEF FN CHAR=X) 48 AND X(58 OR FNNAM OR X=33 OR X>34 AND X(38 OR X=46

65505 DEF FN NTE=I$ (>X $CY'l.IO,J X,M X» : DEF FN LESS=I$(X$CY'l.CO,JX,MX»:
DEF FN MORE=I$) X$CY 'l.CO,JX,MX» : GOTo 65522

65506 LX=O: JX=IXCMX) : WHILE FNNTE AND JX) LX:
KX=JX: WHILE FNLESS AND J X) LX: KX=JX: JX=JX-INTCCK X-LX) /2+.5): WEND

WHILE FNMORE AND JX >LX: LX=JX: JX=JX+INTCC KX- LX) /2): WEND:
WEND: RETURN

65507 IF FNNTE THEN JX=JX+l: FOR LX=IXCMX)-CIXCMX)=O) TO JX STEP-I:
SWAP Y'l.CO,LX,MX),Y'l.CO,LX+l,MX): SWAP Y'l.ll,LX,MX),Y'l.ll,LX+l,MX): NEXT:
IXCMX)=IXCMX)+l: NL=NL+l: Y'l.CO,JX,MX)=NL: X$CNL)=I$: RETURN
ELSE RETURN

65508 PRINT# 1, CHR$ (27) ; "N"; CHR$ (6) ; CHR$ C 12) ; CHR$ C 15) ; CHR$ C14) ; TAB C10);: RETURN
65509 J=Y'l.Cl,JX,!'lX):I=O: WHILE J)O : I=I+l:X'l.(1,NA+l)=Xt.C1,J) : J=X'l.CO,J): WEND:

WHILE 1 >0 : PRINT#1,USING"######";FNDEC;: 1=1-1: WEND: RETURN
65510 MX=2: Z=FNFDCIN+2,34): IF Z<N THEN Z=FNFDCCN+2,58): IF Ze N THEN Z=L
65511 Y=Z-N: POKE P,Y : PO KE P+l, CI+N) MOD 256: POKE P+2,INTC CI+N)/256): RETURN
65512 WHILE NOT FNNAM: N=N+l: X=PEEKCI+N): WEND: Z=N: MX=l: WHILE FNCHAR:

Z=Z+1: X=PEEKCI+Z): WEND: Y=Z-N : FIELD #2,Y+3 AS 1$:
LSET I$="FN "+MID$IJ$,N+l,Y): RETURN

65513 Z=N: MX=l : WHILE FNCHAR: Z=Z+l : X=PEEKII+Z): WEND:
Z=Z-CX=40): GOTO 65511

65514 MX=3: Y=Z: FIELD #2, 13 AS 1$: ON Z GOTO 65517,65518,65519
65515 IF Z=5 THEN X=VARPTRCV): FOR z=o TO 3: POKE X+Z,PEEKCI+N+Z+l): NEXT:

RSET I$=STR$CV): RETURN
65516 X=VARPTRCV#): FOR z=o TO 7: POKE X+Z,PEEKCI+N+Z+1): NEXT:

V=V#: RSET I$=STR$CV): RETURN

65517 V=X-17: RSET I$=STR$CV): RETURN

65518 V=PEEKCI+N+l); RSET I$=STR$CV): RETURN

65519 V=FNXXII+N+1): IF X=l l THEN LSET I$="LO"+OCT$CV)

ELSE IF X=12 THEN LSET I$="~(H"+HEX$ CV)
ELSE RSET I$=STR$CV)

65520 RETURN
65521 FIELD #2, 6 AS 1$: RSET I$=STR$CZ): MX=O: Y=4: RETURN
65522 WHILE K) O AND 1(32767 AND J(65500': NS=NS+l: Y'l.(O,NS,O) =NS:

RSET I$=STR$CJ): X$CNS)=I$: I=K: K=FNXXCI): J=FNXXCI+2) : WEND:
IXCO)=NS: NL=NS: LOCATE ,38: PRINT "2": LOCATE ,24: PRINT "PARSING ";

65523 	 I=FNXX(343): WHILE SN(NS: SN=SN+1: P=VARPTRcJ$): K=FNXXCI) : J=FNXX(I+2):
N=4: L=K- I- l : POKE P,L: POKE P+1,I MOD 256: POKE P+2,INTCI /256):
P=VARPTRCI$) : X=PEEKCI+N): LOCATE ,32: PRINT J;

65524 	WHILE N(L AND X()143 : MX=4: Y=1: IF X=34 THEN GOSUB 65510
ELSE IF X=216 THEN GOSUB 65512 ELSE IF FNNAM THEN GOSUB 65513
ELSE Z=FNCLTH: IF Z) O THEN GOSUB 65514
ELSE Z=FNSTMT: IF Z)O THEN GOSUS 65521

65525 	 IF MX <4 THEN GoSUB65506: JX=JX*ABSCNOT FNNTE OR MX)O) :
ON ABSCMX >O) GOSUB ~5507: IF YZ(l,JX,MX)=O OR X'l.(1,Y'l.C1,JX,MX»<>FNPINT
THEN NA=NA+1: X'l.C1,NA)=FNPINT: X'l.CO,NA)=Y'l.C1,JX,MX) : Y'l.Cl,JX,MX)=NA

65526 	N=N+Y: WHILE PEEKCI+N)=32: N=N+l: WEND: X=PEEKCI+N) : WEND: I=K: WEND:
OPEN FLNM$ FOR OUTPUT AS #1 : LOCATE 12,38: PRINT "3":
MX=O: WHILE MX (4: LOCATE ,20: PRINT L$CMX);

65527 IF 	VALIMID$IRPRT$,MX+l,l)(>MX+l THEN JX=IX(MX)
ELSE GOSUS 65508: PRINT#1,L$CMX):PRINT#1," ": JX=O:
IF Y'l.Cl,O,MX»O THEN PRINT#l,"UNDEFINED < : "j : GOSUB 65509: PRINT#l," "

65528 WHILE JX(IXCMX): JX=JX+l: KX=Y;~CO,JX,MX) : X=LENCX$(f(X»): IF Y'l.Cl,JX,MX»O
THEN PRINT#1,X$CKX);TABC16+6*INTICX-4)*ASS(X) 15) / 6 ») j" <: "; : GOSUS 65509:
PRINT#l," "

65529 WEND: MX=MX+l: WEND: CLEAR: END

REMark • February • 1 984 25

SAVE "BASMAPER",A to save it as a
MERGEable file.

Operation: Load the program to be mapped
then type MERGE "BASMAPER".

If you want all reports listed on the line print­

er/ type RUN 65500.

If you want all reports sent to a disk file, type
FLNM$="<filespec>": GOTO 65500.

If you want specific reports, type

RPRT$= "ABeD": Goro 65500 where:

***INSERT LISTING···

and:

A is the Statement number reference report

(1)/

B is the Variable names reference listing (2)/

C is the Literal values reference listing (3),

and

D is the Constant values reference listing (4)

and a zero aborts the report.

Example: To generate a variable names map

in file VARNAMES on disk B, Type

RPRT$="0200": FLNM$="B:VAR­
NAMES.LST": GOTO 65500.

A sample of each of the reports follows the
listing as Figures 3 through 6.

Problems: Write to T. W. Miller, Jr., PO Box
347/ APO San Francisco, CA 96555

ZBASIC is a trademark of Zenith Data Sys­

Figure 4

AS
FlN~1

fH CHAR
FN ClTH
FH DEC
FN FDC
FN LESS
FN !GRE
FN HM
fN HTE
FN PINT
FN ST,~T

FH II
I
II
III
J
JI

IX
K
U

LII
II
IX
M
AA
lL
IS
OUTPUT
P
RPRII
SH

VI
I
III
III

HI

Variable Names Reference Map

<: 65·10.') .5512 .~51~ 65511 !S516
<: ,~<ll 65516
<: i~;4 0551265513
(: e~~\'3 ';5524

(: 6~ 65509
(: b~l 65510
<: 6S!';5 65506
I: 6~5 65506
I: 6:~ 65512 6552~
I: "'~5 m06 05507 bSl25
(: 6~l 65525
(: ~~ 6552~
I: O!~.)() mOl mo~ 6551965522 65523
(: ~ 65501 6550l 6550~ 65509 65511 0551265513 b5515 65516
I: 6~ b5505 65507 65512 6551~ 65515 65516 65517 65518 65519
(: 6~1 65506 65507 65522 65521 65528
(: ~I mOl 65509 m22 6551l
(: 65501 65503 65512 6552l
I: 6~ 65506 65507 65509 65525 65527 6ms
(: 655<)1 65522 6551l 65526
(: 6550)0 65528
(: bSSl0 6552l 65524
(: 6~2 65526 65521
(: 050J)6 65507

6~18 65519 65522 6552l 65526
6~521 65522 6551l

(: 6~ 65506 bS507 65509 05510 65512 6551l 65514 65521 6552! ;sm 65526 65527 6552B 65529
I: 65»1 65510 65511 65511 6551l 65515 65516 65518 65519 65m i5524 65526
(: 65~ 65509 65525
(: 6550)7 65m
(: 65522 6552l
(: 6S126
(: 65511 65S2l
(: 65500 65521
(: O551l
(: 615156551665517 6551B 65519
(: b5516
(: 6Sloll 65504 m12 6551l 65515 65516 65517 65519 65523 65524 65526 65528
(: 6~1 m05 65507 bS522 65S2B
(: 655<)1 m04 65509 655~
I: 6Slll 65512 65514 65521 65524 65526
I: 6~1 65505 ~7 65509 65522 65525 65527 65S2B
(: mlo 65511 65512 .5513 ml4 .5515 65"516 65521 65524

tems/ Chicago, II. APPLE II and APPLESOFT
are trademarks of Apple Computer Co.,
Cupertino, Ca.

Figure 3
Statement Number

Reference Hap

65506 (: 65525
65507 (: 65525
65508 (: 65527
65509 (: 65527 65528
65510 (: 65524
65511 (: 65513
65512 (: 65524
6551:1 (: 65524
65514 (: 65524
65517 (: 65514
65518 (: 65514
65519 65514
65521 65524
65522 65505

Figure 5

Literal Values Reference Map

(: 65501 65527 65528
, (; ' <: 65528
, Li teral Yalues Reference Map' (: 65502
, Variabl. ~..es Reference Map' (: 65~02

(: 65500 65501
'111111 ' (: 65~09

' ~H' (: 6S519
"0' (: 65519
' 1234' (: 65500
'2' (: 65522
'3' (: 65526
'CO~I: ' (: 65500
'Constant Values Reference "ap , (: 65502
'FH ' (: 6~512
'LPTl:' (: 65501
'N' (: 65508
'PARSING' (: 65522
'State.ent JIu.ber Reference "ap' (: 65502
'UNDEFINED (:' (: 65527
'WORJ(1H6 PHoISt I' (: 65500

REMark ' February • 1984 26

Figure 6

Co nst a nt Val ues Referen ce Ma p

<: 65502 65504 65505 65506 65507 65509 6SS15 65516 65521 65S22 6552~ 65525 65526 65527 65528

I <: moo 65501 65502 6550~ 65507 65508 65509 65511 65512 65513 65515 65516 65518 65519 65522 65523 65524 65525 65526

65527 65528 65529

2 (: 65500 m Ol 65502 65506 65510 65511 65512 6551~ 65521 65522 6552l

3 	 <: 65501 65502 65503 6550~ 65512 6551~ 65515

(: 65521 65523 6552~ 65525 65526 65528

(: 65503 65515

<: moo 65508 65521 65528

7 	 <: 65516

9 <: 65503

.5 <: 65506

10 <: 65503 65508

11 <: 65519

12 <: 65500 6550B 65519 6552b

13 <: 65503 65'504 6551~

I ~ <: 65503 6550~ 65508

15 <: 65503 65508 65528

16 (: 65528

17 <: 65517

20 <: 65526

2~ <: 65500 65522

27 <: 65508

28 <: 65503

29 (: 65503

31 (: 65503

32 <: 65523 65526

33 <: 6550~

3~ (: 6550~ 65510 65524

3B <: 6550~ 65522 65526

~O <: 65513

~6 <: 6550~

~8 (: 6550~

58 <: 6550~ 65510

64 <: 6550~

80 (: moo

91 <: 65504
"-"
m <: 65524

216 <: 65524

256 (: 65500 65511 65523

m <: 65501 65523

400 <: 65501

1000 <: 65501

3000 (: 65501

32767 <: 65503 65522

m~ <: 65522

65536 <: 65503 6550~

.ld1'eSS • p
\.it a.,,~ ,,0 OV to

C"aO~' .Iofl't v.'(}(\t ,," sefid
V'Je \) ~~af I

\<.f\ov." . ve of \l .

let \.,Is .nS\e ISS ddress to·

(i'\isS (} ~(lflSe of (l ()~ou'QI

~ovr c "" \)c:,e~c:, .1

7 ~~e(}.'" ~o'3.\)

T' ~\\\\o'Q ~\ A~a'OS
\1 c.e'Q'(\ ' ';\. ,oJ

.,

\.~

"

ARE YOU PREPARED FOR TAX TIME?

TAXTYME will assist you in pleparing and calculaling your 1983 Federal Income Tax forms.
TAXTYME simplifies fill ing oul the forms by leading you through a series of formatted Question ­
naires. TAXTYME includes formatted Questionnaires for IRS Forms 1040, Schedules A, B, and C.
Schedule C is processed separately so Ihat several Schedule C business aclivities can be
calculated and combined on Form 1040 . Information from Schedules 0, E, F, and the many
numbered Forms are calculaled separately and entered on the Questionnaires. Forms G, W, and
2210 are calculated aUlomaticaliv when required . TAXTYME makes decisions on Income Averag ·
ing, Marit al Oeduction, and penalty Form 2210 if necessary . TAXTYME then processes Ihe infor ·
mation you enter, perlorms the necessary calculat ions, and produces a computer printout for
direcl lransfer onto IRS forms . Requires a prinler.

DNl Y $59,951

CP/M vers ion for H89. H8, requires CP/M and MBASIC
lllllS version for l ·1Il0, requires ZIlIlS and lBASIC

;;;;;;;;~~;;;;;NEWliNE SOfTWARE
P,O, Box 402 , littleton, MA 01460 (617) 486-8535

ORIlER NOW .. SHIPMENTS BEGIN JANUARY 15, 1984
~•..•.....­

NAME
CHECK ONESTREET ______________

o H89, HB, CP/MCITV________________

o l100, ZOOS _________ Zlp·_____STATE

Send me ___ TAXTVME program!s) at $59.95 each.
Check one: 0 pavmenl enclosed 0 send COil {add noOl
Send order 10:

NEWLINE SOFTWARE, P,O. 80X 402, LITTlETON, MA 01460

Foreign orders : add $3 .00 Airmail, $10.00 for non · U.S. checks
•.............•..•••••••••••••.•.•....•.••............~

CP/M is a trademark of Iligital Research, Inc.

MBASIC is a trademark of Microsoft, Inc .

ZOOS, Z·1 00 are trademarks of Zenith Data Systems, Inc .

REMark • February • 1984
 27

Making the CP/M DUMP Charles E. Horn, P. E.
Horn Engineering Assoc.

7774 Patricia Lane
Garland, TX 75042Program a Useful Utility

The DUMP program that is distributed as source code with the
Digital Research CP/M operating system offers some good exam­
ples of programming techniques. It illustrates techniques for han­
dling command line entries, opening and reading files, character
conversion to hex representation, and exiting to CP/M without a
warm boot, to name a few. However, as a useful utility it has little
to offer.

The addition of a small amount of code can make DUMP a very
useful utility. The additions that follow will provide true addresses,
at least for files that originate at 100H, and will create an ASCII
field similar to the DDT dump display. The resulting program,
which we call ADUMP.COM, only occupies 1 K bytes on disk,
and is much easier than DDT to use if you only need a quick
look to locate ASCII strings or to find the address of a particular
instruction.

It is assumed that your DUMP program is Version 1.4 or later
(earlier versions may not sign on and will require additional work) .
If so, the following additions will work:

1. Just ahead of the GLOOP label, change the LXI H instruction
to :

LXI H,100H jStart at beginning of nor"", 1 TPA

2. In the GLOOP routine, insert the following code just ahead
of the comment "PRINT LINE NUMBER", following the instruction
INZNUNUM.

PRINT ASC II BUFFER

This code prints the II, character' ASCII line
buffer lo cated near the end of the progra".

PUSH H' PUSH O! PUSH B jSayto en vironment
LOA ASCCNT ;Gf!t character pO!l i ti on
ANA A ;New Jirre-?
JZ LINENO ; Yes - jump OlJef th i s
LXI O,ASCBUF jE 1s. 1in. fu II - pr i nt it
HVI C,PRINTF i Print lirle fun c ti on

CALL BOOS
XRA A i Reset
STA AsceNT i .. posi tion count

LINENO: POP B! POP O! pop H jRest ore enYiron~nt

3. In the NONUM routine, after the MOV A,B instruction and
ahead of the CALL PHEX instruction, insert this :

BUILD THE ASCI I BUFFER
;
ASCII: PUSH H! PUSH D! PUSH PSII ;Save enlJirontllent

LXI H, BUF II, iOur ASCI I I ine buffer
LOA ASCCNT iCharacte r posi tion in line
I10V E,A
tlVI 0,0
DAD 0 ;Current positi on addres, in HI..
INR A jBump count
STA ASCCNT
POP PSW iOet cu r rent byh
PUSH PSW ;Sal,le again
ANI 80H ; Nega t i IJ @ numbf=r?
JNZ PERIOD iNot ASCI I
POP PSW ;Get byte again
PUSH PSW ;Sa IJ e aga.in
CPI i ASCII ?
JC PERIOD ; I f not
CPI 'z' +1 ;Be sure of ASCII
JNC PERIOD i If no t
CPI ' $ ' iDon' t allo~ false
JZ PERIOD j •• PRINTF terMinator
MOV tI,A j Save ASCII in buffer
Jl1P ASCDONE

PERIOD: l1V1 A, I . ; Get a peri od
MOV M,A i Store non- ASCII Mrker

ASCDONE: POP PSW! POP D! POP H ;Restore enIJironff,i'nt
RET

5. Near the end of the program, just below the label OPNMSG
and above the #VARIABLE AREA", add the following :

ASC I I BUFFER AREA

,
ASCCNT: DB o ;Lint position counter
ASCBUF: DB ;Four leading spaces
BUFI6 OS 16 ;16 character line

DB '$ ' jPRINTF terminator

That' s all you need to do. Note that this addition places a period
in the ASCII field for each non-ASCII character. Also, note that
one can not permit a '$' character to be printed because the BDOS
PRINTF function would interpret it as the end of the string and
would truncate the ASCII line display.

CALL ASCII ;go build the ASCII buffer

4. Now add the following subroutine below the NONUM routine,
following the instruction JMP GLOOP, just ahead of the FINIS
routine:

REMark • February • 1984 28

http:ADUMP.COM

Data Structures
Emily A. Yount
RR I, Box40B

Danville, IN 46122

Introduction To

Data structures are organized ways to store and retrieve data.
Generally, data structures are used in a program to make the pro­
gram as efficient as possible. In particular, data structures are de­
signed to enable a program to quickly retrieve the correct piece
of data.

You need to understand and be able to use arrays in order to
construct other more complex data structures, so before we go
further, we'll review arrays. Arrays are ordered lists of data items.
The entire list is identified by an array name, and the individual
items on the list can be referenced by the array name followed
by one or more subscripts. Different languages have different ways
of implementing arrays, but usually space must be reserved for
the array before the array is used . This is done by "declaring"
the array. In BASIC, a DIM statement is used to set up an array,

'---' 	 e.g. DIM < array name>«integer expression» . In MBASIC the
array name is any valid variable name and the integer expression
is any valid integer expression that yields a positive integer when
evaluated . This integer is then the maximum subscript value for
the array. For example, DIM THISARRAY(20) sets up an array
called "THISARRA Y" that contains at most 21 elements, i.e.
THISARRAY(O), .. . , THISARRAY(20). The default value for the mini ­
mum subscript value is zero, but an OPTION BASE 1 statement
just before the DIM statement would cause the minimum subscript
value to be 1.

Other languages have other means of declaring arrays. FORTRAN
uses DIMENSION statements. In PASCAL, a type declaration state­
ment is used, e.g. TYPE THISARRAY = ARRAY[O . . 20] OF IN­
TEGER would set up an array of 21 integers called THISARRAY.
Most languages also allow multidimensional arrays.

Stacks and queues are data structures that are frequently used .
Many of you may have already encountered these structures, but
their properties are worth reviewing before we go on to more com­
plex structures.

A stack is a list of data in which the only data item that can be
retrieved is the item that was most recently added to the list. A
stack is also called a LIFO list (last in, first out) . Adding an item
to the stack is called "pushing" the item onto the stack, while
retrieving an item is called "popping" an item from the stack . The
classic example of something like a stack in everyday life is a
stack of trays in a cafeteria. The problem for many novice program­
mers is just how to implement a stack in a high-level language.
Perhaps this example in MBASIC will help.

First an array must be declared. This statement sets aside memory

for use by the stack. We must estimate the maximum size of the
stack. In our example we will use "N" as the maximum size of
the stack. In practice N will be some constant.

10 R£H ROUTINE TO SET UP A STACK

20 OPTION BASE 1

30 DIM STACK (N)

40 LET STACKTOP = 0

50 REl1 THE STACK IS INITIALLY EMPTY.

60 REM STACKTOP IS THE NUM~ER OF ITEMS CURRENTLY IN THE STACK.

We also need routines for adding and deleting items from the stack.

1010 REM SUBROUTINE TO PUSH "ITEM" ONTO STACK
1020 IF STACKTOP)= N THEN GOTO 2010
1030 LET STACKTOP = STACKTOP + 1
1040 LET STACK(STACKTOP) = ITEM
1050 RETURN

1110 REI'! SUBROUTINE TO POP "ITEM" OFF OF STACK
1120 IF STACKTOP (= 0 THEN GOTO 2110
1120 LET ITEI'! = STACK(STACKTOP)
1130 LET STACKTOP =STACKTOP - 1
1140 RETURN

2010 REM ROUTINE TO HANDLE PROBLEM WHEN STACK IS FLU

2110 REM 	 ROUTINE TO HANDLE PROBLEM WHEN STACK IS EMPTY

Queues are another common form of ordered list. In a queue,
only the least recently added item can be retrieved . That is why
queues are also called FIFO (first in, first out) lists. Items are added
to the rear of the queue and retrieved from the front of the queue,
just like a queue of customers in a cafeteria line (another classic
example from everyday life) . To implement a queue in MBASIC,
one would begin by reserving space by declaring an array. Again,
N is the maximum number of items in the queue, but this time
it will be more convenient to have zero as the minimum subscript.
You' ll see why shortly.

10 REM ROUTINE TO SET UP A QUEUE
20 DIM QUEUE(N-l)
30 LET FRONT = e
40 LET REAR =0
50 REM THE QUEUE IS INITIALLY EMPTY

1010 REM 	 SUBROUTINE FOR ADDING AN ITEM TO A QUEUE
1020 LET REAR = (REAR + 1) MOD N
1030 IF 	 FRONT =REAR THEN GOTO 2010

REMark • February • 1984 29

1040 LET QUEUE(REARl = ITEM
1050 RETURN
111 0 REM SUBROUTINE FOR R810VINGS AN ITEM FROM A QUEUE
1120 IF FRONT = REAR THEN GO TO 2110
1130 LET FRONT = (FRONT + Il MOD N
11 40 LET ITEM = QUEUE(FRONTl
1150 RETURN

2010 REM ROUTINE FOR HANDLING PROBlEM WHEN QUEUE IS FULL

211 0 REM ROUTINE FOR HAN[~I NG PROBLEM WHEN QUEUE IS EMPTY

The routines used to implement a queue are a l ittle more complex
than those used for a stack. The reasons for setting up a queue
in this fashion may not be obvious at first, but they aren' t really
that difficult to understand. If we simply added items to the rear
of the queue and removed items from the front, the queue wou ld
move through memory unti l we added an item in the last posi tion
we had allotted to the queue. Then the queue would seem "full"
even though there might be a lot of space left in front of the queue,
space created by deleting items from the front of the queue. We
want to be sure that this space is not w asted . So by using integer
arithmetic, we program the queue so that after filling the space
at QUEUE(N- l), the next item is placed at QUEUE(O) if that space
is free, i.e. FRONT > O. If you are not familiar with the use of
MOD in integer arithmetic, X MOD Y is equal to the remainder
left when X is divided by Y.

You may have noticed that the test for a full queue in the insertion
subroutine is the same as the test for an empty queue in the deletion
subroutine, i .e. does FRONT = REAR? However, in the insertion
subroutine, when FRONT = REAR, there is really one free space
since FRONT points to the space before the first element in the
queue. Why can' t we use this space? W ell, we could if we wanted
to make thi ngs more complicated. As things stand, if we inserted
an item into this space, we wouldn't be able to tell whether or
not the queue was empty or full.

Another, less commonly used data structu re, is a deque (pro­
nounced "deck"), or double-ended queue. In a deque, data may
be added and removed at both ends of the list, but not in the
middle.

The data structures described above have all been examples of
sequential data allocation, which means the data is stored in a
sequence of memory locations. A much more flexible data alloca­
tion method is known as l inked allocation . The simplest example
of linked allocation is a linked list. Think of a linked list as a
list of nodes containing two fie lds, one an information field (DATA)
and the other a link field (LlNK%), see Figure 1 . DATA may be
defined as a string or real number but LlN K% wi ll be an integer.
Although in our examples there w ill be a "%" at the end of every
integer variable, you should remember that using DEF statements
not only decreases the amount of storage needed, but diminishes
the number of times you must use the shift key when typing, thus
making it easier to type in your program. Information is s ored
in the DATA fields and each LlNK% field contains the subscript
or address of the next node in the list, Le. the Ll NK% field "points"
to the next node in the list, see Figure 1. Here is an example
of how to implement a linked list in BASIC.

The first step would be to set aside space for the list. We will
use dimension statements to set up arrays. As before, N is the
maximum length of the l ist.

10 OPTION BASE 1
20 DIM DATUM(Nl
30 DIM L1NK7.(N)

The next step would be to initialize the storage pool, Le. the list
of nodes that are available for use in our list. We set the variable
AVAIL % to point to the first available node and then link all the
nodes together in order . They may not stay " in order" but they
are usually l inked in order at first. Al so, we link the last node
to zero; this way we can test whether or not we have reached
the end of the list. The last node is the only one that will ever
be linked to zero.

110 REM INITIALIZATION OF LINKED LIST
120 FOR I =1 TO N - 1 STEP 1
130 LET LINK7.(I) = I + 1
140 NEXT I
150 LET LINKJ.(N) =0
160 LET AVAILJ. =1

Now to use our list, we must have a subroutine for getting a new
node from the storage pool. W e will call this new node NEW­
NODE%. NEWNODE% will be the first node on the storage pool
list if there is a node available.

1010 REM SUBROUTI NE FOR GETTING A NEW NODE
1020 IF AVAIL1. =0 THEN GOTO 1100
1030 LET NEWNODE7. = AVAIL7.
1040 LET AVAIL7. = LINK7.(AVAIL7.l
1050 RETURN

1100 REM ROUTINE FOR HANDlING PROBLEM WHEN THERE ARE NO MORE
NODES ON THE LIST

We also need a subroutine for returning nodes to the list of avail­
able nodes . USEDNODE is a node we don't want to use any more
right now, but we want to keep it on our list of available nodes
in case we need it later.

1210 REM SUBROUTINE FOR RETURNING USED NODES TO THE LI ST OF
AVAILABLE NODES
1220 LET LI NK7.(USEDNODE7.l = AVAIL7.
1230 LET AVAIL7. =USEDNODE~
1240 RETURN
The observant reader will have noticed that our list of available
nodes is a stack. We "pop" nodes off the stack when we get new
nodes and "push" nodes onto the stack when we return them.
So we are already using two other data structures (arrays and a
stack) to implement our linked list. Now the question is, just what
do we do with our nodes and how do we do it? Well , we can
use our list to store data in order (e.g. alphabetical or numerical
order) when the data is not received or entered in order. First
we need a routine for creating a l ist. The following routine will
create a new list. The first node wi ll be the "BEGINNING%" and
the next node will be the "ENDNODE%" . We use our subroutine
at line 1010 to create these nodes. "BEGINNING %" and "EN­

I LI NK\ (I) DATUM(I)

1 4 0

2 0 30

3 7 20

4 3 10

5 2 50

6 5 40

7 b 30

Figure 1

REMark • February • 1984 30

DNO DE%" are labels that tell our program where the list starts
and where it ends. Initially, the "BEGINNING%" node is li nked
directly to the "ENDNODE%" node.

210 ROUTI NE FOR SETT ING UP A NEW ORDERED LI NKED LIST
220 GOSUB 1010
230 LET BEG INNING7. = NEI/NODE7.
240 GOSUB 1010
250 LET ENDNODEJ. =NEWNODE~
260 LET L INKJ. (BEGINNING~) = ENDNODE~
270 LET L I NK~ (ENDNODE~) =0

Now we want to create a program to search the list to find out
if an item (ITEM) is in the list. If it is in the list, we will do noth ing,
if it is not in the list, we wi ll insert it so that each DATUM in
the list is sti ll in proper order. We need not enter the items in
order however. Before looking at the code below, w hy don't you
try to program this yourself?

310 REM SEARCH AND INSERT SUBROUTINE

320 LET B~ =BEGINNING7.

330 LET A7. = L INK~ (B~)
340 LET DATUM (ENDNODE~) = ITEM
350 WHILE DATUM(A~) < ITEM
360 LET B7. = A7.
370 LET A7. = LI NK~ (B~)

380 WEND
390 IF (DATUM(A~l = ITEM AND (A~ <> ENDNODE~l THEN GOTO 460
100 GOSUB 10 10
41 0 LET C7. =NEWNODE7.
420 REM INSERT C7. BETWEEN A7. AND B7­
430 LET DATUM(C1.) = ITEH

440 LET LINK7. (C7. 1 = A7.

450 LET LINK7. (B7.) =Ci.

460 RETURN

As you can see, B% and A% are pointers to nodes. These pointers
move down the list with A% always one node farther down the

- list than B%. You may be wondering why we have line 340 in
our program. The reason is that we now use the same expression
(i.e. is DATUM(A%) < ITEM?) to determine if we are at the end
of the list and to determine whether or not we have found either
ITEM itself or the place to insert ITEM. The WHILE loop is used
to traverse, i.e. move down, the l ist. W hen DATUM(A%) < = ITEM
we stop. If DATUM(A%) = ITEM, we do nothing so we return,
unless we have gone through the entire list w ithout finding ITEM.
In that case we insert ITEM just before ENDNODE%, i.e. at the
end of the list. We are using EN DNO DE as a "sentinel" node,
that is, a node that contains a special val ue that we use to tell
us when we are at the end of the list.

For some applications we wi ll want to delete items from our list.
We need one more subroutine, one that deletes an ITEM.

510 REH DELETION SUBROUTINE

520 LET B7. = BEGINNING7.

530 LET A7. =LINK7. (B7.)

540 LET DATUM(ENDNODE~) = ITEM

550 WHILE DATUM(A7.) < ITEM

560 LET B7. = A7.

570 LET A~ = LI NK~ (B~)

580 WEND

590 IF (DATUM(A7.) > ITEM) OR (A~ =ENDNODE7.) THEN 650
600 LET LINK (B7.) = LI.NK(A7.)
610 LET USEDNODE7. = A7.
630 GOSUB 1210
640 GOTO 660
650 PRINT lTEJ1 "is not in the list."
660 RETU RN

Now you should have a good idea about how to create a linked
list. Think of a program that you could use to apply your know l­
edge. At this point a simple program to practice what you 've

learned w ill do. Later in this series, we' ll examine other data struc­
tures that are more efficient than a linked list.

Those of you who use PASCAL will probably real ize by now that
using pointer variables would make things much si mpler. Also,
standard PASCAL has two library procedures, "NEW " and "DIS­
POSE" , that take the place of our subroutines at lines 1010 and
1210 respectively. In PASCAL we would start by declaring our
list as shown below. We no longer have to set up the storage
pool, since PASCAL's procedure NEW will take care of getting
available nodes for us. It is assumed that DATATYPE has already
been declared.

TYPE LI STPTR =ALI STNODE j
LISTNODE =RECORD

DATA : DATATYPEj
LI NK : LI STPTR

ENDj
BEG INNING, ENDNODE = LISTPTRj
ITEM = DATATYPE

We wou ld set up our list with the following statements.

NEW(BEGINNING) i
BEGI NNINGA .LINK : = ENDNODEj
ENDNODEA.LINK := NIL;

In PASCAL, NIL is a null pointer, i .e. the value to which a pointer
points when the pointer doesn't point to anything. We cou ld use th is
as a way of testing whether or not we are at the end of our l ist, but
using ENDNODE as a sentinel is slightly faster.

You may be wonderi ng what the advantages of linked allocation are.
There are several. The main advantages are ease of insertion and de­
letion, and ease of merging two lists or separating one list. However,
linked allocation uses more memory than sequential allocation
since the LI NK fields take up space. Also, in order to find something
in a l inked list, the list must be traversed sequentially; and one would
have to traverse the entire list to fi nd the last item. Other more com­
plex. data structures do not have this disadvantage.

Linked l ists are a good introduction to linked structures in general.
In a future article we' ll study some of these other structures and learn
some of their uses. In the meantime, those of you who w ish to study
data structu res in more detai l should try to find one or more of the
references given below. Spracklen's book w ill be particularly useful
to assembly language programmers while Wirth's book w ill be best
for PASCAL programmers.

Bibliography

1. Horowitz, E., and Sahni, S., Fundamentals of Data Structures,
Computer Science Press, Rockvi lle, Maryland, 1982.

2. Knuth, D. E., The Art of Computer Programming, Vol. t , Funda­
mental Algori thms, 2nd Ed., Addison-Wesley, Reading, Mass. ,
1973.

3. Spracklen, K., Z-80 and 8080 Assembly Language Program­
ming, Hayden Book Co., Inc., Rochelle Park, N.J ., 1979.

4. Standish, T.A. , Data Structure Techniques, Addison-Wesley,
Reading, Mass. , 1980.

5. Wirth, Niklaus, Algorithms + Data Structures = Programs, Pre­
ntice-Hail, Englewood Cl iffs, N.J. , 1976.

~~

"
REMark • February • 1984 31

Part IV __

Brian Polk
86-02 Little Neck Parkway

Floral Park, NY 11001An Introduction To 'e'
This is the fourth in a series of articles designed to introduce
the 'C' programming language.

We are going to continue analyzing the 'more' program presented
in the prior article. I have to explain more of the program. We
will also modify the program in order to be even more useful.

If you went through the exercise of compiling the program, you
would have had a not very useful program which took input from
the terminal and echoed it back, twenty three lines at a time.
There are two ways to alleviate this problem. We will look at
both ways.

The first way involves no changes to the program. The C/80 com­
piler makes available one of the most useful aspects of the UNIX
operating system - I/O redirection. This allows us to temporarily
change the standard input and output device from the terminal
to another file or device. In our case, we want to change the
standard input from the terminal to a file to be printed. The redirec­
tion symbol is '<' for input and '>' for output, followed im­
mediately (no spaces) with the file or device name. Therefore,
in order to list out a file at the terminal using our 'more' program,
we could say:

IIOr'e <f i 1erlallle

where 'filename' is the name of the file to be listed. Notice that
we can direct the output to another file, or to the printer, by saying:

_ore <filen~., >lpi

This is not a very useful way to print a file, because our program
will still pause after every 23 lines, even though the output is going
to the printer. Notice that in this case the 'More' prompt also is
sent to the printer, the result depending on the printer.

The second way to specify the file name to be printed will end
up being much more useful, but it involves changing the program.
What we want to do is pass a parameter to the program so that
it will know the name of the file to be opened for input. 'C' provides
a built in mechanism which makes available to us any parameters
specified on the command line. These parameters are made avail­
able by way of an integer, which counts how many parameters
were entered, and a character array, which holds the parameters.
In order to add this logic to our program we have to talk a little
about arrays.

We can define an array as a sequence of integer or character vari­
ables by putting a number in braces ('[' and ']') immediately follow­
ing the variable name. The number indicates how many positions
the array contains. One thing to note : 'C' arrays start with position
'0' and end with the position one less than the number specified .
Therefore:

char x[10l;

declares a ten position character array starting with x[O] and ending
with x[9]. We also need to understand the concept of ' pointers'
in order to pass a parameter to our program . A pointer is an address
of a variable in storage. Arrays are passed by specifying a pointer
to the address of the location of the first element of the array.
In 'C', a poi nter variable is indicated by an asterisk ('*') im­

mediately preceeding the variable name. For a more detailed ex­
planation of arrays and pointers, check your 'C' programming lan­
guage book. We will go into more detail in future articles.

Now let's modify our program to incorporate the concept of param­
eters.

line Iud. ·pdntt.e"

.d.fine E~ -t

Idot i ne IU.l 0

ninlargc. ugv) ,t here .. e indie.t. the par•• I,

int .rge; ,t ' .rge ' i. the nu.. ber ot co_na-line uguHntl I,

char tugvCl; ,t '.r9v' i••n .. rr.y of poinhrs to the ugu.enh I,

(,I H,tored on th. eo_nd 1in. I,

eh..nn.l~fopenlargY[Il."r·)1 ,I lot ' s optn the file ••IN specltiid t,

it I eh./if •• 1 "" t«Jll) ,t if fll. not tound WI .,,11 .. it I'

(

printfl"Fi 1. Not Four,d.\n")

.. it(4);

)

'or Ilint_nu.ber~8; le~geteleh.n"fl)) ~: Ec.:; puten... lc))

(,I Uit 'glte ' wi tn eh..nntl nu.b.r I,

it Ie ~h '\n')

l1ne_nuaberttj

if lline_r.u.b.r~; 23)
(

putet,ull]);

putehu{t"o); ,t s.Ye tht eur-sor position I,

putehul2ll;

putet,.rl 121» i

puteh..rI4'))j ,t turn on tho 1Sth linl I,

putehul2])j

putehu (89) I

putchiU-I5b)j

putehar(32)j ,I position eur50r on the 1Sth Itn. I,

putehar-12]);

puteharltt2)j ,I ~ntor rHorse video I,

printf (·-~r.--·);

puteharll])j

puteh..-l!t3)j ,I exit rovtrst video I,

..hi I. Igeteharl) '= ' \n')j ,t it for a euri.ge rtturn I,

putehul2])j

puten.,.llalli ,I rlturr. eur' lor to ... vtd po>ition I,

puteharllllj

putehar{llllj

putchu(4'1)j ,I turn off 25th line I,

lin._rlu.ber t;:2

)

Now we can run our program by simply saying:

Mort: tilena.e

'argc' and 'argv' are the names used by convention for the parame­
ter count and array, but any variables declared the same way can
be used . Notice the ,*, in 'char *argv[)' and the lack of a number
between the braces. The asterisk indicates that we are declaring
an array of POINTERS to characters as opposed to an array of
characters. The reason we don't need to put a number in brackets
is because the array is being passed into the program and has
already been declared in the calling program (which in this case
is the HDOS-C/80 interface) . This fact is true for any array which
is passed . Note that the passed variables must be declared BEFORE
the opening bracket of the program .

Notice two things where we refer to the 'argv' array. The first
is that we reference position number one. Why not position zero?
'argv[O)' refers to the command name ('more' in this case) . There-

REMark • February • 1984 32

http:putet,.rl

fore, 'argv[l J' refers to the first parameter entered . The second
thing is why we didn't put the '''' before 'argv'? Remember that
we declared an array of pointers to characters by putting the as­
terisk before the variable. Conversely, we refer to the actual char­
acter by removing the asterisk . The opposite is also true. If we
declared an array of characters (e .g. char argvl1 0]), we could refer
to the pointer to a character by adding an asterisk before the vari ­
able name (e.g. "argv[l]). If this all seems a little confusing, join
the club . I've probably gone into a little more detail than necessary
here. If you are interested, check your manual. If not, we will
return to this topic in the near future.

The 'exit(4)' statement closes all open files and returns to the calling
program (in this case, the operating system). We return the value
'4' to indicate an abnormal condition.

I still have to comment on other facilities used in the program.
The first is '#define' . We can use this to set up global constants
used throughout the program . By convention, these global con­
stants are indicated in upper case. These are often collected into
a file which is included into every program written. We may do
that as an exercise in a later article. Here, I have defi ned two
very useful constants: 'EOF' which is the end- of-file value returned
from all input routines, and 'NULL' which is returned from many
routines (such as 'fopen') when an error has occurred. We will
add to our list of 'defines' as we go along.

In part two of the 'for' statement, I constructed what might seem
like unusual syntax. What this illustrates is a quite general rule
in 'C' - in any context where it is permissible to use the value
of a variable of some type, you can use an expression of that
type. What this means is that since the variable 'c' and the com­
mand 'getcharO' are both integers, we can combine them into '(c
= getchar())' and still yield an integer. Its value is simply the value
being assigned to the left hand side. Also in the 'for' statement,
it should have been obvious that '! =' means 'not equal' . In a fol­
lowing 'if' statement we use '==' which means 'equal to'. The
double equal sign differentiates it from a normal assignment state­
ment.

The 'line number' 'if' statement used 23 instead of 24 to provide
for an overlapping line on the screen. This is often very helpful
when looking at long listings in order to provide consistency from
screen to screen and to compensate for inadvertently missing the
last line on the prior screen.

Be careful to distinguish between the single (') and double (")
quotes. I ran into some trouble when I mistakenly used the single
quote in the 'printf' statement. As a general rule, when you are
enclosing a single character, use the single quote; otherwise, use
double quotes. Note that '''-n' is a SINGLE character which is
why we enclosed it in single quotes in a previous program.

Also be careful when sending escape sequences to the terminal.
Make sure you are sending the decimal equivalent, NOT the char­
acter constant. I spent a lot of time trying to figure out why the
sequence 27-120-1 would not turn on the 25th line. The proper
sequence is 27-120-49 where '49' is the decimal equivalent of
the character '1'. This can also be avoided by specifying the char­
acter constant In the 'putchar' statement, as in :

putchar(27)j

putchar('K')j

putchar'(' l')j

By now you probably figured out why I used 'getc(O)' instead of
'getcharO' in the 'while' statement. This was because when we
used 110 redirection, the normal terminal input had been redirected
to the specified file name. Therefore, we had to specify that we

wanted the character to come from the terminal by using channel
0, which is always reserved for terminal 110, even if redirection
has been used. When we passed the name of the file directly to
the program, we could use the normal 'getcharO' sequence.

Once you feel comfortable with the program, try modifying it to
allow a way to exit if another character (such as 'q') is entered
at the point where we are currently waiting for a carriage return.
This would allow us to stop without having to go the end of a
long listing.

Next time we will show how to pass parameter switches to a pro­
gram and also how to use the formatted input equivalent of 'printf' .

'C' you later!
~

maybe now is the time to join the National
Heath/Zenith Users' Group. You will re­
ceive:

• a copy of REMark filled with new and exciting
articles and programs each month

• access to the Hue library filled with a large
variety of programs

• discounts on a variety of Heath/Zenith computer
products (see REMark january, 7984 issue for more

details)

And remember, your local HUG is an excellent
source of information, support and comradery. A
membership package from the National Heath­
/Zenith Users' Group contains a list of current local
HUG clubs as well as other interesting information.

REMark • February • 1984 33

NEVV

PRODUCTS

885-1234[-371 CP/M

HAMHELP $16.00

Introduction: HAMHELP makes use of the personal computer to cal­
culate the MUF (Maximum Useable Frequency) for each half-hour
throughout the day. Input data for the program can be obtained each
hour from listening to WWV. HAMHELP is a valuable tool for the
amateur radio operator.

Requirements: HAMHELP req uires the CP/M operating system, ver­
sion 2.2.03 or higher, an H8/H1 7 or H/Z·89 with one drive and at
least 48K of memory. The soft-sectored version of th is program (885­
1234-37) wi ll run on the H/Z1 00 under CP/M-85. The program itself
is compiled M BASIC (MBASIC is not required).

The follOWing programs and files are included on HUG Disk PIN
885-1234(-37] :

README .DOC
HAMHELP .COM
FILEFIX .COM
FOREIGN .LOC
NOAMER .LOC
HAMHELP .DOC

Author: Ray (Raymond S.) Isenson, N6U E

Program Content: HAMHELP calculates the MUF (Maximum Use­
able Frequency) each half-hour throughout the day for the date and
path between two stations specified by the user. The output of these
calculations is then presented in a graphic chart which is easy to
read. Along with the chart, it prints additional information including
the antenna aZimuth, optimum elevation beam angles, the expected
path attenuation, and an estimate of the likely propagation condi­
tions as a function of the existing electromagnetic envi ronment. If
the two stations are more than some 4000 kilometers apart, the pro­
gram will optionally calculate the exact times of Sunrise and Sunset
for each of the locations. Also, the program w ill check for any un­
usual poss ibili ties such as "Grayl ine" longpath openings or preferred
paths to take advantage of certai n bad or good polar cap propagation
condit ions.

FILEFI X.COM is included in orderto make the HAMHELP program
as "user friend ly" as possible. Two lists of cities, each containing the

names of 36 cities, along with their respective latitudes and lon­
gitudes, are stored in the files ca lled :

FOREIGN . LOC
NOAMER .LOC

The computer presents one of these lists on command to the operator
w ho then selects the remote city by number. The program,
FILEFIX.COM, is used to modify the two data files so that the li sts
contain cities that are of major interest to the ind ividual. HAMHELP
wi II allow the user to enter the names and locations.

Comments: The HAMHELP program is limited by the lack of some
math functions which result in only slight errors in fi nal ca lculations.
These limitations are well documented for the user in the
HAMHELP.DOC included with the disk. The program is valuable
and handy for the amateur radio operator.

lABLEC Rating: (0), (9)

885-8026 HDOS

SPACE DROP $16.00

Introduction: Space Drop is a video action game for Heath/Zenith
microcomputers. The game uses the HIZ-19 graphic capabilities.
The game itself involves an attack by hostile aliens. You are to stop
the aliens w hile trying to avoid being hit.

Requirements: Space Drop is game which runs under the HDOS 2.0
operating system. The program makes use of eitherthe H8/H 17 /HIZ­
19 or the HIZ-89 w ith 16K of memory . Only one disk is required.

The game is an executable program, ready to play.

Note: The game makes extensive use of the features avai lable in the
H/Z-19 graphics term inal.

The following files are included on the HUG Disk PIN 885-8026 :

README .DOC
SPACDROP .DOC
SPACDROP .ABS
SPACDROP .ASM

Note: The source code is included.

Author: Bruce W . Markell

SPACOROP - This graphic game gives the player three "Art illery
Ships" to engage in a battle with hostile aliens. The player uses the
keypad to move the ship right or left in an effort to get a shot at de­
stroying the enemy which increase in numbers as the game progres­
ses. The four (4) key moves the player's ship to the left. The five (5)
key stops the player'S ship. And, the six (6) key moves the player's
ship to the right. Firing at the aliens is accomplished by using the
"A" key.

Other spec ial functions include the space key and the ESCape key
on the terminal. The space bar is used to "freeze" the action . The
ESC key is used to terminate the game in process and return to
HDOS.

SPACOROP.ASM - The source code for the SPACDROP program
is included on the disk. This code can be used by the experienced

REMark • February • 1984 34

http:FILEFIX.COM

program.programmer to modify

Comments: Space Drop is similiar to other video action games with
horizontal movement of the player's ship and a combi nation of hori­
zontal and vert ical movement from the attacking aliens. A larger at­
tack alien appears randomly to keep the pace of the game moving.
This larger enemy must be destroyed as it appears or the alien w ill
destroy the player's ship.

lARlEC Rating: (0),(1),(2),(9)

885-8025-37 CP/M-85/86
FAST EDDY Text Editor

and BIG EDDY • •••••••.•••••••••• $20.00

Introduction: FAST EDDY is a text file screen editor that was written
for everybody. It was written using the basic commands and keypad
keys, so that anyone, even with no experience with an editor, can
learn to use it while reading the instructions.

For those fi les that are too large for your computers memory, BIG
EDDY w ill handle the breaking up of the text for editing with FAST
EDDY.

Requirements: This disk requires the CP/M-85 or CP/M-86 operating
systems on an H/Z-1 00 computer. A printer is not required, but both
FAST EDDY and BIG EDDY have printer options. Only one disk
drive is required .

BIG EDDY can be used w ith large files. A second drive (or high den­
sity drives) may be requ ired to break up large files which cannot fit
into memory. The original file is not changed or deleted.

The fo llowing fi les are included on the HUG PIN 885-8025-37 CPt
M-85/86 FAST EDDY Text Editor and BIG EDDY File Handling Util ­
ity :

EDITOR .COM
BIGED .COM
BIGED .DOC
INSTRUCT . DOC
TUTOR1 .DOC
TUTOR2 .DOC
TUTOR3 .DOC
RETURN .COM

Author: Hubert l. Reeder

FAST EDDY - This text file screen editor and its documentation
have been designed for anyone not familiar w ith using an editor. The
program uses commands and keys that are easy to remember and
use.

The editor contains a l imited number of commands, however, the
commands are designed to provide a useful, easy to use editor. It
does not have complex options that require time and effort to use.
The editor conta ins a command mode and edit mode. The fo llowing
are a brief list of the options:

COMMAND MODE

Typed Commands:

LOAD filename.ext (load file)
SAVE filename. ext (save file)
SA VE XX fi lename. ext (save XX number of lines)
MERGE filename.ext (merge two files)
PRINT (printenterfile, NN lines per page)
PRINT NN (print double spaced)
FINDanyword (find the first occurrence ofa word)

REMark • February • 1984

MARGINnnxx (set left margin, nn, right margin, xx)
CMPRESS (replace spaces with tabs in new text)
EXPAND (cancel the CMPRES command)
BYE (exit to CP/M)

Key Commands:

Uparrow - enter EDIT mode atfirstl ineoftext
Down arrow - enter EDIT mode at last line of text
HOME - enter EDIT mode at pointer (last cursor location)
DELETE - cancel part ial commands or stop printer
FO - erase all text

EDIT MODE

Key Commands:

Up arrow - move cursor up one line
Downarrow - move cursor down one line
Right arrow - move cursor to the right one character
Left arrow - move cursor to the left one character
HOME - returntoCOMMANDmode
IL - insert line
DL - delete line
IC - insert character
DC - delete character
to - block erase
f1 - align paragraph w ithin left and right margins
f2 - justify right
f3 - indentonloff
f4 - margin off
fs - split line
f6 - find next occurrence of word, after FIND ofCOMMAND mcxJe
f7 - move backward in text
f8 - move forward in text
f9 - center line
f1 0 - tab seUrelease
fll - jump left
f12 - jump right

These are most of the basic commands of FAST EDDY. Please note
that it has the abil ity to al ign paragraphs to new margin settings and
then the option of right justi fying the paragraph text.

Details of how to use these options are contained in the documenta­
tion. The TUTOR 1 , TUTOR2, and TUTOR3 documentation fi les are
included with the disk to give the user experience in using FAST
EDDY while reading the doc files.

BIG EDDY - This program is a utility to work w ith text files which
are too large to be edited by FAST EDDY directly because of memory
limitations. BIG EDDY can be
used to browse a fi le of any
size which the user can
break into smaller parts
for editing with FAST EDDY.

BIG EDDY asks for the input filename and an output filename. It
keeps trackof the subfiles and names them accordingly.

BIG EDDY has some useful options to aid the user in preparing the
text for smaller files. The BROWSE mode is similiarto the EDIT mode
of FAST EDDY, except that no editing can be done to the file.

The following are a list of the commands of BIG EDDY:

SAVEALL - save the entire textin memory to the disk
SAVEPART - save part ofthe text in memory to disk
NOSAVE - discard part of text
PRINT - same as FAST EDDY's print commands
BYE - exit to CP/M

With the SAVEPART command, the user can save the text by subject
or modules of his choice. Using the CP/M PIP program, the subfiles
can assemble the files into any order.

Comments: This version of FAST EDDY, with the editing features
e.g. align paragraph and right justify, allow formatting features that
make it a powerful, easy to use editor.

TABLEC Rating: (1),(3),(1 0)

The following two HDOS products are available in soft sectored
format beginning this month :

885-1030[-37J Disk III, Games II
885-1096[-37J MBASIC Action Games

Refer to the HUG Software Catalog for descriptions of the products.

Please remember the U -37" indicates that you want a soft sectored
disk. If you do not include the "-37", you will receive hard sec­
tored.

NOTICE

Heath/Zenith

Support Vendor

This could have been
your advertising space
to reach over 20,000
HUG members!

Call Donna at HUG today
for m ore information {616­
982-3794}.

H89/Z90' s CAN

NOW DEAL W ITH

A FU LL DeCK!

THE ORIGINAL ALL-IN-ONE

ACCESSORY BUS EXPANDER.

MH89+3 dOubles expansion capacity. Allows lor
lor 6 righi-hand type cards instead 01 the usual3
Room alias! to run Ihose neat accessory boards
yOc,J'e seen advertiSe!l!

Piggyback motherboard installs internally with a
screwdriver in just minutes - with no modilica­ The best news about this ··No-hassle" design is
lions! 3 slots exactty duplicate the originals. The
3 added slots occupy unused addresses and the price- ON LY S150, AOOull/31he

eliminate previous conflicts.. 100% compatible pJice 0/ other solutions!
with all accessory boards! Price incIJdeS assembled and leste<! MH89+3

No overhea ting problems! Simpte design draws expander. complete instructions and one (1) year
little power. leaves plenty of QIIerhead lor the warramy. CA residents add 6% lax. USA include
minimal load of most accessories. Full technical $5 shipping. Foreign add 510. Telephone and
in/ormallon plOvided COD orders accepted.

mako data p roduc ts
1441-8 N. REDGUM,ANAHEIM,CA92806

PHONE (714) 632-8583

FLOPPY DISK

CONTROLLER

Controls Any Combination Of Up To Four

8" and SY4" Drives
This easy to install plug in board can control any
combination of single or double sided, single or
double density drives.
Designed especially for H88/H89 users .

• 	 Fully compatible Bios supplied for your CP/M
2.2 operating system

• 	 Easy to follow instructions
• 	 Contains controller board with boot prom
• 	 Order cables for connection $15 (HFDC-110)
• 	 Introductory Ofter $395,

Order HFDC-100

[MORTH
~OAST

~~t~L1~0~~e~~~I~

Willoughby, Ohio 44094
Phone: 216-946-7756

Check. COD. VISA or Me - 90 Day Warranly

REMark • February • 1984 36

Get Rid Of "Echo On Delete"

In CP/M-86
Well, here we go again, fol ks! A new version of CP/M is out, and
like all of its predecessors, it has the "feature" of echoing a character
if you delete it with the DELETE key instead of the BACK SPACE key.
As we did with CP/M-8S in REMark Issue #41 Uune 1983, page 41),
we can "fix" the DELETE key so that it deletes, using DDT to make
a patch. In this case, you need DDT86 which is supplied wi th CP/M­
86. Run it and load in CPM.SYS as in this example :

A>DDT86
[lDT86 1. 1
-RCPM.S'IS

START END
1681:0000 1681:4EFF

Now, use the L command to disassemble the area where the patch
goes. It should look like this:

-Ll560
1681:1560 OR CH,CH
1681: 1562 .JZ 154A
1681: 1~,64 DEC CH
1681: 1566 MOV AL,[nE!)]
1681:1569 MOV [22E3) I AL
1681: 156C ~IMPS 15E:F
1681: 156E CM? AL,7F
1681: 1570 ~INZ 157E
1681: 1572 OR CH,CH
1681:1574 JZ 154A
1681:1576 ES: MOV AL, [BX]
1681:1579 [lEC CH

If you have Heath/Zenith CP/M-86 version 1.1, Release 1.10, the
code should look just like this. If you have a different version and
the code is similar, but the numbers are different, try the patch any­
way (but not on your only system disk). If the code looks nothing like
this (as it might in a non-Heath/Zenith version), use the L command
to look around for code like this . When you are satisfied that you
have found the right place in the code, use the A command to re­
placethe second occurrenceofORCH,CH with ajumpas follows:

-AI572
1681:1572 JMPS 1560
1681: 1574 (type il period)

If you are patching a version with the code in a different place, the
destination of the JMPS instruction should be the line with the first
OR CH,CH. After you make the patch, save the patched code with
the W command, and exit DDT86 with control-C.

-I.JCPM. NEIol
-"C

Next, rename the old and new files so that the new one replaces the
old one:

Pat Swayne
Software Engineer

A)STAT CPM.SYS tR/lol (remove ~rite protect)
A)REN CPM.OLD=CPM.SYS
A)REN CPM.SYS=CPM.NEIol

Now you can re-boot your system and test the patch. If it works OK,
you can delete CPM.OLD and set the Read-Only and System attri­
butes on your new CPM.SYS:

A)ERA CPM.OLD

A)STAT CPM.SYS tRIO

A)STAT CPM.SYS ~SYS

And that's all there is to it! \.~
~,

The ILLUSTRATOR
The ILLUS TRATOR is a full ·featured graphics drawing program for use with the Z·I 00 pi,el
graphics fw/wo color) or the H89/H 19 IMAGINATOR pi,el graphics option. No need for a lightpen.

Features Include:

Turtle Graphics o Area Fill o 64 Colors

Rubber Banding o Bo, Fill o Color Define

Une Drawing o Circle Fill o Color Pal1ern

Bo, Drawing o Diamond Fill • Screen Save

Circle Drawing o Copy Area • Screen Restare

Ellipse Drawing • Erase Area • Are a Save

Diamond Drawing • Te,t Mode • Are a Restore

Screen Print o Invert Mode o Compacted Files

Dot Cursor Conllol o Help Display • mme,

ONLY .89.95!

HODS version for H89. H8. requires IMAGINATDR

ZOOS version for Z 100. color memory optional

Supports many dot graphics printers. Call for info.


~~~~;;;;;NEWliNE SOfTWARE 
P.o. Box 402, Littleton, MA 01460 1617) 486·8535 

CHECK ONENAME 

STREET D 	H89. H8/H 19. 
HODS

CITY 

STATE ZIP. D Z·100. ZOOS 

Send me __ "The ILLUSTRATOR" programis) at $89.95 each. 

Check one: 0 paymenl enclosed 0 send COO {add $4.001 

Send order to: 


NEWLINE SOFTWARE. P.O. BOX 402. LITTlETON. MA 01460 

Foreign orders : add $3.00 Airmail. $10.00 for non·U.S. checks 


~ ~.........•.••••• •.••....••.••.......................... 

HODS is a trademark of Heath Company 


ZOOS. Z·100 are trademarks of Zenith Data Systems. Inc. 

IMAGINATOR is a trademark of Cleveland Codonics. Inc. 


REMark February 19840 0 37 



The Stupid Computer 

You Should Be So Smart! 

Copyright (C) 1983, WallaceM Theodore 

Somewhere, sometime, somehow, some "very wise" person made 
the statement that computers are stupid - implying, of course, they 
are on ly capable of performing tasks when instructed by human be­
ings of far superior intell igence. Well, that may be so, but I'LL never 
believe it. 

Other humans of equally grandiose w isdom immediately and 
blindly latched on to the erroneous line and through the years have 
repeatedly put down the intelligence of the defenseless computer. 
Such nonsensical chatter has bugged me for many moons and is 
probably enough to bringa tear to my Heath/Zenith CRT. 

True, the computer IS a machine and, in its infancy (the stage before 
it acquires the bulk of its intell igence) is of little value to the user or 
anyone else, save for occasional use as a door stop, paperweight, 
or sinkerfor deep sea fishing. 

But to label the computer as stupid, dumb, or merely a pi le of plastic, 
sil icon, glass, and metal or other equally descriptive insults is an IN­
SU Llto the computer! I, for one, think the time has come for some­
one to stand up for the computer so, at the risk of being banished 
from my big blue marble, I will attempt to compare the computer 
with the unmistakable and indisputable superiority of the human. 

A baby, at birth, knows virtually noth ing save for some instincts that 
come w ith it at delivery . The baby cannot talk, eat alone, sit, stand 
or perform many other seemingly men ial tasks, nor does it obey 
when you tell it to settle down for the night and get its much needed 
rest. As the months and years progress, the infant begins to gain 
knowledge from those around it who work in many ways to TEACH 
the baby what it must know to survive. 

The computer, as the baby, also arrives with prec iOUS few 
capabi lities. You, the superior adult human being, might smugly say 
you ARE superior to the computer as well , at that stage, you MAY 
be - and then you again may NOT. You, incidentally, also have a 
couple of years of learning on the computer. 

At its worst, the computer is STILL one up on the human, even at 
delivery. While it took you years of trial and error to gain your not­
necessarily-correct knowledge, the computer is instantly more AC­
CU RATELY knowledgeable than you the minute the operating sys­
tem is installed . And YOU had to "teach" it nothing - even if you 
could, which you probably cou ld not . 

Even BEFORE the operating system is installed, the compu ter w ill 
sti ll outperform you, hands down! Don't bel ieve it? Try checking the 
RAM by hand and, if you make it, match the time it took you against 
thetime it takes the infant computer. 

Ofcourse, there is the argument that a baby is born w ith some intell i­
gence while the computer has none. Wrong. Long before the final 
assembly of your computer, the read only memory (ROM) chips are 
loaded and waiting for installation: instant knowledge to the f1edg­
ling computer! 

WallaceM Theodore 
POBox 2488 

Hammond, Indiana 46323-0488 

As a matter of fact , when my daughter was born she cried when she 
wanted attention because there was noth ing else she knew how to 
do. She has since progressed to "goo goo", "Da Da", "Can I have 
adollar?", and "Can we go to Hawaii some time? Can we? Huh? Can 
we?" . This, of course, is the normal progression of the human 
species (the last question, of the human teenage FEMALE spec ies). 

When my computer was fi rst plugged in and turned on, it went 
"Beep Beep" which, as you know , itwi ll continue to say unti l its final 
days: clear, concise, ADULT computer talk at its very first utterance! 
Possibly this borders on ' instinct' that is inborn in l ivi ng things. And 
at the end of a long, busy day of taxing its mother and terminal logic 
boards, I can pull the plug and my H-89 w ill instantly settle down 
to a few hours of R&R (reset and relaxation) before the next day's 
busy schedule - something my daughter would never do! 

The intell igence of the computer is fort ified with one trai t which hu­
mans have not been able to conquer: the ability to bu ild on knowl­
edge it has acquired in the past. 

What's more, the computer has drawn its intelligence from many 
persons of many walks of l ife, each specializing in a specific field 
of expertise, all contributing to an ever increasing storehouse of 
knowledge and operations that tend to util ize efficiency to the ful­
lest . As one works w ith a computer, it becomes increasingly appar­
ent that each of these select persons are among the most knowledge­
able in their field in the WORLD. 

The human spec ies (carbon units, if you w ill) feel we can sta rt from 
scratch with each new arrival and learn all there is to know from day 
one until day "X" , w henever that may be. 

As the superior being, we have relied only on our one or two paren­
tal instructors, along with haphazardly selected others who may or 
may not know what they are talking about, to ga in intell igence ­
each randomly teaching, rightly or wrongly, something new to be 
retained and used through life. 

Unfortunately, at the end of that life all knowledge gained is lost 
forever to the individual's descendants or the rest of the world, for 
nowhere, in all of man's infinite wisdom, has anyone ever devised 
a system for transferring the knowledge of a lifetime from one being 
to another. Computer knowledge, on the other hand, is instantly 
transferable from unit to unit, intact, unaltered, and quickly accessi­
bleto both present and future generations. 

If you are one of the fortunate individuals who has both a baby and 
a computer in the house, you might want to perform some ADDI­
TIONAL comparisons of the superior human and the so-called 
'stupid' computer: 

1. Does your newborn have the abi Iity to accurately test its own ran­
dom access memor/ ? (The computer does. One for the computer.) 

2. If your baby WERE able to test its own memory, could it tell you 
exactly w here a problem lies should there be a problem? (The com­
puter can. Two forthe computer.) 

REMark • February • 1984 38 



3. Can your baby tell you if it w ill be able to ca lculate and/or com­
pute problems, complex or otherwise, now or in later years? (Need­
less to say, three for the computer. ) 

4. Within minutes of arriving (assuming neither computer nor baby 
are ordered in kit form), can your baby print symbols, numbers, and 
the entire alphabet? (M ake it fou r.) 

5. Referring to test four: in the language of ANY nationality? (Five.) 

Bear in mind that tests one through five are performed BEFORE an 
operating system or language is instal led in the computer. 

6. If your baby passed test four, can it do all of test four forward OR 
backwards? (Six ... ) 

7. Ask your baby to test its internal memory storage speed, as you 
would ask your computer to test its disk access speed. (Seven.) 

8. Can your baby map its ow n memory for maximum efficiency? 
(Another one for the computer.) 

Since, if my meager memory serves me correctly, only about two 
percent of the human brain is cu rrently being utilized, I would have 
to confess the computer is already stomping holes in the "superior 
human being" syndrome. What's more, even with one-hundred 
percent of its memory in use, the computer addit iona lly rearranges 
its memory for the most effic ient, effective use. 

9. How about outputs? Does your baby know how and where? (Ok, 
ok! But it's still eight forthe computer.) 

10. Is your baby able to, instantly at birth, work with the most effi­
cient system to do the job at hand? (Make it nine for the computer.) 

'At birth' capabilities comparisons between the baby and the com­
putercould go on and on - but I thi nk you get the drift. 

In the thousands of hours follow ing the acquisition of knowledge by 
your "stupid computer", YO U (oh, human of super intelligence) sit 
at the keyboard typing and try ing, digging through manuals, read ing 
'REMark', asking questions about how this or that is done and what 
the correct syntax is for "that particular instruction". The computer, 
on the other hand, waits patiently (and probably somewhat bored) 
for you to figure out its complexities. 

I have never seen a school for 'stupid' computers but there are, how­
ever, thousands of schools for the far superior humans who spend 
much hard earned wampum and hundreds of hours trying to fi nd out 
simply how to TALK to their computer. 

The computer, by the way, is instantly able to give you a reply in 
YOUR language as soon as YOU find out how to talk to IT. That's 
quite an accomplishment for such a dumb machine. 

Through the years, thousands of highly intelligent people have con­
tributed to the knowledge your computer has the moment it is given 
its disk or tape ful l of intelli gence: 

. .. your computer is instantly able to perform complex calcu­
lations far beyond the capabi l it iesof most of itsusers, 

... able to write documents and then check YOUR (not its) 
spelling errors, 

... offer shortcuts in job performance (w hich the user must 
find hidden in the maze of printed pages from which hundreds of 
companies are deservedly making big bucks), 

... sort through thousands of bits of information and then send 
them back to you just the way you want it, in virtually seconds (at 
least, minutes), 

and the list, as with all computer lists of this type, goes on and on. 

What has been mentioned here isonly a drop in the proverbial buck­
et. 

I would venture to bet that not many computer users today, if any, 
can honestly say they understand and are able to use ALL the features 
of even ONE operating system or language. And even if you could, 
the moment the next package arrives, YOU begin learning again. 
The computer HAS its knowledge, all of it, the moment you insert 
the disk or start the tape. You, my friend, are back to square one : 
trying to figure out how to talk to your computer in a manner it can 
understand . It already knows how to repl y. It knew it all along. It 
also knows how to do what you want it to do, and MORE. YOU are 
the one with too I ittle knowledge to tell it w hat you want it to do. 

Stupid? Not on your life! Even the trashiest computer on the market 
(whichever one that may be) is infinitely smarter than you are as soon 
as you insert the disk or fire up the tape. Your Heath/Zenith com­
puter (being one of the smartest, if not THE smartest, on the market) 
will have you buffaloed for years. 

True, computers were invented by humans. But today humans are 
relying on computers to perpetuate the state of the art by designing 
bigger, better, and more complex computers that are far beyond the 
limitations of the individual human mind. Note that I said " the indi­
vidual" human mind: thousands of persons work ing together MAY 
be able to compete with the speed and accuracy of the computer. 
But how long would it take? How much expense would be involved 
in making the same thing the computer makes with ease and speed 
unequalled by the 'superior' human species? 

True, also, that the human is the one who keeps the computer alive 
and running. M ay I remind you of hospital computers that are help­
ing keep HUMANS alive and running? I guess one good turn de­
serves another. 

As for the idiot who first said computers are stupid: well, I guess 
that's the first clue to the intelligence of the human as opposed to 
the computer. M y H-89 has never called ME names, although it has 
on many occasions made me FEEL stupid, and probably with plenty 
of justification. 

The next time you hear the phrase "a computer is really a stupid 
machine .. . ", suggest that the person who said it take the "baby test". 

In all fairness to the humans though, I must sheepishly admit that 
even the Heath/Zenith variety of 'desktop' computers cannot clean 
house or open doors or cut grass. They do not walk and talk and 
laugh and watch TV. They do not go fishing or play tennis or go on 
dates. They do not know how to casually crack jokes - or even how 
to love. But on the other hand, HERO-l has arrived in all his glory 
and who knows what wonders TH AT wi II lead to ... ! 

Odds bodkins!!! Is it possible the ignorant computer really DOES 
possess capabilities beyond that of the "superior" human being? Can 
it be possible we have been overrating US and underrating THEM !? 
Is it possible the "highly intelligent" human newborn is on its way 
OUT!! ??? Nawwww!!! I certain ly can' t believe that! Well , hardly ... 

With all that I have said FOR the computer, I will give this much to 
the human, though : "finding" the baby takes less running, less figur­
ing, less effort, less frustration , and is probably more fun than trying 
to find the right computer . / , 

And then again .. . 

~~ 
{~,.:., I ~ 

~ 
 * 

REMark • February • 1984 39 



Improved 

Error Recovery For CP/M 


PatSwayne 

Software Engineer 


Of the three operating systems used on Heath/Zenith computers, 
HOOS, Z-OOS, and CP/M, the one w ith the worst disk error recov­
ery method is CP/M. In HDOS, which has the best error recovery, 
any disk error causes an error cond ition code to be returned to the 

- running program, so that the programmer can process any error as 
he sees fit. In CP/M, only directory and space error (disk or directory 
out of space) conditions are returned to the program. All others are 
captured by the system, and that horrible "Bdos Err On ... " message 
is displayed, and the system waits for you to type a character. If the 
error is a Bad Sector, you are permitted to abort and warm boot with 
control -C, or to re-try the operation by typing any other character. 
For all other errors, any character typed causes a warm boot, and 
absolutely no recovery is permitted . There are three error types in 
this no recovery group: improper drive select, an attempt to w rite 
over a read only (write protected) fi le, and an attempt to write on 
a read only disk. 

This last kind of error is the one that probably gives people the most 
trouble, because if you change a disk in a drive without resetting the 
disk system or warm booting, the new disk is automatically marked 
as Read O nly. One solution to the problem of non-recoverable er­
rors, which was discussed in passed issues of REMark, is to create 
a null directory entry (SAVE 0 GO.COM ), and execute it to re-start 
your program whenever you get "booted out" by the system. 

A better solution to the problem is to modify CP/M so that you have 
the option of warm booting, re-starting the program, or returning 
control to the running program whenever a Select or Read O nly error 
occurs. In this article, I will present a patch to do just that. The on ly 
drawback is that the running program is not equipped to handle a 
return from such an error, and so the third choice will result in unpre­
dictable behavior. It was included for the benefit of the "hacker" 
who likes to experiment. 

To install the patch, you first need to create an image of the CP/M 
system on your disk. You can do it with SYSGEN as follows: 

A>SYSGEN 
SYSGEN VER 2. 0. 03 
SI)JRCE DRIVE NAME (OR RETURN TO SKIP):A 
SOURCE ON A, THEN TYPE RETlIRN (type RETURN here) 
FUNCTI ON COMPLETE 

COpy BIOSSIS ('IIN):N 

DESTINATION DRIVE NAME (OR RETURN TO REBOOT): (type RETlIRN) 

A)SAVE 38 CPM. COM 

This example is for Heath/Zenith CP/M version 2.2.03, and will vary 
with other versions. In particular, non-HeathlZenith versions may 
require that a different amount be SAVEd. If you are not sure how 
much to save, run your version of M O VCPM before doing this pro­
cedure, and itwill tell you. 

Next, you must load the saved CP/M image into memory w ith D DT 

byentering 

A>OOT CPM. COM 

NEXT PC 

2700 0100 


Now, locate the BOOS error port ion of CP/M with DDT's 0 com­
mand by entering 

-01000 

Examine the ASCII part of the resulting display (the part to the right) 
and look for the words "Bdos Err". If you do not see them, enter 0 
again, this time without an address, hit RETURN, and keep looking. 
Continue this process until you see something that looks like this : 

1230 D5 21 DC 05 CO E5 D5 C3 IF 124264 6F 73 20 45 .' ••••• •• • Bdo. E 

1240 72 72 20 4F 6E 20 20 3A 20 24 42 61 64 20 53 65 rr On : . Sad S. 


Note the address of the letter B in "Bdos# (123A in this example, but 
it could be different in your system), and subtract 3 from it with 
DDT's H command as follows: 

-Haaa",3 

xxxx bbbb 


Notice that I have shown the address of the letter B as aaaa, and the 
result of the subtraction as bbbb. I will follow this procedure from 
here on, and use xxxx to indicate an insignificant address that does 
not effect the patch. Now, use the L command to disassemble from 
address bbbb to aaaa. It should look like this: 
-Lbbbb ,aaaa 


bbbb JMP 0000 

a.aa MOV B, D 

xx x>: 


Using the A command to enter assembly code, replace the jump to 
zero at bbbb with the following code: 

-Abbbb 

bbbb SUI 3 

",xx JZ 100 

xxx x INR A 

xxxx RZ 

xxx> RST 0 

xxx x (type" period, then RETURN) 


Add 37 (hex) to the address aaaa . 

-Haaaa, 37 

ecce xxxx 


Examine the code at the new address cccc. 

-Leece 

ecce LXI 8, dddd 

xxx x CALL xxxx 


(r·e.t of listing not sho'.n) 

40 REMark • February • 1984 



Add S tothe address dddd, and replace it with the result. 

-Hdddd,5 
eeee xxx>: 
-Aceec 
ecce LX I B, Hee 
xxxx • 

Now, type control-C to exit DDT, and SAVE the patched CP/M 
image as follows : 

_AC 

A>SAVE 33 CPM. COM 

Since the CP/M image contains an image of the SYSGEN program, 
itcan be run as a file to re-install the new CP/M: 
A>CPM 
SYSGEN VER. 2.0.03 
SOURCE DR I VE NAME lOR RETlIlN TO SK I P) : I hit RETURN) 
DESTINATION DRIVE NAME lOR RETURN TO REBOOT): A 
FUNCTION COMPLETE 
DESTINATION DRIVE NAME 100 RETlIRN TO REBOOT): (hi t RETURN) 
A) 

Your system will now be running with the patched BDOS, unless 
you are using CP/M-8S. In that case, you will have to re-boot to load 
the patched system into memory. With the patch installed, the fol­
lowing changes will be in effect. The "Bdos Err On .. . /1 message is 
shortened to "Err On ... /I to make room for the patch. When you get 
a Select or Read Only error, you can type control-C to restart your 
program (jump to 1 DOH), control-B to simply return from the error 
handler (with unpredictable results), or any other character to warm 
boot CP/M . 

When you are running MBASIC, the best choice of the above is to 
restart the program with control-C. Then you must enter RESET be­
fore attempting the file operation again. Try experimenting with con­
trol-B with various errors while running various programs. In some 
cases, you can recover from a Select error with control-B . * 

USE ALL YOUR SPECIAL 

FUNCTION KEYS WITH WORDSTARTM 


WSKEY'M: Now you can take the mystery out of WordStar™ 
with SKILL DATA's WordStar enhancement , which imple­
ments all TWENTY-ONE of the H/ Z89-19 function / pad keys 
or all TWENTY-THREE Z-100 labeled key commands. 

Function key commands are labeled by a twenty-fifth line 
banner. which can be toggled on and off by you during 
your session. 

$29.95 - Specify H/Z89-19 or Z-100 

dBASE 11''' ZlpT.. SuperCalcT .. 
DBKEyT for dBASE II,• 

ZPKEY'· for ZIP SCREEN, SCKEY'· for SuperCalc 

Just type your favorite SKILL DATA KEY command. All 
function key commands are labeled by a twenty-fifth line 
banner, which can be toggled on and off by you during 
your session. Pad keys also function and send multiple key 
inputs with a single stroke. All previous command key 
sequences are still available for the old and painful ways. 

$29.95 - keys to SuperCalc, SCKEY. For H/ Z 89-19 only. 

$29.95 - keys to dBASE II: DBKEY and ZPKEY. 
As reviewed in Sept. 83 dNEWS 

Specify H/ Z89-19 or Z-100 (CP/ M-85 or Z-DOS) . 

H/Z89-19 diskettes are 5.25" 10HS, requires CP/ M 2.2.03 
Z-100 diskettes are 5.25" 55 , specify CP/ M-85 or Z-DOS. 

All orders shipped by first class mail. Include $3.00 per order for shipping and 
handling, $5.00 for o\'erseas orders. Payment by check or money order. Allow 2-4 
weeks for deli"ery. Vis.a/Masler Card. 206/352-0669 (e"enings). 

SKILL DATA 
p.o. Box 1943, Olympia, Washington 98507 

'-

Grapncs fer !!!J.. ~ Printer! 

/__./"--<""V'_/-~\\ 

":! ~_i)~
1 //\, 
\_---", .......... - ..' \._.------. 


----- ,.~.,~, /-~., / ! 

r-~:;)' )Y,~~. {~, 
r-- >---'< -.\ ()\'((~' ,.... \\ <> ..,:. \; --\-~
\ 'I' / ) ~ 'u ' .,;,,' !\.
I ( "") l-_ \,:> - \':. - .•;( 'r"'\ 
'\<1{ t----"; \ (-.-) <c." ~"" '" ',_ hJ:,.:.I.L ./ /.-__~ ~c____--_C.:=:r


-C~-- C..:0.~ \.--_~';'-I~:\ 


• MXGRAPII will turn your EPSON printer into a 
graphICS plotter for personal or business needs! 
Make ~)lr EPSON plot an l..I1limitro nunber of artistic 
sketches, geometric designs, am business gra\ilS, 
which VKluld not be rcssible witrout MxrnAffi 

MlO:iRAffi TUlS t.nder CPIM-OO or HIll) op:ratirg systems 
ONLY on the H/Z-89 and H/Z-90 computer systems. 
Requires an EPSON printer equipped with bit plot 
capabili ties. Specify HDOS or CP/M, hard or soft 
sectore::l 5.25" disk. MXGRAm is oo..y~ $-119.91! 

• IXN 'T IEAY - mJER lUI! • 

• EFC - The Electronic Filing Cabinet is a 
~~riented hierarchical database. Use 
EFC as a ~ FJI.D(; ~ for all t~s 
of information!! Rlrls tn:ler Z-IXl> OOLY on the 
WZ-l00. EFC i s ONLY $39.97! 

• HXPRINT generates almost LE1TER~AUTY 
p-inti!'l1; on an E:F-Srn printer equi~ with bit 
plot capct>ilities! Prints 10 char per inch by 
6 lines per inch (9x24 matrix). MXPRINT is 
ocr $19.97! 

• NOVA The WordStarta Enhancer! Adds All.. 
keypaj AND f\.nction keys to WordStar. Q--eatly 
sp:ros text roiti !'l1;. 25th line p-ompts ~u. 
NOVA REQUIRES HEATH/ ZENITH DISTRIBUTED 
WCRIETAR. t-DVA is oo..r ~ $24.91 

KXPRINT and NOVA REQUIRE Heath/Zenith 
distributErl cpnr.::BO (Vers ion 2.2.03 or later) 
for op:ration on a1 H-8, WZ~, or 1YZ--9>; or 
CP/H-8S for op:raticn en an HlZ-l00. ~ify 
hard or roft sectored 525" disk. 

H:II3) DHNATIOO 
2455 Sylvania Ave., Toledo, Chio 43613 

VISA ad HASI'fl{CAR[) Q-ders Wel..a.e! 
CAI..L 101: (419) lr1'1-12lf5 

'-

REMark • February • 1984 41 



So, Your Computer Can't Add 

David C. Pelowitz 

116 1450. 35th Street 
Omaha, NE 68123 

Have you ever had one of those days w here nothing goes right? 
Was it so bad that even your trusty computer seemed to have 
forgotten how to add? Or worse yet, that program you just spent 
two months writing and debugging refused to recognize the con­
tents of one of its key variables? Take heart, all is not lost. There 
are some simple explanations why a number apparently doesn't 
equal itself. Once the cause of this kind of problem is understood, 
writing your programs to avoid it is simple. The w ay a computer 
internally represents numeric quanti t ies is the crux of the problem 
and all computers share the malady to one extent or another. I 
recently came across a major top of the line min i- computer which 
had a dickens of a time handling the value zero! The company 
fixed the bug, but it goes to show you how wide spread this type 
of problem is. 

The following few paragraphs are for those readers that don't have 
a good understanding of binary number systems . If you are inti­
mately familiar with common internal representations of signed 
and unsigned integers, skip down to the section on floati ng point 
numbers. 

If we are going to investigate how computers internally represent 
numeric values, I' ll have to lay some foundation. First, not all 
computers have the same size of memory word. Currently, most 
personal computers are eight bit machines. The bit is to the byte 
as a letter is to a word. It is the smallest unit of information a 
computer can store and can only represent two states. The two 
states are on and off, and are usually referred to as " 1" and "0" 
respectively . Calling a computer an eight bit machine means the 
Central Processing Unit (CPU) handles information eight bits at 
a time and the computer's memory is organized with eight bits 
at each address. The size of a memory location is referred to as 
the system's word size, whereas a byte is universally accepted 
as consisting of eight bits. A true 16 bit machine uses a 16 bit 
word both inside the CPU and in memory. Its CPU will fetch two 
bytes from memory at a time. 

Some of the recently developed microprocessers are hybrids of 
16 and 8 bit machines. In the CPU, they handle data 16 bits at 
a time, but externally they use an 8 bit wide memory. Other word 
lengths are also common . M achines have been designed to use 
12, 18, 24, 32, 60, or 64 bit words. Some machines are even 
more rad ical and use a variable word length. For the most part, 
you need not worry about the size of the word because the con­
cepts are still the same. Either way, read the documentation on 
your machine. You will need to know the word size of your com­
puter to apply this discussion. Further, some programs use w hat 
is called multiple precision . I will explain later w hat that means 
and how it affects the representation of numeric information, but 
for now you should simply be aware of its use. 

Binary Numbers 

There is a difference between how a computer stores the character 
"Y and how it stores the value two. Each character is represented 
by a predefined set of bits. Each of these bits is either on or off. 
The on condition is usually represented by a "1" and the off condi­
tion by a "0". O ne of the most common character representation 
standards is ca lled the American Standard Code for Information 
Interchange (ASCII) . It is almost universally used and employs 
seven bits to define its entire cast of characters . For example, the 
character "1 " is represented by the bit pattern "0110001" . A char­
acter is usuall y stored in the low order seven bits and the high 
order eighth bit is set off. Typically the right hand bit is considered 
the low order bit and the left the high order bit. To refer to the 
bits in a byte as " low order bit" , " next to low order bit", "second 
from the low order b it", and so on is awkward at best. Let' s number 
them from right to left starting with zero. Consequently, the key 
"76543 210" can be used to refer to each of the bit positions in 
a byte. I suspect this brings two questions to mind. First, "Why 
right to left?" and secondly, "Why start with zero?" Right to left 
is used because that 's w hat we use in our decimal system. Its 
roots are in the Arabic language which is read from right to left. 
The number 426 means six ones, two tens, and four hundreds. 
The ones are the lowest order and in this case the hundreds are 
the high order. Why start with zero? Read on! 

THE DECIMAL SYSTEM 

5373059 
: ,Ill I :II III , , , , , , :-­, , , , , , =9 9 
111'1 :--­IIIII =5 x 10 50 , , , , ,.., 1'---­
, .::--­.. , .,, 11----­

=0 lC 

=8 x 
=7 x 

10 
10 
10 

x 
x 
x 

10 
10 
10 

x 
x 

10 
10 x 10 

000 
8000 

70000 , ,
1 1-----­ =3 x 10 X 10 x 10 x 10 x 10 300000 
:­ ----­ = 5 x 10 x 10 x 10 x 10 x 10 x 10 5000000 

tohl 5373059 

Figure 1. 

The contents of a byte can represent a quantity as well as a charac­
ter. Because a bit can only be in one of two conditions, it is called 
a binary system. If we remember back to our decimal system, 
each successively higher order position stood for a quantity 10 
times the previous position (figure 1). The low order position was 
the quantity of ones, the next up was the quantity of lOs, the 
third was the quantity of 100s, and so on . We can ·do the same 
thing with our binary system. Because this is a binary system in­
stead of decimal, we w i ll increase by two times the previous posi-

REM ark • February • 1984 42 



tion's value instead of 10 times. Consequently, the first bit tells 
us how many ones, the second bit tells us how many twos, the 
third how many fours, and so on. We can extend this pattern 
indefinitely. Figure 2 shows the values for each of the first eight 
bits in this system . Now let's see what significance the "76543210" 

THE BINARY SYSTEM 

11011011 (binary) 
"'1'111 
II 111'1 I 

::::::: !--­
11111' 1 ___ 
,11111 t 

::::::----­
: : : : :-----­
I II I 
I I 1'-----­
:: :------­
: :--------­

1 
1 x 2 
o x 2 x 

x 2 x 
1 x 2 x 
o x 2 x 

x 2 
x 2 x 

2 
2 x 2 
2 x 2 x 
2 x 2 x 
2 x 2 x 
2 x 2 x 

2 
2 
2 
2 

x 2 
x 2 
x 2 

x 2 
x 2 x 2 

1 x 
1 x 
o x 
1 x 
1 x 
o x 
1 x 
1 x 

1 
2 
4 
8 

16 
~')_'L 
64 

128 

1 
2 
0 
3 

16 
0 

64 
=128 

total =219 

Figure 2. 

key has in this system . Each bit position represents a value. The 
value is two raised to the power of value in the position in the 
key. We now have a method of representing quantities and charac­
ters. 

Addition & Subtraction 

Using our binary system we can show that a single byte can contain 
representations for quantities up to 255. Let's examine the rules 
for simple binary addition and subtraction. Examine figures 3 and 
4. Each of the additions are very straight forward with the exception 
of "1 + 1" which generates a carry to the next higher order column. 

BINARY ADDITICt>I 

Ru 1es: ~ 1 0 1 Exami,l., 01101010 
+ 0 • 1\ + 1 .. 1 .. 01101100 

-------­

00 91 01 10 11010110 

Figure 3. 

B I NARY SUBTRACTI ON 

Rul"" 0 1 0 Examp 1.: 1001~110 

- 0 - II - 1 - 1 - 01101100 
-----­

00 91 e *1 00101010 
f = borrow 

Figure 4. 

The subtractions are equally simple with the exception of a borrow 
from the higher order neighbor. Both the carry out of the addition 
and the borrow from the subtraction are done in exactly the same 
way as in our familiar decimal system. There are three points to 
remember when doing binary math . First, there are only two binary 
values, 0 and 1. Secondly, a carry is the same as an addition 
to the remaining higher order bits . Thirdly, a borrow is the same 
as a subtraction from the remaining higher order bits. But what 
happens if we are subtracting a larger number from a smaller? 
The result is supposed to be negative! 

Signed Binary Numbers 

With the exception of zero, values can be either positive or nega­
tive. But the- binary system we have been examining only contains 
positive numbers. If we take a hint from the fact that there are 
two states the sign of a value may assume, using one of the bits 

----- of a byte as the sign bit seems logical. The high order bit is com­
monly used for the sign flag. If it is on, we have a negative number 

REMark • February • 1 984 

and conversely, if it is off we have a positive number. This limits 
the maximum value a byte may store to +127 and the minimum 
to -127 . If you aren't sure how these numbers are formed, add 
up the bits to verify them. 

There is a problem with storing values in this manner. Look at 
figure 5. If we subtract eight from nine, we get a good result. 
If we add -8 to nine, we get a -17! Addition and subtraction must 
work correctly in all cases for our system to be useful. Let's try 
something interesting. If we complement the bits of a negative 
number and store it that way, we are much closer to having our 
sample problem work correctly. Complementation is simply turn­
ing on the off bits and off the on bits . Complementing 10000001 
changes it to 01111110 . This is called one's complement. We 
can see in figure 6 this comes much closer to giving us the correct 
answer. 

Slt1PI.E SIGHED MAGNITUDE ADDITION 

ee001001 = 9 00001001 = 9 
- 0&001000 = B • 10001000 = -8 

00000901 1 ok 10010001 -17 bad (should b. 1) 

Figure 5. 

ONE'S COttPLEI1ENT ADD IT 1ON 

7 = 00000111 00001010 = 10 
co.pl.".nt.d 7 = 11111000 .. 11111800 = -7 

00000010 = 2 bad (but close) 

Figure 6. 

It looks like all we have to do is add one to the answer in figure 
6 to get the correct value. In fact, that is exactly what we need 
to do, except instead of adding the one to the result of the addition, 
we will add it to the complemented seven . This form of representa­
tion is called the two' s complement and is used extensively to 
represent negative numbers. The -7 in twos complement notation 
is 11111001 . Figure 7 contains some examples of two's comple­
ment numbers. 

TWO'S COMPLEMENT 

-128 =10000000 
-127 = 10000001 

-4 = 11111100 
-3 = 11111101 
-2 = 11111110 
-1 = 11111111 
o = 00000000 
1 = 00000001 
2 = 00000010 
3 = 001')00011 
4 = 00000100 

127 = 01111111 
128 = invalid 

8 
+(-7) 

00001000 
11111001 

00000001 (ok) 

Figure 7. 

Try adding one to 127. What happened? If you did it right, you 
ended up with a -1 28! One obvious answer to this problem is 
to add more significant bits to the location that stores the value. 

Multi-Precision Signed Integer 

Most of us find the single precision two's complement limitation 
of -128 to +127 too limiting for most applications. The common 
remedy for this is to use more than one byte to store a value. 
If multiple bytes are used, only the high order bit of the high order 

43 



byte is used as the sign bit. All the lower order bits behave exactly 
like the low order bits of the single precision value. Figure 8 con­
tains the limitations of two's complement notation for various 
length multi-precision values. If you check your Microsoft Basic-80 
documentation, you will find integer constants are limited to the 
same as a two byte two's complement multi-precision values' limi­
tations in figure 8. But what about those really big numbers? 

TWO'S COMPLEMENT 

MULTI-PRECISION LIMITATIONS 


total bytes used lIIinimurn value maximum value 

1 -123 +127 
2 -32768 +32767 
3 -8338603 +8338607 
4 -2147483648 +2147483647 

Figure 8. 

Floating Point Notation 

As computers grew in speed and complexity, more and more appli­
cations relied on their unique capabilities. Some of these applica­
tions didn't need any more accuracy than a multi-byte two's com­
plement number. But some dealt with very large numbers. To 
satisfy these requirements a new internal representation was de­
veloped. Mimicking scientific notation, this new representation 
consists of two parts, the mantissa and the exponent. A number 
in scientific notation is expressed with one non-zero digit to the 
left of the decimal point and all of the remaining significant digits 
to its right. An exponent is added to the right of the number to 
indicate how many times the number should be multiplied or di­
vided by ten. Figure 9 contains some examples of values expressed 
in scientific notation . 

SCIENTIFIC NOTATION 

Villuo Mantissa Exponont Scientific Notation 

2 
826 B.26 2 8.2bxl~ 

3 
1024 I. 024 3 1.024xl0 

10 
52,907,000,00e 5.2907 I~ 5.2'107x1~ 

IS 
1,000,000,000,000,000 1.0 IS I. 0xl~ 

-15 
0.~~009000S67 5.67 -15 5.67x10 

Figure 9. 

Floating point notation, is very similar to scientific notation in that 
there are two parts, also called the exponent and the mantissa. 
The major difference is that floating point notation insists on having 
the first non-zero significant digit to the immediate right of the 
decimal point. The function to insure this occurrs is called normali­
zation. So far we haven't discussed the existence of a decimal 
point. The decimal point is not really there. It is called an implied 
decimal point. By definition, all bits of the mantissa are to the 
right of the implied decimal point. Just to make things more diffi­
cult, each bit has a different value than it had as a single or multiple 
precision integer. Remember how the value in each successive 
bit position increased by a factor of two? In this case each bit 
on the right of the implied decimal point decreases by a factor 
of two. The first bit on the right is worth one-half, the next one­
fourth, then one-eighth, and so on. Notice how each denominator 
is two raised to a power? Figure 10 shows the values of the first 
16 bits. 

BIT VALUES 

RIGHT OF THE DECIMAL POINT 


:----------------)112 = .5 ,, 1/4 = .25 
: 1/8 = .125 
: 1116 = .0625 
: 1/32 = .03125 
: 1164 = .015625 
v 11123 = .0073125 

.111111111111111 11256 = .00390625 
A(b i nary) 11512 = .001953125 
: 1/1024 = .0009765625 
: 112048 = .00048823125 
,, 114096 = .000244140625 
,, 118192 = .0001220703125 
: 1/16384 = .00006103515625 
: 1/32763 = .000030517578125 
:---------)1/64536 = .0000152587890125 

Exarnpl~: 

.10010001(binary) = 1/2 + 1/16 + 1/256 
= .5 + .0625 + .00390625 
= .56640625 

Figure 10. 

The exponent and mantissa are combined in a number of ways. 
One of the common methods is to define a floating point variable 
as using four bytes. The first byte is the exponent in single precision 
signed integer format. This type of format limits the size of the 
exponent between -128 and +127 inclusively. The remaining three 
bytes are multiprecision signed format with an implied decimal 
point before the most significant bit. In scientific notation, the ex­
ponent indicates the number of times to multiply or divide the 
mantissa by ten; whereas in floating point notation we are working 
in binary, not decimal, so it is the number of times to multiply 
or divide by two. If the sign is positive, multiplication is indicated, 
otherwise division is the desired operation. Some examples of float­
ing point numbers can be seen in figure 11. 

FLOATING POINT VARIABLES 

For"",t: 

sttf!ot't'et' :: si9r~d txpontnt 
SlQfflrmJA,m ....... = sigl)t'd aantissa 

ExalOp 1.5: 

0.~. = 00000000 01000000 ~~ = 112 
1.0 = ~I 01000000 0000%i0 0000e80e ; 112 ..ult. by 2 onco 
1.5 = 00000001 01100000 ~~ = (112 + 1I4l·.ult. by 2 one. 
2.0 ; 00000010 01000000 0Q1009000 0~ ; 112 mult. by 2 twice 

0.25 ; 11111111 01000000 00000000 00000000 ; 112 divid~d by 2 onc~ 

Figure 11. 

Floating Point Error 

If the mantissa uses 24 bits as in the examples of figure 11, then 
the smallest increment between expressible values is 1/8388608. 
Therefore, the fractional portion of all floating point numbers will 
be a multiple of this value! What happens if the number we are 
trying to express is not a multiple of 1/8388608? Usually, it is 
stored as close as possible with the remaining error simply 
dropped. Let's look at some examples of this type of error. If we 
divide one by three, we have one-third. When we express this 
as a decimal value it is .33333 ... and continues indefinitely. The 
decimal system cannot express it exactly. Usually we select a de-

REMark • February • 1984 44 



A FLOATING POINT ERROR EXAMPlE 

(I I 31 * 3 = ? 

5PPf'ef'f'f' s...~ ___ ~ 
1/3 = .333333... 111111110101010181010101 01010101 

(112 + 118 + 1/32 + 1/128 + 1/512 + 1/2&48 + 1/8196 + 
1/32784 + 11131136 + I 1524~M + 1/2098176 + 1/8392704 I I 2 

..t ' 
• • 125 
+ ."3125 
+ .007BI25 
+ . 001953125 
+ .001'>48828125 
+ .%illm703125 
+ . 00%30517578125 
+ • &11"00762939453125 
+ •0011)0019~734Bb328125 
+ .11)00001'>471>8371:>8203125 
+ . 00000011 920928955078125 

.6666bbb2693223b8IM0625 I 2 

.333333313466118408203125 • 3 = 

Figure 12. 

.333.,'3331346611841'18203125 

•999999940398355224~09375 

sired number of significant digits and then either truncate or round 
off the remaining digits. In this case let's assume five significant 
digits are all that is required . Therefore, one-third will be expressed 
as .33333. Here in lies our problem. Multiply .33333 by three 
and we have .99999 and not the 1.0 which is desired. We have 
now proven that three times one third is not one! Well, not actu­
ally . All we really have done is demonstrate that three times our 
representation of one-third is not equal to one. 

An identical problem exists when computers represent numbers 
in floating point format. We can see in figure 12 how one-third 
is stored. Follow through the math in this example. Obviously, 
one-third times three is one, but we can see the results are not 
computed to be one! You were absolutely right, your computer 
not only can't add, but it can't multiply or divide either! I chose 
this particular example because it is easy to demonstrate. There 
are many numbers which cannot be exactly represented this way. 
They can be broken into three classes. The first group contains 
those numbers with infinitely repeating digits. One-third is a mem­
ber of this class. In decimal it repeats "3" infinitely. When ex­
pressed in binary it repeats "01" forever. A second class are the 
numbers which simply need more bits to represent them. If 1/ 
8388608 is the smallest increment we can represent in a typical 
floating point system and a number requires half that value more 
to express it exactly, then we would need one more bit past the 
least significant bit. The number of significant digits can be in­
creased by increasing the size of the mantissa. A very common 
double precision floating point length is 64 bits. Although increas­
ing the size of the mantissa increases the accuracy, and can there­
fore eliminate one of the classes of non- representable numbers, 
there are many numbers which cannot be exactly represented with 
anything short of an infinitely long mantissa. The third class con­
tains the numbers which are non- repeating and never end. The 
ratio of the circumference of a circle to its diameter, pi, is an 
example of one of these numbers. They too cannot be exactly 
represented in a typical floating point system. 

There is another type of floating point related error which should 
be considered. Most single precision floating point variables con­
tain about seven significant digits. What do you think would hap­
pen if the least significant digit of a variable was units of thousands 
and we attempted to add a one to it? The value one would have 
to be added to bits below the least significant bit. As you can 
guess, the addition will not occur because the one is comparatively 

foible. All is not lost. Even though your computer can't add, it 
can learn. 

10 tUM 100 
20 DEFSNG D 
30 [lEFlNT A 
41'1 PRINT CHRt(27I; 'E' 
5e PRINT 
61'1 PRINT f 

'Thoro aro t .. o functions to this progra.. 'i f 
"Tho first d••onstrat.. tho folly of' 

70 PRINT @ 

"adding a rolativo s.all nUMbor 
IIlargf' one .. • 

80 PRINT 

90 PRINT "In this cas. "" .. ill attfllpt 

to a ";f 

to 'i f 
"add I to I~, 100 

10e GOSUB 550 
110 FOR I = I TO se 
120 [l9 = I E+0b 
130 PRINT USIt«l·..II..... \ 
140 lJ9 = 09 +1 
1501 PRINT USING· ........ ·;09 
160 NEXT 
170 PRINT 'Not i c. th~ add i t i on 

tiMOs.· 

\";09;' + I '; 

novor o(curr~d.· 
175 PRINT 'If it had, tho ans...r ..ould hay. b~on 111)001110.' 

180 GOSUB S50 

190 PRINT CHR1(271;'E' 

200 PRINT "Floating Point Brnkout" 

211'1 PRINT 

220 PRINT f 

-ltd s progratl ~'tf'ks i rlto !fItwlory to 9@t .. ; f: 
"tho bytos of • floating poir,t variabl •• " 

231'1 PRINT e 
"It tt,tr, prir,ts out the floating f,oint ';@ 
·rpprps~nta.tiorl irl both h@x .and birla.ry. II 

241'1 PRINT @ 

"Pag. E-~ of th~ Microsoft BASIC Software ";(" 
"Rohr.n,. Manual doscrib.. tt,. for .... t." 

245 PRINT t 
'If you art as inquisitivt as 

250 PRINT 
260 PRINT 'Entor dHi... 1 valuo to b. 
270 Al =0, A2--0: A3--0: A4--0 
280 DI=0.01 
290 PRINT 
300 INPUT '[Jeci ... l ';DI 
310 Q = VARPTRIDII 
320 A1=PEEKW) 
330 A2"=PEEK (Q+ I I 
340 A3=PEEK(Q+21 
350 AA=PEEK(Q+31 

I alll, try -1.7014117E38" 

convHtod ••• " 

360 Aa=H£XJ(All : IF LEN(AUI(2 THEN A1J='~'+AU 
370 A2J=HUJ(A2I: IF LEN(A2fI(2 TliEN A~='0"+A2f 
380 A3~HEX~(A3): IF LEN(A3JI(2 THEN A3~·0·+A31· 
m A4~=HEU(A41:1F LEN(AAJI(2 THEN A4~'0"+A4J 
400 PRINT' H.. = "A4J' 'Alt" .~. 'AU 
410 PRINT' Binary = '; 
420 AA=AA: (,oCrSUB 490 
430 AA=A:<: GOSUB 490 
440 AA=A2: GOSUB 490 
450 AA=A I : GOSUB 490 
460 PRINT 
470 GOTO 270 
4~ REM Strip out binary 
49~ FOO I = 7 TO 0 STEP -I 
500 IF (AA AND Z"I I = 0 THEN PRINT '0'; 
510 NEXT 
520 PRINT' '; 
530 RETlJlN 
:>40 kEl'l J<.i t for koystroko 
~0 PRINT'Hi t any key to continuo ••• ' 
560 A~INPlJH( I I 
570 RETURN 

Listing 1. 

ELSE PRINT '1'; 

Conclusion 

Dealing with the intrinsic error of floating point notation has been 
the topic of numerous books. There are as many techniques to 
handle this type of error as there are manufacturers creating micro­
computers. A common technique is to store values in a format 

insignificant. Part of the program in the listing demonstrates this called Binary Coded Decimal, BCD. This technique uses four bits 

REMark • February • 1 984 45 

http:birla.ry


for each number. Groups of BCD numbers are used to represent 
larger values. For example, 1024 could be represented as "0001 
0000 0010 0100" . A modified floating point system can easily 
be created using BCD. A system of this nature allows for large 
numbers to be represented but still suffers from the infamous re­
peating mantissa. Some systems round off the fractional portion 
while some simply truncate it. Microsoft Basic-80 rounds off both 
single and double precision floating point. Use the program in 
the listing to prove it. 

There are a number of simple things you can do to minimize this 
type of problem. As a rule of thumb, use integers whenever possi­
ble. You can force a variable to be an integer in Microsoft BASIC 
by using the DEFINT statement. Even money can be manipulated 
as an integer value. Keep in mind, money can be counted by 
cents as well as dollars and fractions of dollars. Another good 
rule is to always control the type of storage a variable uses. Al­
though not a problem in strongly typed languages like Pascal, this 
is very important in languages like BASIC. Probably the most effec­
tive preventative medicine you can take is to know the language 
you are using. Run programs similar to the listing in each and 
study the results. If all else fails, you can even read the documenta­
tion. 

We have just scratched the surface of the numeric representation 
problem. Consider a series of computations all involving floating 
point numbers. The error from each of them can accumulate and 
completely wipe out any meaningful results. There are techniques 
to handle them and being able to apply these techniques is an 
absolute must for any programmer. ,,~ 

H/Z-1 00 COLOR 

GRAPHICS SOFTWARE 


Want to explore Z-BASIC color graphics the easy way? 
Try these packages from MICROSERVICES. All you 
need is a color configured computer with 128K memory, 
a color monitor, and Z-BASIC. 

ZANIMATE will help you rapidly draw and paint each 
frame in an animation sequence. Select frame sizes, vary 
location and time between each frame. Draw the back­
ground too, with the graphics editor ........... $64.95 

ZPALETTE, the original H/Z-100 palette program, 
contains a graphics editor for point-plotting images 
which can be painted in 92 hues! File your images for 
access by other Z-BASIC programs, and transfer imagery 
from one file to another. 
NEW PRICE .... . . . ............. . .............. $59.75 

ZPATTERN helps you determine the quality of your color 
monitor and if it needs maintenance. 
NEW PRICE . .. ............................... $24.95 

Include 3% handling/postage ($2 .50 minimum) - Cali ­
fornia add 6V2% tax. Send check or money order to: 

MICROSERVICES 

P.O. BOX 7093 


MENLO PARK, CA 94026 

PHONE: (415) 851-3414 


-" 

H/Z89 PERIPHERALS from SECURED COMPUTER SYSTEMS 

PORT SERIAL 
2/3~---CARD--­ 110 
/3 PORT PARALLEL .. not your typical vanilla-flavored serial 

and parallel interface •.. " 

Features: 
Chip independent design • Reduces computer data buss loading from 
3 to 1 • Choice of Centronics or Epson parallel drivers for HDOS 
or CP/M • Complete documentation and installation instruction. 

• 2 Serial Ports all models of H/Z 88, 89, 
• Supports: Ring Input, 90 using CP/M or HDOS. 

External Clock, Auto Dialer • Fully tested , 90 day warranty, 
• 3 Port Parallel with 2 two serial cables and a parallel cable 

Level Interrupt Control (internal to computer) and software 
• Fully compatible with driver. 

PRICE $199.00 

Shipping [, Handling $ 10.00 


16K RAM. EXPANSION CARD 


Expands your H/Z89 RAM Memory 
capacity to a FULL 64K! 

Fully compatible with: 
H/Z 89 • H/Z 88 • Magnolia Microsystems 


CP/M and disk drive I/O interface cards 


NOW INCLUDING SUPPORT MOUNTING BRACKET 
Featuring: 

Complete installation instruction • 90 day Warranty 

Field reliability record now entering its 21 st month 
Now Only $65.00 

HDOS is a registered trademark of Heath Compa"y Shipping [, 
CPIM is a registered trademark of Digital Research Handling $5.00 

PRICES ARE LESS SHIPPING AND TAX IF RESIDENT OF CALIFORNIA 
MAIL ORDER: 12011 ACLARE, CERRITOS, CA 90701 (213) 924-6741 ~III"N 

TECHNICAL INFO/HELP: data systems 
8575 KNOTT AVE., S(JITE D, BUENA PARK, CA 90620 (714) 952-3930 SERVICE CENTER 

Terms and specificat ions subject to change without notice . 

REMark • February • 1 984 46 



Zenith w ers! 
HUSKER SYSTEMS OF NEBRASKA. INC. PRESENTS 

WINTER SOFTWARE SPECIALS THAT YOU CAN'T BEAT FOR PERSONAL COMPUTING ENJOYMENT!! 

Video*Professor Computer-Based Training Systems help you learn qu icker and with greater 
enjoyment than with conventiona 1 sel f-study courses. They ar e de s igned to 1et the 
computer interactively teach you rather than requiring hours of bori ng textbook study. 

Currently there are 3 courses available: MBasic Programming I, Assembler Programming I, 
and How To Program, A Structured Programming Methodology. All three are available under 
HOOS and CP/M-80 for the H/Z89-90 (on hard sector diskettes) and under ZOOS and CP/M-85 
for the Z100 (on soft sector diskettes). The regular retail price of each Video*Professor 
product is $29.95, but ... 

By referenci ng thi s speci a 1 offer you can get one Vi deo*Professor for $22.00. two for 
$42.00. and ALL THREE FOR $62.00!! This offer is good through March 31, 1984, and you 
should keep your eyes open for other additions to the Video*Professor product line. 

ZMAG is the Software Subscription Service which provides you with a continuing stream of 
valuable software over a year's membership. Like a magazine, ZMAG provides you with 
interesting articles and personal computing tips, but with each issue you also get a 
diskette with up to 15 PROGRAMS ON IT! These programs include everything from games to 
business and personal aids to system utilities. ZMAG is available under CP/M-80 (on hard 
sector diskettes) and under ZOOS and CP/M-85 (on soft sector diskettes). 

There are 8 issues (8 diskettes) to a ZMAG subscription year. The regular annual 
subscri pt i on rate is $240.00, wh i ch is $5.00 per issue under the "news stand" pri ceo For 
this special period ending March 31, 1984, you can obtain a ZMAG subscription for ONLY 
$177.00! THAT'S A 251 DISCOUNT. 

BETTER STILL. ORDER BOTH A ZMAG SUBSCRIPTION AND THE 3-PROOUCT VIDEO*PROFESSOR SERIES AND 
GET THE WHOLE PACKAGE FOR JUST $227.00! (It's a $329.70 value!) 

Just use our handy order blank provided below or callus at (402) 558-5702. By the way, 
we have over 40 other fine software products for Zenith computers, all reasonably priced, 
and we can fulfill your media and hardware needs economically as well. Be sure to ask for 
our free price list, and please specify the operating system you desire for each product. 
Thank you. 

Husker Systes5 of Nebraska. Inc. -- Fine Heath/Zenith Microprocessor Products 
Method of Payment: I] CHECK [I MC/VISA # EXPIRES____ 

QUANTITY PRODUCT DESCRIPTION (INCL OPERATING SYSTEM) UNIT PRICE TOTAL PRICE* 


TOTAL 

Send Order To: 

NAME TEL Husker Systems of Nebraska. Inc.'--' 
5208 Hamilton. Omaha. NE. 68132 

STREET ClTY ST ZIP Check Here For Free Catalog 1=1 
#1212 



David Vinter 

DiskAccess By 
Tracks and Sectors 

One of the advantages afforded by an operating system like CP/M 
is the ability to write and read files on disks without reference to the 
actual locations of the data on the disk itself. But sometimes you may 
wish to directly access data on the disk without using thefile conven­
tions - this is what the "un-erase" utility programs do when they re­
cover a file, for instance, by changing a byte in the disk directory. 
This article will first discuss the logical organization of the Heath CP/ 
M H17 disk, then demonstrate how to access the disk by track and 
sectors, and finally show you how to use a hidden 11 sectors on the 
disk that are not accessible by any other means. Direct track/sector 
disk I/O will also permit you to use HDOS-formatted disks as well, 
a technique that could be developed into a program that would per­
mit direct transfer of files between the two operating systems. 

Disk Organi~ation 

CP/M reads and writes disks in 128-byte units called records, regard­
less of the disk size or format. The BIOS determines how these rec­
ords are mapped onto the physical structure of the disk itself; in this 
article we will only be concerned about the hard- sectored disk used 
by the H17, but the principles apply to the soft sectored s-inch disks 
as well as the standard 8-inch disks. The disk consists of 40 concen­
tric tracks (numbered 0-39), and each track in turn is made up of 20 
records (numbered 1-20). Thus, the entire disk can contain 800 rec­
ords (20x40). (Do not confuse the physical sectors, of which there 
are 10, with the logical records, which are 128-byte units. Each of 
the ten physical sectors making up a track has 2 logical records 
mapped onto it. Unfortunately, many people refer to the logical re­
cords as 'sectors', as well as the actual physical sectors.) 

The first three tracks (0-2) are reserved for all of the operating system 
except the BIOS: a cold start loader, the CCP, BDOS, and the BIOS 
loader (the BIOS itself is stored like any other file) . Track 3 contains 
the disk directory and the start of the file space; the remaining tracks 
(4-39) contain the rest of the file space. When a program running 
under CP/M reads or writes to a file, it finds the actual physical sec­
tors containing each of the file records by looking at the directory 
for the named file . The directory is thus much like the table of con­
tents of a book, listing the pages (sectors) on which the chapters 
(files) are written . 

Before looking at the directory entries themselves, a little more detail 
about how CP/M writes disk files is necessary. Although the smallest 
unit which can be read or written is a record (128 bytes), to minimize 
the directory size, CP/M actually read/writes 8 records, called a 
group, at a time. By using calls to the BDOS, as almost all standard 
programs (like BASIC) do, file access is always by groups. Later on 
we shall see that the BIOS contains routines to access a single rec­
ord, though, which is how the utility programs operate, and which 
you may use as well. For now, it is enough to know that all files are 
actually stored in 8-record units called groups. 

Dept ofAnatomy &Cell Biology 

UniversityofMichigan 


Ann Arbor, MI48 709 


Each file is listed in the directory in 32-byte entries, called extents, 
each one of which contains a list of up to 16 groups that the file data 
are written in . If a file is longer than this (16X 8= 128 records, about 
16K), then a second extent must be entered in the directory for it, 
and so on, until all the file's records are listed. A file will have as 
many entries (extents) in the directory as needed, and they are given 
extent numbers (starting with 0) to keep them in order. A map of the 
32-bytes for a single directory entry is shown below: 

byte co ntents 
o 	 use r nu~ber or deleted-fil~ flag 


(on a one-user syste~, user nu~ber = 0) 

(if file is deleted, byte set to 0E5H) 


1-8 	 fi le na~e 
9-11 fi le type (extension); plus the 

highest bit can be set: 
byte 9, high bit=l: RIO file 
byte 10, high bi t=l: SYS fi le 

12 extent number (first=0) 

13-14 blank 


15 extent size, in sectors 

16-31 group numbers 


A specific example, showing the directory entry of the file PIP.COM, 
looks like this: 

b~te: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
HEX : 00 50 49 50 20 20 20 20 20 43 4F 4D 00 00 00 3A 

ASCII: 0 PIP sp sp sp sp sp COM 0 58 

byte: 16 17 18 19 20 21 22 23 24 2S 26 27 28 29 30 31 
\-E XI 07 08 09 0A 0B 0C 0D 0E 00 00 00 00 00 00 00 00 

ASC II : 7 8 9 10 II 12 13 14 

Reading from above, the file PIP. COM is composed of 58 sectors 
(byte 15), stored in groups 7-14 (bytes 16-23); it is neither an RIO 
nor a SYS file, since bytes 9 and 10 are not set with the high bit = 
1; this is the first extent (byte 12), and the last, because it is not full 
(bytes 24-3 1.) To erase a file, CP/M simply writes EsH in byte 0, in 
place of the 0 there now; the rest of the entry stays intact, but is ig­
nored by the system in subsequent file operations. Groups 7-14 
would be re-assigned as needed for any newly created files; until this 
happens, you could change byte 0 back to 0 at any time and 're­
create'thefile. 

The group numbers in the last 16 bytes of the directory entry provide 
the actual map of the disk for CP/M. Obviously, if anything should 
happen to the directory entry for a file, such as changing even one 
of the group numbers, your computer would not be able to recon­
struct the file. The function of the FORMAT program can be ap­
preciated as well. It inserts EsH's all through the disk; most impor­
tantly, it puts them into the first byte of every directory entry, indicat­
ing no file is there. Any other number in the first byte would cause 
CP/M to try to construct a file name and map for each entry. 

REMark • February • 1 984 48 



Let us look for a moment at the disk in terms of groups. Tracks 0-2, 
containing the CCP, etc., are always in the same place and don't 
have group numbers associated with them. Tracks 3-39 are com­
pletely divided into groups as follows : groups 0 and 1 contain the 

directory, groups 2-91 contain file space. If you have SYSGENed 
your disk just after FORMATting it, then the BIOS.SYS file will be 
in groups 2-6, since these are the first open groups after the directory 
space. 

A little multiplication will show you that the 92 groups in tracks 3-39 
don 't occupy all the space in those tracks; 4 sectors in track 39 (num­
bers 7, 8, 15, and 16) are not assigned to groups, and therefore are 
never written on by files . This occurs because the directory groups 
reference 8 sectors, and these 4 are the remainder left on the disk 
which don't make up enough space to be included in a group by 
themselves. There are also unused sectors in track 2 (sectors 14-20), 
which aren't occupied by any of the CPIM system components that 
are present in the first three tracks, and which don't get included in 
the group maps in the directory. Together, these are the 11 sectors 
I mentioned at the start of the article which are never used in CPIM 
files or system areas - and these could be used by you if you were 
to access them directly through the BIOS, instead of by the usual 
BDOS operations that readlwrite files. 

Absolute Sectors 

When CPIM uses files, it really looks at the disk as a collection of 
groups; any sectors not in groups are ignored in file operations. But 
we can instead view a disk as simply 800 records and access them 
individually, without using file conventions at all. A major advan­
tage of this is that we can read and write to unformatted disks (like 
an HDOS disk!). The BIOS has primitive routines that can be called 
from assembly level programs to do just this; they are described in 
the Alteration Guide of the infamous CPIM documentation. It is 
done by first using commands to position the disk head at the track 
and sector desired, then reading or writing to that sector with 
another command. This is almost identical to doing a disk read or 
write from the BDOS, except that you must position the disk head 
yourself before calling the read or write routine . The routine shown 
below will allow you to perform absolute sector 1/0 by first putting 
the track/sector values in the < B> and < C> registers, 
respectively, CALling HEADSET, then either CALLing READ or 
WRITE as needed. In either case, the buffer used in memory for the 
disk 1/0 is defaulted to the DMA, which runs from080H to OFFH. 

BIOS EQU F000H 

** THI S IS THE BIOS START FOR AN H8-CP/M 64K SYSTEM 
* FOR OTHER SYSTEMS, THE START OF THE BIOS IS IN 
* MEMORY ADDRESS 0002H-0003H 


* 
SETTRK EQU BIOS+01EH 

SETSEC EQU BIOS+02IH 

READ EQU BIOS+027H 

WRITE EQU BIOS+02AH 


* HEADSET:
* CALL WITH TRACK NUMBER IN <B)
* AND SECTOR NUMBER IN <C) REG'S 

PUSH PSW jSAVE SECTOR NUMBER 
MOV C,B jPUT TRACK NUMBER IN (C) 
MVI B,000H JZERO HIGH BYTE 
CALL SETTRK i SET TRACK NUMBER 
POP B jGET SECTOR BACK IN (C) 
MVI B,000H iZERO HIGH BYTE 
CALL SETSEC iSET SECTOR NUMBER 
RET 

'-'" * * SUBSEQUENT ·CALL WRITE" WILL WRITE MEMORY CONTENTS 

* IN DNA (FROM 080H TO 0FFH) TO THE DISK SECTOR;
* SUBSEQUENT ·CALL READ" WILL READ THE SPECIFIED
* SECTOR INTO THE DNA AREA 

* 


What if you want to read a file using the above method, how do you 
find which sectors correspond to which groups in the file directory 
entry? The answer is a little complex, since the relationship between 
group number and track/sector numbers is not simple. To minimize 
access time during 1/0, the BIOS does not assign group numbers to 
adjacent sectors; instead, it skips 7 sectors between each pair of sec­
tors. The chart below uses an algorithm to permit you to calculate 
the sector and track numbers given the group number (or the re­
verse), but it takes a little study to understand! 

Tr'ack Sector's Gr'oup Tr-ack ~ctOI'S Gr'oup 

(2y-1l 01-02 (5x) (2y) 01-02 (5x+2) 
09-10 09-10 
17-18 17-18 (5x+3) 
05-06 05-06 
13-14 (5x+1l 13-14 
03-04 03-04 
11-12 11-12 (5x+4) 
19-20 19-20 
07-iM3 (5x+2) 07-08 
15-16 15-16 

··x· and '.y" above are found from th~ equation: 
y = x + 2 

e.g. for gr oup 0, x=0 and y=2i for track 3, y=2 and x=0 

Don't be too horrified by this chart. If you just want to use the sectors 
that CPIM doesn't normally use that I mentioned earlier, you only 
need the assembly routine. This translation from group to track/sec­
tor is only necessary if you want to find each sector for a file given 
ina directory entry. 

The information in this article should give you a start on constructing 
your own utilities to 'un-erase' files, or even recover data from a disk 
with a damaged directory, since the disk can be accessed for 110 by 
the routine above even if it has not been FORMATted. HDOS disks 
can also be read as well as corrupted CPIM disks, but you will need 
to find out how HDOS organizes it's disks (it isn't the samel) to read 
the directory so that you can locate the sectors containing the file 
contents. 

* 

About the Author: 
D avid Vinter is a cell biologist at the University ofMichigan 
and is just now completing his PhD in anatomy. His research 
involves blood vessels and vascular surgery. David's interest in 
computers goes backseven years, when he began using a main­
frame, then an IBM-360 at the University. He purchased an H-8 
abouta year ago, andhas been hookedon micros eversince. 

REMark • February • 1984 49 



Getting Started 
With Assembly Language 

Pat Swayne 
Software Engineer (Or, It's Your Turn To HelpMe, Now) 

In the last three installments of "Getting Started" , we covered disk 
file operations in HOOS and CP/M. The first two of those three parts 
covered elementary disk file reading in HOOS and CP/M, and in the 
last installment, I presented the first really useful "mini-program" in 
this series to demonstrate more advanced disk operations in HOOS. 
Now it's the CP/M user's turn to get a useful demo program, as we 
cover ... 

Part IX - Disk Files in CP/M, Part 2 

For those of you who are new to HUG, this series on assembly lan­
guage started in the April 1983 issue. If you want to read the entire 
series, you should buy the bound volume of all the 1983 REMarks, 
which is part no. 885-4004. 

In our first discussion of CP/M disk fi les, we examined a program that 
transferred a file from the disk to the screen by reading one record 
(128 bytes) , printing it to the screen, and repeating the operation. 
I mentioned previously that there are basically two ways of handling 
disk files. You can handle one record at a time as we have already 
done, or you can work with the whole file or with all available mem­
ory, which ever is smaller . The second method is more efficient 
when you want to copy files, so it is the method we will use in this 
month's demo program . The demo program is a file copy utility 
called COpy that is run with the following syntax. 

A)COPY (source drive:)FILENAME.TYP TO (des t ination drive:) 

If the source drive is the currently logged drive, it may be left off. 
For example, if you wanted to copy ASM.COM from A : to B:, you 
could enter: 

A>COPY ASM.COM TO B: 

As with the HOOS version of this program, you are invited to share 
it with your friends who are newcomers to computers and who are 
confused with the "destination = source" syntax of PIP. This pro­
gram is limited in that it does not understand "wild cards" or allow 
you to change the name of a fi Ie wh iIe copying it, but its ease of use 
may make it useful to beginners. 

The COpy program first checks for a command line argument by 
looking at the first name character in the default FCB area. If no argu­
ment was given, a message explaining the program is printed. I like 
the TYPTX routine that is built in with HOOS so much that I often 
put my own TYPTX routine in CP/M or Z-OOS programs, including 
this one. The TYPTX routine prints any text that follows the call to 
it until a character with the 8th bit set is found, and then it returns 
to the address after that character. 

If a command line argument is found, the program sets up things by 
finding out how much memory is available. It does this by getting 
the BOOS start address from location 6 and subtracting from it the 
CCP size (800H), the CP/M serial number size (6), and the size of 

one record (80H), for a total of 886H bytes. Then it determines if any 
memory space is left, and if so, goes on with the program. Other­
wise, an error message is printed, and the program quits. 

After the avai lable memory space is computed, COpy moves the file 
name information from the default FCB to another FCB that will be 
used for the destination file. Then it searches the default OMA area 
(remember that command line arguments are placed there "as is" by 
CP/M) for the string "TO" . If it can't find the string, it prints the usage 
information message and quits. If it does find the string, it looks for 
the next non-space character and converts it to a number by sub­
tracting the value of "@" from it, so that A is changed to the value 
1, B to 2, etc. Then it makes sure that the destination drive is not 
the same as the source drive and prints an error message if it is. 

You may remember that we did not perform the same drive check 
in the HOOS version of the program: That is because HOOS always 
writes to unused parts of a disk even if the file being written has the 
same name as one already on the disk. If the write is successful, it 
will then delete the old file with the same name. However, CP/M 
will just write over an existing file, so the program handles things 
differently. It does not allow the source and destination drives to be 
the same so that there is no chance of damaging the source file, and 
if a file with the same name is found on the destination drive, COpy 
will ask the user if he/she wants to delete it. It tests for the duplicate 
named file by trying to open it. 

If the destination file does not already exist, or if the user has chosen 
to delete it, the COpy program makes a new directory entry for the 
destination. If there is no directory space, the user is notified, and 
the program exits . If everything is OK so far, the program enters a 
copy loop. Since CP/M can read only one 128-byte record at a time, 
I set up a read loop and a write loop in the program to simulate the 
ability of more advanced operating systems to read as much as possi­
ble at each pass. In each loop, the OMA address is placed within 
the reserved memory area and adjusted upward 128 bytes after each 
record until the read or write pass is finished . Ouring the read loop, 
the number of records read is counted so that the same amount will 
be written in the write loop. The entire copy loop can be executed 
any number of times so that a file of any size can be copied . 

This may seem like a lot of work just to copy a file, but it is the most 
efficient way to do it. If you want to do a little homework, try writing 
a version of this program that alternately reads and writes only one 
128-byte record at a time until the file is copied, and see how much 
longer it takes than this method. 

If the end of the file is detected during a read loop, a flag is set so 
that after the next write loop, the destination file will be closed. If 
the close operation goes OK, the program exits . If not, an error mes­
sage is printed. There is also an error trap and message in the write 
loop, in case something goes wrong there. 

REMark • February • 1984 50 



Following the main body of the program are two subroutines that are One winner will be selected for HDOS and one for CP/M. Since we 

used in it. The first is used to skip over spaces while examining the have not covered "cracking" filenames in CP/M yet, I will allow the 

command line, and the second is the TYPTX routine mentioned be­ CP/M version to use this syntax: 

fore . After the subroutines comes the data area that holds the mem­


RENM (drive: )OLDFILE.NAM NEWFILE.NAM
ory top address, the record counter, the end of file flag, the output 
FCB, the stack, and the copy buffer. With this syntax, CP/M will decode the filenames itself into the two--- default FCB areas. But try to do it using the first syntax. 

A little Contest 	 The winners in each category will get their choice of any HeathlZe­
nith software product and any HUG software product. Submit your 

Now that the CP/M users are caught up with HDOS users in this entry on a disk, if possible. I will judge the entries personally, and 
series, it's time to have the contest I mentioned in the last installment judgment will be based on how well the program works and its use­
of "Getting Started". The contest is to create a program called RENM fulness in a future "Getting Started" article as a tutorial program. The 
that will rename a file on the disk using the following syntax: program should be well commented, and any accompanying text 
RENM (drive: )OLDFILE.NAM TO NEWFILE.NAM explainingitwill be appreciated. So get started, and best of luck! 

* COpy - FILE TRANSFER PROGRAM 

* * 	 TH I::: PROGRAM IH10N:::TRATE::: READI NG AND WR IT I NG
* 	 DISK FILES UNDER CP/M. FILES ARE READ AND 
* WRITTEN IN LARGE BLOCKS. 

* * THIS PROGRAM COPIES FILE::: U:::;JNG THE FOL.LOWING 
If :::YNTAX: 

* * A>COPY d:FILENAME.EXT TO d: 

* * 	 I-JHERE d: IS A DRIVE DE:::IGNATION. 

* 	 BY P. :::WAYNEI HUe; 14-NO'J-83 

* 	 CP/M DEFINITIONS 

CONIN 	 EOll 
~,CONOUT EOU L 

OPEN EOU 15 
CLU3E HIll 16 
DELETE E(.It! 19 
READ EQU 20 
WRITE HlU 21 

--:I"")i"1AKE 	 EQU ..:....:.. 

~.. {­
~LI:::ETDMA 	 EOU 

CllRDSK EOU 4 
£:D(6 EGlL! C'

.' 
DFCB EOU 5CH 
DMA EOLI 8Q1H 

ORG 	 1Q)Q1H 

i"IA I N PROGRAM* 
START 	 LXI H, ij 

DAD :::P ; LOCATE :::T ACl: 
LXI :::p I :::T ACK i :::ET NEW ONE 
PUSH H ; :::AVE OLD ONE 
LDA DFCB+l 

.. .CPI ; CHECK FOR ENTRY 
,JNZ GOTFILE i IF :::0, CONTINUE 

ERREX CALL TYPTX 

REMark • February • 1984 51 



DB 
DB 
DB 
DB 
DB 
DB 

EXIT 	 POP 
:;PHL 
RET 

GOTFILE LHLD 
LXI 
DAD 
SHLD 
MVI 
SUB 
,JC 
CALL 
DB 
,JMF' 

GOTMHl LXI 
LXI 
MV I 

MOVFCB 	 NOV 
::;TAX 
INX 
INX 
DCR 
,JNZ 
LXI 
CALL 

FN::; 	 ~10V 

CPI 
,JZ 
INX 
,JMP 

FN[6P 	 CALL 
CPI 
,JNZ 
INX 
MOV 
CPI 
,JNZ 
INX 
MOV 
CPI 
,JNZ 
CALL 
SUI 
STA 
MOV 
LXI 
LDAX 
ORA 
,JNZ 
LDA 
INR 

NOTDEF 	 CMP 
,.JNZ 

13,10, "Th€ COf'r'ect u s~ of 'chi s pr'(lgr-~,m is' ) 13 

10, 10, 'A>COPY d:F ILENAME.TYP TO d: ',13 , 10,10 

'1,\lh~r-€ d: is a dr' iv~ designation' 

'(A:, B: , t'tc . ) , ',t:::,lQ; 

'and FILENAME.TYP is file you want to COPY. ' 

13, 10+:::elH 
H 

BDO~;+l 

D, -;:::::6H 
D 
MEMTOP 
A, BUFFEF:1256 
H 
GOT MEl"l 
TYPTX 
13, 10, 'ERROR ­
EX IT 
H,DFCB+l 
D,OUTFCB+l 
B,15 
A,M 
D 
H 
D 
B 
r'10VFCB 
H,D~lA+l 

so::; 
A,M 
" " 

FNDSP 
H 
FNS 

'T' 
ERREX 
H 
A, t1 
"0' 
ERREX 
H 
A,M 
.' ." 

ERREX 
so':; 
"@' 

OUTFCE: 
B,A 
D,DFCB 
D 
A 
NOTDEF 
CURDSK 
A 
B 
NOT~;AM 

j GET OLD ~;TACK 
j SET IT 
i RETURN TO CP /M 
j GET BDOS AD DR E':;:;:; 
;SUBTRACT cep, SER., AND 
; TO FI ND MEMORY LIMIT 
; SAVE MEI10HY TOP 
;GET BUFFER ADDR HI GH 
; ANY MEMORY AVAILABLE'" 
; YESI GO ~IHEAD 

REe. SIZE 

Not enough memory.',13,10+80H 
; RETURN 	 TO CP /M 
;POINT TO FCB 
jAND OUTPUT FCB 
jMOVE 15 CHARACTERS 

iMOl,iE THE FILE NAME 

jPOINT TO COMMAND ARGUMENT 
;SKIP OVER SPACES 
JGET A CHARACTER 
;SPACE? 
; FOUND :::PACE 
j ELSE, INCREi'lENT PO INTER 
i AND FIND NEXT :3PACE 
i ~;I<IP OVER IT 
;LOOK FOR 'TO' 
;EXIT IF NOT FOUND 

; FOUND "TO", ~¥IP TO DRIVE NAME 

; REMOVE ASCI I FRO~I DR 1VE CODE 

;AND SET UP OUTPUT FCB 

j ~;AVE DR I VE CODE 


j INPUT DRI VE [lEF AIJLT~J 


-; NO 

; ELSE, GET CURRENT [II ~;~:: 


; MAKE IT START ~HTH 1 

j COMPARE INPUT AND OUTPUT DR I~'ES 


i NOT THE ~;AME 


REMark • 	February • 1984 52 



CALL TYPTX 
DB 13 1 10,'ERROR - Same drives. ' , 13, 10+80H 
,Jt1P EXIT 

NOTSAM MVI C,OPEN 
CALL 8D08 ; OPEN INPUT FILE 
INR A 
LINZ GDOPEN jOPEN OV 
CALL TYPTX 
DB 13, 10, 'ERROR - File not found.',13,10+80H 
,-IMP EXIT ; RETURN TO CP /t~ 

GDOPEN 	 LXI DjOUTf:"CB 
MVI C,OPEN 
CALL BDOS ;TRY TO OPEN OUTPUT 
INR A jANY FILE'~' 
,JZ GDOUi j NO, GO AHEAD 
CALL TYPTX 
DB 13,ie),'Fi \e e>;ists, H'ase? (YIN) <N>' 
[lB " '+8QIH 
MVI C,CONIN 
CALL 8DO::; jCtET INPUT 
CPI 'Y' ; CHEO: FOR ''(' 
,..JZ ERAFIL ;GOT IT, ERASE FILE 
,JMP EXIT jELSE, RETURN TO CPIM 

ERAFIL 	 LXI D,OUTFCB 
MVI C,DELETE 
CALL BDO::; jt>ELETE OLD FILE 

(;DOUT 	 LXI D,OIJTFCB 
MVI C,MAKE 
CALL BD03 ;MAKE NEW DIRECTORY ENTRY 
HlR A ; TE8T 

'"-' 	
,JNZ LOOP jOC 

CALL TYF'TX 
DB 13,10,'ERROR - No directory space.', 13, 10+80H 
LIMP EXIT 

COPY LOOP'* 
LOOP 	 LXI H, Q) 

8HLD RECUH jCLEAR RECORD COUNTER 
LXI [I, BUFFER ;POINT TO BUFFER 

READLF' 	 PU::;H D ; ::;AVE POINTE:R 
MVI C, SETDMA 
CALL BnOS j ::;ET Dt1A ADDRESS 
LXI D,DFCB 
MVI C,READ 
CALL B[II):3 ; READ FROM f:ILE: 
POP D ; RESTORE POINTER 
Or;:A A ;TEST READ OPERATIoN 
,JZ NOTEND ;END NOT FOUND YET 
STA LASTFLG j EL::;E, ::;ET LA:3T PART FLAG 
•..IMP 	 WRFILE ;AND WRITE THE FILE 

NOTt:ND 	 LXI H,81i1H 
DAD D ; UPDATE POI NTER 
XCHG i F:EiURN IT TO DE 
LHLD RECC:NT 
INX H ;courn RECOF:D READ 

"--' 	 SHLD R~r.:CNT 
LHLD MEMiOP ;GEi MEMORY TOP 

REMark • 	February • 1984 53 



~10'.) 

::;IJB 
MOV 
~3BB 
,J[: 

,J~lF' 

l~RFILE 	 LHLD 
MO'..; 
ORA 
,JZ 
LXI 

WRITLF' 	 p\J:::H 
MVI 
CALL 
LXI 
MVI 
CALL 
POP 
ORA 
,JZ 
CALL 
DB 
,JMP 

G[I~)RIT 	 LXI 
[lAD 
XCHO 
LHLD 
[lCX 
SHUt 
I"IOV 
ORA 
,JNZ 
LDA 
ORA 
,JZ 

* 

A;L 
E 
A,H 
[I 

~)F:FILE 

READLP 
RECCNT 
A,H 
L 
DONE 

[I, BUFFEF: 

[i 

C, ::;ETD~lA 
BDO::; 
[I,OUTFCB 
C, (·JRITE 
BDO::; 
[I 
A 
CiDWRIT 
TYPTX 
I::::, 10, -' ERF:OF: ­
EXIT 
H, ::: (~IH 

D 

RECCNT 
H 
RECCNT 
A,H 
L 
~)RITLP 

LA::;TFLG 
A 
LOOP 

COpy DONE, CLO':;E OUTPUT 

Dot~E 	 LXI D,OUTFCB 
wn C,CLCI:::E 
CALL 	 BOOS 
INR 	 A 
,JNZ GDCLOSE 
CALL TYPTX 
DB 	 13,10, 'ERROR ­
,.IMP EXIT 

G[lCLO::;E CALL TYPTX 

i SUBTRACT PO INTER FRO!'1 IT 

;NO ROOM, WRITE FILE 

;ELSE, READ MORE 


;EMPTY FILE COPIED? 

;IF SO, WE'ER DONE J 

;RE:::ET PO II'HER 

; ~;AVE PO INTEF: 


; ::;ET DMA ADDRE':S 

; ~JRITE FIL_E 

;RESTORE POINTER 

; GOOD WRITe' 

; YE::; 


No disk 	space.',13,10+80H 

;ELSE, UPDATE POINTER 

;DECREMENT RECORD COUNT~R 

; ALL DONE-~' 


;IF NOT, CONTINUE 


; END OF F I LE -~) 


;IF NOT, GET MORE 


FILE 

;CLOSE FILE 

;GOO[l CLOSE OPERATION 

Can"t close file.',13,10+80H 

DB 13,10, ' DONE",13,10+80H 
,-.IMP EX IT 

* 	 SUBROUTINES 

~. 	 S!< I P OVER :::;PACES 

MOV 	 A,N ; [iET A CHARf~CTER 
CPI 	 j SF'ACE~' 

RNZ ; I F NOT, RETURN 
INX H ;ELSE, MOVE TO NEXT CHAR 

REMark • February • 1984 54 



,-'MF' SU3 	 i TRY ACiA I ~~ 

* TYPE TEXT FOLLOWING CALL 

TYPTX 

TYPTXl 


* 
MHlTOP 
RECCNT 
LA:::;TFLG 
OUTFCB 

STACf:: 
BUFFER 

,-, ' 

XTHL 
MOV 
PUSH 
MVI 
ANI 
~1OV 

CALL 
POP 
MOV 
I NX 
ORA 
,..IP 
XTHL 
RET 

DATA 

DW 
DW 
DE: 
DB 
[IS 
DB 
[I::; 
EOU 
mu 

END 

A,M 
H 
C,CONOUT 
7FH 
E,A 
BDOS 
H 
A,M 
H 
A 
TYF'TX 1 

AREA 

~) 

Ql 

~l 

Iii, .. 
1t, 
0 
':1'-'1 
'_'.J..... 

l 

l 


START 

;SAVE HL, GET TEXT ADDR 
iCiET CHARACTER 
; :::AVE POINTER 

;STRIP MARKER BIT 
;CHARACTER TO E 
; PRINT IT 
iRESTORE POINTER 
iGET CHARACTER AGAIN 
; INCREMENT POINTER 
; TE::;T FOR EN[I 
;NOT THERE, YET 
;EL:3E, FIX t;TACf<, GET HL 

; MD'10RY TOP 

jRECORD COUNTER 

;LAST SEGMENT FLAG 


, ,el, 0, Ql, (~) 

;RESERVE STACK SPACE 

;BUFFER STARTS HERE 

Thinking aboutyour 
next vacation? 
Plan now to attend 
the Third International 
HUG Conference! 

The Third International HUG Conference will be held at a family resort facility from July 27 through July 29, 
1984. Activities for the family include golf, tennis, softball , horseshoes, racquetball, horseback riding, river boat 
excursion, volleyball, and health club facilities. More than adequate night life is available for your enjoyment. 
Historic settings, found in the limmediate area, provide an abundance of antique andgift shops. More information 
will be available later, so watch REMark. 

"--" 	 Plan your vacation, bring the family and jOin the fun with Heath/Zenith computer users 
from all over the world! 

REMark • February • 1984 

~ 

55 



••• 
tof 

" ~~~Tra

My four year old developed a recent urge 
to 'do his numbers' which means he wants 
me to write down a number wi th him ver­
bally responding with the answer. After de­
veloping a fairly good number recognition, 
I introduced him to simple addition using the 
fingers. Again showing good progress and 
having shown past interest in the c;:omputer 
prompted development of this program. 

The idea: Draw a presentation of a train on 
the screen and advance it to the right as a re­
ward for correct answers. 

The program takes advantage of some of the 
smart terminal commands as listed in the 
front of the program. The text contains 3892 
bytes, symb 176 and strn 125. Benton Har­
bor BASIC 10.06,00 was used on an H8 
computer and H-19 terminal. To play, the 
computer requests the names of the oppo­
nents so it can display their names on the 
side of the 'ENGINE' and to prompt the user 
as to who's turn it is. The question is dis­
played and upon receipt of a correct answer, 
the terminal rings three times tosignify a cor­
rect answer, the correct answer register Is 
updated, the train moves down the track, 
and another sequence is generated. Ifthe an­
swer is incorrect, the correct answer is 
momentarily displayed and another se­
quence is generated. At the end of the game 
(20 questions), the computer displays the 
winners name, the correct percentage for 
each player, and queries about additional 
games. 

Special note on the poke commands. The 
BASIC program at lines 1010, 1030, and 
1040 is changed except when division is 
selected. If there are any modifications in 
these lines, adjustments may have to be 
made. 

In addition to these special feat!Jres, the 
maximum number generator is requested to 
limit the highest random number presented 
to the players. Although some adult supervi­
sion is required for younger users, a person,,1 
touch and that feeling of togetherness will 
also be rewarding to all participants. It even 
helps out mom, school teachers, and pos­
sibilities of ill feelings of the time spent at the 

computer. * 

Paul R. Hinson 
1359 W. Harvard Place 

Ontario CA 97762in 
1000 GO'ID 1090 
1010 PEINI' SPC(S);A:PRINI' SPC(T)-"+";B
1020 PRIHI' SPC(T+2);:for 1=1 TO 7-T:PRINT "-";:NEXT I 
1030 PRIm' Z0$:INPlJI' ;X:PRINT' Z$; :IF A+B=X THEN 1700 
1040 PRINT' "Sorry the answer is' -A+B: PAUSE 750: RETURN 
1050 REM . ******~~***************~***************************************** 
1060 REM * TRAIH * 
1070 RE}i * W.5IC 10 _06 .00 . ~ PAUL HIKSJN * 
1080 REM *************************************************** *~*********** 
1090 ~=C'HRS (27) : REM ESCAPE KEY 
1100 =E$+"E": REM CLEAR SCFElli 
1110 =E$+"~": REM ENTER REVERSE VIDm 
1120 $=E$+ S" : REM EXIT REVERSE vn:m 
1130 G$=E.$+"F : REI-' ENI'ER SPECIAL GRAPHICS 
1140 G0$=E$+"G" : REM EXIT SPECIAL GRAPHICS 
1150 VS=E$+"Y" : REM DIRECI' ClJRSOR ACDRESSING 
1160 ~=E$+"X5 ": RD-I OJPSOR OFF 

REMH~~ C$~E.sqt;~": m =RP~E API'ER ClJRSOR 
1190 DIM NS(l) :DIM Gfl : PRINI' rs 

1200 REM ************* ** ******** INSTRUCI'IONS ***~*~******************* 

1210 PRI~'l''' This is a gaI1E of 'MATH' for two playt;!rs_ I.will ra.n<'q,lly"

1220 PRINI' "display two nUmbers between 0 a.ncj your selected h~ghest. Answ'er" 

1230 PRINT' "correctly and I will lTDve your ElJGlliE dq..,n. the track and update"

1240 PRIm' "the correct question 'register' _. 'IWenty (20) questions will be" 

1250 PRINl' "oiyen and there will be NO second c)1ances _ GCOO WCKII" 

1260 REM ***-******************** GET OPPGNllITS ************************ 

1270 PRINT' :Lll.fE I NPUT ''Who is playing? ";N$(01

1280 A$="Please use a nane with 1~ letters or ess_ Re-enter I II " 

1290 IF LEN(N$(0) »10 THEN PRlNl' :PRINI' A$:GOTO 1270 

1300 PRI ~'l' : LnIE n..'PlJI' "And who is your opponent? " ; N$ (1)

1310 IF \:DT(N$(ll 1>10 THEN PRIt-.1I' :PRINP A?:GOTO 1300 

1320 REM *~******************* SET HIGHEST NUMBER ********************~* 

1330 PRINT' :INPUT ''What is the highest number allCMed (0-100f;{)0F ";ti 

1340 IF N> 10'0000 THIN PRIt.'T :PRINI' "Your =ber is teo laroel! I ':GO'IO 133" 

1350 RE}! *****~********************* SET THE ~ ************~*********** 

1360 PRINl' :PRINl' ''What type of rrath would you like?" :PRUJ'T 

1370 PRINl' " II Additlon" : pPJ:NI''' 2~ Subtraction" 

1380 PRIm" 3 Multiplicqt:i.a<":PRINT' 4) Divisicn":PRINI' 

1390 INPlJI' "Choose 1,2,3 or 4 = > ";Sl:IF Sl>4 OR Sl<l THEN 1360 

1400 IF Sl=l THEN POKE 19157 43 : roKE 19209,43:POKE 19247,43 

1410 IF Sl=2 THEN PCKE 19157~45:POKE 19209,45:POKE 19247,45 

1420 IF Sl=3 THEN POKE 19157 120:POKE 19209 42:POKE 19247 42 

1430 REM *********~****~~***l,** PRINT 'IHE'TRAIN ~****J,*Ir**~*****~*I<* .*~** 

1440 PRINI' C$;Z$ . 

1450 X=G(Y):PP-INT X 

1460 PRINI' sPc(3*xl;" "-G$-R$-" I. "-00$- "zz";F$;"}";OO$;" ";R$; "r_" 

1470 PRINT OO$;SPC{3*X);" ";M;Gels;" f';N$~Y~;G$;
1480 FOR L=10 TO LEN{N$(Y)} S'I'P' -1 : PRItIT' ' ; ;NEXT L 

1490 PRIm' :PHINT l<0~ ; ~(3*X}; "-~" 

1500 PRINI' SPC(3*X) ;' ( ) ( A) >":Y=Y+l:IF Y=2 'lliEJII Y=0 

1510 IF R>l 'lliEN PRINT Y$;"- ";D$ r:GOTO 1540 

1520 A$=''bbbt;tlJbbtbbbbbbbbbbbtbbbbbbbbbbbtbtbbb'' :A$=A$+A$: PRI~;r A$ 

1530 R=P+l:IF .R<2 THEN 1450 

1540 PRINT G0$:REM **~****** ~ NUMBER GENERA'IDR AND PRlNl'ER **"**.*:1<* 

1550 A=INI'(N*R"ID(l»:B=INT(N*RND(l»):R;;P+l:IF R=43 'nID! 1750·~-· . 

1560 IF A<B 'IP-EN lVl=A:A=B:B=Wl:REM l,**~~***~* REVERSE RAND 1'S *********** 

1570 PRINT' : PRINT NS (yl - " here is yoor questiaa if" ; INI' ( (R-l 12) :PRINI' 

1580 Ril'! ***~*******h*hl,**** MJl,R:3IN JUSTIFICA..'T'lCN ~*** **J. .* * ******~*~* 

1590 J=1:q=7:K=1:T=6

1600 IF A/J >= 10 THEN J=J*10 :~1:GOTO 1600 

16l.0 IF B{K >=; 10 Tt:lEN K=K*10 : T=oT-l :GOTO 1610 

1620 IF S <> 4 THill 1660: REM ~* ****** GO ARaJND IF NOT OIVIEE *"*~*~*** 

1630 PRINT' SPC(10); :FOR I=lTO 5+(7-T) :PRlNl' " ";:NEXT I:PRlNI' 

1640 PRINl' SPC(S);A;") ";A*B:PRINT' Z0$;:INPUI' iX:PRIN'I' Z$;:IF X=B 'IHEN 1700 

1650 PRINI' "Sorry, the answer is";B:PAUSE 750:GOTO 1680 

1660 GOSUB 1010: REM *** GET 'mE BASIC LINES FOR 1-00 IN FROm' OF PR:GRJll-! *** 

1670 Rfl-I **** TO ELLHUNATE LOCATICN ERRORS DURING'I'YPINC; IN OF pro::;pA!·i *** 

1680 PRI~rr Y$; "- ";[$ :Y=Y+l :IF Y=2 'THEN Y=0 . . 

1690 rom 155e 

1700 PPJNT' QIR.$ ( 7) ; : PAUSE 100: PRINT Qffi$ (7) ; : PAUSE ],.00: PRI~'T Qffi$ (7) ; 

1710 G(Y)=G(Y)+l 

1720 IF Y=0 THEN PRlNl' Y$; "" :c-aro 1450 

1730 IF Y=l 'I'EEN PPINT ¥$;"& ":GO'IO 1450 

1740 REM **~******** END OF G.A!1E RESULTS AND NEXT GN<IE QUJl.RRY .********.*** 

1750 If Gf0~>G! II THEN PRINI' N$ (0);" s .n ... e CDNG .ha. Y.Q th garre III .RA'IUl.J'/TIWSI11"
17Efl IF G fJ ~G 1 THEN PRIt.'T N$ (l) ;" has Y.Q!1 the oame III a::tJGRAWIAT:r~S II ! " 
177e IT G 0 =G 1 THEN PRI~'T "We have a t;ie ~l rI" 

g~~ ~~~ ~~fRf)1;"NU~I,;~m~iffl~~.?i~~.M~I,%l~~:~"~~E"~§F
1800 PRIN!' Z0 :Lrm; INPlJI' "j):)....Y?,l w:i,sh to play again without changes? "-A? 
1810 IF LEPr$ A$,l)="Y" OR ~(A$,l)="y" ~ ~;G(0)=0:G(1)=0:GOTo i430 
1820 PRINT :LINE INP!JI' "Do ya.l WJ.sh to start a ne,v ~arre? ";AS 
1830 IF . $(A$,l~=''Y.. '' OR lEFI'$(A:?,l)="y~ THEN ~'G(0)=0:Gl1~=0:GOrO 1260LEPI'. 

1840 PRINT :PRINI' 'Thanks for playmg ";r-~(0);" am n;N$(l);' _ ';Eim . . 

56 REMark • Feb.ruary • 1984 

http:PRIt-.1I


Aquick look at... ­
Tom Huber 

Related Products EditordBASEII Programmer's Notebook 
dBASE II Programmer's Notebook is a little booklet (46 pages, 
8-112 x 11 ") by Steven G. Meyerson that is just what it says it is: a 
programmer's notebook. It is full of useful hints and techniques for 
using Ashton Tate's dBASE II relational data based management pro­
gram. Since it is small (in pages, not content), this review is also 
small. 

For those of you who are not familiar with dBASE II, it is a powerful 
data base handler that has its own Nprogramming language", similar 
to a job control language (but not nearly as confusing or hard to use 
as some). Hence, the need for a book like this to supplement Ashton 
Tate's own manuals. 

What ItContains 
There are three parts to this book: Hints and Techniques, Routines, 
and S-Mail. The first two parts contain the real meat of the material. 
There are good hints on how to get better performance out of dBASE 
II, how to avoid some of the pitfalls inherent in this powerful pro­
gram, and several practical routines for expanding its use. The 
routines are: Two-Column Printing, Menu Operations, Error Check­
ing, File Name Check, and Flashing Display. The third part of the 
booklet is a real bonus: S-Mail, a complete mailing list handler with 
an archiving feature for purged records. 

Comment 
M r. Meyerson has had obvious experience with dBASE II and his 
skill and knowledge show through in the material contained in this 

'-' 

Now be able to run standard 8" Shugart compatible drives 
and 5.25" drives (including the H37 type) in double and 
single density, automatically with one controller. 

Your hard sectored 5.25" disks can be reformatted and 
used as soft sectored dou ble density disks. The FDC-88DH 
operates with orwithout the Heath hard sectored controJJer. 

NEW PRICE $495 
Inc ludes controller board CP/M boot 
prom, I/O decoder prom, hardware/soft­
ware manuals BIOS source listing. 
HOOS driver now available f01$40.oo. 
5-20 day delivery-pay by check, C.O. D., Visa, or M/C. 

Cont.ct: 
C.D.R. Systems Inc. 
7210 Clajremonl Mesa Blvd 

'-.....r San Diego, CA 92 111 
Te l. (619) 560·1272 

book. The writing is clear and lucid; the author presents his informa­
tion in an informal, straight fOlWard manner, something that is often 
missing in many books. There is no attempt at humor; the material 
is all business. Although the booklet is produced from a letter-quality 
printer (not typeset), it is easy to read. 

At fi rst glance, the price seems a bit steep for the number of pages; 
$12.95 for 13 pages of notes, 8 pages of routines, and 24 pages of 
instructions and l istings for S-Mai l. However, considering the price 
of commercial mailing list programs, the booklet suddenly becomes 
a bargain and a couple of the hints alone could well save the user 
more than thirteen dollars of time and frustration. 

This book is not for everyone. For instance, I don't recommend it 
to anyone who does not have dBASE II. However, if you do own 
dBASE II and want to expand your expertise in programming it for 
yourself and others, then I strongly recommend it. 

O ne final note: if you don't want to type in all the listings for S-Mall, 
the author is offering a disk copy for a paultry $7.00 more. 

Vendor: CompuTech 
P.O. Box 2027 

Poquoson, VA 23662 

(804) 868-8055 


Price: $12.95 book alone 

+ $7. 00 for disk of S-Mail 

(VA residents add 4% sales tax) 
 * 

NOW 12 MEGABYTE 

(CDR-10M) $2995 

WINCHESTER SYSTEM 

For the Heath/Zenith Computer 

Systems complete with software, case, power supply, signal 

cable and interface. 

Runs with CP/ M, on the H/Z89 & H8 (with Z8D card). 


• Switching power supply • Hard disk utiHties 
• Expansion for backup 	 • Formatting program 

installations • 1 year parts & workmanship 
• Auto attach BIOS warranty 
CP/M is a trademar~ of Djgital Researen. Heath, He. H89 are trademarlss oj Heath 
Corporation . Zenith, zag, ZOO are trademarks of Zenith Data Systems. 

Contact: 
5-20 day deliVery. t C.D.R. Systems Inc. 

Pay by check, 721 0 Clairemont Mesa Blvd. 

CO.D., Visa, San Diego. CA 92111 

OJ MIC Tel (619) 560-1272 


REMark • February • 1984 57 

http:f01$40.oo


Squeezing The Most 
Out of Your 
HDOS Diskettes 

Glenn F. Roberts 
9035 F Countrywood Drive 

Knoxville, TN 37923 

The intent of this article is to explain ways in which one can reduce 
the amount of floppy disk space which must be reserved for system 
files in the Heath Disk Operating System (HDOS) . This is a particu­
larly important issue to H-8 and H/Z-89 users with only a single 
hard-sectored type floppy disk drive. To a large extent this article 
pulls together ideas from past articles in REMark, Sextant, and 
Microcomputing, however, some of the ideas presented here have 
not been described elsewhere. Even readers who don't feel they 
need any more storage capacity (if such people exist) should be in­
terested in the disk concepts presented here. 

Note: Some of the techniques presented here can lead to essentially 
irreversible damage to the disk indexing structure if not performed 
properly. It is recommended that you test them out on unused disks 
first or else back up everything before starting. 

Introduction 

When I finished constructing my H-8 several years ago, one of the 
first programs I wanted to try out was IIAdventure" (H UG part no. 
885-1010). I was recalling playing the game until the wee hours of 
the morning during my undergraduate years and was anxious to pick 
up my adventure where I had left off, somewhere in the twisty little 
maze (or was it the maze of little twisty ... ?). It was then that I got 
my first real lesson in the realities of HDOS: it is big. After INITing 
and SYSGENing a new disk, I deleted all of the files that didn't have 
the L (lock) flag set and found myself with 240 free sectors on the 
new disk. A quick CATalog of the Adventure disk showed that I ap­
parently needed at least 246 (35 for the game itself, 188 for the main 
data file, and 23 for the game parameters file). It took me a day or 
two of fooling around until I discovered I could simply delete the 
supposedly "Iocked" file DK. DVD to gain an extra 16 sectors, more 
than enough to let me get my Adventure program up and running! 

Since then I have learned a great deal about how H DOS works and 
what tricks and techniques can be used to increase the user's portion 
of the disk space allocation. I thought it would be fun to go back now 
and see just how many of those system sectors I could have recov­
ered for my own use had I known then what I know now. I ended 
up recovering 56 more sectors, enough to let me SAVE three Adven­
ture games and still have room to spare. In the sections that follow, 
I will explain the steps I took to recover these sectors. Much of this 
information is taken from past articles in REMark, Sextant, and 
Microcomputing. The articles are referenced in the text by listing the 
author and year of publication ; refer to the listing at the end of the 

article for the complete article citation. I urge the reader to look up 
the original articles whenever possible. I will limit my discussion to 
the "hard sectored" (H-l 7) type floppy disk formats which have been 
standard on the H-8s and HIZ-89s, since these are the ones most 
likely to exhibit space limitation problems . Much of what I say how­
ever applies to HDOS in general and thus is also applicable to the 
newer "soft sectored" disks. 

Minimal SYSGENing 

Much of my original frustration with the Adventure game could have 
been bypassed if I had simply taken the time to carefully read 
through the HDOS manuals. Had I done so, I would have found that 
the SYSGEN program has an option switch called "/MIN" . SYSGEN 
is the program which copies the various system programs which are 
needed to make a disk bootable. By typing SYSGEN /MIN one can 
request that a minimal set of these system programs be copied to the 
new disk. The files copied in this minimal configuration are de­
scribed below: 

HDOS.SYS - Contains the main HDOS code including the TI: 
device driver and the resident SCALLs (system routines) such as 
.SCIN, .SCOUT, . EXIT, etc. This code must be resident in high mem­
ory at all times except during initial boot-up. 

HDOSOVLO.SYS - This file contains the principal overlaid 
SCALLS such as .OPENR, .CLOSE, . POSIT. These are "overlaid" 
since HDOS has the ability to swap them out to disk when a user's 
program requires a large amount of memory. 

HDOSOVL1.SYS - This file contains less frequently used SCALLS 
such as .MOUNT, .RESET, and .DAD. Like HDOSOVLO, this file 
is also overlaid. 

SYSCMD.SYS - This is the command processor program which is 
loaded into low memory whenever the user is atthe command level. 
This is the program which generates the familiar ">" command 
prompt. Its job is to process user commands either by calling system 
routines (SCALLs), by linking to PIP, or by linking to a user's pro­
gram. SYSCMD is loaded and takes control whenever an .EXIT 
SCALL is issued by a running program. 

PIP.ABS - This is a general file and device utility (Peripheral Inter­
change Program) which copies, lists, renames, and deletes files and 
provides the user access to the disk directories. Some of the system 
commands (e.g. COPY, TYPE, CAT, etc.) explicitly call PIP but it is 
loaded and executed only as needed. 

REMark • February • 1 984 58 



SY.DVD - This is the device driver for the H-17 disk drives. Its job by "booting" up with the disk, HOOS stores certain critical informa­
is to interpret specific device driver calls (e.g. read, write, mount, tion regarding the diskette in system RAM. This information includes 
abort, open, close, etc.) and control the disk hardware accordingly. the volume number of the disk and the absolute track and sector lo­
The important thing to remember about device drivers is that the cations of various system and directory related files on the disk . The 
driver calls are the same regardless of the type of hardware being ac­ primary benefit of this scheme is that it speeds up disk access time. 
cessed. This "device independence" allows the application pro­ The price we pay is that we cannot arbitrarily swap disks without first ---- grammer to use software to interface almost any type of 1/0 device informing HOOS via the RESET command (or equivalently the I RES 

to the system. For more information on device drivers and driver option of PI Pl . 


calls, see "The HDOS Device Driver Programmer's Guide", (Dallas, 
 Before RESETting the boot drive (SYO :) one should normally set the 
et aI., 1981), or refer to the source files on the "Device Drivers" disk "STAND-ALONE" flag using the SET program (Cohn, 1983; 
distributed with H DOS. Pinkston, 1983). The stand-alone mode of H DOS is a frequently 
RGT.SYS - This is the Reserved Group Table. Its primary function used yet undocumented feature of HDOS which forces all 
is to allow HDOS to lock out disk sectors which are to be flagged "swapped" files to remain resident in system RAM (these files in­

as unreadable. 	 clude the system overlays and device drivers) . To set the stand-alone 
mode merely type: 


GRT.SYS - This is the Group Reservation Table. HDOS stores 

files in pieces which can be strung out on random tracks and sectors SET HDOS STAND-ALONE 


throughout the disk. The GRT is a crucially important file since it 
 Normal swapping mode can later be restored by SETting NO­
contains the pointer information which allows HDOS to piece files STAND-ALONE. The advantage of this feature is that SYO: can be 
back together into their original form. If the GRT file is damaged in RESET to a disk containing only SYSCMO.SYS and PIP .SYS . The dis­
any way, H DOS may be unable to read any of the files on the disk. advantage is that the swapped out files now use up a chunk of RAM 
DIRECT.SYS - This file contains the disk directory. The informa­ (usually about 6K) . 
tion in this file, combined with that in the RGT and GRT tables, al­ You can also change the disk in SYO: if you are running an applica­
lows HDOS to locate and modify any file catalogued on the disk, tion program which is written to explicitly anticipate this situation . 
either through a utility progrdm like PIP or via a user program's 

The HUG DUMP program (HUG part #885-1062) does this by re ­
SCAlls . 

vectoring one of the system ROM routines to a new routine which 
Note: For more information on the RGT, GRT, and DIRECT files, does not check the disk volume number when it reads a sector from 
the interested user is strongly urged to read Tom Jorgensen's article the disk . Thus when you are running DUMP you may swap diskettes 
"Dissecting the HDOS Diskette" Oorgenson, 1981) and Herb Fried­ arbitrarily in any of the drives so long as you put everything back 
man's article "Understanding HDOS" (Friedman, 1983). where it was before exiting from the program! Other ways to get 

around these safety features' of HOOS are mentioned in the article 
The above files will require a total of 129 sectors and the CAT com­ ''~isk Programming Without HOOS" (Smith, 1982). 
mand will report that there are 256 free sectors, for a total of 385 

I mention these points now since they may be of use in making the sectors. We know however that the disk is capable of storing 400 
various patches and changes discussed in the remainder of this arti­sectors (40 tracks at 10 sectors per track), so what happened to the 
cle, especially for readers with single drive systems. other 15 sectors? Ten of these "missing" sectors are accounted for 

by track 0, sometimes called the boot track . When a new disk is IN­ Patch History Tables 
ITialized, a "bootstrap" program is written on the first nine sectors If the MINimal SYSGEN does not give you the file space you need, 
of this track. When the computer is booted, the routines in ROM the first thing you might want to consider is eliminating the Patch 
seek out track zero, load these nine sectors, and execute this History Table (PHT) sector from all of your system files . The PHTwas 
bootstrap program. In order to prevent H DOS from storing files here, designed as a special feature of HOOS to allow the PATCH program 
the entire first track is flagged as unusable by locking it out in the to maintain a log of patches made to system programs (see Swayne, 
Reserved Group Table (RGT) file . Thus, as far as HDOS is con­ 1982a). In practice the PHT feature is rarely, if ever, used and can 
cerned, these 10 sectors are unusable. The sectors on track 0 are nor­ easily be eliminated by simply removing the PHT sectors appended 
mally read only during the process of mounting, dismounting, or to each system file . Note however, in light of my previous com­
booting the disk. 	 ments, that removing the PHT sector will only be useful on files 

which originally had an odd number of sectors. Such files will beThe remaining five "missing" sectors are hidden in five of the nine 
reduced to an even number of sectors and you will have recovered system files listed above. This occurs because HDOS allocates file 

two sectors.
space in groups (also called clusters or extents) of two sectors at a 

time, thus in reality all files require an even number of sectors on The technique for removing the PHT is documented in the article 
the disk. Even though the CAT command may show that a file has "losing Weight with HOOS 2.0" (Swayne, 1981a). In this article, 
an odd length (e .g. HDOS.SYS is 31 sectors long), the user must re­ Pat Swayne presents an assembler program which automatically
member that an extra sector is reserved for use by such files and that strips the PHT sector off system files. (Editor' note: Be sure to correct 
this expansion space will not be counted as being available for other the program as shown in REMark #21, page 4,) The following files 
uses. If you issue the CAT command with the IAll flag, you will see can be reduced by two seconds each: EDIT, PATCH, INIT, SYSGEN, 
all allocated sectors shown and a total of 390 sectors (i .e. all but the TEST47, ASM, XREF, OBUG, PIP, HDOS, and HDOSOVLl. Reduc­
locked out track 0). ing these last three would raise our free sector total to 262 in the min­

imal configuration described previously. Resetting SYO: 

A Compact SY: Driver


Before going any further, I should take some time to discuss how and 
when you may replace the main "boot" disk in drive O. This is impor­ If 262 sectors is not enough user space for you , you might next con­
tant on single disk systems where you may not always need the sys­ sider creating a compact SY: device driver. This is another trick first 

'- ­
tem files to be present. When a diskette is MOUNTed in HDOS pointed out by Pat Swayne in his brief article "A Ti ny SY .OVO" 
either directly, via the MOUNT or RESET command, or indirectly 	 (Swayne, 1981 b) . The SY : device driver is actually two programs 

REMark • February • 1984 59 



joined together; the driver itself, and the initialization code. The de­
signers of HDOS decided to include the device specific portion of 
the initialization code in the driver itself. This makes it possible to 
use the same INIT program to initialize various disk types (e.g. the 
5-1/4" H-17 or the 8" H- 47), but it means we must carry along this 
initialization code in all our drivers, even those not used for INITiali­
zation. 

The "Device Drivers" disk distributed with HDOS contains the file 
SYDVD.ASM which is the assembler source for the device driver 
portion of the SY : driver. This was designed to be combined with 
SYINIT (the initialization portion of the SY: driver) using the utility 
program MAKMSD, however, the device driver portion also func­
tions fine by itself as long as you don't want to initialize any disks 
using it. If you assemble SYDVD.ASM, delete the original SY. DVD 
file (it can be deleted even though it is locked), and rename 
SYDVD.ABS as SY.DVD you will have an SY: device driver which 
occupies only 4 sectors . This represents a savings of 6 sectors. Total 
free space on our compact system disk is now 268 sectors! (Note: 
if you are working on a single drive system, be sure to reboot after 
doing anything with any device driver on your boot disk. This is nec­
essary because HDOS looks for device driver addresses only once, 
at boot-up time, and moving the track and sector location of any de­
vice driver without informing HDOScan be disastrous.) 

Trimming Fat DIRECTories 

The HDOS directory (file DIRECT.SYS) is normally 9 groups (18 sec­
tors) long. Each group can store 22 fi Ie entries for a total of 198 fi Ie 
entries. As Tom Jorgensen points out Uorgenson, 1981), this is actu­
ally 22 more entries than the number of files it is currently possible 
to write on the diskette. In surveying my own disks, I have found that 
most of my diskettes contain no more than 30 or 40 files, and some 
have fewer than 20. This means that I usually need only 2 or 4 sectors 
allocated to the DIRECTory and thus can recover 14 to 16 sectors. 
There are a number of "public domain" programs which allow one 
to shorten the length of the directory. These may be available 
through a local HUG or in the HUG area on Compuserve. (Editor's 
note: There is also REDUCDIR on HUe disk 885-1120.) If you don't 
have access to one of these programs, you can recover these sectors 
using the HUG's DUMP program (disk #885-1062) and a little 
knowledge of the diskette's fi Ie structu re . 

The technique I will describe shortens the file DIRECT.SYS to only 
2 sectors which will allow a maximum of 22 files to be stored on 
the diskette. If you perform this modification and you subsequently 
try to store more than 22 files, HDOS does not panic but merely in­
forms you that it has run out of directory space. You should perform 
the following steps immediately after INITializing a new diskette 
(i.e. before SYSGENing or COPYing any files to the new disk). Since 
the technique is rather tricky, you might want to save a copy of the 
final disk so that you can make more "mini-directory" disks at a' later 
time using an absolute sector by sector copy program such as DUP 
(also on HUG utility disk #885-1062). 

The directory file DIRECT.SYS is created by INIT .ABS and is nor­
mally located on the 18 sectors starting at track 13, sector O. The 
only time it will not be located here is if you indicate that one or more 
of the sectors in this area should be locked out because of some sort 
of damage to the media. In order to speed up access time, the groups 
in the directory are normally stored in an interleaved fashion starting 
at track 13, sector 2. Table 1 shows the normal locations of each of 
the 18 sectors in the standard DIRECT.SYS file. 

A freshly INITialized disk will have only three files on it: RGT.SYS, 
GRT.SYS, and DIRECT.SYS. The directory entries for these files will 
normally be located at the end of the 4th directory sector, that is on 
track 13, sector 7. In order not to disturb these entries, the best way 

Di rectory: Track : Absolute 

Sector : Sector 


-----------+---------+----------­
1-2 13 2-3 
3-4 13 6-7 
5-6 13 0-1 
7-8 13 4-5 
9-10 13 8-9 
11-12 14 2-3 
13-14 14 6-7 
15-16 14 0-1 
17-18 14 4-5 

Table 1. Absolute track and sector locations of the 18 sectors which com­
prise the file OIRECT.SYSon a diskette which is initialized via INIT. 

to make a 2-sector directory is to relocate the start of the file 01­
RECT.SYS to be track 13, sector 6, and the end to be track 13, sector 
7. There are three places on the disk where patches must be made 
to accomplish this: GRT.SYS, DIRECT.SYS, and the boot track . 

The easiest patch to make is the boot track patch. As I mentioned 
before, sectors 0-8 on track 0 are reserved for a 9 sector bootstrap 
program. Sector 9 on track 0 is reserved for storing various pieces 
of system information about the disk including the disk name and 
volume (see Swayne, 1982c). The byte definitions for this sector are 
contained in the file LABDEF .ACM on the "Software Tools" disk dis­
tributed with HDOS 2. The fourth byte of this sector (LAB . DIS) is the 
pointer to the directory sector. This byte is needed by the bootstrap 
program to find the directory and subsequently find the file 
HDOS.SYS. This byte is normally hexadecimal 84 (decimal 132), 
thus it normally points to track 13, sector 2. Since we want the new 
directory entry to be track 13, sector 6, we must change this byte 
to hexadecimal 88 (decimal 136). This is easily done using the HUG 
utility DUMP. Using DUMP, look at track 0, sector 9 of the disk to 
be modified. The fourth byte should be changed from 84 to 88 . 

The next file to be patched is DIRECT.SYS. Since the bootstrap must 
be able to scan through the directory before the normal HDOS file 
handling routines are available, a simple chained structure is incor­
porated in the file itself to logically connect the directory sectors dur­
ing boot-up. Each 512 byte group of the directory can store 22 file 
entries at 23 bytes each for a total of 506 bytes. The 50 7th byte is 
always 0; the 508th byte is the number of bytes in each file entry 
(normally hex 17); the next two bytes contain the address of the cur­
rent group; the last two bytes contain the address of the next group 
(or zero to indicate the end ofthe directory). 

The first patch we must make to DIRECT.SYS is to change these last 
two bytes to 0 in what is to be the last group of our new directory, 
in this case track 13, sector 7. Using DUMP to look at this sector, 
you will see that the next to last byte will be hexadecimal 82 (indicat­
ing that the next group in the directory is at track 13, sector 0) . By 
changing this byte to 0, you will inform the bootstrap that this is now 
the end of the directory. 

If any of the above patches are done incorrectly, the disk wi II proba­
bly not be bootable. The remaining patches are to tell the normal 
HDOS file handling routines the information it needs about the file 
DIRECT.SYS. If any of these are performed incorrectly, you will 
probably get the "Disk Structure Corrupt" message when you try to 
boot or mount the disk. 

The next patch is also made to DIRECT.SYS. In this patch you must 
change the entries for the file "DIRECT.SYS# itself, in particular you 
must change the values for the starting and ending groups. Refer to 
Table 2 which is taken from the file DIRDEF.ACM (on the "Software 
T0015# disk that comes with the H DOS distribution package) and 
shows the layout of each 23 byte directory entry . 

REMark • February • 1984 60 



ORG 0 

OIR.NAM OS 8 Fi le Nalile 
DIR.EXT OS 3 Extens i on 
OIR.PRO OS 
OIR.VER OS 

1 
1 

Project 
Ve rsi on 

OIR.ClL! OS 1 Cl us ter Factor 
OIR.FlG OS 1 Flags 

OS 1 (reserved) 
DIR.FC.N OS 1 First Group Number 
OIR.LGN OS 
OIR.LSI OS 

1 
1 

Last Group NUlilber 
last Sector Index 

OIR.CRO OS 2 Creat i on Oate 
DIR.ALD OS 2 last Alteration Oate 

Table 2. The layout of each directory file entry. 

The 16th and 17th byte of each directory entry is the first group 
number and last group number for that fi Ie, respectively. Since these 
are group numbers, we must multiply by the number of sectors per 
group (two) to get the track and sector. For the file DIRECT.SYS, the 
first group number is normally hexadecimal 42 . Multiplying by 2 we 
get hexadecimal 84 which is decimal 132, or track 13, sector 2, just 
as we showed in Table 1. In the new "mini" DIRECT. SYS, the first 
group and last group will both be track 13, sector 6 (hexadecimal 
88), thus the new values for entries DIR.FGN and DIR.LGN will be 
88/2 = 44. 

Using DUMP you can now modify the first and last group numbers 
for the file DIRECT.SYS to both be 44. These should normally be 
found in bytes DC and DO (hexadecimal) oftrack 13, sector 7. 

The last patch which has to be made before the mini-directory is in 
place is a patch to the file GRT.SYS. This file contains the group res­
ervation table which is nothing more than a series of pointers which 
tell H DOS how to reconstruct the files on the d iskette. To see how 
a file can be strung out over many portions of a disk, you may 

'-' 
examine a file's structure as follows. Using DUM P and the informa­
tion in Table 2, locate the file's first and last group numbers in the 
file DIRECT.SYS, then DUMP the single sector file GRT.SYS (nor­
mally on track 14, sector 8) onto the screen. Beginning with the first 
group number, look into the GRT at the corresponding entry, for ex­
ample if the first group number is hex 42 (as is normal ly the case for 
the file DIRECT.SYS), then look at the byte at location 42 in the GRT. 
The entry at this location will be the number of the next group in the 
fil e. If you look at the GRT entry corresponding to this number you 
will find the next group number, and so on . When you fi nd an entry 
in the GRT which is zero, you know you are at the end of the chain. 
The cell containing this terminating zero should correspond to the 
last group number as found in the directory. If you reconstruct the 
sequence of groups for the file DIRECT. SYS in this manner, you will 
normally obta in the following: 42, 44, 41,43 , 45,47,49,46,48. 
If you convert these 9 numbers to decimal track and sector locations, 
you will get the values in Table 1 . 

Now with this information you can easily make the patch to the 
GRT. The new file DIRECT.5YS will start and end at group number 
44 (hexadecimal). This means that we don't have to chain any 
groups together, we simply need to indicate that group 44 is the last 
group. We do this by using DUMP to place a zero in byte 44 in the 
GRT. Note that when you make changes to the GRT table, the disk 
being changed should NOT be MOU NT ed since when it is later DIS­
MOUNTed or RESET, HDOS will copy back the version of GRT 
which it maintains in RAM. You can do the patch using DUMP since 
DUMP allows you to change the disks at random, just be sure and 
put all disks back where they were before Control-Cing out of 

'-- DUMP. 

You should now be able to mount this diskette and find that the file 

D IRECT.SYS is only 2 sectors long. If you get the "corrupt" message 
you did something wrong. Try and find your mistake using DUMP. 
If you have made no mistakes, then you now have a diskette with 
284 free sectors. 

Application and Turnkey Systems 

Making the changes outlined so far is about as far as you can go and 
still retain all of the features of HDOS. Very often however, one 
needs to set up an application disk which will only be used to exe­
cute some pre-specified set of application programs. On most such 
disks you can delete the file PIP.ABS. (For help deleting "locked" 
fi les, see "Recovering a Deleted File", Harton, 1981, "Recovering 
Deleted Files In HDOS and CP/M" , Swayne, 1982b, or "PATCH 
Mysteries Revealed", Swayne, 1982a.) After you have deleted PIP, 
you will no longer be able to use the commands HELP, TYPE, LIST, 
DELETE, RENAME, CAT, DIR, IND, or INDEX since all of these re­
quire PIP to perform their tasks. If you try to use one of these com­
mands, HDOS will simply inform you that it needs PIP to perform 
the command. If you delete PIP you will have recovered 20 sectors, 
bringing the total to 304 free. 

Going one step further, you may want to set up a "turnkey" system 
such that your application program is automatically executed on 
boot-up and the disks are automatically dismounted upon program 
termination. My ADVENTURE disk is a good example of such a 
case. HDOS has a built in feature which automatically scans the di­
rectory for a file called PROLOGUE.SYS upon booting up. If such 
a file is found, execution is passed to it as soon as the normal HDOS 
system files are loaded . If no such file is present, control is passed 
to SYSCMD.SYS and the user is prompted for a command in the 
usual manner. This feature allows you to set up such a turnkey sys­
tem by renaming your program to "PROLOGUE.SYS" . In a turnkey 
system, you won't normally need to have the fi Ie SYSCMD. SYS since 
all interaction with the user should be handled by your program. 
You could simply delete SYSCMD.SYS, but nasty things will happen 
if your program tries to return to HDOS via the .EXIT SCALL. A better 
way is to create a new version of SYSCMD.SYS which simply dis­
mounts the system disks and returns to boot level. Listing 1 shows 
such a program. When you assemble this program and rename it to 
SYSCMD .SYS, then rename your application program to PRO­
LOGUE.SYS, you will have a turnkey system which will run only 
your specified program and will dismount the disks upon program 
termination. 

Going Further 

One rather sophisticated trick which the ambitious programmer 
might want to try is to recover some of the sectors on the boot track 
(track 0) . I mentioned previously that the first 9 sectors on track 0 
are reserved for the bootstrap program. These are " locked out" to 
HDOS by flagging them as unusable in the Group Reservation Table 
(GRT.SYS) . Much of this space is not needed, in fact I have written 
a bootstrap program which resides in only 2 sectors. I did this by dis­
assembling the original 9 sector version, eliminating unneeded 
code, reassembling, and storing the code on track O. A surprisingly 
large amount of the original code can be eliminated, for instance: 
1) most of the first two sectors are reserved for use on OK: type de­
vices where the basic disk access software is not in the H-17 ROM; 
2) much of the code is for accessing the older type cassette serial in­
terface (H-8-5); 3) part ofthe code is used to determine the baud set­
ting (which I always leave at 9600); 4) a big piece of the code is used 
for computing sector checksums. 

If you do create a custom bootstrap as I did, you will have up to 7 
more sectors free on track O. You might think that you could simply 
"unlock" these sectors in GRT.SYS to make them available for gen­
eral use by HDOS. Unfortunately the boot track is initialized with 

REMark • February • 1 984 61 



a volume number of zero which will be different from the volume 
number on the other tracks (it must be between 1 and 255). This is 
done so that the bootstrap program itself can initially be read in, 
however, it means that if you try to read it through the HDOS 
SCALLs, you will get an error. One way around this is to read and 
write to this sector using the ROM routines directly as described in 
"Disk Programming Without HDOS" (Smith , 1982). You can also 
read track 0 using the undocumented "read regardless" call to the 
SY driver (Swayne, 1982c). There are some nice things that can be 
done with these extra sectors . Because they are not " readable" as 
normal HDOS files, they are the perfect place to store passwords, 
deciphering keys for encoding files, and any other sensitive informa­
tion. 

This is about as far as you can normally go toward reducing the 
HDOS overhead on your system disks. If you need even more space, 
about the only thing you can do is run without HDOS altogether. 
This involves calling the H-17 ROM disk driver directly to do reading 
and writing, but it entirely eliminates all HDOS system files from the 
disk. It also requires the user to provide the means to maintain a file 
directory as well as any other services previously provided by 
HDOS. This technique is discussed in Smith (1982). 

Conclusion 

In this article, I have attempted to summarize some of the "tricks" 
which can be used to reduce the amount of disk space which must 
be set aside for HDOS system use. As a minimum, most users can 
easi Iy retrieve 30 disk sectors for their own use, however, one can 
go further, even to the point of eliminating HDOS altogether! The 
articles I have cited represent some of the best technical articles I've 
seen on HDOS and I urge interested readers to refer to them as well 
as the excellent Heath manuals for more in-depth treatment of some 
of these topics . 

Articles Cited 

Cohn, C. E. Summer 1983. "Squeeze More Disk Space Out of 
HDOS" , Sextant, Issue #6 . 

Dallas, A ., Lamm, D., and Jorgenson, T. September 1981. "The 
HDOS Device Driver Programmer's Guide", REMark, Issue #20. 

Friedman, H . Spring 1983 . "Understanding HDOS, Parts 1,2, and 
3", Sextant, Issue #5. 

Harton, D. August 1981. "Recovering a Deleted File" , REMark, 
Issue#19. 

Jorgenson , T. July 1981. "Dissecting the HDOS Diskette", Micro­
computing, Vol. 5, No.7. 

Pinkston, W . June 1983. "Out In The Boonies With a Single Drive 
HIZ-89", REMark , Issue #41 . 

Smith, R. E. Spring 1982. " Disk Programming Without HDOS", Sex­
tant, Issue # 1 . 

Swayne, P. August 1981a. "Losing Weight with HDOS 2.0", RE­
Mark, Issue #19. 

Swayne, P. December 1981b. "A Tiny SY.DVD", REMark, Issue 
#23. 

Swayne, P. May 1982a. "PATCH Mysteries Revealed", REMark, 
Issue #28. 

Swayne, P. October 1982b. "Recovering Deleted Files In HDOS 
and CP/M" , REMark, Issue #33 . 

Swayne, P. December 1982c. "What's In A Name?", REMark, Issue 
#35. 

'*", 
.. 
.. 

'* .. 
* 
'* 
'* .. 
.. 
.. 

'* .. 
.. 
.. 


.. 

* .. 


TINYCMO - Tiny replacement for SYSCMO. SYS 

Purpose: To deny the user access to HOGS 
system commands in "turnkey" applications. 

G. F. Roberts 9/25/33 

This piece of code may be used t o replace 
SYSCMO.SYS on version 2 of HDOS. It auto­
Matically dismounts all disks when any user 
progra~ tries to return to HOOS co~oand level 
via an EXIT SCALl. To install it first delete 
the old SYSCMD.SYS, then assemble this code and 
renarne it to SYSCMD.SYS. The XTEXT fi 1es 
ca.n be found on the HDOS distribution disks . 

XTEXT HOSEQU 
XTEXT ASCII 
XTEXT HOSDEF 
XTEXT TYPTX 
XTEXT OVLlJEF 

ORG USERFWA 

LON C 

Entry point 

START CALL .DOS 
JMP ROM BOOT 

XTEXT OOS 
XTEXT RCHAR 

END START 

listing 1. 

HDOS equates 
ASCII equivalences 
HOOS defini tions 
Text typing routine 
Overlay definitions 

ORG at start of user RAM 

List all XTEXT code 

Dismount all disks 
and jump to bootup 

Dismou~t disks routine 
Read character routine 

End of program. 

eand PASeAL 
[86 by Co;·l POTF'R IN'NOVATIONS. t~ ult inte (o r iJN [ K ccnpattbi lity , P'O""t ­

abil it y and addit i onAl feat u re~ t () t~l) l olt Ue flOwe r o f 'tou r HelthlZentth c cqul.. .. 
s)lstell'. (riM: u:p4l1 tC (o r Opt'nI Zl llg"C86 . Fas te st tltC'(vli on ti~ ; " Byt e 8~cluna r~ . 
Vel' . 1. 33 . SpecHy e lt Pte r CP!M86 or 2C0S. 1.395 (Qr w..-Ite for discount ) 

8iJ5 C . . . by L.e o r Zo lman . Fas t and e! H clt'nt . OuiC k , easy contJi le . nd li n k . 
Very popvh r in CliM d'Ub~SIt cO.lmlty. HIf.ItJly subs~t Of f.& R (I t' lacto ,u;u:l a rd 
with SoOIne addh.tonAl f eature s. fler. 1. 5 CP/M !W/ SS . 1.)50 (or wr1t. fo r d iscount ) 

C/80 and ''It' 711 'P AC I: . . b y ritE SOFll\A R.E TOOU.ORKS . Very po pu lar in 
He'at l1l2tnltn c unity. fa s t aM e f fi cie nt . A-eUOnac.l e sub~ t of K& R d e ( H t o 
stAndard. Ve r . 3, fl OAts .. nd IOO!JS. 5potcHy..cos or CP/11 00185 . 

ac.th pa c k.lgl!$ for " 79. 91) (or wrH I!' ( or discount) 

LiJUUJlTtI PASCAL and ?-COiJ[ n/iA'SLII T{. ... by Nl LY . YTES . $.,,",; ­
cillee! , pQwot'rful , I)~c odl!' convell i ence n \oiI! 11 '" na t i ve- coal Spe@'d an~ effi ci ency. Can 
be l~setSlJol~ ,end l i n'tl! d uS\ "'il Hicrosoft' ~ .!'ISO/L BO . Spec ify I-IOQS or C!D / M M I SS. 

Bot h PD Ck iM)I!S far 1f1C1 (ar wdte for discount) 

1\11 af tile .Ibove ccmp il ers coosbuntly rate Mgt. In publhhed r eviews and ber> chf'...a rk (ly.. l ua­
'l ions. l~ey include s t.lJl.e r iar c:>c ~u.ti on and lI a... e c i!IIIOflst rated out SUM1ng us e r suppo rt. 

(he y ar e all very It.lI t tl r e il'll)lenenUt lons and art royal ty f ret . 

The f ol l owio ts EI GENW AR E so ft..:arc poc k;H;e ~ ;It'C: cus t omized [ or Heath /len i t h 
conr"ut~ f' ~y~ac.,!'i : 

(;{.711NIj 5 7A ~T{j) I A C 
for turn i ng th~ [ pr-agrl tlm \ l\tjJ 1.)rt!JUJ.ge . i r;cl Vdt>s m eros and f unc t 10ns fo r H/Z fe at ures . 
Spe c ify BGS o ~ C/ 80 fo r CP }loI BO/8S; CP/ M 86 Or- lOOS fo r (;86 . '24.9 5 

iJ l SCOVDl l {Wi f'ASCA L . p rogr~i ... g ~utorl l \ MId SO\U'C~ cede li brary ro r the 
fi r.ll\Ci a l c a lcula t or . Spec Hy ICI'I fo r ZOOS Of' LI.lC l Ol\TA f or ('/1"0 80 /8 5. S-.Z4.9'S 

FINANCe: .. . "wha t ·H R (In- sere-en 311*;)' ''' ;5 of tiR- 'tIal tll!od l1nan(ift l \. ran actl(11'i s. 
Inte", ct \... e s e lec t i on O( pa raJ9l! t ers. So lvt> fo r any ont' o f t tlt financ Ial vari ab les. Pr i nt 
.uorUut Ion scht'dll,llu . Spec1fy CI'M 00 / 95 or 1005. S2~ . 95 

A'RUl Vl . . ..void dId: chitter . SlIV@ spa ce by PUltin9 IIIny ASC II (t ext ) fOes i n a 
s l lt!; l£! f ile: . A ve ry rw: at ....ay t o o"Van lze source coot" li brar1e-~ ~nd bliCkup ftles err se... enl 
cHff'tniitlot p~ckagi1!'5 CIA .II s1n91e dl, ... Ci' /H 80/ 85. $19. 95 

E1GEN".'\R E "!'ECfl~OLOCIES 
13090 LA V]ST,\ HRI VE 
SARATOGA , CA 9507 

~pcc i.. ry disk f o r aat : All 5" Ze n it h di s }o; f ormOlt.S a r(~ SUPPoTteo except 96 
tpt. Scnd -c:heC"k or I&Oney o 'C'de r. I nc lude 52 .S0 fo r sh i pp i ng J.nd handl i.n~ ; 

6% t,J.~; fot C<llifoTn\;l t:e.si ct e-nt.r; . 

62 REMark • February • 1984 

http:1.)rt!JUJ.ge
http:A-eUOnac.le


/'~ 
! .~/,\, I 

\ j ~ 

Simply Graph It! 
Crawford MacKeand 

115 South Spring Valley Rd. -.-
Greenville, DE 19807 

It is all very good to have written a program 
that does a neat calculation, but many of the 
most interesting routines are still to come 
when the math is all completed. How do 
you tell the user all about the good things 
that he just calculated? And what about the 
possibility that tables of numbers are not the 
best way to present the data? Maybe there 
are graphical methods of doing it. I person­
ally feel more comfortable wi th numbers 
than I do with pictures, especially when I sit 
at a keyboard . However, there are times 
when the old saying that a picture is worth 
a thousand words comes true, even from my 
biased point of view! . 

Those of you who have tried to write a scien ­
tific or an engineering program of any sort 
will have gone through the experience of 
setting up the equations and finding with de­
light that the answer comes out of the saus­
age machine, after debugging of course, just 
as it was supposed to. And then you realize 
...... but that's just one answer, and to do 
any real good with it I am going to need a raft 
of them. So you sit down and soon you have 
a nifty table of all that good information, and 
you have learned something about format­
ting and the sun is shining and everything is 
good. 

100 OIM B<::0 ,',) : Bl =" L<r, gn, ft.": CS ·t=CHRt.I~'7)+" E " 


1100PEN"I","I ,"SYl:MOATA.BAS" 

12i' FOR N = 1 TO 19 

130 INPunl, BIN,0),BI N,I), BIN, 2),8IN,3),BI N, 4 ),8I N,5) 

1q0 NEXT N 

150 N=N-l 

500 ~1 RE M *****~t*~"*iI* Gr~ pt,i ( ~.re sent.::!.ti ('n slJb-r"l)utini (ve r :)':H~.:tiHt*" lU·""'':; 

:.010 CLOSE : PRWT: PRINT 

5020 PRINT"Any calcvlat"d variabl. can t<~ plotted ag a ins t thi' ,·. nged variable." 

5030 PRINT" I op'Jt Resistance I I ) Input R.acta nc e ( 2) 

5040 F'RINT" Inp 'Jt SWR (3) 


50S\) PRINT" No.,ina l At ten. ( 4 ) Actual Att.n. (5 ) 

506(1 INPUT Enter- «(,de for requi r'€'d p lot. If O(lfle r'£' quir,i'd j errtt:'f' <0> "i H7.II 

5070 PRINT: NM=N: I F H7.=0 THEN 530@ 

5080 INPUT" Enter pl o t ",ax . and min. va1u", of se lec ted v a"iat<l~ "; UX, UN 

5090 IF UX ( = UN THEN PR INT" Ma x . ",ust b. gr.ater th"n ~i" . "": GOTQ 5080 

510<' REM Graph ic const"uctio " starts. 

511 0 IJD=(lJX-I.lN) / 4: FOR 13 = 0 TO 4: UII3) = INTI 100*IUN+ I3*UO) )/ 100: NEX T 13 

51 20 PR I NT CS ~ : PRINT TA8(26); "VERTI CAL CO-ORDINATE " ;Bl 

51 30 W7. = ABSIN): IF IN+l)I2=INT II N+I) I2) THEN PRINT" ";81 117.,0),; ELSE PRINT, ; 

5140 G~ = CHR'~ (42) : J = INTI15 + 60'(BIW7.,H7.)-UN) I WD f 4)) 

5150 IF J>75 THEN J=76: GI=CHRI(62): GO TO 5170 

51 60 IF IBI W7. ,H7. )-UN)(0 THEN ,1=0: G~=CHR$(60) 


51 70 PRINT TABI,I); G'~: N=N- l : IF N>0 THEN 51 3~ 

:.130 PRINT TAB I (2); ,, __ .., ______________ _________ _ ____. , _ ________ _ ___ _ ., -------------- ., _ A ----" 

:.190 S7.= -LEN I STR·llI.Ill ))lI2 : PRINT TAOIS7.+15) ; 1.1(0); TA8IS7.+.30 ) ; Ull ) ;~ 
TAB (Si.+4 5)i U(2); TA8(S7.+601i IJ(3); TA8 (S7.+7'51; 1)(4) 

5:00 PRINT: ON Hi. DOlO 52 1 ~ ,5220,5230 ,5 240152~0 

521\' PRINT TA8( 32) ; "INPUT RESISTANCE ot,II,S." ; :GOTO :·~60 

S220 PRINT TABI 3:); " INPUT REACTANCE ,.hll,s. " ; :GOTO 5260 
5230 PRINT TAB( 32); "INPUT STANDINC, WAVE RATIO "; : [;OTO 5~M' 
524~ PRINT TAB1 321; "NOM I NAL ATTENUATION dB. '. ; :GOT05260 
5250 PRINT TAE:( 32) ; "ACTUAL ATTENUATION dB. " 
5260 PRINT TABIt.0); " More p l o t s <'I>< N>"; 
5270 I NPU T 0: N=NM: IF C$="y" OR O = "Y" THEI~ F'RINT CS t: GOTO :.020 
5300 END 

Figure 1 

Well , maybe. What do you do with those results? Five times out was to set up a loop something like this : 

of ten, or even more, you promptly get a piece of paper and make 


1000 READ X 
a rough graph to see what they look like. That is the point that 1 ~) 10 A=A+l : IF A<X THEN PRINT" " i: GOTO 1010 

I had arrived at when I decided: if the H 19 can tabulate it, then 
 1020 PRINT "* " 

it can graph it, too . Seemed like a simple task (it is , too), but 1030 A=0: (;OTO 1000 


the canned routines that I found in any references at hand were 
 The operation was very simple. You read the value of the variable 
complicated . Unduly compli ca ted I thought, for the construction X and then go to the first line of the graph . It checks to see whether 
of a simple quick and dirty graph ..... and long. Look, I just the value of A is less than that of your variable X, and if not, 
wanted a little subroutine to tack on the end of a program that it adds one to A and tries again . It also steps the cursor one place 
was already getting too close to the limits of 64K in the H8. across the screen by printing a space with the PRINT "" . 

The result of the next fit of headscratching was a reasonably short When eventually A reaches the value of X, the IF statement says 
routine, which did some of the things I wanted it to do, in a very go to the next line (1020) and print an * or whatever you want 

'-' 
simple minded way. It was grand, if you could wait! But since to use to denote the points of the line. It also says it is done with 
it is easy to explain , lets start with it first. The root of the idea this line of the graph (there's no ; after the PRINT statement this 

REMark • February • 1984 63 

http:TA8IS7.+.30
http:IJD=(lJX-I.lN
http:sent.::!.ti


time) and then sets the counter A back to zero and goes round 
again. Great, as long as the variable X knows that it is only allowed 
to vary between 0 and 80, and as long as you don't want any 
labels on the axes, and as long as you don't want the axes marked 
in any way with a line or some divisions, or in fact any of the 
good things which will make your graph useful. And also as long 
as you don't care that it is as slow as ditchwater. 

But the principle is there. Obviously moving the cursor like that 
is not an efficient use of the system, and equally obviously there 
has to be some way of putting in the labels that are missing, and 
we most certainly have to provide a method of handling all of 
the different ranges of variable that the routine may encounter. 
And finally, the READ statement is not going to be an adequate 
way to introduce all the information from an actual program situa­
tion. So there are a number of factors to be dealt with. But in 
the end, it proved to be quite tractable and resulted in the short 
program seen in figure 1. The meat is in lines 5110 to 5190, and 
the rest just selects the variable we want to display and sees that 
the graph has the proper title blocks. 

The first essential is to be able to read the data conveniently from 
an external source. The program I was working with was easily 
induced to put its data into an array format from which the graphic 
routine could recover the data. The chosen format for a variable 
is X = B(N,M) where X is the dependent variable to be plotted 
on the horizontal axis and N is a number which tells you where 
you are in the list of the key variables. M tells you which variable 
it is, if there is a choice of more than one dependent variable 
to plot, and M=O specifies the key variable, as you can see in 
figure 2. This sounds quite formidable but the examples below 
using the sample data file in figure 2 wi ll clarify the usage. There 
is one restriction on the key variable. It must change regularly . 
That is to say, it can go 7, 9, 11, 13, 15, 17, 19, 21 etc., or 
6.3,6.6,7.2,7.5 etc. But not 21,23.2,26.1,28.7, 30.1 etc. 
Since it is most likely that you will have generated its various values 
with a FOR... NEXT loop, which will automatically satisfy this con­
dition, it is unlikely to present a problem. 

The next change you can see is in line 5170. Instead of pushing 
the cursor gradually across the screen until it has arrived at the 
right place, now I calculate the position in line 5140 (variable 
I defines the place) and I go straight to the spot with a TAB. Much 
easier . But let's go through the program on a blow by blow basis. 
Lines 5020 through 5060 fi nd out wh ich variable we want to graph, 
and H% retains that information. Next we are asked to choose 
the maximum and minimum limits of the horizontal axis . At first 
I was going to make this automatic, but soon realized that a manual 
entry was easier and more useful. This is especially true if you 
want to compare variables from several runs on a common basis. 
At line 5110 the intermediate values for the labels on the horizontal 
axis are calculated for the half and quarter points . (There is only 
room for five on an 80 column screen if it is not to be crowded, 
and it looks about right this way.) The next line does a screen 
clear and inserts the name for the vertical axis, and line 5130 
inserts the values for the vertical axis . It does this for each alternate 
line, using the tab comma to set the beginning of the graphic space 
at column 16, whether or not it is writing a number label. Forget 
the ABS for the moment and note that W% = N (most often any­
way!) . Line 5140 is where the work is done. Here the variable 
is called by its name B(W%,M%) which is B(N,M), except that 
I am using M% instead of M to save some space. Then the number 
is scaled in 60ths. That is to say that if I have chosen the range 
for the horizontal scale to be 50 to 100, and the value of B(N,M) 
is 75, I will get the answer (30). The point (75) is half way between 
50 and 100, and the point (30) is half way between 1 and 60. 

Then add 15 to get into my chosen graph space which is from 
16 to 75, and you have the TAB argument. If the value were 100, 
I would get 60, and if it were 50, I would get O. Adding 15 again, 
we arrive at the required TAB position for the printed *. (The initial 
TAB of 15 leaves space for the vertical numbers.) I also specify 
the character to print the graph line as the string G$, and ASCII 
42 is the * that I chose. 

O ne of the problem areas is handled by the next two lines. If 
you elect to set the graph's upper and lower bounds manually, 
then you wi II obviously have to dea I with the situation where the 
line runs off one side or other of the graph. It is also very desirable 
to show that it did so, and in which direction. If J is greater than 
75 then, I show a > in the line 76 position, the > being selected 
by the new value of CHR$(62) for G$. If on the other hand the 
line 5140 calculation wants to TAB off the graph in the left hand 
direction, then I show a < in the zero (column 16) position. Line 
5170 prints the *, the <, or the > , decrements the row counter 
by one, and goes around again if there are any rows left to print. 
The ABS in line 5130 comes in at this point, where in some im­
plementations the routine would slide a negative N into the B(N,M) 
array bringing the whole thing to a shuddering halt. The ABS func­
tion ensures that the array subscript cannot be negative and it has 
stayed there for safety! 

Then finally, 5180 and 5190 print the horizontal axis, the interval 
marks and associated values, and the ON GOTO selects the correct 
name for this axis using the selected value of H% . One last ques­
tion, "Do you want to do it again?", and it's all over. Oh yes, 
a final note. NM in lines 5070 and 5270 saves the original value 
of N for any reruns you do. 

As I mentioned above, the program source was induced to put 
its data into an array from which the graphic routine could read 
the data, but to test the program, I wanted to take the information 
in from a data file on the disc. So now let's look at the data in 
the data file in figure 2. 

M 0 -, 3 4 5 

N=1 119 27 .8324 11.9"19 1. 97 · i~7 QP 1 . 08811 
N= 2 15 31.035 17.854 1.96 · 11~ 6 1~6 . 1.3193 
N===3 20 35.875 23.671 1. 95 · 14142 1756 
.. 4 25 42.9192 28.963 1. 94 · 17 677 . 2 1912 
_ .5 3"' 52.7594 32.77 1. 93 .2121 3 .26249 

7~ 65.7331 33.139 1. 92 .247 48 .30572"'""' 4 QI 819.4443 2 7. "'37 1.9 .28284 .34881 
45 92.194 78 12.309 1. 89 .31819 . 39 175 
50 93 .8662 -7.771 1. 88 . 3 5355 .43 457 
55 8 4. 6879 -24.697 1. 87 . 3 889 .47725 
61~ 70.4399 -33 .211 1. 86 .42426 .5198 
65 56 . 9593 -34.401 1. 85 .45961 .56222 
70 4 6.468 -31.397 1. 84 .49497 . 6~!l452 

75 3 8. 9766 - 26 .502 1. 83 .53033 .64669 
80 3 3. 8742 - 20.923 1. 82 .56568 .6887 5 
85 312'.57 17 -15.189 1. 81 .6191 19 4 . 7 31968 
9 QI 28.6488 -9.5 1.8 .63 639 . 772 5 

•. 18 95 27.8497 - 3 .9196 1.8 .67175 .81421 
N=19 HI@ 28.0533 1.6 1. 79 .7071 .8558 

Figure 2 

(For anyone who is interested, the data is real, and comes from 
a transmission line ca lculation giving length, Rin, Xin, SWR, and 
attenuation in two flavors.) 

The data was put on the disc just as you see it in figure 2, but 
without the line and column number notations, and of course the 
spacing has been tidied up to make it pretty! In the test format, 
the program reads the data from DATA. BAS into the arrays that 
are set up at line 130, using the OPEN instruction for file #1 

REMark • February • 1 984 64 



VER fi CAl. ClJ-OR01 NA T£ LElo;gth, H . VERTI CAL CO-Q!;0 I NA1E Len~th. It. 
100 100 

qe q@ 

80 8" 
70 10

b. b. 
505" 

40 4 0 

; .3. 
2F.' 2~ 

1010 

2~ 5~ 7 5 100 -:·0 IS :.~I" 
INrUT RES I STANC£ Oh1fl5 . H l;III"fi pl o t !i ~ Y " N , ? INPUT REACTANCE oh•• • l'1or@ plots. ". y •. N ~'? 

Figure 3 Figure 4 

which starts the system off at line 110. A minor point in using 
the display is the number of key variables which can be handled . 
If the graph is to be displayed to the best advantage on the 25 
line H/Z19 or similar screen, then a count of 18 will just fill it 
and allow space for titles etc. This is also approximately square. 
If a longer graph is required, then it is necessary to print it as 
it is generated, in which case there is no real limit other than 
string storage space. 

In figures 3 and 4 you can see what the resulting graphs look 
like. Adequate for most in-work calculations, but obviously not 

U Vectored from 8 

support the use of PeachText with a terminal. I have tried every 
combination of Baud, Handshake, Stop Bits, etc. 

Can someone out there help me?! 

Also, here are a pair of Z-DOS assembler programs for turning on 
and off the Interlace Mode on an H/Z-100. I am using this with an 
Amdek Amber monitor and real ly like the display quality much bet­
ter than the non-interlaced mode. I don't know if this will work on 
other brands of monitors. To use this program, write it up using 
Edlin, then use MASM and LINK to assemble it. Then just type the 
"Interlac" command. I hope these programs are helpful to someone 
else. 

. --- (NTERLAC--- Pl.lt.o:o th", ':Ocre~n :t"I t~C! \t"Iterl,3,c~ mOC'2 

"tLlsr 

t NCLUD€ !)EF .lSC r ! , .4SM 

! NC1...l.!CE :J£F MS , ASM 


.!...lST 

sn: $i-: i3 GEGMt::tH STAC}~ 


08 11)(JH DUP(-:") 


sn SEG 2,NDS 


!)'::"rASEG SEGMEt-IT 

RTAOOR !)O .) 


ME5G DB 
 '------THE SCREEN IS NO'-'l It-I THE INT£~:LACE :100E------· 

08 CC _CR. CC_L~ • 
. ther e- "'-re dots Inter L.loce-d bet ..... een the normo.\l·.0" 

'dot pattern' ,CC_CR,CC_LF, 
08 'you may notlce Ii s l i~ht Sh i lftmerlng or fu==!t"Iess · . 
D" 
08 CC CR ,CC LF 

' i.f th1S- 1 S obJec'tionab le vou may r-:ot'.Jr"n to :.he :"orm.:11 ' 

09 ',"r.ode b y ' ,CC_CF: ,CC _LF, 

DB · tYPIng - I". ILLOHR' 
08 CC_CR, CC _LF • ' '$ ' 

O~ 

DATASEG ENOS 

F'SMSEG SEGMEN T 

ASSUME CS: ?GMSEG,SS: STV.SEG. OS: O~TASE:G ,ES: ;'I.I O'!"HING 


-'; '!" ~RT : 

!"'IOV Ax.DATASEG 
nOV OS . AX 
110V WORD F'TR RTAOOR"':, E5 : save pr~gr;\m h~~c:oer 4C:-:1r~ss 

MOV OX, OFFSET t'lE SG ; !iet ,ness .aqe accr-ess 

110V AL,8 

ouT I)CCH,AL 

nOv AL. l :: 

OUT ')ODH ,AL 


MO'I AH. OOSF _OUTSTR jr;et pr i nt str"lng funC':.l::lt"l c:de 

!NT Of)SI _FUNC ;PRINT STR!NG 

.)r.P RTAODR : t.er"m i nate ?roqr.Jm 

PGrlSE G EtJOS 

END START 

a graphics package quality. That's it. Twelve lines of BASIC and 
you have a simple effective graph generator. And with a screen 
dump or an echo, you can print it in hard copy. I use a screen 
dump as the most effective method for this sort of quick graphic, 
but a small change to the code would also enable you to print 
directly from a BASIC program. I hope you find it as useful as 
I have, and the next stage is the simultaneous printing of two vari­
ables. But there is always a next stage just in sight down the pike, 
and a bunch of other projects clamoring for attention. So that will 
just have to wait! 

*; ---'" lLLlNlH---rwturn" th~ liu:.r~en t o t h . nonn.1 mod. 

• XL H,; T 
INt...:LlJIJ\: U£FASCll.ASM 
INCLUl)£. O£fMS.ASM 

,I. 19T 
5TKSEO SE[)I;ENT STACK 

D8 lOOH DUP(?) 
fHKBEB ~HD8 

OATASEO SEGMENT 
RT AODR 00 o 
MESa 01:1 · ---- --THE BCf<EEN 18 _ IN T.. __ I1I1II&------ . • 

08 CC_Ck,CC_L F, 

08 ' to put It b,.c k lO the inter-Iac_ JaOd. ' , 

DB CC _CR I CC_LF , 

08 ' '''''''''- lNH:.kuw..: ' • . • ' 

OATA9EIl ENDS 

PIlM6EG SEGMENT 
AbSU/1£ C6 1 PGI'1SE6.6SISTK8£G, os. DATASEC3,ESI NOTHING 

!:H AR T I 
M()\I 

MOV 

"OV 
I10V 

AX , OA TA6EIJ 
OS,AX 
WORD P1'Ft f(1'AO[)Fc+2,ES 
O•• UfF6E r ~S6 

1.&"'. proQr&e h ••dc1.r &ddr ••• 
IQet .....g ••ddr .... 

t1Uv 
OUT 
MOV 
uuT 

AL ,a 
ODCH ,Al. 
AL,12 
ODUH,AL 

MOV 
!NT 
JI'IP 

pGt"lBEJ3 ENDS 

AH, DOSf __OUT6TR 
DOSl_FUNC 

I'i!_t pri n t .tr1nQ fum: tlgn cod. 
,PRINT S TRING 

RTADOR • t."m! nat. proQr.. 

ENO ~Tr'lh T 

Stan Gray 
Manufacturing Innovations 
10210 E. 50th Street 
Tulsa, OK 74146 

New Info On FT.HUG 

Dear HUG, 

I would like to correct the information you have on file concerning 
the FT.HUG club. 

Club name: FT.HUG Fort Collins Heath Users' Group 
Club Address; 3317 Buckskin Trail, Laporte, CO 80535 
Contact: Charles McJilton Phone: 493-2987 
Alternate Contact : Bob Strieby 
Phone: 221-3984/482-3896 (work) 
Group Size: 30 

REMark • February • 1984 65 



Support and More 

From the Heath/Zenith Compatibility Leaders 


H8 PRODUCTS 
The Most Extensive Une of Hardware Support for the H8 ® 

• 	 DG-80/FP8 
Z80® based CPU including the powerful FP8 monitor - both only $199.00. The acclaimed FP8 monitor package 
is included with the DG-80 CPU. 

• 	 DG-64D/64K RAM Board 
Reliable, Low Power, High Capacity Bank-selectable RAM 
Priced from $233.00 (OK) to $299.00 (64K) 

• 	 DG Static 64 
Fully Static, High Capacity, Bank-selectable RAM. Also can be used as EPROMIPROM board (2716 type 

EPROMS). Priced from $199.00 (OK) to $499.00 (64K). 


• 	 DG-32D/32K RAM Board 
Low cost, Dependable RAM for the H8 32K Version Only $179.00. 

• 	 DG-ADP4 
H17-4 MHz disk adaptor - $19.95 

THE SUPER 89 
The DG SUPER 89 is a replacement central processor 
board for the Heath/Zenith 88-89 series of computers. 
The DG SUPER 89 offers advanced features not 
available on the standard Heath/Zenith 88-89 such as 
4 MHz operation, real-time clock, optional AM9511A 
arithmetic processor, up to 256K of bank selectable 
RAM with parity check, and HDOS, CP/M and MP/M 

HEARTBEAT 
The DG Heartbeat is a compact computer system 
designed to be hardware and software compatible with 
the popular Heath/Zenith Z89/90 computer product 
line. The Heartbeat offers advanced features not found 
on the standard Heath/Zenith computer such as 4 MHz 
operation, real-time clock/calendar, two RS-232 serial 
ports, five peripheral expansion slots, 128 Kbytes 
(expandable to 256 Kbytes) parity checked RAM and 
provisions for an optional AM9511 Arithmetic 
Processor. Compatible with HDOS, CP/M and MP/M II 
(Multi-user) operating systems. Electronic Disk 

compatibility. By incorporating current state-of-the-art 
technology available for the Z80, the DG SUPER 89 
offers the user increased speed and system reliability 
for years to come. Full compatibility with all Health/ 
Zenith software and hardware products is designed into 
the DG SUPER 89. Electronic Disk Software included. 
Priced from $829.00 (128K) to $989.00 (256K). 

Software included. The Heartbeat may be used with 
most popular video terminals on the market although 
the Heath/Zenith HlZ19, H/Z29 and ZT-lO/11 video 
terminals are recommended for full Heath/Zenith 
software compatibility. The Heartbeat cabinet design 
provides for inclusion of hard and/or floppy disk drives 
as well as other desired peripheral interfaces and is 
color-coordinated for use with the Zenith Z29 and 
ZT-lO/11 video terminals. Priced from $1350.00 (Basic 
Unit). 

CP/M"', MP/M and MP/M II'" are registered trademarks of Digital Research of Pacific Grove, Califomia. 


H88I89"', Z89/90"', H17"', H77®, H/Z 47"', Z67® and H-88-1'" are registered trademarks of the Heath Company and Zenith Data Systems. 

zao'" and ZaoA® are the registered trademarks of Zilog Corporation. 


Ortlering InlDnnaliDn: ProdUCIS Iisled ava ilable from DG EleCl ronlC Devel ·ELECTRONIC opmeOlS Co 700 Soulh Armslrong. Den,son. Tx 75020 Check. Money 
Order. VISA or MaslerCard accepted Phone orders ca ll (214) 465·7805-= Frelgnl prepa id Allow 3 weeks lor personal checks 10 clear Texas resldenlsDEVEL OPMENTS CO. add 5°10 Foreign orders ad d 300

' Prices sublect 10 change Without noticeQ 








