S

-

HH

v
v
W

stept 1 Brushidot Colone?e?




DISK DRIVES DISK DRIVES DISK DRIVES DISK DRIVES DISK DRIVES DISK DRIVES DISK DRIVES DISK DRIVES

PRICE BREAKTHROUGH

Super Sale on New Disk Drives
Starting at $169.00!

Tandon — Siemens — Remex — MPI — Teac — Shugart — Tabor

40 or 80 Tracks — Single or Dual Head — New 3'4" Drivette™
Our Disk Drives Are Capable Of Single And Dual Density Operation

The NEWEST Technology Capable Of Operating On Most Popular Computers
Drive a Hard Bargain!!™ — 5 M.B.-20 M.B. Complete Systems ...... from $999.95

NEW

Diskette Breakthrough — 10 Pack in Library Case — $18:95 1%,

Since We Are Always Finding Ways To Save You Money,
Please CALL For Our Most Current Pricing.

TOLL FREE ORDERING GENERAL AND TECHNICAL
1-800-343-8841 1-617-872-9090

Model 1INV DFtves (01 23) v saw o wwwis o3 savios wi daw o5 s o starting at $169.00
Color Computer Drive {0 1 2:3) - .« v e caioms es sweiss essie s sy o oo $ Call Toll Free
Apple/Franklin Compatible Add-On Drives with Case & Cable. . .j":, . §$218-95 za%“fu
Apple/Franklin Compatible Drives with Controller ... ....... .. S 18259.95 pac
Model 1INV Memory Upgrade . .. ... .. ... Call Toll Free
Printers — Daisywheel/DotMatrix .. ... ... ... . . .. $ Call Toll Free
Diskettes In-LiIbrary Casas ... v v ai o sanss aviies ¥ sanes i S6i9 5% 63 $18495 New Low Price
Cases and Power Supplies — (Single-Dual-1/2 Height) . .. ...... starting at $44.95
Printor BUHErs BK 10 512K ... viv svs oo e s vimmiss s s ie ot starting at $143.95
Percom Double Density Controller(Model l) .. ...........coiiinnn.. $ Call Toll Free
Holmes Model I/lll Speed-up Mod-VID/80 ..... ... ............ starting at $90.00
Color Computer Printer Interfaces .. ...... ..., starting at $29.95
Cables — Printer/Disk Drive . ... ... oo it startingat $23.00
DOSPLUS .o v svvwe s sowns s o, i e Pa0WE 38 505 9 § $ Special Prices
Repair Services Now Offered — FAST Turn-a-Round . ................. $ Call Toll Free

Warranty on Disk Drives — 6 Months — Extended Warranty $ Call Toll Free

SOFTWARE SUPPORT, INC.

One Edgell Road, Framingham, MA 01701 (617) 872-9090

Hours: Mon. thru Fri, 9:30 am to 5:30 (E.5.7.) Sat. 10 am to 4:30 pm

DEALER INQUIRIES INVITED.

Service! Service!

7710 MSIQ SIAIMA %SIA SIAIMA ¥SIA SIAINA ¥SIA STAIHA ¥ STAIHA ¥SIA SIAIMA HSIA SIAINA HSIA STAINA ¥SIA SIA**T ¥SIg

DISK DRIVES DISK DRIVES DISK DRIVES DISK DRIVES DISK DRIVES DISK DRIVES DISK DRIVES DISK DRIVES DISK DRIVES DISK DRIVES DISK

Ifg‘“ﬁ Tk ' | CANADA All in stock products are shipped within
.C./Visa/Amex and persona MICRO R.G.S. INC 24 hours of order. Repair/ Warranty

checks accepted at no extra charge. RRE VICT 1A SUITE service is performed within 24 hours of

C.0.D., please add $3.00. i 751, CARRE VICTORIA, SUITE 403 il Ay e

Shipping: Please call for amount. ONTREAL, QUEBEG, CANADA, H2Y 2J3 i S ol -
pping: Pl : Reaular Tel (514) 845-1534 accept C.0.D., foreign and APQO orders. ITT

Not responsible for typographical errors. Q_ . Schools and D&EB corporate P.O.s w

© Copyright 1983 Canadian Toll Free 800-361-5155 P o

S3AIHA XSIA SIAIHA XSIA STAIHA MSIA SIAIHA HSIA STAIHA HSIA SANHA WSIO STAIYA YSIO SIAIHA MSIa %



HUG Manager ........cccoocow Bob Ellerton
Software Engineer .............. Pat Swayne

HUG Bulletin Board
and Software Developer .... Terry Jensen
Software Coordinator ........ Nancy Strunk
HUG Secretary ............. Margaret Bacon
REMark Editor ................ Walt Gillespie
Assistant Editor ............. Donna Melland
Printers sessersecensens. Imperial Printing
St. Joseph, MI

REMark is a HUG membership magazine published
12 times yearly. A subscription cannot be purchased
sparately without membership. The following rates
apply.

LS. Canada &

Domestic  Mexico  International
Initial $20 $22¢ $30*
Renewal $17 $19* $24*
*U.S. Funds.

Membership in England, France, Germany, Bel-
gium, Holland, Sweden and Switzerland is acquired
through the local distributor at the prevailing rate.

Limited back issues are availble at $2.50 plus 10%
handling and shipping. Check HUG Product List for
availability of bound volumes of past issues. Re-
quests for magazines mailed to foreign countries
should specify mailing method and appropriate
added cost.

Send Paymentto:  Heath Users’ Group
Hilltop Road

St. Joseph, M1 49085
616-982-3463

Although itis a policy to check material placed in RE-
Mark for accuracy, HUG offers no warranty, either
expressed or implied, and is not responsible for any
losses due to the use of any material in this magazine.

Articles submitted by users and published in REMark,
which describe hardware modifications, are not sup-
parted by Heathkit Electronic Centers or Heath Tech-
nical Consultation.

HUG is provided as a service to its members for the
purpose of fostering the exchange of ideas to en-
hance their usage of Heath equipment. As such, little
or no evaluation of the programs or products adver-
‘tised in REMark, the Software Catalog or other HUG
publications is performed by Heath Company, in
general and HUG in particular. The prospective user
15 hereby put on notice that the programs may con-
tain faults the consequence of which Heath Com-
pany in general and HUG in particular cannot be
held responsible. The prospective user is, by virtue
of obtaining and using these programs, assuming full
risk for all consequences.

REMark is a registerad trademark of the Heath Users® Group,
St Joseph, Michigan

Copyright @ 1984, Heath Users’' Group

REMark * February » 1984

‘=REMark:

Volume 5, Issue 2 « February 1984

on the stack

Thoughts of Summer Margaret Bacon ... .................... 5
Buggin’ HUG ... ... ... .. . ... 6
A Tutorial On Random Numbers Kenneth Mortimer . ... ... ... 10
Implementing Heath Escape Sequences for

CP/M and Z-DOS William Adney . ... ...........couu.... 13

Simple Printer Controls For The Z-100 charlie tayman ....... 16

Files and File Handling David wamick . .................... 17
COBOL Corner IV H. W. Bauman . ........................ 20
ZBASIC Mapping Program: BASMAPER 7ed Miller, Jr. .. ... .. 23
Making the CP/M DUMP Program a Useful Utility

Charles HOM . . . oot e e et e ettt e e e e e e ettt mme e e 28
Introduction To Data Structures Emily Yount ....... ........ 29
An Introduction to ‘C’ Part IV BrianPolk .................. 32
HUG New Products . ......... ... ... ................ 34
Get Rid of “Echo On Delete” In CP/M-86 rat Swayne . ...... 37
The Stupid Computer Wallace Theodore . ................... 38
Improved Error Recovery For CP/M Pat Swayne .. ... ..... .. 40
So, Your Computer Can’t Add David Pelowitz . .............. 42
Disk Access By Tracks and Sectors David Vinter ............ 48

Getting Started With Assembly Language (#9) Pat swayne ... 50

TRRIN PBULENNSOR 5 woviy o ass = eaisy w o o5 o @4 W DEg i 56
dBASE 1l Programmer’s Notebook 7om Huber ... ........... 57
Squeezing The Most Out of Your HDOS Diskettes

GIH ROBEHS: -oi s woavs s wen wvws win v iiwih’ 603 40 waiotas o 5t aleidtone s 58
Simply Graph It! Crawford Mackeand ... .................... 63

ON THE COVER: A Valentine design done on an H/Z-100 by John Gillespie (Walt’s son)
using PALETTE, a ZDOS graphics package by Dale Wilson (distributed by Software Wizar-
dry, St. Charles, MO).




Checklist
~ forZ-100
P \,{\c.eﬁl?- L 333;:) ““uvh Computer
o De° oo™ 2 o 08 5L oot g

. \\\ 531“ yo AN )
and e T n® Y g W ey °
0 n T . Users:
\

i””” data 122 Yankee Drive
SYStemS E G Eﬂ St. Charles, MO 63301

AUTHORIZED SALES & SERVICE (314) 946-1968



Margaret Bacon
HUG Secretary

The groundhog is just about to pop out his head and we don't dare
wait any longer to start preparations for the International Heath/Ze-
nith Users’ Group Conference. Yes, this year we must recognize that
HUG is International.

As good as the 1st HUG Conference was, most of what we have
heard about the 2nd HUG Conference indicates that those who at-
tended felt that it was much improved. We are going lo try again!
The general format we are considering turns the normal convention
scheme upside down. We are going to turn you loose on the vendors
long before we start tying up your time with general meetings, semi-
nars, etc.

After two very successful years at the Hyatt Regency O'Hare, the
Conference is moving. We don’t want you to get bored. The 1984
Conference will be held at Pheasant Run Resort in St Charles, II-
linois, the weekend of July 27-29. We have arranged a weekend
package (like those get-away weekends you hear about) so, plan to
arrive Friday and stay until Sunday afterncon.

Pheasant Run and St. Charles are nestled in the Fox River Valley
about 45 minutes from O’Hare Airport in Chicago. The Hotel is very
experienced in various ways of getting you there, but more about
this in the March Issue of REMark. The DuPage County Airport is lo-
cated adjacent to Pheasant Run for those of you who are pilots.
Pheasant Run was originally a farm. The original farmhouse is still
there and the exterior of the barn can be seen in the buildings. As
the resort has expanded and added accommodations, several room
choices have become available. More about this next month,

Many of you have commented that while you were having a great
time, there was nothing for your guest(s) to do. That is one of the
reasons we are moving to Pheasant Run. Now your spouse (family)
can have a vacation while you are “bit-bashing”. The facilities in-
clude abundant recreational opportunities. Pheasant Run offers an
18 hole golf course, tennis courts, the largest health club in the Mid-
West, and shops. The night life available is famous in Chicago. The
model of Bourbon Street is a delight with live music and that Bour-
bon Street atmosphere (I wanted to hold the entire conference there
but Bob said it wasn’t big enough). The Dinner Theater is the pride
of the resort. There are six eating areas available. St. Charles and the
surrounding area are rich with quaint shops, antiques around every
corner, and turn-of-the-century and earlier buildings to see. There
could be a riverboat trip down the Fox River, a side trip to Long
Grove Village (I think they should have called it Walnut Grove) or
you might enjoy wandering through neighboring Geneva, lllinois.
It's beginning to sound like you should plan to come for a week.

The general theme for the Conference this year is “Adventure”. Not

only the adventure of the Pheasant Run Resort and the surrounding
area, but the adventure of the Heath/Zenith Computer World. We
have many ideas about subject matter that would be an adventure
for you, but we would appreciate your suggestions. We are hoping
that time will be available for special interest groups to gather.
Pheasant Run has the space that will make this possible. If you have
a group that wants to meet, let us know as soon as possible. We will
see if we can help. Try to estimate the number of HUGgies that might
want to join you. We have a bit more space for Vendors this year

so the opportunity to see what is new, or just what is available, will
be good.

We would like to take this opportunity to thank each of you who at-
tended the First and/or Second National HUG Conference for your
support and confidence in the Heath/Zenith Users’ Group. For those
of you who have not yet attended a Conference, we welcome you
to participate in what is hoped to be an even bigger and better
chance to get to know fellow HUGgies from all over the United
States and the world.

Watch for the Official Registration Form in coming issues of REMark
along with additional details as they become available. Please wait
for the Official Registration Form before contacting us or Pheasant
Run. There will be a special card for arrival and accommodation in-
formation for Pheasant Run. Please DO NOT contact the hotel until
you have this card. This card is to help the personnel at Pheasant
Run make your arrival as smooth as possible.

SPheasant Run

RESORT ¥

REMark « February = 1984

5




Corrections To “The Single Step Approach
To Recovering Deleted Files” in Issue #45

Dear HUG,

I would like to thank you for publishing my
article “The Single Step Approach To Recov-
ering Deleted Files”. It really does make me
feel goodto seeitin print.

There were some differences between my
listing and the one that appeared in REMark
Issue 45 that will make the program work
differently than | had intended. In fact, it will
probably fail to run properly at all. | will list
the differences below.

1. My label “syntax” should follow the “jnz
chkarg” so that the example of proper syntax
will be displayed if no arguments are pro-
vided. The label “exit” should follow im-
mediately thereafter so that the program can
be entered with the proper command line.

2. The label “cfu” is misplaced and the rest
of that subroutine ended in my subroutine
labeled “continu” where a “scall .close” and
a “jmp exit” should be. The result of this is
an error message and exit when “cfu” is
called (a failure every execution). Also, con-
fusion and no close of the restored file at the
end of the “continu” routine, although that
will never be reached.

3. I misspelled the word “Usage” in my syn-
tax message.

C. F Webber
34 Mills Street
Morristown, NJ 07960

COLD HUG Now Has Bulletin Board Sys-
tem

DearHUG,

Please place a notice in your magazine stat-
ing that COLD HUG now has a Bulletin
Board System. The hours are 9 p.m. to 7
a.m. (Alaska Time Zone). The phone
number is 907-895-3284. Other hours are
by prior arrangement only. System contains
useful programs for CP/M & HDOS written
in BASIC and Assembler and soon will have
some Apple programs as the majority of
computers in this area are Apple/Franklin.

Stan Lockhart

P.O.Box 229

Fort Greely, AK

APO Seattle, WA 98733

H8’s Wanted

WANTED — H8s. | will pay up to
$150.00 per unit. My phone number is 212-
380-1004, ask for Gerald Pindus or write to
the address below.

Gerald Pindus
78-40 164th Street
Flushing, NY 11366

SMHUG NEWS
DearHUG,

Effective with the January 14, 1984 meeting,
the Southwest Michigan Heath Users’
Group (SMHUG), will meet on the second
Saturday of the month at 10:00 a.m. in
Room 4010D of the main building of the
Kalamazoo Valley Community College. The
new contact person is Bob Hamel, 1054
Blanchard S.W., Wyoming, Ml 49509. The
phone number is 616-532-3875.

A. Robert Hamel
Editor, SMHUG News
1054 Blanchard S.W.
Wyoming, MI 49509

BOOM BOOM!
Dear HUG,

Have you ever watched a two year old play-
ing with blocks? First he (or she, but hereaf-
ter "he” for clarity—and to save my poor fin-
gers the extra writing), what was | saying?
Oh, yes. First, he builds a tower, block by
carefully placed block, teetering this way
and that, until it reaches the sky (or so it
seems to him). He stands back to admire his

creation, sucking his thumb in silent won-
der. Then with a wild squeal of glee, he
rushes forward to kick, knock asunder, and
otherwise demolish the short- lived tower,

My husband was in a two year old frame of
mind the other day. (/ was not!—Bob.) | was
struggling with a computer program for Data
Structures class when he sneaked up behind
me, tapped me on the shoulder, and grinned
into my unenthusiastic face. “Forget the
homework!” he crowed. “Do you want to
see a computer program that blows itself
up?” Naturally, | thought he was referring to
his attempts to solve the Data Structures
problem — we are taking the same course,
you see. The thing that bothered me was the
fact that he seemed so cheerful about the
failure of his program. Perhaps he was fi-
nally going off the deep end?

“This is something | have to see!” was my
mumbled reply as | left my drudgery with
combined relief and dread. (Bob’s programs
always work, eventually. Why is he so ex-
cited now?) He ushered me into the com-
puter sanctum and politely pulled out my
chair, something I've been trying to get him
to do in restaurants for some time now.
Without another word, he pointed to the

screen, which said "RUN" — my cueto hit
the carriage return. | did.

The screen cleared and the word
“B 0 0 M” appeared, dead center. |

looked at Bob in puzzlement. He told me to
listthe program. I tried, it wasn’tthere. It had
self-destructed. Imagine that: a computer
program that blows itself up so completely
that you have to rewrite it to run it again. If
you ever feel like a bored two year old in

1128@
1199 *
1208
1219
1229 °
1234
1240

1258 READ N

200 N=INTISERIN®E)+.1)
1260 FOR I=1 TO N

1279 READ A

1275 A=INT(SER(A%Z)+.1)
1259 PRINT CHR#(A);
1276 NEXT 1

1309 READ N

1303 N=INT(3QR(N®E)+.1)
1318 FOR I=1 70 N

132 READ P

TR AR AR AR AR IR R R AR AR A I R AR R AR R RS RS SRR SRR RS

‘PS: JEAN DIDN'T KNOW LT AT THE TIME, BUT THIS PROGRAM SAVES #
*ITSELF TO DISK A5 A FILE CALLED “TEMP.DAT" *®

R RS AR R R R R R RS AR A R RS R DR R AR R SRR R R SRR

1325 P=INT(SOR(P®*8)+.1)

332  P4=P4+CHR%(P)

1340 NEXT 1

1358 SAVE P%

1366 NEW

2000 DATA 21.12S, 71.125, $95.125, 91.125, 790.125, 2321.125, 361.125
2010 DATA S44.5, 128, 736,125, 123, 780,120, 128, 741.1Z3

2026 DATA 8, 882, 595,125, 741.125, 800, 264.5, 578

2046 DATA 528,125, 882

+

L]

6

REMark « February « 1984



need of something to do (or undo), here’s the
listing for you to play with.

Jean (and Bob) Hall
Rt. 10 Box 478B
Moore, OK 73165

Comments To Two Previous Buggin’ HUG
Letters

Dear HUG,

I just finished reading issue 45; another great
issue! | am writing to comment on two of the
letters in the Buggin’ HUG column.

To Mr White: HDOS absolutely, positively
DOES read NULLs from the disk. A NULL is
nothing more than 8-bits of binary zero. If
HDOS couldn’t read binary zeros from the
disk, then it would be next to impossible to
run assembler programs. For example, the
following assembler instructions generate
binary zeros:

Instruction  Octal Representation
Lxl H,le @41 012 000
MVl B, b 060

SCALL .EXIT 377 oee

I believe the problem with NULLs that Walt
was referring to is that the TT: device driver
deletes NULLs entered from the keyboard.
This is why PIE can’t process them. If you
have a copy of the HDOS 2.0 source listings,
check the first listing in Volume 1, page 84,
around line 3877; this code shows how
NULLs and Line Feeds are deleted by TT: in-
terrupt service.

To Mr. Bronosky: Yes, it is possible to elimi-
nate labels with relative addressing, but it's
not a good habit to get into. There must be
a bunch of good reasons to not use relative
addressing in JMP instructions, two come to
mind right now.

First, you can’t count on the assembler to
catch type-o's for you. Forexample....

MOVE EQU  #
MOV AN
STAX D
INN  H
INN D
DCR B
JNZ  MOBE

....would generate an error because ‘"MOBE'’
is an undefined label, while ....

MOV AM
STAX ]
INN  H
INN D
OCR B
JNZ b

....would not be caught by the assembler at
all, and would most certainly cause hard-to-
catch run-time errors (it should be *-5).

Second, consider the maintenance night-
mare you would have if you decided to in-
sert aCALL to a routine to convert lowercase
characters to uppercase characters after the
MOV A M instruction. You'd have to re-
member to add three to the relative jump ad-
dress. This type of house keeping is best left
to the assembler to do for you.

Don’t worry too much about running out of
label space in the assembler. The largest as-
sembler program | have written on my H8 is
151 pages long and just littered with labels.
There are 1682 labels defined, and | would
guess that in my system there is room in the
symbol table for 600-700 more.

David A. Shaw
469N. Howard
Elmhurst, IL60126

Changes To Morse Code Program
DearHUG,

| have amended my copy of Robert Horn's
Morse Code program and found the changes
to be correct but incomplete. Make the fol-
lowing additional changes to complete the
corrections.

Change line 440 to read:
44¢ FOR T=1 TO NLI:NEXT T
Change line 450 to read:
456 FOR T=1 TO NZ:NEXT T
Insert line 455 as follows:
455 NEXT J

Change line 460 to read:
460 FOR T=1 TO N3:NEXT T

I am using CP/M MBASIC 80 Rev. 5.21.
Using Dr. Milam’s changes with the changes
listed above, the program runs well. | have
additional changes for those people who are
working on the higher class licenses. The
following two lines will allow you to run the
program at approximately 18 words per
minute code speed.

Add the following:

125 PRINT "D---> XFAST ( 18WFM ) *

175 IF CH$="D" OR CH#="d" THEN PRINT
"XFAST":PRINT:N1=20:N2=76:
N3=320:N4=1:G0TO 20@

Are there any printing or other errors in the
revised CHEAPCALC program in the article
“CHEAPCALC Another Look” on page 35 of
Issue 442 | have been unable to get it to run.
| have had the previous CHEAPCALC par-
tially running but some of the functions did
notwork.

I am also looking for anybody who is inter-
ested in using their computer for Astronomy
(specifically optics and the Amateur Space

Telescope) for an exchange of information
and programs.

| think you are doing a great job with RE-
Mark. Keep up the good work.

James Hauser
29732 Taylor
St. Clair Shores, MI148082

Feedback On the Updated MAPLE
DearHUG,

The same month that my letter containing
comments on MAPLE (Modem Applications
Effector) was printed (Oct. '83), an updated
version was offered through HUG. I'm writ-
ing to give my initial impressions of the up-
dated version.

First | want to say that the items which
caused frustration for me in the first version
have been effectively dealt with. Dr. Parke
has done a fine job of taking off the rough
edges present in the first version. With the
prior version, the keypad was left in the al-
ternate keypad mode when MAPLE was
exited. The new version allows you to select
which mode the terminal will be put on an
exit from MAPLE. No more problems going
directly to another program which expects
the keypad in a different mode. Another nice
feature is the ability to send a file with CR-LF
pairs, just line feeds or just CR’s to designate
the end of lines. No longer are double
spaced files a problem when sending files to
the local campus computer system.

The new version has other expanded com-
munications options, a nicer disk directory
(including size of files), and the ability to
control MAPLE from a remote system. To get
a good feel for the expanded abilities of
MAPLE you need to read the manual, which
has also been improved. Thanks to HUG
and Dr. Parke, it was well worth the $10 up-
date fee.

Daniel Gilbertson
24N. Fourth St.
P.O.Box 158
Platteville, W1 53818

Problems With The LPMX80 Driver
Dear HUG,

| recently upgraded my MX80 to Graftrax
and encountered the problem described by
Mr. White in REMark Issue #45; the un-
wanted ‘G’ or ‘H’ in the first position of out-
put upon opening the device.

| cured the problem by issuing the SET LP:
commands to specify PAGE 66 and
LENGTH 66. The escape sequence gener-
ated: <ESC> C 0 apparently has the zero
byte dropped on output, and the following
<ESC> G or H to set or reset. DOUBLE

REMark = February = 1984

7



STRIKE has the <ESC> used as form length
and the G or H then prints.

There are other problems with the LPMX80
driver if you attempt to use 8 line-per-inch
output, which | use for assembler output of
software programs.

1. The SET processing for PAGE and
LENGTH rejects as INVALID any values
over 66. Standard 11 inch paper has 88
lines.

2. The SET LP: LPI 8 has no affect.

| changed the compare constants for PAGE
and LENGTH to accept 88 as valid, but this
had no affect on the output.

To correct this situation, | created a patched
version of LP: specifically for COM-
PRESSED, 8 LPI printing the following:

1. The <ESC> 2 for 6 LPI was changed to
<ESC> 0.

2. The constant moved into the <ESC> C
LENGTH sequence was changed to octal
130.

3. The <ESC> F sequence was patched to
000,017 to set COMPRESSED mode print-
ing.

I have not included specific patch com-
mands for these changes, because | made
them using the HUG dump program.

Robert C. Mann
11260 Alger
Warren, M| 48093

Answer To Letter On ‘'C’
DearHUG,

Concerning Mr. Pepper’s article, “Using ‘C’
For Fast Action Games”, in REMark Issue
#42, and Mr. Gillies letter, “More on ‘C’
Language”, in REMark Issue #44, | would
like to make a small suggestion. Instead of
entering in the program non-printing char-
acters, such as the ESCape character, which
may cause trouble when printing, editing
and/or compiling, it is better to use the ‘C’
language conventional escape sequences.
These are described in appendix A, section
2.4.3 of “The C Programming Language” by
Ritchie and Kernighan, and in section 7.6 of
the “Manual for C/80, Version 2.0”.

Thus, instead of using the statement
printf("[EIXSIxL");
to clear the screen, erase the cursor and ena-

ble the 25th line, where [ is PIE’s representa-
tion of the ESCape character, one could use

printf("\@33E\Q33x5\033x1" )}
#define ESC "\033’
printf("%cELcxShexl", ESC, ESC, ESC);

Here, the backslash “\” introduces the es-
cape sequence, and 033 is the ASCII code

(in octal) for the ESCape character.

Dr. W. Luis Mochan
Instituto de Fisica, UNAM
Apdo, Postal 20-364
01000 Mexico, D. F.
MEXICO

PeachCalc Patch
DearHUG,

Since my recent purchase of an H-100 sys-
tem and of the PeachText 5000 program
package, | can heartily endorse the recent
article and letters praising both. However,
Peachtree Software, like many other houses,
pursues a policy of minimal support which
is primarily to their advantage, not the
users’. This manifests in the 90-day support
service which comes with the package:
questions are readily and rapidly answered
for each individual user, but the problems/
answers of other users are not generally dis-
tributed. Thus, each user can have software
with severe ‘bugs’, but if he has not yet uti-
lized a particular feature, their existence re-
mains undiscovered. ‘Time bomb’ is amuch
used, but accurate description.

I would be very much in favor of a HUG
forum to disseminate purchased software
package. changes/patches resulting from
each users’ experiences. It should be to ev-
eryone’s advantage (including software ven-
dor!) and should, perhaps, be addressed
separately from the general letters column.
As a start, the following defines a PeachCalc
patch.

Program: PeachCalc, Version 1.01
Problem: Unable to Save/Load spreadsheet
by Values, as defined in documentation.
Symptoms: Loading by values (while com-
bining spreadsheets) obtained only partial
copy of original values, and often resulted in
a spreadsheet with many incorrectly blank
entries.

Action: Called Peachtree, and was im-
mediately given a patch. Apparently others
have had the problem, and the information
was readily available to the Peachtree soft-
ware expert. Was told that problem oc-
curred randomly, as a function of session
history and file activity. True!

Solution: Modify two program modules
(PC.OVL and PC.PGM) using DEBUG util-
ity.

Setup: 1) Place ZDOS disk in drive A. 2)
Place PeachCalc disk indrive B.

Patch #1:

DEBUG B:PC.OVL <cr>

E2C7 Ccrd> (address location 2C9 hex)

F.5® <(cry (change value 9F hex to 5@ hex)
W oder>

o Cer>

Patch #2:

DEBUG B:PC.PGM Ccr>

E4933 <cr> (goto address 4935 hex)

93 CO F? 74 (cr> (change data to that shown)
W <cr?

Q (er>

All told, the Peachtree people were most
helpful once they returned my calls, and the
changes worked perfectly. Now, if only the
EDIT and PRINT functions utilized a ‘current
file’ rather than requiring constant re-entry
of the same file name during composition
and checking of text files. ...

If anyone else has more data, please let us all
know. Eventually we will be able to debug
the entire program package!

Richard A. Pabst

18 McAdams Road
Framingham, MA 01701

Help Needed To Get PeachText 5000 To
Run On an H29

DearHUG,

First, let me pass out the flowers. | just re-
ceived my second H/Z-100. | had built some
major Heathkits in the past and Heath’s
technical literature and factory backup are
super. Before buying a PC, | studied as many
systems as | could and finally chose Heath/
Zenith for service, economy, expandability,
quality, and compatibility. | was not disap-
pointed!

| bought my first one in July for my small
business and took it home to get acquainted
with. My wife (a writer) and twelve year old
son soon let me know there was no way |
could be inconspicuous about taking it to
my office. So three months later, my Two
Year Plan for a second system is here. My
wife became permanently hooked on the
PeachText 5000 and my son is a real ZBASIC
fan.

I also bought an H29 terminal for my secre-
tary to use. | finally got the H29 tied to my
new H/Z-100 using the SWAP program from
REMark Issue #38 by Marc Aagenas.

I had to overcome a few problems getting the
terminal system operating. | am using Con-
dor file manager and it works great for our
production control, material control, and lit-
erature files control. Also the PeachCalc
works fine by using CTLU, R, L, & D for cur-
sormovement.

| have one remaining problem: The
PeachText won’t work with my H29 be-
cause the function keys send an ESCape
<letter> code to the computer and the
PeachText responds with the escape func-
tion instead of the “F” function. | called both
Peach and Heath and they say they don't

Vectored to 65 7

8

REMark * February * 1984



i & A e

the H-89 TWOET SYSTEMS

‘ _. ) e've got a great idea for your H-88, 89 or 90. It's a dual internal half height
q drive system. Two of our half height 54" drives can replace your built-in disk
drive, doubling your information storage capacity.

Floppy Disk Services provides you with everything you need. That’s two double-
sided, double or single density, half height drives in either 48 or 96 tpi format, ail
hardware, cables and power connector adaptors. And most important, you get
easy, step-by-step instructions, in the Heath/Zenith tradition of good, clear
documentation.

We've thoroughly tested the TWOET/ Heath set-up. Remember that a double sided

48 tpi will work perfectly as a single sided drive right out of the box! Hard or soft
| sectored—so you can even use this system with your H-17 controller, And of course
'\ we have the software drivers (additional cost) to run 48 or 96 tpi double sided, single
\ density drives on the H-17.

"l Model TWOET 455 Model TWOET 465

Il 2 Shugart SA-455 half height 2 Shugart SA-465 half height

| 48 tpi double sided 96 tpi double sided

_ All hardware All hardware

| | Metal, shielded mounting plates Metal, shielded mounting plates

| Data cable with chassis connector Data cable with chassis connector
Power ‘Y’ connector Power ‘Y’ connector
Complete documentation Complete documentation
Price .... $605.00 complete Price .... $755.00 complete

Wondering what to do with your internal drive if you buy this
system? Here’s the solution. If you purchase a dual half height system for your
Heath computer from Floppy Disk Services, just include an extra $50.00 plus
shipping and receive a single 5% case with power supply and data cable ready to

| receive your SIEMENS internal drive! The case with data cable is normally a
$70.00 item. And the cable that comes with your TWOET system includes the
external chassis disk I/ O connector,

Due to production deadlines, prices in this ad are 2 PAYMENT POLICY — We accept MasterCard,
months old, so we encourage you to call us for VISA, personal checks and Money Orders, We
current prices and new product info. Prices and reserve the right to wait 10 working days for personal
specs subject to change without notice. checks to clear your bank before we ship. All

shipping standard UPS rates plus shipping & hand-
Dealer inguiries invited. ling. NJ residents must add 6% tax.

FLOPPY
©ISK
SERVICES

H-88/89/90 are registered trademarks of Heath Corp. -' N C —

741 Alexander Rd. Princeton, NJ 08540



A Tutorial On

Random Numbers
and The Random Function

Kenneth Mortimer PE
352 Green Acres Drive
Valparaiso, IN 46383

Random Numbers — What Are They?

Everyone who has played a game of cards, dice, or a board game
has used a random number generator. When one casts a pair of
dice, one never knows (if the dice are honest - and they had better
be or I'll send some of my friends to break your leg) what side
will come up. In other words, a die is a random number generator
capable of generating in random sequence the integers 1, 2, 3,
4, 5, and 6. Similarly when one draws a card from a deck of
ordinary playing cards, one is not sure what card he will draw.
A deck of “bridge” cards is therefore a random generator capable
of generating randomly and one of 52 values in a rather peculiar
numbering system. When one participates in a lottery or drawing,
the cards or balls and the drum make up a much larger random
numbering system.,

Since these historic random number systems are used in so many
games, it is not unusual that a random number generator of some
sort should be used in making the random decisions required in
a computer game and even in more serious business or scientific
simulation. Fortunately for those of us who play with computers
there is a random number generator built into most BASICs. It
is the RANDOM FUNCTION and you might want to read a bit
about it in your manual before you proceed further.

The Random Function

In most BASICs there is a Random function generator and most
of them have the same basic form. (Not all, but both the Benton
Harbor BASIC and the Microsoft BASIC follow the same format.)
The random number function in most eight bit BASICs is of the
form:

RND(narg)

The function returns a pseudo random number which generates
a random number by some manipulation of a seed or the previous
random number. The algorithms for generating the pseudo random
(this is the last time | will be accurate and use the word pseudo)
are subject to much discussion among computer scientists and
mathematicians. The argument (narg) provides both a seed and
a control number for the Random function generator. If narg is
a positive real number, the function returns the next number in
the series of random numbers. If narg is equal to zero, the function
returns the last previously generated random number. If narg is
a negative real number, the function uses that number as a seed
to start a new sequence of random numbers. This is all in your

manual but let us write a simple program to ask for the seed and/or
control number and write the output of the random number
generator on the screen. This program is listed as RNDTEST1.BAS
and should be self-explanatory. The output is short enough so that
the results of three run throughs will be displayed on the screen
atone time.

00910 REM RNDTESTI.BAS A TEST PROGRAM FOR THE RANDOM NUMEER GENERATOR
20070 REM PRINTS OUT A LIST OF 20 RANDOM NUMBERS RESWLTING FROM A SEED S
@91@@ REM S=SEED

29195 REM S1=CONTROL NUMBER FOR REPEATED RANDOM NUMEERS

@119 REM R=RANDOM NUMBER

02120 REM 1=COUNTER

@d208 INPUT “ENTER SEED NUMEER ";%

@219 INPUT “ENTER CONTROL NUMEER FOR LATER RANDOM NUMEERS *;51

28228 R=RAND(S) .

@8248 PRINT "FIRST RANDOM NUMBER =;R

80339 FOR I=1 TO 5

@340 R=RND(51)

@9350 PRINT R

e@36@ NEXT 1

80370 GOTO 200

RNDTEST1.BAS l

Enter this program into your computer and run it. When the com-
puter asks for the seed number enter 1. When the computer asks
for the control number for the later (succeeding) random numbers,
again enter 1. The terminal will now display six different numbers
that are larger than 0.000000 and less than 1.000000. Repeat the
process and you will see six more random numbers. Repeat the
process with any positive number and the same thing will happen.

Now enter a positive number when the computer asks for the seed
number and zero when the computer asks for the control number
for the later random numbers. This time the terminal will display
the same number six times. Repeat this process and you will find
that the zero control number will always cause the function to
return the previous “random number”. This is a very handy feature
for use in testing programs because you will always know that
you will be repeating the last previous “random number”.

This time enter a negative number when the computer asks for
the seed number and a positive number when the computer asks
for the control number. You will see six different numbers on the
screen. Rerun the program using the same negative number as
a seed and a different positive number as the control number for
the later random numbers. You should see the same set of six
numbers on the screen. The numbers entered may be integers or
real (decimal) numbers. Repeat the process with a different seed.

10

REMark + February = 1984



You should get a new set of six “random” numbers which you
can repeat. | say you should get a new set of random numbers
but the way that the algorithm uses the seed may cause two differ-
ent seeds to generate the same “random” number. My experience
has been that any seed number that is twice the previous number
will return the same random number in Benton Harbor BASIC.
Any integer seed will return the same random number in Microsoft
BASIC. This now gives you an even more elaborate method of
generating either a single random number or a series of random
numbers for testing.

Continue to play with this program until you are confident that
you know how the control or seed number works.

Testing For Linearity

When one rolls a die, the probability that one will roll a three
is one in six. When one draws a card from a bridge deck, the
probability of drawing an ace of spades is one in fifty two. The
probability of drawing any card is exactly the same. If the random
number generator is to be used in most forms of gaming and simu-
lation, there should be exactly the same probability of any number
being returned by the function. How can you test the random
number generator for linearity? It would take a long time and a
great deal of storage to check for the generation of all of the random
numbers within the range. A simpler method would be to generate
one thousand random numbers, divide them into ten ranges and
see if the number of random numbers in each range is approxi-
mately the same. The method used will also serve as an introduc-
tion to converting the output of the random number into a series
of random integers. What we would like to do is count the number
of values returned that fall between .000000 and .099999, be-
tween , 100000 and .199999, etc.

@001@ REM RNDTESTZ.BAS A BASIC PROGRAM TO TEST THE LINEARITY OF THE
00020 REM RANDOM NUMBER GENERATING SUBROUTINE BY DEVIDING THE RESULTING
@oe3e REM OUTPUT INTO TEN EQUALY SPACED GROUPS

20040 REM FOR 1090 RANDOM NUMBERS

99199 REM S=SEED NUMBER

90119 REM R=GENERATED RANDCUM NUMBER AND 175 MODIFICATIONS
90120 REM S51= SUM OF ORIGINALY GENERATED RANDOM NUMBERS
00130 REM M=ARITHMETIC MEAN OF GENERATED RANDOM NUMBERS
Q@149 REM G(1)=NUMBER OF GENERATED RANDOM NUMBERS 15 THAT DECILE
@o2e0 DIM GL12)

80219 REM ZER® SUM

00220 S1=0

00230 REM ZERD ALL GROUP COUNTERS

00249 FOR 1=0 TO 12

00250 Gi11=0

00260 NEXT 1

@827@ INPUT “ENTER SEED NUMBER *;S

00300 REM GENERATE AND SORT THE NUMBERS

@310 FOR I=1 TO 1eee

@932 R=RND(S)

00332 S1=S1+R

2634¢ R=INT(R%®1@)

@@35@ GIR)1=GI(R)+1

Q0362 NEXT 1

80420 REM PRINT OUT RESWLTS

00410 M=51/1000

99420 PRINT "ARITHMETIC MEAN OF DISTRIBUTION = "M

29430 FOR 1=0 TO 12

@eaqe PRINT 1,G(1)

00450 NEXT 1

08460 END

RNDTEST2.BAS

Program RNDTEST2.BAS has been written to do this checking.
If you multiply the output of the random number generator by
ten you will get a number greater than .000000 and equal to or
less than 9.99999. If you take the integer value of that result, you
will get an integer value in the range between and including 0
and 9. This is done in statement number 340 of RNDTEST2. In
this program | have used the output of statement 340 as an index
of a vector G, Every time a number between .10000 and .199999

is generated, the value of G(1) is increased by 1.0. In a lineal
distribution between zero and one, the average (arithmetic mean)
should be 0.50000. Let us see how the program works.

1) Set the sum of the random numbers to be used to determine
the mean at zero (Stmt. 220).

2) Set each element of the vector G to be used to determine the
distribution to zero (240 to 260).

3) Enter a seed or control number (270).

4) Repeat 1000 times (310 and 360).
4a) Generate a random number (320).
4b) Add that number to the sum of the random numbers (330).
4c) Convert the random number to an integer (340).
4d) Add one to the appropriate vector element (350).

5) Compute the average (410).

6) Print out the average (420).

7) Print out the number of values in each range (430 to 450).
8) End of program (460).

Note that three elements of the vector were included to check
if a random number equal to or greater than one was generated.

Run the program and see how linear the distribution actually is.
Using the Random Number Generator

There are many ways to use the random number in simulation
or gaming. One of the simplest is the comparing the generated
random number with a known or assumed value. Let us assume
that we are trying to simulate a baseball game. Our batter has
a batting average of .234. From what we have seen so far, the
probability of the random number generator returning a number
less than .234 is 23.4 per cent. This is the same as our batter’s
probability of getting a hit. Therefore, if the random number gener-
ated is equal to or less than .234, we can say that the batter got
a hit, if it is greater he is out. A BASIC program element could
be written thus:

16@@ REM HITTING SUBROUTINE

1019 H = RND(1.11)

1020 IF H > .234 THEN GOTO 1208
1030 REM SUBROUTINE TO HANDLE HIT
1049 ~——--——-

100N

1698 RETURN
1206 REM SUBROUTINE TO HANDLE QUT
b L —

1220

1256 RETURN

Of course you would want to have a much more complex program
that would take into account each pitch and what would happen
after each hit and that of course will result in a program as complex
and taking into account as many factors as you feel your game jus-
tifies.

If you know the probability of any event happening, you can gener-
ate a simulation program involving that event.

We previously converted the output of the random number
generator to a series of integers from 0 to 9 by multiplying the
output of the random generator by ten and taking the integer of
the product. If we had wished to generate a number from one
to ten, we would have had to add one to our result. If we want
to generate an integer from 1 to N, we should multiply the output
of the random number generator by N, take the integer or the

REMark + February = 1984

11


http:RND(l.ll

product and add one to the result. A program element to simulate
an ordinary six sided die is as follows.

2900 REM SUBRROUTINE FOR SIMULATING A SINGLE DIE
2019 N = RND(S)

2020 N = INT(N#6)+1.90

2030 RETURN

The random integer can be used in many ways in BASIC programs.
Some are:

1) As one would use dice in any game.

2) Asthe index of a computed GOTO.
ON N GOTO 2000,2500,2700,2200,4000

3) Asthe index of a computed GOSUB.
ON N GOSUB 123,456,789,999

4) Asthe index in the Line Number Function LNO(iexp).

As you can see, the random number generator is a useful tool
in generating random numbers or random events for gaming and
simulation.

Normally Distributed Random Numbers

Some of the more mathematically sophisticated of you will now
argue that there are many instances where the results of a random
occurrence will not be linearly distributed. A good example of this
might be a target game of some sort. If the player’s aim is good, the
probability of the projectile hitting the center of the target is high and
the probability of the projectile missing the target completely is very
small. The distribution of the hits about the center of the target would
be “normal” or distributed according to the Gaussian or “bell”
curve. It would be handy to have a subroutine that would change
the linearly distributed random number to a normally distributed
random number. One method is suggested in the National Bureau
of Standards Handbook of Mathematical Functions (AMS 55) on
page 953. The algorithm consists of generating two linear random
numbers (R1 and R2) and manipulating them according to the equa-
tions:

N1 = (SQR(-2*LOG(R1)))*COS(2.0*P*R2)

N2 = (SQR(-2*LOG(R2)))*SIN(2.0*P*R1)

where N1 and N2 are each normally distributed random numbers
with a mean of 0.0 and a standard deviation of 1.0.

SQR,LOG,SIN and COS are the regular basic functions.

P =pi=3.1415926

Program RNDTEST3.BAS demonstrates the generation of normally
distributed random nurnbers and RNDTEST4.BAS tests the normal-
ity of the values generated.

@010 REM RNDTEST4 A PROGRAM TO CHECK THE NORMALITY OF NORMALY DISTRIBUTED)

29011 REM RANDOM NUMBERS

00029 REM R1 = FIRST LINEAR RANDOM NUMBER
90025 REM R2 = SECOND LINEAR RANDOM NUMBER
08030 REM Nt = FIRST NORMAL RANDOM NUMBER
99035 REM N2 = SECOND NORMAL RANDOM NUMBER

#0@4@ REM S = SEED FOR VERY FIRST RANDOM NUMBER
0005@ REM I = INDEX

08060 P=3.1415926 :REM PI

00070 DIM 71(1@),22(10) :REM MATRIY OF DISTRIEUTION
90080 REM 51 AND Sz ARE THE SUM OF THE PAIRS OF GENERATES
#9100 REM BASIC PROGRAM

03110 INPUT "ENTER SEED FOR INITIAL RANDOM NUMBER ™35
00120 R1=RND(S)

00130 FOR 1=1 T0 &

#0140 Z1(1)=0

90150 22(1)=0

20160 NEXT I

%9170 S1=0

20180 52=0

09190 REM TABULATE AND AVERAGE

#9200 FOR I=1 TO 1000

09210 GOSUB 1000

#0215 PRINT I

00220 S1=S1+N1

00230 52=52+N2

99280 J=INT(ABS(2¥N1))

00250 Z1{J)=Z1(J)+]

00260 J=INT(ABS(2*N2))

00270 72(J)=I2(J)+1

00230 NEXT 1

00232 S1=51/1000

00288 52=52/1000

99290 PRINT “SUMS®,St,S2

©0295 PRINT *Z",Z1*,"Z2"

09296 71=0

00297 22<0

09306 FOR 1=0 T0 6

99310 J=1/2+,5

00311 Z1=Z1+Z1¢1)

00312 72=72+72(1)

00313 Z3=(71+22)/2

00320 PRINT J,71,I2,73

00330 NEXT 1

00340 END

©1000 REM SUBROUTINE FOR GENERATING NORMALY DISTRIBUTED RANDOM NUMBERS
81010 R1=RND(1)

01620 R2=RND(1)

01030 N1=(SGR(-Z3LOG(R1)))¥COS(2¥P#R2)

01040 Nz=(SAR(-25L0G(R2) ) ) ¥5INIZ*P*R1)

91050 RETURN

RNDTEST4.BAS

20010 REH RNDTEST3 A PROGRAM TO DEHONSTRATE THE GENERATION OF NORMALY
00011 RE DISTRIBUTED RANDOM NUMBER:

00020 REM Rl = FIRST LINEAR RANDOM NUHBER
00025 REM R2 = SECOND LINEAR RANDOM NUMBER
00039 REM N1 = FIRST NORMAL RANDOM NUMBER
00035 REM N2 = SECOND NORMAL RANDOM NUMBER
00040 REM S = SEED FOR VERY FIRST RANDOM NUMEER
@050 REM 1 = INDEX
20040 P=3.1415926
00100 REM BASIC PROGRAM
00110 INPUT "ENTER SEED FOR INITIAL RANDOM NUMEER  *;S

00120 R1=RND(S)

90130 FOR 1 = 1 TO 20

00140 GOSUB 1000

00150 PRINT I,N1,N2

00150 NEXT 1

0917@ END

@1000 REM SUBROUTINE FOR GENERATING NORMALY DISTRIBUTED RANDOM NUMBERS
01010 R1=RND(1)

01020 R2=RND(1)

21030 N1=TSGR(~2*LOG(R1))1*COS{2%P3R2)

01040 N2=(SGR(-2%L0G(R2)))*SIN(29F4R1)

91050 RETURN
RNDTEST3.BAS

iREM PI

Most of you will never worry about the normally distributed ran-
dom number and those of you who know enough statistics re-
member that the normal distribution with a zero mean and a unit
standard deviation (Z form) can be converted to a normal distribu-
tion with a mean M and standard deviation S by the relationship

N3=M+S*N1

where N1 is the Z form normally distributed variable and N3 is
the shifted normally distributed variable.

Study this material carefully and you should be able to add some
valuable tricks to your programming toolbox.

\/
A

12

REMark « February « 1984



On The Leading Edge

Implementing

Heath Escape Sequences
for CP/M and Z-DOS

i you read other microcomputer magazines regularly, you proba-
bly noticed that a well known columnist was having trouble “getting
rid of the keyclick” on his new Z-100. Since it's not immediately ob-
vious to a new Heath/Zenith user how this is done, we will take a
look at implementing the Heath escape sequences using assembly
language programming,

In this month’s column, | have provided two short assembly lan-
guage programs (one for CP/M and one for Z-DOS) which can be
used to implement the Heath escape sequences, | have also in-
cluded a program for CP/M which will display a 25th line ruler dis-
play for Magic Wand, Assembler commands for each program are
included in each listing so that you can quickly implement these pro-
grams,

One of the best features of the Heath/Zenith line is the fact that most
of the technical and programming information is available in their
documentation. As a matter of fact, CP/M-85, Z-DQOS, and the Z-
100 are so well documented that it is sometimes difficult to find an
answer to a specific question. For that reason, it is extremely impor-
tant that you review the Table of Contents for each of your applica-
tion programs, and it's a good idea to take a few minutes to scan each
of the sections to get a feel for the overall contents.

Finding the Information

The Heath escape sequences are documented on page 11-10 of the
H- 89 manual. For the Z-100, the escape sequences are listed in Ap-
pendix B (page B.14) of the Z-100 User's Manual and page 10.38
of the Z-100 Technical Manual. Detailed descriptions of the escape
sequences begin on page 10.42 of the Z-100 Technical Manual, if
you need them to write your own programs.

Developing the Programs

One of the best techniques for programming is to write the code so
that it is modular and can be used for several purposes. Since there
is no reason to waste disk space with a small ASM program which
can be coded to provide multiple functions, | will only show a gen-
eral program which can clear the CRT display using the “ESCAPE E”
function (See Listing 1). Notice that the first line under “MAIN:” in
the listing moves the “CLS” line to a register, and the program will
clear the screen. If you want to use this general program to turn the
keyclick off, change the “CLS" to “COFF”. Then change the file
name from C.ASM to CLICKOFF,ASM, and modify the assembler
commands accordingly. You can even control the form feeds on a
printer (e,g. H/Z-25) by implementing the “FORMF” line and creat-
ing FF,COM. Additional escape sequences are included in the
Heath Escape Codes section, and these may be implemented by
adding the appropriate escape sequences.

William M. Adney
4821 Sunnybrook
Buena Park, CA 90621

LR R T T Tr TP T T e
Listing 1

jClear Screen Program for H/Z-39 and H/I-100 terminals

For CP/M-8@ and CP/M-85

This program uses the Heath ESCAPE E sequence
to clear the screen and home the cursor,

"o S me e

Created: 9-38-82 by W. M. Adney

i

jModification Date Description

H N/A

i

EBDOS EQU @aatH

ESC EQU 1BH jEscape function

H
ORG 1064

MAIN:  LXI D,CLS  ;Load Heath clear screen function
MYl C.5 $CP/M print string function
CALL BDOS jCall CP/M
RET jReturn to CP/M

;HiOQIIQIIlOI A SRR R R HE A0S
[ ]
3 Heath Escape Codes *
1 £ ]
;HI'lGlililliliii! FHEFRR R

i3
CLS: DB ESE,'E’,'4* jClear Screep—Eseape E
CRTR: DB ESC, "2, ' jReset to power up cenfiguration=-Escape 2
COFF: DB ESC,’x’,’2',’%" ;Key click off—Escape x 2
KSFT: DB ESC,'x*, "6’ '%" jKeypad shifted——Escape x &
BCUR; DB ESC,'»’,"4"' ,'%" ;Block Cursor——Escape x 4
HOLD: DB ESC,’[*,'# jHold screen mode—Escape [ (H=89 only)
$Allows use of H-B? scroll key
sPage 11-14 of H-89 operation manual
NBLK: DB ESC,’x’,*1","%" ;Nonblinking cursor—Escape x (H-182 only)
FORMF: DB @CH, '+’ sPrinter forn feedle.q. H/Z-25)
L
s Q14K jReserve space for 1@ entries
STACK:; DS 01H ;Top of stack is here
EAFFER; 15torage begins here
END MAIN 1END OF PROGRAN

Create program with editor as C,ASM
All files must be on drive A

ASH, COM

LOAD, COM

C.ASH

Use the following commands to create C,COM
ASM C,AAZ
LOAD €
ERA C.HEX

R

If you are not familiar with assembly language, | recommend that
you format a new disk for use with these assembly language pro-
grams, and back it up after you code the source files. In some cases,

REMark ¢ February » 1984

13


http:scree.n.lf
http:or,fi9ur.tior,--E~c.po

typos in assembly language can cause strange things to happen, and
| have wiped out the directory on a disk just because of a typo during
some experimenting with a program.

The Z-DOS version of the program is shown as Listing 2. The same
technique has been used, and the Z-DOS assembler commands are
shown in the listing.

The same programming techniques are used to write a program for
CP/M which will display a ruler line in reverse video (See Listing 3).
| use this program with Magic Wand and PeachText 5000 when |
want to see the column positions on the edit screen. This program
can be converted to 8086 assembler (Z-DOS) code by following the
example in Listing 2. If you don't like the reverse video, either delete
the labeled lines or place a semicolon (;) in front of the appropriate
lines of code. The assembler assumes that anything following a
semicolon is a comment and does not assemble it. | recommend the
use of a semicolon because it is easy to delete if you want to change
afeature of the program.

Assembly Lanugage and C

For the assembly language experts who will argue that all of this
code is not the most EFFICIENT way to implement these features, this
is not intended to be an assembly language course. If you are inter-
ested in learning assembly programming, | can recommend the
Heath Assembly Language course (EC-1108) as an excellent in-
troduction for learning 8080 coding for CP/M-80 and CP/M-85. |
have taken that course, and | believe that it is an excellent way to
learn the fundamentals of assembly language programming. Al-
though | have learned some of the 8086 assembler code for Z- DOS,
I have concluded that the C programming language is the language
to learn. The biggest advantage of C is that you don't have to learn
a new assembler every time a new microprocessor chip is de-
veloped. In general, the C language is “portable” because the source
code is supposed to be standard. C compilers can be developed for
each microprocessor chip, and at least theoretically, the source
code does not have to be changed. In the real world however, that
doesn’t seem to be true since a lot of the C compilers are “non-stan-
dard” in one way or another.

For anyone interested in the standard definition of the C language,
| recommend that you read “The C Programming Language” by Ker-
nighan and Ritchie (Prentice-Hall). Another book that | particularly
like is the “C Programming Guide” by Jack Purdum (Que Corpora-
tion-Indianapolis). It has a lot of good examples plus it includes
some useful programs. My favorite is the file copy program on page
183. It's aloteasier to use than PIP!

Speaking of Software

Although Heath has an excellent line of software, they obviously
don’t handle everything that's available on the market. For that
reason, you will probably want to buy some software (e.g. WordStar
version 3.30) at some point that is not usually available in the Heath
stores. My favorite place to buy that kind of program is 800-Software
in Berkeley, CA. In addition to discount prices, they provide techni-
cal support by telephone if you need it. And even more important,
they stand behind everything they sell. It's a good place to get soft-
ware that the Heath stores do not carry as a stock item.

I recently bought the WordStar Pro-Pak which contains WordStar
3.30, SpellStar, Mail Merge, and Star Index. That version of
WordStar is amazing in its capabilities, and | am very pleased with
it Atthe risk of opening Pandora’s box, it is better than Magic Wand
for most of the writing that I do. | primarily use Magic Wand for pro-
gramming, although it has most of the same capabilities of
WordStar.

FARFAFASFEER AR AR RS S A RN R R R B AR R R R R R R R R R R R R R AR

Listing 2
1Clear Screen Program H/Z-100 terminals
For Z-D0OS ONLY

This program uses the Heath ESCAPE E sequence
to clear the screen and home the cursor.

P prT

jCreated:; 4-23-83 by W. M. Adney
i
sModification Date Description
3 N/A
JALIST

INCLUDE DEFASCII.ASM
INCLUDE DEFM5.ASH
LLIST

PGHSEG  SEGMENT
ASSUME  CS:PGMSEG, SS:FGMSEG, DS: PGMSEG, ES: NOTHING

ESC EQU 1BH ;Escape function
i
ORG 100H
MAIN: MWV DX, 0OFFSET CLS  ;Load Heath clear screen function

MOV AH,DOSF_OUTSTR
INT DOSF_FUNC
INT DOSI_TERM

$Z-D0S print string function
:Call Z-DOS to print message
{Return to Z-D05

i

: FEHFRRFRADARERFRTFFARF IR IR RARE
. *
+

$ Heath Escape Codes +
H +
: A4 AF AR A HI R AR

Cis: D8

ESC,’E',"%’ sClear Screen--Escape E
CRTR: DB ESC,’z",'%* jReset to power up configuration-—Escape z
COFF: DB ESC,'x",'2%,"%" ;Key clich off—Escape x 2
KSFT: DR ESC,”#’,'&",'%" ;Keuypad shifted--Escape x &
BCUR: DB ESC,'x’,"4",'%" ;Block Cursor—Escape x 4
HOLD: DB ESE, "B sHold screen mode--Escape [ (H=39 only)
tAllows use of H-87 scroll key
sPage 11-14 of H-37 operation manual
NELK: DB ESC,*x*,’;’,'%" ;Nenblinking cursor--Escape # (H-18d only)
FORMF: [B @CH, "%’ iPrinter form feed(e.g. H/Z-235)
1
PGMSEG ENDS
END HAIN sEND OF PROGRAM
i
1]
L}
H Create program with editor as C.ASM
i All files must be on drive A
; MASM, COM
1 L INK.CON
H EXE2BIN.COM
H C.ASH
1
jUse the following commands to create C.COM
H MASH C
H LINK C
H EXE2BIN C.EXE.COM
1 DEL C.EXE

If you have any version of WordStar (or even if you don’t), HUG has
some new programs that really make your system hum. One of the
best programs that I've seen is the KEYMAP (HUG disk #885-1230)
program. It allows you to configure all of the special H-89 keys and
most of the H-100 keys to do just about anything. It includes a setup
version for WordStar so that all you have to do is copy it to your disk.
| have used KEYMAP to duplicate the Magic Wand special function
keys so that | don’t have to think about them when | switch to a differ-
entword processor. You can also create a version of KEYMAP to dis-
play a disk directory or execute STAT or just about anything else you
want. As a side note, | was disappointed to find out that Pat Mc-
Nally’s 100-Star program would not work with WordStar 3.30. After
fooling around with DDT, it looks like MicroPro has changed the
user patch areas and increased the size of the WS.COM program.

14

REMark ¢ February = 1984


http:EXE2BIN.COM

| will look forward to seeing an updated 100-Star programwhich will  ma1n: Lxt D,CLEARIT ;CLERR FUNCTION

work with version 3.30. CALL  SENLLINE ;CLEAR THE SCREEN
LXI  D,LINEL $AND DISPLAY COMMENTS...
If you're interested in learning the C programming language, | have COLL  SENOLINE
found that Walt Bilofsky’s (Software Toolworks) C compiler is a l[;::l_ gélﬁtl.ﬁig
worthwhile investment. It's hard to beat for the purchase price of LX1 D,LINEZ
$49.95. Although it doesn’t have all of the standard C features, it still E’:%L ;Tf;é:z
is an excellent value. | have converted all of the programs in this arti- CALL  SENDLINE
cle to C because | don’t have the time to learn any more of the new 1
assemblers. :Remmber the cursor position
By the way, | am always interested in new software (and hardware EM{IJ_ E'Eﬁgf";‘;; REIRR CIE R

too!) for the Heath/Zenith computers. If you have something that  ;
would be of interest to our user community, send it to me at the iE"able the 25th line

1
above address. L1 D,ENABLEZS {125TH LINE ENABLE
CALL  SENDLINE
Books and Hardware 3
jPosition cursor at the beginning of 25th line
. . . . e L] “
When | first started working with CP/M, | found that it was very diffi-
cult to make any sense of some of the commands. Because of the LX1  D,BEGINZS §25TH LINE BEGINNING

; : : : : ENDLINE
frustration that | experienced at that time, | have written the FlipFast . wEh AR

Command Guide series published by S-A Design in Brea, CA. The {Enter Reverse video mode
first book in the series II"ICIUdES‘ all CP/M-80 and CP/M-85 com- ' Lsl D, RVIDED REVERSE VIDED
mands for the Heath/Zenith family of computers. | have also com- CALL  SENDLINE
pleted the Z-DOS FlipFast Command Guide which should be avail-

;
: s yPrint 25th line
able in January. For anyone who does a lot of programming, | have .

[

included appendices which contain technical information on the Lx1 D, LINEZS 725TH LINE HEADINGS
; : . CALL  SENDLINE

operating system. If you have ever accidently erased a file, you can |

use the ERAFIX program to help you recover the erased files. iExit reverse video

As a part of working on these books with S-A Design, | had an oppor- ] LXI D, RVIDEND

tunity to test an 8” disk drive from Floppy Disk Services. | have the CALL ~ SENDLINE

dual drive slimline version which very closely resembles the Heath  :c.t cursor to previously saved position
HS-207-42 or Zenith Z-207-42. | have really put these drives towork 3

in the last few weeks, and their performance is excellent. We did E;L g&;ﬁ?ﬁ:ﬁ EUIBS0R 0 BVED FOSITION
not get an instruction sheet with the evaluation units, and it did take RET

me a few minutes to figure out how to plug in the data cable cor- TR i DAy EEs
rectly. Once they are connected properly, they work quite well with *
both CP/M-85 and Z-DOS. Since they are a frequent advertiser in  ;  SUBROUTINES *
REMark, you might want to check with them if you need some disk :““,"‘","“""""“““""":

drives. They also advertise hard disk drives for Heath/Zenith com-

...more on thatif | can get an evaluation unit. SENDLINE: MV €,PLINE
e 8 CALL BDOS
Next Month i E

1

s . s . rpd rgd 2 |
The slowest part of any computer system is the printer, and itis espe- ~ fVIP0: D& ESC,"p’, "% JENTER REVERSE VILEO MODE
cially irritating when the computer is tied up during the printing of  fvipens: b8 Esc,’q’, '+ “EXIT REVERSE VIDEQ MODE
ong file. One of the solutions is to use a hardware print bufferto

a long O —— . P . ENABLEZS: DR ESC,’x’,’1",’$’ 1 25th LINE ENABLE
reduce that time. | have received the ANGEL print buffer from Ligo |
Research, and we'll take a look at that impressive piece of hardware  BecInzs: B ESC, S9H, 38H, Z0H, ' $* s CURSOR-25th 1ine——ESC Y § SF
next month. i

LINE2S: DB "lovateeel@uaatesa200iiit,. 300, 0040000, .07
.l..I'Ill.Iill'li'llHi'lil'lllilliI§"l‘llll‘III‘Ilt‘l!!'lliiillI!i!l DB 'ﬁ...ja....+...69....*...}‘&.,_,+,“3M'

;

CLEARIT: DB  ESC,’E’,’$’ ;CLEAR DISPLAY
Listing 3 H _

CURPOS: DB ESC,”j’,'$’ " sREMEMBER CURSOR POSITION
+75TH LINE MAGIC WAND DISPLAY FOR RULER FUNCTION :
3 CURSAVE: DB ESC,’k’,’$’ ;CURSOR TO SAVED POSITION
H This program will clear the screen and provide a display F:
H on the 25th line which displays a ruler line in reverse i _
' video for the Magic Wand text processor. LINEl: DB ‘This program sets the 25th line for Magic Wand.’,CR,LF,*%’
: LINEZ: DB ‘A ruler is displaged for convenience.’,CR,LF,'$’
. . LA rqgr
$BY WILLIAM M. ADNEY--2-07-83 LINE3: DB JCR,LF, "4 -
. LINE4: DB ‘To reset the CRT, use the command CRTRESET’ ,CR,LF,"%
: s e14H {RESERVE SPACE FOR 18 ENTRIES

EQU 00B0H i :

ggg; EQU  ©99SH STACK: D5 @e1H $TOP OF STACK IS HERE
CONIN  EQU 1 BUFFER: EOU 4 +STORAGE AREA STARTS HERE
coNOUT  EOU 2 END  MAIN
FLINE EfJL' 9 HEFFER R R AR R R R AR AR AR R LD AR R R R AR F R R R R A AR R R R R R R
CR EQU DH
LF EQU eaH
ESC EGU 1EH

.
1

ORG @190H




Simple Printer Controls

ForThe Z-100

The lack of printer device drivers as such for the Z-100 pre-
cludes of setting the printer to its various mode characteristics
easily. For instance, the driver H25.DVD in the H/Z-89 world
allows you to set any one of 8 different units to be any of the 4
character densities or 2 line densities you might want using the
H/Z-25 printer. Unit 1 might be set to 10 characters per inch
(CPI), unit 4 might be set to 13.2 CPI, and unit 5 might be set
to 16.5 CPI with 8 lines per inch for a real dense application.
Then when the driver is invoked by a particular unit number, the
corresponding character density will be called.

Unfortunately it is not quite that easy on the Z-100. There are no
drivers to be configured to your liking. You are more or less stuck
with the DIP switch default settings unless you bury escape se-
quences in the file itself. When using something like Multiplan,
it's no problem because you can stick the escape sequence for
16.5 CPI in the set-up field of the Print option should you want
to compress your spread sheet.

But what do you do if you want to print a compressed data base
listing from Condor File Management System? The escape se-
quence cannot be buried anywhere (at least not where | have
tried). What do you do if you print a text file at, say 12 characters
per inch, you don't like it and now you want to print it at 13.2
CPI1? You could change the switch settings on the back of the
printer or better yet, just use your favorite editor and add the es-
cape sequence for 13.5 CPI to your file. This will then preset the
printer when the file is sent out with the PRINT command from
Z-DOS.

Now thatto me is a big waste of time! There is a far easier method
to accomplish many of these simple tasks under Z-DOS. And that
is to make use of the BATCH capability. Sure, there are other
ways of doing the same thing but, | think this is about as easy as
you can get.

I have created 8 different batch files to do the popular H/Z-25
printer conditioning. You can certainly add to these as you see
fit. The files and their contents are listed in the table which fol-
lows:

File Name Contents

10CPI  .BAT PRINT SET10CPI
12CPI .BAT PRINT SET12CPI
13CPI  .BAT PRINTSET13CPI
16CPI  .BAT PRINT SET16CPI
6LPI .BAT PRINTSET6LPI
8LPI .BAT PRINT SETBLPI

RESETPRT.BAT
FORMFEED.BAT

PRINT SETRESET
PRINT SETFMFD/F

You can probably guess that these individual files contain the es-

Charlie Layman
35 Kendall Road
Sudbury, MA 01776

cape sequences that are necessary to set the printer according to
the file des¢riptor nanie. And you would be right except that they
contain some additional information also. First, let me explain
that my batch file processing caused an extra line feed to be sent
to the printer, and in the case of the form feed, | could not get
rid of it no matter what | tried. The solution here was to simply
print a null file with a form feed switch tagged on to the PRINT
command. Thus the reason for the “/F” shown above. Let me
show you the other files here:

File Name Contents (1)
SET10CPI tiwt M
SET12CPI T 2w T M
SET13CPI T1Bw 1 M
SET16CPI T 4w 1 M
SET6LPI TixT M
SETSLPI t2x T M
SETRESET TlctM
SETFMFD (2)

(1) The symbol 1 [ designates an ESC character.
(2) Thisis an emptyfile.

The Escape-M sequence does a reverse index to compensate for
the line feed introduced by the batch processing. This leaves the
print head on the same line that it started on.

Now, when | want to set the printer to 16.5 characters per inch,
| simply type 16CPI at the Z-DOS prompt followed by a RE-
TURN. If | need a form feed, all it takes is to type FORMFEED
at the prompt followed by a RETURN. By typing RESET followed
by aRETURN, the printer gets reset to its power up condition,

The above control codes are for the H/Z-25 printer. However the
same scenario is applicable to other printers to a lesser or greater
extent. Look in your printer manual for the sequences necessary
to give you similar controls.

Keep in mind that batch processing can be useful in small appli-
cations as well as the big overnight jobs. There are probably
many more similar problems that can be resolved with this ap-

proach.

About the Author:

Charlie Layman started working with microcomputers in 1976
and has been actively engaged in the enjoyment of them ever
since. He is responsible for writing the popular UD.DVD device
driver for Heath/Zenith computers. Charlie is a department man-
ager for GTE Sylvania in Needham, MA. and has a BS degree in
Electrical Engineering from Northeastern University.

16

REMark + February « 1984



Of all the things a computer can do, the handling of large amounts
of data, organizing it, sorting it, and providing the information you
want when you want it, is perhaps the most useful and the most pow-
erful application you can use.

Random files. Sequential files. Records. They're all scary to the un-
initiated, but with very little time and not too much effort, they be-
come quite clear. And when they do, they become very valuable
tools, tools you won't want to do without. So, don't put it off any
longer. Learn about data storage and manipulation now. This is the
first in a series of articles designed to make files and file handling
as easy as booting up your computer. So come along for the ride.
You'll be glad you did.

Just a word about the information you'll find in the series. All HUG-
gies are most welcome to make use of it for their personal applica-
tions, and the knowledge gained is yours for any purpose you desire.
Itis, however, to be considered proprietary and my property. | write
the software for Applied Computing, a commercial venture, and am
contemplating writing a book, but | would be very selfish and quite
remiss if | failed to share these articles with the organization | turn
to when | want to learn something new. ‘Nuff said. Lets go on with
thefirst article of our series.

File handling, what is it and why do it? What earthly purpose could
it serve? Is it worth the time and the effort to learn how it's done?
Each of these questions can have more than one answer. In this and
future articles, I'll try to give you the information necessary to answer
them for your particular set of circumstances. Those with firm an-
swers will be laid out in detail for you.

To answer the last question first, yes, file handling is definitely worth
the effort involved. As you learn file handling, you'll discover more
and more uses for it. You’ll also find that it's not at all difficult. There
seems to be a lot of mystery and claims of magic with ominous titles
like “SEQUENTIAL" and “RANDOM ACCESS”. For now, believe
me when | tell you it's quite easy. We'll take things a step at a time
and, hopefully, give thorough explanations of what's going on and
why we do what we're doing.

If we're going to handle files, we have to know what files are. Every
separate program you store on your disk or tape is a file. It has afile
name and you can copy it or make changes to it. So, in a sense, you
have already been handling files. The article you're reading right
now is stored on my disk with the name NUMBERB.TXT. But files
go beyond this. There’s much more you can do with them. Let's just
say that a file is a collection of information. Information you may
want to read, print, rearrange, or modify. The classic example of a
file is the name and address list. But a file could just as well be the
closing prices of a stock which an investor wishes to watch. For the
homeowner, it could be a list of house payments with dates, check

David E. Warnick T
RD #2 Box 2484 H
Spring Grove, PA 17362

]IJ

|

")

A L'l

II{I”F'; I””W lliﬂr ”an I||I[”|”|

/ S

numbers, amounts, etc., all ready to be retrieved and processed or
whatever you want. The ham radio operator could keep track of all
the stations he’s talked to and sort them by call, country, or any way
he likes. Small businessmen can keep track of their inventory.

50 you can see that uses for files are endless. I'm sure you can envi-
sion many applications you'd like to try for yourself. By the time this
series is finished, it'll be a piece of cake and you'll be making some
very practical use of your computer.

The items | pointed out above all contained similar pieces of infor-
mation, repeated over and over within a file. The stock market
quotes, for example, would record a date and a price. There may
even be an opening, closing, high and low price with the date. The
same information would appear every time we make an entry into
our file and would be included when we retrieve data from our file.
We should have a name for this item, so we'll call it RECORD. We
now have two definitions.

FILE. A file is information which can be stored, retrieved, changed,
sorted, and processed. It consists of several related records arranged
systematically.

RECORD. A record is the smallest complete collection of data to be
entered into or retrieved from afile.

Notice | said that a record is the “smallest complete collection”. In
other words, a record is a collection of data. Each item of that data
would be meaningless by itself, but when grouped together it gives
very meaningful information. What do we call these pieces of data
which make up a record? FIELDS. Each record within a file must be
arranged the same way as every other record. In the example of the
stock prices above, if the date is the first piece of data or “field” in
one record, it must be the first field in every record within that file.
If the opening price is the second field in one record, it must be the
second field in every record within that file. In a separate file the rec-
ords could be arranged differently, but, within a given file, the rec-
ords must all be arranged the same way. Thus, if we wanted to print
a chart of all the closing prices for our imaginary stock, all we’d have
totell the computer is:

1) Read each record in thefile.
2) Print the first field within each record (date).
3) Print the nth field within each record (closing price).

Now we have a third definition.

FIELD. A field is a sub-division of a record. It is usually the lowest

REMark * February = 1984

17



distinct order of data within the record.

Believe it or not, once you understand the concept of fields, records,
and a file, you’ve made it well on your way to file handling. The rest
of the way you'll just be applying these concepts to practical uses.
Figure 1 shows pictorially how these elements interrelate to form a
file.

MECORDA

—— —r

=iy e ey
T T IR T W I
I T I O (M i N

Structure of a Data File

Figure 1

Ok, so you understand that you can pick items like date, check
number, amount, interest, and principal and call each of them a
field within a record. Then every time you make a house or car pay-
ment, you can type this information and save it in a file. But how
will the computer know where anything is on the disk? How will it
know where one record ends and the next record begins, or even
more amazing, where the fields within a record begin orend?

There are two ways to know these things and each is quite easy. In
the example above, we could say that each of the fields is 10 charac-
ters long, thus making each record 50 characters long. If the infor-
mation to be placed in any of the fields requires less than 10 charac-
ters, just fill the rest with spaces. Then to print out the dates, amount
paid and principal, just instruct the computer to read 50 characters
and print characters 1 to 10, 21 to 30, and 41 to 50. Just repeat this
process of reading 50 characters at a time until all data is exhausted.
Not only would we know where every field is within a record, but
also where every record is within a file. We could print every 5th
record by telling the computer to skip 200 characters, read 50 and
print, skip another 200, read 50 and print, etc. This would allow us
to get into and out of the file and select records at random, just be-
cause we know where every one must be. Did you catch that word
random? You've just been through a RANDOM FILE. The secret to
finding anything in this type of file system is that everything has an
assigned space and must be there.

But there’s a price we must pay for this simplicity. While none of
the information in the fields of our last example is likely to be 10
characters long, we allowed that much space. Each field could have
been assigned a different length within a record, but all records must
be the same. If we assign 7 spaces to the first field of one record,
it must be 7 spaces in every record. Thus we waste space where
there’s no information. In large files with many records, this can be-
come a considerable amount of waste and be quite objectionable,
What can we do to conserve this space? If we just write one item
after another, there’s no way to tell where one ends and the next be-
gins.

Obviously | wouldn’t have babbled on through the last paragraph
if there wasn’t a way to do what we want. The easiest way to tell
one field from another is to pick a character that won’t appear in any
field and insert it between each field of the record. An asterisk (*)
is one good choice. We could write our record like this:

Date*Check Number*Amount*Interest*Principal

Now we can instruct the computer to read from the file, checking
each character until it comes to an * and put the information into
the first field of our record, then read to the next * and call that infor-

mation the second field, and so on. So how can we tell when the
whole record is finished? It should be obvious by now that we'll use
another character, say the split vertical line ( | ). Actually, we could
have used a double asterisk (**) as well. When the | is read, we
stop because the record is complete. We'll call the special symbols
we assign to indicate the limits of records within a file or the limits
of fields within a record - DELIMITERS. Thus we've added one
more word to our file- handling vocabulary.

By using delimiters to show where one piece of data ends and the
next piece begins, we can pack items against each other, in se-
quence, without wasting any space in memory or on our storage
media, be it tape or disk. Again, note that all data items are in se-
quence. This is the way a “SEQUENTIAL FILE” is arranged. It puts
the most data in the least space. The price we pay for this memory
savings is the inability to go directly to just any record. Because not
all records are the same size, we have no idea what memory address
is assigned to the record we want. To find it, we must start at the be-
ginning of the file and read each record till we getto the right one.

Thus far we have discussed and you should know the meaning of
the following six terms.

FILE

RECORD

FIELD

DELIMITER
RANDOM FILE
SEQUENTIALFILE

The terms random and sequential file will gain more meaning as we
go along, but you've been introduced to them and have some back-
ground to build on. Each type of file is handled differently by
MBASIC and we must learn a different set of programming instruc-
tions for each. By taking them one at a time and drawing parallels
between the two, we should progress quite easily and get the most
out of this subject.

Most authors present sequential files first, a throwback to the days
when tape storage was all we had and things could only be done
that way, and then just present random files as an afterthought. | feel
that random files are easier to work with and understand so 1 will
present them first. Both types will be covered thoroughly before this
series is over as each has specific uses, advantages, and disadvan-
tages. Before we get into actual file operations, let’s look at these file
types and some of the characteristics of each.

RANDOM FILES

Advantages

1) Very fast access of any record.

2) Records can be added more easily.

3) File may be opened for both read and write operations.
4) Permits use of key files (to be discussed later).

Disadvantages
1) Takes more storage space on disk ortape orin RAM.
2) Must be sorted to allow random access.

SEQUENTIAL FILES

Advantages
1) Takes least space on disk or tape orin RAM.
2) Processes fastest for list print-out type jobs.

Disadvantages

1) Requires addition and removal of delimiters.

2) File may be opened for Read or Write—not both.

3) Modification of file requires use of a temporary file.

That should be enough to digest this month. Next month we'll look

18

REMark » February + 1984



at the MBASIC operations which are used with random files. For
those of you who wish to look ahead, they will be:

OPEN
FIELD
LSET
RSET
PUT
GET
MKI$
cvi

See you next month. %

AREYOU
MOVING?

Don’tleave your
REMark behind.

Send your change of address in
now to:
Heath Users’ Group
Hilltop Road
St. Joseph, MI149085

NEW oz

ZBERT is a video arcade game that

will challenge the entire family.

Package includes "ARTIST', a graphics
editor.

Requires ZBASIC & full Video Ram.

ONLY $29.95

DUALPORT wil inteliigently
parallel your Z-100* & Z-29* or Z-19*
Terminal either direct or through a
modem. Requires: ZDOS
ONLY $39.95

* Z-100, 2-29, Z-19 ARE ZENITH Trademarks

Auvailable at Heathkit Electronic Centers or when
ordering direct add $2 S/H. Kansas orders
Add 4%. VISA & MASTERCARD ACCEPTED.

SUNFLOWER SOFTWARE, INC. (213) 631-1333
13215 Midland Drive * Shawnee, KS 662186

DM-1 DUAL BOARD MODIFICATION KIT

logical drive letter.
CDR BIOS by Livingston Logic Labs

CDR DVD by Livingston Logic Labs.

Shugart Slimline 8” double sided drives

'l Controlled Data Recording Systems Inc.
ANNOUNCING THE FDC-H8

DOUBLE DENSITY 8”° AND 5.25’’ CONTROLLER FOR THE H8 COMPUTER
Has all of the capabilities of our popular FDC-880H controller, with the added features of;
« Direct memory access (DMA) data transfer.
« Hard sectored controller (H17) incorporated on the board.
« Runs with the standard 8080 CPU card and with Z80 CPU upgrades.

» Accesses both hard sectored disk formats and soft sectored disk formats through the same
drives attatched to the FDC-H8 without hardware additions. Price $495.00

NEW PRODUCTS FOR THE FDC-880H

$29.95

Allows for both the FDC-880H and the H88-4 controller cards to interface with the same 5.25"
drives. Drives will run as both hard sectored format and soft sectored format depending upon the

$60.00

Enhanced version of Heath/Zenith CP/M 2.203 BIOS with ZCPR. Supports all Heath/Zenith disk
formats through the FDC-880H and the H17 controllers.

$40.00

HDOS driver for running double density HDOS through the FDC-880H
Shugart Slimline 5.25” 40 track double sided drives

$275.00
$525.00

Contact: C.D.R. Systems Inc.
7210 Clairemont Mesa Blvd, San Diego CA 92111
5-20 day delivery-pay by check C.O.D., Visa, or M/C Telephone: (619) 560-1272

REMark * February = 1984




H. W. Bauman
493 Calle Amigo
San Clemente, CA 92672

Introduction

Welcome back to “COBOL Corner”. | hope that you have obtained
your HUG COBOL Corner Disk-I. If you have not, you can still
work along with this article, but will need it by the next “COBOL
Corner”. We will not dwell on the previous articles. | will assume
that everyone is up and running with their COBOL systems and
knows how to FORMAT a COBOL Program Structure, as well as
how to compile and run a COBOL program. If not, review past
articles NOW!

We will start our COBOL programming by learning how to develop
the program Phase by Phase!

Four (4) Phases To Develop A COBOL Program

Phase | — Specification Phase including illustrative layouts of
the Input and Output Records.

1 — Print Chart. Diagram the output format.

a) Grid-like form with 132 columns used to define an OUTPUT
Record.

b) Serves as a preview of how the report will look.

2 — Record Chart. Diagram the input format.
a) Modeled after an 80 column “punch-card”.
b) Programmer describes the position and size of each field.

3 — General Specification of the Program. English Narrative.

4 — System Flowchart. Graphic description of INPUT, PROCESS-
ING and OUTPUT flow.,

PHASE Il — Design Phase (Program Design Tools)

1 — Structure Chart. Graphic Hierarchy of tasks to be performed.
2 — Pseudocode. English-like documentation of Program.

3 — Program Flowchart. Graphic showing of Program logic flow.
4 — Structure Walkthrough. Review of design by a colleague.
(Note: Most Programmers do either step 2 or 3, not both.)

Phase Ill — Coding Phase (Do not confuse this to mean just
Keying!)

1 — Write Program Code on COBOL coding forms.

2 — Key the Source Code with your Editor from the coding forms.
This is NEVER done until step 1 has been checked with Phase
I and Il program tools! NEVER key a program until you have a
“Good"” design that will compile and execute without errors, pro-
duce the correct output format, and be capable of UPGRADING
and be MAINTAINABLE.

COBOL PROGRAMMING

3 — Compile your Source Code. Remember the compiler will only
catch syntactical errors (use of COBOL Language) and typos. Keep
correcting the ERRORS until you obtain a “Clean Run” (“NO ER-
RORS OR WARNINGS”).

Phase IV — Testing Phase

1 — Link and Execute your compiled program with a set of test
data, called a Transaction File.

2 — Remember, just because the compiler shows no errors that
does not mean your program will RUN or MEET Phase | Format
and Specifications.

a) Your design may have LOGIC ERRORS—Used wrong COBOL
Verbs to solve the program.

b) Your design may not produce the correct OUTPUT FORMAT.

3 — Go back to PHASE Il, after reviewing PHASE |, and redesign,
recode, and key-in the corrections.

User-Define Names (Created by the programmer for use in the
program.)

1 — Data Names. Group of contiguous characters, each data-
item must be assigned a unique data-name.

2 — Procedure Names. Paragraph or section names.

3 — Condition Names. Assigned to an item that may have various
values or set of values or range of values, used in the PROCEDURE
DIVISION to specify certain conditions for branching.

Rules For Assignment of Names

1 — Must be composed of only digits, alphabetic characters, and
hyphens.

2 — Must contain at least one (1) letter.

3 — Cannot exceed 30 characters.

4 — Cannot begin or end with a hyphen.

5 — Cannot have imbedded blanks or periods.

6 — Cannot be a COBOL reserved word.

7 — Should be descriptive, meaningful, and readable (self- docu-
menting)!

Spacing and Punctuation of COBOL Words

1 — There must be one (1) or more spaces between words.

2 — Periods ARE important in COBOL. REQUIRED in many
places. You MUST remember these places.

3 — Period, comma, semicolon MUST be followed by one (1)
or more spaces.

20

REMark ¢ February « 1984



Developing Sample Program #1

(Note: We do not have sufficient space on REMark’s pages to show
complete Print Charts, Record Charts, and Coding Forms; so, |
suggest that you obtain a pad of each from your Computer Supply
Store. The Print Chart has 132 columns and the Record Chart has
80 columns (a computer Punch Card can be used). The COBOL
Coding Form is also a standard form at your supply store. We will
show only a portion of the form below.)

Phase | — Step 1 Print Chart for “PRGM01”

12345676901 23454 7870123456 7690123456 78501 2345476901 23454 78991 234567890
! L b ot
| CUSTOMER i CUSTUNER I 1 CUSTOMER  1iSTiZIP
NAME b ADDFESS R = § 4 ot
! ! o

RXXCRXNRXAARAXRXAXNNX | ACOOOOCCXKKK S FRX T XXX

PXRXAXXAARTAXKAXRAARRNN

KRXCCCOCRNXR T XK AXX

XXX OO E XX

'
'

"
' .
'
i '
i i
Il
' '
' ]
. '
[l i [l
i [ i

(Note: We show where the print-out will occur with an “X” and
blank spaces between. We also show three (3) lines of print-out to
show that we want double spaced output. Because we lacked line

space we did not show the complete ZIP CODE field of five (5) “X""s
onrightside of the chart.)

Phase | — Step 2 Record Chart for “FILEL1.DAT”

LZ3A56TBYR1 2IAD6TETD] 23456 THTRL 23456 TETR1 23454 TBTRL 23456 TR0 1 234547899
arsT. CUSTOMER CUSTOMER CUSTOMER ST ZIF
ACCT. NAME ADDRESS ci1Ty
FEFTIINRRALAXAXLERAR LA A kMR AN A AR K AR A R FFTTT

(Note: This Transaction File has some other data that we will use
later, but this covers the Fields we will use with this program.)

Phase | — Step 3 Programming Specifications

TCUSTOMER |
oo LIsT
v OUTRPUT

'CUSTOMER |
+oLlsT i
VPRINT (OUT

Phase Il — Step 1

(Note: We are going to use MODULES (like sub-routines in BASIC)
with our Structured COBOL Programming.)

Hierarchy Chart™—"Customer List Frograms

i MAIN-
 CUSTOMER |
i =LIST
i H
' |
+OINITIALIZE! i PROCESS- |
| =VARIABLE! | CUSTOMER |
I =FIELDS | PR 'S £-1 B

Program Name: Customer List Progras ID1 PRGM1.DOC

Program Description

This program reads a customer account, name, and address data
file (Transaction File—more about this in later articles) and prints
a customer name/address list.

Input File

Customer account number-name-address disk file.

Output File

Customer name and address list.

List of Program Operations

1 — Read each customer account number-name-address record

from disk—FILELT.DAT.
2 — For each record, print the following fields on the customer
list in accordance with the Print Chart:
Customer Name
Customer Address Customer City-State-Zip
3 — Double space each printed line.
4 — COBOL will be the programming language.

Phase | — Step 4 System Flowchart

SYSTEM CHART--CUSTOMER L1ST PROGRAM

Phase Il — Step 3 Program Flowchart

(Note: We are going to choose Phase ll—Step 3 Program Flow-
charts over the Phase II—Step 2 Pseudocode in our early programs.
As the programs get more complex we will use Pseudocode. With
complex programs, the flowcharts get too elaborate and are hard
to follow. Remember it is the programmer’s choice.)

The FLOWCHARTS are shown separately in this article.
Phase Il — Step 4 Structure Walkthrough

At this point, if possible, you should have your program design
reviewed by a colleague or friend to check your Logic and Structure
with the above programming tools. This is where you want to
find your errors, on paper, not with the computer!

Data File (Transaction File)

If you have your HUG COBOL Corner Disk-1 you can copy the
file, FILEL1,DAT, from the HUG disk to your Disk A for this Sample
Program #1 using the same name. Now, print out FILELT.DAT
with your printer. Can you find the fields on it that we will use
with this program? It has some fields that we do not use this time
but will use with a later program. It should MATCH the PHASE
Il—STEP 2 RECORD CHART.

If you do not have the HUG COBOL Corner Disk-l, the FILELT.DAT
is shown below:

(Note: This line of numbers is just to show the field columns!
Do not include them in your work!)

REMark « February = 1984

21



L180@@2ABBOTT, ANTHONY
L168OSSIMMONS, RONALD
L160@1OWHEELER, EDMOND
L1001 1PENITENCIA, JOSE
L 12001 ZSTEWART, JANET
L1061 SJOHANSON, PALL
L18061IJAMES, JACGUEL INE
L100022COLLINS, BRUCE
L100OZEREILLY, JACK
L100@31CO0PER, ROXANNE
L180@3SCASHMAN, BARBARA
L100040WILMER, PATRICE
L100042YANG, CYNTHIA
L160047MACINTYRE, JOHN
L10GRAGERONN, BRUCE
L10@GSGHUMPHREY, STAN

L 100053L0GAN, MATHILDA
L 1600SAROGERS, WALTER
L100060SCHULTZ, CHARLES
L100062CARVER, GEORGE
L1@@O&ICHRTOZIAN, ARAM
L100@LEFORSYTHE, DOUGLAS
L 19088 1HARRIS, CLIFFORD
L1@@@83ALVAREZ, ELENA
L106OSBKNDLL, DONALD
L16616@XAVIER, FRANCIS
L120163LANDUSKY, FRED
L10@1 1 IGUINTANA, VINCENT
L1601 13HELM, SIGRID
L1601 16THOMPSON, CHARLES
L18@133P1CCATA, BEVERLY
L10@149WESTOVER, LEE
L10@1BEBPAPPAS, IRENE
L10020@WHELAN, ROD
L100201CORVING, GERALD
L100205WAGNER, GUY
L196210HAMILTON, BRUCE
L1@@213WHITNEY, DAVID
L100Z14PARSONS, LAURETTE
L100227SNC0W, MEREDITH
L160ZZ7CARSIN, JAMES
L10@244WHITE, BERNARD
L180271 JOHNSON, SARAH
L101002PAULSEN, PATRICK
L181064JACKSON, ANDREW
L181161STERLING, RONALD
L1011@8GUSTAFFSON, HARRY
L102162CALLAHAN, KATHEEN
L102223G0LDMAN, RACHEL
L182294SANDERS, GARY
L1824@7ENDICOTT, PAMELA
L185252W00, CELIA
L1@6280CHAVEZ, RAFAEL
L168269STEWART, JANET

L108722ABINGTON, CARL
L11021SADOLPH, CHARLOTTE
L110222ASHTON, WILL1AM
L11@273YOUNG, RODGER

L11@334FREDERICKS, PATRICIA3212 FOOTHILL BLVD

12345678901 2345678901 23454678901 2345678901 234567890 12345678901 234567890123

14255 CAVENDISH PLACE SAN FRANCISCOCA94122 00014489
12 WALNUT AVENUE ATHERTON CA74025 033750

1240 ALDERBROOK LANE SAN JOSE CA95101 00120056 !

18] GISH ROAD SAN JOSE CA95129 oQeRl1eN |
1092 MARSHALL LANE LOS GATOS CA95030 00030875
14901 SOBEY ROAD LOS GATOS CA74402 00004421
42 WARKEN AVENUE SAN MATED CA94402 00050356
120@ RACE STREET SAN JOSE CA95114 80033774
14101 JUNIPER LANE SARATOGA CA95070 0004458
10305 LOVELAND COURT SARATOGA CA95070 00022165
11 PENNSYLVANIA AVENUELOS GATOS CA95030 000d458R
6612 LAKEWOOD TERRACE SANTA CLARA CA95050 00092360
1262 BENTON AVENUE SANTA CLARA (A95051 @evleze3
14200 TERESITA BLVD  CUPERTINO CA75914 @0070054
1104 EL CAMINO REAL  LOS ALTOS CA94022 00003200
133 HILLVIEW ROAD LOS ALTOS CA74622 00033221
40221 ROSS ROAD PALD ALTO CA94043 Q0009943
1600 ORCHARD AVENUE  MENLO PARK  CA94025 @0023359
598 TASMAN DRIVE SUNNYVALE CA74086 Q0004479
6621 WILLOW ROAD MENLD PARK  CA94025 00113680
1556 BIKCHTREE LANE  REDWOOD CITY CA94084 000156260
220 MAGNOLIA DRIVE HILLSBOROUGH CA94010 00018329
50102 CYPRESS STREET SAN JOSE CA95130 eeel1970
1060 PALOS VERDES ROADLOS ALTOS CA94022 ©@212100
330 ANDERSON LANE MORGAN HILL CA95037 eeel321e
106 CORPUS CHRISTI WAYMOUNTAIN VIEWCA94942 @0314340
8823 CRESTVIEW DRIVE CUPERTINC CA95014 @ea15620
462 CANDY LANE BURLINGAME  CA94010 Q0815679
11005 VIA GRANDE DRIVESARATOGA CA95070 06012750
62 GLEN BRAE DRIVE SARATOGA CA95070 000172590
222 MAUDE AVENUE SAN CARLOS CA94070 00012350
1877 NOTRE DAME ROAD BELMONT CA4002 00015944
4420 WHIPPLE ROAD REDWOOD C1TY CA94084 00019130
1199 WINCHESTER ROAD CAMPBELL CA9500E 00011970
5504 SAN TOMAS ROAD  CAMPBELL CA95008 00010420
11 WASHINGTON SQUARE SAN BRUND CA74086 00012310
801 PEMBERTON FLACE BURLINGAME CA%4010 00013510
19002 COLUMBINE AVENUEREDWOOD CITY CA94084 020145630
335 STONYDALE DRIVE BURLINGAME CA94010 00002489
411 OAX RIDGE DRIVE  MILLBRAE CA74030 00005735
992 LOMITA AVENUE SAN JOSE CA95128 00004252
2200 THE ALAMEDA SAN JOSE CA95131 oeeegyes
2009 PARK PLACE MILLBREA CA94030 0002111
122 NIGHTINGALE LANE SAN CARLOS CA74070 00008114
2133 TILLMAN PLACE SAN MATEOD CA94402 00011970
42 WEST 27TH STREET  REDWOOD CITY CA94084 @00@4415
665 MCALLISTER STREET BELMONT CA74002 00023312
286 STATE STREET LOS ALTOS CA74022 000682213
133 MASON STREET SUNNYVALE CAJ4087 00036719
19204 37TH STREET SUNNYVALE CA74086 000562610
885 HILLVIEW TERRACE MOUNTAIN VIEWCA94043 00049512
754 GLEN BRAE DRIVE  SARATOGA CA75070 09001411
1220 KINGHAN ROAD LOS GATOS CA95030 00080913
405 BUBB ROAD CUPERTINO CA75014 00043016
L108231YARBOROUGH, JEFFREY 12076 CARCLINA STREET MOUNTAIN VIEWCA74042 00012185
886 PICKWICK COURT SANTA CLARA CA95050 @eee5174
1462 DISNEY LANE SAN JOSE CA95130 @ee28%13
99722 LAKEVIEW WAY SANTA CLARA CA95051 0@002827
122 CONSTITUTION ROAD MILPIAS CAY5035 053268
CUPERTINO CA75014 00012350

Now, for practice in preparing a Data File, use Disk A, your editor,
and key-in the above file putting only the fields required by our
program as diagrammed on the RECORD CHART making sure that
each field is in the specified columns! When completed, SAVE
it on Disk A with the name FILEO1.DAT. Prepare a print-out and
compare your work with the file FILEL1.DAT.

Closing

In the next “COBOL Corner” we will start with Phase Il — Cod-
ing! We will write it out on coding forms and describe each
COBOL Division. For your “Homework” please review the Select
Entry, FD Entry and Working-Storage Section in your COBOL-80
Reference Manual.

In our future Sample Programs | will not do all the Phases for
you. | will supply Phases to specify what the program will be re-
quired and leave the rest for you to work out.

This might be a good time to mention that we will be dealing with
Line Sequential Files for this and many of the coming pro-
grams. Random Files are really advanced COBOL; thus, we will not
work with these programs for many months. We have a lot of
COBOL Language, Structured Programming, and “Good” Pro-
gramming to work with first.

\4.__1

A

22

REMark « February = 1984



ZBASIC

Mapping
Program:

BASMAPER

The program BASMAPER generates a refer-
ence map of statement numbers, variable
names, literal values, and constant values
for a ZBASIC program. Output to a disk file,
to the line printer or to the screen is optional,
as is report selection. BASMAPER is written
in ZBASIC, for ease of update or user modifi-
cation. It is executed by first MERGEing and
then RUN 65500 (defaults all reports to the
printer). Limitations on the program being
mapped: Length = 29899 characters, and
maximum statement number = 65499,
Soft limits: number of statements = 400,
number of referenced elements = 1000,
and number of references = 3000. (Seethe
dimension statement at 65001 of the listing.)

After four years of programming in
APPLESOFT on my APPLE |l computer, | was
delighted with ZBASIC on my new Z-100.
The full screen editing, the many new func-
tions, variable types, and graphics control
gave programming a new dimension. How-
ever, the absence of programming support
tools made the overall task of program de-
velopment and checkout a chore. When in
checkout, performing program documenta-
tion, and most especially when revising a
program, it is mandatory for me to know
what references what. So, after suffering a
while trying to put together a data file man-
agement set of programs, | took out the time
to write a reference mapper. In doing so, |
learned some things about the internal stor-
age of a ZBASIC program which | found use-
ful. | hope you willtoo.

Figure 1 is the syntactic definition of the in-
ternal form of a ZBASIC program to the ex-
tent analyzed by BASMAPER. The symbol
<=2 isread "is defined as". The program is
stored as a chain of tokenized strings which
is common to all versions of BASIC. The link

Ted W, Miller, Jr. \
PO Box 347
APQ San Francisco, CA 96555

Figure 1

ZBASIC Progran
Basic Statement

Numbered String

Link Address

ZBASIC Mapper: ZBASIC Definition — Internal form

=>
=>

=

{=>

Unsigned Integerd=>

Stint Number
Token String
String Variable

Map Element

Stmt Reference

Statement Token
Link Token
Variable Name
Name

Letter
Alphanumeric
Digit

Type Char
Function Name

Function Token

{=>

<=3

=

{=>

{=>

{=>

{=>
{=>
=>

<

>

=>

=2

{=>

(=>

{=>

[Basic Statementli(Basic Statementl,[ZBASIC Program]

[Numbered Stringli[Numbered Stringl, [Remark]

[Link Address],[Stmt Number],[Token Stringl

[Link Address],[Nulll

[Unsigned Integerl

"o*i"1"..."65535"

[Unsigned Integerl

[String Variableli(String Variablel,[Token Stringl
[Map Elementli[Spaces)i[Other]

[Stmt ReferencelilVariable Maweli[Function Namel:
[Literal ValuelilConstantl

[Statement Tokenl,[Stmt Number)i[Link Tokenl,[
[Link Addressl

"y

nyan

[Namel:[Namel, " ("

[LetterlilLetter], [Alphanumeric]iINamel, [Type Charl
Rl Bt PR B
[Letter]i[Digitli®."

b Tt G B

ywin e ey

[Function Tokenl,[Spaces],[Name]

naie

REMark * February = 1984

23



Spaces {=> " "1 " [Spaces]i[Nulll

Null gm0

Literal Value <(=> [ASCII Quotel,[Stringl,[ASCII Quotel

ASCIT Quote {=> *34"
String {=> [Character]i[Character],[String]
Character =) "32"i"33"I"3T"IM36" .1 " 126"

Constant <=y [Digit Tokenli[Byte Tokenl,[Bytel:lInteger Tokenl,
[Unsigned IntegerlilSingle Tokenl, [Four Byte Reall!

[Double Tokenl,[Eight Byte Reall

Digit Token

.
]

Byte Token <

> 15

Integer Token <

Octal Token = 1"
Hex Token => "12°
Decimal Token <{=> =28
Single Token {=> "29”
Four Byte Real <=)> "@"..."1.7@1412E+/-38"

Double Token <=> "31"

i

i

Eight Byte Real ¢

Other <

It
s

Other Token <

Remark <

REM Token {=> "143"

> R, 127" (Represents "¢-3°)

> [Octal Tokenli[Hex Tokenli[Decimal Tokenl

> Me"..."1.701411834504692D+/-38"
[Character]li[Other Tokenl
> eMitIM.. iMletit1Am 30" 127" 17128, ., 1 255"

> [REM Tokenl, [Other]

Note: "<(=>" is “is defined as"; "™ is a logical OR; "," is "followed by.

address at the start of each string points to the
beginning of the next token string. The state-
ment number of the string follows the link
address. The remainder of the string is a
codified representation of the statement en-
tered. It consists of tokens representing re-
served words, operators, punctuation, and
possibly a REMark in addition to the map
elements of interest.

| was impressed when | found that ZBASIC
uses the token “13" to identify a direct refer-
ence to another statement, which eliminates
the scan ~-_m the top of program on all trans-
fers as performed in APPLESOFT.

The major difference is the use of tokenized
constants by ZBASIC. In APPLESOFT, it is
not good programming practice to use con-
stants. They are stored as ASCII strings and
converted at execution time (faster to use
variables). In ZBASIC, the opposite is true.

All constants and statement references are
stored as tokens or in their internal form.

Finally, on the negative side, spaces are not
tokenized. So, while the ZBASIC documen-
tation espouses the structuring of your code,
if you do, you are wasting memory. Maybe
on a laterrevision,

Now to the program. You'll have to refer-
ence the listing (see Figure 2) during the fol-
lowing discussion. The statements 65500
through 65005 are for program initializa-
tion. The first of three phases of operation is
displayed on screen, a dummy buffer is set
up to hold temporary strings (this avoids the
horror of garbage collection), arrays are di-
mensioned, functions are defined, and poin-
ters are set to the user program. In statement
65501, you will find “I” initialized to the in-
teger value at PEEK 343. This is the address
used by ZBASIC to identify the start point of

the user program. “K” is initialized as the ad-
dress of the next numbered statementand “}”
is the statement number of the first state-
ment. Phase 1 is performed at 65522, after
which all the statement numbers are found
in the string array “X$", ready for display.
Phase 2 is the workhorse performed by state-
ments 65523 through 65526. During this
phase, the statement number of the state-
ment being parsed will be displayed. This is
done so you'll know your machine really
didn’t go south, it's just busy. Each statement
is parsed, bytewise, for map elements.
Bytewise parsing is required because con-
stants, in their internal form, may take the
value of any ASCII character or token. While
this task would be speeded up considerably
if it were programmed in machine language,
the trade off was ease of modification, oper-
ation, and understanding. Since you will
probably not map your program more than
two or three times, execution speed was a
secondary consideration.

The statement being parsed is set up as the
string “J$” in statement 65523, this allows
access either by PEEKs or the ZBASIC string
operators. Statement 65524 checks for map
elements, using the subroutines at 65510
through 65521 to isolate them and “move”
them to “I$”. This “move” for variable
names and literals is simply pointing the “1$”
descriptor to the element within the program
(saves string space). The subroutine at
65507 is then used to find the element, or
where it should be, in “X$". This is an indi-
rect lookup through a pointer listin “Y%". It
is a very quick method of finding an element
in a sorted array. Finally, if the element s not
found, the subroutine at 65507 inserts it at
its proper sort position and the number of the
statement being parsed is added to the refer-
ence chain for thatelementin “X%".

Phase 3 is performed by statements 65526
through 65529, which by the way, is the
highest statement number allowed by
RENUM. Phase 3 is the report generation
phase. “RPRT$" is used to select the reports
to be produced, and “FLNM$” identifies the
device and/or filename to use for output.
The subroutine at 65008 is used for line
printer initialization. It is written for an
EPSON MX-80 printer, so you might have to
change it to be compatible with your line
printer. The spacing on the reports is set for
a 132 character line length (or more prop-
erly, a line length divisible by 6 with no re-
mainder). If you can’t set your printer up for
that format, you may want to take the time
to change the spacing so that your reference
statement numbers will not wrap around.

Installation: Simply key in the program,
modifying it as you want, and then type

24

REMark = February + 1984



Figure 2

S500

i

65501

&5505

65508

65507

65508
&£5509

65510
65511
65512

45517
65518
65519

65520
65521

&5522

ZBASIC Mapping program: HASMAFER

CLS: LOCATE 12,24: PRINT "WORKING PHASE 1":: OFEN "COMi:" AS #2 LEN=BO:
FIELD #2,6 AS I%: DEF FN XX (I)=2S5&4#PEEK (I+1)+FEEK(I):

IF RFRT%="" THEN RFRT%="1234"

DIM XH(1000) ,YZ4(1,400,3) XL(1,3000),IX(3): I=FNXX(Z47): J=FNXX(I+2):
K=FNXX{I): J%=" *": IF FLNM$="" THEN FLNM$="LPTI1:"

DIM L$(3): L$s(0)="Statement Number Reference Map":

L$E(1)=" Variable Names Reference Map ":

L$(2)=" Literal Values Reference Map ":

L% (3)="Constant Values Reference Map "
DEF FN FDC(I,J)=INSTR(I,J%,CHR®(J}): DEF FN PINT=J+&SS36!*(J>327467):
DEF FN CLTH=ABS((X>14 AND X<28)+(X=15i+3%(X>10 AND X<13 OR X=2B)+9#* (X=29)
FHE(X=3T1))
DEF FN STMT=ABS (X=14) *FNXX (I+N+1) +ABS(X=13) #*FNXX (FNXX (I+N+1)+3)
DEF FN NAM=X3>&4 AND X<91: DEF FN DEC=X%Z(1,NA+I)-4&5536!% (XA (1,NA+I)<{O):
DEF FN CHAR=X>48 AND X<5B DR FNNAM OR X=33 OR X>34 AND X<38 OR X=36
DEF FN NTE=I$<>X$(YL(0,IX,MX}): DEF FN LESS=I$<{XS(YL(O,IX,MX)):
DEF FN MORE=1%>X$ (Y%A (0,IX,MX)): GOTO 45522
LX=0: JX=IX(MX): WHILE FNNTE AND JX»LX:

KX=JX: WHILE FMLESS AND JX>LX: KX=JdX: JIX=JX-INT ((KX-LX)/2+.5): WEND

WHILE FNMORE AND JX>LX: LX=JX: JIX=IX+INT((KX-LX)/2): WEND:
WEND: RETURN
IF FNNTE THEN JX=JX+1: FOR LX=IX(MX)-—-(IX(MX)=0) TO JX STEP-1:
SWAP Y% (O,LX,MX) Y% (O,LX+1,MX): SWAF YZ(1,LX,MX),Y%(1,LX+1,MX): NEXT:
IX(MX)=IX(MX)+11 NL=NL+1: YAL(O,IX,MX)=NL: X$(NL)=I%: RETURN
ELSE RETURN
PRINT#1,CHR$ (27) 3 "N";CHR$ (&) CHR$ (12) sCHR$ (15) s CHR$ (14) s TAR (10) i ¢ RETURN
J=YL(1,IX MX) 2 I=02 WHILE J>0: I=I+1:X%L(1,NA+I)=X4L(1,J): J=X%(0,J): WEND:
WHILE I-0: PRINT#1,USING"#H#H####"3FNDEC:: I=I-1: WEND: RETURNM
MX=2: Z=FNFDC(N+2,34): IF Z<N THEN Z=FNFDCI(N+Z,5B): IF Z<{N THEN Z=L
Y=Z-N: FPOKE F,Y: POKE P+1, (I+N) MOD 25&6: FPOKE P+2, INT((I+N)/256): RETURN
WHILE NOT FNNAM: N=N+1: X=PEEK(I+N): WEND: Z=N: MX=1: WHILE FNCHAR:
Z=7Z+1: X=PEEK(I+Z): WEND: Y=I-N: FIELD #2,Y+3 AS Is%:
LSET I%$="FN "+MID%(J%,N+1,Y): RETURN
Z=N: MX=1: WHILE FNCHAR: Z=IZI+1: X=PEEK(I+Z): WEND:
Z=7-(X=40): GOTO &5511
MX=3: ¥=Z: FIELD #2, 13 AS I%: ON Z GOTO 65517,65518,465519
IF Z=5 THEN X=VARFTR(V): FOR Z=0 TO 2: POKE X+Z,FPEEK(I+N+Z+1): NEXT:
RSET I1$=STR$(V): RETURN
X=VARPTR(V#): FOR Z=0 TO 7: POKE X+Z,PEEK(I+N+Z+1): NEXT:
V=V#: RSET I$=5TR%(V): RETURN
Y=X-177 RSET I%$=STR%(V):! RETURN
V=FEEK (I+N+1): RSET 14=STR$(V): RETURN
V=FNXX(I+N+1): IF X=11 THEN LSET I$="&0"+0CT%(\)
ELSE IF X=12 THEN LSET I$="&H"+HEX%$ (V)
ELSE RSET I$=5STR%(V)

RETURN
FIELD #2, 6 AS I%$: RSET I%=STR%(Z): MX=0: Y=4: RETURN
WHILE k>0 AND I<327467 AND J<465500': NS=NS+1: YZ(0O,NS,0)=NSI
RSET I$=STR$(J): X®(NS)=1%: I=ki: K=FNXX(I): J=FNXX(I+2): WEND:
IX(0)=NS: NL=NS: LOCATE ,3B: PRINT "2": LOCATE ,24: FPRINT "FARSING ";
I=FNXX (343): WHILE SN<NS: SN=SN+1: FP=VARFTR(J$): K=FNXX(I) J=FNXX(I+2):

N=4: L=K-I-1: POKE F,L: FOKE P+1,1 MOD 25&: FOKE F+2,INT(1/256):

P=VARPTR (I%): X=PEEK (I+N): LOCATE ,32: FRINT J;

WHILE N<L AND X<>143: MX=4: Y=1: IF X=34 THEN GOSUE &5S510

ELSE IF X=214& THEN GDSUB 65512 ELSE IF FNNAM THEN GOSUE 65513

ELSE Z=FNCLTH: IF Z>0 THEN GOSUPR 65514

ELSE Z=FNSTMT: IF Z>0 THEN GOSUE &552

IF MX<4 THEN GOSUE 65S0&: JX=JX*ABS (NOT FNNTE OR MX>0):

ON AES(MX>0) GOSUE &5507: IF YX(1,JX,MX)=0 OR X%C(1,YZ(1,JIX,MX))<>FNFINT
THEN NA=NA+1: XL (1,NA)=FNFINT: XL(O,NA)=YZ(1,JIX,MX): YZL(1,IX,MX)=NA
N=N+Y: WHILE PEEK (I+N)=32: N=N+1: WEND: X=PEEK(I+N): WEND: I=K: WEND:
OFEN FLNM$ FOR OUTFUT AS #1: LOCATE 12,3B: PRINT "I":

MX=0: WHILE mMx<4: LOCATE ,20: PRINT L$(MX)3

IF VAL(MID$(RPRTS$,MX+1,1))<{>MX+1 THEN JX=IX(MX)

ELSE GOSUB &5508: PRINT#1,L$(MX):FRINT#1," "i JX=0:

IF Y%(1,0,MX) >0 THEN PRINT#1,"UNDEFINED <:"j: GOSUER &6550%9: FRINT#1," "
WHILE JX<IX(MX): JX=JX+1: KX=YL(O,IX,MX): X=LEN(X®(KX)): IF YZL(1,JX,MX)>0
THEN FRINT#1,X$(KX); TAE(16+E*INT ((X~4)*ABS(X>15)/6))3" <:1"5: GOSUER 6£5509:
PRINT#1," "

WEND: MX=MX+1: WEND: CLEAR: END

REMark = February

= 1984

25






Figure 6

Constant Values Reference Map

0 (65502 55504 65505 65506 65507 65509 65515 65516 45521 45522 65524 45525 45526 65527 45528
1 € 65500 65301 45302 45304 65507 65508 65509 65511 65512 65513 45515 65516 45518 43519 65522 45523 45524 65325 45526
65527 45528 45529
2 € 5500 65501 65502 45506 45510 65511 85512 45514 85521 45527 $5523
3 (0 65501 65502 65503 65504 65512 65514 65515
4 (i 45521 65523 65524 65525 65526 65528
5 (i 45303 65513
b (i 45500 5508 65521 5528
7
9

(. 85316

{: 65503
W (G 69506
10 € 85503 65508
11 ¢ 45519

12 € 65500 63508 43519 63526
13 {: 65503 65504 65514
1 (0 65503 45504 45508
13 ( b3503 45508 &5528
16 (i 453528

17 € 45517

20 (65526

U (6 5500 65522

1 (65508

28 ¢ 65503

29 € bS503

31 € b5503

32 (0 63523 85526

I3 € 45504

34 (1 b5504 65510 85524

38 (¢ S04 65522 45526 L
40 (1 45513 SR
¢ ob5504 1
48 S50

58 (. 43504 65510
b4 (% 45304
B0 ¢ 65500
9N T 45504
;*: := :::i: ARE YOU PREPARED FOR TAX TIME?
1 :
256 {1 45500 45511 65523 TAXTYME will assist you in preparing and calculating your 1983 Federal Income Tax forms.
I (45501 65523 TAXTYME simplifies filling out the forms by leading you through a series of formatted question-
o naires. TAXTYME includes formatted questionnaires for IRS Forms 1040, Schedules A, B, and C.
400 <2 85501 Schedule C is processed separately so that several Schedule C business activities can be
1000 <{: 65501 calculated and combined on Form 1040. Information from Schedules O, E, F, and the many
3000 ¢ 85501 numbered Forms are calculated separately and entered on the guestionnaires. Forms G, W, and
5 2210 are calculated automatically when required. TAXTYME makes decisions on Income Averag
32781 ' 63503 65522 ing, Marital Oeduction, and penalty Form 2210 it necessary. TAXTYME then processes the infor-
55530 {3 65522 mation you enter, performs the necessary calculations, and produces a computer printout for
55538 ¢ 45503 45504 direct transler onto IRS lorms. Requires a printer,
DNLY $59.95!

CPIM version for HBS, HB, requires CP/M and MBASIC
2005 version for 2-100, requires 2005 and ZBASIC

e New line SofTWARE
P.0. Box 402, Littieton, MA 01460 (617) 486-8535

ORDER NOW , . . SHIPMENTS BEGIN JANUARY 15, 1984

=-I--I--l--I.-l-----..-.........-..---I--...-----...'.I-Q.H-
E s CHECK ONE E
 STREET H
3 s [ ey, 18, cPim =
. L ]
. 100, ZD0S  *
* STATE e Oz :
L] [ ]
1 Send me TAXTYME program(s) at $59.95 each. .
% Check one: [J payment enclosed [ send COD {add $3.00) .
. Send ordet 10: H
. NEWLINE SOFTWARE, P.0. BOX 402, LITTLETON, MA 01460 H
H Foreign orders: add $3.00 Airmail, $10.00 for non-U.S. checks H
I T L e e e e R R R R R R R R R R R R R R R R R R R R L R LR L L]

CPIM iz a trademark of Digital Research, Inc.
MBASIC is a trademark of Micresolt, Inc.
Z00S, Z-100 are trademarks of Zenith Data Systems, Inc.

REMark = February « 1984 27



Charles E. Horn, P.E.

Making the CP/M DUMP .
Program a Useful Utility s

The DUMP program that is distributed as source code with the
Digital Research CP/M operating system offers some good exam-

; BUILD THE ASCII BUFFER
ples of programming techniques. It illustrates techniques for han-  Ascii:  PUSH H! PUSH D! PUSH PSW  ;Save environment

dling command line entries, opening and reading files, character LXI H,BUF 16 j0ur ASCIL line buffer
. . s . LDA ASCCNT sCharacter position in line
conversion to hex representation, and exiting to CP/M without a HOV EA
. . . !
warmboot, to name a few. However, as a useful utility it has little M1 D,@ o .
to offer. 1;:2 2 Eg:;;e:zuﬁ:snxon address in HL
)
The addition of a small amount of code can make DUMP a very ig: ggacm {Get current byte
- - . ) ;
useful utility. The additions that follow will provide true addresses, PUSH  PSHW ;Save again
at least for files that originate at T00H, and will create an ASCII ANI et jNegative number?
field simil h T d disolav. Th I WNZ PERIOD ;Not ASCII
ield similar to the DDT dump display. The resulting program, POP PO iGet byte again
which we call ADUMP.COM, only occupies 1K bytes on disk, PUSH  PSW jSave again
and is much easier than DDT to use if you only need a quick 521 o '?fcizz
look to locate ASCII strings or to find the address of a particular cP1 12741 ’;Be sure of ASCII
instruction. JINC PERICD 11f not
: CP1 '’ sDon’t allow false

It is assumed that your DUMP program is Version 1.4 or later Jz PERI0D i+ -PRINTF terminator

; : . ; i i MoV H,A sSave ASCII in buffer
(earlier versions may not sign on and will require additional work). OMP ASCOONE
If so, the following additions will work: PERIOD: MVI A’ ;Get a period

MOV M, A sStore non-ASCII marker
1. Just ahead of the GLOOP label, change the LXI H instruction  ASCDONE: POP PSW! POP D! POP H ;Restore environment
RET
to:
]
LXI H,1@0H ;Start at beginning of normal TPA

5. Near the end of the program, just below the label OPNMSG

2. In the GLOOP routine, insert the following code just ahead and above the “VARIABLE AREA”, add the following:

of the comment “PRINT LINE NUMBER”, following the instruction

INZNUNUM. H
; ASCIT BUFFER AREA
; :
; PRINT ASCI1 BUFFER ASCCNT: DB 0 sLine pesition counter
; ASCBUF: DB = ’ ;Four leading spaces
; This code prints the 16 character ASCII line BUFle DS 16 3116 character line
; buffer located near the end of the program. DB $ ;PRINTF terminator
! 3
]
PUSH H! PUSH D! PUSH B j;Save environment
:32 QSCCNT 'SZ: ﬂ':;icm pesitlon That's all you need to do. Note that this addition places a period
: ] * . .
JI LINENO ;Yes = jump over this in the ASCII field for each non-ASCIl character. Also, note that
LML DyASCRUE iElse lime FUIL= gript it one can not permit a ‘$’ character to be printed because the BDOS
MVI C,PRINTF 1Print Tine function i . . N
CALL  BDOS PRINTF function would interpret it as the end of the string and
XRA A sReset would truncate the ASClI line display.
STA ASCCNT i..position count *
LINENG: PGP B! POP D! POP H ;Restore environment

)y
’

3. In the NONUM routine, after the MOV A,B instruction and
ahead of the CALL PHEX instruction, insert this:

§
CALL ASCII 390 build the ASCII buffer

4. Now add the following subroutine below the NONUM routine,
following the instruction JMP GLOOP, just ahead of the FINIS
routine:

28 REMark « February « 1984


http:ADUMP.COM

Introduction To

Data Structures

Emily A. Yount
RR 1, Box 408
Danville, IN 46122

Dala structures are organized ways to store and retrieve data.
Generally, data structures are used in a program to make the pro-
gram as efficient as possible. In particular, data structures are de-
signed to enable a program to quickly retrieve the correct piece
of data.

You need to understand and be able to use arrays in order to
construct other more complex data structures, so before we go
further, we'll review arrays. Arrays are ordered lists of data items.
The entire list is identified by an array name, and the individual
items on the list can be referenced by the array name followed
by one or more subscripts. Different languages have different ways
of implementing arrays, but usually space must be reserved for
the array before the array is used. This is done by “declaring”
the array. In BASIC, a DIM statement is used to set up an array,
e.g. DIM <array name>(<integer expression>). In MBASIC the
array name is any valid variable name and the integer expression
is any valid integer expression that yields a positive integer when
evaluated. This integer is then the maximum subscript value for
the array. For example, DIM THISARRAY(20) sets up an array
called “THISARRAY” that contains at most 21 elements, i.e.
THISARRAY(0),..., THISARRAY(20). The default value for the mini-
mum subscript value is zero, but an OPTION BASE 1 statement
just before the DIM statement would cause the minimum subscript
valuetobe 1.

Other languages have other means of declaring arrays. FORTRAN
uses DIMENSION statements. In PASCAL, a type declaration state-
ment is used, e.g. TYPE THISARRAY = ARRAY[0..20] OF IN-
TEGER would set up an array of 21 integers called THISARRAY.
Most languages also allow multidimensional arrays.

Stacks and queues are data structures that are frequently used.
Many of you may have already encountered these structures, but
their properties are worth reviewing before we go on to more com-
plex structures.

A stack is a list of data in which the only data item that can be
retrieved is the item that was most recently added to the list. A
stack is also called a LIFO list (last in, first out). Adding an item
to the stack is called “pushing” the item onto the stack, while
retrieving an item is called “popping” an item from the stack. The
classic example of something like a stack in everyday life is a
stack of trays in a cafeteria. The problem for many novice program-
mers is just how to implement a stack in a high-level language.
Perhaps this example in MBASIC will help.

First an array must be declared, This statement sets aside memory

for use by the stack. We must estimate the maximum size of the
stack. In our example we will use “N” as the maximum size of
the stack. In practice N will be some constant.

10 REM ROUTINE TO SET UP A STACK

26 OPTION BASE 1

30 DIM STACK (N)

4@ LET STACKTOP = @

56 REM THE STACK 1S INITIALLY EMPTY.

68 REM STACKTOP IS THE NUMBER OF ITEMS CURRENTLY IN THE STACK.

We also need routines for adding and deleting items from the stack.

181@ REM SUBROUTINE TO PUSH “ITEM" ONTO STACK
1020 IF STACKTOP »>= N THEN GOTO 2019

1830 LET STACKTOP = STACKTOP + 1

1049 LET STACK{STACKTOF) = ITEM

1850 RETURN

1110 REM SUERQUTINE TO POP “ITEM" OFF OF STACK
1120 IF STACKTOP <= @ THEN GOTO 2110

1120 LET ITEM = STACK(STACKTCP)

1130 LET STACKTOP = STACKTOP - 1

114@ RETURN d

2010 REM ROUTINE TO HANDLE PROBLEM WHEN STACK IS5 FULL

.

2119 REM ROUTINE TO HANDLE PROELEM WHEN STACK IS5 EMFTY

Queues are another common form of ordered list. In a queue,
only the least recently added item can be retrieved. That is why
queues are also called FIFO (first in, first out) lists. Items are added
to the rear of the queue and retrieved from the front of the queue,
just like a queue of customers in a cafeteria line (another classic
example from everyday life). To implement a queue in MBASIC,
one would begin by reserving space by declaring an array. Again,
N is the maximum number of items in the queue, but this time
it will be more convenient to have zero as the minimum subscript.
You'll see why shortly.

18 REM ROUTINE TO SET UP A QUELE

20 DIM QUEUE(N-1)

30 LET FRONT = @

4@ LET REAR = @

5@ REM THE QUELE IS INITIALLY EMPTY

161@ REM SUBROUTINE FOR ADDING AN ITEM TO A QUEUE
1620 LET REAR = (REAR + 1) MOD N
1839 IF FRONT = REAR THEN GOTO 2010

REMark « February + 1984

29



1040 LET QUEUE(REAR) = ITEM

1050 RETURN

1119 REM SUBROUTINE FOR REMOVINGS AN ITEM FROM A QUELE
1120 IF FRONT = REAR THEN GOTO 2119

1130 LET FRONT = (FRONT + 1) MOD N

1140 LET ITEM = QUEUE(FRONT)

115@ RETURN

2810 REM ROUTINE FOR HANDLING PROBLEM WHEN QUEUE IS FULL

2116 REM ROUTINE FOR HANDLING PROBLEM WHEN QUEUE 15 EMPTY

The routines used to implement a queue are a little more complex
than those used for a stack. The reasons for setting up a queue
in this fashion may not be obvious at first, but they aren’t really
that difficult to understand. If we simply added items to the rear
of the queue and removed items from the front, the queue would
move through memory until we added an item in the last position
we had allotted to the queue. Then the queue would seem “full”
even though there might be a lot of space left in front of the queue,
space created by deleting items from the front of the queue. We
want to be sure that this space is not wasted. So by using integer
arithmetic, we program the queue so that after filling the space
at QUEUE(N-1), the next item is placed at QUEUE(0) if that space
is free, i.e. FRONT > 0. If you are not familiar with the use of
MQOD in integer arithmetic, X MOD Y is equal to the remainder
left when X is divided by Y.

You may have noticed that the test for a full queue in the insertion
subroutine is the same as the test for an empty queue in the deletion
subroutine, i.e. does FRONT = REAR? However, in the insertion
subroutine, when FRONT = REAR, there is really one free space
since FRONT points to the space before the first element in the
queue. Why can’t we use this space? Well, we could if we wanted
to make things more complicated. As things stand, if we inserted
an item into this space, we wouldn’t be able to tell whether or
not the queue was empty or full.

Another, less commonly used data structure, is a deque (pro-
nounced “deck”), or double-ended queue. In a deque, data may
be added and removed at both ends of the list, but not in the
middle.

The data structures described above have all been examples of
sequential data allocation, which means the data is stored in a
sequence of memory locations. A much more flexible data alloca-
tion method is known as linked allocation. The simplest example
of linked allocation is a linked list. Think of a linked list as a
list of nodes containing two fields, one an information field (DATA)
and the other a link field (LINK%), see Figure 1. DATA may be
defined as a string or real number but LINK% will be an integer.
Although in our examples there will be a “%” at the end of every
integer variable, you should remember that using DEF statements
not only decreases the amount of storage needed, but diminishes
the number of times you must use the shift key when typing, thus
making it easier to type in your program. Information is stored
in the DATA fields and each LINK% field contains the subscript
or address of the next node in the list, i.e. the LINK% field “points”
to the next node in the list, see Figure 1. Here is an example
of how to implement a linked list in BASIC.

The first step would be to set aside space for the list. We will
use dimension statements to set up arrays. As before, N is the
maximum length of the list.

10 OPTION BASE 1

2¢ DIM DATUM(N)
30 DIM LINKZ(N)

The next step would be to initialize the storage pool, i.e. the list
of nodes that are available for use in our list. We set the variable
AVAIL% to point to the first available node and then link all the
nodes together in order. They may not stay “in order” but they
are usually linked in order at first. Also, we link the last node
to zero; this way we can test whether or not we have reached
the end of the list. The last node is the only one that will ever
be linked to zero.

110 REM INITIALIZATION OF LINKED LIST
120 FOR I =1 TON - 1 STEP |

130 LET LINKA(I) =1 + 1

140 NEXT I

150 LET LINKZL(N)
160 LET AVAILZL =

0

—

Now to use our list, we must have a subroutine for getting a new
node from the storage pool. We will call this new node NEW-
NODE%. NEWNODE% will be the first node on the storage pool
list if there is a node available.

1019 REM SUBROUTINE FOR GETTING A NEW NODE
1020 IF AVAILZ = @ THEN GOTO !10@

193@ LET NEWNGCDEYZ = AVAILX

1040 LET AVAILY = LINKZ(AVAILL)

105@ RETURN

110@ REM ROUTINE FOR HANDLING PROBLEM WHEN THERE ARE NO MORE
NODES ON THE LIST

We also need a subroutine for returning nodes to the list of avail-
able nodes. USEDNODE is a node we don’t want to use any more
right now, but we want to keep it on our list of available nodes
in case we need it later.

121@ REM SUEROUTINE FOR RETURNING USED NODES TO THE LIST OF
AVAILABLE NODES .

1220 LET LINKZ(USEDNODEZ) = AVAILZ

1230 LET AVAILZ = USEDNODEY

1249 RETURN

The observant reader will have noticed that our list of available
nodes is a stack. We “pop” nodes off the stack when we get new
nodes and “push” nodes onto the stack when we return them.
So we are already using two other data structures (arrays and a
stack) to implement our linked list. Now the question is, just what
do we do with our nodes and how do we do it? Well, we can
use our list to store data in order (e.g. alphabetical or numerical
order) when the data is not received or entered in order. First
we need a routine for creating a list. The following routine will
create a new list. The first node will be the “BEGINNING%" and
the next node will be the “ENDNODE%". We use our subroutine
at line 1010 to create these nodes. “BEGINNING%"” and “EN-

I LINK%(I) DATUM(I)
PO T o
2 0 30

3 7 20

4 3 10

S 2 50

& S 40

7 6 30

Figure 1

30

REMark « February » 1984



DNODE%" are labels that tell our program where the list starts
and where it ends. Initially, the “BEGINNING%” node is linked
directly to the “/ENDNODE%" node.

210 ROUTINE FOR SETTING UP A NEW ORDERED LINKED LIST
220 GOSUB 1010

230 LET BEGINNINGY, = NEWNODEZ

240 GOSUB 1016

250 LET ENDNODEZ = NEWNODEY.

260 LET LINKX(BEGINNINGZ) = ENDNODEY

270 LET LINKY(ENDNODEZ) = @

Now we wanl to create a program to search the list to find out
if an item (ITEM) is in the list. If it is in the list, we will do nothing,
if it is not in the list, we will insert it so that each DATUM in
the list is still in proper order. We need not enter the items in
order however. Before looking at the code below, why don’t you
try to program this yourself?

310 REM SEARCH AND INSERT SUERCUTINE
320 LET BYX = BEGINNINGZ

339 LET A% = LINKL(B%)

340 LET DATUM{ENDNODEZ) = ITEM

350 WHILE DATUM(AZ) < ITEM

360 LET BYL = AL

370 LET A% = LINKZ(BYL)

380 WEND

370 IF (DATUM(AX) = ITEM AND (AL <> ENDNODEZ) THEN GOTO 448
400 GOSUB 1oie

410 LET CX = NEWNODEZ

420 REM INSERT CI BETWEEN A% AND Bl

430 LET DATUM(C%) = TITEH
440 LET LINKZ(CZ) = AL
450 LET LINKL(BL) = CL

460 RETURN

As you can see, B% and A% are pointers to nodes. These pointers
move down the list with A% always one node farther down the
list than B%. You may be wondering why we have line 340 in
our program. The reason is that we now use the same expression
(i.e. is DATUM(A%) < ITEM?) to determine if we are at the end
of the list and to determine whether or not we have found either
ITEM itself or the place to insert ITEM. The WHILE loop is used
to traverse, i.e. move down, the list. When DATUM(A%) <= ITEM
we stop. If DATUM(A%) = ITEM, we do nothing so we return,
unless we have gone through the entire list without finding ITEM.
In that case we insert ITEM just before ENDNODE%, i.e. at the
end of the list. We are using ENDNODE as a “sentinel” node,
that is, a node that contains a special value that we use to tell
us when we are at the end of the list.

For some applications we will want to delete items from our list.
We need one more subroutine, one that deletes an ITEM.

51¢ REM DELETION SUBROUTINE
520 LET B = BEGINNINGX

532 LET A% = LINKL(BL)

54¢ LET DATUM(ENDNODE%) = ITEM
550 WHILE DATUM(AL) ¢ ITEM

566 LET BYL = A%
570 LET AL = LINKL(BXL)
580 WEND

590 IF (DATUM(A%) > ITEM) OR (AY% = ENDONODEYL) THEN 650
600 LET LINK(BL) = LINK(AL)

41@ LET USEDNODEY = A%

630 GOSUB 1210

640 GOTD 560

550 PRINT ITEM "is not in the list."”

450 RETURN

Now you should have a good idea about how to create a linked
list. Think of a program that you could use to apply your knowl-
edge. At this point a simple program to practice what you've

learned will do. Later in this series, we'll examine other data struc-
tures that are more efficient than a linked list.

Those of you who use PASCAL will probably realize by now that
using pointer variables would make things much simpler. Also,
standard PASCAL has two library procedures, “NEW” and “DIS-
POSE”, that take the place of our subroutines at lines 1010 and
1210 respectively. In PASCAL we would start by declaring our
list as shown below. We no longer have to set up the storage
pool, since PASCAL’s procedure NEW will take care of getting
available nodes for us. It is assumed that DATATYPE has already
been declared.
TYPE LISTPTR = ALISTNODE;
LISTNODE = RECORD
DATA : DATATYPE;
LINK : LISTPTR
END;
BEGINNING, ENDNODE = LISTPTR;
ITEM = DATATYPE

We would set up our list with the following statements.

NEW(BEGINNING);
BEGINNING,LINK := ENDONODE;
ENDNODE™.LINK := NIL;

In PASCAL, NIL is a null pointer, i.e. the value to which a pointer
points when the pointer doesn’t point to anything. We could use this
as a way of testing whether or not we are at the end of our list, but
using ENDNODE as a sentinel is slightly faster.

You may be wondering what the advantages of linked allocation are.
There are several. The main advantages are ease of insertion and de-
letion, and ease of merging two lists or separating one list. However,
linked allocation uses more memory than sequential allocation
since the LINK fields take up space. Also, in order to find something
in a linked list, the list must be traversed sequentially; and one would
have to traverse the entire list to find the last item. Other more com-
plex data structures do not have this disadvantage.

Linked lists are a good introduction to linked structures in general.
In a future article we'll study some of these other structures and learn
some of their uses. In the meantime, those of you who wish to study
data structures in more detail should try to find one or more of the
references given below. Spracklen’s book will be particularly useful
to assembly language programmers while Wirth’s book will be best
for PASCAL programmers.

Bibliography

1. Horowitz, E., and Sahni, S., Fundamentals of Data Structures,
Computer Science Press, Rockville, Maryland, 1982.

2. Knuth, D. E., The Art of Computer Programming, Vol. 1, Funda-
mental Algorithms, 2nd Ed., Addison-Wesley, Reading, Mass.,
1973.

3. Spracklen, K., Z-80 and 8080 Assembly Language Program-
ming, Hayden Book Co., Inc., Rochelle Park, N.J., 1979.

4. Standish, T.A., Data Structure Techniques, Addison-Wesley,
Reading, Mass., 1980.

5. Wirth, Niklaus, Algorithms + Data Structures = Programs, Pre-
ntice-Hall, Englewood Cliffs, N.J., 1976.

=
=N\

REMark + February * 1984

3



P 1V S e s i St o s S 2 2 Vi et Sl S S SR

An Introduction To ‘C’

This is the fourth in a series of articles designed to introduce
the ‘C’ programming language.

We are going to continue analyzing the ‘more’ program presented
in the prior article. | have to explain more of the program. We
will also modify the program in order to be even more useful.

If you went through the exercise of compiling the program, you
would have had a not very useful program which took input from
the terminal and echoed it back, twenty three lines at a time.
There are two ways to alleviate this problem. We will look at
both ways.

The first way involves no changes to the program. The C/80 com-
piler makes available one of the most useful aspects of the UNIX
operating system — 1/O redirection. This allows us to temporarily
change the standard input and output device from the terminal
to another file or device. In our case, we want to change the
standard input from the terminal to a file to be printed. The redirec-
tion symbol is ‘<’ for input and ‘>’ for output, followed im-
mediately (no spaces) with the file or device name. Therefore,
in order to list out a file at the terminal using our ‘more’ program,
we could say:

more {filename

where ‘filename’ is the name of the file to be listed. Notice that
we can direct the output to another file, or to the printer, by saying:

more {(filename >1p1

This is not a very useful way to print a file, because our program
will still pause after every 23 lines, even though the output is going
to the printer. Notice that in this case the ‘More’ prompt also is
sent to the printer, the result depending on the printer.

The second way to specify the file name to be printed will end
up being much more useful, but it involves changing the program.
What we want to do is pass a parameter to the program so that
it will know the name of the file to be opened for input. ‘C’ provides
a built in mechanism which makes available to us any parameters
specified on the command line. These parameters are made avail-
able by way of an integer, which counts how many parameters
were entered, and a character array, which holds the parameters.
In order to add this logic to our program we have to talk a little
about arrays.

We can define an array as a sequence of integer or character vari-
ables by putting a number in braces (‘[ and ‘]’) immediately follow-
ing the variable name. The number indicates how many positions
the array contains. One thing to note: ‘C’ arrays start with position
‘0’ and end with the position one less than the number specified.
Therefore:

char x(101;

declares a ten position character array starting with x[0] and ending
with x[9]. We also need to understand the concept of ‘pointers’
in order to pass a parameter to our program. A pointer is an address
of a variable in storage. Arrays are passed by specifying a pointer
to the address of the location of the first element of the array.
In ‘C’, a pointer variable is indicated by an asterisk (**’) im-

Brian Polk
86-02 Little Neck Parkway
Floral Park, NY 11001

mediately preceeding the variable name. For a more detailed ex-
planation of arrays and pointers, check your ‘C’ programming lan-
guage book. We will go into more detail in future articles.

Now let's modify our program to incorporate the concept of param-
eters.

#include “printf.c®

#define EOF -1

#define NMLL @

mainlargc, argv) /% here we indicate the parms #/

int arge; /% ‘argc’ is the number of command-line arguments */
char *argvil; /% ’argv’ is an array of pointers to the arguments */
( Al entered on the command line */

int ¢, lipe_number, channel;

channel=fopenfargv(1],"r™)}
if (channel == NULL)
{
printf(*File Not Found.\n"®)
exiti4);
)
for (line_number=8; (c=getclchannel)) '= EOF; putchar(c))
( /% use 'getc’ with channel number */
if (c == "\pn’)
Tine _numbertt+;
if (line_number == 23)
(
putchar(27);
putchar(106);
putchar(27);
putchar(120);
putchar(49);
putchar(27);
putchar(89);
putchar(56);
putchar(32);
putchar(27);
putchar(112); /* enter reverse video */
printf(*~—More--");

/* let’s open the file name specified ¥/
/% if file not found we will exit ¢/

/% save the cursor position #/

/% turn on the 25th tine #/

/* position cursor on the 25th line #*/

putchar{27);

putchar(l13); /% exit reverse video #*/

while {getchar{) '= ’\n’); /% wait for a carriage return #/
putchart27);

putchar(107);
putchar(27);
putchar(121);
putchar(49);  /#% turn off 25th line #*/
line_number = @;

)

/% return cursor to saved position #/

)

Now we can run our program by simply saying:

more filename

‘argc’ and ‘argv’ are the names used by convention for the parame-
ter count and array, but any variables declared the same way can
be used. Notice the ‘*” in ‘char *argv[]’ and the lack of a number
between the braces. The asterisk indicates that we are declaring
an array of POINTERS to characters as opposed to an array of
characters. The reason we don’t need to put a number in brackets
is because the array is being passed into the program and has
already been declared in the calling program (which in this case
is the HDOS-C/80 interface). This fact is true for any array which
is passed. Note that the passed variables must be declared BEFORE
the opening bracket of the program.

Notice two things where we refer to the ‘argv’ array. The first
is that we reference position number one. Why not position zero?
‘argv[0]’ refers to the command name (‘more’ in this case). There-

32

REMark « February « 1984


http:putet,.rl

fore, ‘argv[1]’ refers to the first parameter entered. The second
thing is why we didn’t put the “*' before ‘argv’'? Remember that
we declared an array of pointers to characters by putting the as-
terisk before the variable. Conversely, we refer to the actual char-
acter by removing the asterisk. The opposite is also true. If we
declared an array of characters (e.g. char argv[10]), we could refer
to the pointer to a character by adding an asterisk before the vari-
able name (e.g. *argv[1]). If this all seems a little confusing, join
the club. I've probably gone into a little more detail than necessary
here. If you are interested, check your manual. If not, we will
return to this topic in the near future,

The ‘exit(4)’ statement closes all open files and returns to the calling
program (in this case, the operating system). We return the value
‘4’ to indicate an abnormal condition.

| still have to comment on other facilities used in the program.
The first is ‘#define’. We can use this to set up global constants
used throughout the program. By convention, these global con-
stants are indicated in upper case. These are often collected into
a file which is included into every program written. We may do
that as an exercise in a later article. Here, | havé defined two
very useful constants: ‘EOF’ which is the end- of-file value returned
from all input routines, and ‘NULL" which is returned from many
routines (such as ‘fopen’) when an error has occurred. We will
add to our list of ‘defines’ as we go along.

In part two of the ‘for’ statement, | constructed what might seem
like unusual syntax. What this illustrates is a quite general rule
in ‘C’ — in any context where it is permissible to use the value
of a variable of some type, you can use an expression of that
type. What this means is that since the variable ‘c’ and the com-
mand ‘getchar()’ are both integers, we can combine them into ‘(c
= getchar()) and still yield an integer. Its value is simply the value
being assigned to the left hand side. Also in the ‘for’ statement,
it should have been obvious that ‘I=" means ‘not equal’. In a fol-
lowing ‘if" statement we use ‘=="' which means ‘equal to’. The
double equal sign differentiates it from a normal assignment state-
ment.

The ‘line  number’ “if’ statement used 23 instead of 24 to provide
for an overlapping line on the screen. This is often very helpful
when looking at long listings in order to provide consistency from
screen to screen and to compensate for inadvertently missing the
last line on the prior screen.

Be careful to distinguish between the single () and double (")
quotes. | ran into some trouble when | mistakenly used the single
quote in the ‘printf’ statement. As a general rule, when you are
enclosing a single character, use the single quote; otherwise, use
double quotes. Note that “\\n’ is a SINGLE character which is
why we enclosed it in single quotes in a previous program.

Also be careful when sending escape sequences to the terminal.
Make sure you are sending the decimal equivalent, NOT the char-
acter constant. | spent a lot of time trying to figure out why the
sequence 27-120-1 would not turn on the 25th line. The proper
sequence is 27-120-49 where ‘49’ is the decimal equivalent of
the character 1’. This can also be avoided by specifying the char-
acter constant In the ‘putchar’ statement, as in:

putchari27);
putchar(’x’ )}
putchar(’1”);

By now you probably figured out why | used ‘getc(0)" instead of
‘getchar()’ in the ‘while’ statement. This was because when we
used 1/O redirection, the normal terminal input had been redirected
to the specified file name. Therefore, we had to specify that we

wanted the character to come from the terminal by using channel
0, which is always reserved for terminal /O, even if redirection
has been used. When we passed the name of the file directly to
the program, we could use the normal ‘getchar()’ sequence.

Once you feel comfortable with the program, try modifying it to
allow a way to exit if another character (such as ‘q’) is entered
at the point where we are currently waiting for a carriage return.
This would allow us to stop without having to go the end of a
long listing.

Next time we will show how to pass parameter switches to a pro-
gram and also how to use the formatted input equivalent of ‘printf’.

‘C’ you later!

copy o

maybe now is the time to join the National
Heath/Zenith Users’ Group. You will re-
ceive:

® a copy of REMark filled with new and exciting
articles and programs each month

® access to the HUG library filled with a large
variety of programs

® discountson avariety of Heath/Zenith computer
products (see REMark January, 1984 issue for more
details)

And remember, your local HUG is an excellent
source of information, support and comradery. A
membership package from the National Heath-
/Zenith Users’ Group contains a list of current local
HUG clubs as well as other interesting information.

REMark « February « 1984

33



UG

NEW
PRODUCTS

885-1234[-37]CP/M

HAMHELP' ;s eanen ssvn snwanmssney s $10/00

Introduction: HAMHELP makes use of the personal computerto cal-
culate the MUF (Maximum Useable Frequency) for each half-hour
throughout the day. Input data for the program can be obtained each
hour from listening to WWV. HAMHELP is a valuable tool for the
amateur radio operator.

Requirements: HAMHELP requires the CP/M operating system, ver-
sion 2.2.03 or higher, an H8/H17 or H/Z-89 with one drive and at
least 48K of memory. The soft-sectored version of this program (885-
1234-37) will run on the H/Z100 under CP/M-85. The program itself
is compiled MBASIC (MBASIC is not required).

The following programs and files are included on HUG Disk P/N
885-1234[-37]:

README .DOC
HAMHELP .COM
FILEFIX .COM
FOREIGN .LOC
NOAMER .LOC
HAMHELP .DOC

Author: Ray (Raymond S.) Isenson, N6UE

Program Content: HAMHELP calculates the MUF (Maximum Use-
able Frequency) each half-hour throughout the day for the date and
path between two stations specified by the user. The output of these
calculations is then presented in a graphic chart which is easy to
read. Along with the chart, it prints additional information including
the antenna azimuth, optimum elevation beam angles, the expected
path attenuation, and an estimate of the likely propagation condi-
tions as a function of the existing electromagnetic environment. If
the two stations are more than some 4000 kilometers apart, the pro-
gram will optionally calculate the exact times of Sunrise and Sunset
for each of the locations. Also, the program will check for any un-
usual possibilities such as “Grayline” longpath openings or preferred
paths to take advantage of certain bad or good polar cap propagation
conditions.

FILEFIX.COM is included in order to make the HAMHELP program
as “user friendly” as possible. Two lists of cities, each containing the

names of 36 cities, along with their respective latitudes and lon-
gitudes, are stored in the files called:

FOREIGN .LOC
NOAMER .LOC

The computer presents one of these lists on command to the operator
who then selects the remote city by number. The program,
FILEFIX.COM, is used to modify the two data files so that the lists
contain cities that are of major interest to the individual. HAMHELP
will allow the user to enter the names and locations.

Comments: The HAMHELP program is limited by the lack of some
math functions which result in only slight errors in final calculations.
These limitations are well documented for the user in the
HAMHELP.DOC included with the disk. The program is valuable
and handy for the amateur radio operator,

TABLE C Rating: (0),(9)

885-8026 HDOS
SPACEDROP .vs.sivsssasanss siwas vo- 31600

Introduction: Space Drop is a video action game for Heath/Zenith
microcomputers. The game uses the H/Z-19 graphic capabilities.
The game itself involves an attack by hostile aliens. You are to stop
the aliens while trying to avoid being hit.

Requirements: Space Drop is game which runs under the HDOS 2.0
operating system. The program makes use of either the H8/H17/H/Z-
19 or the H/Z-89 with 16K of memory. Only one disk is required.

The game is an executable program, ready to play.

Note: The game makes extensive use of the features available in the
H/Z-19 graphics terminal.

The following files are included on the HUG Disk P/N 885-8026:

README .DOC
SPACDROP.DOC
SPACDROP .ABS

SPACDROP .ASM

Note: The source code is included.
Author: Bruce W. Markell

SPACDROP — This graphic game gives the player three “Artillery
Ships” to engage in a battle with hostile aliens. The player uses the
keypad to move the ship right or left in an effort to get a shot at de-
stroying the enemy which increase in numbers as the game progres-
ses. The four (4) key moves the player’s ship to the left. The five (5)
key stops the player’s ship. And, the six (6) key moves the player's
ship to the right. Firing at the aliens is accomplished by using the
“A" key.

Other special functions include the space key and the ESCape key
on the terminal. The space bar is used to “freeze” the action. The
ESC key is used to terminate the game in process and return to
HDOS.

SPACDROP.ASM — The source code for the SPACDROP program
is included on the disk. This code can be used by the experienced



http:FILEFIX.COM

programmer to modify the existing SPACDROP program.

Comments: Space Drop is similiar to other video action games with
horizontal movement of the player’s ship and a combination of hori-
zontal and vertical movement from the attacking aliens. A larger at-
tack alien appears randomly to keep the pace of the game moving.
This larger enemy must be destroyed as it appears or the alien will
destroy the player’s ship.

TABLE C Rating: (0),(1),(2),(9)

885-8025-37 CP/M-85/86
FAST EDDY Text Editor
and BIGEDDY .........ccv0000eq.$20.00

Introduction: FAST EDDY is a text file screen editor that was written
for everybody. It was written using the basic commands and keypad
keys, so that anyone, even with no experience with an editor, can
learn to use it while reading the instructions.

For those files that are too large for your computers memory, BIG
EDDY will handle the breaking up of the text for editing with FAST
EDDY.

Requirements: This disk requires the CP/M-85 or CP/M-86 operating
systems on an H/Z-100 computer. A printer is not required, but both
FAST EDDY and BIG EDDY have printer options. Only one disk
drive is required.

BIG EDDY can be used with large files. A second drive (or high den-
sity drives) may be required to break up large files which cannot fit
into memory. The original file is not changed or deleted.

The following files are included on the HUG P/N 885-8025-37 CP/
M-85/86 FAST EDDY Text Editor and BIG EDDY File Handling Util-
ity:

EDITOR .COM
BIGED .COM
BIGED .DOC
INSTRUCT .DOC
TUTORT .DOC
TUTOR2 .DOC
TUTOR3 .DOC
RETURN .COM

Author: Hubert L. Reeder

FAST EDDY — This text file screen editor and its documentation
have been designed for anyone not familiar with using an editor. The
program uses commands and keys that are easy to remember and
use.

The editor contains a limited number of commands, however, the
commands are designed to provide a useful, easy to use editor. It
does not have complex options that require time and effort to use.
The editor contains a command mode and edit mode. The following
are a brief list of the options:

COMMAND MODE

Typed Commands:

LOAD filename.ext (load file)
SAVE filename.ext (savefile)

SAVE XX filename.ext
MERGE filename.ext

(save XX number of lines)
(merge two files)

PRINT (print enter file, NN lines per page)
PRINT NN (print double spaced)
FIND anyword (find the first occurrence of a word)

MARGIN nn xx (set leftmargin, nn, right margin, xx)
CMPRESS (replace spaces with tabs in new text)
EXPAND (cancel the CMPRES command)
BYE (exitto CP/M)

Key Commands:

Uparrow - enter EDIT mode at first line of text
Downarrow - enter EDIT mode at last line of text

HOME - enter EDIT mode at pointer (last cursor location)
DELETE - cancel partial commands or stop printer

FO - eraseall text

EDIT MODE
Key Commands:

Uparrow - move cursor up one line

Downarrow - move cursor down one line
Rightarrow - move cursor to the right one character
Leftarrow - move cursor to the left one character
HOME - returnto COMMAND mode

IL - insertline

DL - deleteline

IC - insertcharacter

DC - delete character

f0 - blockerase

f1 - align paragraph within left and right margins
f2 - justify right

f3 - indenton/off

f4 - margin off

f5 - splitline

f6 - find next occurrence of word, after FIND of COMMAND mode
f7 - movebackward intext

f8 - move forward in text

fa - centerline

f10 - tabsetrelease

f11 - jumpleft

f12 - jumpright

These are most of the basic commands of FAST EDDY. Please note
that it has the ability to align paragraphs to new margin settings and
then the option of right justifying the paragraph text.

Details of how to use these options are contained in the documenta-
tion. The TUTOR1, TUTOR2, and TUTOR3 documentation files are
included with the disk to give the user experience in using FAST
EDDY while reading the doc files.

BIG EDDY — This program is a utility to work with text files which
are too large to be edited by FAST EDDY directly because of memory
limitations. BIG EDDY can be
used to browse a file of any
size which the user can

break into smaller parts

for editing with FASTEDDY.



BIG EDDY asks for the input filename and an output filename. It
keeps track of the subfiles and names them accordingly.

BIG EDDY has some useful options to aid the user in preparing the
text for smaller files. The BROWSE mode is similiar to the EDIT mode
of FAST EDDY, exceptthat no editing can be done to thefile.

The following are a list of the commands of BIG EDDY:

SAVEALL - savethe entire textin memory to the disk
SAVEPART - save partof the text in memory to disk
NOSAVE - discard part of text

PRINT - same as FAST EDDY's print commands
BYE - exitto CP/M

With the SAVEPART command, the user can save the text by subject
or modules of his choice. Using the CP/M PIP program, the subfiles
can assemble the files into any order.

Comments: This version of FAST EDDY, with the editing features
e.g. align paragraph and right justify, allow formatting features that
make it a powerful, easy to use editor.

TABLE C Rating: (1),(3),(10)

The following two HDOS products are available in soft sectored
format beginning this month:

885-1030[-37] Disk I, Games 1|
885-1096[-37] MBASIC Action Games

Refer to the HUG Software Catalog for descriptions of the products.

Please remember the “-37" indicates that you want a soft sectored
disk. If you do not include the “-37”, you will receive hard sec-
tored.

NOTICE

Heath/Zenith
Support Vendor

This could have been
your advertising space
to reach over 20,000
HUG members!

Call Donna at HUG today
for more information (616-
982-3794).

A FULL DECK!

THE ORIGINAL ALL-IN-ONE
ACCESSORY BUS EXPANDER.

MHB9+3 doubles expansion capacity. Allows for
for B right-iand type cards instead of the usuald.
Roam at |ast 1o run those neat accessory boards l
you've Seen adverfised! \

Piggyback motherboard installs internally with a

H89/Z90’s CAN I
NOW DEAL WITH —

([ FLOPPY DISK A

CONTROLLER

Controls Any Combination Of Up To Four
8" and 51," Drives

This easy to install plug in board can control any
combination of single or double sided, singie or
double density drives.

Designed especially for H88/H89 users.

e Fully compatible Bios supplied for your CP/M
2.2 operating system
Easy to follow instructions
Contains controller board with boot prom
Order cables for connection $15 (HFDC-110)
Introductory Offer $395,

screwdriver in just minules — with no modifica-
tions! 3 stots exactly duplicate the oniginals. The
1 added slots occupy unused addresses and
eliminate previous conflicts 100% compatible
with all accessory boards!

No averheating problems! Simple design draws
litlle power. Leaves plenty of overhead lor the

The best news about Ihis “"No-hassle” design is

the price — UNLY SI 5“. About 13 the

pice of olher solutions!

Price includes assembled and (ested MHES+]
expander, complete instructions and one (1) year
warranty. CA residents add 6% tax USA include

Order HFDC-100

ORTH
OAST

§5 shipping. Foreign add $10. Telephone and
COD orders accepted

minimal load of most accessaries. Full technical
information provided.

mako data products
1441-BN. RED GUM, ANAHEIM, CAS2B06
PHONE (714) 632-8583

NTELLIGENCE

1201 Cherokee Tralil
Willoughby, Ohio 44094
Phone: 216-946-7756

L Check, COD. VISA or MC — 90 Day Warranty

36

REMark « February = 1984



Get Rid Of “Echo On Delete”

In CP/M-86

WeII, here we go again, folks! A new version of CP/M is out, and
like all of its predecessors, it has the “feature” of echoing a character
if you delete it with the DELETE key instead of the BACK SPACE key.
As we did with CP/M-85 in REMark Issue #41 (June 1983, page 41),
we can “fix” the DELETE key so that it deletes, using DDT to make
a patch. In this case, you need DDT86 which is supplied with CP/M-
86. Runitand load in CPM.SYS as in this example:

A>DDTRA
DoTa6 1.4
-RCPM. 5Y5
START END
1631: 0000 1581: 4EFF

Now, use the L command to disassemble the area where the patch
goes. It should look like this:

-L156@
1681:1568 OR CH, CH
1681:1562 JZ 154A

1681: 1564 DEC CH

1681: 1566 MOV AL, [22E5]

1681: 1569 MOV [22E31,AL
1681:156C JIMFS 15EF

16811 156E CMP AL, 7F

1681:1570 INZ 157E

16681:1572 OR CH,CH

1681:1574 JZ 1544

1681:1576 ES: MoV AL, [EX]

1631:1579 LEC CH

If you have Heath/Zenith CP/M-86 version 1.1, Release 1.10, the
code should look just like this. If you have a different version and
the code is similar, but the numbers are different, try the patch any-
way (but not on your only system disk). If the code looks nothing like
this (as it might in a non-Heath/Zenith version), use the L command
to look around for code like this. When you are satisfied that you
have found the right place in the code, use the A command to re-
place the second occurrence of OR CH,CH with a jump as follows:

-A1572
1681:1572 JMPS 1560

1681:1574 . (type a period)

If you are patching a version with the code in a different place, the
destination of the JMPS instruction should be the line with the first
OR CH,CH. After you make the patch, save the patched code with
the W command, and exit DDT86 with control-C.

~HCPM. NEW
_/\C

Next, rename the old and new files so that the new one replaces the
oldone:

Pat Swayne
Software Engineer

AXSTAT CPM.SYS tR/W
A>REN CPM.OLD=CPM.5YS
AYREN CPM.S5YS=CPM.NEW

(remove write protect)

Now you can re-boot your system and test the patch. If it works OK,
you can delete CPM.OLD and set the Read-Only and System attri-
butes on your new CPM.SYS:

AYERA CPM.OLD
A>STAT CPM.5YS $R/0
A>STAT CPM.5YS $8Y5

And that’s all there is to it!

/-
A

The ILLUSTRATOR

The ILLUSTRATOR is a full-featured graphics drawing program for use with the Z-100 pixel
graphics wiwo color) or the HB9/H13 IMAGINATOR pixel graphics option. No need for a lightpen.

Features Include:

® Turtle Graphics e Area Fill e 64 Colors

* Rubber Banding * Box Fill ® Color Define

* Line Drawing ® Circle Fill ® Color Pattern
* Box Drawing ® Diamond Fill ® Screen Save

® Circle Drawing ® Copy Area ® Screen Restore
e Ellipse Drawing * Erase Area ® Area Save

* Diamond Drawing * Text Mode * Area Restore

® Screen Print * invert Mode * Compacted Files
© Dot Cursor Control * Help Display ® more. . .

ONLY $88.95!

HDDS version for HBY, HB, requires IMAGINATDR
2D0S version for Z-100, color memory optional
Supports many dot graphics printers. Call for info.

Newline SofrwaRre
P.0. Box 402, Littleton, MA 01460 (617) 486-8535

ENAME CHECK ONE

ESTREET O :gg,sﬂelma
. CITY

ESTATE 7P [ z100, zDoS
aSend me ____ “The ILLUSTRATOR" program(s) at $89.95 each.

a
2
"
]
]
]
]
]
a
) ]
1
a
1
| ]
% Check one: (] payment enclosed [ send COD {add $4.00) E
s Send order to: .
H NEWLINE SOFTWARE, P.0. BOX 402, LITTLETON, MA 01460 H
- Foreign orders: add $3.00 Airmail, $10.00 tor non-U.S. checks .
‘IIIIIIIIIII.'IIIn‘."lll‘l'l"Ill-IIIIIIIIIIIII-IIIIIII.
HODOS is a trademark of Heath Company
ZD0S, Z-100 are trademarks of Zenith Data Systems, Inc.
IMAGINATOR is a trademark of Cleveland Codonics, Inc.

REMark ¢ February * 1984

37



The Stupid Computer
You Should Be So Smart!

Copyright (C) 1983, Wallace M Theodore

Somewhere, sometime, somehow, some “very wise” person made
the statement that computers are stupid - implying, of course, they
are only capable of performing tasks when instructed by human be-
ings of far superior intelligence. Weil, that may be so, but I'LL never
believe it.

Other humans of equally grandiose wisdom immediately and
blindly latched on to the erroneous line and through the years have
repeatedly put down the intelligence of the defenseless computer.
Such nonsensical chatter has bugged me for many moons and is
probably enough to bring a tear to my Heath/Zenith CRT.

True, the computer IS a machine and, in its infancy (the stage before
it acquires the bulk of its intelligence) is of little value to the user or
anyone else, save for occasional use as a door stop, paperweight,
orsinker for deep sea fishing.

Butto label the computer as stupid, dumb, or merely a pile of plastic,
silicon, glass, and metal or other equally descriptive insults is an IN-
SULT to the computer! |, for one, think the time has come for some-
one to stand up for the computer so, at the risk of being banished
from my big blue marble, | will attempt to compare the computer
with the unmistakable and indisputable superiority of the human.

A baby, at birth, knows virtually nothing save for some instincts that
come with it at delivery. The baby cannot talk, eat alone, sit, stand
or perform many other seemingly menial tasks, nor does it obey
when you tell it to settle down for the night and get its much needed
rest. As the months and years progress, the infant begins to gain
knowledge from those around it who work in many ways to TEACH
the baby what it must know to survive.

The computer, as the baby, also arrives with precious few
capabilities, You, the superior adult human being, might smugly say
you ARE superior to the computer as well, at that stage, you MAY
be - and then you again may NOT. You, incidentally, also have a
couple of years of learning on the computer,

At its worst, the computer is STILL one up on the human, even at
delivery. While it took you years of trial and error to gain your not-
necessarily-correct knowledge, the computer is instantly more AC-
CURATELY knowledgeable than you the minute the operating sys-
tem is installed. And YOU had to “teach” it nothing - even if you
could, which you probably could not.

Even BEFORE the operating system is installed, the computer will
still outperform you, hands down! Don‘t believe it? Try checking the
RAM by hand and, if you make it, match the time it took you against
the time it takes the infant computer.

Of course, there is the argument that a baby is born with some intelli-
gence while the computer has none. Wrong. Long before the final
assembly of your computer, the read only memory (ROM) chips are
loaded and waiting for installation: instant knowledge to the fledg-
ling computer!

Wallace M Theodore
PO Box 2488
Hammond, Indiana 46323-0488

As a matter of fact, when my daughter was born she cried when she
wanted attention because there was nothing else she knew how to
do. She has since progressed to “goo goo”, “Da Da”, “Can | have
adollar?”, and “Can we go to Hawaii some time? Can we? Huh? Can
we?”, This, of course, is the normal progression of the human
species (the last question, of the human teenage FEMALE species).

When my computer was first plugged in and turned on, it went
“Beep Beep” which, as you know, it will continue to say until its final
days: clear, concise, ADULT computer talk at its very first utterance!
Possibly this borders on ‘instinct’ that is inborn in living things. And
atthe end of a long, busy day of taxing its mother and terminal logic
boards, | can pull the plug and my H-89 will instantly settle down
to a few hours of R&R (reset and relaxation) before the next day’s
busy schedule - something my daughter would neverdo!

The intelligence of the computer is fortified with one trait which hu-
mans have not been able to conquer: the ability to build on knowl-
edge it has acquired in the past.

What's more, the computer has drawn its intelligence from many
persons of many walks of life, each specializing in a specific field
of expertise, all contributing to an ever increasing storehouse of
knowledge and operations that tend to utilize efficiency to the ful-
lest. As one works with a computer, it becomes increasingly appar-
ent that each of these select persons are among the most knowledge-
ableintheir field in the WORLD.

The human species (carbon units, if you will) feel we can start from
scratch with each new arrival and learn all there is to know from day
one until day “X”, whenever that may be.

As the superior being, we have relied only on our one or two paren-
tal instructors, along with haphazardly selected others who may or
may not know what they are talking about, to gain intelligence -
each randomly teaching, rightly or wrongly, something new to be
retained and used through life.

Unfortunately, at the end of that life all knowledge gained is lost
forever to the individual‘s descendants or the rest of the world, for
nowhere, in all of man’s infinite wisdom, has anyone ever devised
a system for transferring the knowledge of a lifetime from one being
to another. Computer knowledge, on the other hand, is instantly
transferable from unit to unit, intact, unaltered, and quickly accessi-
ble to both present and future generations.

If you are one of the fortunate individuals who has both a baby and
a computer in the house, you might want to perform some ADDI-
TIONAL comparisons of the superior human and the so-called
‘stupid’ computer:

1. Does your newborn have the ability to accurately test its own ran-
dom access memory? (The computer does. One for the computer.)

2. If your baby WERE able to test its own memory, could it tell you
exactly where a problem lies should there be a problem? (The com-
puter can. Two for the computer.)

38

REMark » February » 1984



3. Can your baby tell you if it will be able to calculate and/or com-
pute problems, complex or otherwise, now or in later years? (Need-
less to say, three for the computer.)

4. Within minutes of arriving (assuming neither computer nor baby
are ordered in kit form), can your baby print symbols, numbers, and
the entire alphabet? (Make it four.)

5. Referringto test four: in the language of ANY nationality? (Five.)

Bear in mind that tests one through five are performed BEFORE an
operating system or language is installed in the computer.

6. If your baby passed test four, can it do all of test four forward OR
backwards? (Six ...}

7. Ask your baby to test its internal memory storage speed, as you
would ask your computer to test its disk access speed. (Seven.)

8. Can your baby map its own memory for maximum efficiency?
(Another one for the computer.)

Since, if my meager memory serves me correctly, only about two
percent of the human brain is currently being utilized, | would have
to confess the computer is already stomping holes in the “superior
human being” syndrome. What's more, even with one-hundred
percent of its memory in use, the computer additionally rearranges
its memory for the most efficient, effective use.

9. How about outputs? Does your baby know how and where? (Ok,
ok! But it's still eight for the computer.)

10. Is your baby able to, instantly at birth, work with the most effi-
cient system to do the job at hand? (Make it nine for the computer.)

‘At birth” capabilities comparisons between the baby and the com-
putercouldgoonandon - butlthink you get the drift.

In the thousands of hours following the acquisition of knowledge by
your “stupid computer”, YOU (oh, human of super intelligence) sit
at the keyboard typing and trying, digging through manuals, reading
‘REMark’, asking questions about how this or that is done and what
the correct syntax is for “that particular instruction”. The computer,
on the other hand, waits patiently (and probably somewhat bored)
foryou to figure out its complexities.

I have never seen a school for ‘stupid’ computers but there are, how-
ever, thousands of schools for the far superior humans who spend
much hard earned wampum and hundreds of hours trying to find out
simply how to TALK to their computer.

The computer, by the way, is instantly able to give you a reply in
YOUR language as soon as YOU find out how to talk to IT. That's
quite an accomplishment for such a dumb machine.

Through the years, thousands of highly intelligent people have con-
tributed to the knowledge your computer has the moment itis given
itsdisk or tape full of intelligence:

... your computer is instantly able to perform complex calcu-
lations far beyond the capabilities of most of its users,

... able to write documents and then check YOUR (not its)
spelling errors,

... offer shortcuts in job performance (which the user must
find hidden in the maze of printed pages from which hundreds of
companies are deservedly making big bucks),

... sort through thousands of bits of information and then send
them back to you just the way you want it, in virtually seconds (at
least, minutes),

and the list, as with all computer lists of this type, goes on and on.

What has been mentioned here is only a drop in the proverbial buck-
et.

I would venture to bet that not many computer users today, if any,
can honestly say they understand and are able to use ALL the features
of even ONE operating system or language. And even if you could,
the moment the next package arrives, YOU begin learning again.
The computer HAS its knowledge, all of it, the moment you insert
the disk or start the tape. You, my friend, are back to square one:
trying to figure out how to talk to your computer in a manner it can
understand. It already knows how to reply. It knew it all along. It
also knows how to do what you want it to do, and MORE. YOU are
the one with too little knowledge to tell it what you wantit to do.

Stupid? Not on your life! Even the trashiest computer on the market
(whichever one that may be) is infinitely smarter than you are as soon
as you insert the disk or fire up the tape. Your Heath/Zenith com-
puter (being one of the smartest, if not THE smartest, on the market)
will have you buffaloed for years.

True, computers were invented by humans. But today humans are
relying on computers to perpetuate the state of the art by designing
bigger, better, and more complex computers that are far beyond the
limitations of the individual human mind. Note that | said “the indi-
vidual” human mind: thousands of persons working together MAY
be able to compete with the speed and accuracy of the computer.
But how long would it take? How much expense would be involved
in making the same thing the computer makes with ease and speed
unequalled by the ‘superior’ human species?

True, also, that the human is the one who keeps the computer alive
and running. May | remind you of hospital computers that are help-
ing keep HUMANS alive and running? | guess one good turn de-
serves another.

As for the idiot who first said computers are stupid: well, | guess
that’s the first clue to the intelligence of the human as opposed to
the computer. My H-89 has never called ME names, although it has
on many occasions made me FEEL stupid, and probably with plenty
of justification.

The next time you hear the phrase “a computer is really a stupid
machine ...", suggest that the person who said it take the “baby test”.

In all fairness to the humans though, | must sheepishly admit that
even the Heath/Zenith variety of ‘desktop’ computers cannot clean
house or open doors or cut grass. They do not walk and talk and
laugh and watch TV. They do not go fishing or play tennis or go on
dates. They do not know how to casually crack jokes - or even how
to love. But on the other hand, HERO-1 has arrived in all his glory
and who knows what wonders THAT will lead to ...!

Odds bodkins!!! Is it possible the ignorant computer really DOES
possess capabilities beyond that of the “superior” human being? Can
it be possible we have been overrating US and underrating THEM!?
Is it possible the “highly intelligent” human newborn is on its way
OUTII??2? Nawwww!!! | certainly can’t believe that! Well, hardly...

With all that | have said FOR the computer, | will give this much to
the human, though: “finding” the baby takes less running, less figur-
ing, less effort, less frustration, and is probably more fun than trying
to find the right computer.

e ——————

And then again ...

REMark « February « 1984




Improved
Error Recovery For CP/M

Pat Swayne
Software Engineer

Of the three operating systems used on Heath/Zenith computers,
HDOS, Z-DOS, and CP/M, the one with the worst disk error recov-
ery method is CP/M. in HDOS, which has the best error recovery,
any disk error causes an error condition code to be returned to the
running program, so that the programmer can process any error as
he sees fit. In CP/M, only directory and space error (disk or directory
out of space) conditions are returned to the program. All others are
captured by the system, and that horrible “Bdos Err On ...” message
is displayed, and the system waits for you to type a character. If the
error is a Bad Sector, you are permitted to abort and warm boot with
control-C, or to re-try the operation by typing any other character.
For all other errors, any character typed causes a warm boot, and
absolutely no recovery is permitted. There are three error types in
this no recovery group: improper drive select, an attempt to write
over a read only (write protected) file, and an attempt to write on
aread only disk.

This last kind of error is the one that probably gives people the most
trouble, because if you change a disk in a drive without resetting the
disk system or warm booting, the new disk is automatically marked
as Read Only. One solution to the problem of non-recoverable er-
rors, which was discussed in passed issues of REMark, is to create
anull directory entry (SAVE 0 GO.COM), and execute it to re-start
your program whenever you get “booted out” by the system.

A better solution to the problem is to modify CP/M so that you have
the option of warm booting, re-starting the program, or returning
control to the running program whenever a Select or Read Only error
occurs. In this article, | will present a patch to do just that. The only
drawback is that the running program is not equipped to handle a
return from such an error, and so the third choice will resultin unpre-
dictable behavior. It was included for the benefit of the “hacker”
who likes to experiment.

To install the patch, you first need to create an image of the CP/M
system on your disk. You can do itwith SYSGEN as follows:

AYSYSGEN

SYSGEN VER 2.9.03

SOURCE DRIVE NAME (OR RETURN TO SKIP):A
SOURCE ON A, THEN TYPE RETURN

FUNCTION COMPLETE

COPY BIOS.SYS (Y/N):N

DESTINATION DRIVE NAME (OR RETURN TO REBOQT):

(type RETURN here)

(type RETURN)

AYSAVE 33 CPM.COM

This example is for Heath/Zenith CP/M version 2.2.03, and will vary
with other versions. In particular, non-Heath/Zenith versions may
require that a different amount be SAVEd. If you are not sure how
much to save, run your version of MOVCPM before doing this pro-
cedure, and it will tell you.

Next, you must load the saved CP/M image into memory with DDT

by entering

A>D0T CPM.COM
NEXT PC
27006 0109

Now, locate the BDOS error portion of CP/M with DDT’s D com-
mand by entering

-D190@

Examine the ASCII part of the resulting display (the part to the right)
and look for the words “Bdos Err”. If you do not see them, enter D
again, this time without an address, hit RETURN, and keep looking.
Continue this process until you see something that looks like this:

1230 DS 21 DC DS CD ES DS C3 IF 12 42 &4 &6F 73 20 45 .'.......e Bdos E
1240 72 72 20 4F 4E 20 20 3A 20 24 42 &1 64 20 53 &5 rr On @ $Bad Se

Note the address of the letter B in “Bdos” (123A in this example, but
it could be different in your system), and subtract 3 from it with
DDT's H command as follows:

-Haaaa,3
xxxx bbbb

Notice that I have shown the address of the letter B as aaaa, and the
result of the subtraction as bbbb. | will follow this procedure from
here on, and use xxxx to indicate an insignificant address that does
not effect the patch. Now, use the L command to disassemble from
address bbbb to aaaa. It should look like this:

-Lbbbb,aaaa
bbb  JMP 0000
aaaa MOV B,D
XXM

Using the A command to enter assembly code, replace the jump to
zero atbbbb with the following code:

~Abbbb
bbbb SUI 3
XXX JZ 10@
xxxx INR A
xxxx RZ

xxxx RST @

XXX X (type a period, then RETURN)

Add 37 (hex) to the address aaaa.

~Haaaa, 37
CCCC XXXX

Examine the code at the new address cccc.

-Lcccce
cccc LXI B, dddd
xxx%  CALL xxxx

(rest of listing not shown)

40

REMark « February 1984



Add 5 tothe address dddd, and replace it with the result.

-Hdddd, 5

EEES MEXN
-fccec

ccce LXI B,eeee
EEAX

Now, type control-C to exit DDT, and SAVE the patched CP/M
image as follows:

-C

AYSAVE 38 CPM.COM

Since the CP/M image contains an image of the SYSGEN program,

itcanbe run as afile to re-install the new CP/M:

AXCPH
SYSGEN VER., 2.9.03

SOURCE DRIVE NAME (OR RETURN TOD SKIP): (hit RETURN)
DESTINATION DRIVE NAME {OR RETURN TO REBOOT): A

FUNCTION COMPLETE

DESTINATION DRIVE NAME (OR RETURN TO REEOOT): (hit RETURN)

A

Your system will now be running with the patched BDOS, unless
you are using CP/M-85. In that case, you will have to re-boot to load
the patched system into memory. With the patch installed, the fol-
lowing changes will be in effect. The “Bdos Err On ..."” message is
shortened to “Err On ..." to make room for the patch. When you get
a Select or Read Only error, you can type control-C to restart your
program (jump to 100H), control-B to simply return from the error
handler (with unpredictable results), or any other character to warm
boot CP/M.

When you are running MBASIC, the best choice of the above is to
restart the program with control-C. Then you must enter RESET be-
fore attempting the file operation again. Try experimenting with con-
trol-B with various errors while running various programs. In some
cases, you can recover from a Select error with control-B. %

USE ALL YOUR SPECIAL
FUNCTION KEYS WITH WORDSTAR™

WSKEY™: MNow you can take the mystery out of WordStar™
with SKILL DATA’s WordStar enhancement, which imple-
ments all TWENTY-ONE of the H/Z89-19 function/pad keys
or all TWENTY-THREE Z-100 labeled key commands.

Function key commands are labeled by a twenty-fifth line
banner, which can be toggled on and off by you during
your session.

$29.95 — Specify H/Z89-19 or Z-100

dBASE II™ ZIP™ SuperCalc™

DBKEY™ for dBASE II,
ZPKEY™ for ZIP SCREEN, SCKEY™ for SuperCalc

Just type your favorite SKILL DATA KEY command. All
function key commands are labeled by a twenty-fifth line
banner, which can be toggled on and off by you during
your session. Pad keys also function and send multiple key
inputs with a single stroke. All previous command key
sequences are still available for the old and painful ways.

$29.95 - keys to SuperCalc, SCKEY. For H/Z 89-19 only.

$29.95 - keys to dBASE II: DBKEY and ZPKEY.
As reviewed in Sept. 83 dNEWS
Specify H/Z89-19 or Z-100 (CP/M-85 or Z-DOS).

H/Z89-19 diskettes are 5.25" 10HS, requires CP/M 2.2.03
Z-100 diskettes are 5.25” SS, specify CP/M-85 or Z-DOS.

All orders shipped by first class mail. Include $3.00 per order for shipping and
handling, $5.00 lor overseas orders. Payment by check or money order. Allow 2-4
weeks lor delivery. Visa/Master Card. 206/352-0669 (evenings).

SKILL DATA

P.O. Box 1943, Olympia, Washington 98507

# MXGRAPH will turn ycur EPSON printer into a
graphics plotter for personal cr business nged_s!
Make your EPSON plot an unlimited number of artistic
sketches, geometric designs, and business graphs,
which would not be pessible without MXGRAPH.

MEGRAPH runs under CP/AM-80 cr HDOS operating systems
ONLY on the H/Z-89 and H/Z-90 computer systems.
Requires an EPSON printer equipped with bit plot
capabilities. Specify HDOS cr CP/M, hard or soft
sectored 5.25" disk. MXGRAPH is ONLY $79:95 $29.97!

® DON'T DELAY — ORDER NOW! ®

# EFC — The FElectronic Filing Cabinet is a
screen-oriented hierarchical database. Use
EFC as a PERSONAL FILING SYSTEM for all types
of information!! Runs under Z-DOS ONLY on the
H/Z-100, EFC is ONLY $39.97!

® MXPRINT generates almost LETTER-QUALITY
printing on an EPSON printer equipped with bit
plot capabilities! Prints 10 char per inch by
6 lines per inch (9x24 matrix). MXPRINT is
ONLY $19.97!

* NOVA The WordStar™® Enhancer! Adds ALL
keypad AND function keys to WordStar. Greatly
speeds text editing. 25th line prompts you
NOVA REQUIRES HEATHAZENITH DISTRIBUTED
WORDSTAR. NOVA is ONLY $35:95 $24.97

MXPRINT and NOVA REQUIRE Heath/Zenith
distributed CPAM-80 (Version 2.203 or later)
for operation on an H-8, WZ-89, or HZ-90; or
CP/M-85 for cperaticn cn an H/Z-100. Specify
hard or soft sectored 525" disk.

MICRO INNOVATIONS
2455 Sylvania Ave., Toledo, Chio 43613
VISA and MASTERCARD Orders Welcome!
CALL NOW: (419) 471-1285

REMark « February « 1984

41




So, Your Computer Can’t Add

David G. Pelowitz
11614 So. 35th Street
Omaha, NE 68123

Have you ever had one of those days where nothing goes right?
Was it so bad that even your trusty computer seemed to have
forgotten how to add? Or worse yet, that program you just spent
two months writing and debugging refused to recognize the con-
tents of one of its key variables? Take heart, all is not lost. There
are some simple explanations why a number apparently doesn’t
equal itself. Once the cause of this kind of problem is understood,
writing your programs to avoid it is simple. The way a computer
internally represents numeric quantities is the crux of the problem
and all computers share the malady to one extent or another. |
recently came across a major top of the line mini- computer which
had a dickens of a time handling the value zero! The company
fixed the bug, but it goes to show you how wide spread this type
of problem is.

The following few paragraphs are for those readers that don’t have
a good understanding of binary number systems. If you are inti-
mately familiar with common internal representations of signed
and unsigned integers, skip down to the section on floating point
numbers.

If we are going to investigate how computers internally represent
numeric values, I'll have to lay some foundation. First, not all
computers have the same size of memory word. Currently, most
personal computers are eight bit machines. The bit is to the byte
as a letter is to a word. It is the smallest unit of information a
computer can store and can only represent two states. The two
states are on and off, and are usually referred to as “1” and “0”
respectively. Calling a computer an eight bit machine means the
Central Processing Unit (CPU) handles information eight bits at
a time and the computer’'s memory is organized with eight bits
at each address. The size of a memory location is referred to as
the system’s word size, whereas a byte is universally accepted
as consisting of eight bits. A true 16 bit machine uses a 16 bit
word both inside the CPU and in memory. Its CPU will fetch two
bytes from memory at a time.

Some of the recently developed microprocessers are hybrids of
16 and 8 bit machines. In the CPU, they handle data 16 bits at
a time, but externally they use an 8 bit wide memory. Other word
lengths are also common. Machines have been designed to use
12, 18, 24, 32, 60, or 64 bit words. Some machines are even
more radical and use a variable word length. For the most part,
you need not worry about the size of the word because the con-
cepts are still the same. Either way, read the documentation on
your machine. You will need to know the word size of your com-
puter to apply this discussion. Further, some programs use what
is called multiple precision. | will explain later what that means
and how it affects the representation of numeric information, but
for now you should simply be aware of its use.

Binary Numbers

There is a difference between how a computer stores the character
“2" and how it stores the value two. Each character is represented
by a predefined set of bits. Each of these bits is either on or off.
The on condition is usually represented by a “1” and the off condi-
tion by a “0”. One of the most common character representation
standards is called the American Standard Code for Information
Interchange (ASCII). It is almost universally used and employs
seven bits to define its entire cast of characters. For example, the
character “1” is represented by the bit pattern “0110001". A char-
acter is usually stored in the low order seven bits and the high
order eighth bit is set off. Typically the right hand bit is considered
the low order bit and the left the high order bit. To refer to the
bits in a byte as “low order bit”, “next to low order bit”, “second
from the low order bit”, and so on is awkward at best. Let's number
them from right to left starting with zero. Consequently, the key
“76543210" can be used to refer to each of the bit positions in
a byte. | suspect this brings two questions to mind. First, “Why
right to left?” and secondly, “Why start with zero?” Right to left
is used because that's what we use in our decimal system. Its
roots are in the Arabic language which is read from right to left.
The number 426 means six ones, two tens, and four hundreds.
The ones are the lowest order and in this case the hundreds are
the high order. Why start with zero? Read on!

THE DECIMAL SYSTEM

3373957
Hie— =9 . 9
tilvil-—= =3 x 10 = 50
Tilll—— =0 x 10 x 10 = 900
fill-——— =81x 10 x 19 x 10 = 8000
Ifl———- =7 x 10 x 10 x 10 x 10 = 70009
|js————— =3 x 10 x 10 x 10 x 10 x 1@ = 300000
fe—————— =5 x 10 x 10 x 1@ x 1@ x 10 x 10 = 5000000
total = 5373059

Figure 1.

The contents of a byte can represent a quantity as well as a charac-
ter. Because a bit can only be in one of two conditions, it is called
a binary system. If we remember back to our decimal system,
each successively higher order position stood for a quantity 10
times the previous position (figure 1). The low order position was
the quantity of ones, the next up was the quantity of 10s, the
third was the quantity of 100s, and so on. We can ‘do the same
thing with our binary system. Because this is a binary system in-
stead of decimal, we will increase by two times the previous posi-

42

REMark « February « 1984



tion’s value instead of 10 times. Consequently, the first bit tells
us how many ones, the second bit tells us how many twos, the
third how many fours, and so on. We can extend this pattern
indefinitely. Figure 2 shows the values for each of the first eight
bits in this system. Now let’s see what significance the “76543210"

THE BINARY SYSTEM

11811011 (binary)
Hinil— =1 = 1 1 = 1
iiitlle— =1 x 2 = 1x 2 = 2
= =0y 2 %2 = B x 4 = @
PE e =1lx2x2x2 = 1lx 8 = 8
i L g ——— — =l x2%2%2x2 = 1x 16 =16
il = @ x 2452 x2%x2 = @x 32 = 9
i e S G =lx2x%2x2x2%2x%x2 = 1l x 64 =44
im——————— =l x2x2x2%x2%x2x2x2 = | x128 =128
total =217
Figure 2.

key has in this system. Each bit position represents a value. The
value is two raised to the power of value in the position in the
key. We now have a method of representing quantities and charac-
ters.

Addition & Subtraction

Using our binary system we can show that a single byte can contain
representations for quantities up to 255. Let's examine the rules
for simple binary addition and subtraction. Examine figures 3 and
4. Each of the additions are very straight forward with the exception
of “1 + 1" which generates a carry to the next higher order column.

and conversely, if it is off we have a positive number. This limits
the maximum value a byte may store to +127 and the minimum
to -127. If you aren’t sure how these numbers are formed, add
up the bits to verify them.

There is a problem with storing values in this manner. Look at
figure 5. If we subtract eight from nine, we get a good resuit.
If we add -8 to nine, we get a -17! Addition and subtraction must
work correctly in all cases for our system to be useful. Let's try
something interesting. If we complement the bits of a negative
number and store it that way, we are much closer to having our
sample problem work correctly. Complementation is simply turn-
ing on the off bits and off the on bits. Complementing 10000001
changes it to 01111110. This is called one’'s complement. We
can see in figure 6 this comes much closer to giving us the correct
answer.

SIMPLE SIGNED MAGNITUDE ADDITION

pevRloR] = 9
- BOOR1BOD = B

LLLla T
+ 10001 M0

1ee1e0@] = -17 bad (should be 1)

&

boepeedl = 1 ok

Figure 5.
ONE'S COMPLEMENT ADDITION
7 = dpepRlll epeelele = 1o
complemented 7 = 11111000 + 11111ee6 = -7

Paeeeele = 2 bad (but closel

Figure 6.

BINARY ADDITION

Fules: e 1 @ 1 Example: ellelore
+ @ + @ +1 + ] + 11011660
(L a1 @1 1@ 11e1e11e
Figure 3.
BINARY SUBTRACTION
Rules: ] 1 1 @ Example: lb@lalle
- @ - @ = = - ellellee
(1] el @ * evlelele
* = horrow

Figure 4.

The subtractions are equally simple with the exception of a borrow
from the higher order neighbor. Both the carry out of the addition
and the borrow from the subtraction are done in exactly the same
way as in our familiar decimal system. There are three points to
remember when doing binary math. First, there are only two binary
values, 0 and 1. Secondly, a carry is the same as an addition
to the remaining higher order bits. Thirdly, a borrow is the same
as a subtraction from the remaining higher order bits. But what
happens if we are subtracting a larger number from a smaller?
The result is supposed to be negative!

Signed Binary Numbers

With the exception of zero, values can be either positive or nega-
tive. But the binary system we have been examining only contains
positive numbers. If we take a hint from the fact that there are
two states the sign of a value may assume, using one of the bits
of a byte as the sign bit seems logical. The high order bit is com-
monly used for the sign flag. If it is on, we have a negative number

It looks like all we have to do is add one to the answer in figure
6 to get the correct value. In fact, that is exactly what we need
to do, except instead of adding the one to the result of the addition,
we will add it to the complemented seven. This form of representa-
tion is called the two's complement and is used extensively to
represent negative numbers. The -7 in twos complement notation
is 11111001. Figure 7 contains some examples of two’s comple-
ment numbers.

TWO'S COMPLEMENT
=128 = 10002000
-127 = 10000901
-4 = 1111106
-3 = 1el 8 2p00 1000
-2 = 11111119 +{-7) t1111001
-1 = 1111111 it ey
8 = 90000009 1 = 0000000l (ok)
1 = 90000091
2 = 00000010
3 = p0a0eal!
4 = d0a00l00
127 = @1111111
123 = 1invalid
Figure 7.

Try adding one to 127. What happened? If you did it right, you
ended up with a -128! One obvious answer to this problem is
to add more significant bits to the location that stores the value.

Multi-Precision Signed Integer

Most of us find the single precision two’s complement limitation
of -128 to +127 too limiting for most applications. The common
remedy for this is to use more than one byte to store a value.
If multiple bytes are used, only the high order bit of the high order

REMark * February = 1984

43



byte is used as the sign bit. All the lower order bits behave exactly
like the low order bits of the single precision value. Figure 8 con-
tains the limitations of two’s complement notation for various
length multi-precision values. If you check your Microsoft Basic-80
documentation, you will find integer constants are limited to the
same as a two byte two's complement multi-precision values’ limi-
tations in figure 8. But what about those really big numbers?

TWO’S COMPLEMENT
MULTI-PRECISION LIMITATIONS
total bytes used

minimuin value  maximum value

1 -128 +127
2 =32768 +32767
8 -38333608 +83834697
4 ~21474836483 +21474334647

Figure 8.

Floating Point Notation

As computers grew in speed and complexity, more and more appli-
cations relied on their unique capabilities. Some of these applica-
tions didn’t need any more accuracy than a multi-byte two’s com-
plement number. But some dealt with very large numbers. To
satisfy these requirements a new internal representation was de-
veloped. Mimicking scientific notation, this new representation
consists of two parts, the mantissa and the exponent. A number
in scientific notation is expressed with one non-zero digit to the
left of the decimal point and all of the remaining significant digits
to its right. An exponent is added to the right of the number to
indicate how many times the number should be multiplied or di-
vided by ten. Figure 9 contains some examples of values expressed
in scientific notation.

SCIENTIFIC NOTATION
Value Mantissa Exponent Scientific Notation
2
824 8.26 2 8.26x19
3
1024 1.024 3 1.024x10
10
52,907, 600, 000 5.290e7 10 $.2907x10
15
1,000, 000, 000, 020, 000 1.0 15 1.0x10
-15
0. 00000600000000567 5.67 -15 5.67x10
Figure 9.

Floating point notation, is very similar to scientific notation in that
there are two parts, also called the exponent and the mantissa.
The major difference is that floating point notation insists on having
the first non-zero significant digit to the immediate right of the
decimal point. The function to insure this occurrs is called normali-
zation. So far we haven't discussed the existence of a decimal
point. The decimal point is not really there. It is called an implied
decimal point. By definition, all bits of the mantissa are to the
right of the implied decimal point. Just to make things more diffi-
cult, each bit has a different value than it had as a single or multiple
precision integer. Remember how the value in each successive
bit position increased by a factor of two? In this case each bit
on the right of the implied decimal point decreases by a factor
of two. The first bit on the right is worth one-half, the next one-
fourth, then one-eighth, and so on. Notice how each denominator
is two raised to a power? Figure 10 shows the values of the first
16 bits.

=

BIT VALUES
RIGHT OF THE DECIMAL POINT
} /2 = .3
} 1/4 2wl
H 1/3 = .125
H 1/16 = .0625
: 1/32 = ,03125
i 1/64 = ,Q15675
v 1/128 = 0973125
AR L 1/256 = 0937994629
(binary) ~ 1/512 = .091953125
i 171924 = 0099763625
! 1/2048 = ,00043322125
) 174096 = .000234140625
H 1/8192 = .0001220703125
H 1/16384 = .00804103515625
! 1/32768 = .090030517573125
| e >1/64536 = .@090152537879125
Examp le:
.1001000t (binary) = 1/2 + 1/16 + 1/256
= .5 + ,0625 + .00390625
= 56640625
Figure 10.

The exponent and mantissa are combined in a number of ways.
One of the common methods is to define a floating point variable
as using four bytes. The first byte is the exponent in single precision
signed integer format. This type of format limits the size of the
exponent between -128 and + 127 inclusively. The remaining three
bytes are multiprecision signed format with an implied decimal
point before the most significant bit. In scientific notation, the ex-
ponent indicates the number of times to multiply or divide the
mantissa by ten; whereas in floating point notation we are working
in binary, not decimal, so it is the number of times to multiply
or divide by two. If the sign is positive, multiplication is indicated,
otherwise division is the desired operation. Some examples of float-
ing point numbers can be seen in figure 11.

FLOATING POINT VARIABLES

Formwat:
seeeeeee
seeeeeee = signed exponent
SHINMME #mE. .. = signed mantissa
Examples:
0.5 = [ = 1/2
1.6 = 1 o1 = 1/2 wult. by 2 once
1.5 = 00000001 01100000 COOMM0R0 00000000 = (1/2 + 1/4) mult. by 2 ance
2.0 = 19 @1 = 1/2 mult, by 2 twice
.25 = 11111111 @1 BO0CO0000 = 1/Z divided by 2 once
Figure 11.
Floating Point Error

If the mantissa uses 24 bits as in the examples of figure 11, then
the smallest increment between expressible values is 1/8388608.
Therefore, the fractional portion of all floating point numbers will
be a multiple of this value! What happens if the number we are
trying to express is not a multiple of 1/8388608? Usually, it is
stored as close as possible with the remaining error simply
dropped. Let’s look at some examples of this type of error. If we
divide one by three, we have one-third. When we express this
as a decimal value it is .33333... and continues indefinitely. The
decimal system cannot express it exactly. Usually we select a de-

44

REMark < February « 1984



A FLOATING POINT ERROR EXAMPLE
(173 #3=72

seeeeeee
173 = .333333... = 11111111 @lelelel elolble]l vlelelel

= (1/2 + 1/8 + 1732 + 17128 + 1/512 + 172048 + 1/81%6 +
1732784 + 1/131136 + 17528584 + 1/2098176 + 1/83927e4) / 2

5

A5

.83125

L BB7E125

. 0P1953125

. BOPABITEI S

. Db 720703125

. BOBRIVS)TSTRI2S

. BPRBRTL2939452125

. POBGR1 787 34BL3ZB1ZS

. BROBRBATLE3T 158203125
, BOVODR11520928955€78125

O S S T

»bbobbbb2LTIZIILEIGABLZT [ Z = . 33I333I313466118408202120

3333333134661 184068203125 ¥ 3 =
Figure 12.

FTIITITARITEITT 224609375

sired number of significant digits and then either truncate or round
off the remaining digits. In this case let's assume five significant
digits are all that is required. Therefore, one-third will be expressed
as .33333. Here in lies our problem. Multiply .33333 by three
and we have .99999 and not the 1.0 which is desired. We have
now proven that three times one third is not one! Well, not actu-
ally. All we really have done is demonstrate that three times our
representation of one-third is not equal to one.

An identical problem exists when computers represent numbers
in floating point format. We can see in figure 12 how one-third
is stored. Follow through the math in this example. Obviously,
one-third times three is one, but we can see the results are not
computed to be one! You were absolutely right, your computer
not only can’t add, but it can’t multiply or divide either! | chose
this particular example because it is easy to demonstrate. There
are many numbers which cannot be exactly represented this way.
They can be broken into three classes. The first group contains
those numbers with infinitely repeating digits. One-third is a mem-
ber of this class. In decimal it repeats “3” infinitely. When ex-
pressed in binary it repeats “01" forever. A second class are the
numbers which simply need more bits to represent them. If 1/
8388608 is the smallest increment we can represent in a typical
floating point system and a number requires half that value more
to express it exactly, then we would need one more bit past the
least significant bit. The number of significant digits can be in-
creased by increasing the size of the mantissa. A very common
double precision floating point length is 64 bits. Although increas-
ing the size of the mantissa increases the accuracy, and can there-
fore eliminate one of the classes of non- representable numbers,
there are many numbers which cannot be exactly represented with
anything short of an infinitely long mantissa. The third class con-
tains the numbers which are non- repeating and never end. The
ratio of the circumference of a circle to its diameter, pi, is an
example of one of these numbers. They too cannot be exactly
represented in a typical floating point system.

There is another type of floating point related error which should
be considered. Most single precision floating point variables con-
tain about seven significant digits. What do you think would hap-
pen if the least significant digit of a variable was units of thousands
and we attempted to add a one to it? The value one would have
to be added to bits below the least significant bit. As you can
guess, the addition will not occur because the one is comparatively
insignificant. Part of the program in the listing demonstrates this

foible. All is not lost. Even though your computer can't add, it
can learn.

16 CLEAR 166

20 DEFSNG D

30 DEFINT A

4@ PRINT CHR#(27);"E"

50 PRINT

6@ PRINT &
“There are two functions to this program. " e
“The first demonstrates the folly of”

7@ PRINT &
"adding a relative small number to a *;@
"large one."

82 FRINT

5@ FRINT "In this case we will attempt to "€
"add 1 to 1000002, 100 times."

168 GUSUB 550

11 FOR I = 1 TO 58

128 9 = 1E+8%

138 PRINT USING"SEASNERR\

1540 D9 = D9 +1

156 PRINT USING™##assage=;Ds

168 NEXT

17@ PRINT “Notice the addition never occurred,”

175 PRINT "If it had, the answer would have been 1002108, "

160 GOSUR 550

198 PRINT CHR$(27);°E"

288 PRINT *Filoating Point Breakout*

210 PRINT

22¢ FRINT &
"This program peeks into wewmory to get *;€
"the bytes of 3 floating point variable.”

230 PRINT &
“1t then prints out the floating point ;@
"representation in both hex and binary.”

280 PRINT &
"Page E-b of the Microsoft BASIC Software “;@
"Reference Manual describes the format."”

285 PRINT &
"1f you are as inquisitive as 1 am, try -1.7014117E38"

250 PRINT

268 PRINT “"Enter decima)l value to be converted...”

278 Rl=0: AZ=0: AT=b: Ad=0

286 Di=0. o4

290 PRINT

306 INFUT "Decimal "3;D1

310 @ = VARPTRIDI)

32 A1=PEEKIW)

330 AZ=PEEK(Q+1)

240 AFPEEKIO+2)

35 A4=PEEK(0+3)

350 AIS=HEX$(A1):1F LEN(AISICZ THEN Als="@"+Als

370 AZ$=HEX$(AZ):1F LEN(A2%)<2 THEN AZ$="0"+A2%

380 A3S=HEX4(A3):1F LEN(A3$1ICZ THEN AR$="@"+AZ%

390 A4s=HEX$(A4):IF LEN(A4$){(2 THEN A44="0"+A4%

460 FRINT " Hex = “RA&$™ “43%* “A24" "Al%

41@ PRINT * Binary = "

AZ0 AA=RA:GOSUR 490

430 AR=A3:GOSUB 4%

449 RA=AZ:GOSUR 4%e

450 AR=A1:GOSUE 450

460 PRINT

47@ GOTD 27@

4B@ REM Strip out binary

49 FOR 1 = 7 TO @ STEP -1

506 1F (AR AND 2°1) = @ THEN PRINT "@"; ELSE PRINT *1*;

51@ NEXT

520 PRINT = =3

530 RETURN

4@ REM Hait for keystroke

35@ PRINT"Hit any key te continue...*

560 AS=INPUTS(1)

57@ RETURN

A9t 4 1=

Listing 1.

Conclusion

Dealing with the intrinsic error of floating point notation has been
the topic of numerous books. There are as many techniques to
handle this type of error as there are manufacturers creating micro-
computers. A common technique is to store values in a format
called Binary Coded Decimal, BCD. This technique uses four bits

REMark + February + 1984

45


http:birla.ry

for each number. Groups of BCD numbers are used to represent
larger values. For example, 1024 could be represented as “0001
0000 0010 0100”. A modified floating point system can easily
be created using BCD. A system of this nature allows for large
numbers to be represented but still suffers from the infamous re-
peating mantissa. Some systems round off the fractional portion
while some simply truncate it. Microsoft Basic-80 rounds off both
single and double precision floating point. Use the program in
the listing to prove it.

There are a number of simple things you can do to minimize this
type of problem. As a rule of thumb, use integers whenever possi-
ble. You can force a variable to be an integer in Microsoft BASIC
by using the DEFINT statement. Even money can be manipulated
as an integer value. Keep in mind, money can be counted by
cents as well as dollars and fractions of dollars. Another good
rule is to always control the type of storage a variable uses. Al-
though not a problem in strongly typed languages like Pascal, this
is very important in languages like BASIC. Probably the most effec-
tive preventative medicine you can take is to know the language
you are using. Run programs similar to the listing in each and
study the results. If all else fails, you can even read the documenta-
tion.

We have just scratched the surface of the numeric representation
problem. Consider a series of computations all involving floating
point numbers. The error from each of them can accumulate and
completely wipe out any meaningful results. There are techniques
to handle them and being able to apply these techniques is an

absolute must for any programmer, w
1]

A

H/Z-100 COLOR
GRAPHICS SOFTWARE

Want to explore Z-BASIC color graphics the easy way?
Try these packages from MICROSERVICES. All you
need is a color configured computer with 128K memory,
a color monitor, and Z-BASIC.

ZANIMATE will help you rapidly draw and paint each
frame in an animation sequence. Select frame sizes, vary
location and time between each frame. Draw the back-
ground too, with the graphics editor ........... $64.95

ZPALETTE, the original H/Z-100 palette program,
contains a graphics editor for point-plotting images
which can be painted in 92 hues! File your images for
access by other Z-BASIC programs, and transfer imagery
from one file to another.

NEW PRICE ......oiiiiiiiiieranrenrinnsnnnns $59.75

ZPATTERN helps you determine the quality of your color
monitor and if it needs maintenance.
NEW PRICE . .coviuicvoinsiniina D o $24.95

Include 3% handling/postage ($2.50 minimum) — Cali-
fornia add 6'%% tax. Send check or money order to:

MICROSERVICES
P.O. BOX 7093
MENLO PARK, CA 94026
PHONE: (415) 851-3414

H/Z89 PERIPHERALS from SECURED COMPUTER SYSTEMS

PORT SERIAL

2 CARD—— 1/0
/3 PORT PARALLEL

‘... not your typical vanilla-flavored serial
and parallel interface . . . "

Features:

Chip independent design * Reduces computer data buss loading from
3 to 1 ¢ Choice of Centronics or Epson parallel drivers for HDOS
or CP/M * Complete documentation and installation instruction.

all models of H/Z 88, 89,
90 using CP/M or HDOS.

e Fully tested, 90 day warranty,
two serial cables and a parallel cable
Level Interrupt Control (internal to computer) and software

¢ Fully compatible with driver.
PRICE $199.00
Shipping & Handling $10.00

* 2 Serial Ports

® Supports: Ring Input,
External Clock, Auto Dialer

e 3 Port Parallel with 2

16K RAM EXPANSION CARD

Expands your H/Z89 RAM Memory
capacity to a FULL 64K!

Ry 1..7

bbbl 3

Fully compatlble with:

H/Z 89 * H/Z 88 ® Magnolia Microsystems
CP/M and disk drive I/O interface cards

NOW INCLUDING SUPPORT MOUNTING BRACKET
Featuring:
Complete installation instruction = 90 day Warranty
Field reliability record now entering its 21st month
Now Only $65.00

HDOS is a registered trademark of Heath Company
CP/M is a registered trademark of Digital Research

Shipping &
Handling $5.00

PRICES ARE LESS SHIPPING AND TAX |F RESIDENT OF CALIFORNIA
MAIL ORDER: 12011 ACLARE, CERRITOS, CA 90701 (213) 924-6741 NI
TECHNICAL INFO/HELP:
8575 KNOTT AVE., SUITE D, BUENA PARK, CA 90620 (714) 952-3930

Terms and specifications subject to change without notice

data systems
SERVICE CENTER

46

REMark « February « 1984




Zenith Owners!

HUSKER SYSTEMS OF NEBRASKA, INC. PRESENTS
WINTER SOFTWARE SPECIALS THAT YOU CAN'T BEAT FOR PERSONAL COMPUTING ENJOYMENT!!

Video*Professor Computer-Based Training Systems help you learn quicker and with greater
enjoyment than with conventional self-study courses. They are designed to let the
computer interactively teach you rather than requiring hours of boring textbook study.

Currently there are 3 courses available: MBasic Programming I, Assembler Programming I,
and How To Program, A Structured Programming Methodology. A11 three are available under
HDOS and CP/M-80 for the H/289-90 (on hard sector diskettes) and under ZDOS and CP/M-85
for the 2100 (on soft sector diskettes). The regular retail price of each Video*Professor
product is $29.95, but...

By referencing this special offer you can get one Video*Professor for $22.00, two for
$42.00, and ALL THREE FOR $62,00!! This offer is good through March 31, 1984, and you
should keep your eyes open for other additions to the Video*Professor product 1ine,

ZIMAG is the Software Subscription Service which provides you with a continuing stream of
valuable software over a year's membership. Like a magazine, ZMAG provides you with
interesting articles and personal computing tips, but with each issue you also get a
diskette with up to 15 PROGRAMS ON IT! These programs include everything from games to
business and personal aids to system utilities, ZMAG is available under CP/M-80 (on hard
sector diskettes) and under ZDOS and CP/M-85 (on soft sector diskettes).

There are 8 issues (8 diskettes) to a ZMAG subscription year. The regular annual
subscription rate is $240.00, which is $5.00 per issue under the "news stand" price. For
this special period ending March 31, 1984, you can obtain a ZMAG subscription for ONLY
$177.00! THAT'S A 25% DISCOUNT.

BETTER STILL, ORDER BOTH A ZMAG SUBSCRIPTION AND THE 3-PRODUCT VIDEO*PROFESSOR SERIES AND
GET THE WHOLE PACKAGE FOR JUST $227.00! (It's a $329.70 value!)

Just use our handy order blank provided below or call us at (402) 558-5702. By the way,
we have over 40 other fine software products for Zenith computers, all reasonably priced,
and we can fulfill your media and hardware needs economically as well. Be sure to ask for
our free price 1ist, and please specify the operating system you desire for each product.
Thank you.

Husker Systems of Nebraska, Inc. -- Fine Heath/Zenith Microprocessor Products

Method of Payment: |_| CHECK | | MC/VISA # EXPIRES

| QUANTITY PRODUCT DESCRIPTION (INCL OPERATING SYSTEM) UNIT PRICE TOTAL PRICE*

——

I I | I

I I I I

| | | TOTAL I
Send Order To:

NAME TEL Husker Systems of Nebraska, Inc.
5208 Hamilton, Omaha, NE, 68132

STREET CITY ST ZIP Check Here For Free Catalog |_[

#1212



Disk Access By

Tracks and Sectors

One of the advantages afforded by an operating system like CP/M
is the ability to write and read files on disks without reference to the
actual locations of the data on the disk itself. But sometimes you may
wish to directly access data on the disk without using the file conven-
tions - this is what the “un-erase” utility programs do when they re-
cover a file, for instance, by changing a byte in the disk directory.
This article will first discuss the logical organization of the Heath CP/
M H17 disk, then demonstrate how to access the disk by track and
sectors, and finally show you how to use a hidden 11 sectors on the
disk that are not accessible by any other means. Direct track/sector
disk /O will also permit you to use HDOS-formatted disks as well,
a technique that could be developed into a program that would per-
mitdirect transfer of files between the two operating systems.

Disk Organization

CP/M reads and writes disks in 128-byte units called records, regard-
less of the disk size or format. The BIOS determines how these rec-
ords are mapped onto the physical structure of the disk itself; in this
article we will only be concerned about the hard- sectored disk used
by the H17, but the principles apply to the soft sectored 5-inch disks
as well as the standard 8-inch disks. The disk consists of 40 concen-
tric tracks (numbered 0-39), and each track in turn is made up of 20
records (numbered 1-20). Thus, the entire disk can contain 800 rec-
ords (20x40). (Do not confuse the physical sectors, of which there
are 10, with the logical records, which are 128-byte units. Each of
the ten physical sectors making up a track has 2 logical records
mapped onto it. Unfortunately, many people refer to the logical re-
cords as ‘sectors’, as well as the actual physical sectors.)

The first three tracks (0-2) are reserved for all of the operating system
except the BIOS: a cold start loader, the CCP, BDOS, and the BIOS
loader (the BIOS itself is stored like any other file). Track 3 contains
the disk directory and the start of the file space; the remaining tracks
(4-39) contain the rest of the file space. When a program running
under CP/M reads or writes to a file, it finds the actual physical sec-
tors containing each of the file records by looking at the directory
for the named file. The directory is thus much like the table of con-
tents of a book, listing the pages (sectors) on which the chapters
(files) are written.

Before looking at the directory entries themselves, alittle more detail
about how CP/M writes disk files is necessary. Although the smallest
unit which can be read or written is a record (128 bytes), to minimize
the directory size, CP/M actually read/writes 8 records, called a
group, at a time. By using calls to the BDOS, as almost all standard
programs (like BASIC) do, file access is always by groups. Later on
we shall see that the BIOS contains routines to access a single rec-
ord, though, which is how the utility programs operate, and which
you may use as well. For now, it is enough to know that all files are
actually stored in 8-record units called groups.

David Vinter

Dept of Anatomy & Cell Biology
University of Michigan

Ann Arbor, M1 48109

Each file is listed in the directory in 32-byte entries, called extents,
each one of which contains a list of up to 16 groups that the file data
are written in. If a file is longer than this (16X 8=128 records, about
16K), then a second extent must be entered in the directory for it,
and so on, until all the file’s records are listed. A file will have as
many entries (extents) in the directory as needed, and they are given
extent numbers (starting with 0) to keep them in order. A map of the
32-bytes for a single directory entry is shown below:

byte contents
@ user number or deleted-file flag
{on a one-user system, user number = @)
{if file is deleted, byte set to QESH)
1-8 file name
9-11 file type (extension); plus the
highest bit can be set:
byte 9, high bit=l: R/O file
byte 10, high bit=1: SYS file
12 extent number (first=@)
13-14 blank
15 extent size, in sectors
16-31 group numbers

A specific example, showing the directory entry of the file PIP.COM,
looks like this:

byter @ 1 2 3 4 5 & 7 8 910 11 12 13 1415
HEX: 00 50 49 50 20 20 20 20 20 43 4F 4D @0 00 @9 3A
ASCIl: @ P I Pspspspspsp C O M @ 58
byte: 16 17 18 19 20 21 22 23 24 25 26 27 28 27 30 3t
HEX: @7 08 @9 @A 0B @C 0D OF 00 00 Q0 00 00 00 09 90
ASCII: 7 8 9 10 11 12 13 14

Reading from above, the file PIP.COM is composed of 58 sectors
(byte 15), stored in groups 7-14 (bytes 16-23); it is neither an R/O
nor a SYS file, since bytes 9 and 10 are not set with the high bit =
1; this is the first extent (byte 12), and the last, because it is not full
(bytes 24-31.) To erase a file, CP/M simply writes E5H in byte 0, in
place of the 0 there now; the rest of the entry stays intact, but is ig-
nored by the system in subsequent file operations. Groups 7-14
would be re-assigned as needed for any newly created files; until this
happens, you could change byte 0 back to O at any time and ‘re-
create’ thefile.

The group numbers in the last 16 bytes of the directory entry provide
the actual map of the disk for CP/M. Obviously, if anything should
happen to the directory entry for a file, such as changing even one
of the group numbers, your computer would not be able to recon-
struct the file. The function of the FORMAT program can be ap-
preciated as well. It inserts E5H’s all through the disk; most impor-
tantly, it puts them into the first byte of every directory entry, indicat-
ing no file is there. Any other number in the first byte would cause
CP/Mto try to construct a file name and map for each enitry.

48

REMark « February « 1984



Let us look for a moment at the disk in terms of groups. Tracks 0-2,
containing the CCP, etc., are always in the same place and don't
have group numbers associated with them. Tracks 3-39 are com-
pletely divided into groups as follows: groups 0 and 1 contain the
directory, groups 2-91 contain file space. If you have SYSGENed
your disk just after FORMATting it, then the BIOS.SYS file will be
in groups 2-6, since these are the first open groups after the directory
space.

A little multiplication will show you that the 92 groups in tracks 3-39
don’t occupy all the space in those tracks; 4 sectors in track 39 (num-
bers 7, 8, 15, and 16) are not assigned to groups, and therefore are
never written on by files. This occurs because the directory groups
reference 8 sectors, and these 4 are the remainder left on the disk
which don’t make up enough space to be included in a group by
themselves. There are also unused sectors in track 2 (sectors 14-20),
which aren’t occupied by any of the CP/M system components that
are present in the first three tracks, and which don’t get included in
the group maps in the directory. Together, these are the 11 sectors
| mentioned at the start of the article which are never used in CP/M
files or system areas - and these could be used by you if you were
to access them directly through the BIOS, instead of by the usual
BDOS operations that read/write files.

Absolute Sectors

When CP/M uses files, it really looks at the disk as a collection of
groups; any sectors not in groups are ignored in file operations. But
we can instead view a disk as simply 800 records and access them
individually, without using file conventions at all. A major advan-
tage of this is that we can read and write to unformatted disks (like
an HDOS disk!). The BIOS has primitive routines that can be called
from assembly level programs to do just this; they are described in
the Alteration Guide of the infamous CP/M documentation. It is
done by first using commands to position the disk head at the track
and sector desired, then reading or writing to that sector with
another command. This is almost identical to doing a disk read or
write from the BDOS, except that you must position the disk head
yourself before calling the read or write routine. The routine shown
below will allow you to perform absolute sector I/O by first putting
the track/sector values in the <B> and <C> registers,
respectively, CALLing HEADSET, then either CALLing READ or
WRITE as needed. In either case, the buffer used in memory for the
disk I/O is defaulted to the DMA, which runs from 080H to OFFH.

BIOS EQU
#

# THIS 1S THE BIOS START FOR AN H3-CP/M 64K SYSTEM
* FOR OTHER SYSTEMS, THE START OF THE BIOS IS IN

# MEMORY ADDRESS ©002H-0003H
*

FooaH

SETTRK EQU BIOS+@1EH
SETSEC EQU BIOS+@21H
READ EQU BIOS+027H
WRITE EGU BI0S+@2AH
#

HEADSET:

* CALL WITH TRACK NUMBER IN <B>
* AND SECTOR NUMBER IN <{C> REG’S

PUSH  PSW 1SAVE SECTOR NUMBER

MOV C,B sPUT TRACK NUMBER IN <C>
M1 B, 000H 1 ZERD HIGH BYTE

CALL  SETTRK 1SET TRACK NURBER

POP B $GET SECTOR BACK IN <C>
MVI B, 000H 1ZERO HIGH BYTE

CALL  SETSEC sSET SECTOR NUMEER

RET

¥
* SUBSEQUENT "CALL WRITE™ WILL WRITE MEMORY CONTENTS

# IN DMA (FROM @8@H TO OFFH) TO THE DISK SECTOR;
® SUBSEQUENT "CALL READ" WILL READ THE SPECIFIED

* SECTOR INTO THE DMA AREA
*

What if you want to read a file using the above method, how do you
find which sectors correspond to which groups in the file directory
entry? The answer is a little complex, since the relationship between
group number and track/sector numbers is not simple. To minimize
access time during /O, the BIOS does not assign group numbers to
adjacent sectors; instead, it skips 7 sectors between each pair of sec-
tors. The chart below uses an algorithm to permit you to calculate
the sector and track numbers given the group number (or the re-
verse), but it takes a little study to understand!

Track Sectors Group Track Sectors Group
(2y-1) 01-02 {5x) (2y) 91-02 (S5x+2)
99-10 09-10

17-18 17-18 (S5x+3)
95-06 05-06
13-14 (Sx+1) 13-14
03-04 93-04
11-12 11-12 (Sx+4)
19-20 19-20
07-82 (5x+2) 97-08
15-16 15-16
““x" and ""y" above are found from the equation:
y=x+2

e.g. for group @, x=6 and y=2; for track 3, y=2 and x=0

Don't be too horrified by this chart. If you just want to use the sectors
that CP/M doesn’t normally use that | mentioned earlier, you only
need the assembly routine. This translation from group to track/sec-
tor is only necessary if you want to find each sector for a file given
inadirectory entry.

The information in this article should give you a start on constructing
your own utilities to ‘un-erase’ files, or even recover data from a disk
with a damaged directory, since the disk can be accessed for I/O by
the routine above even if it has not been FORMATted. HDOS disks
can also be read as well as corrupted CP/M disks, but you will need
to find out how HDOS organizes it's disks (it isn’t the same!) to read
the directory so that you can locate the sectors containing the file

contents.

About the Author:

D avid vinter is a cell biologist at the University of Michigan
and is just now completing his PhD in anatomy. His research
involves blood vessels and vascular surgery. David’s interest in
computers goes back seven years, when he began using a main-
frame, then an IBM-360 at the University. He purchased an H-8
about a year ago, and has been hooked on micros ever since.

REMark « February * 1984

49



Getting Started

With Assembly Language

(Or, It’s Your Turn To Help Me, Now)

I the last three instaliments of “Getting Started”, we covered disk
file operations in HDOS and CP/M. The first two of those three parts
covered elementary disk file reading in HDOS and CP/M, and in the
last installment, | presented the first really useful “mini-program” in
this series to demonstrate more advanced disk operations in HDOS.
Now it's the CP/M user’s turn to get a useful demo program, as we
cover...

PartIX — Disk Filesin CP/M, Part 2

For those of you who are new to HUG, this series on assembly lan-
guage started in the April 1983 issue. If you want to read the entire
series, you should buy the bound volume of all the 1983 REMarks,
whichis part no. 885-4004.

In our first discussion of CP/M disk files, we examined a program that
transferred a file from the disk to the screen by reading one record
(128 bytes), printing it to the screen, and repeating the operation.
I mentioned previously that there are basically two ways of handling
disk files. You can handle one record at a time as we have already
done, or you can work with the whole file or with all available mem-
ory, which ever is smaller. The second method is more efficient
when you want to copy files, so it is the method we will use in this
month’s demo program. The demo program is a file copy utility
called COPY that is run with the following syntax.

ASCOPY (source drive: )FILENAME.TYP TO (destination drive:)

If the source drive is the currently logged drive, it may be left off.
For example, if you wanted to copy ASM.COM from A: to B:, you
could enter:

AXCOPY ASM.COM TO E:

As with the HDOS version of this program, you are invited to share
it with your friends who are newcomers to computers and who are
confused with the “destination = source” syntax of PIP. This pro-
gram is limited in that it does not understand “wild cards” or allow
you to change the name of a file while copying it, but its ease of use
may make it useful to beginners.

The COPY program first checks for a command line argument by
looking at the first name character in the default FCB area. If no argu-
ment was given, a message explaining the program is printed. | like
the TYPTX routine that is built in with HDOS so much that | often
put my own TYPTX routine in CP/M or Z-DOS programs, including
this one. The TYPTX routine prints any text that follows the call to
it until a character with the 8th bit set is found, and then it returns
to the address after that character.

If a command line argument is found, the program sets up things by
finding out how much memory is available. It does this by getting
the BDOS start address from location 6 and subtracting from it the
CCP size (800H), the CP/M serial number size (6), and the size of

Pat Swayne
Software Engineer

one record (80H), for a total of 886H bytes. Then it determines if any
memory space is left, and if so, goes on with the program. Other-
wise, an error message is printed, and the program quits.

After the available memory space is computed, COPY moves the file
name information from the default FCB to another FCB that will be
used for the destination file. Then it searches the default DMA area
(remember that command line arguments are placed there “as is” by
CP/M ) for the string “TO “. If it can‘t find the string, it prints the usage
information message and quits. If it does find the string, it looks for
the next non-space character and converts it to a number by sub-
tracting the value of “@" from it, so that A is changed to the value
1, B to 2, etc. Then it makes sure that the destination drive is not
the same as the source drive and prints an error message if it is.

You may remember that we did not perform the same drive check
in the HDOS version of the program.-That is because HDOS always
writes to unused parts of a disk even if the file being written has the
same name as one already on the disk. If the write is successful, it
will then delete the old file with the same name. However, CP/M
will just write over an existing file, so the program handles things
differently. It does not allow the source and destination drives to be
the same so that there is no chance of damaging the source file, and
if a file with the same name is found on the destination drive, COPY
will ask the user if he/she wants to delete it. It tests for the duplicate
named file by trying to open it.

If the destination file does not already exist, or if the user has chosen
to delete it, the COPY program makes a new directory entry for the
destination. If there is no directory space, the user is notified, and
the program exits. If everything is OK so far, the program enters a
copy loop. Since CP/M can read only one 128-byte record at atime,
I set up a read loop and a write loop in the program to simulate the
ability of more advanced operating systems to read as much as possi-
ble at each pass. In each loop, the DMA address is placed within
the reserved memory area and adjusted upward 128 bytes after each
record until the read or write pass is finished. During the read loop,
the number of records read is counted so that the same amount will
be written in the write loop. The entire copy loop can be executed
any number of times so that afile of any size can be copied.

This may seem like a lot of work just to copy a file, but it is the most
efficient way to do it. If you want to do a little homework, try writing
a version of this program that alternately reads and writes only one
128-byte record at a time until the file is copied, and see how much
longer it takes than this method.

If the end of the file is detected during a read loop, a flag is set so
that after the next write loop, the destination file will be closed. If
the close operation goes OK, the program exits. If not, an error mes-
sage is printed. There is also an error trap and message in the write
loop, in case something goes wrong there.

50

REMark « February = 1984



Following the main body of the program are two subroutines that are
used in it. The first is used to skip over spaces while examining the
command line, and the second is the TYPTX routine mentioned be-
fore. After the subroutines comes the data area that holds the mem-
ory top address, the record counter, the end of file flag, the output
FCB, the stack, and the copy buffer.

ALittle Contest

Now that the CP/M users are caught up with HDOS users in this
series, it's time to have the contest | mentioned in the last installment
of “Getting Started”. The contest is to create a program called RENM
that will rename a file on the disk using the following syntax:

RENM (drive: )OLDFILE.NAM TO NEWFILE.NAH

One winner will be selected for HDOS and one for CP/M. Since we
have not covered “cracking” filenames in CP/M yet, | will allow the
CP/M version to use this syntax:

RENM (drive:)OLDFILE.NAM NEWFILE.NAM

With this syntax, CP/M will decode the filenames itself into the two
default FCB areas. But try to do it using the first syntax.

The winners in each category will get their choice of any Heath/Ze-
nith software product and any HUG software product. Submit your
entry on a disk, if possible. | will judge the entries personally, and
judgment will be based on how well the program works and its use-
fulness in a future “Getting Started” article as a tutorial program. The
program should be well commented, and any accompanying text
explaining itwill be appreciated. So get started, and best of luck!

THIS PROGRAM DEMONSTRATES READING AND WRITING

FILEZ ARE REAL ANL

THIS PROGRAM COFIES FILES UISING THE FOLLOWING

s LOCATE STACK
3SET NEW COnE
$SAVE OLD ONE

s CHECK FOR ENTRY
yIF 30, CONTINUE

# COFY - FILE TRANSFER FROGRAM
#*
3
* [IISK FILES UNDER CF/M.
* WRITTEN IN LARGE ELOCKS,
+*
3+
* SYNTAX:
*
# A:CORY d:FILENAME.EXT TO d:
*
#* WHERE d: IS A DRIVE LESIGNATICN.
* BY F. SWAYNE, HUG 14-NOV-23
# CF/M DEFINITIONS
CONIN  EEU 1
CONOQUT  EGH Z
OFEN EGU 15
CLOSE  Equ 14
LELETE E@QU 19
REAL EGU 20
WRITE EQU 21
MAKE EQL 22
SETOMA ECU 26
CURDEE  EOU 4
ELOS EQU S
LFCE EGU SCH
[iMA E@U aoH
ORG 10GH
¥ MAIN PROGRAM
START  LXI H, @
[AL SF
LXI SF, STACK
FUSH H
LDA [OFCE+1
CRI % oo
JNZ GOTFILE
ERREX  CALL TYFTX

REMark * February + 1984

51



EXIT

GOTFILE

GOTMEM

MOIVFCER

FN=

FNLOISP

NCTLEF

[E
0B
[E
DE
DE
LE
POP
SFHL
RET
LHLD
LXI
OAD
SHLD
MVI
SUE
JC
CALL
LR
JMF
LXI
LXI
MYI
MY
ZTAX
INX
INX
[ICR
UNZ
kX1
CALL
MOy
CFRI
J7
INX
JMP
CALL
CrPI
JNZ
INX
MOy
CPI
JNZ
THX
Moy
CPI
JNT
CALL
suL
=7A
MOV
LXI
).IAX
CRA
\.INZ
LoA
INR
CHF
JNZ

13,10, The cerrect use of this program is’, 13
10,10, "A>COPY d:FILENAME.TYP TO d:°,13,10,10

‘where di is a drive designation

(A, Bi, etc.),',13,1@

“and FILENAME.TYF is file you want to COPY.S

13, 1@+E0H

H sGET OLIN STACK

JSET IT

sRETURN TO CP/M
BDOE+1 ;GET EDNS ADDRESS
I, -56H 3 SUBTRACT CCP, SER., AND REC. SIZE
Iy 3 T FIND MEMORY LIMIT
MEMTOP 3 SAVE MEMORY TOF
A, BUFFER/Z54A sGET EUFFER ALDR HIGH
H s ANY MEMORY AVAILABLE?
GOTMEM 3YES, GO AHEAD
TYFTX
13,19, "ERROR - Mot encugh memoary.’, 13, 16+86H
EXIT sRETURN TO CP/M
H, DFCE+1 sFOINT TO FCR
0, QUTFCE+] s ANDN OUTPUT FCE
B, 15 sMOVE 15 CHARACTERS
AM
I sMOVE THE FILE NAME
H
[
E
MOVFCE
H, [MA+L sFOINT T COMMAND ARGUMENT
05 ;EKIP OVER ZPACES
fiy M sGET A CHARACTER
Y ;SPACE™
FNDSF s FOUND SPACE
H ;ELSE, INCREMENT FPOINTER
FNZ ;AND FIND' NEXT SPACE
0% ;SKIF OVER IT
T sLOOK FOR “TOV
ERREX (EXIT IF MOT FOUND
H
A, M
2 E' »
ERREX
H
AM
ERREX
508 sFOUNDD "T0", SKIP TO DRIVE NAME
R sREMIVE ASCIT FROM DRIVE CODE
OUTFCE sAND SET UP OUTPUT FCR
B, A $EAVE DRIVE CODE
O, DFCE
L
A s INFUT DRIVE LEFAILT?
NOTLOEF H
CLRDIZE ;ELSE, GET CURRENT LIGK
A sMAKE IT START WITH
B sCOMPARE  INFUT AND OUTPUT DRIVES
NOTEAM sNOT THE SAME

52

REMark < February « 1984



CALL YPTX

& 13,19, "ERROR - Same drives.’, 13, 10+20H
JHF EXIT
NOTSAM MV C, (FEN
CALL EDOS ;OPEN INFUT FILE
INR A
JINZ GOOPEN JOPEN OF
CALL TYPTX
LR 13,19, "ERROR - File not found.’, 13, 10+86H
IMF EXIT JRETURN TO CP/M

GOOREN  LXI 0, QUTFCE
MV1 ¢, OPEN

CALL BDOS s TRY TO0 OPEN CUTPUT

INR A JANY FILE?

JZ GoouT sNC GO AHEAD

CALL TYPTX

[B 13,19, 'File exists, erase? (Y/N) {N3*

[E t ot +E0H

MVI C,CONIN

CALL BOOS sGET INPUT

CPI A sCHECE FOR Y

JZ ERAFIL yGOT IT, ERASE FILE

IMP EXIT ;ELSE, RETURN TCt CP/M
ERAFIL LXI O, QUTFCE

MVl C,DELETE

CALL ELOS ;DELETE OLD FILE
GOOUT  LX1 D, QUTFCE

MV1 C, MAKE

CALL EDOS sMAKE NEW DIRECTORY ENTRY

INR A s TEST

INZ LOooF i

CALL TYFTX

[E 13,19, "ERROR - No directory space.”, 13, 10+80H

JMF EXIT
# COPY LOCF
LCoF LXI H, @

SHLI RECCNT ;CLEAR RECORD COUNTER

LXI [, BUFFER sFOINT T4 BUFFER
REAOLF  PUSH I ; SAVE POINTER

MVI C, SETDMA

CALL BOOS 5SET D[MA ADDRESS

LXI 0, IFCE

MVI C, REAL

CALL EDOS ;READl FROM FILE

FOP I ;RESTORE POINTER

CRA A s TEST READ CPERATION

Wz NOTENLE SEND NOT FOUND YET

5TA LASTFLG ;ELEE, SET LAST PART FLAG

IMF WRFILE 1AND WRITE THE FILE
NOTEND  LXI H, 8éH

DAL o sLUPDATE POINTER

XCHG yRETURN IT TO LE

LHLD RECCNT

INX H ;COUNT RECORD REAL

SHLD RECENT

LHLLK MEMTCP ;GET MEMORY TOP

REMatk « February » 1984 53



WRFILE

WRITLF

GIWRIT

TIONE

GOCLOSE

LN p]
=
o

Moy
SHE
My
SEEB
C
MF
LHLD
MOy
CRA
Jz
LXI
FzH
MV
CALL
LXI
MVI
CaLL
POF
ORA
Iz
CALL
LiE
JMF
LXI
LA
KCHG
LHLD
X
SHLID
MOy
ORA
JNZ
LA
ORA
JZ

Cary

LXI
MVI
CALL
INR
JNZ
CALL
LE
JMF
CALL
LE
JMF

HRFILE
READLF
RECCNT
AH

k.

[IONE

[i, BUFFER
o
C,5ETOMA
EBL=

O, OUTFCE
C,WRITE
BOO=

[

A

GOWRIT
TYFTX

13,16, *ERROR -

EXIT
H, S04
I

RECCNT
H
RECONT
A,H

L
WRITLF
LASTFLG
A

LaGP

I, OUTFCE
C,CLOSE
BD0S

f
GOCLOGE
TYFTY

s SUETRACT FOINTER FROM IT

;NOROOM, WRITE FILE
;ELZZ, READ MORE

sEMPTY FILE COFIEDY
1 IF S0, WE'ER DONE!
; RESET POINTER
SAVE FOINTER

15ET [IMA ADDRESS
sWRITE FILE

s RESTORE POINTER
s GOOD WRITEY

1 YES

No disk space.’,13,18+30H
sELZE, UFDATE FOINTER
s DECREMENT RECORTI COLUNTER
sALL DONE?

s 1F NOT, CONTINUE

{ENDI OF FILE?
+IF NOT, GET MORE

UONE, CLOSE CUTPUT FILE

1CLOSE FILE

s G000 CLOSE OFERATION

3,14, "ERROR - Can'’'t close file.®, 13, 1@456H

EXIT
TYFTX

13,16, "DONE ! ", 12, 10456H

EXIT

SUBROLTINES

SKIP OVER SFACES

Moy
CPI
RNZ
INX

Ay M

sGET A CHARACTER

{ SFACE?

s IF NOT, RETURN

yELZE, MOVE TO NEXT CHAR

54

REMark « February « 1984



MF 505 ; TRY AGAIN

# TYPE TEXT FOLLOWING CALL
TYPTX  XTHL $SAVE HL, GET TEXT ADDR
TYFTX1 MOV aM $GET CHARACTER
PUSH K {SGVE FOINTER
MV C, CONCUT
ANI 7FH ;STRIF MARKER BIT
MOV E,A ;CHARACTER TG E
CALL  EOOS tPRINT 1T
FOP - sRESTORE FOINTER
Moy AM sGET CHARACTER AGAIN
INX H 1 INCREMENT POINTER
ORA A ;TEST FOR END
JP TYPTX1 sNOT THERE, YET
XTHL sELSE, FIX STACK, GET HL
RET
# DATA AREA
MEMTOP LW ) sMEMORY TOP
RECCNT LW @ sRECORD COLNTER
LASTFLG L ] 1LAST SEGMENT FLAG
OUTFCE DB 6, ',0,0,0,0
s 1&
DE @
[ ey iRESERVE STACK SPACE
STACK  EGQU $
EUFFER  EQL 3 s BUFFER STARTS HERE
END START

Thinking about your

next vacation?

Plan now to attend
the Third International
HUG Conference!

The Third International HUG Conference will be held at a family resort facility from July 27 through July 29,
1984. Activities for the family include golf, tennis, softball, horseshoes, racquetball, horseback riding, river boat
excursion, volleyball, and health club facilities. More than adequate night life is available for your enjoyment.
Historic settings, found in the immediate area, provide an abundance of antique and gift shops. More information
will be available later, so watch REMark.

Plan your vacation, bring the family and join the fun with Heath/Zenith computer users
frorn all over the world!

REMark « February « 1984 55



.e“@ A

My four year old developed a recent urge
to ‘do his numbers’ which means he wants
me to write down a number with him ver-
bally responding with the answer. After de-
veloping a fairly good number recognition,
lintroduced him to simple addition using the
fingers. Again showing good progress and
having shown past interest in the computer
prompted development of this program.

Theidea: Draw a presentationof atrainon
the screen and advance itto the rightas a re-
ward for correct answers.

=4

The program takes advantage of some of the
smart terminal commands as listed in the
front of the program. The text contains 3892
bytes, symb 176 and strn 125. Benton Har-
bor BASIC 10.06,00 was used on an H8
computer and H-19 terminal. To play, the
computer requests the names of the oppo-
nents so it can display their names on the
side of the ‘ENGINE’ and to prompt the user
as to who's turn it is. The question is dis-
played and upon receipt of a correct answer,
the terminal rings three times to signify a cor-
rect answer, the correct answer register is
updated, the train moves down the track,
and another sequence is generated. Ifthe an-
swer is incorrect, the correct answer is
momentarily displayed and another se-
quence is generated. At the end of the game
(20 questions), the computer displays the
winners name, the correct percentage for
each player, and queries about additional
games.

Special note on the poke commands. The
BASIC program at lines 1010, 1030, and
1040 is changed except when division is
selected. If there are any modifications in
these lines, adjustments may have to be
made.

In addition to these special features, the
maximum number generator is requested to
limit the highest random number presented
to the players. Although some adult supervi-
sion is required for younger users, a personal
touch and that feeling of togetherness will
also be rewarding to all participants. It even
helps out mom, school teachers, and pos-
sibilities of ill feelings of the time spent at the
computer, _%

*Train

Paul R. Hinson
1359 W. Harvard Place

Ontario CA 91762

160¢ GOTO 1099
191@ PRINT SPC(S);A:PRINT SPC(T);"+";B R
1029 PRINT SPC "‘-I-él +FOR I=1 TO 'PRI'*FT i $:MEXT I
163¢) PRINT ZE’JS INI?U"I‘ ;1 X:PRINT Z$f:IE' A+B=X THEN 17¢0
1240 PRINT "Sor the answer is'";A+B:PAUSE 750 : RETURN
1@50 Rm *****g;******tt*******itt**t**t********iii*i*t**t**t********i**i
1668 REM * TRAIN *
1@72 REM * BASIC 10.06 .01 PAUL, HINSON *
1@8@ ******i***il‘***itiitiii********t***tt*******i*** ¢ e % e o e o o e e e
1990 =(}£R§ 27) REM ESCAPE KEY
1104 + E"- REM CLEAR SCFEEN
1119 + E’ e REM ENTER REVERSE VILDBEO
1120 *ES 9" REM EXIT REVERSE VICEO
1138 G +" REM ENTER SPECIAL GRAPHICS
1140 —E$+"G" REM EXJT SPECIAL GRAPHICS
11560 YS=ES+"Y": REI-‘I DIRECT CQURSOR ALDRESSING
1160 Z3=E3+"x5": CURSOR OFF
1179 zé$=E$+'Jx5 " CURSOR QN
1180 ERASE PAGE AFTER CURSOR
1199 DIM Niill ]3 il
12008 REM ok ko **tttt INSTRUCTICNS kkAkwkhkkkkkhkkkkhkdbhhkhkhhk
12149 PRINI‘ " _This is a came of 'MATH' for two players. I will randomly"
1220 PRINT "display two numbers between @ and selected highest. Answer"
1238 PRINT “cc:rr ly and 1 will move, your ENG dovm the track and u te"
1249 PRINT '“the correct stmn register’. 'Iwenty (29) stions will be”
125@ PRINT "given and there will be NO second chances.
1260 REM %k ***i*t******t*iit*** N‘H‘Tc‘ dhkkkhkkdkrahhhhkhdhhkhhkkhkhhk
127@ PRINT :LINE INPUT "Who is pla ? ",N$
1280 AS="Please use a name with 1 le ters or ess. Re—enterlll"”
1290 IF LEN(NS(@ ))>1a TH."EN PRI_NI‘ :PRINT AS:GOTO 1
1300 PRINT :LINE IN Egur ent“ 7 NS(].)
1318 IF L&Tgwﬁl“ 1@ TH:EN ple" :P AEE
1325 ***it*iti*i* SEI' HIG[_E«I! m khkkkhkhhhkhkhkhhhkhhkhddik
1330 PRINT :INPUT "What is the highest number allowed (@—1@0&7@0}" Mol
1340 IF N>1¢0000 THEN PRINT :PRINT "Your nurber is too largel!ll o
1_35@ RE}‘ t********t*t***i****i**k*t* S e e e ek ii****t*i****tii*
1360 PRINT :PRINT "what type of math hmld you like?" :PRINT
137@ PRINT " 1) Addition":PRINT " 2) Suptraction"
1380 PRIMT " 3) Multiplication":PRINT 4) Division":PRINT
1399 INPUT "Choose 1,2,3 or 4 => ";S1:IF S1>4 OR S1<1 THEN 136d
147@ IF Sl=1 THEN POKE 19157,43: POKE 19209,43:POKE 19247,43
1410 TF Sl=2 THEN PCKE 19157,45:PCKE 19209,45:POKE 19247 45
1420 IF S1=3 THEN POKE 19157,120:POKE 19299 42 :POKE 19247 .2
143@ REM ok Tede ke e dk ke ke ek PRINT 'IHE TRAIN *nwwg&ttit**t**tr*ntg**i
1449 PRINT C$;Z$
lied W vty sy

: a " zz"' ‘o ", ‘u ||" ;ur "
1480 FOR 1=10" 0 £ ma t % 3 LpRefm N --rm
1499 PRINT :PRINT E«Z *X}."AM\MMMM
1508 PRINT SPC(3*X): (") >"-Y-—Y+l IF Y=2 THEN Y=0
1518 IF R>1 THEN PRINT Y$;"- ";D$;:COTO 1540
15 ="bbbbbbbbEbbbob bbb EhbbbbbbbbbbbEbELbh " : AS=AS+AS : PRINT AS
1533 R=R+1:IF R<2 THEN 1450
1540 PRINT GOS$: ERRIIRARL NUMBER GENERATOR AND PRINTER **¥*iix
155¢ A=INT(N*RND(1)):B=INT(N*RND(1)):R=R+l:IF R=43 THEN 175¢
1560 IF A<B THEN WI=A :A=B:B=Wl: *kkk**E*E  REUERS o - e iaddiind
157@ PRINT :PRINT Nﬂ‘q here is estion #" INI‘(iR—-lifz : PRINT
1580 RFM ***k¥akksk ;t‘iti* IN SPIFICA'PICN HhERER ittiti*tt*t*
159 J=1:5=7:K=1:T=6
]l.geﬁ IF A/J >= 10 THEN J=J*10:S=5-1:G0TO 16092

14 IF B/K >= 10 THEN K_K*l]'\;g?dmi :GOTO 1610

1620 IF Sl <> 4 THEN ok kot ARCUND IF NOT DIVICE *¥¥#kxkax
1633 PRINT SPC(1@);:FOR I=1TO 51-(?-1'; :PRINT " N‘EX‘I‘ I: PRINT
1640 PRINT SPC(S):A;")";A*B:PRINT Z4$; :INPUT FX:PRINT zs.-; IF X=R THEN 17C0
165@ PRINT "C'orr\ the answer is";B:PADSE 75¢:GOTO 168
1664 GOSUB 1 ***  GFT THE BASIC LINES FOR MOD I.N FRONT OF PROGRAM **#*
1679 RIM e “'IO"ELLIMII\ATE LOCATION ERRORS DURING TYPINC IN OF PIOCEAl ***
1680 PRINT YS; ;LS:Y=Y+1:IF Y=2 THEN Y=0
1690 GUTO 155¢
1708 PRINT CHRS(7);:PAUSE 106 :PRINT CHRS(7);:PAUSE 1U@:PRINT CHRS(7);
Ji%g G(Y)=G(Y)+1
IF Y=0 THEN pamr ;" ":COTO 1450

1733 IF Y«-l THEN P ?3:--& ":GOTO 1450
1740 RIM *****u**** RESULTS AND NEXT GAME QUARRY *****k¥ksxx
1758 IF Ea ;" has won the gamell! QONGRATULATIONS!I"
176@ IF G PRIM' N$(1):" has won the oamem OOMNGRATULATIONSL L "
igg% PRINT PRI m)pamr "We have a 71 gane)

h % 20)*100 "% ,score. " : PRINT
iggg BRINT %%l)i;gg)t m?:’tslm%é)il%) ?'% score, ' .P}\USE 756

change
18140 IF L.EE‘I’E ” OR szg'laﬁ 1)= 5 "pmﬁl 3:'6'“6(6):@ G£1}=ﬁqGO'IO 143¢
{528 T e o Rt U
T 1l i OR l e V. " M G 31

1836 BRINT :b Taving ~ 5 ()5 and (N% Lisgigomo 1260

56

REMark » February » 1984


http:PRIt-.1I

A quick fonk ot P s O

dBASE Il Programmer’s Notebook

dBASE Il Programmer’s Notebook is a little booklet (46 pages,
8-1/2 x 11”) by Steven G. Meyerson that is just what it says it is: a
programmer’s notebook. It is full of useful hints and techniques for
using Ashton Tate’s dBASE Il relational data based management pro-

gram. Since it is small (in pages, not content), this review is also
small.

For those of you who are not familiar with dBASE I, it is a powerful
data base handler that has its own “programming language”, similar
to a job control language (but not nearly as confusing or hard to use
as some). Hence, the need for a book like this to supplement Ashton
Tate's own manuals.

What It Contains

There are three parts to this book: Hints and Techniques, Routines,
and S-Mail. The first two parts contain the real meat of the material.
There are good hints on how to get better performance out of dBASE
11, how to avoid some of the pitfalls inherent in this powerful pro-
gram, and several practical routines for expanding its use. The
routines are: Two-Column Printing, Menu Operations, Error Check-
ing, File Name Check, and Flashing Display. The third part of the
booklet is a real bonus: 5-Mail, a complete mailing list handler with
an archiving feature for purged records.

Comment

Mr. Meyerson has had obvious experience with dBASE Il and his
skill and knowledge show through in the material contained in this

Tom Huber
Related Products Editor

book. The writing is clear and lucid; the author presents his informa-
tion in an informal, straight forward manner, something that is often
missing in many books. There is no attempt at humor; the material
isall business. Although the booklet is produced from a letter-quality
printer (not typeset), it is easy to read.

At first glance, the price seems a bit steep for the number of pages;
$12.95 for 13 pages of notes, 8 pages of routines, and 24 pages of
instructions and listings for S-Mail. However, considering the price
of commercial mailing list programs, the booklet suddenly becomes
a bargain and a couple of the hints alone could well save the user
more than thirteen dollars of time and frustration.

This book is not for everyone. For instance, | don’t recommend it
to anyone who does not have dBASE Il. However, if you do own
dBASE Il and want to expand your expertise in programming it for
yourself and others, then | strongly recommend it.

One final note: if you don’t want to type in all the listings for S-Mail,
the author is offering a disk copy for a paultry $7.00 more.

Vendor: CompuTech

P.O. Box 2027

Poquoson, VA 23662

(804) 868-8055

$12.95 book alone

+ $7.00 for disk of S-Mail

(VA residents add 4% sales tax)

Price:

CONTROLLER

FOR 8”
& 5.25”
DRIVES

Now be able to run standard 8” Shugart compatible drives
and 5.25" drives (including the H37 type) in double and
single density, automatically with one controller.

Your hard sectored 5.25" disks can be reformatted and
used as soft sectored double density disks. The FDC-880H
operates with or without the Heath hard sectored controller.

NEW PRICE $495
Includes controller board CP/M boot
prom, /O decoder prom, hardware/soft-
ware manuals BIOS source listing.
HDOS driver now available for $40.00.
5-20 day delivery-pay by check C.0.D., Visa, or M/C.

". Contact

7210 Clairemont Mesa Bivd
San Diego, CA 92111
Tel. (619) 560-1272

NOW 12 MEGABYTE
(CDR-10M) $2995

WINCHESTER SYSTEM

For the Heath/Zenith Computer

Systems complete with software, case, power supply, signal
cable and interface.
Runs with CP/M, on the H/Z89 & H8 (with Z80 card).

» Switching power supply  » Hard disk utilities
» Expansion for backup « Formatting program

installations « 1 year parts & workmanship
* Auto attach BJOS warranty

CP/M is a trademark of Digital Research Heath, HB, HB9 are trademarks of Heath
Corporation. Zenith, Z89, Z90 are trademarks of Zenith Data Systems

5-20 day delivery.
Pay by check,
C.OD, Visa,

or M/C.

Contact:

C.D.R. Systems Inc.
7210 Clairemont Mesa Bivd.
San Diego, CA 82111

Tel. (619) 560-1272

C.D.R. Systems Inc.
REMark * February 1984

57


http:f01$40.oo

Squeezing The Most

Out of Your
HDOS Diskettes

Glenn F. Roberts
9035 F Countrywood Drive
Knoxville, TN 37923

The intent of this article is to explain ways in which one can reduce
the amount of floppy disk space which must be reserved for system
files in the Heath Disk Operating System (HDOS). This is a particu-
larly important issue to H-8 and H/Z-89 users with only a single
hard-sectored type floppy disk drive. To a large extent this article
pulls together ideas from past articles in REMark, Sextant, and
Microcomputing, however, some of the ideas presented here have
not been described elsewhere. Even readers who don't feel they
need any more storage capacity (if such people exist) should be in-
terested in the disk concepts presented here.

Note: Some of the techniques presented here can lead to essentially
irreversible damage to the disk indexing structure if not performed
properly. It is recommended that you test them out on unused disks
first or else back up everything before starting.

Introduction

When | finished constructing my H-8 several years ago, one of the
first programs | wanted to try out was “Adventure” (HUG part no.
885-1010). | was recalling playing the game until the wee hours of
the morning during my undergraduate years and was anxious to pick
up my adventure where | had left off, somewhere in the twisty little
maze (or was it the maze of little twisty ...2). It was then that | got
my first real lesson in the realities of HDOS: it is big. After INITing
and SYSGENing a new disk, | deleted all of the files that didn’t have
the L (lock) flag set and found myself with 240 free sectors on the
new disk. A quick CATalog of the Adventure disk showed that | ap-
parently needed at least 246 (35 for the game itself, 188 for the main
data file, and 23 for the game parameters file). It took me a day or
two of fooling around until | discovered | could simply delete the
supposedly “locked” file DK.DVD to gain an extra 16 sectors, more
than enough to let me get my Adventure program up and running!

Since then | have learned a great deal about how HDOS works and
what tricks and techniques can be used to increase the user’s portion
of the disk space allocation. | thought it would be fun to go back now
and see just how many of those system sectors | could have recov-
ered for my own use had | known then what | know now. | ended
up recovering 56 more sectors, enough to let me SAVE three Adven-
ture games and still have room to spare. In the sections that follow,
1 will explain the steps | took to recover these sectors. Much of this
information is taken from past articles in REMark, Sextant, and
Microcomputing. The articles are referenced in the text by listing the
author and year of publication; refer to the listing at the end of the

article for the complete article citation. | urge the reader to look up
the original articles whenever possible. | will limit my discussion to
the “hard sectored” (H-17) type floppy disk formats which have been
standard on the H-8s and H/Z-89s, since these are the ones most
likely to exhibit space limitation problems. Much of what I say how-
ever applies to HDOS in general and thus is also applicable to the
newer “soft sectored” disks.

Minimal SYSGENing

Much of my original frustration with the Adventure game could have
been bypassed if | had simply taken the time to carefully read
through the HDOS manuals. Had | done so, | would have found that
the SYSGEN program has an option switch called “/MIN”. SYSGEN
is the program which copies the various system programs which are
needed to make a disk bootable. By typing SYSGEN /MIN one can
request that a minimal set of these system programs be copied to the
new disk. The files copied in this minimal configuration are de-
scribed below:

HDOS.SYS — Contains the main HDOS code including the TT:
device driver and the resident SCALLs (system routines) such as
.SCIN, .SCOUT, .EXIT, etc. This code must be resident in high mem-
ory atall times except during initial boot-up.

HDOSOVL0.SYS — This file contains the principal overlaid
SCALLS such as .OPENR, .CLOSE, .POSIT. These are “overlaid”
since HDOS has the ability to swap them out to disk when a user’s
program requires a large amount of memory.

HDOSOVL1.SYS — This file contains less frequently used SCALLS
such as .MOUNT, .RESET, and .DAD. Like HDOSOVLO, this file
isalso overiaid.

SYSCMD.SYS — This is the command processor program which is
loaded into low memory whenever the user is at the command level.
This is the program which generates the familiar “>" command
prompt. Its job is to process user commands either by calling system
routines (SCALLs), by linking to PIP, or by linking to a user’s pro-
gram. SYSCMD is loaded and takes control whenever an .EXIT
SCALL is issued by a running program.

PIP.ABS — This isa general file and device utility (Peripheral Inter-
change Program) which copies, lists, renames, and deletes files and
provides the user access to the disk directories. Some of the system
commands (e.g. COPY, TYPE, CAT, etc.) explicitly call PIP but it is
loaded and executed only as needed.

58

REMark + February « 1984



SY.DVD — This is the device driver for the H-17 disk drives. Its job
is to interpret specific device driver calls (e.g. read, write, mount,
abort, open, close, etc.) and control the disk hardware accordingly.
The important thing to remember about device drivers is that the
driver calls are the same regardless of the type of hardware being ac-
cessed. This “device independence” allows the application pro-
grammer to use software to interface almost any type of I/O device
to the system. For more information on device drivers and driver
calls, see “The HDOS Device Driver Programmer’s Guide”, (Dallas,
etal., 1981), or refer to the source files on the “Device Drivers” disk
distributed with HDOS,

RGT.SYS — This is the Reserved Group Table. Its primary function
is to allow HDOS to lock out disk sectors which are to be flagged
asunreadable.

GRT.SYS — This is the Group Reservation Table. HDOS stores
files in pieces which can be strung out on random tracks and sectors
throughout the disk. The GRT is a crucially important file since it
contains the pointer information which allows HDOS to piece files
back together into their original form. If the GRT file is damaged in
any way, HDOS may be unable to read any of the files on the disk.

DIRECT.SYS — This file contains the disk directory. The informa-
tion in this file, combined with that in the RGT and GRT tables, al-
lows HDOS to locate and modify any file catalogued on the disk,
either through a utility program like PIP or via a user program’s
SCALLs.

Note: For more information on the RGT, GRT, and DIRECT files,
the interested user is strongly urged to read Tom Jorgensen’s article
“Dissecting the HDOS Diskette” (Jorgenson, 1981) and Herb Fried-
man’sarticle “Understanding HDOS” (Friedman, 1983).

The above files will require a total of 129 sectors and the CAT com-
mand will report that there are 256 free sectors, for a total of 385
sectors. We know however that the disk is capable of storing 400
sectors (40 tracks at 10 sectors per track), so what happened to the
other 15 sectors? Ten of these “missing” sectors are accounted for
by track 0, sometimes called the boot track. When a new disk is IN-
ITialized, a “bootstrap” program is written on the first nine sectors
of this track. When the computer is booted, the routines in ROM
seek out track zero, load these nine sectors, and execute this
bootstrap program. In order to prevent HDOS from storing files here,
the entire first track is flagged as unusable by locking it out in the
Reserved Group Table (RGT) file. Thus, as far as HDOS is con-
cerned, these 10 sectors are unusable. The sectors on track O are nor-
mally read only during the process of mounting, dismounting, or
booting the disk.

The remaining five “missing” sectors are hidden in five of the nine
system files listed above. This occurs because HDOS allocates file
space in groups (also called clusters or extents) of two sectors at a
time, thus in reality all files require an even number of sectors on
the disk. Even though the CAT command may show that a file has
an odd length (e.g. HDOS.SYS is 31 sectors long), the user must re-
member that an extra sector is reserved for use by such files and that
this expansion space will not be counted as being available for other
uses. If you issue the CAT command with the /ALL flag, you will see
all allocated sectors shown and a total of 390 sectors (i.e. all but the
locked out track 0).

Resetting SYO:

Before going any further, | should take some time to discuss how and
when you may replace the main “boot” disk in drive 0. This is impor-
tant on single disk systems where you may not always need the sys-
tem files to be present. When a diskette is MOUNTed in HDOS
either directly, via the MOUNT or RESET command, or indirectly

by “booting” up with the disk, HDOS stores certain critical informa-
tion regarding the diskette in system RAM. This information includes
the volume number of the disk and the absolute track and sector lo-
cations of various system and directory related files on the disk. The
primary benefit of this scheme is that it speeds up disk access time.
The price we pay is that we cannot arbitrarily swap disks without first
informing HDOS via the RESET command (or equivalently the /RES
option of PIP).

Before RESETting the boot drive (SY0:) one should normally set the
“STAND-ALONE” flag using the SET program (Cohn, 1983;
Pinkston, 1983). The stand-alone mode of HDOS is a frequently
used yet undocumented feature of HDOS which forces all
“swapped” files to remain resident in system RAM (these files in-
clude the system overlays and device drivers). To set the stand-alone
mode merely type:

SET HDOS STAND-ALONE

Normal swapping mode can later be restored by SETting NO-
STAND-ALONE. The advantage of this feature is that SYO: can be
RESET to a disk containing only SYSCMD.SYS and PIP.SYS. The dis-
advantage is that the swapped out files now use up a chunk of RAM
(usually about 6K).

You can also change the disk in SYO: if you are running an applica-
tion program which is written to explicitly anticipate this situation.
The HUG DUMP program (HUG part #885-1062) does this by re-
vectoring one of the system ROM routines to a new routine which
does not check the disk volume number when it reads a sector from
the disk. Thus when you are running DUMP you may swap diskettes
arbitrarily in any of the drives so long as you put everything back
where it was before exiting from the program! Other ways to get
around these safety features of HDOS are mentioned in the article
“Disk Programming Without HDOS" (Smith, 1982).

| mention these points now since they may be of use in making the
various patches and changes discussed in the remainder of this arti-
cle, especially for readers with single drive systems.

Patch History Tables

If the MINimal SYSGEN does not give you the file space you need,
the first thing you might want to consider is eliminating the Patch
History Table (PHT) sector from all of your system files. The PHT was
designed as a special feature of HDOS to allow the PATCH program
to maintain a log of patches made to system programs (see Swayne,
1982a). In practice the PHT feature is rarely, if ever, used and can
easily be eliminated by simply removing the PHT sectors appended
to each system file. Note however, in light of my previous com-
ments, that removing the PHT sector will only be useful on files
which originally had an odd number of sectors. Such files will be
reduced to an even number of sectors and you will have recovered
two sectors.

The technique for removing the PHT is documented in the article
“Losing Weight with HDOS 2.0” (Swayne, 1981a). In this article,
Pat Swayne presents an assembler program which automatically
strips the PHT sector off system files. (Editor’ note: Be sure to correct
the program as shown in REMark #21, page 4.) The following files
can be reduced by two seconds each: EDIT, PATCH, INIT, SYSGEN,
TEST47, ASM, XREF, DBUG, PIP, HDOS, and HDOSOVL1, Reduc-
ing these last three would raise our free sector total to 262 in the min-
imal configuration described previously.

A Compact SY: Driver

If 262 sectors is not enough user space for you, you might next con-
sider creating a compact SY: device driver. This is another trick first
pointed out by Pat Swayne in his brief article “A Tiny SY.DVD”
(Swayne, 1981b). The SY: device driver is actually two programs

REMark + February * 1984

59



joined together; the driver itself, and the initialization code. The de-
signers of HDOS decided to include the device specific portion of
the initialization code in the driver itself. This makes it possible to
use the same INIT program to initialize various disk types (e.g. the
5-1/4" H-17 or the 8” H- 47), but it means we must carry along this
initialization code in all our drivers, even those not used for INITiali-
zation,

The “Device Drivers” disk distributed with HDOS contains the file
SYDVD.ASM which is the assembler source for the device driver
portion of the SY: driver. This was designed to be combined with
SYINIT (the initialization portion of the SY: driver) using the utility
program MAKMSD, however, the device driver portion also func-
tions fine by itself as long as you don’t want to initialize any disks
using it. If you assemble SYDVD.ASM, delete the original SY.DVD
file (it can be deleted even though it is locked), and rename
SYDVD.ABS as SY.DVD you will have an SY: device driver which
occupies only 4 sectors. This represents a savings of 6 sectors. Total
free space on our compact system disk is now 268 sectors! (Note:
if you are working on a single drive system, be sure to reboot after
doing anything with any device driver on your boot disk. This is nec-
essary because HDOS looks for device driver addresses only once,
at boot-up time, and moving the track and sector location of any de-
vice driver without informing HDOS can be disastrous.)

Trimming Fat DIRECTories

The HDOS directory (file DIRECT.SYS) is normally 9 groups (18 sec-
tors) long. Each group can store 22 file entries for a total of 198 file
entries. As Tom Jorgensen points out (Jorgenson, 1981), this is actu-
ally 22 more entries than the number of files it is currently possible
to write on the diskette. In surveying my own disks, | have found that
most of my diskettes contain no more than 30 or 40 files, and some
have fewer than 20. This means that | usually need only 2 or 4 sectors
allocated to the DIRECTory and thus can recover 14 to 16 sectors.
There are a number of “public domain” programs which allow one
to shorten the length of the directory. These may be availabie
through a local HUG or in the HUG area on Compuserve. (Editor’s
note: There is also REDUCDIR on HUG disk 885-1120.) If you don't
have access to one of these programs, you can recover these sectors
using the HUG’s DUMP program (disk #885-1062) and a little
knowledge of the diskette’s file structure.

The technique | will describe shortens the file DIRECT.SYS to only
2 sectors which will allow a maximum of 22 files to be stored on
the diskette. If you perform this modification and you subsequently
try to store more than 22 files, HDOS does not panic but merely in-
forms you that it has run out of directory space. You should perform
the following steps immediately after INITializing a new diskette
(i.e. before SYSGENing or COPYing any files to the new disk). Since
the technique is rather tricky, you might want to save a copy of the
final disk so that you can make more “mini-directory” disks at a later
time using an absolute sector by sector copy program such as DUP
(alsoon HUG utility disk #885-1062).

The directory file DIRECT.SYS is created by INIT.ABS and is nor-
mally located on the 18 sectors starting at track 13, sector 0. The
only time itwill not be located here is if you indicate that one or more
of the sectors in this area should be locked out because of some sort
of damage to the media. In order to speed up access time, the groups
in the directory are normally stored in an interleaved fashion starting
attrack 13, sector 2. Table 1 shows the normal locations of each of
the 18 sectors in the standard DIRECT.SYS file.

A freshly INITialized disk will have only three files on it: RGT.SYS,
GRT.SYS, and DIRECT.SYS. The directory entries for these files will
normally be located at the end of the 4th directory sector, that is on
track 13, sector 7. In order not to disturb these entries, the best way

Directory ! Track ' Absolute
Sector | ? Sector
1-2 13 ! 23
3-4 H 13 1 &7
5-6 H 13 ' o-1
7-8 i 13 1 4-S
9-10 H 13 H 8-9
11-12 14 i 2-3
13-14 | 14 - |
15-16 | 14 )
17-18 14 ! 4-5
1] ]

Table 1. Absolute track and sector locations of the 18 sectors which com-
prise the file DIRECT.SYS on a diskette which is initialized via INIT.

to make a 2-sector directory is to relocate the start of the file DI-
RECT.SYS to be track 13, sector 6, and the end to be track 13, sector
7. There are three places on the disk where patches must be made
to accomplish this: GRT.SYS, DIRECT.SYS, and the boot track.

The easiest patch to make is the boot track patch. As | mentioned
before, sectors 0-8 on track O are reserved for a 9 sector bootstrap
program. Sector 9 on track 0 is reserved for storing various pieces
of system information about the disk including the disk name and
votume (see Swayne, 1982c). The byte definitions for this sector are
contained in the file LABDEF.ACM on the “Software Tools” disk dis-
tributed with HDOS 2. The fourth byte of this sector (LAB.DIS) is the
pointer to the directory sector. This byte is needed by the bootstrap
program to find the directory and subsequently find the file
HDQOS.SYS. This byte is normally hexadecimal 84 (decimal 132),
thus it normally points to track 13, sector 2. Since we want the new
directory entry to be track 13, sector 6, we must change this byte
to hexadecimal 88 (decimal 136). This is easily done using the HUG
utility DUMP. Using DUMP, look at track 0, sector 9 of the disk to
be modified. The fourth byte should be changed from 84 to 88.

The next file to be patched is DIRECT.SYS. Since the bootstrap must
be able to scan through the directory before the normal HDOS file
handling routines are available, a simple chained structure is incor-
porated in the file itself to logically connect the directory sectors dur-
ing boot-up. Each 512 byte group of the directory can store 22 file
entries at 23 bytes each for a total of 506 bytes. The 507th byte is
always 0; the 508th byte is the number of bytes in each file entry
(normally hex 17); the next two bytes contain the address of the cur-
rent group; the last two bytes contain the address of the next group
{or zero to indicate the end of the directory).

The first patch we must make to DIRECT.SYS is to change these last
two bytes to 0 in what is to be the last group of our new directory,
in this case track 13, sector 7. Using DUMP to look at this sector,
you will see that the next to last byte will be hexadecimal 82 (indicat-
ing that the next group in the directory is at track 13, sector 0). By
changing this byte to 0, you will inform the bootstrap that this is now
the end of the directory.

If any of the above patches are done incorrectly, the disk will proba-
bly not be bootable. The remaining patches are to tell the normal
HDOS file handling routines the information it needs about the file
DIRECT.SYS. If any of these are performed incorrectly, you will
probably get the “Disk Structure Corrupt” message when you try to
boot or mount the disk.

The next patch is also made to DIRECT.SYS. In this patch you must
change the entries for the file “DIRECT.SYS” itself, in particular you
must change the values for the starting and ending groups. Refer to
Table 2 which is taken from the file DIRDEF.ACM (on the “Software
Tools” disk that comes with the HDOS distribution package) and
shows the layout of each 23 byte directory entry.

60

REMark e February 1984



ORG [
DIR.NAM D5 8 File Name
DIR.EXT D3 3 Extension
DIR.PRO DS 1 Project
DIR.VER D3 1 Version
DIR.CLU BS 1 Cluster Factor
DIR.FLG D3 1 Flags

DS 1 (reserved)
DIR.FGN DS 1 First Group Number
DIR.LGN DS 1 Last Group Number
DIR.LSI DS 1 Last Sector Index
DIR.CRD DS 2 Creation Date
DIR.ALD DS 2 Last Alteration Date

Table 2. The layout of each directory file entry.

The 16th and 17th byte of each directory entry is the first group
number and last group number for that file, respectively. Since these
are group numbers, we must multiply by the number of sectors per
group (two) to get the track and sector. For the file DIRECT.SYS, the
first group number is normally hexadecimal 42. Multiplying by 2 we
get hexadecimal 84 which is decimal 132, or track 13, sector 2, just
as we showed in Table 1. In the new “mini” DIRECT.SYS, the first
group and last group will both be track 13, sector 6 (hexadecimal
88), thus the new values for entries DIR.FGN and DIR.LGN will be
88/2 = 44.

Using DUMP you can now modify the first and last group numbers
for the file DIRECT.SYS to both be 44, These should normally be
found inbytes DC and DD (hexadecimal) of track 13, sector 7.

The last patch which has to be made before the mini-directory is in
place is a patch to the file GRT.SYS. This file contains the group res-
ervation table which is nothing more than a series of pointers which
tell HDOS how to reconstruct the files on the diskette. To see how
a file can be strung out over many portions of a disk, you may
examine a file’s structure as follows. Using DUMP and the informa-
tion in Table 2, locate the file’s first and last group numbers in the
file DIRECT.SYS, then DUMP the single sector file GRT.SYS (nor-
mally on track 14, sector 8) onto the screen. Beginning with the first
group number, look into the GRT at the corresponding entry, for ex-
ample if the first group number is hex 42 (as is normally the case for
the file DIRECT.SYS), then look at the byte at location 42 in the GRT.
The entry at this location will be the number of the next group in the
file. If you look at the GRT entry corresponding to this number you
will find the next group number, and so on. When you find an entry
in the GRT which is zero, you know you are at the end of the chain.
The cell containing this terminating zero should correspond to the
last group number as found in the directory. If you reconstruct the
sequence of groups for the file DIRECT.SYS in this manner, you will
normally obtain the following: 42, 44, 41, 43, 45, 47, 49, 46, 48.
If you convert these 9 numbers to decimal track and sector locations,
you will getthe valuesin Table 1.

Now with this information you can easily make the patch to the
GRT. The new file DIRECT.SYS will start and end at group number
44 (hexadecimal). This means that we don’t have to chain any
groups together, we simply need to indicate that group 44 is the last
group. We do this by using DUMP to place a zero in byte 44 in the
GRT. Note that when you make changes to the GRT table, the disk
being changed should NOT be MOUNTed since when it is later DIS-
MOUNTed or RESET, HDOS will copy back the version of GRT
which it maintains in RAM. You can do the patch using DUMP since
DUMP allows you to change the disks at random, just be sure and
put all disks back where they were before Control-C’ing out of
DUMP.

You should now be able to mount this diskette and find that the file

DIRECT.SYS is only 2 sectors long. If you get the “corrupt” message
you did something wrong. Try and find your mistake using DUMP.
If you have made no mistakes, then you now have a diskette with
284 free sectors.

Application and Turnkey Systems

Making the changes outlined so far is about as far as you can go and
still retain all of the features of HDOS. Very often however, one
needs to set up an application disk which will only be used to exe-
cute some pre-specified set of application programs. On most such
disks you can delete the file PIP.ABS. (For help deleting “locked”
files, see “Recovering a Deleted File”, Harton, 1981, “Recovering
Deleted Files In HDOS and CP/M”, Swayne, 1982b, or “PATCH
Mysteries Revealed”, Swayne, 1982a.) After you have deleted PIP,
you will no longer be able to use the commands HELP, TYPE, LIST,
DELETE, RENAME, CAT, DIR, IND, or INDEX since all of these re-
quire PIP to perform their tasks. If you try to use one of these com-
mands, HDOS will simply inform you that it needs PIP to perform
the command. If you delete PIP you will have recovered 20 sectors,
bringing the total to 304 free.

Going one step further, you may want to set up a “turnkey” system
such that your application program is automatically executed on
boot-up and the disks are automatically dismounted upon program
termination. My ADVENTURE disk is a good example of such a
case. HDOS has a built in feature which automatically scans the di-
rectory for a file called PROLOGUE.SYS upon booting up. If such
afile is found, execution is passed to it as soon as the normal HDOS
system files are loaded. If no such file is present, control is passed
to SYSCMD.SYS and the user is prompted for a command in the
usual manner. This feature allows you to set up such a turnkey sys-
tem by renaming your program to “PROLOGUE.SYS”. In a turnkey
system, you won’t normally need to have the file SYSCMD.SYS since
all interaction with the user should be handled by your program.
You could simply delete SYSCMD.SYS, but nasty things will happen
if your program tries to return to HDOS via the .EXIT SCALL. A better
way is to create a new version of SYSCMD.SYS which simply dis-
mounts the system disks and returns to boot level. Listing 1 shows
such a program. When you assemble this program and rename it to
SYSCMD.SYS, then rename your application program to PRO-
LOGUE.SYS, you will have a turnkey system which will run only
your specified program and will dismount the disks upon program
termination.

Going Further

One rather sophisticated trick which the ambitious programmer
might want to try is to recover some of the sectors on the boot track
(track 0). | mentioned previously that the first 9 sectors on track 0
are reserved for the bootstrap program. These are “locked out” to
HDOS by flagging them as unusable in the Group Reservation Table
(GRT.SYS). Much of this space is not needed, in fact | have written
a bootstrap program which resides in only 2 sectors. | did this by dis-
assembling the original 9 sector version, eliminating unneeded
code, reassembling, and storing the code on track 0. A surprisingly
large amount of the original code can be eliminated, for instance:
1) most of the first two sectors are reserved for use on DK: type de-
vices where the basic disk access software is not in the H-17 ROM;
2) much of the code is for accessing the older type cassette serial in-
terface (H-8-5); 3) part of the code is used to determine the baud set-
ting (which | always leave at 9600); 4) a big piece of the code is used
for computing sector checksums.

If you do create a custom bootstrap as | did, you will have up to 7
more sectors free on track 0. You might think that you could simply
“unlock” these sectors in GRT.SYS to make them available for gen-
eral use by HDOS. Unfortunately the boot track is initialized with

REMark « February « 1984

61



a volume number of zero which will be different from the volume
number on the other tracks (it must be between 1 and 255). This is
done so that the bootstrap program itself can initially be read in,
however, it means that if you try to read it through the HDOS
SCALLs, you will get an error. One way around this is to read and
write to this sector using the ROM routines directly as described in
“Disk Programming Without HDOS” (Smith, 1982). You can also
read track O using the undocumented “read regardless” call to the
SY driver (Swayne, 1982c). There are some nice things that can be
done with these extra sectors. Because they are not “readable” as
normal HDOS files, they are the perfect place to store passwords,
deciphering keys for encoding files, and any other sensitive informa-
tion.

This is about as far as you can normally go toward reducing the
HDOS overhead on your system disks. If you need even more space,
about the only thing you can do is run without HDOS altogether.
This involves calling the H-17 ROM disk driver directly to do reading
and writing, but it entirely eliminates all HDOS system files from the
disk. It also requires the user to provide the means to maintain a file
directory as well as any other services previously provided by
HDOS. This technique is discussed in Smith (1982).

Conclusion

In this article, | have attempted to summarize some of the “tricks”
which can be used to reduce the amount of disk space which must
be set aside for HDOS system use. As a minimum, most users can
easily retrieve 30 disk sectors for their own use, however, one can
go further, even to the point of eliminating HDOS altogether! The
articles | have cited represent some of the best technical articles I've
seen on HDOS and | urge interested readers to refer to them as well
as the excellent Heath manuals for more in-depth treatment of some
of these topics.

Articles Cited

Cohn, C. E. Summer 1983. “Squeeze More Disk Space Out of
HDOQOS”, Sextant, Issue #6.

Dallas, A., Lamm, D., and Jorgenson, T. September 1981. “The
HDOS Device Driver Programmer’s Guide”, REMark, Issue #20.

Friedman, H. Spring 1983. “Understanding HDOS, Parts 1, 2, and
3", Sextant, Issue #5.

Harton, D. August 1981. “Recovering a Deleted File”, REMark,
Issue #19.

Jorgenson, T. july 1981. “Dissecting the HDOS Diskette”, Micro-
computing, Vol. 5, No. 7.

Pinkston, W. June 1983. “Out In The Boonies With a Single Drive
H/Z-89”, REMark, Issue #41.

Smith, R. E. Spring 1982. “Disk Programming Without HDOS"”, Sex-
tant, Issue #1.

Swayne, P. August 1981a. “Losing Weight with HDOS 2.0”, RE-
Mark, Issue #19.

Swayne, P. December 1981b. “A Tiny SY.DVD”, REMark, Issue
#23.

Swayne, P. May 1982a. “PATCH Mysteries Revealed”, REMark,
Issue #28.

Swayne, P. October 1982b. “Recovering Deleted Files In HDOS
and CP/M”, REMark, Issue #33.

Swayne, P. December 1982c. “What's In A Name?”, REMark, Issue

#35.
%

b TINYCMD - Tiny replacement for SYSCMD.SYS
#
* Purpose: To deny the user access to HDUS
* system commands in "turnkey" applications.
*
* G. F. Roberts 9/25/83
#
* This piece of code may be used to replace
* SYSCMD.SYS on version 2 of HOOS. It auto-
* matically dismounts all disks when any user
* program tries to return to HDOS command level
* via an EXIT SCALL. To install it first delete
* the old SYSCMD.SYS, then assemble this code and
* rename it to SYSCMD,SYS. The XTEXT files
* can be found on the HDOS distribution disks.
#
XTEXT  HOSEQU HDOS equates
XTEXT  ASCII ASCII equivalences
XTEXT  HOSDEF HDOS definitions
XTEXT  TYPTX Text typing routine
XTEXT  OVLDEF Overlay definitians
ORG USERFUWA ORG at start of user RAM
LON C List all XTEXT code
*
* Entry point
*
START  CALL $00S Dismount all disks
JMP ROMBOOT and jump to bootup
XTEXT  DOS Dismount disks routine
XTEXT  RCHAR Read character routine
END START End of program.
Listing 1.
€ .na PASCAL
(86 te for UNIK compatibility, port-
d Heath/Zenith comuter
sy Fastest execution time in Byte Benchmark,
Lo $395 (or write for discount)
805 € Fast and efficient. Ouick, easy compile and link.

. by Leor Zolman.
Yery popular in CP/ s
with some additional features. Ver. 1.5 CP/M 80/85.

iatabase community. Healthy sub

SR de to standard
$150 (or write for discount)

C/80 and NATH PACK . .
Heath/Zenith community. Fa
standard., Ver. 3, floats a

OLWORKS, Very popular in

of K&R de facto

or write for disccunt)

LUCIDATA PASCAL and P-CODE TRANSLATE . . . by POLYRYTES. Sophisti-

erful, p-code convenience as well as native-code speed and efficiency. Can

ed 20 Tinked using Microsoft's MBO/LBO. Specify WOOS or CO/M AO/85,
Both Fuckages for 480 (or write for discount)

atly rate high in published reviews and benchmark evalua-
ntation and have cemonstrated outstanding user support,

tions an¢ are royalty free,

A11 of the above compilers consiste
tions, They include superior ¢
They are all very mature implement

The following YIGENWARE software packages are customized for Heath/Zenith
computer systems:

GETTING STARTED 1IN C . .

for learning the C prograsmins

Vibrary of indexed examples and utilities
macros and functions for H/Z features.

. structured
anquage. Incl

Specify BOS or C/80 for CP/M BO/8S; CP/M B6 or ID0S for CEG. $24.95
DISCOVERLING PASCAL . . . prograsming tuterial and source code library for the
financial calculator. Specify [BM for Z00S or LUCIDATA for CP/M B0/85, $24,95

FINANCE . . . *what-if* on-screen anaiysis of time-valued financial tranzactions.
Interactive selection of parameters. Solve for any one of the financial variables.
amortization schedules, Specify CPAM 80/85 or 7905,

ARCHIVE . . . avaid disk clutter, s
single file. A very neat way to org:

Print
524,95

pace by putting many ASCIl (text] files in a
ce rode libraries and backup files of several

aifferent packages on a single

5" Zenith disk formats are supported excent %6
order. Include $2.50 for shipping and handling
esidents,

:J

62

REMark « February

1984


http:1.)rt!JUJ.ge
http:A-eUOnac.le

Simply Graph It!

Crawford MacKeand
115 South Spring Valley Rd.
Greenville, DE 19807

beis all very good to have written a program

that does a neat calculation, but many of the
most interesting routines are still to come
when the math is all completed. How do
you tell the user all about the good things
that he just calculated? And what about the
possibility that tables of numbers are not the
best way to present the data? Maybe there
are graphical methods of doing it. | person-
ally feel more comfortable with numbers
than | do with pictures, especially when | sit
at a keyboard. However, there are times
when the old saying that a picture is worth
athousand words comes true, even from my
biased pointof view!

19@ NEXT N
1568 N=N-1

S5O3¢ PRINT®
Sed4n FRINT"
5039 PRINT”

SA70 PRINT: NM=N:

Those of you who have tried to write a scien-
tific or an engineering program of any sort
will have gone through the experience of

setting up the equations and finding with de- S18% PRINT TAB(12);"---" - et
. i S1%@ S%= -LEN(STRS(U(L)1)/2: PRINT TAB(SN+1S); @) ; TABISA+3H); Lil);e
light that the answer comes out of the saus TABESEaAS). i2): TRES 01, M)y TABCSESSS, UA)

age machine, after debugging of course, just
as it was supposed to. And then you realize
...... but that's just one answer, and to do
any real good with it | am going to need araft
of them. So you sit down and soon you have
a nifty table of all that good information, and
you have learned something about format-
ting and the sun is shining and everything is
good.

S2éd PRINT:

S3eq END

160 DIN B(Z6,9): Bi="Length, ft.":
116 OPEN"T" #1 "SYL:MDATA.BAS™
120 FOR N = | T 1%

136 INPUTHL, BIN,®) BN, 1), E(N,2),BIN,2), EIN, &), B(N,5)

Seag REM sessesdassdar Graphic presentation sub-routine (verl)#zadsizasassas
5910 CLOSE: PRINT: PRINT
5020 PRINT"Any calculated variable can be plotted against the ranaed variable.”

Sesh INPUT " Enter code for required plot.
IF HL.=@¢ THEN S3ee

Seae INFUT " Enter plot max. and min. values of selected variable
090 IF UX <= UN THEN PRINT * Max. must be greater than min.''": GOTO 5824
5190 REM Graphic construction starts.

5110 UD=(UX-UN)/d4: FOR I3 = @ TO 4: ULI3) = INTI100% (UN+IZ2UD))/106: NEXT 12
5128 FRINT C53: FRINT TAB(Z&); “VERTICAL CO-ORDIMATE “:B4

5130 Wi = ABSIN)}: IF (N+#1)/2=INTUIN+#1)/2) THEN PRINT" ";B(WL,®),; ELSE PRINT,;
J = INTO1S + &0 (BUWL,HL)=UN) 7 (UDe4a) )

S15@ IF JX75 THEN J=7&: Gi=CHRE(62): GOTO S17@

G168 IF (BIWL HL)=UNI<® THEN J=0: O3=CHR$(&9)

S517@ PRINT TAB(J); GB: N=N-1: IF N:@ THEN 5138

9140 Gb = CHR$(4D):

ON HL 0OTO S21@,5226, 5220, 5240, 5256
5216 PRINT TAE(32);"INPUT RESISTANCE ohms,™
5228 FRINT TARIZZ);" INPUT REACTAMCE ohms.”
5230 FRINT TAB(3Z);"INPUT STANDING WAVE RATIO";:GOTO S246
S28@ PRINT TAB(3Z);"NOMINAL ATTENUATION 4B."
525G PRINT TAB(2Z);"ACTUAL ATTENUATION 4B."
5250 PRINT TABL&G); "More plots Y3INZ";

5276 INFUT CB: N=NM: IF C#="y" DR Ci="Y" THEN FRINT C3i: GOTO 529

CSL=CHREIZT I+ E"

Input Resistance (1)
Input SWR (3)
Nominal Atten. (4)

Input Reactance (2}

Actual Atten.  (5)
If none required, enter <82 “; HL

"7 UX, UN

+360TO 5280
1200TD 5260

3:GOTO 5286

Figure 1

Well, maybe. What do you do with those results? Five times out
of ten, or even more, you promptly get a piece of paper and make
a rough graph to see what they look like. That is the point that
| had arrived at when | decided: if the H19 can tabulate it, then
it can graph it, too. Seemed like a simple task (it is, too), but
the canned routines that | found in any references at hand were
complicated. Unduly complicated | thought, for the construction
of a simple quick and dirty graph ..... and long. Look, | just
wanted a little subroutine to tack on the end of a program that
was already getting too close 1o the limits of 64K in the H8.

The result of the next fit of headscratching was a reasonably short
routine, which did some of the things | wanted it to do, in a very
simple minded way. It was grand, if you could wait! But since
it is easy to explain, lets start with it first. The root of the idea

was to set up a loop something like this:

Laoa
1910
1020
1639

READ X

A=A+1 1 IF ACX THEN PRINT " ";: GOTO l@1@
PRINT *#*

A=0: GOTO 10600

The operation was very simple. You read the value of the variable
X and then go to the first line of the graph. It checks to see whether
the value of A is less than that of your variable X, and if not,
it adds one to A and tries again. It also steps the cursor one place
across the screen by printing a space with the PRINT “ 7.

When eventually A reaches the value of X, the IF statement says
go to the next line (1020) and print an * or whatever you want
to use to denote the points of the line. It also says it is done with
this line of the graph (there’s no ; after the PRINT statement this

REMark * February = 1984

63


http:TA8IS7.+.30
http:IJD=(lJX-I.lN
http:sent.::!.ti

time) and then sets the counter A back to zero and goes round
again. Great, as long as the variable X knows that it is only allowed
to vary between 0 and 80, and as long as you don’t want any
labels on the axes, and as long as you don’t want the axes marked
in any way with a line or some divisions, or in fact any of the
good things which will make your graph useful. And also as long
as you don’t care that it is as slow as ditchwater.

But the principle is there. Obviously moving the cursor like that
is not an efficient use of the system, and equally obviously there
has to be some way of putting in the labels that are missing, and
we most certainly have to provide a method of handling all of
the different ranges of variable that the routine may encounter.
And finally, the READ statement is not going to be an adequate
way to introduce all the information from an actual program situa-
tion, So there are a number of factors to be dealt with. But in
the end, it proved to be quite tractable and resulted in the short
program seen in figure 1. The meat is in lines 5110 to 5190, and
the rest just selects the variable we want to display and sees that
the graph has the proper title blocks.

The first essential is to be able to read the data conveniently from
an external source. The program | was working with was easily
induced to put its data into an array format from which the graphic
routine could recover the data. The chosen format for a variable
is X = B(N,M) where X is the dependent variable to be plotted
on the horizontal axis and N is a number which tells you where
you are in the list of the key variables. M tells you which variable
it is, if there is a choice of more than one dependent variable
to plot, and M=0 specifies the key variable, as you can see in
figure 2. This sounds quite formidable but the examples below
using the sample data file in figure 2 will clarify the usage. There
is one restriction on the key variable. It must change regularly.
That is to say, it can go 7, 9, 11, 13, 15, 17, 19, 21 etc., or
6.3, 6.6, 7.2, 7.5 etc. But not 21, 23.2, 26.1, 28.7, 30.1 etc.
Since it is most likely that you will have generated its various values
with a FOR...NEXT loop, which will automatically satisfy this con-
dition, itis unlikely to present a problem.

The next change you can see is in line 5170. Instead of pushing
the cursor gradually across the screen until it has arrived at the
right place, now | calculate the position in line 5140 (variable
| defines the place) and | go straight to the spot with a TAB. Much
easier. But let’s go through the program on a blow by blow basis.
Lines 5020 through 5060 find out which variable we want to graph,
and H% retains that information. Next we are asked to choose
the maximum and minimum limits of the horizontal axis. At first
I was going to make this automatic, but soon realized that a manual
entry was easier and more useful. This is especially true if you
want to compare variables from several runs on a common basis.
At line 5110 the intermediate values for the labels on the horizontal
axis are calculated for the half and quarter points. (There is only
room for five on an 80 column screen if it is not to be crowded,
and it looks about right this way.) The next line does a screen
clear and inserts the name for the vertical axis, and line 5130
inserts the values for the vertical axis. It does this for each alternate
line, using the tab comma to set the beginning of the graphic space
at column 16, whether or not it is writing a number label. Forget
the ABS for the moment and note that W% = N (most often any-
way!). Line 5140 is where the work is done. Here the variable
is called by its name B(W%,M%) which is B(N,M), except that
I am using M% instead of M to save some space. Then the number
is scaled in 60ths. That is to say that if | have chosen the range
for the horizontal scale to be 50 to 100, and the value of B(N,M)
is 75, I will get the answer (30). The point (75) is half way between
50 and 100, and the point (30) is half way between 1 and 60.

Then add 15 to get into my chosen graph space which is from
16 to 75, and you have the TAB argument. If the value were 100,
| would get 60, and if it were 50, | would get 0. Adding 15 again,
we arrive at the required TAB position for the printed *. (The initial
TAB of 15 leaves space for the vertical numbers.) | also specify
the character to print the graph line as the string G$, and ASCI|
42 is the * that | chose.

One of the problem areas is handled by the next two lines. If
you elect to set the graph’s upper and lower bounds manually,
then you will obviously have to deal with the situation where the
line runs off one side or other of the graph. It is also very desirable
to show that it did so, and in which direction. If ] is greater than
75 then, | show a > in the line 76 position, the > being selected
by the new value of CHR$(62) for G$. If on the other hand the
line 5140 calculation wants to TAB off the graph in the left hand
direction, then | show a < in the zero (column 16) position. Line
5170 prints the *, the <, or the >, decrements the row counter
by one, and goes around again if there are any rows left to print.
The ABS in line 5130 comes in at this point, where in some im-
plementations the routine would slide a negative N into the B(N,M)
array bringing the whole thing to a shuddering halt. The ABS func-
tion ensures that the array subscript cannot be negative and it has
stayed there for safety!

Then finally, 5180 and 5190 print the horizontal axis, the interval
marks and associated values, and the ON GOTO selects the correct
name for this axis using the selected value of H%. One last ques-
tion, “Do you want to do it again?’, and it's all over. Oh yes,
a final note. NM in lines 5070 and 5270 saves the original value
of N for any reruns you do.

As | mentioned above, the program source was induced to put
its data into an array from which the graphic routine could read
the data, but to test the program, | wanted to take the information
in from a data file on the disc. So now let’s look at the data in
the data file in figure 2,

M= @ 1 2 3 4 S
N=1 1@ 27.8324 11.909 1.97 LB7E71 .¥8811
N=2 15 31.43S 17.9854 1.96 L 1peRs 13193
N=3  2¢ 35.875 23.671 1.95 .14142  .1756
s 58 S 42.982  2B.963 1.94 17677 .21912
w0 3¢ S52.7594 32.77 195 21213 26249
aen 35 65.7331 32,139 1,92 .24748 .30572
e 44 B8B.4445 27,637 1.9 . 28284 .7F4881
45 92.@478 12,389 1.89 .3181% 39175
S 93.8662 -7.771 1.88 . 35355 .432457
55 B84.6879 -24.4697 1.87 . 3889 47725
& 78.4399 —-35.211 1.86 .42426 .5198
65  56.9593 ~34.401 1.8 .45961 .56222
74 46.468 -31.397 1.84 .49497 | 6H452
75 38.9766 -26.5@2 1.83 .53BI3 64667
8¢ 33.8742 -2¢.923 1.82 .56568 .&B887S
85 3@.5717 -15.189 1.81 63134 73868
.. 9% 28.6488 -9.5 1.8 L63639 7725
.18 95 27.8497 -3.986 1.8 L67175  .81421
N=19 1¢¢d 28.d533 1.6 Y79 L7971 . 8358
Figure 2

(For anyone who is interested, the data is real, and comes from
a transmission line calculation giving length, Rin, Xin, SWR, and
attenuation in two flavors.)

The data was put on the disc just as you see it in figure 2, but
without the line and column number notations, and of course the
spacing has been tidied up to make it pretty! In the test format,
the program reads the data from DATA.BAS into the arrays that
are set up at line 130, using the OPEN instruction for file #1

64

REMark « February « 1984



VERTICAL CO-ORDINATE Lengtn, #t.
M

] 25 50 = 102

INPUT RESISTANCE ohms, Morae plots “Y . N7

Figure 3

VERTICAL CO-ORDIMNATE
L .

Length, #t.

" 19 8

INFUT REACTANCE ohma Hore plots <Y Ny

Figure 4

which starts the system off at line 110. A minor point in using
the display is the number of key variables which can be handled.
If the graph is to be displayed to the best advantage on the 25
line H/Z19 or similar screen, then a count of 18 will just fill it
and allow space for titles etc. This is also approximately square.
If a longer graph is required, then it is necessary to print it as
it is generated, in which case there is no real limit other than
string storage space.

In figures 3 and 4 you can see what the resulting graphs look
like. Adequate for most in-work calculations, but obviously not

a graphics package quality. That's it. Twelve lines of BASIC and
you have a simple effective graph generator. And with a screen
dump or an echo, you can print it in hard copy. | use a screen
dump as the most effective method for this sort of quick graphic,
but a small change to the code would also enable you to print
directly from a BASIC program. | hope you find it as useful as
| have, and the next stage is the simultaneous printing of two vari-
ables. But there is always a next stage just in sight down the pike,
and a bunch of other projects clamoring for attention. So that will
just have to wait! *

<= Vectored from 8

support the use of PeachText with a terminal. | have tried every
combination of Baud, Handshake, Stop Bits, etc.

Can someone out there help me?!

Also, here are a pair of Z-DOS assembler programs for turning on
and off the Interlace Mode on an H/Z-100. | am using this with an
Amdek Amber monitor and really like the display quality much bet-
ter than the non-interlaced mode. | don’t know if this will work on
other brands of monitors. To use this program, write it up using
Edlin, then use MASM and LINK to assemble it. Then just type the
“Interlac” command. | hope these programs are helpful to someone
else,

t==={MTERLAC--= puts the screen .n tHe incerlace mocae
SALIST

INULULE DEFASTIL.ASH

[NCLUDE DEFRS. ASH

LIST
STEHSEG SEGPEMT STACK
oe 100OH DUF (T
STHSEG ENOS
DATASEG SEGMEMT
RTADDR DD L]
MESG DB ¥ s — THE SCREEN IS WNDW IM THE [NTERLACE NODE-===== v
oe ©C_CR.CC_LF,
DE ‘thers are dots interlaced betwaen the normal
e ‘dot pattarn’ ,CC_CR,CC_LF,
nE ‘wou may notice 4 slight shimmering or fuzz:iness .
o8 CC_CR,CC_LF
oe if this i1s objectionable vou may r2turn to the normal’,
DB ‘mode by  ,CC_CF,CC_LF,
-] “typang - FILLINTR®,
DB CC_CR,CC_LF, s’

DATASEG =NDS

FGM3EG SEGMEMT
ASSUME CS:AGMSEG,SS5:STHSES, 0S: DATASEG . ES: NOTHING
START:
fale AY DATASES
nov DS.A%
nov WORD TR RTADDR=Z.ES :save pragram heacder AC3ress
mov DX ,OFFSET MESG igec message adoress
Hov A3
ouTt DOCH , AL
MoV AL.LZ
ouT I0DH AL
mov &, DOSF _QUTSTR iget orint string func:izn ccode
INT 0RS1 _FUNC JPRINT STRING
IrF RTADDR (terminate program
FGHSES ENDS
EMD START

P r ILLINTH-~-r@turne Lthe screen to the normal mode

- RALUST
INULUDE DEFASCII.ASH
INLLULE DEFMS.ASH

L1.18T
STKSEQ SEGMENT STACK
DB 1006 DUFL7)
BTKBEG ENDB
DATABEAG BEGHENT
RTADDR DD o
rESE DE St THE BCHEEN 1B NOW 1IN THE MNORMAL MODE------ “a
DB CC_CK,CC_LF,
DB ‘to put 1t back in the interlaced mode’,
DB Cr._CR,CC_LF,
oB ‘eype= INTERLAL o '8
DATASEG ENDS
FOMBEEG SEGHENT
ALSUME (6 PBMSED,ES1 8TKEEG, DS DATASES, EG 1 NOTHING
START)
nov A, DATABED
MOV D5, AR
MOV wORD PTR KTADDR+Z,ES jsave progran headder address
oy DX ,UFFBET MEBE iget mesnage sdoress
MV AL, B
out QDCH, AL
nov AL, 12
LT QDUH AL
MOV AH, DOSF _UUTETR iget print string function code
INT DUST_FUNC JPRINT STRING
JnP RTADLR jtersminate progras
FPGHBEG ENDS
END H$TART
Stan Gray

Manufacturing Innovations
10210E. 50th Street
Tulsa, OK 74146

New Info On FT.HUG
Dear HUG,

| would like to correct the information you have on file concerning
the FT.HUG club.

Club name: FT.HUG Fort Collins Heath Users” Group
Club Address: 3317 Buckskin Trail, Laporte, CO 80535
Contact: Charles Mcjilton ~ Phone: 493-2987
Alternate Contact: Bob Strieby

Phone: 221-3984/482-3896 (work)

Group Size: 30

REMark = February = 1984

65



Support and More

From the Heath/Zenith Compatibility Leaders

H8 PRODUCTS

The Most Extensive Line of Hardware Support for the H8®

e DG-80/FP8

Z80® based CPU including the powerful FP8 monitor — both only $199.00. The acclaimed FP8 monitor package

is included with the DG-80 CP(.
e DG-64D/64K RAM Board

Reliable, Low Power, High Capacity Bank-selectable RAM

Priced from $233.00 (0OK) to $299.00 (64K)
e DG Static 64

Fully Static, High Capacity, Bank-selectable RAM. Also can be used as EPROM/PROM board (2716 type

EPROMS). Priced from $199.00 (0K) to $499.00 (64K).

® DG-32D/32K RAM Board

Low cost, Dependable RAM for the H8 32K Version Only $179.00.

e DG-ADP4
H17-4 MHz disk adaptor — $19.95

THE SUPER 89

The DG SUPER 89 is a replacement central processor
board for the Heath/Zenith 88-89 series of computers.
The DG SUPER 89 offers advanced features not
available on the standard Heath/Zenith 88-89 such as
4 MHz operation, real-time clock, optional AM9511A
arithmetic processor, up to 256K of bank selectable
RAM with parity check, and HDOS, CP/M and MP/M

HEARTBEAT

The DG Heartbeat is a compact computer system
designed to be hardware and software compatible with
the popular Heath/Zenith Z89/90 computer product
line. The Heartbeat offers advanced features not found
on the standard Heath/Zenith computer such as 4 MHz
operation, real-time clock/calendar, two RS-232 serial
ports, five peripheral expansion slots, 128 Kbytes
(expandable to 256 Kbytes) parity checked RAM and
provisions for an optional AM9511 Arithmetic
Processor. Compatible with HDOS, CP/M and MP/M 1|
(Multi-user) operating systems. Electronic Disk

compatibility. By incorporating current state-of-the-art
technology available for the 280, the DG SUPER 89
offers the user increased speed and system reliability
for years to come. Full compatibility with all Health/
Zenith software and hardware products is designed into
the DG SUPER 89. Electronic Disk Software included.
Priced from $829.00 (128K) to $989.00 (256K).

Software included. The Heartbeat may be used with
most popular video terminals on the market although
the Heath/Zenith H/Z19, H/Z29 and ZT-10/11 video
terminals are recommended for full Heath/Zenith
software compatibility. The Heartbeat cabinet design
provides for inclusion of hard and/or floppy disk drives
as well as other desired peripheral interfaces and is
color-coordinated for use with the Zenith Z29 and
ZT-10/11 video terminals. Priced from $1350.00 (Basic
{Unit).

CP/M®, MP/M and MP/M II® are registered trademarks of Digital Research of Pacific Grove, California.
HB8/89%, Z89/90®, H17®, H77®, H/Z 47, 767 and H-88-1% are registered trademarks of the Heath Company and Zenith Data Systems.

280® and ZB0A® are the registered trademarks of Zilog Corporation.

ELECTRONIC

'ml

Ordering Information: Products histed available trom DG Electronic Devel
opments Co - 700 South Armstrong Demson. Tx 75020 Check, Maoney
Order VISA or MasterCard accepted Phone orders call (214) 465-7805

D E v E L D p M E N T S c o Freight prepard Allow 3 weeks Tor personal checks toclear Texas residenis
®  3dd 5% Foregnorders add 30% Prices subiect 10 change withou! nolice




Meetings: Held in members’ homes, first Tuesday of the month
Time: 7:00 p.m.

Bulletin board: Under construction, expected early ‘84
Newsletter: Mailed monthly to members and exchange clubs
Dues: $6.00 annually

| would like to thank you for the fine job you have done to make
REMark a fine source of information for all Heath/Zenith users’.

FT.HUG

%Charles Mclilton
3317 Buckskin Trail
Laporte, CO 80535

Patch Needed for Peachtext
Dear HUG,

How about some info for patching Peachtext for the capabilities
of more sophisticated dot matrix printers, such as my “OK|"” 922

Bradford C. Meyers
46-146 Kiowai Street, #2612
Kaneohe, HI 96744

HELP!!

Dear HUG,

Having been involved in Ham Radio for many years and having
operated RTTY almost exclusively, | have become quite interested
in the AMTOR system. | wonder if anyone can help me put my
H-89 on this mode? Any help would be appreciated very much.

Gorden Weiler
4843 N. 90th St.
Milwaukee, WI 53225

“My Favorite Subroutines”
Dear HUG,

How about a column entitled “My Favorite Subroutines”? You
could limit the size to say, 10 lines or less. With remarks included
in the line limit, it wouldn’t take up much space in the magazine.
It would provide an easy way for readers to input entertaining
and educational material with a minimum of journalistic effort.
| think it would provide “one place to look” without having to
glean through a lot of material, looking for that one idea that you
saw somewhere... An ideal way to build a library for future refer-
ence!

Just in case you go for this, | am including a two liner to kick
it off,

18 N=1@0:PRINT "Pulse BELL without moving text";
20 FOR I=1 TO N:PRINT CHR%(7)3;:FOR J=1 TO N:PRINT CHR$(@};:
NEXT J:N=N-3:NEXT I

Bob Moskus
2511 Alpine Trail
Huron, OH 44839

ED NOTE) What do you say HUGgies? If you have any favorite
subroutines, let’s hear from you.

N .t 2
1\ Users
Group

L
Index of Advertisers
Software SUPPOrt . . . . . .. e e 2 SO o o s wsw wemiins sim et fhe BAGEm fr8 Hmm 41
Software Wizardry . ... ... ... ... 4 Micro Innovations . ... ... .. ... ... 41
Floppy Disk Services . . ............ccuuuuueuni... Q" MICTOSEIVIEES. Gay oib 18608 s masin mos s a4 e 46
SUNfower-SoRWare: ., .. i v §3% w6 v s 55 55 v v 19 Secured Computer Systems ... ... ......eu'eun.n 46
Controlled Data Recording Systems, Inc. . ......... 19,57  Husker Systems of Nebraska, Inc. . ............... 47
Newline . .. . . ... e 27,37 Eigenware Technologies . ............c..o.0.00.. 62
Mako Data Products . . . . .......co.uiineniin.. 36 D-G Electronics Developments Co. .. ............. 66
North Coast Intelligence, Inc. .. ................. 36 Micro-Systems Software, Inc. ... ................ 68

Changing your address? Be sure and let us know since the software catalog and

&: CUT ALONG THISLINE

REMark are mailed bulk rate and it is not forwarded or returned.

HUG MEMBERSHIP RENEWAL FORM

When was the last time you renewed?
Check your ID card for your expiration date.

IS THE INFORMATION ON THE REVERSE SIDE CORRECT?
IFNOT, FILL IN BELOW.

Name

Address

City-State

Zip

REMEMBER - ENCLOSE CHECK OR MONEY ORDER

CHECK THEAPPROPRIATE BOX AND RETURN TOHUG

NEW
MEMBERSHIP RENEWAL
RATES RATES
US DOMESTIC $20 [ $17 O
CANADA $22 O $19 [] USFUNDS
INTERNAT'L* $30 O $24 [J USFUNDS

* Membership in France and Belgium is acquired through
the local distributor at the prevailing rate.



Lt A S AL G

f - Pﬂ .?. : ? L ¥, }‘

‘he uldn 't e ucéﬁ m TE”

I only left my keyboard for a few minutes ... when I returned, I found Stamitz from accounting and Miss Sashshay from the secretarial
pool fondling my MTERM. Now if I've told them once, I've told them a hundred times ... use my cotfee cup. Borrow my key to the
employee lounge. Bend my paper clips but, leave my MTERM alone!! Did they listen? Nooocoo! Well, I guess [ lost my head. Both Stami
and Sashshay are doing fine. They should be released from the hospital any day now. For me, it's an entirely ditferent story.”

Signed, 0076697
Why MTERM creates such fanatically touchy users is not so hard to understand. MTERM turns the Z-100 into something altogether better.

MTERM lets your Z-100 work a lot faster with more accuracy, efficiency and dependability MTERM also has a lot of features that users
such as 0076697 find positively endearing. For instance, the ability to translate any ASCII character to another, and an easy to read
operating guide that makes using MTERM as

easy as ... well, bending a paper clip.

So to increase productivity, to increase the M'CRO'SYSTEMS SOFTWARE, 'NC-

speed and accuracy of your Z2-100. MTERM o : . .
Only 579.951 Still the best program for the cost! 4301-18 Oak Circle, Boca Raton, Florida 33431, TeTISFEEé'I;. 1(?8%53-333:3332

PS. "Get your own MTERM" 0076697

\, BULK RATE
- Heath UAS.pF:::;tage
- ‘ USGI’S’ Heath Users' Group
Group |

Hilltop Road
Saint Joseph, Michigan 49085

Volume 5, Issue 2

POSTMASTER: If undeliverable,
please do not return. 885-2049





