
T A N D E M

SYSTEMS -- - - - -----i--------------
\'()lli\lf~ I()_ l\l 1\IBIR j

NonStop SQLIMP Overview

Hash Joins • NonStop TM/MP

Database Configuration Operations

NonStop ODBC Server

RDF Enhancements

Product Update

T A N D E M

VOLUME 10, NUMBER 3

J U L Y I 9 9 4

The Tandem Systems Review publishes technical information about Tandem sojtH'are
releases and products. Its purpose is to help programmers, analysts, and other

IS professionals to planfor, install, use, and tune Tandem svstems.

4lTANDEM

Editor's Note

The six articles in this Tandem Systems Review
focus on products that support major Tandem
initiatives: NonStop Availability (NSA), De
cision Support Systems, National Language
Support, and Open. The first three articles de
scribe the new NonStop SQL/Massively Parallel
(SQL/MP) relational database management sys
tem. "An Overview of NonStop SQL/MP" (Ho,
Jain, Troisi) describes the many performance,
availability, and manageability enhancements
and new internationalization features. "NonStop
Availability and Database Configuration Opera
tions" (Troisi) explains how the enhanced data
base configuration features in NonStop SQL/MP
improve application availability. "A New Hash
Based Join Algorithm in NonStop SQL/MP"
(Zeller) compares the hash join algorithm with
other types of join strategies and discusses the
performance benefits of hash joins.

"NonStop ODBC Server" (Mahbod, Slutz)
describes the NonStop ODBC Server, which
provides open, transparent access to NonStop
SQL/MP databases for applications written to
the Microsoft ODBC or Microsoft/Sybase
DBLIB APL

The final articles highlight NSA enhance
ments in two Tandem products. "Enhancing
Availability, Manageability, and Performance
With NonStop TM/MP" (Eicher) describes the
new features and advantages the NonStop TM/MP
product offers over its predecessor, TMF. "RDF
Enhancements for High Availability and Perfor
mance" (Mosher) describes recent and forth
coming enhancements in the Remote Duplicate
Database Facility (RDF) product and provides
an updated procedure for a planned switchover.

-AL

EDITOR

Anne Lewis

ASSOCIATE EDITORS
David Gordon, Steven Kahn,

Mark Peters

PRODUCTION MANAGER
Anne Lewis

ILLUSTRATION AND LAYOUT
Donna Caldwell

COVER ART: Brian Jeung, Steve Sanchez

SUBSCRIPTIONS: Elaine Vaza-Kaczynski

ADVISORY BOARD

Mark Anderton, Richard Carr, Jim Collins,
Moore Ewing, Terrye Kocher,
Randy Mattran, Mike Noonan

Tandem Systems Review is published quarterly
by Tandem Computers Incorporated. All
correspondence and subscriptions should
be addressed to Tandem Svstems Review,
10400 Ridgeview Court, Loe 208-65,
Cupertino, CA 95014.

Subscriptions: $75.00 per year: single copies
are $20.00. Detailed subscription information
is provided on the subscription order form at
the end of this book.

Tandem Computers Incorporated assumes
no responsibility for errors or omissions that
may occur in this publication.

Copyright ©1994 Tandem Computers
Incorporated. All rights reserved. No part
of this document may be reproduced in any
form, including photocopy or translation to
another language, without the prior written
consent of Tandem Computers Incorporated.

Atalla, Cyclone, Guardian, Himalaya,
FOX, TnfoWay, Integrity, NDX, NonStop,
NonStop-UX, PSX. RDF, Safeguard, SNAX,
T ACL, Tandem, the Tandem logo, TMF,
TorusNet, Transfer, TSCE-2000, and
ViewPoint are trademarks and service marks
of Tandem Computers Incorporated. protected
through use and/or registration in the United
States and many foreign countries.

Indy and Indigo2 are trademarks of Silicon
Graphics, Inc.

UNIX and TUXEDO are registered trade
marks of UNIX System Laboratories, Inc.,
in the U.S. and other countries. All other
brand and product names are trademarks
or registered trademarh of their respective
companies.

NONSTOP SQL/MP

6 An Overview of NonStop SQL/MP
Fred Ho, Rohit Jain, Jim Troisi

18 NonStop Availability and Database
Configuration Operations
Jim Troisi

24 A New Hash-Based Join Algorithm for
NonStop SQL/MP
Hansjorg Zeller

OPEN ACCESS

40 NonStop ODBC Server
Haleh Mahbod, Donald Stutz

AVAILABILITY

58 Enhancing Availability, Manageability, and
Performance With NonStop TM/MP
Mala Chandra, David Eicher

68 RDF Enhancements for High Availability
and Performance
Malcolm Mosher

DEPARTMENTS

2 Product Update

80 Technical Information and Education

84 Index of Articles

2

Systems Products

Tandem Himalaya Intelligent
Network Server Family
March 1994

The Himalaya Intelligent Network
Server (INS) family of products assists
telecommunications providers in offer
ing intelligent network (IN) services.
For global interoperability, it supports
the Bellcore AIN, ETSI INAP. and
CCITT CS-x call models. A complete
Himalaya INS system forms an end
point in an intelligent network, provid
ing enhanced telephony and switching
services such as calling-card valida
tion. customized number translation
service, and custom local area signal
ing services (CLASS).

The Himalaya INS family includes
the following products:

■ INS Core software. This system-level
software is distributed across Tandem
NonStop Himalaya servers, an INS
Communications Server, and a Tandem
Craft workstation. It provides the soft
ware foundation for an online, real
time, fault-tolerant call processor that
can meet IN needs ranging from labo
ratory trials to global telecommunica
tions networks.

■ INS/CS Communications Server.
This SS7 communications server pro
vides a high-speed interface to call
processing applications residing on a
NonStop Himalaya server.

■ Flexible Service Logic software.
This product creates a data-driven
service-logic execution environment
based on the Flexible Service Logic
standard. I

■ TSCE-2000 software. This product
provides an open. standards-based
development environment for the
rapid deployment of new IN services.

■ Tandem Craft workstation. This
workstation provides a graphical inter
face for viewing the entire Himalaya
INS system and the user's SS7 network.

TorusNet Interprocessor
Connections
March 1994

TorusNet connections provide high
speed communications between proces
sors through efficient communications
units, the use of high-speed fiber-optic
media, and low message latency.
TorusNet high-speed fiber-optic con
nections make it possible to efficiently
interconnect from 2 to more than 4,000
processors in a Tandem Himalaya
Kl0000 server. Processors intercon
nected with TorusNet form a single,
parallel system capable of running
the most powerful online transaction
processing (OL TP), decision support,
and messaging applications at peak
performance.

Designed to provide flexible con
figuration options, TorusNet connec
tions allow processors and resources
to be located for optimal application
performance. They also connect to
Tandem's existing FOXII fiber net
works. Like the Tandem servers,
TorusNet connections offer extreme
reliability; each connection contains
multiple fibers each of which can
take over for another fiber if one
should fail.

The Product Update department provides brief descriptions of new products announced by Tandem.
For more i11formatio11 011 cmy of these products, please consult your local Tandem representative.

TANDEM SYSTEMS REVIEW JULY 1994

Nonstop Kernel
Based Software

Nonstop SQUMP
March /994

NonStop SQL/MP is the next genera
tion of Tandem's NonStop SQL rela
tional database management system.
Using the same robust architecture as
NonStop SQL and adding parallel
database technology, NonStop SQL/MP
increases scalability and performance
for decision support applications as
well as for online transaction process
ing and messaging. Nonstop SQL/MP
incorporates many new features to
facilitate decision support applica
tions, higher availability, and use of
national languages.

The new decision support features
include new table join methodologies,
accelerated groupings, aggregates in
the data access manager, parallel read
ahead, early evaluation of index predi
cates, improved expression evaluation,
forced plan options, improved sequen
tial insert performance, improved pred
icate selectivity computation, CAST
function, faster sorts, and improved
accuracy of table statistics.

New availability features include
online physical database reconfigura
tion, lost-partition recovery, late bind,
high-availability compilations, and
object versioning. New national lan
guage support features include single
byte and double-byte character sets,
collations support, and text translation
facility.

Nonstop Transaction
Manager/MP
March /994

NonStop Transaction Manager/MP
(TM/MP) provides transaction protec
tion and database consistency in
demanding online transaction process
ing (OL TP) and decision support envi
ronments. NonStop TM/MP replaces

its predecessor, Tandem's Transaction
Monitoring Facility (TMF). Like TMF,
NonStop TM/MP provides full protec
tion for transactions accessing distribut
ed Tandem SQL and Enscribe databas
es, as well as recovery capabilities for
transactions, online disk volumes, and
entire databases. In addition, NonStop
TM/MP adds new architectural and
performance features that give it out
standing scalability, availability, and
manageability, as well as the capabili
ty to support open transactions, as
defined by X/Open.

Client/Server
Computing Products

Nonstop ODBC Server
March 1994

NonStop ODBC Server software allows
users of desktop computers to access
Tandem's high-performance, massively
parallel NonStop SQL/MP relational
database management system. The
efficient client/server architecture of
NonStop ODBC Server enables users
to take full advantage of workstations
and Tandem NonStop servers for deci
sion support and online transaction
processing (OL TP) applications.

NonStop ODBC Server allows
client applications that use either
the Microsoft Open Database
Connectivity (ODBC) interface or
the Microsoft/Sybase SQL Server
interface to access databases controlled
by NonStop SQL/MP. In addition,
NonStop ODBC Server enables
Tandem systems to act as transaction
servers as well as database servers.
Using stored procedures, application
tasks can be split between the worksta
tion and the NonStop server. This
gives applications greater speed and
efficiency in communications between
workstations and NonStop SQL/MP
databases.

NonStop-UX
Based Software

Integrity Systems Manager
for SGI
March 1994

The Integrity Systems Manager (ISM)
for SGI is a new addition to Tandem's
Integrity System Management Suite
(ISMS). The new ISM for SGI soft
ware allows the use of Indy™ and
Indigo2™ workstations for system
management of a network of Integrity
FT systems. The full-featured Integrity
Systems Manager for SGT combines
with the price-performance leadership
and advanced graphics of the Indy and
Indigo2 workstations to offer Tandem
users exceptional performance and
flexibility in managing networks of
Integrity FT systems.

The ISM for SGI includes these
important features: Administrator's
Workbench; log file browser; document
reader; physical, schematic, and power
views; shell tool; and System Activity
Monitor. The System Activity Monitor
(SAM), a vital feature of the ISM soft
ware, provides a powerful graphical
user interface to display Integrity FT
system performance metrics. The SAM
allows the system administrator to
monitor system activities, set thresh
olds for activity values, and define
actions triggered when a value exceeds
a threshold.

JULY 199.J TANDEM SYSTEMS REVIEW

4

'
Communications and
Networ~ing Products

I

CA-SESMAN (Secured Session
Manager) from Tandem
April 1994

CA-SESMAN provides a low-cost
software architecture offering reliabil
ity, scalable growth, comprehensive
network access security, powerful net
work session management services,
and seamless network access to legacy
applications (6530 and 3270) over a
variety of protocols. CA-SESMAN
offers many features for Tandem and
IBM host application access, including:

■ Front-end security gateway support
for Himalaya and IBM host-based
applications.

■ Single sign-on technology, single
password and ID for multiple applica
tion access (Pathway, FUP, T ACL,
Transfer, CICS, TSO, etc.).

■ Single system image, seamless net
work access using Tandem standard
communications protocols (TCP/IP,
SNA, X.25)

■ Hot-key switching and auto
matic application scripting/network
navigation.

■ Complement to Tandem Safeguard
and Atalla security products.

■ Dynamic menu of all authorized
applications.

Applicj:ation
Develppment ,oftware

Tandem Service Creation
Environment {TSCE-2000)
March 1994

Tandem TSCE-2000 software lets
users develop applications for use on
Himalaya Intelligent Network Servers

(INS) or open intelligent network (IN)
platforms from other vendors. Residing
on UNIX workstations, the product
provides a completely self-contained
service creation environment. Optional
modules let users simulate the perfor
mance of their applications on the tar
get execution platform. No interaction
with the execution platform is required
until the finished application is
compiled.

TSCE-2000 software is particularly
well suited for developing applications
for Himalaya INS systems, because it
can directly call APis on those systems.
This capability gives it dynamic and
efficient access to the SS7 protocol,
TCAP, and Tandem's upcoming Flex
ible Service Logic (FSL) software for
Himalaya INS systems. I. The product
can be used with both the Guardian
and UNIX personalities on Himalaya
INS systems.2. By bridging the
NonStop Kernel, different server per
sonalities, and the UNIX development
environment, it integrates heteroge
neous elements of the user's intelli
gent network.

: Workst~tion and
TerminaJI Products 1

AST PowerExec 4/33SL
Notebook Computers
March 1994

The AST PowerExec 4/33SL models
are the latest additions to the Tandem
notebook product line. The two new
models feature a 33MHz, Intel 486SL
processor, 200-megabyte or 340-
megabyte removable hard drive,
4 megabytes of standard RAM on the
200-megabyte model, 8 megabytes of
standard RAM on the 340-megabyte
model (both upgradable to 32 mega
bytes), 3.5-inch diskette drive, 2
PCMCIA expansion slots, and a vivid
active-matrix color display. Other fea
tures include a battery life of up to

6.5 hours, two levels of password pro
tection, and an individual SmartKey
intelligent ROM key that lets the user
in if the user forgets the password.

High-Capacity SCSI Disk Drive
March 1994

Tandem now offers a new high
capacity SCSI disk drive that can
greatly increase the internal data
storage capacity of PSX and NDX
workstations. The new drive has a
capacity of 2 gigabytes and is avail
able for use with all PSX and NDX
systems.

PSX LP 4/S0s Desktop
Computer
June 1994

The PSX LP 4/50s desktop computer
is a new addition to the PSX LP prod
uct line. This model is housed in a
low-profile chassis and is based on
the new Intel 486SX2-50 processor.
On average, this new chip outperforms
the Intel DX-33 by 22 percent and it
costs less.

Like the other PSX LP models, the
LP 4/50s features an energy-efficient
design that exceeds the guidelines
established for the Energy Star power
management program. Additional fea
tures of the LP 4/50s include 32-bit
local bus graphics, 512 kilobytes of
standard graphics memory (support
for up to 2 megabytes), CPU upgrad
ability to Pentium Overdrive proces
sors, support for up to 256 kilobytes
cache, two 16-bit ISA expansion slots,
and extensive security features to pro
tect system components and data.

Pentium Upgrade Modules
June 1994

Users can now step up to Pentium
operation with the new Pentium P/60
upgrade modules. These modules can
be used to update any NDX ST tower
server (CUPID or Intel architecture),
or any PSX SP desktop system.

TANDEM SYSTEMS REVIEW JULY 1994

Megahertz PCMCIA Data/Fax
Modems
June 1994

Tandem now offers a new line of
data/fax modems from Megahertz.
The new modems combine PCMCIA
standards with Megahertz's patented
XJACK™ connectors for credit-card
sized modems that can be hooked
directly to a telephone jack. The sim
ple and practical XJACK connectors
feature a retractable RJ 11 tray that
pops out for use and easily pops back
in when not in use, saving valuable
space and eliminating the need to pur
chase or carry external connectors.

All new Megahertz modems use
the Hayes AT command set, as well
as Bell and CCITT standards and pro
tocols to provide worldwide compati
bility. In addition, the new modems
incorporate the V.42bis protocol,
which produces a data-compression
ratio of up to 4: I to enhance the data
transmission speed and thus reduce
the amount of time required on tele
phone lines.

New IDE Hard Drives
lune 1994

Two new IDE hard drives, with a stor
age capacity of 270 megabytes and
540 megabytes, are now available for
all PSX and NDX platforms. The new
drives replace the previously offered
200-megabyte and 520-megabyte IDE
drives, respectively.

32-Megabyte Memory
Upgrade Kit
lune 1994

A new 32-megabyte memory option
is now available for the PSX SP P/60
computers. With the addition of this
upgrade kit, the maximum memory
capacity of the SP P/60 increases from
32 megabytes to 64 megabytes.

Printer Products

5577-3 Laser Printer
March 1994

The 5577-3 and 5577-3PC laser printers,
which supersede the 5577 and 5577-2
laser printers, are 17-ppm desktop
printers designed for distributed/net
worked printing applications for print
volumes of up to 50,000 pages per
month. Both printers feature 600-dpi
resolution, which combined with
Resolution Enhancement technology
and micro-fine toner, yields truly
outstanding print quality. The 5577-3
printer family supports industry
standard PCL SE and prints complex
documents faster with the use of an
Intel 80960CF 25MHz RISC processor.
It also supports Adobe PostScript
Level 2, and automatically switches
between the PCL and Postscript
languages.

The new printers are compatible
with virtually all popular UNIX and
PC-based application packages. The
printers come with 2 megabytes of
standard memory, expandable to 32
megabytes. They have a total of 45
internal scalable typefaces in both
Intellifont and TrueType formats.
A variety of font cartridges is also
available.

The 5577-3 includes Tandem's
unique T-TAP (Transparent Tandem
Asynchronous Protocol) MIO interface
to ensure that printing is completed
correctly, even if there is a power out
age or the printer runs out of paper.
This printer is compatible with all
NonStop servers and can also be con
nected to Integrity systems, PCs, and
LANs. The 5577-3PC is identical to
the 5577-3 except that it does not in
clude the T-T AP MIO card and is thus
for use in applications not including a
NonStop server. Each printer has two
standard 500-sheet cassettes. Duplex
(both sides) printing is an option.

Availability
Enhancement Products

Enhanced Availability Kit
March 1994

The Enhanced Availability Kit is a
hardware upgrade option that provides
the capability to have a fully redundant
cabinet power system. It is designed
for installations where single power
sources have proved inadequate in
supplying continuous and steady power
levels or where operating conditions
could allow a power source to become
disconnected. It is also designed for
users whose availability requirements
demand that hardware upgrades be
done online. This availability feature,
which has been included in Tandem's
Himalaya KI 0000 packages, is now
available for other Tandem systems
with similar architecture.

The upgrade allows a Tandem sys
tem to connect to redundant ac power
sources through the use of dual power
distribution units and dual power
cords. This hardware upgrade replaces
a single power distribution unit (PDU)
in each cabinet with two PDUs per
cabinet. Each PDU powers half of the
system components in the cabinet and
contains one of the two main breaker
switches used for system power-up
and power-down operations. Dual
power cords allow the system to
be connected to redundant power
sources. Losing one ac power source
or disconnecting one of the power
cords from any outlet removes power
to only one of the processors, its
memory, and half the disks, while the
other processor, disks, and the I/0
remain operational, thus preserving
fault tolerance.

JULY 1994 TANDEM SYSTEMS REVIEW 5

6

NONSTOP S Q L / M P

An Overview of Nonstop SQL/MP

he Tandem™ NonStop™
SQL/Massively Parallel
(SQL/MP) relational data
base management system
introduces many new fea
tures and enhancements that
support three major Tandem

initiatives: Decision Support Systems (DSS),
NonStop Availability (NSA), and National
Language Support (NLS).

In a typical DSS application, ad hoc queries
execute against a database much larger than
most operational or online transaction process
ing (OL TP) databases. NonStop SQL/MP pro
vides several features that significantly improve
the performance of query processing for such
large databases. This makes it both feasible and
cost-effective to implement DSS applications on
Tandem systems.

While offering high performance for query
processing, NonStop SQL/MP also adds features
for managing and increasing the availability of
large database applications. These NSA features
facilitate the development and management of
applications by reducing downtime caused by
database reconfigurations and by minimizing
SQL compilations.

As part of Tandem's company-wide NLS
initiative, NonStop SQL/MP supports multi
byte character data types, alternate collating
sequences, and the display of output messages
in languages other than English.

Part 1 of this article discusses the new
NonStop SQL/MP features that support the DSS
initiative. Part 2 describes the NSA features and
Part 3 introduces the NLS features. The article
points the reader to other articles in this issue of
the Tandem Systems Review that give detailed
information on many of these features.

Part1:SupportforDSS
In 1993 Tandem forged an initiative to build
massively parallel systems, geared toward deci
sion support applications. The hardware foun
dation for the initiative is the Tandem NonStop
Himalaya™ KI 0000 server. In a recent Transac
tion Processing Performance Council TPC-C
benchmark, a 64-proce~sor Himalaya KI 0000
server executed 12,021 transactions per minute
(tpmC). Tandem's TorusNet™ technology facili
tates massive scalability for Himalaya servers,
connecting up to 224 processors through fiber
optics and up to 4,080 processors through LAN,
WAN, and other connection options.

In addition, Tandem's NonStop ODBC Server
product gives client tools access to the large
databases required for decision support applica
tions. With the NonStop ODBC Server, client
tools using the ODBC or the Microsoft/Sybase
SQL Server interface can access NonStop SQL
databases. Moreover, enhanced capabilities
such as query caching allow one to use the
NonStop ODBC Server for low-volume OLTP
as well as query processing.

TANDEM SYSTEMS REVIEW• JljLY 199..\

The database is at the heart of a decision
support or online query processing (OLQP) sys
tem. NonStop SQL/MP contains all of the fea
tures and benefits provided by previous releases
of NonStop SQL: parallelism in queries and
utilities, high availability, near-linear speed-up
and scale-up, high performance, data integrity,
and transparent data distribution. In addition,
NonStop SQL/MP significantly improves the
performance of query processing against mas
sive decision support databases.

Performance Considerations for
Decision Support
Query processing for decision support differs
from OL TP both in the size and definition of the
database and in the methods of accessing the
database. The decision support database usu
ally dwarfs the operational or OL TP databases.
Because of the size of the DSS database, mir
rored disk volumes may not be used even though
they provide higher availability. In addition, the
database is historical in nature; the stored data
has a time dimension.

One can have more indexes for a DSS data
base than for an OL TP database because their
detrimental impact on updates is not felt. Often,
updates are either performed in batch process
ing on a periodic basis or trickle-fed from the
operational databases. Response time on up
dates is not as essential for DSS as for OL TP.

If most of the queries are ad hoc in nature,
the database is implemented fairly close to its
logical third through fifth normal forms. That
is, little denormalization may be possible. If
queries are predictable, one can perform denor
malization in the DSS environment with less
penalty than in an OL TP environment because
of the lower priority of updates.

Database access also differs in the DSS and
OL TP environments. Usually, in the case of the
DSS database, a large number of rows must
be scanned to deliver the results of a query.
Because of the number of rows scanned, and
since linear speed-up and scale-up of queries is
an inherent objective, queries almost always
need to be processed in parallel.

JULY 1994

Most queries have joins (often between a
larger table and smaller reference tables), require
aggregation of data by groups, and require the
results in a specific ordering sequence. Because
of the lack of adequate indexes on large tables,
the need for grouping and ordering typically
means that a sort may be involved.

Performance Features for Decision Support
To address some of the performance considera
tions described above, NonStop SQL/MP intro
duces the following new features and enhance
ments. Some of these improvements can benefit
OL TP as well as DSS applications:

■ Hash joins.

■ Hashed groupings.

■ Aggregation at the disk-process level.

■ Early evaluation of index predicates.

■ User process sort.

■ Cross product.

■ Forcing an access plan.

■ Update statistics enhancements.

■ Sequential block split control option.

■ FASTSORT performance improvements.

■ Performance improvements for table and
index creation.

Hash Joins
Often, in DSS, the historical data resides in a
single large table. For most queries, the large
table must be joined with smaller reference
(lookup) tables. Because of the size of the table,
denormalization is prohibitive. In many cases
indexes are not affordable on large DSS tables
or may not be used by the optimizer. The join
strategies in previous releases of NonStop SQL
are nested joins and sort-merge joins. Now a
hash join strategy is available as well.

TA:--IDEM SYSTEMS REVIEW 7

Figure 1

(a) Aggregation

E1 E2

Sort

Aggregate

Result

Figure 1.

An example of a simp/!'
hash grouping. (a) Aggre
gation perfimned in
previous releases of
NonStop SQL. (b) Hash
grouping pe1ji1rmed bv
NonStop SQUMP.

8

(b) Simple hash grouping

E3 E1 E2 E3

~ 1 ~ In-memory
J J hash table

Hash
grouping

Result

Simple Hash Join. In previous releases of
NonStop SQL, the nested join was typically the
most efficient of the join strategies. If there was
an index on the joining columns for the inner
table of the join, a nested join was performed.

The hash join improves on the nested join by
reading the required columns for the qualifying
rows of the inner table and building a hash table
in memory (by hashing on the join columns).
The hashing of these columns may sometimes
result in the same hash key. In these situations
the rows are chained into a linked list. When
an inner-table row needs to be accessed for the
qualifying outer-table row, the hash table is
probed to perform the join. This quick-memory
access improves performance considerably com
pared to sending messages to the disk process
for each qualifying row of the outer table.

The performance savings provided by the
hash join are even greater for sort-merge joins.
Sort-merge joins are needed when there are
no indexes on the joining columns on either
table. The two tables are sorted on the joining

TANDEM SYSTEMS REVIEW

columns and then a merge join is performed.
Hash joins eliminate the need for sorting by
loading the inner table, as mentioned above,
into an in-memory hash table. Then, essentially,
a nested join is performed. Especially when
combinations of larger and smaller tables are
involved, this technique can save substantially
in the space and time required for sorting.

The NonStop SQL/MP optimizer chooses a
simple hash join as a hash join strategy when
it predicts that the inner (smaller) table can
be accommodated in memory.

Hybrid Hash Join. When the Nonstop SQL/MP
optimizer predicts that the inner table may not
fit in memory, it chooses a hybrid hash join
designed to handle overflow. The inner table is
first divided into buckets (or sections). For each
bucket, an in-memory hash table is built. For
the buckets that fit comfortably into memory,
the rows in the outer table are accessed once
and a simple hash join is performed, as before.

However, if at run time there is not enough
memory to perform the join, and the SQL execu
tor determines that many page faults are occur
ring, some buckets would have to be written to
disk. In this situation, as the outer table is read,
some rows would not find a match in the mem
ory-resident buckets. (Their matches may reside
on buckets written out to disk.)

To handle this situation, the needed columns
of the qualifying outer table rows are read and
written out to bucket files on disk as well. The
SQL executor writes out the outer table buckets
using the same bucket-partitioning scheme it
uses for the inner table buckets. After a single
scan of the outer table has been completed, the
buckets on disk are read and the join peformed.
The resulting rows may not be in any particu
lar order. If a specific ordering sequence is de
sired, the executor has to sort the resulting set.
Although the hybrid hash join mechanism is
complex, it is far more efficient than the tradi
tional strategy, because of the size of the tables
involved and because it avoids having to presort
the qualifying rows from both tables in the case
of a merge join.

JULY 1994

NonStop SQL/MP also considers parallel
and repartitioned parallel hash join strategies.
Zeller (1994) discusses hash joins in more
detail elsewhere in this issue of the Tandem
Systems Review.

Hash Groupings
Often, when group aggregations such as A VG,
COUNT, MAX, MIN, and SUM are requested, the
table does not have an index on the columns by
which the aggregation is being grouped. To get
the data into the right order so that the group
aggregates can be calculated, previous releases
of NonStop SQL must perform an expensive sort
operation. When the rows to be sorted are in the
millions, the cost of the sort is accentuated. To
alleviate the sort, NonStop SQL/MP performs
hash groupings.

Simple Hash Groupings. Essentially, NonStop
SQL/MP builds a hash table in memory by hash
ing on the GROUP BY columns. The hashing of
these columns may sometimes result in the same
hash key. In these situations, the rows are chained
into a linked list. As the rows are read, the SQL
executor aggregates the columns into the appro
priate buckets for the resulting hashed key entry.
When it is done scanning all the rows, if an
ORDER BY is specified, it performs a sort on the
hash table to deliver the results in the desired
sequence. This operation is called a simple hash
grouping. Figure l shows an example of a tradi
tional aggregation using a sort operation and a
simple hash grouping as executed by NonStop
SQL/MP.

Hybrid Hash Groupings. When the entire hash
table cannot fit in memory (indicated at run
time by the occurrence of too many page faults),
NonStop SQL/MP chooses a hybrid hash group
ing strategy to handle the overflow. Here, when
the in-memory hash table is full and a row is
read that yields a hash key not in the hash table,
the raw column data required for the aggrega
tion is written out to disk. At the end of the
scan, the rows written out to disk are read and
aggregated.

Figure 2

In-memory I
hash tables L

E1 E2

Scan Scan

I
Combine

hash

Result

Parallel Hash Groupings. The parallel hash
grouping scenario is similar to the sequential one
discussed above. Each executor server process
(ESP) does its own hash grouping. Each ESP
then passes its results back to the master execu
tor, which combines the results from the vari
ous ESPs. Figure 2 shows an example of paral
lel hash grouping as executed by NonStop
SQL/MP.

For parallel plans, hash grouping replaces
the repartitioned GROUP BY method. No repar
titioning is necessary. Hash groupings work
with hash joins as well.

E3

Scan

In-memory
hash tables

Figure 2.

An example of'a parallel
hash grouping in NonStop
SQUMP.

JULY 1994 • TANDEM SYSTEMS REVIEW 9

Aggregation at the Disk-Process Level
If there is no index on the GROUP BY columns
to support aggregations, NonStop SQL/MP con
siders a hash grouping strategy. If, however,
there is an index on the GROUP BY columns
t?e disk process (DP2) performs the aggrega~
t1ons and sends back only the resulting rows. In
earlier implementations, NonStop SQL would
send the rows back to the executor to perform
the aggregations. To accomplish this task, DP2
and the executor would exchange data and mes
sages through the file system, which incurred
additional performance overhead. Aggregation
at the disk-process level, provided by NonStop
SQL/MP, essentially eliminates this overhead.

However, GROUP BY aggregations are not
the only aggregations performed at the disk
process level. An even greater performance
enhancement can be obtained for single-table
aggregations without a GROUP BY clause such
as COUNT(*). Also, for joins without a GROUP
BY clause, if all aggregations are performed on
the innermost table of the join, they are pushed
down to the disk process as well.

Early Evaluation of Index Predicates
In previous releases of NonStop SQL, predicates
on nonpositioning columns of an alternate index
were evaluated against base-table columns if a
base-table predicate existed as well. In NonStop
SQL/MP, such predicates are evaluated against
the index before base-table predicates are eval
uated. This technique can considerably reduce
the number of random accesses made to the base
table to eliminate undesired rows. The perfor
mance improvement increases as the selectivity
of the index predicates and the size of the table
increases.

TANDEM SYSTEMS REVIEW

Assume, for example, that a table T contains
columns PK I, PK2, C 1, C2, C3, and C4 with an
alternate index on C 1, C2, and C3. Then the
query

SELECT columns
FROMT
WHERE Cl= ?cl

AND C3 = ?c3
AND C4 = ?c4;

would position on column C 1 of the index.
However, instead of evaluating C3 = ?c3 against
the index column, earlier implementations of
NonStop SQL would first access the correspond
ing row from the base table and evaluate both
C3 = ?c3 and C4 = ?c4 against it. This resulted
in unnecessary accesses to the base table for
index rows not meeting the C3 = ?c3 criteria.
In NonStop SQL/MP, such predicates are evalu
ated on the index.

User Process Sort
Previous releases of NonStop SQL provided
two sort options. When many rows were to be
sorted, the rows were passed to SORTPROG, an
external sort process. Parallel sorting techniques
could be used even if the query itself was not
being executed in parallel. However, when the
number of rows to be sorted was small, a key
sequenced sort was performed. (A sort process
was not used.) The SQL executor created a
temporary key-sequenced table (buffered and
nonaudited) with a key matching the sort se
quence. It then inserted the rows to be sorted
into this table and read them back out. For the
most part, NonStop SQL/MP replaces this tech
nique with a user process sort (UPS), an in
memory sort for fewer than 32,768 rows.

If the optimizer plans to use the UPS process,
but the number of rows at run time exceeds
32,767 or the sort workspace is exhausted, UPS
gracefully migrates to the SORTPROG process.
It passes the data in the workspace to SORTPROG
in 8-kilobyte segments, while accepting new
rows from the executor. It passes the new rows
to SORTPROG in 8-kilobyte segments as well.

JULY !99c\

Figure 3

WEEKS table

Week Month
9348 9311

==•1}7 --; 9401 9401
11

9401 9401

Cross Product
A cross product (or Cartesian product) is the
product of two tables, or a join of two tables
without a join column being specified, so that
each row of one table is joined with each row
in the other.

An example would better explain how this
concept is used to enhance performance of
queries. Assume there is a large historical auto
mobile SALES table. Assume further that the
WEEK (year and week number), DEALER, and
MODEL columns make up its primary index.
Each row has automobile sales data for a spe
cific week for a car model sold in a specific
dealership. Suppose a query is submitted that
requires all sales in dealerships in Michigan
for the month of December 1993. Because the
query specifies a range of weeks and WEEK is
the leftmost column in the index, all dealers
and car models for that range of weeks will be
scanned. The ideal way to avoid this excessive
scanning would be to perform multiple parallel
scans against the SALES table for each of the
weeks in December 1993 for only Michigan
dealerships.

JULY 1994

SALES table

Week Dealer Model

- Nested -join

j
Result

Now assume that there are two more tables.
One table, WEEKS, represents all the weeks for
which there is sales information. This table
would have a YEAR_MONTH column to facili
tate access by month. A second table, DEALERS,
represents all the dealerships in the country. The
cross product feature in NonStop SQL/MP would
facilitate a cross product of the qualifying rows
from the WEEKS and DEALERS tables. (These
tables do not have a common join column.) The
composite table created from this join would
then be joined against the SALES table to
reduce the excessive scanning. Figure 3 shows
an example of the cross product feature.

TANDEM SYSTEMS REVIEW

Figure 3.

An exw11ple of the
NonStop SQUMP cross
product feature.

11

12

Cross product is especially beneficial when
a query is processed in parallel. In the example,
the WEEKS and SALES tables could be parti
tioned by WEEK. Parallel processes would then
perform the joins for each qualifying week. The
NonStop SQL/MP optimizer automatically deter
mines whether to perform the cross product
operation between these two tables.

Forcing an Access Plan
New options in the CONTROL TABLE com
mand allow a user to force NonStop SQL/MP
to choose a particular access path, join sequence,
or join method for a query. The access path indi
cates to the optimizer that either the primary
index or a specific alternate index is to be used.
The join method indicates that a nested, merge,
or hash join be used. The join sequence indicates
the sequence in which the tables should be
joined.

In rare circumstances, usually because of
nonuniform distribution of data, the optimizer
may not choose the best plan for a query. Some
users believe this happens fairly often. Exper
ience in tuning many user applications has
shown that the problem usually lies in the data
base design, the construction of the query, or
the statistics in the catalog being used for the
compilations.

The plan-forcing feature should be used with
extreme caution. When users find that the opti
mizer is being stubborn about a specific query,
they should consult with a Tandem NonStop
SQL expert before forcing the plan, or report
the issue for consideration (if it is not related
to skewed data distribution).

Users can prove that the forced plan is better
than the one chosen by the optimizer by running
the query with both plan options against a pro
duction-size database. Measurements taken in
both situations can substantiate the reasons for
the decision to force a plan. These reasons must
be weighed against the fact that the database
and the DBMS are constantly changing. A state
ment using this feature can be embedded in a
program permanently and may cause some of
the following problems later on:

■ The program may not be able to use a more
efficient index that may be created in the future.

■ If the index being used is dropped, the pro
gram will need to be changed and recompiled.

■ The program may not be able to benefit from
future NonStop SQL/MP enhancements.

Update Statistics Enhancements
Several enhancements in NonStop SQL/MP have
greatly improved the accuracy of statistics.

The EXACT and SAMPLE n BLOCKS options
were added to the UPDATE ST A TISTICS com
mand so that users can balance the accuracy of
the statistics against the time required to update
statistics on large tables. If sampling results in
statistics that will generate the same query plans
as would be generated if one gathered exact sta
tistics, one can save substantial time by updat
ing statistics with the sampling option.

To determine an appropriate sample size, one
can use a trial and error method with different
sample sizes. One can compare statistics from
each sample with those generated by using the
EXACT option. A sample size resulting in sta
tistics with acceptable variances can be used for
the table from then on. Obviously, it would not
be acceptable to use a sample size that results in
plans different from those generated when the
EXACT option is used.

TANDEM SYSTEMS REVIEW• JULY 199-l

If neither the EXACT nor the SAMPLE n
BLOCKS option is used, the default is that all
rows are read to gather statistics for partitions
containing 1,000 blocks or less. (The default
block size is 4 kilobytes.) When the size of a
partition exceeds 1,000 blocks, an average of
500 blocks is read per partition to gather the
statistics. If the table is not partitioned, all rows
up to 1,000 blocks are read.

Other statistics-related enhancements in
NonStop SQL/MP include the following:

■ Column statistics (such as
UNIQUEENTRYCOUNT, SECONDHIGHY ALUE,
SECOND LOWY ALUE) are collected on the
whole table and not its individual partitions.

■ The null value is ignored when determining
the SECONDHIGHV ALUE. but is still counted
as a unique value.

■ Special adjustments are made for the presence
of null values when the UNIQUEENTRYCOUNT
value is very small.

Sequential Block Split Control Option
In many cases, a sequential block split algo
rithm for inserts may be more efficient than the
fifty-fifty block split algorithm. Row insertions
using the sequential block split algorithm result
in less slack space per block and a fewer num
ber of blocks in the table. More important, they
cause less fragmentation in the file. Logically
contiguous blocks tend to be physically contigu
ous as well. This is good for sequential scans.
Noonan and Gordon (1993) explain sequential
block splits and fifty-fifty block splits in A
Performance Guide to NonStop SQL.

A new CONTROL TABLE option allows users
to direct DP2 to use the sequential block split
algorithm when a block split is needed. DP2
does not select this algorithm if it does not detect
sequential inserts, as in the case in which there
are interleaved inserts from multiple programs
simultaneously.

JULY 1994 •

FASTSORT Performance Improvements
The FASTSORT component of NonStop SQL/MP
has been enhanced to take advantage of the
larger main memory available in new Tande?1
processors. This very large memory (VLM) fea
ture removes a previous limit of 32-kilobyte
records that can be sorted at one time in main
memory without the use of a scratch file. The
new theoretical limit is 2 gigabytes. More impor
tant, it makes the processor memory and the
maximum size for an extended segment, rather
than an internal software limitation, the limiting
factors in the number of records to be sorted in
main memory.

Moreover, for sorts that require more than a
single run, the additional memory can be used
to store some of the intermediate runs. This
reduces the number of read and write opera
tions to the scratch file, thus resulting in sig
nificant performance improvements.

Performance Improvements for Table and
Index Creation
NonStop SQL/MP significantly reduces the time
it takes to create a table or index with a large
number of partitions. NonStop SQL builds large
tables by creating a table with a single partition
and then iteratively adding partitions, one at a
time, until the specified number of partitions is
created. When previous implementations of
NonStop SQL added a new partition, the file
labels of all previously created partitions were
altered, resulting in order(n-squared) file-label
operations (where n was the number of parti
tions). These label operations were quite costly
both in CPU and in disk-1/O wait time.

TANDEM SYSTEMS REVIEW 13

14

NonStop SQL/MP instead builds a partition
template once that contains all the partition
information provided in the Data Definition
Language (DDL) statement. It then uses the
template to build each partition. This technique
results in only as many file-label operations as
there are partitions.

The enhancement can improve performance
by more than an order of magnitude. An added
benefit is that the enhancement significantly
reduces the audit generated during the DDL
operation.

Part 2: Improving Availability
A survey 1 of computer users found that the
application downtime they experienced had a
surprisingly high business cost. Although the
numbers varied across companies, the average
was $1,300 per minute of outage. In the past,
companies had large batch-processing windows
(time periods) during which it was understood
that their applications would be inaccessible.
During these periods, companies ran their large
batch reports. They also had time to perform
any database operations required to maintain
their systems.

15cc The Impact o{On-line Co111puter SyMems Dmn1timc on American
Husines.,e.,: A .r-;111T(\' o{Senior MIS Ew-'cllli\'C.\ (1992).

TA1'DEM SYSTE'.VIS REVIEW

Pressures to provide a competitive differen
tial, together with the move to OL TP, meant that
companies had to cut back, and in certain cases
eliminate, their maintenance windows. Many
companies now need to provide permanent,
continuous availability of applications. For this
reason, they are scrutinizing database mainte
nance and program management operations to
see if the associated downtime can be shortened
or eliminated. Some typical long-running oper
ations include the following:

■ Physically reorganizing the data.

■ Increasing the size of a table.

■ Moving a portion of a table's data, perhaps to
a larger or faster disk, to improve performance.

■ Creating indexes on a table.

■ Balancing the amount of data between parti
tions.

■ Checking that access paths are unchanged
after programs are recompiled.

To see how often these operations are required
in a typical user application using NonStop SQL,
an informal survey of 15 current Tandem users
was conducted. Although one can perform many
operations online with the previous releases of
NonStop SQL, some operations require portions
of the database to be unavailable. The survey
requested information about each user's down
time and asked specifically about the database
maintenance operations listed above. From this
survey, outage numbers were projected for an
average user.

The data collected had a large standard devi
ation. 2 The larger the user's database, the larger
the outage the user experienced. In all cases,
however, one or more of these operations made
up a large part of the user's database downtime.
Also, in all cases, competitive analysis has
shown that these numbers are far smaller than
those for competing database products. For
example, physical reorganization of the data
base on Tandem systems caused zero minutes
of outage because a Tandem utility can perform
this operation online.

2The exact outage a u~cr experience~ yearly depend~ grcally on the u~cr\,
environment. For example. Wood (1994) noted that dataha~c reconfigura
tion operation~ accounted for 360.000 individual cnd-U'-Cf outage minute-.
fur a Tandem ~ener. Thi~ j.., about a third of the total U'-.cr outage minute...,
in Wood'.<., model.

JULY 199-l

To address the other outages listed above,
three groups of features were added to NonStop
SQL/MP: late binding, high availability compi
lation, and physical database configuration. In
addition to improving availability, these features
make it easier to manage both the database and
the development, compilation, and installation
of application programs. Two other features,
not directly affecting the operations examined
in the survey, are also included in NonStop
SQL/MP: PURGEDATA PARTONLY and Recover
Lost Partition. These features are described
briefly in the following sections.

Given the outages discussed above, a user
requiring permanent, continuous availability
can achieve a potential savings of over $3.5
million per year 3 by reducing downtime with
the new NonStop SQL/MP features. The
NonStop SQL physical database configuration
and late binding features provide part of these
savings. Full read and write access to all parti
tions of a table is available during lengthy data
movement operations. Recompilations at the
end of DDL operations are no longer necessary.
These capabilities limit the outages associated
with the Split Partition, Move Partition, Move
Partition Boundary, and Create Index operations
to about a minute per operation. In addition, the
late binding and high availability compilation
features reduce the need for recompilation and
the outages associated with them. Altogether,
the new features reduce the database outages
associated with these operations by two orders
of magnitude.

Late Binding and High Availability
Compilation
Late binding resolves a number of availability
and manageability issues. First, for programs
using static SQL statements, name resolution
can occur at execution time. In previous releases
of NonStop SQL, users who wanted a transac
tion to execute against one of several different
tables had to use dynamic SQL. Dynamic SQL
compilations, however, could affect perfor
mance. In NonStop SQL/MP, users can get run
time name resolution while using static SQL.

'A cost of S 1 . .300 per outage minute multiplied by 2.640 application outage
minutes per year (for an average user in the informal ~urvcy) equal~
$3.511.200.

Second, in previous releases of NonStop
SQL, DDL operations such as Split Partition
invalidated programs that accessed the affected
table. Users would then have to recompile the
affected programs. In NonStop SQL/MP, users
can specify compile options that allow them to
avoid recompilation if the DDL operation does
not affect the query plan.

Third, users can now install programs in a
new system without having to recompile them.
For example, users can move programs from a
development system to a production system
without recompilation; this feature also pre
serves the existing query plans.

The high availability compilation feature
complements late binding by allowing users to
recompile individual SQL statements within a
program. In previous releases of NonStop SQL,
users had to recompile the entire program if a
query plan for one SQL statement in the pro
gram was invalid. In NonStop SQL/MP, users
can selectively recompile plans.

Physical Database Configuration Features
In previous releases of NonStop SQL, many
DDL partitioning operations allowed concur
rent read and write access to all partitions of
the table except the affected partitions, which
allowed write access only. This limitation led
to outages, since most applications require
full read and write access to all of the data
in a table.

JULY 1994 • TANDEM SYSTEMS REVIEW 15

16

As part of Tandem's NSA Initiative, the Split
Partition, Move Partition, and Create Index
operations have been changed.4 In addition, a
new operation, Move Partition Boundary,5 is
being added in a later release. These new opera
tions allow full concurrent read and write access
to all data in the affected table during the DDL
operation. Troisi (I 994) describes these tech
niques elsewhere in this issue of the Tandem
System Review. Late binding features, used
together with these new operations, eliminate
the need for recompilations after DDL operations.

PURGEDATA PARTONLY
Often, users keep historical information in
tables. As new information is added at the end
of the table, old data is deleted from the begin
ning of the table. Typically, one partition's
worth of data is added and one partition's worth
removed. To remove this data, one can use the
SQL DELETE query, but this operation causes
significant amounts of audit to be generated,
and its performance may not be acceptable in
certain circumstances. One can use other tech
niques such as the LOAD command with the
PARTONLY and EMPTYOK options, but they
require that the audit attribute of the table be
turned off. User applications cannot operate
against the table during such an operation.

4The Split Partition operation moves a key range of the data from one
partition into another new partition. The Move Partition operation moves a
partition that re~ides on one disk to another disk. Create Index creates an
index that can be used to improve performance for queric" that accc~s
specific columns in the table.

'.'The Move Partition Boundary operation mo\ es rows between adjacent
partition~. typically ,...,hifting rows from nearly full partitions into less full
partition'-. One can use this operation to delete a partition by moving all of
ih row~ into an existing adjacent partition.

TANDEM SYSTEMS REVIEW

The PURGEDATA PARTONLY feature in
NonStop SQL/MP solves this problem by allow
ing users to purge the data in a single partition
of an audited table. In this way, user applica
tions are unaffected, yet data can be removed
from a table quickly and without large amounts
of audit being generated.

Recover Lost Partition
Users often employ the BACKUP and RESTORE
utilities as a way to recover from failures. One
popular technique is to use the PARTONLY
option of BACKUP to create a backup tape for
each partition of a table. Then, if a table's parti
tion is lost, one can recover that partition using
the RESTORE utility. Previous releases of
NonStop SQL required that the partition of the
table that was destroyed still had to exist for the
recovery to be successful. In the case of media
failure, however, the partition label was unavail
able and this recovery strategy did not work.

To solve this problem, the RESTORE utility
has been changed to restore data even when the
partition label is not present. This is the new
default behavior in NonStop SQL/MP.

Part 3: Features for Internationalization
The following internationalization features are
planned for the General Availability release of
NonStop SQL/MP.

Multibyte Character Set Support
Multibyte Character Set Support (MCSS)
extends the use of the existing CHARACTER
data type in NonStop SQL and implements the
NATIONAL CHARACTER (NCHAR) data type.
These extensions enable Tandem to be compati
ble with the ISO/ANSI SQL92 standard, which
generalizes the CHARACTER data type to sup
port multiple character sets on the same Tandem
system. These enhancements allow NonStop
SQL/MP to support multibyte character sets such
as KANJI (Japanese), BIGS (Chinese), KSC5601
(Korean), and ISO88591 (European).

JULY 1994

Collations
The collations features in NonStop SQL/MP
allow character strings to be ordered in a differ
ent collating sequence than the ASCII character
code collating sequence. These features are par
ticularly important for languages other than
English, because the ASCII collating sequence
does not provide the correct ordering sequence
for these languages. NonStop SQL/MP provides
the following additional capabilities:

■ Characters can sort to the same weight (for
example. sort "A" and "a" as equal).

■ Characters can have a null collation (for
example. D' Anza = DAnza).

■ Certain characters can collate as two charac
ters (for example, "O umlaut"= OE).

■ Certain double characters can collate as one
character (for example, "ch","ll","rr" in
Spanish).

Text Translation
The text translation feature in NonStop SQL/MP
allows users to display all error messages, help
text, and other informational messages in na
tional languages other than English. One can
set up this mechanism before the start of SQL
processes or switch it during an SQLCI session.

Conclusion
Tandem's NonStop SQL/MP provides signifi
cant improvements in parallel performance
against large databases. New database configu
ration operations and late binding features
reduce downtime for applications requiring
high availability. In addition, internationaliza
tion features enhance support for languages
other than English. NonStop SQL/MP, Tandem's
massively parallel database management system.
offers users a single-vendor solution for OLTP
and decision support applications.

JCLY 199.i

References
Noonan. M. and Gordon. D. 1993. A Performance Guide to
NonStop SQL. Technirnl l11fc1rmatio11 Series. Vol. 2. No. 2.
Tandem Computers Incorporated. Part no. 400075.

The Impact of'O11-/i11e Computer Systems Dow111ime 011 American
Businesses: A Survey of'Senior MIS Exernti,·es. 1992. FIND/SVP
Strategic Research Division.

Troisi. J. 1994. NonStop Availability and Database Configuration
Operations. Tandem Svstems Rei·iew. Vol. 10. No. 3. Tandem
Computers Incorporated. Part no. I 04400.

Wood. A. 1994. Client/Server Availability. Tandem Systems
Review. Vol. 10. No. 2. Tandem Computers Incorporated.
Part no. I 04398.

Zeller. H. 1994. A New Hash-Based Join Algorithm in NonStop
SQL/MP. Tandem System., Re,·iew. Vol. 10. No. 3. Tandem
Computers Incorporated. Part no. I 04400.

Acknowledgments
The authors would like to thank the members of the NonStop
SQL Development. QA. and Publications teams. who made the
NonStop SQL/MP sotiware possible. Thanks also to Dave Liles
for providing the original graphics.

Fred Ho is the development manager for the Nonstop SQL
Optimizer, Executor, and Preprocessor. He also managed the
Decision Support Systems initiative for Nonstop SQUMP. Fred
joined Tandem in 1985 to work on Nonstop SQL Release 1.
After that he worked in TMF QA and Software Engineering before
rejoining the Nonstop SQL group as QA manager in 1989. He has
been a development manager since 1992.

Rohit Jain has worked for the past three years in the Professional
Services group delivering application and database design and
tuning services to Tandem users. He was also involved with the
design and implementation of a large decision support system. Rohit
joined Tandem in 1987 as a district analyst. He recently joined the
NonStop SQL development group.

Jim Troisi is the development manager responsible for the avail
ability features in the Nonstop SQUMP product. Since joining
Tandem in 1982, Jim worked as the principal architect of the
Tandem Maintenance and Diagnostic System. Since joining the
Nonstop SQL group in 1989, he has managed the Nonstop SQL
Utility area and worked to release several Nonstop SQL availabil
ity and manageability features. In addition, he has been project
manager for several Nonstop SQL releases, including D20.

TANDEM SYSTEMS REVIEW 17

18

NONSTOP SQL/MP

Nonstop Availability and Database Configuration Operations

atabase configuration and
reconfiguration operations
can have a significant effect
on the availability of user
applications. Although most
users perform these opera
tions infrequently, their

duration can account for thousands of minutes
of application outages per year. The enhanced
database configuration features in the Tandem'"
NonStoprM SQL/Massively Parallel (SQL/MP)
relational database management system elimi
nate most of this downtime.

The cost of application outages has been
estimated to be over a thousand U.S. dollars
per minute. Thus, a user with an application
requiring permanent, continuous availability
could save 3.5 million dollars per year by using
the new NonStop SQL/MP features. A discus
sion of the cost of application outages appears

in the article "An Overview of NonStop
SQL/MP" (Ho et al., 1994) in this issue of the
Tandem Svstems Review.

This article describes the changed database
configuration features in NonStop SQL/MP. It
focuses on one operation, Split Partition, in par
ticular. The article explains each phase of the
operation and shows how it maintains applica
tion availability. (The few required outages are
noted, together with estimates of how long they
last.) The other database configuration opera
tions function in a similar way and have a simi
lar effect on availability. Thus, the description
of Split Partition also applies, for the most part,
to the other operations.

Physical Database Configuration
Features
As part of Tandem's NonStop Availability (NSA)
Initiative, the SQL/MP developers have added
new options to the Split Partition, Move Parti
tion, and Create Index commands and are adding
a new command, Move Partition Boundary. One
of these new options, WITH SHARED ACCESS,
allows concurrent read and write transactions to
execute during the operation.

TA~DEM SYSTEMS REVIEW• JULY 1994

The Split Partition command splits one parti
tion into two. Move Partition moves a partition
that resides on one disk to another disk. Create
Index orders data according to the value speci
fied in the key columns. As a result, queries
that use these key columns run quickly.

The Move Partition Boundary command
moves rows between adjacent partitions, typi
cally shifting rows from nearly full pa~titions
into less full partitions. One can use this com
mand to delete a partition by moving all of its
rows into an existing adjacent partition.

The new implementations of these commands
improve database availability. They minimize,
but do not eliminate, associated outages. Even
with the improvements in NonStop SQL/MP,
user database activity continues to be restricted
for about one minute or less per operation. The
outage time varies depending on the number of
user transactions running against the table, the
size of the transactions, and the number of par
titions in the affected table. For example, with
long-running user transactions, these co~mands
need more downtime because they reqmre locks
that cannot be granted until all outstanding trans
actions against the source table have been com
pleted. For this reason, one should run these
commands at times when the user workload
against the database is at a low point. Consult
the documentation for NonStop SQL/MP for
additional considerations.

These NonStop SQL/MP operations use a
technique that requires the use of the Tandem
Transaction Manager/Massively Parallel
(NonStop TM/MP) audit trail.' When the WITH
SHARED ACCESS option is specified, the oper
ations work only on audited tables; they cannot
work when the source table is unaudited. When
the WITH SHARED ACCESS option is not speci
fied, the Split Partition, Move Partition, an?
Create Index operations work for both audited
and unaudited tables.

I The NonStop TM/MP product i~ lhe ne\v version of TMFTM (Tr~m,action
Monitorin<> Facility) software. Chandra and Eicher (1994) descnbc the new
features inC' NonStop TM/MP in this issue of the Tande111 Systems Rel'inr.

JULY 1994

The NSA Split Partition Operation
In NonStop SQL, partitions are used to create a
large logical table from multiple smaller ph~sical
files and to enhance performance by balancmg
the 1/0 workload among multiple disk devices.
Currently, a partition can grow to 2 gigabytes
and a table can consist of up to 286 partitions,
the exact number of partitions depending on key
size.2 One can enlarge a table by splitting a par
tition and moving data from the original parti
tion into another, newly created partition, or by
adding a new partition where no data movem~nt
is required. The Add Partition command, avail
able in previous releases of NonStop SQ~,
accomplishes the second of these operations;
it requires minimal outage times.

When splitting a partition, one decreases the
size of the source partition; some percentage of
the source partition's data goes to the new pa_rti
tion. To accomplish this, previous releases of
NonStop SQL provided the Split Partition com
mand, which allowed concurrent read access to
the partition being split and read and write
access to all other partitions. In contrast, the
NSA Split Partition operation, available in
NonStop SQL/MP, allows complete read a~d
write access to all partitions during the spht
operation.

'The limit of 286 partitions will be raised in a future release.

TANDEM SYSTEMS REVIEW 19

Figure 1.

Tahle partitioning /JefiJre
and after the Split Partition
operation.

20

Figure 1

Original table

AA-GZ HA-NZ OA-ZZ

Table after NJ is split to a new partition

AA-GZ HA-NI NJ-NZ OA-ZZ

The NSA Split Partition operation works
in four phases. The phases guarantee that
modifications (inserts, updates, and deletes)
made to the data in the original table by user
applications are present in the table after the
split finishes executing.

Figure l shows an example of a table parti
tion being split to accommodate growth in user
data. The table's primary key is the user's U.S.
state. The table has three partitions, one for states
whose two-letter postal code precedes HA, one
for states whose postal code is HA through NZ,
and one for the states after that. Because sales
in New Jersey (NJ) have far exceeded expecta
tions, the second partition of the table is becom
ing full. Therefore, the user wants to split this
partition, moving the entries from NJ through
NZ into a new partition. Figure 1 shows the
partitions in the original table and the partitions
planned for the new table.

Phase 1: Sequential Read
In the first phase, Sequential Read, of an NSA
Split Partition operation, the SQL catalog man
ager (SQLCAT) process creates the new target
partition. Since a new partition is not yet logi
cally a part of the table's definition, user appli
cations cannot use it.

The SQLCAT process then sequentially reads
the existing (original) partition and writes the
relevant portions of its data to the new target
partition. (The reads begin at the location at
which the data will be split.) The SQLCA T
process uses browse access to perform the
reads. Therefore, the data is moved without
any user applications experiencing additional
lock contention.

This technique, however, allows inconsistent
data to be copied to the target partition. (Another
name for this technique, dirty reads, comes from
this inconsistency.) Assume, for example, that
a row is copied that is part of a user transaction
and the transaction is later aborted. Moreover,
since other applications can continue to insert,
update, and delete rows already read by the
sequential-reading SQLCAT process, the data
may be incomplete or even incorrect. In the
second phase of this operation, the audit for the
table is read to correct this situation. To prepare
for the second phase, the Split Partition opera
tion notes the current end-of-file (EOF) of the
audit trail for the original partition before the
sequential reads begin.

Figure 2 shows the sample table in phase 1,
during which the NJ through NZ data is split
off from the original partition to a new disk. To
understand how availability is maintained dur
ing the operation, assume that while the sequen
tial reader is running, two rows (containing the
keys MI and NJ) are inserted into the original
partition. Assume also that the new NJ row is
added after the reader has already read all the
NJ rows and written them to the new partition.
Under these circumstances, the new NJ row is
not copied to the target partition during phase 1.

TANDEM SYSTEMS REVIEW• JULY 1994

During phase 1, user applications have com
plete read and write access to the data in all par
titions of the table. Selects, updates, inserts, and
deletes are executed against the original table.

Phase 2: Audit Fixup 1
In the second phase, Audit Fixup 1, the dirty
copy of the data is brought up to date with the
original partition's data. This is accomplished
by examining the audit trail for the original par
tition to find records that have changed since
the dirty copy was made. In this phase, the
audit-fixup process reads the audit trail, starting
with the first record inserted into the audit trail
after the dirty read began. From these audit
records, the audit-fixup process identifies any
changes (inserts, updates, or deletes) made to
the data that also resides in the new partition.
It then applies those changes to the data in the
new partition.

This phase ends when the audit-fixup process
reads the last record in the audit trail. At this
point, the data in the target partition looks
exactly like the data in the original partition
except for uncommitted transactions. To find
these last changes, the audit-fixup process con
tinues to read and apply audit, as needed, to
the new partition.

Figure 3 shows the sample table in phase 2.
The audit-fixup process finds the new NJ and
MI records in the audit trail. Since the MI record
will not reside in the new partition, the process
discards it. The NJ record, however, should
reside in the new partition, so the audit-fixup
process applies this change to the new partition.

However, the target partition still may not be
an exact copy of the original one. Assume, for
example, that as soon as the audit-fixup process
reaches the end of the audit trail, a new record,
NY, is added to the original partition. If this
record is inserted after the audit-fixup process
reaches the audit EOF, the record is not copied
to the target partition during phase 2.

JULY 1994

Figure 2

Select NJ

Figure 3

Scan
(SOLCAT)

process
------. NJ-NZ

Insert NV ----- HA:..Nz ---- Audit -
Ml NJ

Auditfixup
process

NJ-NZ
NJ

During phase 2, user applications have com
plete read and write access to the data in all
partitions of the table. Selects, updates, inserts,
and deletes continue to execute against the
original table.

Phase 3: Audit Fixup 2
In the third phase, Audit Fixup 2, locks are
requested to make sure all outstanding user
transactions against the table are completed
and applied to the new partition before it is
made logically part of the table's definition.
First, the Split Partition operation requests a file
lock against the original partition being split.
The lock is made as part of a transaction; it does
not allow any other locks to exist concurrently
against the specified partition. Thus, once the
lock is in effect, no changes outside the trans
action can be made to the partition until the
transaction is completed.

TANDEM SYSTEMS REVIEW

Figure 2.

The user application
inserts records while the
table is sequentiaU,· read.

Figure 3.

The user application acids
records as the audit}ixup
process reads audit.

21

Figure 4.

The table ·s partitioning
after phase 3.

22

Figure 4

NJ-NZ QA,..ZZ

When the lock is granted, the audit-fixup
process is called again to finish applying rele
vant audit. It stops examining audit when it
reaches the point where the file lock was granted.
In the example, the process reads the NY record
at this time.

After this audit is applied, a file lock is
requested for all other partitions of the table.
When the file lock is granted, the labels of each
partition are updated to include the necessary
information about the new partition. When the
file lock is released, the table physically and
logically has four partitions. The redefinition
timestamp of the table is updated to indicate
that a change has been made. Figure 4 shows
the sample table after phase 3 is completed.

When an executing user application makes
its next request to the table, the NonStop
SQL/MP file-system and executor components
notice that the table has undergone a change
since their last request. Recompilation occurs if
the user has allowed runtime compilations for
the application. Since the table now logical!y
has four partitions, the NonStop SQL compiler
produces appropriate query execution plans so
that Data Definition Language (DDL) and Data
Manipulation Language (DML) operations
occur against the proper partitions. Recom
pilation in itself can be a source of outage.
A separate NonStop SQL/MP feature, late
binding, is available to handle this problem.

At the beginning of phase 3, users have com
plete read and write access to al.l ~naffecte.d par
titions, but by its end, the table 1s maccess1ble to
all applications. The time it takes to coi_nplete
phase 3 depends on the number of part1t10ns
of the table and the transaction activity on the
table. In practice, this phase should usually last
less than a minute.

Phase 4: Cleanup
In phase 4, Cleanup, the Split Partition opera
tion cleans up the table, removing the physi
cally present, but logically absent, rows from
the (original) split partition. In the example, the
rows that have been moved from the second
partition to the third partition need to be deleted
from the second partition. The cleanup opera
tion occurs in the background and does not af
fect user applications. Phase 4 ends when all
the unnecessary records have been deleted.
During this phase, the user has complete read
and write access to the table.

TANDEM SYSTEMS REVIEW• J L' L y I 9 9 4

Database Recoverability
A major design goal for the NSA database con
figuration operations required that users who
had media protection (used TMF rollforward
or NonStop TM/MP file-recovery protection)
would be able to recover their database tables
if a media failure occurred at any point in the
operation. To this end, the NSA operations allow
users to make online dumps of the target parti
tion before the end of phase 3. Because of this
capability, and because audit is generated for
the target partition in phases 2 and 3, one can
recover from a media failure at each point in
the operation. If a failure occurs before phase 3
ends, the new partition is not visible to the user
application, and one can use the original table's
online dump. If a failure occurs after phase 3,
one can use the online dump made in phases 2
and 3 to recreate the new partition.

Conclusion
The NSA physical database configuration
features introduced in NonStop SQL/MP signif
icantly reduce database outages. By allowing
full read and write access to all partitions of
a table during the lengthy data-movement
phase, these features limit the outages associ
ated with the Split Partition, Move Partition,
Move Partition Boundary, and Create Index
operations to about one minute per operation.

JULY 1994

References
Chandra. M. and Eicher. D. 1994. Enhancing A\'ailability,
Manageability, and Performance With NonStop TM/MP.
Tandem S_,,stems Rn·iew. Tandem Computers Incorporated.
Part no. I 04400.

Ho. F .. Jain. R., and Troisi, J. 1994. An Overview of NonStop
SQL/MP. Ta11de111 Srstem.,· Review. Tandem Computers
Incorporated. Part no. I 04400.

Jim Troisi is the development manager responsible for the avail
ability features in the Nonstop SOUMP product. Since joining
Tandem in 1982, Jim worked as a principal architect of Tandem's
Maintenance and Diagnostic System. Since joining the Nonstop
SOL group in 1989, he has managed the Nonstop SOL Utility area
and worked to release several Nonstop SOL availability and man
ageability features. In addition, he has been project manager for
several Nonstop SOL releases, including D20.

TANDEM SYSTEMS REVIEW 23

24

NONSTOP S Q L M p

A New Hash-Based Join Algorithm in Nonstop SQL/MP

join is a database opera
tion that combines rows
from two tables into a
single table. In many con
texts, such as decision
support and data ware
housing, it is necessary

to execute ad hoc queries that generate large
joins. Based on extensive research in the aca
demic world, a hash join is the algorithm of
choice for many join queries, particularly when
the tables do not have an index defined on the
join columns. The Tandem•M NonStop•M SQL/MP
relational database management system imple
ments a hash join algorithm in execution plans
for both sequential and parallel processing. This
is the first implementation of a hash join algo
rithm in a major commercial database manage
ment system.

This article describes several types of join
algorithms, discusses sequential and parallel
execution plans for hash joins in NonStop
SQL/MP, and compares the hash join algorithm
with other join strategies available to the
NonStop SQL/MP optimizer. The article also
discusses the performance benefits of hash joins
and lists conditions under which a hash join is
likely to help. The article can be read by anyone
familiar with relational databases and the SQL
programming language. It may be of particular
interest to database designers and database ad
ministrators concerned with high-performance
query processing.

Comparison of OLTP and Decision
Support Processing Requirements
NonStop SQL has been successfully used in
many online transaction processing (OL TP)
applications. Such applications are character
ized by a large number of small or medium-size
transactions that are performed in parallel. A
typical example is an automated teller machine
(ATM) application in which multiple clients
(the ATMs) simultaneously generate indepen
dent requests and require short response times.
Here, processing a large number of separate
requests in parallel, provides load balancing
and efficient utilization of system resources.
Fast responses to individual requests are possi
ble because each request typically involves a
small result set that can be directly accessed
via indexed columns. Joins that process large
amounts of data are not used extensively in
OLTP applications.

Database applications for decision support
systems (DSS) use parallel processing in a dif
ferent way. Unlike OL TP, DSS applications typ
ically handle only a few requests at a time, but
each of these is likely to be very large and
require considerable system resources. Here,
inter-query parallelism, alone, will not provide
effective load balancing and resource utiliza
tion. To achieve this, parallel processing must
also be carried out within a query (Moore and
Sodhi, 1990). Such intra-query parallelism
more fully exploits the resources provided by a
multiprocessor, multidisk system and improves
performance times on large queries. Hash join
execution plans that employ intra-query paral
lelism are described later in the article.

TANDEM SYSTEMS REVIEW• JULY 199-+

In addition to using intra-query parallelism,
performance improvements on large queries
can be achieved by maximizing the use of main
memory for complex operations like joins.
Main memory can be used to cache rows that
are needed multiple times during a join opera
tion. If random access is necessary for a join,
table data can often be sequentially read into
memory, so that the random access is carried
out in memory space rather than through repeated
disk accesses. The hash join algorithm described
in this article was designed with these considera
tions in mind. It can be used for intra-query par
allelism, it uses application memory to cache
rows that are likely to be accessed multiple times,
and it uses a simple and efficient hash access
structure to quickly perform random accesses on
data in memory.

The usefulness of such a hash join algorithm
can be illustrated with a simple example. Sup
pose a DSS database contains a large SALESHIS
TORY table and a small STORES table, with the
columns and primary keys shown in Figure 1.

A typical DSS question requiring a join of
data from both tables might be "How much rev
enue came from sales at stores in California
over the last three months?" Expressed as a query
in SQL, this would be

SELECT SUM(QuantitySold x Price)
FROM SALESHISTORY, STORES
WHERE SALESHISTORY.StoreNumber

= STORES.StoreNumber AND
STORES.State = "CA" AND
SALESHISTORY.DateOfSale BETWEEN

(CURRENT YEAR TO DAY -
INTERVAL 'T MONTH) AND

(CURRENT YEAR TO DAY);

There are many possible execution plans
for this query. Here, it is assumed that the
SALESHISTORY table is read row by row for
the three months of interest, and that for each
SALESHISTORY row, the STORES table is
accessed, the StoreNumbers matched, and the

Figure 1

SALESHISTORY table
DateOfSale, ProductNumber, StoreNumber, OuantitySold, Price

STORES table
StoreNumber, City, State, Address

state evaluated. For a disk-resident table, each
access costs a message to the disk process.
Given a large number of sales in a three-month
period, accessing the STORES table from the
disk process, even assuming that many rows
were cached in memory, would involve a con
siderable cost in messages. The NonStop SQL/MP
algorithm for a hash join avoids such costs by
building a temporary table in application mem
ory. Thus, in the example, STORES would be
accessed as a memory-resident table, and
almost all messages to the disk process would
be eliminated.

A hash join execution plan is often the most
efficient choice for a query in NonStop SQL/MP,
especially for large joins between tables of very
different sizes, as in the preceding example. The
following sections describe and compare join
algorithms in some detail. Readers less inter
ested in the internal design of join algorithms
and the description of hash join execution plans
can skip directly to the section "Performance
Benefits" near the end of the article.

Figure 1.

Columns and primarr
kers (in bold).fr1r the
SALESHISTORY and
STORES tables.

JULY 1994, TANDEM SYSTEMS REVIEW 25

Figure 2

TABLE1 TABLE2 Join query Join result

COL1 COL2 COL1 COL2 .StEt.fi!CT" 1, 1, 1, 1

2

3
3
4

6
1
9

Figure 3

Figure 4

Figure 2.

1

2
0
3

4
6
1
9

1, 1

2,2

3,0
TABLE1 3, 3

TABLE1
(outer)

4, 4
6,6
7;7
9,9

1, 1

2,2

3, 0

3,3
4,4

6,6
7, 7
9,9

Sample tables, join querv,
amljoin result.

26

1 foROM '.uAf!Ll':1; TABLE2 3,0,3,0
3 0 w iE1;COL1 = 3,0,3,9
3 9 El1!.COL1; 3;3,3,0
4 4 3,3,3,9
5 5 4,4,4,4
7 7 7,7,7,7
8 8

TABLE2

8;8

TABLE2 (inner)

1, 1 1, 7 8,8

■

■ ■

■ ■

■

■

Search space

Figure 3.

Cartesian product of
TABLE] and TABLE2
and qualifying result
rowsfromjoin querv.

Figure 4.

Search space andjoin
result of a nested-loop
join.

TANDEM SYSTEMS REVIEW

Overview of Join Algorithms
A relational join is a subset of the Cartesian
product of two relational tables. The Cartesian
product is the combination of every row in the
first table with every row in the second table.
The subset is determined by a join predicate.
Figure 2 shows two tables, a simple join query
between the tables, and the join result. Figure 3
graphically represents the Cartesian product of
the two tables and the outcome of the join
query.

Before introducing the different join algo
rithms, it is necessary to define some terms.
Most of the join algorithms discussed here
apply only to equijoins. An equijoin has a join
predicate that specifies an equality between
columns, as in the predicate TABLEI.COLI =
T ABLE2.COL I in the query in Figure 2. The
columns in an equijoin predicate are called the
join columns. The values in these columns are
the join values. In the following discussion, the
search :,,pace of a join algorithm consists of the
combinations, or cells, in a Cartesian product
that the algorithm must evaluate in order to
arrive at the final join result. The main purpose
of a good join algorithm is to keep the search
space small and not try unnecessary combina
tions. The following subsections describe three
basic types of join algorithms: nested-loop join,
merge join, and partitioned join.

Nested-Loop Join
The simplest join algorithm, the nested-loop
join, evaluates the entire Cartesian product of
two tables by reading every row of one table,
the inner table, for each row of the other, the
outer table. 1 Those combinations that are quali
fied by the join predicate are retained as result
rows, and all other combinations of the Cartesian
product are discarded. As shown in Figure 4, the
search space of a nested-loop join is the entire
Cartesian product of the tables in the join.

1 In NonStop SQL/MP EXPLAIN plans, lhe term llt'SU:'djoin is used to
refer to both a ne-;ted-luop join and. a~ defined later_ a ne~tcd index join.

JULY 1994

In Figure 4, the Cartesian product of the two
tables is represented by 56 cells. The join result
consists of 7 rows, identified by cells with
black squares. Thus, the nested-loop join visits
49 cells that are not part of the join result.

Merge Join
A merge join algorithm can dramatically reduce
the search space of an equijoin. To apply a merge
join, both tables must be ordered by their join
columns. The join result can then be found by
searching diagonally through a matrix repre
senting the Cartesian product of the tables.
Figure 5 illustrates a merge join for the tables
and query given in Figure 2. Cells containing
black squares are part of the join result. White
cells constitute the search space of the join.

The query in Figure 2 specifies that an equi
join be carried out on COL I of both tables.
Conveniently for the merge join illustrated in
Figure 5, the rows in both tables happen to be
in ascending order by COL I. The problem for
merge joins is that tables are not always ordered
on their join columns. One way to overcome
this is to sort the data and perform a merge join
on the result. This is called a sort-merge join.

In Figure 5, the search space consists of 16
cells. Only 9 of the cells are not included in the
join result.

Partitioned Join
In a partitioned join, values in the join column
(or columns) of the inner table are partitioned
into sections. In this approach, given a join
value from the outer table, it is only necessary
to search the section of the inner table that
encompasses this value. This is illustrated in
Figure 6, in which the inner table, T ABLE2, is
partitioned into three sections. In the first sec
tion, values in the join column are less than or
equal to 3. The second section contains join
values 4 through 6, and the third section con
tains join values of 7 or more.

Figure 5

Figure 6

TABLE1

,1, r $;{.)

1, 1 ■

2,.2
$;-0 ■
a,,s ■

i!;4
6,.6
7,7
9,9

Search space

·j' 1

1, 1 ■

2,2
$,0

''!3,:0

■
TABLE1 3;13: ■

4,4

6,6
7,7
9,9

Search space

TABLE2

3,9 4,4 5,5

■

■

■

TABLE2

3,9 ' 4,4 5,5
'

■ '
' ■ .
' ■

In Figure 6, the partitioned join only reaches
13 cells not included in the join result, making
it somewhat less efficient than a merge join
when no sort is required and far more efficient
than a nested-loop join. The concept of using a
partitioned search space is the basis for both the
nested index join and the hash join in Non Stop
SQL/MP. In the implementation of the hash
join, partitioning is also used to handle memory
overflow and to distribute join processing across
CPUs in the execution plan for a hash-partitioned
join (described later in the article).

JULY 1994 • TANDEM SYSTEMS REVIEW

7, 7 8,8

■

. . 7, 7 8,8 . .

' ■

Figure 5.

Search space of'a merge
join.

Figure 6.

Search space r<f' Cl

partitioned join.

27

Figure 7.

Partitioning of' u whle
through B-tree indexing.

Figure 8

TABLE2

COL1 COL2
1
3 0

3 9
4 4
5 5

7 7

8 8

Figure 8.

Building-phase of"a hash
join: mapping rowsfi·o111
TABLE2 to a memory
resident hash ta hie.

28

Figure 7

Index block

e1 ez as
1 4 7

~. l .. ~7H8
Data block 1 Data block 2 Data block 3

Memory-resident hash table

H = COL 1 modulo 4 -,... 1,1 5,5

2

3 _,... 3,0 3,9 7,7

Nested Index Join. There are a number of ways
to partition a table into sections. For example,
in a key-sequenced table in NonStop SQL/MP,
a B-tree index structure makes it possible to
find the block containing a row with a given
key value. This is a form of partitioning in
which each section consists of the range of key
values contained in an individual disk block. In
Figure 7, a B-tree index partitions T ABLE2 into
three sections (data blocks) that match the three
sections of T ABLE2 in Figure 6.

TANDEM SYSTEMS REVIEW

When a partitioned join uses a B-tree index
on the join columns of the inner table, for each
row of the outer table, the B-tree index of the
inner table identifies the block or blocks that
may contain the matching join value. Only
these data blocks, rather than the entire table,
need to be scanned for matching rows. In this
article, a partitioned join that uses a B-tree
index is called a nested index join.

An ad hoc query can use any column or
group of columns in a table as a join column.
Since it is often too expensive to create a per
manent index structure for every possible join
column, let alone all possible combinations of
join columns, there will be cases where a nested
index join is either impossible or inefficient.
One way to avoid a nested-loop join and obtain
the efficiency of a partitioned join is to create a
temporary index for the join, as in the case of a
NonStop SQL/MP hash join.

Simple Hash Join. A simple hash join is a parti
tioned join in which a memory-resident hash
table is used to partition the inner table, rather
than the disk-resident B-tree index of a nested
index join. The hash index has as its hash key
the join columns of the inner table, and it con
tains all columns from the table that are needed
to form the join result. A simple hash join exe
cutes in two phases, a building phase and a
probing phase.

In the building phase, the inner table is read
from disk and inserted into the memory-resident
hash table, using the join column or columns as
the hash key. During this phase, rows and col
umns that are not needed to calculate the join
result can be eliminated. Figure 8 illustrates the
building phase of a simple hash join that uses
the hash function

H = COLI modulo 4

where H is the hash value and COLI is the join
value submitted to the function.

JULY 199""1

In Figure 8, T ABLE2 is mapped to a memory
resident hash table. The table consists of a hash
index and hash chains. Values in the index come
from the hash function. Each distinct hash value
is associated with a single hash chain contain
ing rows from T ABLE2. Conceptually, mapping
a row from T ABLE2 to the hash table involves
two steps: (1) using the hash function to derive
a hash value for the value in COLI and (2) writ
ing all column values for the row into the corre
sponding hash chain.

In building the memory-resident hash table,
all rows of the inner table that have the same
join value are read into the same hash chain,
although a chain can contain more than one join
value. Each chain is equivalent to a separate
section in a partitioned join. During the probing
phase of a simple hash join, for each row of the
outer table, it is only necessary to scan a single
hash chain of the memory-resident hash table.

Once the inner table in a hash join has been
read into the memory-resident hash table, the
probing phase of the join can begin. Figure 9
illustrates the probing phase of a hash join with
TABLE I as the outer table and T ABLE2 as the
memory-resident inner table.

The basic steps for achieving the join result
in Figure 9 are:

1. For each row in TABLE I, use the hash func
tion to derive the hash value corresponding
to the value in COL I.

2. Using the hash index to the memory-resident
hash table, locate and read the hash chain
corresponding to the derived hash value.

3. Return for inclusion in the join result any
rows that match the join value in COLI and
meet other selection criteria in the join query.

Figure 9

H = COL 1 modulo 4

COL1 COL2
1
2
3
3

4

6
7
9

2
0
3
4
6
7
9

1
0 --

4,4 8,8

1 - 1,1 5,5

2-

3- 3,0 3,9 7,7

Ha$h Hash chains

TABLE1
index

~ r Memoo-ms;deo< hash "'""

1, 1, 1, 1
3,0,3,0
3,0,3,!;l

3,!11;3,0
3,f

4,4,4;4
7,7,7,7

Join result

Hash Joins When the Inner Table Is Too
Large for Memory
A major problem for simple hash joins is that
there is not always enough memory to hold the
memory-resident hash table. The following sub
sections describe three types of hash joins for
handling memory limitations: the grace join;
the hybrid hash join, which is an improvement
on the grace join; and the adaptive hash join,
which improves on the hybrid hash join and is
the approach implemented in NonStop SQL/MP.

.JULY 1994 • TANDEM SYSTEMS REVIEW

Figure 9.

Prohing phase of'a hash
join and join result.

29

Figure 10

Inner table
H = COLJ modulo 3 Bucket 1

(H=O)
Bucket2
(H = 1)

Buckets
(H=2)

Figure 11

Partioning phase

Inner table
H = GOLJ module 3 Bucket 1 Bucket 2 Bucket 3

(H =0) (H = 1) (H =2)

Join l l j
phase

Simple Simple Simple
hash join hash join hash join

Partioning phase

1 1 1
Outer table

H = GOLJ modulo 3 Bucket 1 Bucket 2 Bucket 3

Figure 10.

Grace join: assignment of
rows from the inner table
to buckets.

Figure 11.

Partitioning andjoin
phases o(a grace join.

30

(H = 0) (H = 1) (H = 2)

Grace Join
To deal with memory limitations, a grace join
(Kitsuregawa, Nakayama, and Takagi, 1989)
consists of two phases, a partitioning phase and
a join phase. In the partitioning phase, a hash
function is used to divide both the inner and
outer tables into a number of buckets that reside
in temporary files on disk. In the join phase,

TANDEM SYSTEMS REYIE'w

each inner-table bucket is read into a memory
resident hash table and a simple hash join is
performed with the corresponding bucket from
the outer table.

The Partitioning Phase of a Grace Join. At the
beginning of the partitioning phase, a grace join
calculates the number of inner-table buckets it
will need, based on the amount of memory avail
able and the size of the inner table. The calcula
tions assume equal bucket sizes and a constant
amount of available memory. The goal is to
create as few buckets as possible and still have
each bucket fit in memory during the join phase.
For example, suppose the inner table contains
27 megabytes of data and there is sufficient
application memory to hold a I 0-megabyte hash
table. In this case, partitioning will create three
bucket files, each of which is expected to receive
9 megabytes of data.

Given the required number of buckets, a
hash function can be defined and rows from
the inner table assigned to buckets, as illus
trated in Figure 10.

Figure IO shows an inner table partitioned
into three buckets. COLJ of the table is assumed
to be the join column. For each row in the table,
the value in COLJ is submitted to the hash
function

H = COLJ modulo 3

and the row then assigned to the bucket that
corresponds to the resulting hash value.

Once the inner table has been partitioned
into buckets, the same hash function used for
the inner table is used to partition the outer table.
This concludes the partitioning phase. For each
inner-table bucket on disk, there is now a corre
sponding outer-table bucket with the same hash
value and the same range of possible join values.

The Join Phase of a Grace Join. In the join phase
of a grace join, a simple hash join is performed
on each pair of corresponding buckets from the
inner and outer tables, as illustrated in Figure 11.
The final join result is achieved by combining
the results of the individual bucket joins.

JL:LY 199-t

Limitations of the Grace Join Algorithm. A grace
join makes the following crucial assumptions:

■ It has a valid estimate of the size of the inner
table.

■ The distribution of join values in the inner
table is not skewed, so that each bucket file
receives approximately the same number of
rows.

■ The amount of memory available does not
change throughout the join.

Under production conditions, it is difficult to
make sure that even one of these assumptions
holds. As a result, an unmodified grace join
algorithm is not practical in most circu~stan~es.

The hybrid hash join algorithm descnbed m
the next section is limited by the same assump
tions as a grace join. It is not until the adaptive
hash join of NonStop SQL/MP that these limita
tions are addressed.

Hybrid Hash Join
A grace join reads all rows from the inner and
outer tables and writes them back out to tempo
rary files on disk for bucket-partitioning. It then
has to read the same data back into memory to
carry out the join. The hybrid hash join (DeWitt
and Gerber, 1985; Schneider and DeWitt, 1989),
is based on the grace join, but uses memory
more efficiently by performing a simple hash
join on one pair of inner and outer partitions
during the partitioning phase. In the first part
of the partitioning phase, instead of partiti?n
ing the entire inner table into buckets on disk,
rows belonging to one section are assigned to
a memory-resident hash table as soon as they
are read into memory. This is illustrated in the
upper portion of Figure 12, in which inner
table rows whose join column (COLJ) has a
hash value of Oare immediately read into
a memory-resident hash table.

In the second part of the partitioning phase,
the outer table is partitioned into sections. Rows
from the section with the same hash value as the
section of the inner table in the memory-resident
hash table are directly joined with rows in the

JULY 1994

Figure 12

Partitioning phase

Inner table

Memory
resident

hash table
(H =0)

Join

Bucket 1 Bucket 2
(H = 1) (H =2)

phase j l
Simple

hash join
Simple

hash join

l
Simple

hash join

l
Bucket 1 Bucket 2
(H = 1) (H =2)

hash table. Following the partitioning phase, the
join phase of a hybrid hash join is the same a~
for a grace join. Figure 12 illustrates the parti
tioning and join phases of a hybrid hash join.

As a comparison between Figures 11 and 12
shows if the inner and outer tables are only par
titioned into a small number of buckets, a hybrid
hash join is likely to provide significantly b~tt~r
performance than a grace join. In the grace Jorn
of Figure 11, three buckets for each table are
written to disk and then read back into memory
for simple hash joins. In the hybrid hash join in
Figure 12, the initial sections from the inner
and outer tables are joined directly in memory,
without being written to disk and reread.

TANDEM SYSTEMS REVIEW

Figure 12.

Partitioning and
join phases of a
hybrid hash join.

31

Figure 13.

Hybrid hush join: partilion
ing the inner table into a
larger memory-resident
section and two smaller
buckets.

32

Figure 13

Application memory (amount available = 1 o s·)

Inner table

l!'mer
tab]ei

-:,.138

H = COLJ modulo 13 Input
buffer

Size: 1B

• Sizes are given in terms of memory buffers. A size
of 10 Bis equivalent to 1 O buffers of memory space.

A feature of the hybrid hash join that provides
for efficient memory usage is that the initial,
memory-resident section of the inner table can
be a different size than the buckets that are writ
ten to disk (see Figure 13). If available memory
at the outset of the partitioning phase is relatively
large compared to the size of the inner table, the
join algorithm can generate a memory-resident
hash table that is larger than the buckets written
to disk. If available memory is small, relative to
the size of the table, the size of the hash table
can be made smaller than the remaining buck
ets. In calculating memory allocations, the join
assigns all non-memory-resident buckets the
same amount of data and assumes that available
memory will remain constant throughout the
partitioning and join phases. Figure 13 illus
trates the use of memory space in partitioning
the inner table.

In Figure 13, the inner table contains enough
data to fill 13 memory buffers. In application
memory, l O buffers are available for use in
partitioning the table. One of the buffers must
be reserved for receiving input from the inner

TANDEM SYSTEMS REVIEW

Hash Buffer for Buffer for
table bucket 1 bucket2

(H = 0-6) (H =7-9) (H = 10-12)
Size: 7B Size: 1B Size: 1B

l j
!3uek~ 1 Suekel2
Si:te:38: Si:ze;:aB

table, leaving 9 buffers for building the memory
resident hash table and receiving data for buck
ets on disk. To reduce I/0 to buckets on disk, a
hybrid hash join allocates a separate buffer for
each bucket. Multiple rows of data can be read
to a buffer and then written to disk when the
buffer is full. Figure 13 shows the optimal al
location of memory space, given the size of
the inner table and available memory. Seven
buffers are allocated for the hash table, and two
buffers are allocated to provide for two buckets.
Each bucket is to receive three buffers of data.

Note that if only five buffers of memory
were available in Figure 13, there would only
be four buffers for the hash table and output to
individual buckets. In this case, a partitioning
based on two buckets would not work. Two
memory buffers would have to be used for out
put to the two buckets and two buffers would
be used for the initial memory-resident hash
table. Correspondingly, two buffers of data from
the inner table would go to the initial hash table
and five-and-a-half buffers of data would have
to go to each of the two buckets on disk. How
ever, this would exceed the amount of memory
available during the join phase, when each
bucket has to be read into the memory-resident
hash table. A successful partitioning would have
to use three buckets, with three memory buffers
used for output to buckets and one buffer as
signed to the hash table. Each bucket would
then receive four buffers of data.

JULY 1994

Figure 14

Application memory

Buffer for
Input cluster 1;
buffer buckets

0-3
(H =0-3)

Adaptive Hash Join
A hybrid hash join is very efficient when the
size of the inner table and the amount of mem
ory available are known before the join starts.
This information is necessary for determining
the size and number of inner-table partitions
that are to be created. Optimally, partitions are
as large as possible for the available amount of
memory. In many practical applications, how
ever, only a rough estimate of table size is pos
sible and the amount of memory available during
the join may vary as the join competes with other
processes for memory in its CPU. The adaptive
hash join in NonStop SQL/MP uses several
strategies to modify the hybrid hash join and
provide an algorithm that is robust when the
available memory changes dynamically and
when there are errors in estimating table size. 2

Sketches of the major strategies follow. They
cover

■ Allocation and deallocation of buffers for the
memory-resident hash table.

■ Dynamic adjustment of buffer size.

■ Regulating the size of disk files for clusters.

■ Using hash loop joins to deal with memory
shortages.

For greater detail on the adaptive hash join,
see Zeller and Gray (1990).

~ An adaptive hash join can be con~idcred a form of hybrid hash join.
When an adaptive hash join is used in NonStop SQL/MP. EXPLAIN plans
:-,hovv the -;election of a hybrid hash join.

JULY 1994

Unused
buffer

Unused
buffer

Dynamic Adjustment of Buffer Space for the
Memory-Resident Hash Table. In a hybrid hash
join, the amount of memory allocated to the ini
tial memory-resident hash table is determined
before partitioning, and cannot change. Through
out partitioning of the inner table, rows can be
read into the hash table. In an adaptive hash
join, no memory is specifically allocated for the
hash table and the inner table is fully partitioned
before the hash table is created. As illustrated in
Figure 14, partitioning is carried out in terms of
buckets and groups of buckets called clusters.

In Figure 14, each cluster is made up of 4
buckets. For the example shown, the NonStop
SQL/MP optimizer has determined that 16 buck
ets, making up four clusters, will be adequate
for executing the join. Initially, a single buffer
is assigned to each cluster. Additional buffers
available in memory are unused.

TANDEM SYSTEMS REVIEW

Figure 14.

Adaptive hash join:
partitioning the inner
table into buckets and
clusters (based on
H = COLJ modulo 16).

33

Figure 15

Figure 15.

Application memory

Buffer for
cluster 3;
buckets

8-11

Adaptive hash join
partitionin/!, as huffers
ove1jlow and arni/able
memory chan?,es.

34

Application memory

Buffer for Buffer for Buffer for

Following the initial assignment of buffer
space for partitioning the inner table, an adap
tive hash join attempts to respond to changes
in available memory in a way that maximizes
the number of sequential buckets and clusters
that stay in memory. When partitioning of the
inner table is complete, rows from the memory
resident buckets stay in place as they are linked
into the hash chains of a memory-resident hash
table. Figure 15 continues the example given in
Figure 14 and shows how sequential clustering
is maintained as buffers become full and avail
able memory changes.

On the left side of Figure 15, cluster 3 over
flowed its original buffer and a new buffer was
brought in from available memory for additional
cluster-3 rows. Similarly, cluster 4 overflowed

TANDEM SYSTEMS REVIEW

Buffer for
cluster 3;
buckets

8-11

Buffer for
cluster 3;
buckets

8-11

,\ --------'-'--'---"'

Buffer for
cluster 4;
buckets
12-15

j
Temporary

disk file,
cluster 4

its original buffer. It received the last unused
buffer available for use in partitioning. Subse
quently, as shown on the right side of Figure 15,
the amount of memory available to the join was
reduced, leaving only three buffers for rows
belonging to cluster 3 and cluster 4. In response,
the adaptive hash join wrote both buffers of clus
ter 4 to disk. One of these buffers is retained as
an output buffer to cluster 4 on disk. At the end
of partitioning, any rows in the buffer will be
written to disk; cluster-4 rows will not be
included in the initial memory-resident hash
table.

Cluster 3 retains its two buffers. If partition
ing were to stop at this point, all rows in cluster 1
through cluster 3 would be included in the initial
memory-resident hash table. If partitioning con
tinued without additional memory becoming
available and cluster 3 overflowed its second
buffer, both buffers would be written to disk, as
in the case of cluster 4, and cluster 3 would not
participate in the initial hash table. If additional
memory did become available, a third memory
buffer would be added for cluster 3, and it
could still be included in the hash table.

JULY 1994

Dynamic Adjustment of Buffers Used for Output
to Disk. An adaptive hash join can dynamically
respond to memory shortages by reducing the
size of the buffers it uses. During partitioning,
there must be at least one buffer in memory
for each cluster. As long as enough memory is
available, an adaptive hash join uses large (28-
kilobytes) buffers to provide efficient disk 1/0
for clusters that are written to disk; if available
memory becomes too small, buffer size is re
duced so that there can be as many buffers as
there are clusters.

Splitting Clusters Before Disk Files Grow Too
Large for Available Memory. In the join phase,
the most efficient way to join clusters from the
inner and outer tables is to carry out a simple
hash join with the inner-table cluster resident in
memory. An adaptive hash join attempts to pro
duce clusters small enough for memory by set
ting up a sufficient number of clusters at the
outset of partitioning, based on available mem
ory and the estimated size of the inner table.
However, during partitioning, available mem
ory may decline or the inner table may turn out
to be unexpectedly large. To prevent this from
resulting in clusters that are too big for mem
ory, an adaptive hash join monitors cluster size
during partitioning and dynamically splits clus
ters when they grow too large.

When a cluster is split, it is divided into two
new sections based on its component buckets.
Each section has its own output buffer in mem
ory and its own file space on disk.

Using a Hash-Loop Join When Inner-Table Disk
Files Are Too Large for Memory. In some cases,
it is not possible to prevent the disk file for an
inner-table cluster from growing too large for
available memory. This may happen when there
is an extremely skewed distribution of join val
ues in the inner table, when the table is far larger
than expected, or when there is an extreme short
age of memory.

Although a simple hash join is highly effi
cient when a cluster fits in memory, it causes
extensive page faulting and becomes inefficient
when a cluster does not fit in memory. As a
result, when a cluster is too large for memory,
an adaptive hash join uses a hash-loop join in
place of a simple hash join.

In a hash-loop join, as many blocks of data
as possible are read from an inner-table cluster
into a memory-resident hash table and a simple
hash join is performed with the corresponding
cluster of the outer table. When this join is com
pleted, the next set of blocks from the inner-table
cluster is read into the memory-resident hash
table and a second join is performed with the
outer-table cluster. This process is repeated until
the entire inner-table cluster has been joined with
the outer-table cluster.

With each loop, a hash-loop join can read mul
tiple blocks into a small hash table. This results in
far fewer disk accesses than would be necessary
with a nested-loop join. A hash-loop join has no
overflow conditions and can be very efficient
when a simple hash join is not practical.

Parallel Execution of Hash Joins in
Nonstop SOL/MP
NonStop SQL/MP provides sequential execution
plans for the simple and adaptive hash joins
described earlier. In addition, it offers two paral
lel hash join execution plans (Zeller, 1990), one
that performs parallel joins based on the indi
vidual partitions of a partitioned table, and
another, the hash-partitioned join, that uses a
hash function to partition the inner and outer
tables and then executes joins on the correspond
ing sections.

JULY 1994 • TANDEM SYSTEMS REVIEW 35

Figure 16

CPU 1

ESP1:
adaptive
hash join

TABlE1
par!ltlon 1

TABLl:!2
qua~lng

rows:

Figure 16.

Parallel hash join mz a
partitioned table.

36

~ter eJ<eoutor:
i;omtl!He Jlilm .

~1t$

CPU 2 I
ESP2:

adaptive
hash join

ESP:
send qualifying

rows

J'A~e2
(1na,r.
,Sbtt)

CPU 3

ESP3:
adaptive
hash join

Parallel Hash Join Based on the Partitions
of a Partitioned Table
This hash join execution plan always uses a
partitioned outer table. The inner table can also
be partitioned, but does not have to be. Under
the plan, hash joins are executed in parallel to
join each partition of the outer table with a sep
arate copy of all qualifying rows from the inner

table. To carry out the joins, an executor server
process (ESP) is created for each partition of the
outer table. The ESP for a partition resides in
the CPU that controls access to the partition's
disk volume. The results of the join for each
partition are combined to yield the final join
result. Figure 16 shows ESPs executing adap
tive hash joins in parallel on a partitioned table.

In Figure 16, TABLE I, a partitioned table, is
to be joined with T ABLE2, the inner table.
Selection predicates from a query are applied to
T ABLE2, and an ESP sends a separate copy of
the result to each ESP responsible for a join.
These ESPs then execute in parallel, each ESP
performing an adaptive hash join on its parti
tion and the rows from the inner table. At the
end, the master executor combines the results
from each separate join to produce the final join
result.

If both the inner and outer tables are parti
tioned, the partitions of the inner table can be
read in parallel for the selection of qualifying
rows. Copies of the results from all inner par
titions are sent to each ESP responsible for a
join, where the results are combined and fur
ther processing is the same as for an unparti
tioned table.

By using separate copies of rows from the
inner table, the parallel execution of a hash join
on a partitioned table provides greater paral
lelism and generates less contention for the
inner table than the comparable execution plan
for a nested index join. In many cases, this re
sults in better performance than parallel execu
tion of a nested index join.

Parallel execution of a hash join on a parti
tioned table is most efficient when the inner
table is small relative to the partitions of the
outer table. If the inner table is relatively large,
sending copies of all qualifying rows to all
CPUs that control access to an outer-table parti
tion may be less efficient than using a hash
partitioned join.

TANDEM SYSTEMS REVIEW• JULY 1994

Figure 17

CPU 1

ESP1:
adaptive
hash join

CPU 2

ESP2:
adaptive
hash join

~ ~

~-- H = COLJ modulo 4 __ ___,

ESP

TABLE1
partition 1

I
ESP

TABLE1 (outer table) partitions

ESP

Hash-Partitioned Join
In the current NonStop SQL/MP implementation
of a hash-partitioned join, a hash function is
used to partition the inner and outer tables into
separate sections for each CPU in the system.
The same hash function is used to partition both
the inner and outer tables. Once the tables have
been partitioned, hash joins execute in parallel
to join corresponding sections. To carry out the
joins, a separate ESP is created in each CPU. At

JULY 1994

ESP3:
adaptive
hash join

~

CPU 4

ESP4:
adaptive
hash join

.t~l:62
~l(yl~I}

3)

-- -- --- --- -- --- -r-

'
H = COLJ modulo 4 :

ESP

'

ESP

TABLE2
partition 2

TABLE2 (inner table) partitions

the end, the master executor combines the
outcomes of the individual joins into a final
join result. The tables participating in a hash
partitioned join can be partitioned or unparti
tioned tables. Figure 17 illustrates a hash
partitioned join of two partitioned tables on
a system with four CPUs.

TANDEM SYSTEMS REVIEW

Figure 17.

Hash-partitioned join with
fiiur CPUs.

37

Figure 18.

Comparison of relative
response times/cir three
join algorithms.

38

Figure 18

QJ
E

:,=,
QJ
Cf)
C
0
Cl.
Cf)

~
QJ
>
~
ai
a:

0 200 400
Number of rows in outer table·

Nested index

Sort-merge

Adaptive hash join

Read outer table

600

•inner table has a fixed size of 20,000 rows.

Performance Benefits
On the Wisconsin-Benchmark, a widely used
benchmark for evaluating SQL query perfor
mance, response times for hash joins were from
12 percent to 60 percent lower than for either
nested index joins or sort-merge joins. In com
petition with nested index joins, hash joins are
faster primarily because they eliminate random
disk accesses and reduce messaging to the disk
process. Hash joins perform better than sort
merge joins mainly because they avoid interme
diate sorts and therefore require less CPU time

TANDEM SYSTEMS REVIEW

and generate less message traffic. As a further
benefit, when a large table is joined with a
smaller table, a hash join needs less temporary
disk space than a sort-merge join.

The sidebar "When is a Hash Join Likely to
Help?" lists several conditions under which a
hash join is likely to provide performance bene
fits. A hash join is usually most advantageous
when an ad hoc query requires a join between a
large table and a much smaller table. Figure 18
shows relative response times for a hash join, a
nested index join, and a sort-merge join on a
series of joins between a small inner table and
an outer table of varying sizes. On all joins, the
inner table had a fixed size of 20,000 rows. The
size of the outer table was varied on each trial,
beginning with 5,000 rows and increasing to
600,000 rows. Both the inner and outer tables
conformed to the standard definition of a table
for the Wisconsin-Benchmark.

Using EXPLAIN Plans to Evaluate
Hash Joins
NonStop SQL/MP provides a CONTROL QUERY
HASH JOIN statement for enabling or disabling
the use of hash joins in an application. The
default condition is for CONTROL QUERY
HASH JOIN to be ON. Users can evaluate the
benefits of hash joins on individual queries by
generating EXPLAIN plans using the NonStop
SQL/MP EXPLAIN utility and the NonStop
SQL/MP conversational interface (SQLCI) in
conjunction with CONTROL QUERY HASH
JOIN statements. To do this, perform the follow
ing steps:

1. Using SQLCI with CONTROL QUERY HASH
JOIN on, generate EXPLAIN plans for queries
that are likely candidates for hash joins.

2. Identify queries for which the optimizer
chooses hash joins.

3. Generate EXPLAIN plans for these queries
with CONTROL QUERY HASH JOIN off.

4. Compare the execution costs in EXPLAIN
plans for hash joins with the estimated costs
of EXPLAIN plans for other joins on the
same quenes.

JULY 1994

For more detailed information on using
EXPLAIN plans and tuning query performance,
see the NonStop SQL Query Guide (1994).

Conclusion
Hash joins are a new feature of NonStop
SQL/MP. They are available in both sequential
and parallel execution plans. Hash joins outper
form sort-merge joins and nested index joins in
many situations and are particularly useful with
decision support applications and ad hoc join
queries. The adaptive hash join in NonStop
SQL/MP dynamically adjusts to changes in
available memory during execution and per
forms efficiently in the face of unexpectedly
large tables and highly skewed table values.
Based on the Wisconsin-Benchmark, NonStop
SQL/MP hash joins can improve performance
by 12 percent to 60 percent in the appropriate
circumstances.

References
DeWitt, D. and Gerber. R. 1985. Multiprocessor Hash-based Join
Algorithms. Proceedings of the I Ith Very Large Data Base
(VLDB) Conference.

Kitsuregawa. M., Nakayama. M., and Takagi, M. 1989. The
Effect of Bucket Size Tuning in the Dynamic Hybrid Grace Hash
Join Method. Proceedings of the I 5th VLDB Conference.

Moore, M. and Sodhi. A. 1990. Parallelism in NonStop SQL
Release 2. Tandem Systems Review. Vol. 6, No. 2. Tandem
Computers Incorporated. Part no. 46987.

NonStop SQL Query Guide. 1994. Tandem Computers
Incorporated. Part No. 93964.

Schneider, D. and DeWitt, D. 1989. A Performance Evaluation of
Four Parallel Join Algorithms in a Shared-nothing Multiprocessor
Environment. Proceedings of the Association for Computing
Machinery (ACM) Special Interest Group on Modification Of
Data (SIGMOD) Conference.

Zeller, H. 1990. Parallel Query Execution in NonStop SQL.
Proceedings of the IEEE Spring COMPCON.

Zeller, H. and Gray. J. 1990. An Adaptive Hash Join Algorithm
for Multiuser Environments. Proceedings of the 16th
VLDBConference.

JULY 1994

When is a Hash Join Likely
to Help?
A hash join is likely to provide performance
benefits under the following conditions:

■ When no index is usable, since a nested
index join is not possible and a merge join
would require sorts of the input tables.

■ When the tables of a join are of different
sizes, since only the smaller table needs to
be stored in memory.

■ When memory in multiple CPUs can be
utilized, since the execution plans for paral
lel hash joins are very efficient.

■ When many rows from the inner table
qualify for the join result, since the overhead
of building the memory-resident hash table
is then acceptable.

■ When a small subset of the rows in a large
inner table can efficiently be selected for
inclusion in the hash table.

Acknowledgments
Thanks to Diana Shak, Anoop Sharma, and Jay Vaishnav for
designing and implementing much of the support for the new join
algorithm in the SQL compiler and for improving its functional
ity. Thanks also to the reviewers of this article for their many
helpful suggestions and to Susanne Englert for providing per
formance data.

Hansjorg Zeller joined Tandem in 1988, initially on temporary
assignment to a joint project between Tandem and the University of
Stuttgart, Germany. Since then, he has been responsible for the
design and implementation of hash joins in Nonstop SQUMP. He
has also worked on the Nonstop SOL executor and on a project to
improve name binding and reduce recompilation overhead.

TANDEM SYSTEMS REVIEW 39

40

0 P E N A C C E S S

Nonstop ODBC Server

icrosoft's ODBC
interface and the
Microsoft/Sy base
DBLIB interface are
widely used application
program interfaces
(APis) for client/server

database applications. The Tandem™ NonStop™
ODBC Server (NSODBC) product gives applica
tions written to either interface open and trans
parent access to NonStop SQL/MP databases.
This includes popular off-the-shelf applications
such as Access and PowerBuilder and custom
built applications developed using tools such as
Visual Basic. All such applications can take
advantage of Tandem and NonStop SQL/MP fea
tures for high availability, distributed data, and
parallel execution.

The ODBC interface is based on standards
work and is specified as part of Microsoft's
Open Database Connectivity (ODBC) product.
ODBC is currently available for SQL applica
tions that run under Microsoft Windows. In the
future, it will also be available for applications
that run on Windows NT, Macintosh, or other
client platforms.

NSODBC is specially architected to establish
client connections quickly and provide high
performance NonStop SQL/MP execution. This
allows NSODBC to be used for both OL TP and
decision support applications, as well as for
applications that build and issue queries and
generate reports.

The first sections of this article discuss open
ness in client/server computing and provide an
overview of ODBC and the role it plays in sup
porting openness. The remaining sections des
cribe NSODBC architecture and functionality,
with special emphasis on NSODBC features for
high performance.

Client/Server and Openness
The distinguishing feature of a client/server
architecture is that functionality is divided
between client processes and server processes
that communicate using an agreed upon proto
col. Typically, the client and server processes
are located on different computers and commu
nicate over a local-area or wide-area network.
The basic protocol is for a client to send a
request to a server and wait for a reply. One
popular form of client/server is client/database
server (C/DBS), shown in Figure 1. The client
sends an SQL statement and the server executes
the statement and replies with the results. The
Tandem NonStop ODBC Server, the Tandem
SQL Server Gateway, and the DAL Server are
examples of C/DBS in a Tandem environment. 1

1For a detailed description of NSODBC, see the NonStnp ODBC Sen·cr
Manual (1994); for detailed information on the Tandem SQL Server
Gateway, see the Tandem SQL Sen'er Gate1,,vay Manual (1989). The
DAL Server is discussed in Schlansky and Schrengohst (1993).

TANDEM SYSTEMS REVIEW• JULY 1994

The pros and cons of client/server in general
have been widely discussed elsewhere (see, for
example, Cooperstein, 1992, and Rohner, 1994).
Here, the focus is on openness in client/server
computing and the way ODBC and NSODBC
contribute to it. Openness, in this context, refers
to the ability of different products, usually from
different vendors, to interconnect with each
other and to replace each other on a network.
Openness is important to client and server ven
dors because it extends the use of their prod
ucts and it is important to client/server users
because it extends their implementation
choices.

On the client side, an application typically
communicates with a server through what in
ODBC terminology is called a driver. A driver
consists of a library of code and supports an
APL To send messages to a server and receive
messages back, the client application must be
coded to the driver's API and make calls to spe
cific functions or procedures in the driver. The
driver communicates with a server using a par
ticular formats and protocol (FAP). The FAP
describes permissible message formats and
allowable sequences of messages. A single ven
dor often supplies both the driver and server,
with the consequence that both the API and
FAP are proprietary. In such cases, an applica
tion developed for use with one proprietary
server cannot be used with another vendor's
server unless it is ported to a different API and
uses a driver that supports the second vendor's
FAP.

A client/server architecture is conducive to
openness. If clients and servers support the same
FAP, there is open interoperability: clients can
freely interconnect with servers and use one ser
ver in place of another. If the API used in an
application is supported by drivers on different
platforms, there is open portability: the applica
tion can be ported from one client platform to
another without change. Figure 2 illustrates
open portability. Figure 3 illustrates open
interoperability.

In Figure 2, application A on the PC uses
API I. It is directly portable to the UNIX work
station, since driver 2 on the workstation sup
ports API I.

JULY 1994

Figure 1

Figure 2

PC

Client
applk:atlon

SOL statement

Rows of data

Application A
(uses API 1)

API 1
Driver 1

(supports API 1)

UNIX workstation

Database
server

li>alabase
serverA

API 1
Driver 2

(supports API 1)
------ Database

>servers

Figure 3

PC

Client application A
API 1

Driver 1

UNIX workstation

Client application B
API 2

Driver 2

-- FAP1

Database
server A

Database
servers

Database
serverC

TANDEM SYSTEMS REVIEW

Figure 1.

Client/database server
architecture.

Figure 2.

Open portahilit_\".

Figure 3.

Open interoperabilitr.

41

Figure 4.

ODBC architecture.

42

Figure 4

PC

ODBC application

ODBCAPI

ODBC driver manager

Tandem Sybase SOL Oracle
NSODBC Server driver

driver driver

t
Sy~"'SQL

~iwr·'

In Figure 3, applications on a PC and a
UNIX workstation communicate with database
servers A, B, and C. All three database servers
use FAP I. Application A, on the PC, uses API I
~nd dri:e~ 1. S~nce driver 1 uses FAP I, applica
tion A 1s fully interoperable with the three data
base servers. Application B, on the UNIX work
station, uses API 2 and driver 2. Since driver 2
uses FAP I, application B can also interoperate
with all three database servers. Note that the
ability of an application to interoperate with
database servers is determined by the FAP its
driver uses, and not by the application's APL
~s described in the next section, ODBC pro
:1des both ~~en portability and a form of open
interoperab1hty for C/DBS applications.

ODBC
Microsoft Windows is currently the most pop
ular platform for applications with a graphical
user interface (GUT) and many database vendors,
Oracle and Sybase among them, have provided
APis and drivers so that Windows applications
can be written to access their databases. How
ever, because such APis are proprietary and dif
ferent from one another, it has been difficult to
develop Windows applications that could access
databases from multiple vendors. To address
this problem, Microsoft developed its ODBC
product to provide a single API for database
services. The ODBC API is based on standards
work by the SQL Access Group and X/Open,2

but also contains a number of extensions. The
API is described in the next section. For more
detailed information on ODBC, see the ODBC
Programmer's Reference (1992).

Applications that use the ODBC API will
have open portability across Windows,
Windows NT, Macintosh, and other platforms.
In addition, as server vendors supply ODBC dri
:ers, ODBC clients will have a form of open
interoperability: without modification, any
ODBC client application will be able to connect
with a wide range of database servers. Industry
acceptance of ODBC has been substantial, with
more than 75 vendors pledging support and
many already delivering products. Almost all
major application and tool vendors have made a
commitment to use the ODBC API; almost all
major database vendors have made a commit
ment to provide drivers so that ODBC clients
can connect to their database systems. NSODBC
provides ODBC connectivity to Tandem NonStop
SQL/MP databases, and makes it possible for
a large number of ODBC query, report, and
application-development tools to be used
with NonStop SQL/MP.

Figure 4 illustrates the ODBC architecture.
The ODBC API is supported by one or more
ODBC drivers and an ODBC driver manager
that handles loading and binding to the drivers.
Applications use the API without knowing the
particular driver that is handling connectivity
to the database server.

2For information on the work of X/Opcn, sec Daw Manaxemenl: SQL Coif
Ln·el /11terfc1cc (CU) (1993).

TANDEM SYSTEMS REVIEW• JULY I 9 9 4

Most database vendors have developed their
own ODBC drivers for connecting to their data
base servers. Since the FAP used by a driver
is almost always proprietary, different drivers
must be used for connecting to different data
base servers, as shown in Figure 4.

When an application calls the API SQLConnect
function, which is used to establish a connection
to a server, the driver manager loads the appro
priate driver and passes the SQLConnect call to
it. Most subsequent API calls to process SQL
statements are then passed directly to the driver.
The driver is entirely responsible for connecting
to a server and communicating with it in order
to execute SQL statements. ODBC does not
specify how a driver works or what FAP is used
to communicate with servers.

ODBC API
ODBC's most significant feature is its API,
which specifies

■ A call level interface (CLI) of C functions.

■ A syntax definition for SQL statements.

■ Sequencing rules for CLI calls.

An application can conform to the CLI at any
of three levels. There are also three conformance
levels for the SQL syntax specification. Table 1
summarizes the API components.

Specifying the CLI and SQL syntax in terms
of levels is intended to promote portability and
interoperability, since it is easier for clients and
servers to agree on a particular intermediate
level than to have to agree on the entire spec
ification. Microsoft recommends level I CLI
functions and core SQL syntax as most appro
priate for interoperability and portability. This
means that ODBC drivers and database servers
should support at least this much, if they are to
promote interoperability, and that client appli
cations should require no more than this if they
are to be portable and interoperable. Most client

JULY 1994

Table 1.
Components and conformance levels of the ODBC API.

I. Call level interface (CLI) conformance levels

Core

Level 1

Connect to a database, define and execute SOL statements, manage cursors, supply
parameters, read result values and status information, and manage transactions.

CORE plus: retrieve SOL catalog information, read and set options for the driver and
server, and handle very large data values.

Level 2 Level 1 plus: scrollable cursors, retrieve SOL catalog information for stored procedures,
and additional extensions.

II. SOL syntax conformance levels

Minimum

Core

Extended

Includes: create and drop table, insert, update, delete; select (without subqueries or
aggregation); one data type: character.

Minimum plus: views and indexes, grant and revoke, select with subqueries and
aggregation; numeric data types.

CORE plus: stored procedure execution, outer join, datetime, and several built-in
functions.

Ill. Sequencing rules for CLI calls

Order in which CLI calls can be executed. For example, one must connect to a data
base (CLI call SOLConnect) before executing SOL statements. Most sequencing rules
depend on the SOL statements being executed. For example, one cannot redefine the
select statement for a cursor when the cursor is open.

and server vendors supporting ODBC have an
nounced that they will comply with this recom
mendation. While ODBC promotes a common
API, it also has facilities for supporting exten
sions added by server vendors. Client applica
tions can make use of these extensions if open
interoperability with database servers is not a
concern.

The Tandem NSODBC Server product sup
ports more than level 1 CLI functions and more
than core SQL syntax, and thus enables a large
set of ODBC applications to openly use
NonStop SQL/MP on Tandem systems. One of
the features in extended SQL that NSODBC sup
ports is stored procedure execution. In addition,
NSODBC supports API extensions that allow
applications to utilize specific Tandem features
such as creating a partitioned table.

TANDEM SYSTEMS REVIEW 43

Figure 5

PC

Figure 5.

Client application
ODBCCLI

Driver

Client connections to two
data sources.

44

Data source HumanResources (read-only)

Reconciling Differences Between
Database Servers
One of the major challenges in designing an
effective client APT for ODBC was the need to
address the many differences between vendors
in respect to proprietary APis. For example,
every vendor's client API has a unique mecha
nism for connecting to a database. For one
product, a client first connects to a database
server and then selects the database it wants to
use. For another product, the client connects to
a database directly. Additionally, the format of
database names may vary from vendor to ven
dor; naming may be different in the maximum
length and the set of characters allowed. Anoth
er type of example concerns the way informa
tion about SQL objects is maintained in the
database. Every vendor uses a set of SQL tables,
called an SQL catalog, to hold the information,

TANDEM SYSTEMS REVIEW

but each vendor's SQL catalog structure is
unique. The following sections describe ODBC
approaches to reconciling vendor differences in
the two examples given. Similar approaches are
used in other cases.

Connecting to a Database
To provide a uniform approach to database con
nections, ODBC uses the simple abstraction of
a data source to encompass different vendor
notions of what a database is and how clients
connect to it. From the perspective of an ODBC
application, it always connects to a data source
and does not need to be concerned about whether
there is a database, a database server, or some
thing else at the other end of the connection. In
some cases, the data source may in fact be a
NonStop SQL/MP database, in others, it may
be a Sybase SQL Server, an Oracle database, or
the database of some other vendor. In all cases,
the data source contains a set of SQL objects
such as tables and views and supports user
names and other standard database features.

The abstraction of a data source provides a
uniform way of viewing database connections,
but does not in itself provide a way to set or
alter features of a connection that may be dif
ferent from one vendor to the next. To accom
plish this, ODBC provides CLI functions for
establishing connections and configuring some
connection attributes. For example, the CLI
SQLConnect function is used to establish con
nections between a client application and a data
base server. SQLConnect's parameters include a
data source name, a user name, and a password.
The SQLSetConnectionOption function is used
to configure run-time options, such as automati
cally committing a transaction for each SQL
statement executed.

In addition to using CLI functions for config
uring connection attributes, ODBC uses the con
figuration file ODBC.INI to associate specific
information necessary for establishing a con
nection with individual data source names. The
ODBC.INI file is used to bind data source names
to particular database servers and to provide
such information as the network address of a
data source, proprietary verbs to be used in
establishing connections, and the name of the
ODBC driver to be used for the data source.

JULY 1994

Figure 5 illustrates connections to two data
sources, HumanResources and Warehouse.
HumanResources has two tables, Employees,
created by user Smith, and Departments, creat
ed by user Jones. Data source Warehouse has
two tables, both created by user Smith. Regard
less of the server vendor and the way the server
accesses the database, from the perspective of
an ODBC client application it is simply connect
ing to data source HumanResources or data
source Warehouse.

ODBC uses the abstraction of a data source
as more than simply a means of connecting
to a database. In addition to being used in the
configuration of database attributes, an ODBC
data source can be configured for the type of
access it allows and for performance features,
transaction modes, a default logon name, and
other attributes. For example, in Figure 5,
HumanResources is limited to read-only ac
cess; users cannot modify its tables. Data
source Warehouse allows read-write access;
SQL tables in Warehouse can be both read
and modified.

Retrieving SOL Catalog Information
SQL database systems from most vendors allow
client applications to use SQL statements to
obtain information from their catalog tables,
but SQL catalog structure varies widely over
different vendors. To address these differences,
ODBC provides a set of CLI functions for retriev
ing SQL catalog information. For example, a
client can use the CLI function SQLTables to list
the names of all tables in a given data source.
In addition, parameters of the SQL Tables func
tion make it possible to qualify the table names
returned. For example, SQL Tables could be lim
ited to retrieving only the tables owned by Smith.

ODBC's use of CLI functions provides a uni
form interface for access to catalog information,
but it means that applications give up the ability
to use SQL statements in order to obtain catalog
information. For example, an ODBC application
using CLI functions cannot use a SQL join query
to obtain composite information from two or
more catalog tables.

Figure 6

PC

ODBC core SOL app
ODBCCLI

NSODBC driver

PC, UNIX, or OS/2

PC

ODBC TSQL app
ODBCCLI

NSODBC driver

NSODBC Overview

Tandem system

NSODBC

The discussion now moves to the Tandem
NonStop ODBC Server, which provides trans
parent access to NonStop SQL/MP for ODBC
and DBLIB applications. The following subsec
tions describe the architecture and major func
tional aspects of NSODBC. The closing portion
of the article focuses on design features for
optimizing NSODBC performance.

NSODBC Clients
NSODBC is designed to support ODBC applica
tions that run in a Windows environment and
use the ODBC CLI and SQL syntax specifica
tions, Microsoft/Sybase DBLIB applications
that use the Transact SQL (TSQL) dialect of
SQL, and a special class of ODBC applications
that use the ODBC CLI, but instead of ODBC
SQL syntax, use TSQL. Figure 6 illustrates the
three types of NSODBC clients.

JULY 1994 • TANDEM SYSTEMS REVIEW

Nonstop
SQUMP

Figure 6.

The three types of
NSODBC clients.

45

46

For ODBC clients, NSODBC supports all CLI
level 1 functions and some level 2 functions,
and it supports core SQL syntax plus some fea
tures of extended SQL.

Microsoft/Sybase DBLIB applications use
TSQL and run in Windows, DOS, UNIX, and
OS/2 environments. In the past, support for
DBLIB applications was provided by the Tandem
SQL Server Gateway product. NSODBC is
intended as a replacement for the Tandem
SQL Server Gateway and provides superior
performance.

To make it easier for DBLIB applications to
migrate to ODBC, NSODBC supports clients
that use the ODBC CLI and TSQL. Such applica
tions only need to migrate to the ODBC CLI ini
tially, and can then migrate to ODBC's core SQL
later. Although ODBC and DBLIB differ in many
ways and have distinct database models, SQL
syntaxes, SQL catalog structures, and data types,
NSODBC uses the same underlying mechanisms
to support both environments.

NSODBC Object Naming and Catalogs
NSODBC's main task is to be an SQL gateway
and translate between a client's SQL environ
ment and the Tandem NonStop SQL/MP envi
ronment (for a discussion of SQL gateways, see
Slutz, 1990). Translation is required for SQL
syntax, data types, error messages, object names,
database models, SQL catalog structures, and
other items. The translation of database models
and object names is most relevant to this article
(for other aspects of translation, see the NonStop
ODBC Server Manual, 1994).

For translation between database models,
NSODBC associates an ODBC data source or
a Sybase SQL Server database with a single
Tandem NonStop SQL/MP catalog. All objects
in the NonStop SQL/MP catalog appear in the
corresponding data source or SQL Server
database.

Logical Names. Name translation is necessary
for mapping the logical names of objects in an
ODBC data source or SQL Server database to
Tandem or NonStop SQL/MP object names.
When an ODBC or DBLIB application creates
a database object such as a table or view, the
name assigned to the object within the appli
cation is called the logical name. For exam-
ple, suppose an ODBC data source called
HumanResources is associated with the Tandem
NonStop SQL/MP catalog \N .$V l .HUMANRES.
If the user of an ODBC application creates a
table named Employees in data source
HumanResources, this has the effect of creat
ing a NonStop SQL/MP table with an NSODBC
assigned name, for example, \N.$V.HR.EMP.
Employees is the table's logical name within
the ODBC data source, and \N.$V.HR.EMP is
the table's Tandem name.

The distinction between logical names and
Tandem names also applies to user names. For
example, the user name specified in the CLI
SQLConnect function of an ODBC application
is a logical name and must be translated to a
NonStop Kernel user name before the user can
access the desired NonStop SQL/MP database.
When a client connects to NSODBC, all access
to NonStop SQL/MP objects is made through
the corresponding NonStop Kernel user name.
One consequence of this is that the Non Stop
Kernel user name must be authorized in
advance to access NonStop SQL/MP objects.

NSODBC Catalogs. To map between logical
names and Tandem names, NSODBC maintains
a set of mapping tables. Every row in a map
ping table pairs a logical name with the corre
sponding Tandem name. When an ODBC or
DBLIB application uses a logical name, NSODBC
retrieves the row with the logical name and maps
it to the required Tandem name.

TANDEM SYSTEMS REVIEW• JULY 1994

Figure 7

PC Tandem system \N

ODBC application
ODBC CLI

NSODBC driver

ODBC.lNlffle j
Data source HumanResources

database= N_ V1_S1

NSODBC

The set of tables that contain mappings for
logical and Tandem names is called an NSODBC
catalog. As discussed later, an NSODBC catalog
also contains configuration and user profile
information. NSODBC catalogs are created by
the NSODBC utility (NOSUTIL) process. When
a client application issues a CREATE DAT ABASE
statement to NSODBC, NSODBC calls NOSUTIL
to create an NSODBC catalog for the database; if
the database does not already exist, NSODBC
also creates a NonStop SQL/MP catalog for the
database. NSODBC catalogs can also be created
for existing NonStop SQL/MP catalogs by run
ning NOSUTIL directly. The tables in an NSODBC
catalog are NonStop SQL/MP tables and, by con
vention, are registered in the NonStop SQL/MP
catalog they are associated with.

A NonStop SQL/MP catalog cannot be
accessed as a data source or SQL Server data
base unless its NonStop SQL/MP catalog has
an NSODBC catalog associated with it. This is
illustrated in Figure 7. In the figure, \N is a
Tandem system that contains two NonStop
SQL/MP catalogs, $V l .SI and $V2.S2. Since
NonStop SQL/MP catalog $VI.SI has an
NSODBC catalog associated with it, an ODBC
or DBLIB client can be configured to access cat
alog $V l .SI and its objects as a data source or
SQL Server database. In the figure, data source
HumanResources on the ODBC client is config
ured as database N_VI_SI, which gives it access

~ --------------- ---,
t I
I I
I NSODBC Nonstop I
~ catalog for SOUMP catalog

. l N_V1_S1 $V1.S1
1 I
I I ~- •. _________________ J

Nonstop
SOUMP catalog

$V2.S2

to NonStop SQL/MP catalog $V l.S I and its ob
jects through the NSODBC catalog for N_ V l_S I.
Objects in NonStop SQL/MP catalog $V2.S2 are
not accessible to clients because there is no
associated NSODBC catalog.

When NSODBC is used, in addition to
NSODBC catalogs, there must also be an
NSODBC system catalog to correspond to the
NonStop SQL/MP system catalog. The NSODBC
system catalog is like other NSODBC catalogs,
except that it contains added tables with infor
mation about users and about databases and
their corresponding NonStop SQL/MP catalogs.

When a client connects to NSODBC, a session
is started and continues until the client discon
nects. The session's environment is initialized
according to the attributes of a profile associated
with the user. The profile information is stored
in the NSODBC system catalog and includes the
user's Nonstop Kernel user name, the user's
default database, the user's database access
mode (read-only or read-write), transaction iso
lation level, performance levels, resource limits,
and trace settings.

JULY 1994 • TANDEM SYSTEMS REVIEW

Figure 7.

Access to a NonStop
SQUMP catalog requires
an NSODBC catalog.

47

Figure 8.

NSODBC process
structure.

48

Figure 8

PC or UNIX
workstation

application

NSODBC Process Structure

Tandem system

In addition to a driver on an ODBC client's
platform, the NSODBC product consists of a set
of processes that run on the Tandem NonStop
Kernel and a set of NSODBC catalogs. The pri
mary functions of the NSODBC processes are
to handle connections with clients, execute
NonStop SQL/MP statements on behalf of clients,
and maintain the NSODBC catalogs. Figure 8
shows the basic NSODBC process structure. The
NSODBC processes are described in the follow
ing subsections.

NSODBC Server Processes. NSODBC server
processes do the basic SQL gateway work. An
NSODBC server process translates a client's
SQL dialect to NonStop SQL/MP, translates log
ical names to Tandem names using the NSODBC

SQLCOMP

I
N&lDlilC Utility

(IIIOSUTIL)

I
NS~

server

--
_f

NSODBC
catalog

SQLCOMP

catalogs, executes NonStop SQL/MP statements,
and translates data values, error codes, and cat
alog structures. Every client connection is ser
viced by a separate context-sensitive single
threaded NSODBC server process. NSODBC
server processes are NonStop SQL/MP applica
tion processes; each one has its own NonStop
SQL/MP Compiler (SQLCOMP) process and.
when needed, its own NonStop SQL/MP
Catalog Manager (SQLCAT) process (not
shown in Figure 8).

SOL Communication Subsystem Processes. The
primary function of an SQL Communication
Subsystem (SCS) process is to manage connec
tions between clients and NSODBC server
processes. In doing this, an SCS process (1)
maintains communications transport protocol
stacks, currently either TCP/IP or named pipes,
(2) provides a uniform communication interface
for the NSODBC server processes, and (3) man
ages NSODBC server processes by starting and
stopping individual NSODBC server processes
and assigning them to client connections. SCS
processes are multithreaded. An SCS process
maintains a thread for receiving connection
requests at its network address and an addi
tional thread for each client connection it
establishes.

TANDEM SYSTEMS REVIEW• JULY 1994

As a major part of providing fast client con
nections, SCS can start and initialize pools of
NSODBC server processes before client connec
tion requests arrive. This avoids the creation of
a new NSODBC server process for every con
nection request and significantly improves
client connection times.

The function of an SCS process in NSODBC
is very similar to that of the Transaction
Delivery Process (TDP) in the Tandem Remote
Server Call (RSC) product (discussed in Iem
and Kocher, 1992). An SCS process is driven by
a configuration file that is similar to a Pathway
configuration file. The SCS configuration file
contains the network address on which the
SCS process listens for client connections, the
name of the NSODBC server's object file, the
NSODBC server classes that run under the pro
cess, and the attributes of each server class.
Many SCS processes can run simultaneously
on the same Tandem host, each configured for
a specific transport protocol and a unique
network name.

NSODBC Utility Processes. NSODBC Utility
(NOSUTIL) processes are used to create, drop,
and for most purposes, update NSODBC cata
logs. Some NSODBC catalog update operations
are directly carried out by NSODBC server
processes. NOSUTIL processes also maintain
user configuration attributes in the NSODBC
catalogs.

Every NSODBC server has its own NOSUTIL
process for providing catalog services. This
process is started and stopped as needed, since
most client operations do not require its use.
In addition, every SCS process has a separate
NOSUTIL process, which it calls to obtain the
name of the server class to assign to a client
connection and for additional user information.
A NOSUTIL process can also be run as a stand
alone process from a T ACL™ (Tandem Advanced
Command Language) prompt. NOSUTIL proces
ses are NonStop SQL/MP application processes;
each has its own SQLCOMP process and, when
needed, its own SQLCAT process (not shown in
Figure 8).

NSODBC Server Classes
NSODBC server processes can be grouped
together as NSODBC server classes under SCS.
The primary function of NSODBC server classes
is to avoid the creation of server processes in

response to client connection requests and to
preserve a cache of previously compiled SQL
statements so that they are available from one
client session to another. NSODBC server classes
are central to establishing client connections
quickly and reducing SQL execution times in
NSODBC.

An individual SCS process can maintain mul
tiple named server classes and one default server
class. All NSODBC server processes belonging
to a named server class execute under the same
NonStop Kernel user name. Server processes
belonging to the default server class can execute
under different NonStop Kernel user names.
Server classes are configured in the SCS config
uration file, which specifies attributes for each
server class, such as the number of NSODBC
server processes that are to be prestarted and
available for client connections and the maxi
mum number of processes that are to be
allowed under the server class.

Named Server Classes. A named server class is
beneficial for an individual or a group of users
that initiate frequent NSODBC sessions and are
likely to issue similar SQL statements from one
session to the next. As an example, a named
class called HRST AFF might be configured if,
in the course of a day, employees in a large
human resources (HR) department repeatedly
initiate NSODBC sessions and issue similar
types of queries against the Employees table.
In assigning attributes to HRST AFF in the SCS
configuration file, a system administrator would
be likely to configure SCS to keep a pool of
several NSODBC server processes available at
all times for HRST AFF connections, with a high
limit on the total number of NSODBC server
processes allowed under HRSTAFF.

The HR staff in the example can benefit
from a named server class because prestarted
server processes under HRST AFF will provide
rapid connection times and the collective use of
similar queries will make reduced SQL execu
tion times possible through NSODBC SQL state
ment caching (described later under "SQL
Execution Times and Statement Caching").

JULY 1994, TANDEM SYSTEMS REVIEW 49

Figure 9.

Assignment o{NSODBC
sen·er processes to clients.

so

Figure 9

Client application 1 Tandem system

Connect
(HumanResources, Staff1, PW)

Client application 2
l_

Connect
(HumanResources, Staff2, PW)

Connect
(HumanResources, User1, PW)

Default Server Classes. A default server class
is maintained for users that are not associated
with a named server class. As in the case of a
named server class, the default server class can
be configured so that a specified number of
NSODBC server processes are always kept
prestarted and available for client connections,
up to a specified maximum number of processes.
Server processes in the default server class may
execute under a different NonStop Kernel user
name with each connection, in which case it
may not be possible to take advantage of
NSODBC SQL caching. As a result, establishing
a connection to a server process and executing
SQL may be slower than with a process in a
named server class. However, even in the default
server class, the benefits of caching are available
if the same user connects to the default server
class repeatedly.

TANDEM SYSTEMS REVIEW

Server class HRST AFF

scs J
NSOOBC
server 1

NSODBC
server 2 --,

I
I
I
I
I
I
I

Server class DEFAULT

NSODBC
server 3

Figure 9 illustrates the assignment of
NSODBC server processes to client connec
tions. In the figure, client application 1 sends
a connection request for Staffl to the Tandem
system. SCS receives the request, finds that
logical user name Staffl is associated with
server class HRST AFF and assigns the connec
tion to prestarted NSODBC server 1. Applica
tion 2 issues two connection requests, one for
user Staff2 and the other for user User]. SCS
finds that user Staff2 is associated with server
class HRSTAFF and assigns Staff2 to NSODBC
server 2. SCS finds that the logical user name
User! is not associated with a named server
class, so it assigns the connection to a server in
server class DEFAULT.

Client Connections
A client connects to NSODBC using a network
name, such as an internet protocol (IP) address
for TCP/IP. The network name is part of the
data source configuration in an ODBC client's
ODBC.INI file. On the Tandem side, the net
work name is in the configuration file for an
SCS process. The client's connection request
arrives as a message to the SCS process config
ured to listen on the specified network name.

JULY 1994

Figure 10

Tandem system

Client application

Connect
(HumanResources, Staff2, PW)

As illustrated in Figure 10, when a client
connection arrives at SCS,

1. SCS extracts the logical user name in the
connection request and passes it to NOSUTIL.

2. NOSUTIL accesses the NSODBC catalog to
find the NonStop Kernel user name and the
server class name corresponding to the logi
cal user name.

3. NOSUTIL sends the Nonstop Kernel user
name and server class name back to SCS.

4. SCS selects an NSODBC server in the server
class and passes the connection request to it.

5. The selected NSODBC server processes the
connection request. The server uses the pass
word supplied with the connection request to
authenticate the NonStop Kernel user name
associated with the request and then runs
under that name. It accesses the NSODBC
catalog to obtain profile information about
the user and initializes itself accordingly.
Depending on the user's profile, the server
either runs in core mode, to support an
ODBC client using core SQL, or in TSQL
mode, to support a client using TSQL.

JULY 1994

NOSUTIL ~ NSODBC
catalog

1U'1 ts
Comm -- -4

processes ~ scs
~

NSODBC

6. When the NSODBC server completes initial
ization, it sends a message to SCS that the
connection was successful.

SCS forwards this information to the client.

Connection processing involves substantial
work and can be very time consuming. As des
cribed earlier, server classes, pools of prestarted
and preinitialized NSODBC server processes
maintained by SCS, are the primary means of
reducing NSODBC connection times. In addi
tion, several caching features have been imple
mented in order to further reduce connection
times. To avoid repeating steps 1 through 3 in
Figure 10 for every connection request, SCS
caches the server class information it receives
from NOSUTIL. To avoid obtaining user profile
information at step 5 for every client connec
tion, NSODBC server processes cache the pro
file information they receive from the NSODBC
catalog. Thus, if the same client repeatedly con
nects to NSODBC, only steps 4 and 6, and pass
word authentication at step 5, are necessary.

TANDEM SYSTEMS REVIEW

Figure 10.

Client connection to
NSODBC.

51

Figure 11.

Executini an SQL querv.

52

Figure 11

Tandem system

Client application

Execute
("select • from Employees")

Nonstop SOL/MP Execution
An NSODBC server process executes NonStop
SQL/MP statements on behalf of its client.
Figure 11 illustrates the flow of control for
executing an SQL query.

In the figure, the client sends a message
to NSODBC containing the SQL statement
"select* from Employees." An NSODBC ser
ver parses the statement and reads the NSODBC
catalog tables to map the logical table name
Employees to the corresponding NonStop
SQL/MP table name $V.HR.EMP. The server
then forms a NonStop SQL/MP select statement
using $V.HR.EMP and issues a PREPARE state
ment to invoke the NonStop SQL/MP compiler
(SQLCOMP) and compile the query. The com
piled statement is executed and the resulting
rows of data are sent to SCS and returned to
the client.

NSODBC
catalog

t - NSODBC - SQLCOMP - server -
l

Nonstop
SQUMPtable
$V.HR.EMP

To improve SQL execution times, an
NSODBC server caches object-name mapping
information obtained from the NSODBC cata
log. As described in a later subsection, it can
also be configured to cache and reuse compiled
NonStop SQL/MP statements.

NSODBC Performance Features
NSODBC needs to perform well for both OL TP
and decision support workloads. OL TP is char
acterized by many small transactions, with each
transaction containing a few simple SQL state
ments that only modify or retrieve a few rows
at a time. Decision support is characterized by
moderately-to-highly complex queries that can
generate large result sets and may take hours to
execute. To support both types of workloads,
NSODBC has been designed to establish con
nections quickly and to provide fast SQL execu
tion and rapid data transfer back to the client.
Performance in the first two areas is critical for
OL TP. Optimal performance in all three areas,
but particularly in data transfer to the client, is
required for decision support.

TANDEM SYSTEMS REVIEW• JULY 1994

Connection Times
The response time for establishing a connection
is the total time it takes for a client to connect
to an NSODBC server process. This is depen
dent on the client's machine, the configuration
of the LAN, the time needed for SCS to assign
an NSODBC server process, the time it takes to
start and initialize an NSODBC server process,
if this is required, and the time needed for the
server process to obtain client configuration
information and validate the connection
request. Since NSODBC can maintain server
classes of preinitialized NSODBC server
processes, starting and initializing a new
NSODBC process is often unnecessary. Further,
NSODBC server processes cache client configu
ration information, so this information does not
need to be retrieved again when a server is used
consecutively by clients that connect under the
same logical name.

Connection times over TCP/IP have been
obtained for clients on a SUN Sparc2 worksta
tion and on a PC with an Intel 80486, 50MHz
CPU. For a prestarted, preinitialized NSODBC
server with client information already in cache,
connection times were about 250 milliseconds
or less. This contrasts with connection times
of up to several seconds when SCS starts an
NSODBC server and its SQLCOMP process on
demand and the NSODBC server has to be ini
tialized for the connection.

SOL Execution Times and Statement
Caching
An NSODBC server processes each SQL
statement from a client by translating it into a
NonStop SQL/MP statement, compiling it, and
executing it. NSODBC SQL execution time is the
total time required for all three operations. Com
pilation time is often the major part of SQL exe
cution time. Compiling a NonStop SQL/MP
statement requires opening and reading the
NonStop SQL/MP catalog tables relevant to each
referenced object, generating an execution plan
for the statement, and creating any temporary
tables that will be needed at execution time.

Compiling a NonStop SQL/MP statement can
take hundreds of milliseconds, compared to an
execution time of a few milliseconds for most
OL TP statements. In many applications, the
same set of SQL statements are executed repeat
edly, so having to compile a statement every
time it occurs can be costly. To avoid repeated
compilations, NSODBC provides a configura
tion option called SQL statement caching. When
statement caching is enabled, all SQL SELECT,
UPDATE, INSERT, and DELETE statements that
an NSODBC server sends for compilation are
compiled using an SQL PREP ARE statement
and kept in the server's cache with the state
ment text as a key. Before sending a PREPARE
statement, the server checks its cache to see if
the statement is already compiled. If it is, the
server executes the compiled version directly.

An NSODBC server maintains its cache of
compiled SQL statements between connections.
Thus, a series of clients running under the same
NonStop Kernel user name and reusing the same
set of ODBC servers can execute the same SQL
statements indefinitely, without recompilation.
As a safeguard to protect the integrity of com
piled statements in cache, an NSODBC server
process purges its statement cache as soon as
an event, such as the execution of a NonStop
SQL/MP CONTROL statement, occurs that could
threaten the integrity of its cached compilations.

JULY 1994 • TANDEM SYSTEMS REVIEW 53

Figure 12.

Effect of statement caching
on SQL execution time.

54

Figure 12

u 15
Cl)

!!:,
Cl)

§ 10
1J
Cl)

"' g- 5
w

0

D Caching enabled
■ Caching disabled

In order to increase the likelihood of a com
piled statement being found in cache, cached
statements are parameterized. This means that
certain literal constants in an SQL statement are
replaced with unnamed dynamic parameters.
For example, if a client sent an NSODBC server
the following SQL statement

SELECT NAME, SALARY
FROM EMPLOYEE
WHERE EMP _DEPT=6405

the statement would be translated into NonStop
SQL/MP, parameterized, compiled, and stored
in cache as equivalent to

SELECT NAME, SALARY
FROM EMPLOYEE
WHERE EMP _DEPT=?

It would then be executed with the parameter
set to 6405.

If two client SQL statements translate to the
same parameterized SQL statement, they can
both execute the same compiled statement. Thus,
if an NSODBC server process had the preceding
query in cache and then received the query

SELECT NAME, SALARY
FROM EMPLOYEE
WHERE EMP _DEPT=9999

it would be able to execute the cached query
directly, with its parameter set to 9999.

The performance benefits of statement
caching can be significant. For example, a
study of one application found that total SQL
execution time for a transaction containing 19
SELECT statements and 1 UPDATE statement
was reduced by almost 50 percent when state
ment caching was enabled (see Figure 12).

Another series of measurements were made
on an OL TP workload in which each transaction
contained three UPDATE statements and one
INSERT statement. In this case, statement
caching reduced SQL execution times by more
than 50 percent, from an average of 0. 71 seconds
per transaction to 0.30 seconds.

Data Transfer Rates
For queries that return a large amount of data
to the client, the data transfer rate becomes an
important performance issue. The effective data
transfer rate is a function of message size and
the number of messages sent between client and
server, and the amount of traffic on the LAN. To
increase data transfer rates, NSODBC imple
ments bulk fetch (described below) and allows
message flows to the client to overlap with
NonStop SQL/MP execution.

TANDEM SYSTEMS REVIEW• JULY 1994

Figure 13

PC Tandem system

ODBC
api,lieation

Tandem
NSODBC driver NSODBC se/ver

Fetch --- Fetch 3 ------- 3 Nonstop SQUMP fetches

Row

Row

Row

--------- Send 3 rows

Fetch --

Fetch ---
..............,Database

Fetch --- Fetch 3 ------- 3 Nonstop SOUMP fetches

--------- Send 3 rows

Fetch ---•fl!i§'/iW/ii,

Fetch ---

;._

cu

In NonStop SQL/MP, to read row values
from a SELECT statement into application vari
ables, a series of SQL FETCH statements associ
ated with a cursor is used to retrieve one result
row at a time from the database. However, in
a client/server environment it is not efficient to
send data row by row over a network. As men
tioned above, to improve data transfer rates in
a client/server environment, NSODBC imple
ments bulk fetch. When bulk fetch is used,
multiple result rows can be returned in each
message to the client. Bulk fetch can only be
used when the client application does not mod
ify the fetched rows with a cursor-positioned
UPDATE or DELETE statement. Bulk fetch is
always used for TSQL applications, because
TSQL does not support cursors. It is provided
as a configuration option for ODBC core SQL
clients.

JULY 1994

When bulk fetch is used for an ODBC client,
on the first fetch associated with a cursor, the
Tandem ODBC driver calculates the number of
result rows it can fit into its internal buffer, cur
rently set at 4 kilobytes, and issues a request to
the NSODBC server process to fetch that many
rows. The server returns the rows to the ODBC
driver's buffer on the client system. After the
first fetch, succeeding client fetches obtain
rows directly from the ODBC driver's buffer
until the last row in the buffer has been fetched.
At this point, the ODBC driver issues another
bulk fetch to the NSODBC server process.
Figure 13 illustrates bulk fetch with an ODBC
driver buffer that can hold three rows at a time.

TANDEM SYSTEMS REVIEW

Figure 13.

Bulkfetchfora core
SQL client.

55

Figure 14

i 20
.!fl_
[IJ

~
Q) 15
1§

2
<JJ 10
C

£;
~ 5
0

0

11.5

5.8

•···· Row size = 400 bytes

□ Bulk fetch

Row size = 104 bytes

■ Single-row fetch

Figure 14.

Comparison o{data return
ratesjr,r bulk fetch and
single-ro1i·.f<,1ches.

56

Figure 14 compares data transfer rates for
bulk fetch and single-row fetches for a client
PC with an Intel 80486, 50MHz CPU. In the
first comparison, with result rows of 400 bytes,
the data transfer rate for bulk fetch was almost
twice that of single-row fetches. In the second
comparison, with result rows of 104 bytes, the
data transfer rate for bulk fetch was more than
six times that of single-row fetches. The bene
fits of bulk fetch are greater when rows are
small, since this allows more rows per message
to be fetched into the ODBC driver's buffer.

NSODBC Configuration
NSODBC is provided with default settings that
allow it to be used almost immediately after
installation with a minimum of configuration.
For example, it comes with a default server
class and a default user profile that uses the

TANDEM SYSTEMS REVIEW

default server class. Clients can connect using
special logical user names that are derived from
existing NonStop Kernel user names and do not
require configuration of the NSODBC catalogs .

Of course, NSODBC can also be configured to
take advantage of features such as named server
classes and SQL statement caching. In some
cases, a useful strategy is to start an application
using NSODBC default settings and, as experi
ence is gained, gradually change the configura
tion to add features and improve performance.

For ODBC clients, the NSODBC product
includes a Windows application and additional
ODBC applications to assist in installing and
configuring the Tandem driver and establish
ing connections to NSODBC server processes.
These also provide measurement of connection
response times and, for purposes of debugging,
ODBC activity tracing.

Managing NSODBC
NSODBC can be managed in a number of ways.
A Tandem system administrator can define and
alter user profiles, use NOSUTIL commands to
verify the integrity of NSODBC catalogs, and
use the Tandem Subsystem Control Facility
(SCF) product to query SCS for the state of
server classes and NSODBC server processes.
In addition, NSODBC provides a tracing facility
that can obtain information from SCS and
NSODBC server processes. This information
includes the current state of a process, the oper
ations it performs, and the data it handles.

Attributes in user profiles that are relevant to
management functions include the maximum
allowable execution cost for an SQL statement
and the maximum size of the SQL statement
cache. The maximum execution cost for SQL
statements is useful for resource governing.
Before execution of an SQL statement, the
maximum allowed cost is compared with the
NonStop SQL/MP compiler's cost estimate for the
statement. If the compiler's estimated cost is
greater than allowed, the statement is not exe
cuted and an error message is returned.

JULY 1994

NSODBC supports a pass-through feature
that allows an application, running in either
TSQL or ODBC core SQL mode, to include
NonStop SQL/MP statements for execution.
The NonStop SQL/MP statements are executed
by NSODBC server processes directly, without
translation, and make it possible to use special
NonStop SQL/MP features such as parallel exe
cution and partitioned tables. Pass-through state
ments can also be used to alter NSODBC server
attributes and execute NOSUTIL commands.

Conclusion
ODBC specifies a widely endorsed API for
connecting to a database and executing SQL.
ODBC drivers support the API and provide
transparent connectivity to a wide variety of
proprietary database servers. This promotes
both open portability and open interoperabil
ity for applications.

NSODBC provides access to NonStop
SQL/MP on Tandem systems for both ODBC
and DBLIB applications in an easily managed
environment. A number of NSODBC features
are designed to optimize performance, which
allows NSODBC to be used for both OL TP and
decision support applications.

References
Cooperstein. H. 1992. An Overview of Client/Server Computing
on Tandem Systems. Tandem Systems Review. Vol. 8. No 3.
Tandem Computers Incorporated. Part no. 89803.

Data Management: SQL Call Level lnte1jc1ce (CU). 1993.
X/Open Document No. P303.

!em. M. and Kocher. T. 1992. Implementing Client/Server Using
RSC. Tandem Systems Rei·iew. Vol. 8. No 3. Tandem Computers
Incorporated. Part no. 89803.

No11Stop ODBC Server Ma1111a/. 1994. Tandem Computers
Incorporated. Part no. I 06609.

Progrwlllm'r's Reference. 1992. Microsoft Open Database
Connectivity Software Development Kit. Version 1.0.

JULY 199-l

Rohner. T. 1994. Extending the Client/Server Model With
Object-Oriented Technology. Tandem Systems Rel'iew. Vol. 10.
No 1. Tandem Computers Incorporated. Part no. 104396.

Schlansky. W. and Schrengohst, J. 1993. The DAL Server:
Client/Server Access to Tandem Databases. Tam/em Systems
Rei·iew. Vol. 9. No 1. Tandem Computers Incorporated. Part
no. 89804.

Slutz. D. 1990. Gateways to NonStop SQL. Tandem Sr.items
Review. Vol. 6. No 2. Tandem Computers Incorporated. Part
no. 46987.

Tandem SQL Server Gateway Manual. 1989. Tandem Computers
Incorporated. Part no. 46070.

Acknowledgments
We would like to thank the reviewers of this article for their
valuable comments and the entire NSODBC team, including
development. QA. product management. publications. and
performance. for their efforts.

Haleh Mahbod is a member of the SQL-connectivity development
group and worked on development of the NSODBC server process.
focusing on performance features. She joined Tandem in 1984 and
was a member of the NonStop SQL development group from 1985
to 1992. She helped design and implement the Nonstop SQL
compiler and the Nonstop SQL preprocessor.

Donald Slutz has worked at Tandem for ten years on NonStop SQL
and SQL connectivity. He previously worked at a database startup
company and at IBM Research on database systems and perfor
mance modelling and analysis.

TANDEM SYSTEMS REVIEW 57

58

AVAILABILITY

Enhancing Availability, Manageability, and Performance
With Nonstop TM/MP

.. - o achieve continuous avail
ability in online transaction
processing (OLTP) applica
tions, users must be able to
rely on supporting system
software such as the Tandem™
TMF™ (Transaction Monitor-

ing Facility). By providing transaction manage
ment and protecting the integrity of user data,
the TMF subsystem plays a critical role among
Tandem's OL TP software products. If TMF
becomes unavailable, even briefly, the OLTP
applications that depend on it cannot function,
and end users temporarily cannot carry on their
business.

The NonStop™ Transaction Manager/Massively
Parallel (TM/MP) subsystem, the new version of
TMF, includes several innovative design features
that improve its availability, make it easier to
manage, and enhance its performance. To be
released with the D30 release of the NonStop™
Kernel, NonStop TM/MP is an entirely new
product, not an enhancement or upgrade of
TMF. Existing user applications will, however,
be able to use NonStop TM/MP without alter
ation. In addition, TMF will continue to be sup
ported under D20, and NonStop TM/MP will

include migration software to provide an orderly
transition from one subsystem to the other.

This article describes the new features of
NonStop TM/MP and discusses three areas in
which NonStop TM/MP offers significant advan
tages over TMF: continuous availability, oper
ability and manageability, and performance.
The article includes two scenarios illustrating
some of those advantages.

Readers should be familiar with the concepts
and capabilities of TMF in particular or transac
tion processing managers in general. For readers
unfamiliar with these concepts, the following
section provides a brief review.

Review of TMF Concepts and
Capabilities
Fundamental to both the TMF and NonStop
TM/MP subsystems is a programmatic construct
called a transaction. A transaction is an explic
itly delimited operation, or set of related opera
tions, that changes the content of a database
from one consistent state to another.

The database operations within a transaction
are treated as a single unit. Either all of the
changes performed by the transaction are made
permanent (the transaction is committed) or
none of the changes is made permanent (the
transaction is aborted). If a failure occurs dur
ing the execution of a transaction, whatever
partial changes were made to the database are
undone automatically, thus leaving the database
in a consistent state.

TANDEM SYSTEMS REVIEW• JULY 1994

Before a transaction permanently commits
its changes to the database, information about
the database rows or records affected by the
transaction is written to an audit trail. An audit
trail is a series of files containing TMF audit
and control records.

The TMF autorollback feature, called volume
recovery in NonStop TM/MP, recovers data vol
umes that had one or more tables or files open
when a media or system failure occurred. It is
automatically invoked whenever the subsystem
is started or whenever a data volume is enabled.
The autorollback or volume recovery process
uses information in the audit trail to reapply
database changes that were not yet committed
or aborted at the time of the failure.

The TMF roll forward feature, called file
recovery in NonStop TM/MP, can recover a
database table or file that was accidentally
purged, reestablish the structural integrity of
a damaged database table or file, or return the
database to a consistent state as of a particular
point in time. It uses online dumps (archived
copies of database tables or files) and audit
dumps (archived copies of audit trail files) to
restore the specified tables and files to a consis
tent state. The operator explicitly invokes roll
forward or file recovery for particular database
tables or files (when needed).

New Features in Nonstop TM/MP
The new features in NonStop TM/MP enhance
several aspects of transaction management. In
particular, NonStop TM/MP does the following:

■ Supports large database configurations, high
transaction throughput, and fast recovery through
the use of multi volume audit trails, overflow
audit volumes, and restore audit volumes.

■ Allows users to reconfigure virtually all
aspects of the NonStop TM/MP environment
dynamically without stopping the subsystem
or any applications using it.

■ Allows users to monitor and manage the
transaction management environment through
the use of a graphical user interface (GUI).

Figure 1

T~m
system·

J

Audited volumes

$DATA01

Multivolume Audit Trails

•• $DATAnn

NonStop TM/MP supports significantly larger
application throughput than does the preceding
TMF subsystem; it also enables growing appli
cations to remain available continuously. Each
TMF or NonStop TM/MP system has one master
audit trail (MAT) and can include up to 15 aux
iliary audit trails. The TMF subsystem requires
each audit trail to exist on a single disk volume,
as shown in Figure 1. With NonStop TM/MP,
each configured audit trail can occupy up to 16
disk volumes. Figure 2 shows an example of a
NonStop TM/MP environment with
a two-volume audit trail.

JULY 1994 • TANDEM SYSTEMS REVIEW

Figure 1.
TMF environment. For the
master audit trail volume
($MAT). MINFILES=2
and MAXF!LES=5.

59

Figure 2

Figure 2.

Tandem
system

NonStop TM/MP em'iro11-
111e11t. For the master
audit trail \'olumes
($MATO/ Cllld $MAT02),
FilesPerVolume=4.

60

Audited volumes

$DATA01

$SYSTEM

Master audit trail

AA.00051

AAfJIJ/tifj3

AAOOOSlii
AAOOG5i1

• . ·: ~ $DATAnn

AAQ0052
AAOOOM
AA~
AM/OQ58

Overflow and restore audit volumes

$OVRFLOW $RESTORE

Previously, a large application generating
hundreds of kilobytes of audit information per
second during peak hours was physically lim
ited to a maximum of 16 audit trail volumes
(assuming the maximum-sized environment of
a MAT ~nd 15 auxiliary audit trails). NonStop
TM/MP increases that limit to 256 volumes

(again assuming the maximum-sized environ
~ent), thereby accommodating virtually unlim
ited growth in business activity. For informa
tion about configuring audit trails, refer to the
NonStop TM/MP Configuration and Planning
Guide (1994), a new manual for the NonStop
TM/MP subsystem.

Overflow Audit Volumes
When configuring a NonStop TM/MP audit
trail, users can designate one or more disk vol
umes to be used for audit if all of the active audit
trail files become filled. These are called over
flow audit volumes. There can be up to 16 such
volumes per audit trail and they can be any disk
volumes in the system (including data volumes
or active audit volumes).

If a TMF audit trail becomes full, the subsys
tem and all applications using it cease to func
tion. That situation cannot happen easily with
NonStop TM/MP. When a NonStop TM/MP
audit trail reaches a user-configurable overflow
threshold, the subsystem automatically copies
the oldest audit trail file from its active audit
volume to an overflow audit volume. NonStop
TM/MP then renames the copied file and makes
it available for receiving new audit information.

Restore Audit Volumes
When configuring a NonStop TM/MP audit
trail, users can also designate one or more disk
volumes, called restore audit volumes, to be
used for receiving copies of audit trail files that
must be restored from audit dumps as part of a
file-recovery operation. There can be up to 16
such volumes per audit trail and they can be any
disk volumes in the system (including data vol
umes or active audit volumes).

Previously, the operator could redirect audit
restoration to some degree. With NonStop
TM/MP, the operator can add and delete restore
audit volumes dynamically and thereby com
pletely avoid any space or head contention on
an active audit volume.

TANDEM SYSTEMS REVIEW• JULY l 9 9 4

Dynamic Online Reconfiguration
Users can reconfigure almost all aspects of the
NonStop TM/MP environment online without
stopping the subsystem or any applications using
it. Once NonStop TM/MP is started, the opera
tors can dynamically add or delete active audit
volumes, overflow audit volumes, restore audit
volumes, and data volumes. They can also
change the number of audit trail files per vol
ume, move data volumes from one audit trail
to another, and alter the configured value of any
control threshold. In a TMF environment, simi
lar types of changes require, at the least, stop
ping and restarting the subsystem.

Online reconfiguration allows operators to
respond quickly and easily to changing or unex
pected conditions, thus avoiding circumstances
that might otherwise adversely affect applica
tion performance. Only two operations cannot
be performed after NonStop TM/MP is started:
changing the size of the audit trail files and
adding or deleting an auxiliary audit trail.

Although the user should choose a reason
able audit-trail file size when initially configur
ing the NonStop TM/MP environment, making
an error is not necessarily critical. If the user
specifies a file size that is too small, rollover
from one audit trail file to another will occur
more frequently than it would otherwise (as
will audit dumping, if enabled). Specifying a
file size that is too large generally does not pre
sent a problem. (It could, for example, cause
audit dumps to exceed a single tape reel.) If the
configured file size is too small, the user can
compensate subsequently for the miscalculation
by dynamically increasing the number of files
per volume or by explicitly disabling and
enabling audit dumping. If the configured file
size is too large, the user can explicitly force
rollovers, when desired, by issuing TMFCOM
NEXT AUDITTRAIL commands (and thereby
contain audit dumps to a single tape reel).

The subsequent adding of auxiliary audit
trails is a more serious issue, but one that can
be avoided. The user can, for example, initially
establish one or more minimally-configured
auxiliary audit trails (one active audit volume,
two audit files per volume) with no data vol
umes attached to them.

GUI for Managing Nonstop TM/MP
TM View, the NonStop TM/MP GUI, provides
operators with a visual means of interpreting
the ongoing status of the TM/MP subsystem,
including icons for controlling important
aspects of the Nonstop TM/MP environment.
TM View complements the TMFCOM interac
tive command interface, providing an alterna
tive approach to performing many query and
control operations.

The TMF subsystem informs operators of
subsystem status solely by displaying charac
ter output in response to TMFCOM INFO and
STATUS commands. With TM View, operators
can intuitively understand NonStop TM/MP sta
tus just as one does by looking at the indicators
and gauges on an automobile dashboard. One
bar graph, for example, shows operators how
much of the audit trail is currently in use. They
can tell at a glance if the present transaction
workload is pushing the audit trail capacity
toward the overflow threshold or, beyond that,
toward the point at which NonStop TM/MP will
not allow new transactions to begin.

Nonstop Availability
If the TMF subsystem is down, all applications
that use it are also down. In a production envi
ronment, it is imperative that users' business
applications, and all subsystems that support
them, be operational virtually all the time.
NonStop TM/MP provides five significant ad
vantages over TMF with regard to subsystem
availability:

■ Fewer CPU halts.

■ Fewer cold loads.

■ Fewer SYSGEN operations.

■ Online reconfiguration.

■ Audit trail overflow.

JULY 1994 • TANDEM SYSTEMS REVIEW 61

62

CPU Halts
TMF halts occur rarely; most occur because the
Transaction Monitor Process (TMP), a compo
nent of TMF, detects an internal error. Although
the backup TMP takes over, all other processes
in the halted TMP's CPU are abruptly terminated,
and the processor remains unavailable until it
can be reloaded.

The NonStop TM/MP TMP does not halt its
CPU when an internal error occurs; it thereby
increases CPU availability and reduces CPU
reloads. If an internal error occurs, the primary
TMP process issues an ABEND (abnormal end)
procedure call, the backup TMP process auto
matically takes over, and the primary TMP's
CPU is unaffected.

Cold Loads
A TMF crash occurs when any audit trail goes
down or the TMP process pair is lost due to
double CPU failures or nonrecoverable internal
errors. Previously, the subsystem would become
nonfunctional after a TMF crash, and the opera
tor had to perform a cold load to restart it. In
the meantime, all applications that used the
TMF subsystem were also down.

If NonStop TM/MP crashes, the operator
merely issues a START TMF command (after
the problem is resolved) to restart the subsys
tem. An application using the Tandem Pathway
transaction processing system, for example, can
survive the crash with only a brief interruption
of transaction services if the application is
designed to retry operations.

A common cause of TMF crashes, for exam
ple, is the accidental issuance of a PUP DOWN
command for an active audit trail volume. With
NonStop TM/MP, that can never happen, because
PUP DOWN commands are rejected for active
audit volumes.

SYSGEN Operations
Most TMF interim product modification (1PM)
releases include the TMP program. When install
ing a new IPM on a TMF system, the system
administrator must perform a SYSGEN operation
and a cold load to replace the TMP. This neces
sitates stopping the subsystem and all applica
tions that use it.

With NonStop TM/MP, users can install new
IPMs while maintaining maximum availability
of their applications. A SYSGEN operation and
cold load are required only to replace the TMF
library (TMFLlB) or monitor (TMFMON) pro
cess. Those two program files, however, are
seldom included in IPMs. To replace the TMP,
the operator merely duplicates the new TMP
object file from the IPM to the TMF subvolume,
issues a STOP TMF, ABRUPT command, and
then issues a START TMF command. (One can
do this during off hours with minimal impact
on the user applications).

Online Reconfiguration
As mentioned earlier, dynamic online reconfig
uration in NonStop TM/MP increases the avail
ability of the underlying system software. To
add new data volumes to a TMF configuration,
the operator must perform a clean shutdown of
all applications that use TMF, stop and restart
TMF, and then restart the applications to get
TMF to recognize the new volumes and allow
them to participate in transaction activity.
Further, to move a data volume from one audit
trail to another, the operator must perform the
following steps:

1. Stop all applications that use TMF.

2. Issue a STOP TMF command.

3. Issue an INITIALIZE TMF command.
4. Reconfigure the subsystem.

5. Issue a START TMF command.

6. Make new online dumps of all files protected
by TMF.

7. Restart the applications.

TANDEM SYSTEMS REVIEW• JULY 1994

With NonStop TM/MP, on the other hand,
system administrators can connect new physical
disk drives to the system, take existing drives
down for maintenance, change volume defini
tions (add or delete active audit, overflow audit,
restore audit, or data volumes), and move data
base volumes from one audit trail to another
without stopping the subsystem or interrupting
application activity.

Furthermore, with NonStop TM/MP, opera
tors know how much of the audit trail disk
space is in use at any given time. In addition,
operators can dynamically expand or contract
the capacity of the audit trail in response to
changing conditions. If they notice that a partic
ular trail is nearing the overflow threshold, for
example, they can add another active audit vol
ume or increase the number of audit trail files
per volume.

Audit Trail Overflow
As mentioned earlier, the TMF subsystem and
all applications using it cease to function when
an audit trail becomes full. TMF allocates audit
trail files as they are needed; it does not know
ahead of time if there will be enough space on
the audit trail volume for the next file. If other
files are stored on a TMF audit trail volume, for
example, they could eliminate space needed by
TMF under maximum operating conditions.

With NonStop TM/MP, the system will rarely
cease to function from a lack of audit trail space.
In addition to using overflow audit volumes,
NonStop TM/MP preallocates the necessary
space on all active audit volumes for the desig
nated number of files per volume. If the user
accidentally specifies a files-per-volume value
that is too large, NonStop TM/MP will refuse to
perform the operation and instruct the user to
enter a smaller value. This practice of preallo
cating audit trail files guarantees that the maxi
mum number of audit trail files configured by
the user will always be available for use. In
Figure 2, the environment has been configured
with two audit trail volumes and four files per
volume. Once configured, space for all eight
files always exists.

Operability and Manageability
NonStop TM/MP includes many design features
that greatly facilitate its operability and manage
ability. They fall into five general categories:

■ Audit trail management.

■ Data volume management.

■ Volume and file recovery.

■ Disaster recovery.

■ Online monitoring.

Audit Trail Management
On occasion, the TMF MINFILES and MAXFILES
configuration parameters have been accidentally
misused to specify a greater number of audit trail
files than can fit on a single disk volume.
NonStop TM/MP eliminates those parameters.
Instead, NonStop TM/MP has users explicitly
specify the number of audit files per active
audit volume, the audit trail file size, an over
flow threshold value, and a begin transaction
disable threshold.

The overflow threshold specifies the percent
age of audit trail use, from 50 to 100 percent, at
which the oldest audit trail files will be copied
to an overflow audit volume. The begin transac
tion disable threshold specifies the percentage
of audit trail use, from 50 to 100 percent, at
which the starting of new transactions will be
prohibited.

As mentioned previously, NonStop TM/MP
greatly enhances an operator's ability to moni
tor and manage audit trails. It automatically
preallocates the maximum configured number
of audit trail files, and the TM View GUI dynam
ically tracks and displays audit trail space usage.

JULY 1994 • TANDEM SYSTEMS REVIEW 63

64

Data Volume Management
The TMF subsystem assumes that all disk drives
on the system other than the configured audit
trail volumes are audited data volumes. One con
sequence of this assumption is that, whenever
the operator starts the subsystem, TMF attempts
by default to perform autorollback on virtually
every disk drive on the system, even those on
which no audited activity has occurred. (Each
time the subsystem is started, the user is required
to tell TMF which disk drives not to start, and the
system manager must explicitly exclude those
drives from the TMF configuration.)

When configuring a TMF audit trail, the user
explicitly designates which data volumes are
associated with it. (In addition, one audit trail
must include the USAGE * attribute, indicating
that it will be responsible for all other disk vol
umes on the system.) These definitions are per
manent; they cannot be altered except by stop
ping the applications, stopping and initializing
TMF, reconfiguring the audit trails, and restart
ing TMF and the applications. Although the
user can employ constructs called phantom
drives to add disk drives to the system, or move
volumes around within the system, TMF will
not recognize a new or moved volume until
TMF has been stopped and restarted.

With NonStop TM/MP, data volumes are
added explicitly after the subsystem is running.
The user can dynamically add or delete data
volumes, or move them from one audit trai I to
another, without stopping the subsystem or
interrupting application activity. Furthermore,
NonStop TM/MP immediately recognizes new
or moved disk volumes without the subsystem
having to be stopped and restarted.

Because TMF uses static bit maps, the total
number of disk processes per CPU that can par
ticipate in transaction activity is limited to 62.
Because the primary and backup disk processes
are all represented in this count, this translates
to a limit of 31 data volumes per CPU. NonStop
TM/MP, however, uses linked lists, thereby
imposing no limit on the number of data vol
umes per CPU.

Volume and File Recovery
By default, TMF messages indicating the results
of autorollback and rollforward recovery are
sent only to the operator console. If the console
is busy, these messages can roll off the screen
and be lost. In addition, if the CPU in which a
recovery process is executing fails before recov
ery is complete, the recovery process must start
all over again from the beginning. For example,
if a rollforward recovery operation had been
working for several hours when its CPU sud
denly failed, all its work would be lost, and a
new rollforward process would have to start at
the beginning again.

Nonstop TM/MP sends the results of both
volume recovery and file recovery to the Event
Management Service (EMS) log, which provides
a permanent record of all event messages. In
addition, all operations are assigned identifiers
to support status monitoring and EMS event fil
tering. The operators can direct audit file restora
tion to disk volumes other than the active audit
volumes and thereby avoid head contention
with the generating of new audit information.

If the CPU in which a file recovery process is
running fails, the TMP automatically starts
another file recovery process in another CPU.
The new process fetches the latest restart posi
tion from disk and continues the recovery oper
ation with no more than IO minutes' duplication
of work already done.

Finally, for large file recovery operations
involving the mounting of many audit dump
and online dump tapes, operators can use the
PLAN ONLY option of the RECOVER FILES
command to obtain a list of all the required
tapes. This option allows them to fetch all nec
essary tapes before initiating the actual file
recovery operation, rather than repeatedly
fetching individual tapes in response to tape
request messages.

TANDEM SYSTEMS REVIEW, JULY 1994

Disaster Recovery
With TMF, critical subsystem configuration
information is maintained both in the audit trail
and on the $SYSTEM.TMF subvolume. If the
local system fails, it is difficult to recover the
database on a different node using TMF dumps.
(This kind of TMF recovery is not supported by
Tandem.) The only viable way to recover the
database under these circumstances is to use
RDF™ (Remote Duplicate Database Facility)
software, which requires a remote backup sys
tem that physically duplicates the primary pro
duction system.

With NonStop TM/MP, most state informa
tion is maintained in the audit trail rather than
in the $SYSTEM.TMF subvolume. This makes
it possible to recover from the loss of the
$SYSTEM volume, audit trail disk volumes, or
the entire system. Tandem supports the recov
ery of NonStop TM/MP databases on nodes
other than the primary production system. The
procedures for doing so are documented in the
NonStop TM/MP Operations and Recovery
Guide (1994), a new manual for the NonStop
TM/MP subsystem.

Online Monitoring
Previously, users could monitor the health of
the TMF subsystem by running several utility
and management applications, including the
TMFCOM process, ViewPoint™ operations
console facility, File Utility Program (FUP),
and Disk Space Analysis Program (DSAP).
Additionally, the spooler might be used to
monitor the outcome of autorollback or roll
forward recovery.

The new TM View interface graphically
displays a variety of dynamically-updated
NonStop TM/MP health indicators. It also dis
plays the status of long-running transactions,
allows operators to log information before exe
cuting critical commands, and makes it possible
to monitor and manage multiple NonStop
TM/MP systems from a single console.

Enhanced Performance
Because it was developed as a new product,
NonStop TM/MP includes many design features
that greatly increase its performance over that
of the previous TMF subsystem. The most sig
nificant performance improvements fall into
three categories:

■ Audit trail throughput.

■ Network throughput.

■ Volume and file recovery.

Audit Trail Throughput
For several reasons, NonStop TM/MP generates
audit data more efficiently, with less interfer
ence from other NonStop TM/MP activity, than
does TMF. When two active audit volumes are
configured for the same NonStop TM/MP audit
trail, for example, they are used alternately for
the currently active audit trail file. (The first
audit trail file is on the first volume, the second
file on the second volume, the third file on the
first volume, and so forth.) When there are three
or more active audit volumes, they are used in a
round-robin fashion. This means that, if audit
dumping is enabled, the audit dump process
will not compete with audit creation for use
of the disk head.

Similarly, when a disk drive other than one
containing an active audit volume is configured
as a restore audit volume, audit restoration for
file recovery will not compete with audit creation
for use of the disk head. In addition, NonStop
TM/MP uses a new algorithm that makes rollover
from one audit trail file to the next virtually
invisible from a performance standpoint.

JULY 1994 • TANDEM SYSTEMS REVIEW 65

66

Scenario 1: The Need for More Audit Trail Space
Problem: The audit trail volume is
nearly full, because the user's busi
ness has expanded, and, as a result,
the database has grown and transac
tion activity has increased faster
than originally anticipated. Assume
that the TMF MAXFILES attribute
value or the NonStop TM/MP
FilesPerVolume attribute value has
already been raised to the point at
which the entire audit trail volume
is being used.

Response Under TMF: The opera
tors must shut down all applicaions
that use the TMF subsystem, issue
a STOP TMF command, initialize
and reconfigure the subsystem
with an auxiliary audit trail, issue
a ST ART TMF command, and then
restart the applications.

Response Under Nonstop TM/MP:
The operators add another active
audit volume, by issuing an ALTER
AUDITTRAIL command, with no
interruption of application activity.

Scenario 2: The Need to Add Data Volumes
Problem: One or more disk volumes
have been added to the system and
must now be added to the TMF or
NonStop TM/MP configuration as
audited data volumes.

Response Under TMF: The opera
tors must shut down all applications
that use the TMF subsystem, issue
a STOP TMF command, issue a
ST ART TMF command, and then
restart the applications. If the new
data volumes are to be associated
with an audit trail other than the
one for which USAGE * is config
ured, the operators must explicitly
add the data volumes to the configu
ration while the subsystem is topped.

Response Under Nonstop TM/MP:
The operators add the data volumes
to the NonStop TM/MP configura
tion, by issuing an ADD DATA VOLS
command, with no interruption of
application activity.

TANDEM SYSTEMS REVIEW

Network Throughput
Users should experience an improvement in
network transaction performance with NonStop
TM/MP because of three enhancements. NonStop
TM/MP provides a new transaction state-change
algorithm, a reduction in the number of inter
processor messages, and the boxcarring of net
work messages (buffering what used to be many
individual intersystem messages into a single
intersystem message).

Volume and File Recovery
With NonStop TM/MP, file recovery is performed
as fast as, or faster than, creation of the original
audit data, and volume recovery will not take
more than IO minutes. A major design goal for
NonStop TM/MP was for volume recovery and
file recovery to perform 10 to 20 times faster
than their TMF counterparts. Some preliminary
testing, however, has shown volume recovery
to perform even more than 20 times faster than
autorollback. In addition, if either the volume
recovery or file recovery process fails before it
is completed, no more than 10 minutes of work
previously done will have to be repeated when
the process is subsequently restarted.

The Role of Nonstop TM/MP in OLTP
NonStop TM/MP is an integral part of Tandem's
massively parallel approach to OLTP. It can
monitor thousands of complex transactions sent
by hundreds of users to a common database.
The database can be distributed over scores of
disks on a system or across many systems in a
network. The database can consist of tables and
views created by the NonStop SQL relational
database management system, files created by
the Enscribe record manager, or any combina
tion thereof.

JULY 1994

Moreover, NonStop TM/MP provides a foun
dation relied on by other Tandem software prod
ucts that contribute to transaction processing
solutions. TMF is required by two existing
Tandem products, NonStop SQL and RDF, and
is compatible with, or transparent to, all others.

NonStop SQL/Massively Parallel (SQL/MP)
will use NonStop TM/MP to protect SQL cata
logs and the file labels of tables, views, indexes,
and programs; previous releases of NonStop
SQL use TMF. Although users can choose whe
ther or not individual tables and views are to be
audited, all tables and views must reside on
audited volumes because their file labels are
audited. The design of NonStop TM/MP makes
possible several availability features introduced
in SQL/MP, notably physical database opera
tions such as partitioning and moving tables
online. Troisi (1994) discusses these operations
in the article "NonStop Availability and Database
Configuration Operations" in this issue of the
Tandem Systems Review.

The RDF product, which provides disaster
recovery for OL TP production databases, also
uses TMF. RDF monitors all database changes
audited by a TMF master audit trail on a primary
system and applies those changes to a copy of
the database on a remote duplicate backup sys
tem. The existing version of RDF will continue
to use TMF. A version to be released in the near
future, however, will be compatible with both
TMF and NonStop TM/MP.

In addition, several new products, some still
being developed and others soon to be released,
also require NonStop TM/MP. NonStop TUXEDO,
for example, is a UNIX transaction processing
monitor that is being adapted to run on
NonStop Kernel systems in the Open System
Services (OSS) environment. It will use
NonStop TM/MP to manage transaction activity
and maintain database consistency.

JULY 1994

Conclusion
NonStop TM/MP, a cornerstone of Tandem's
massively parallel approach to OLTP, provides
several new facilities that enhance the availabil
ity, manageability, and performance of produc
tion database applications. Its most significant
new features are multi volume audit trails, over
flow audit volumes, improved recovery perfor
mance, dynamic online reconfiguration, and a
GUI. Existing applications can use NonStop
TM/MP, and take advantage of its enhancements,
immediately and without any alteration.

References
NonStop TM/MP Cm1figuratio11 and Planning Guide. 1994.
Tandem Computers Incorporated. Part no. 85811.

NmzStop TM/MP Operations and Recovery Guide. 1994. Tandem
Computers Incorporated. Part no. 8 I 4 72.

Troisi. J. 1994. NonStop Availability and Database Configuration
Operations. Tandem Systems Review. Tandem Computers
Incorporated. Part no. I 04400.

Mala Chandra was the program manager responsible for the
development of Nonstop TM/MP. Since joining Tandem in 1982,
she has worked in education, field support, marketing, and
development.

Dave Eicher has been a software technical writer at Tandem since
1980. During the past two years he participated in the team effort to
design and write the new manuals set for Nonstop TM/MP.

TANDEM SYSTEMS REVIEW 67

68

AVAILABILITY

RDF Enhancements for High Availability and Performance

--.. 11111
he Tandem™ RDFM (Remote
Duplicate Database Facility)
product is used to monitor
changes made to a database
on a local system and main
tain a duplicate copy of that
database on a remote system.

Because RDF applies changes to the database
on the remote system as soon as they are de
tected, it keeps the database on the backup sys
tem continuously up to date with changes made
by a business application on the primary system.
This makes it possible to switch business opera
tions from the primary system to the backup
system in a matter of minutes, should a sudden
disaster cause the primary system to fail. Addi
tionally, if a planned shutdown of the primary
system is necessary, business applications on
the primary system can be stopped and immedi
ately restarted on the backup system to access
the replicated database.

This article provides a general overview of
RDF and describes important availability and
performance enhancements made in the two
most recent interim product modifications
(IPMs), AAP (March, 1993) and AAQ (June,
1993). It then covers future enhancements such

TANDEM SYSTEMS REVIEW

as replication of a database to multiple backup
sites and a new means of providing stable access
for query processing on the database at the
backup system. Finally, the article presents an
amended procedure for carrying out a planned
switchover from a primary system to a backup
system-a useful facility for ensuring little
interruption to the business application, even
during major hardware reconfigurations at the
primary site or a move of the primary data center.

For additional information on RDF, two ear
lier articles on the subject have been published
in the Tandem Systems Review. Guerrero (1991)
provides a general overview, while Senf and
Jongma (1992) provide a more specialized dis
cussion, titled "RDF Synchronization." Both
articles remain useful, although not fully up to
date. This article does not assume prior knowl
edge of RDF. The reader should, however, be
familiar with the Tandem TMF™ (Transaction
Monitoring Facility) product.

Overview of RDF
RDF maintains a replicated database by moni
toring changes made to audited files 1 on RDF
protected volumes on the primary system and
applying those changes to corresponding vol
umes on the backup system. More specifically,
on the primary system, an RDF extractor process
reads the master audit trail (MAT), a log main
tained by TMF of all database transactions that
affect audited files, and sends any audit associ
ated with RDF-protected volumes to an RDF

'Throughout this article,fi/e is used to refer both to audited files created
under the Tandem Enscribe record management ~ystem and to tables created
through the Tandem NonStopTM SQL relational database management system.

JULY 1994

Figure 1

Primary system

Protected
byRDF

receiver process on the backup system. The
receiver process writes audit from the extractor
to an image trail. RDF updater processes on the
backup system read the audit from the image
trail and apply only audit associated with com
mitted transactions to the backup database. Audit
associated with aborted transactions on the pri
mary system is never applied to the database on
the backup system. Each RDF-protected volume
on the primary system has its own updater
process on the backup system that is responsible
for applying audit to the corresponding volume
on that backup system. Figure 1 illustrates a
basic RDF configuration.

In Figure 1, there are 15 audited volumes on
the primary system, $Dl through $DIS. How
ever, only volumes $DI through $DIO are con
figured for RDF protection. Audit for all 15
volumes is sent to the MAT file. The RDF extrac
tor process reads the MAT file and sends audit

JULY 1994

Backup system

z

associated with volumes $D 1 through $D 10 to
the RDF receiver process on the backup system.
In the figure, the receiver writes the audit to a
single image trail. As described later, 1PM AAQ
makes it possible to have multiple image trails
for storing audit.

Updaters $UPI through $UP10 read the image
trail to find audit associated with committed
transactions and apply the audit to volumes $DI
through $DI O on the backup system. For exam
ple, when updater $UPI finds committed audit
for files associated with volume $Dl on the pri
mary system, it applies the audit to the corre
sponding files on $Dl on the backup system.

TANDEM SYSTEMS REVIEW

Figure 1.

Basic RDF confii;uration.

69

Figure 2

Primary-system updates system
(Sequence in master audit trail file)

Updates sent to the backup
(Sequence in image trail file)

TRANS100-Update 1
TRANS100-Update 2

TRANS100-Update 1
TRANS100-Update 2

TRANS100-Update 10

TRANS101-Update 1

TRANS100-Commit record

TRANS100-Update 10

TRANS101-Update 1

[Primary system fails]

Figure 2.

Audit on the primarv and
backup s,·stems at the time
of'a priman· s,·stemfailure.

70

Figure 1 shows two processes on the primary
system that have not been mentioned, RDFCOM
and the RDF monitor. RDFCOM provides the
user interface for issuing RDF commands. The
RDF monitor responds to user commands speci
fied through RDFCOM, such as start and stop
operations, and it monitors all other RDF
processes.

Unplanned Outages
An unplanned outage typically occurs as the
result of a sudden disaster that prevents the
database on the primary system from being
used. The classic purpose of the RDF product is
to make rapid recovery possible by maintaining
a replicated database on a backup system. When
the primary system is unexpectedly affected by
a disaster, one can shift operations to the repli
cated database on the backup system after hav
ing the RDF updaters bring the backup database

TANDEM SYSTEMS REVIEW

to a consistent state. This is done by starting
RDFCOM on the backup system and executing
an RDF takeover operation.

An RDF takeover operation ensures that all
audit associated with committed transactions,
and whose commit audit records are actually in
the image trail, are applied to the backup data
base. If the status of a transaction is unknown
on the backup system because the commit or
abort record was not sent by the time the disas
ter brought the primary system down, the trans
action is considered to be aborted, and no audit
associated with the transaction is applied to the
backup database.

Because only audit for committed transac
tions is applied to the backup database, when an
updater reads an audit record, it must determine
whether the record belongs to a committed trans
action. Under normal conditions, if the outcome
of the transaction is not in the image trail, the
updater simply waits until the expected commit
or abort record arrives. If, however, the primary
system has unexpectedly been brought down
because of a disaster, the outcome of some trans
actions may never be known, as illustrated in
Figure 2.

In the example of Figure 2, a disaster has
brought down the primary system immediately
after the commit record for transaction I 00 was
written in the MAT, but before the RDF extrac
tor was able to send the commit record to the
backup system. For transaction IO I, a single
update was logged in the MAT and sent to the
backup system, but the primary system was
brought down before the transaction was
resolved. Under normal processing, an updater
on the backup system would read update I for
transaction 100 and wait for the commit or abort
record to arrive at the backup system before
determining if it should apply the record. In this
example, however, the outcomes of transactions
I 00 and IO I would never be known at the
backup system.

JULY 199"1

The RDF takeover operation prevents an
updater from waiting indefinitely for an outcome
that will never arrive. When the command for a
takeover is given, updaters treat all transactions
whose outcomes are not available as aborted
transactions. This guarantees that only transac
tions known with certainty to have been com
mitted on the primary system are applied to the
backup database, and that all audit associated
with those transactions is applied. Therefore, in
the example of Figure 2, no audit associated
with transactions 100 and IOI is applied to
the backup database.

Typically, the extractor sends audit within a
second after it has been entered in the MAT file,
so that a minimum number of transactions are
lost when a disaster strikes down the primary
system. The RDF takeover operation is discussed
further in Guerrero (1991); recovering lost trans
actions is discussed under "Recovering Updates
Not Transmitted During a System Failure" in
Senf and Jongma (1992).

Planned Outages
RDF can be very useful when a planned shut
down of the primary system is necessary. For
example, one may need to bring the system
down for the purpose of installing new hard
ware, performing periodic maintenance, or for
any number of other reasons. When faced with
such a situation, it may be undesirable to stop
the business application for a length of time.
Using RDF, it is only necessary to stop the busi
ness application momentarily, carry out an RDF
switchover operation, and restart the business
application on the backup system (see "Carrying
Out a Planned Switchover," later in this article).
When the primary system is ready for use again,
one can use RDF to bring the primary system's
database up to date with changes made to the
backup database while the primary system was
shut down. When the primary system's data
base has caught up with the database on the

JULY 199"1

backup system, one can perform another
switchover operation from backup system to
primary system and then restart the business
application again on the primary system using
the original configuration.

Complete Restartability After a Failure
Prior to the AAP IPM, if an unexpected event,
such as a double CPU failure or system failure,
caused either the RDF extractor or receiver pro
cess to stop unexpectedly, the cost of recovery
was high. If the failure occurred during normal
processing, one had to stop the business appli
cation, stop TMF, resynchronize the databases,
initialize RDF, restart TMF, and then restart
RDF. 2 Resynchronizing the databases meant
making a copy of the database on the primary
system and restoring it on the backup system.
For systems with even a moderately-sized data
base, this meant significant outage time for the
business application.

If the backup system failed during an RDF
takeover operation, the consequences were seri
ous. Without manual intervention by a Tandem
RDF support specialist, the takeover could not
be restarted.

2Under the fir~t C30 ver-;ion of RDF. the TMF product had to be reiniti
alized before RDF could be initialized. This required stopping the busi
nc~s application and taking new on line dumps of the database. Since the
AAJ !PM in 1991. reinitialization of TMF has not been required. Now. to
initialize RDF. one mu~t only stop the TMF product momentarily and
initialize RDF at the TMF \hutdown timc~tamp.

TANDEM SYSTEMS REVIEW 71

72

The AAP 1PM makes RDF fully restartable if
an RDF process is unexpectedly stopped during
either normal or takeover processing. Now, if a
failure causes an RDF crash during normal pro
cessing, one just needs to issue the RDFCOM
START RDF command. If a failure occurs dur
ing RDF takeover processing, one simply needs
to reissue the RDFCOM TAKEOVER command.
To achieve restartability, the AAP 1PM complete
ly revised the way RDF maintained context, or
restart information, on disk.

Changes in Maintaining Context
The RDF extractor maintains restart information
in a context record contained in a context file
on the primary system; the receiver and the indi
vidual updater processes maintain their context
records in a context file on the backup system.
When RDF is started, each process uses its con
text record to determine where to begin. Specifi
cally, the extractor uses its context to determine
where to begin reading in the MAT; the receiver
uses its context to determine where in the image
trail to write new audit sent by the extractor;
and each updater uses its context to determine
where in the image trail to start reading audit
for possible application to the backup database.

Prior to the AAP 1PM, when the extractor and
receiver processes started, each read its context
record from disk and then immediately deleted
it. Each process, while running, maintained con
text in memory while running, but not on disk.
When RDF was subsequently shut down, such
as in response to an RDFCOM STOP RDF com
mand, each process wrote its latest context from
memory to disk and then completed its shut
down. If, however, one of these processes unex-

pectedly stopped, it would not have been able
to write its latest context from memory to disk.
This implementation made it easy for RDF to
determine the nature of its last shutdown. If the
context record for either process was missing
when one attempted to start RDF, then the last
shutdown resulted from an unexpected stoppage.

Because the extractor and receiver context
records shared no common information that
would make it possible to determine whether
their context records were in harmony with
each other, and because database corruption
could result if RDF was restarted when these
context records were not in harmony, each
process deleted its context record on disk,
after starting, in order to prevent RDF from
subsequently being restarted after an unex
pected stoppage.

Now, from the AAP 1PM onward, neither the
extractor nor the receiver deletes its context
record after starting. Moreover, the receiver fre
quently updates its context record on disk with
new restart information. With this restart infor
mation available on disk, RDF can be restarted
after any type of unexpected stoppage without
requiring database resynchronization or RDF
reinitialization.

Extractor Context Under AAP /PM. As stated
above, the extractor no longer deletes its con
text record when starting. Instead, it reads its
context record during startup to determine its
starting position in the MAT and then immedi
ately writes that record back out to disk, turning
on a new CRASHOPEN flag in the context
record. When shutting down, the extractor
updates its context and turns this CRASHOPEN
flag off. Thus, if the extractor stops unexpect
edly, its CRASHOPEN flag on disk will still be
turned on, thereby preserving the information
that the process had failed the last time it was
running. As with all previous releases, the
extractor does not update its context on disk
while running.

TANDEM SYSTEMS REVIEW• JULY 199-+

Receiver Context Under AAP /PM. The AAP IPM
added several new fields to the receiver's con
text record. The MAT position of each audit
record is now sent with that record to the backup
system. This enables the receiver to keep track
of the MAT position of the last complete audit
record it received, and a field in its context
record preserves this information. It also has
a CRASHOPEN flag.

The CRASHOPEN flag works in the same
way as the corresponding flag does in the extrac
tor's context record. When the receiver starts, it
reads its context from disk to determine where
in the image trail to start writing new audit and
then it immediately writes the record back to
disk, turning on the CRASHOPEN flag. When
the receiver shuts down, it updates its context
on disk to preserve restart information and it
also turns off the CRASHOPEN flag. There
fore, if the receiver stops unexpectedly, the
CRASHOPEN flag will still be turned on in the
receiver's context record on disk. As stated ear
lier, the receiver updates its context record on
disk frequently.

RDF Recovery After an Extractor Failure on
the Primary System
If a double CPU failure or some other event
causes the extractor to stop unexpectedly, the
RDF monitor shuts down all remaining RDF
processes. Once the problem on the primary
system has been corrected, RDF can be restarted
with the RDFCOM START RDF command.

When RDFCOM starts work on this command,
it first checks the CRASHOPEN flags in the con
text records of the extractor and the receiver.
In this case, it finds that the extractor's
CRASHOPEN flag is on, indicating that the
extractor had stopped unexpectedly the last
time it ran. RDFCOM then initiates a recovery
operation to reset the extractor's restart infor
mation. This operation entails obtaining the
receiver's context record and updating the
extractor's restart position, based on the MAT
location of the last audit record written in the
image trail. Therefore, when the extractor is
restarted, it begins reading audit in the MAT

based on the position of the last audit record
to be stored in the image trail. This provides an
absolute guarantee that no audit is skipped when
RDF is restarted. When the recovery operation
has been completed, RDFCOM proceeds with
the normal ST ART RDF operation.

RDF Recovery After a Receiver Failure on
the Backup System
If a double CPU failure, a system crash, or some
other problem causes the receiver to stop unex
pectedly, the RDF monitor shuts down all
remaining RDF processes. Once the problem
has been corrected and the backup system is
operating normally, RDF can be restarted with
the RDFCOM START RDF command. When
RDFCOM starts work on this command, it first
checks the CRASHOPEN flags in the context
records of the extractor and the receiver. In this
case, it finds that the receiver's CRASHOPEN
flag is on, indicating that the receiver had
stopped unexpectedly the last time it ran. RDF
COM then performs a different set of recovery
operations.

First, because the extractor's context may no
longer be correct, RDFCOM resets the extractor
restart position in the MAT, following the same
protocol used when restarting after an unex
pected extractor stoppage. Second, it adjusts
the latest image file in the image trail, possibly
even reducing that file's EOF. Third, it creates
a new image file, so that when the receiver is
restarted, it will write new audit it receives
from the extractor into this file. Finally, it may
need to adjust the restart positions of some
updaters. Having completed these operations,
RDFCOM proceeds with the normal START
RDF operation.

JULY 1994 • TANDEM SYSTEMS REVIEW 73

74

Recovery After an RDF Takeover Failure
Prior to the AAP 1PM, the takeover operation
was not restartable, and to restart one needed
the manual intervention of an RDF support spe
cialist. With the AAP TPM, the RDF takeover
operation is restartable. If an RDF takeover is
not completed, for whatever reason, one merely
needs to reissue the RDFCOM TAKEOVER
command.

The AAP 1PM has also improved the infor
mation logged at the end of the takeover opera
tion. Previously, the outcome of a takeover
operation could be ambiguous, and one could
have thought the outcome successful when it
was not. To provide a completely clear indica
tion of the outcome, a new T AKEOVERCOM
PLETED flag was added to the updater context
record. This flag is only turned on when the
updater is involved in an RDF takeover opera
tion and has processed all audit in the image
trail for which it is responsible. Therefore, if
the T AKEOVERCOMPLETED flag of every
updater is turned on at the end of the operation,
the takeover was a success. If one or more flags
are not turned on, the takeover operation was
not completed successfully.

In preparing to log its shutdown message at
the end of the takeover operation, the receiver
examines the context records of the updaters.
If this new T AKEOVERCOMPLETED flag is
turned on for every updater, the receiver indi
cates in its shutdown message that the takeover
succeeded. If, however, it finds that one or
more T AKEOVERCOMPLETED flags did not
get turned on (e.g., one or more updaters were
unexpectedly stopped), the receiver's shutdown
message indicates that the takeover only par
tially succeeded.

lf a takeover is partially completed, the
database manager simply needs to reissue the
RDFCOM TAKEOVER command. This starts a
new RDF Monitor on the backup system, which
in tum starts a new receiver and a full set of up
daters. For those updaters that had previously
completed their takeover processing, their
restart locations are already at the end of the
image trail, and they will shut down immedi
ately. The updaters that still have processing
to do will resume at their last restart locations.
When all updaters have stopped, the receiver
will once again check their context records
and again log the outcome of the operation. If
another updater again stopped unexpectedly,
the takeover operation can be restarted.

Improved Updater Performance
The current release of RDF, the AAQ 1PM, sig
nificantly improves updater performance when
a large number of primary-system volumes are
protected by RDF. Previously, if one used RDF
to protect I 5 to 20 volumes on a primary sys
tem that had a high audit generation rate, the
maximum combined throughput rate for the
updaters on the backup system was limited to
approximately 45 kilobytes per second. If addi
tional volumes required RDF protection, the
combined updater throughput rate declined sig
nificantly. Thus, to achieve a reasonable updater
throughput rate when the audit generation rate
on the primary system was high, the maximum
practical number of volumes that could be pro
tected by RDF was limited to roughly 20, even
though RDF allows 64 volumes to be configured.

This limit in updater performance was due to
excessive contention on the image-trail volume.
Previously, only a single image trail existed, all
audit sent to the receiver was written to that
trail, and each updater had to search that trail
for audit it needed to apply. Consider an exam
ple in which 20 volumes on a primary system
are protected by RDF. The rate at which the
updaters read new audit is extremely high, and
each updater must compete against the other
19 updaters attempting to read new audit. If
more updaters are added, the contention is
that much greater and the combined updater
throughput is further decreased.

TANDEM SYSTEMS REVIEW• JULY 1994

Figure 3

Primary system

$01

1
$D2 - MAT - Extractor

,:,,J

The AAQ IPM eliminates this contention by
making it possible to configure up to seven
image trails, each on a separate volume. With
multiple trails, one can assign a different set of
updaters to each trail, thereby reducing the num
ber of readers of an image trail. With the conten
tion eliminated, the combined updater throughput
is significantly increased. Figure 3 illustrates an
RDF configuration with multiple image trails.

In Figure 3, 20 volumes on the primary sys
tem. $DI through $D20, are protected by RDF.
On the backup system, there are 20 updaters
and 4 image trails, with 5 updaters to each image
trail. In this configuration, only 5 updaters con
tend with each other for access to their specific
image trail. With a single image trail, all 20
updaters would be in contention.

Using a pair of Cyclone"' systems, measure
ments were taken to determine the increase in
updater performance. The maximum rate at
which the extractor sent audit to the receiver

JULY 1994

Backup system

Image
trail 1 $UP1 ...

$01

$UP6 ...
$D6

Image
trail 3 $UP11 ...

$011

Image
trai14 $UP16 ...

$016

was limited to roughly 120 kilobytes per sec
ond. This figure represented the maximum the
oretical rate at which updaters might be able to
apply audit, because they can only process as
fast as the audit is written to the image trail. As
stated previously, the combined updater through
put for an RDF configuration with 20 updaters on
a single image trail was roughly 45 kilobytes per
second. With 12 updaters on a single trail, the
combined throughput rose to roughly 88 kilo
bytes per second. With 8 updaters on a single
trail, the rate rose to roughly 110 kilobytes per
second. The cost of the receiver managing
either one trail or up to seven trails was found
to be virtually the same.

TAI\DEM SYSTEMS REVIEW

$UP5

$05

$UP10

$D10

$UP15

$015

$UP20

$D20

Figure 3.

RDF configuration with
multiple image trails.

75

Figure 4.

Priman· database with
two independent backup
databases.

76

Figure 4

Therefore, if one were to spread 20 updaters
over two image trails, one should attain a com
bined updater throughput rate that is at least
two times faster than the old rate with this

TANDEM SYSTEMS REVIEW

\B (backup system 1)

$UP1

l

$D1

$D10

$D1

$UP2

I

$D10

many updaters. More significantly, the practical
limit to the number of volumes that can be pro
tected by RDF is raised from 20 to 64. If one
needs 60 volumes to be RDF protected with a
higher updater performance rate, one should
configure six image trails, with IO up daters
configured per trail.

JULY 1994

Forthcoming RDF Features
At present, a database on a given local system
can only be protected by a single RDF system
that replicates that database at a single remote
system. A future RDF IPM will make it possible
to replicate a database on multiple backup sys
tems. In addition, this next version of RDF will
provide triple contingency support. Triple con
tingency support is meant for users who cannot
afford to run their database application without
RDF protection. If they lose their primary sys
tem to some disaster, they need to be able to
restart their business application at the backup
system and have it protected by a new RDF sys
tem with the shortest possible delay. Also, a new
means of achieving stable access for query pro
cessing on the backup system will be provided.

Multiple Backup Databases
Some RDF installations use their backup data
base to handle a high volume of query process
ing. Multiple independent backup databases
make it possible to improve query response
times by distributing queries over several sys
tems. Another benefit of two or more indepen
dent backup systems is that if one backup
system fails, the primary database is still fully
replicated on another system that can take over
database operations if necessary.

Figure 4 illustrates an environment in which
a database on a primary system is replicated on
two backup systems by two independent RDF
systems.

Triple Contingency Support
This future IPM will also provide triple contin
gency support for those who cannot afford to
run their business application without RDF pro
tection after they have had to perform an RDF
takeover. For example, suppose one were run
ning an RDF system from node \A to node \B,
and \A was suddenly destroyed by a natural dis
aster. After completing an RDF takeover at \B,

one would want to restart the business applica
tion at \B and configure a new RDF system to
replicate database changes at \B to a new
backup database on node \C.

To achieve this currently, one must first per
form the costly task of synchronizing the data
bases by moving a copy of the database on \B
to \C. If the database is even moderate in size,
the time required for database synchronization
can be very long, and one cannot start the busi
ness application until synchronization is
complete.

With triple contingency support, one could
use RDF to achieve rapid database synchroniza
tion, so that one could restart one's business
application with full RDF protection very quickly
after an RDF takeover operation. Essentially, one
would configure two independent RDF systems
to protect a database, with each RDF system
replicating the database changes on its own
backup node. In our example, one would have
one RDF system running from \A to \B (config
uration 1) and another running from \A to \C
(configuration 2).

If \A subsequently fails, one would execute
the RDF takeover operation at \B and at \C.
Because the two RDF systems run indepen
dently from each other, however, the probabil
ity is high that, at the time when \A crashed,
one backup database might be ahead of the
other. This could happen because some audit
may have reached one of the two backup systems
but not the other. In the example, the extractor of
configuration 1 might have just read and sent
new audit to its receiver, but the disaster struck
before the extractor of configuration 2 could
read and send the same audit. In this situation,
some audit would be missing at \C.

TANDEM SYSTEMS REVIEW 77

78

For triple contingency support, several new
RDFCOM commands will be provided that will
(I) move the missing audit from the one backup
system to the other, (2) fix up context, and (3)
enable a second takeover operation at the node
whose database is behind that on the other node.
In our example, the audit would be moved from
\B to \C. When the second takeover is completed
at \C, the database at \C will be synchronized
with that at \B. Depending on how much audit is
missing between the two nodes after the takeover
operations, the time required to execute the new
RDFCOM commands and the second RDF take
over operation might involve only a few minutes.
Thus, with triple contingency support, one could
restart one's business application with full RDF
protection in a very short period of time.

Stable Access on the Backup Database
Currently, because updaters apply committed
audit to the backup database independently
from each other, query processing on the backup
system's database can be done only with browse
access. To achieve stable access, only two reli
able ways are available. The most reliable way
is to stop TMF on the primary system and wait
for RDF to shut down. The less reliable way is
to disable transactions on the primary system
and wait for all updaters to reach the end of the
image trail. Both methods, however, require
stopping new transactions at the primary system.

The future IPM will provide a new means of
achieving stable access for query processing on
the backup system, one that will not interfere
with database activity on the primary system.
The RDFCOM STOP UPDATE command will be
enhanced to accept a timestamp. If one issues
the RDFCOM STOP UPDATE command without
a timestamp, the command will work the same

way it always has. If, however, one includes a
timestamp in the command, the updaters will
apply all audit that was committed on the pri
mary system up to the time specified in the
timestamp and then shut down. They will not
apply any audit that was committed after that
timestamp. This guarantees that when the
updaters have all stopped, they will have all
processed the same transactions, and the data
base will be available for stable access. When
updating is restarted, the updaters will apply all
committed audit they could not apply the last
time because those transactions were commit
ted after the specified timestamp.

Carrying Out a Planned Switchover
Guerrero (1991) describes how to carry out a
planned RDF switchover on the backup system
and then return processing to the primary sys
tem. The revised and updated switchover proce
dure given below should be used in its place. In
the steps given for carrying out the procedure,
\A is the primary system and \B is the backup
system. It is assumed that a planned shutdown
of \A is necessary, for example to install new
hardware, and that one wants the business appli
cation to be down for as little time as possible.

The revised switchover procedure is as
follows:

I. Stop the business application that accesses
the primary database.

2. Issue the TMFCOM STOP TMF command
on the primary system (\A).

TMF will stop as soon as all outstanding
database transactions have either been
committed or aborted. When it stops, TMF
writes a shutdown record to the audit trail.
Subsequently, RDF will shut down when all
updaters on the backup system (\B) reach
the TMF shutdown record in \B's image trail
file. At this point, the two databases have
identical contents.

T ,\ :'-1 D E M S Y S T E M S R E V I E W • J LI L Y I 9 9 4

3. If TMF has been running on the backup
system, issue the TMFCOM STOP TMF
command.

The stoppage is only momentary, and
stopping TMF generates a TMF shutdown
record in the audit trail on the backup
system.

4. Restart TMF on the backup system.

5. Use the FUP ALTER or SQLCI ALTER
TABLE command to turn on audit flags for
files in the backup database.

Once the business application starts to use
the backup database, files in the database
must be audited so that TMF protection
applies to them. A predefined obey file for
turning on audit flags in the backup data
base is highly recommended. It makes this
task fast and simple.

6. Restart the business application to access
the database on \B.

7. Once \A is back online, restart TMF on \A.

8. Turn off audit flags for all RDF-protected
database files on \A. This prepares the files
for the RDF updaters when running from \B
to \A. As at Step 5, a predefined obey file is
highly recommended.

9. On \B. issue the RDFCOM INITIALIZE RDF
command, specifying the TMF shutdown
timestamp obtained in Step 3.

This initializes the RDF extractor on \B to
begin reading the MAT file at the first
record after the TMF shutdown record gen
erated in Step 3. Since this record in the
MAT file was created before the business
application generated any updates on \B,
the extractor is guaranteed not to miss any
relevant audit.

I 0. Configure RDF to run from \B to \A.

11. Issue the RDFCOM ST ART RDF command.
RDF now sends database changes from \B
to \A.

12. When the extractor on \B has reached the
point where it is sending current audit to \A,
stop the application on \B and carry out
another planned switchover on \A.

JCLY 1994

The planned switchover repeats Step I through
Step 6, except that this time, the business applica
tion is switched back to \A and RDF once again
runs from \A to \B, as at the beginning.

Conclusion
The Tandem Remote Duplicate Database
Facility (RDF) product makes it possible to main
tain a backup database for use in the event the
primary database becomes unavailable. Enhance
ments to RDF since its initial C30 release provide
faster update performance on the backup system
during normal processing and faster takeover
operations when there are unplanned outages.
In a future version, RDF will make it possible
to have multiple independent backup systems,
triple contingency support, and a new means of
attaining stable access on the backup system's
database.

References
Guerrero. Jorge. I 991. RDF: An Overview. Tandem Srstems
Reviell'. Vol.7, No. 2. Tandem Computers Incorporated. Part
no. 65248.

Senf. Wouter and Jongma. Frans. 1992. RDF Synchronization.
Tandem Systems Rel'iew. Vol.8. No. 2. Tandem Computers
Incorporated. Part no. 69848.

Malcolm Mosher, Jr., joined Tandem in 1982 as a software
developer. He joined the RDF development team in 1988 and has
been responsible for all RDF design and implementation since 1992.
In addition, Malcolm is responsible for much of the design and
implementation of the new high-performance Tandem Nonstop
TM/MP backout and volume recovery processes, as well as the
low-level code of the new TM/MP File Recovery process. He has
a Ph.D. in Egyptology from the University of California, Berkeley
(1990).

TAKDEM SYSTEMS REVIEW 79

80

Tandem Education

The following paragraphs provide
highlights of the latest education
courses offered by Tandem. To sign
up for a class or to order an indepen
dent study program (ISP), users should
call l-800-621-9198. Full descriptions
of all available courses and ISPs
appear in the Tandem Education
Course Catalog and on lnfoWay.

Integrity FT Architecture and
Product Overview

This one-day lecture-and-lab course is
designed for those interested in a thor
ough understanding of the design, the
ory of operation, features, and functions
of Tandem's Integrity FT systems. Stu
dents learn the essentials of the triple
modular redundancy (TMR) architec
ture of Tandem's Integrity FT system
and become familiar with the commu
nications, database, and language prod
ucts offered on the Integrity FT system.
Students also review the features and
functions of the NonStop-UX operat
ing system, Tandem's implementation
of UNIX System V, Release 4.

Integrity System Management
Suite (ISMS)

This is a one-day lecture-and-lab course
meant for UNIX analysts, support engi
neers, and system administrators. The

course provides the best introduction
to ISMS, a state-of-the-art graphical
user interface (GUI) used to manage
hardware components, monitor system
resources, monitor the diagnostic event
log, administer System Exerciser and
Confidence Tests (SECT), and read
postscript documents including the
NonStop-UX manual pages. Exten
sive lab exercises reinforce the skills
needed to administer an Integrity FT
System using ISMS. After completing
this course, students are well-equipped
to use the ISMS interface in their
administrative activities.

Introduction to Enterprise
lnternetworking

This independent study program (ISP)
provides a comprehensive introduction
to new networking architectures and
products. In this ISP, the student learns
about the hardware, software, and
types of applications that make up the
enterprise internetworks of the 1990s.
The program traces the evolution of
networks from hierarchical, main
frame-centered environments to fully
distributed internetworks of local and
wide area networks. Upon completing
this ISP, the student understands the
reasons for internetwork evolution and
for the advent of the client/server
model. The student also understands
the impact of desktop computing and
the management challenges associated
with heterogeneous networks. The
time required to complete the program
is about four hours.

The Technical Information and Education department is an annotated list of new Tandem
education courses and consulting and infcJrmation services, as well as other technical
information of interest to Tandem users.

TANDEM SYSTEMS REVIEW JULY 199-+

SNAX/APN System Management

This independent study program
acquaints the student with IBM's
Advanced Program-to-Program
Communication (APPC) and IBM's
Advanced Peer-to-Peer Networking
(APPN) architectures, as they apply to
Tandem's SNAX/APN family of prod
ucts. Through self-paced study and
practical review exercises, the student
masters the concepts and architectural
principles behind IBM's new peer-to
peer SNA. Tandem's SNAX/XF, and
related SNAX/APN and SNAX/APC
features. After completing this pro
gram, the student has the technical
foundation necessary to install and
configure Tandem's SNAX/APN and
related product features. The estimated
time required to complete this program
is 30 hours.

Nonstop SQL Query Analysis
and Optimization

This two-day lecture-and-lab course is
designed to help users master the art
of advanced query analysis and opti
mization. Students learn how to ana
lyze a query and rewrite queries to
influence the optimizer. Lab exercises
help students hone their query writing
skills. After completing this course,
users know how to find needed infor
mation about query performance and
how to test their queries before they
go into the production environment.

Tandem Professional
Services

Tandem Professional Services provides
a variety of service programs and on
site technical consulting services de
signed to help users gain optimum
performance, as well as the greatest
possible benefit. from their systems.
Following are brief descriptions of
new professional services and pro
grams offered by Tandem. For more
information. users should contact
their local Tandem representative.

Availability Practice Guide

To help maximize the availability of
Tandem NonStop systems, Tandem
has produced the Availability Practice
Guide, which shows how to reduce
computing costs and improve system
and staff productivity. The guide con
tains a wealth of proven procedures,
written by Tandem availability experts,
that can help users get the most from
their Tandem investment. Each prac
tice reduces computing costs by elimi
nating or greatly reducing unplanned
or planned outage minutes.

The first edition of the Availability
Practice Guide is for all NonStop
users and includes topics covering

--------.-- ·--------

management guidelines, production
operation guidelines, writing efficient
command files, general system man
agement guidelines, and development
and database management guidelines.
To receive a free copy of the guide.
users should call their Tandem repre
sentative.

Custom Availability Support
Program

Currently available for Himalaya
servers, the Custom Availability
Support (CAS) program provides qual
ified Tandem users with guaranteed
system availability of at least 99.9 per
cent, and covers hardware, system
software, and operations. To qualify
for CAS support and the availability
guarantee, users must first undergo an
extensive qualification review of their
system and operations environment.
They must then make improvements
to their system/environment as identi
fied in the qualification review sum
mary document.

JANUARY 199-l TA1'DEM SYSTEMS REVIEW 81

82

Users may utilize either their
own resources or Tandem profes
sional services to meet the CAS high
availability specification. Once a user
is qualified, Tandem will provide on
going maintenance services to ensure
that the high availability goal is con
tinuously met. If the user fails to meet
the 99.9-percent availability goal dur
ing a calendar quarter (due to the fail
ure of Tandem hardware, Tandem
system software, or Tandem certified
operating procedures), hardware and
software maintenance fees for that
period will be credited.

Multivendor Network
Solutions Services

This is a program designed to help
users meet their business network-
ing needs and keep pace with the
demands of evolving network tech
nologies. The program makes avail
able a full range of services for
evaluating, managing, and improving
existing networks and designing, in
stalling, certifying, and supporting
new networks. Users can choose a
service or combination of services that
suits their needs. Tandem's expert staff

- -- -----------

and partners will ensure that the user's
network offers the performance and
availability that the user's critical
client/server applications require. The
program's strategies and designs ad
here to open systems standards and
will also deliver the Tandem Trusted
Network often requested by
client/server users.

Multivendor Solutions Support

The Multivendor Solutions Support
program consolidates support to a
single source, for every aspect of a
heterogeneous, networked computing
environment. The program gives
users access to Tandem's expert
support staff and the services of
Tandem's support partners, whose
expertise covers the range of today's
diverse hardware and software envi
ronments.

After an initial consultation,
Tandem organizes an appropriate
support team from among Tandem's
partners to meet the user's require
ments. From then on, Tandem be
comes the single source for support
and takes responsibility for managing
overall problem management and
each partner's delivery of hardware
and software support services. In its
management role, Tandem handles all
aspects of problem resolution and
escalation: coordinating service per
sonnel, following up to make sure
that the problem is satisfactorily
resolved, and if necessary, escalat
ing the problem to other partners
for additional help.

Tandem System Access Service

This service provides users with
access to a predefined, fully opera
tional Tandem system in the event of
a disaster. The service is designed to
fit into the user's disaster recovery
plan by ensuring rapid restoration of
the user's critical computer applica
tions. The service provides for system
delivery, installation, and 30-day
usage. As part of the service, Tandem
includes Application Migration
Planning for Emergencies, a 1 ~2 day
session with the user designed to
ensure that this service will meet the
user's mission critical computing
requirements.

Integrity Starter Kit Service

This service provides users with
hands-on training in a fast-paced,
interactive workshop to help them
quickly and effectively integrate
Integrity FT systems and NR servers
into their computing environment. A
combination of system installation
and on-site services help users opti
mize their investment in their new
UNIX system. Led by a Tandem
expert, users learn the basics about
system installation, configuration,
and administration, and are given the
context for understanding the sys
tem's full functionality. The work
shop combines demonstrations and
participatory exercises to help users
feel comfortable working with their
new system.

TANDEM SYSTEMS REVIEW JULY 1994

CA-SESMAN Startup Service

This service helps users install and
integrate the CA-SESMAN access
control and security product into their
business environment. The Tandem
systems consultant assists the user's
operations and security staff in install
ing and configuring CA-SESMAN for
a core set of applications and users.
The user's staff is trained in starting
up CA-SESMAN, configuring it, man
aging it, making full use of its capa
bilities, and shutting it down grace
fully. The consultant leaves behind a
list of tasks the user should perform to
continue integrating CA-SESMAN
into the user's environment. The ser
vice typically requires three days.

Performance Review and
Analysis Service-Core Service

This is an economy version of the
comprehensive Performance Review
and Analysis packaged service. This
service typically requires eight days,
and covers optimization and balanc
ing of CPUs, memory, cache, files,
and disc l/0. Unlike the comprehen
sive service, this service does not
cover in-depth optimization of many
of the other major subsystems. As
part of this service, a report is pro
vided with recommendations for
performance improvements.

Tandem Annual Services

Tandem Annual Services are profes
sional services that focus on specific,
recurring tasks that all users need to
perform. These services can be pur
chased on a one-time basis, but are
more beneficial when contracted for
annually. The annual services cur
rently available are:

■ Change Management, which tracks
current Tandem software enhance
ments, IPMs, bulletins, and alerts,
and recommends those appropriate
to the user. This service also includes
implementation plans and telephone
assistance.

■ SYSGEN Definition, which ana
lyzes proposed configuration changes
and provides recommendations for
correcting discrepancies. This service
also provides an installation plan and
telephone assistance.

■ Technical Consultation, which con
sists of tailored consultations to assist
the user's systems management and
operations staff in building practical
knowledge to improve their use of
Tandem systems.

■ Problem Determination, which
provides initial diagnosis of problems
suspected of involving Tandem
equipment.

CD Read
DocQmentation

Tandem CD Read provides a com
plete set of NonStop Kernel docu
mentation on a single CD-ROM disc.
New CD Read discs containing the
latest documentation are shipped by
first class mail to all CD Read sub
scribers. To obtain a replacement for
a missing shipment or to place an
order for CD Read, users may call
800-243-6886.

CD Read, Version C30_ 1 0_ 1
and Version D20_00_ 1
February 1994

The C30_10_1 and D20_00_1 discs
contain complete sets of NonStop
Kernel documentation, over 350 man
uals and the entire set of softdocs. (List
ings of manuals that are new or have
changed can be found on the CD Read
disc itself in the "About the Softpubs
Library" document.) In addition, the
D20 00 I disc includes new screen
font~ fo~ Macintosh users and new
files for PC users running Windows
software.

JULY 1994 TANDEM SYSTEMS REVIEW 83

84

TandemSystemsReview/ndex
The Tandem Journal became the Tandem Systems Review in February 1985. Four issues of the
Tandem Journal were published:

Volume I, No. I
Volume 2, No. I

Fall 1983
Winter 1984

Volume 2, No. 2
Volume 2. No. 3

Spring 1984
Summer 1984

As of this issue, 26 issues of the Tandem Systems Review have been published:

Volume I, No. I
Volume I, No. 2
Volume 2, No. I
Volume 2, No. 2
Volume 2, No. 3
Volume 3, No. I
Volume 3, No. 2
Volume 4, No. I
Volume 4, No. 2
Volume 4, No. 3

Feb. 1985
June 1985
Feb. 1986
June 1986
Dec. 1986
March 1987
Aug. 1987
Feb. 1988
July 1988
Oct. 1988

Volume 5, No. I
Volume 5, No. 2
Volume 6, No. I
Volume 6, No. 2
Volume 7, No. I
Volume 7, No. 2
Volume 8, No. I
Volume 8, No. 2
Volume 8. No. 3
Volume 9, No. I

April 1989
Sept. 1989
March 1990
Oct. 1990
April 1991
Oct. 1991
Spring 1992
Summer 1992
Fall 1992
Winter 1993

Volume 9, No. 2
Volume 9. No. 3
Volume 9, No. 4
Volume 10, No. I
Volume 10, No. 2
Volume 10, No. 3

Spring 1993
Summer 1993
Fall 1993

Jan. 1994
April 1994
July 1994

The articles published in all 30 issues are arranged by subject below. (Tandem Journal is abbreviated as TJ and
Tandem Systems Review as TSR.) A second index, arranged by product, is also provided.

Index by Subject
Volume, Publication Part

Article title Author(s) Publication Issue date number

APPLICATION DEVELOPMENT AND LANGUAGES

A New Design for the PA TH WAY TCP R. Wong TJ 2,2 Spring 1984 83932

An Overview of Client/Server Computing on Tandem Systems H. Cooperstein TSR 8,3 Fall 1992 89803

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984 83932

Application Code Conversion for D-Series Systems K. Liu TSR 9,2 Spring 1993 89805

Application Profile: Storing Macintosh Graphics on the D. Broyles TSR 9,3 Summer 1993 89806
Tandem 5200 Optical Storage Facility

Automating Call Centers With CAM W. Choi TSR 10,2 April 1994 104398

Basic Uses and New Features of Extended GDS A. Hotea TSR 10,1 Jan. 1994 104396

Debugging TACL Code L. Palmer TSR 4,2 July 1988 13693

Designing and Implementing a Graphical User Interface S. Wolfe TSR 9,3 Summer 1993 89806

Designing Client/Server Applications for OL TP on W. Culman TSR 8,3 Fall 1992 89803
Guardian 90 Systems

Extending the Client/Server Model With Object-Oriented Technology T. Rohner TSR 10,1 Jan. 1994 104396

Implementing Client/Server Using RSC M. lem, T. Kocher TSR 8,3 Fall 1992 89803

Instrumenting Applications for Effective Event Management J. Dagenais TSR 7,2 Oct. 1991 65248

New TAL Features C. Lu, J. Murayama TSR 2,2 June 1986 83837

PATHFINDER-An Aid for Application Development S. Benett TJ 1,1 Fall 1983 83930

TANDEM SYSTEMS REVIEW JULY I99-l

Volume, Publication Part
Article title Author(s) Publication Issue date number

APPLICATION DEVELOPMENT AND LANGUAGES (cont.)

PATHWAY IDS: A Message-level Interface to Devices and Processes M. Anderton, M. Noonan TSR 2,2 June 1986 83937

The RESPOND OL TP Business Management System H. Bolling, W. Bronson TSR 9,1 Winter 1993 89804
for Manufacturing

State-of-the-Art C Compiler E. Kit TSR 2,2 June 1986 83937

TACL, Tandem's New Extensible Command Language J. Campbell, R. Glascock TSR 2,1 Feb. 1986 83936

Tandem's New COBOL85 D. Nelson TSR 2,1 Feb. 1986 83936

The DAL Server: ClienVServer Access to Tandem Databases W. Schlansky, TSR 9,1 Winter 1993 89804
J. Schrengohst

The ENABLE Program Generator for Multifile Applications B. Chapman, J. Zimmerman TSR 1,1 Feb. 1985 83934

TMF and the Multi-Threaded Requester T. Lem berger TJ 1,1 Fall 1983 83930

Writing a Command Interpreter D. Wong TSR 1,2 June 1985 83935

CLIENT/SERVER

An Overview of ClienVServer Computing on Tandem Systems H. Cooperstein TSR 8,3 Fall 1992 89803

Application Profile: Storing Macintosh Graphics on the D. Broyles TSR 9,3 Summer 1993 89806
Tandem 5200 Optical Storage Facility

ClienVServer Availability A. Wood TSR 10,2 April 1994 104398

Designing and Implementing a Graphical User Interface S. Wolle TSR 9,3 Summer 1993 89806

Designing ClienVServer Applications for OL TP on W. Culman TSR 8,3 Fall 1992 89803
Guardian 90 Systems

Extending the ClienVServer Model With Object-Oriented Technology T. Rohner TSR 10,1 Jan. 1994 104396

Gateways to Nonstop SOL D. Slutz TSR 6,2 Oct. 1990 46987

Implementing ClienVServer Using RSC M. lem, T. Kocher TSR 8,3 Fall 1992 89803

Nonstop ODBC Server H. Mahbod, D. Slutz TSR 10,3 July 1994 104400

The DAL Server: ClienVServer Access to Tandem Databases W. Schlansky, TSR 9,1 Winter 1993 89804
J. Schrengohst

DATA COMMUNICATIONS

An Overview of SNAX/CDF M. Turner TSR 5,2 Sept. 1989 28152

A SNAX Passthrough Tutorial D. Kirk TJ 2,2 Spring 1984 83932

Basic Uses and New Features of Extended GOS A. Hotea TSR 10,1 Jan. 1994 104396

Changes in FOX N. Donde TSR 1,2 June 1985 83935

Connecting Terminals and Workstations to Guardian 90 Systems E. Siegel TSR 8,2 Summer 1992 69848

Expand High-Performance Solutions D. Smith TSR 9,3 Summer 1993 89806

Introduction to MUL TILAN A. Coyle TSR 4,1 Feb. 1988 11078

Overview of the MUL TILAN Server A. Rowe TSR 4,1 Feb. 1988 11078

SNAX/APC: Tandem's New SNA Software for Distributed Processing B. Grantham TSR 3,1 March 1987 83939

SNAX/HLS: An Overview S. Saltwick TSR 1,2 June 1985 83935

TLAM: A Connectivity Option for Expand K. MacKenzie TSR 7,1 April 1991 46988

Using the MUL TILAN Application Interlaces M. Berg, A. Rowe TSR 4,1 Feb. 1988 11078

I 9 9 4 TANDEM SYSTEMS REVIEW 85

Volume, Publication Part
Article title Author(s) Publication Issue date number

DATA MANAGEMENT

A Comparison of the BOO DP1 and DP2 Disc Processes T. Schachter TSR 1,2 June 1985 83935

A New Hash-Based Join Algorithm for Nonstop SQUMP H. Zeller TSR 10,3 July 1994 104400

An Overview of Nonstop SOUMP F. Ho, R. Jain, J. Troisi TSR 10,3 July 1994 104400

An Overview of Nonstop SOL Release 2 M. Pong TSR 6,2 Oct. 1990 46987

Batch Processing in Online Enterprise Computing T. Keefauver TSR 6,2 Oct. 1990 46987

Concurrency Control Aspects of Transaction Design W. Senf TSR 6,1 March 1990 32968

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986

DP1-DP2 File Conversion: An Overview J. Tate TSR 2,1 Feb. 1986 83936

Determining FCP Conversion Time J. Tate TSR 2,1 Feb. 1986 83936

DP2's Efficient Use of Cache T. Schachter TSR 1,2 June 1985 83935

DP2 Highlights K. Carlyle, L. McGowan TSR 1,2 June 1985 83935

DP2 Key-sequenced Files T. Schachter TSR 1,2 June 1985 83935

Enhancing Availability, Manageability, and Performance With M. Chandra, D. Eicher TSR 10,3 July 1994 104400
Non Stop TM/MP

Gateways to Nonstop SOL D. Slutz TSR 6,2 Oct. 1990 46987

High-Performance SOL Through Low-Level System Integration A. Borr TSR 4,2 July 1988 13693

Improvements in TMF T. Lemberger TSR 1,2 June 1985 83935

NetBatch: Managing Batch Processing on Tandem Systems D. Wakashige TSR 5, 1 April 1989 18662

NetBatch-Plus: Structuring the Batch Environment G. Earle, D. Wakashige TSR 6,1 March 1990 32986

Nonstop Availability and Database Configuration Operations J. Troisi TSR 10,3 July 1994 104400

Nonstop ODBC Server H. Mahbod, D. Slutz TSR 10,3 July 1994 104400

Nonstop SOL: The Single Database Solution J. Cassidy, T. Kocher TSR 5,2 Sept. 1989 28152

Nonstop SOL Data Dictionary R. Holbrook, D. Tsou TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Basic Concepts M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Query Optimization and User Influence M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Reliability C. Fenner TSR 4,2 July 1988 13693

Online Information Processing J. Viescas TSR 9,1 Winter 1993 89804

Online Reorganization of Key-Sequenced Tables and Files G. Smith TSR 6,2 Oct. 1990 46987

Optimizing Batch Performance T. Keefauver TSR 5,2 Sept. 1989 28152

Overview of Nonstop SOL H. Cohen TSR 4,2 July 1988 13693

Parallelism in Nonstop SOL Release 2 M. Moore, A. Sodhi TSR 6,2 Oct. 1990 46987

The Nonstop SOL Release 2 Benchmark S. Englert, J. Gray, TSR 6,2 Oct. 1990 46987
T. Kocher, P. Shah

The Outer Join in Nonstop SOL J. Vaishnav TSR 6,2 Oct. 1990 46987

The Relational Data Base Management Solution G.Ow TJ 2,1 Winter 1984 83931

Tandem's Nonstop SOL Benchmark Tandem Performance Group TSR 4,1 Feb. 1988 11078

The TRANSFER Delivery System for Distributed Applications S. Van Pelt TJ 2,2 Spring 1984 83932

TMF Autorollback: A New Recovery Feature M. Pong TSR 1,1 Feb. 1985 83934

DECISION SUPPORT SYSTEMS

An Overview of NonStop SOL/MP F. Ho, R. Jain, J. Troisi TSR 10,3 July 1994 104400

Nonstop ODBC Server H. Mahbod, D. Slutz TSR 10,3 July 1994 104400

Online Information Processing J. Viescas TSR 9,1 Winter 1993 89804

The DAL Server: Client/Server Access to Tandem Databases W. Schlansky, TSR 9,1 Winter 1993 89804
J. Schrengohst

The RESPOND OL TP Business Management System H. Bolling, W. Bronson TSR 9,1 Winter 1993 89804
for Manufacturing

OBJECT-ORIENTED TECHNOLOGY

Extending the Client/Server Model With Object-Oriented Technology T. Rohner TSR 10,1 Jan. 1994 104396

86 TANDEM SYSTEMS REVIEW JULY 1994

Volume, Publication Part
Article title Author(s) Publication Issue date number

OPERATING SYSTEMS

Application Code Conversion for D-Series Systems K. Liu TSR 9,2 Spring 1993 89805

Highlights of the BOO Software Release K. Coughlin, R. Montevaldo TSR 1,2 June 1985 83935

Increased Code Space A. Jordan TSR 1,2 June 1985 83935

Managing System Time Under GUARDIAN 90 E. Nellen TSR 2,1 Feb. 1986 83936

Migration Planning for D-Series Systems S. Kuukka TSR 9,2 Spring 1993 89805

New GUARDIAN 90 Time-keeping Facilities E. Nellen TSR 1,2 June 1985 83935

New Process-timing Features S. Sharma TSR 1,2 June 1985 83935

Nonstop II Memory Organization and Extended Addressing D. Thomas TJ 1,1 Fall 1983 83930

Overview of the COO Release L. Marks TSR 4,1 Feb. 1988 11078

Overview of the D-Series Guardian 90 Operating System W. Bartlett TSR 9,2 Spring 1993 89805

Overview of the NonStop-UX Operating System for the Integrity S2 P. Norwood TSR 7,1 April 1991 46988

Robustness to Crash in a Distributed Data Base: A.Borr TSR 1,2 June 1985 83935
A Nonshared-memory Approach

The GUARDIAN Message System and How to Design for It M. Chandra TSR 1,1 Feb. 1985 83934

The Nonstop Himalaya K10000 Interprocessor Bus R. Jardine, S. Hamilton, TSR 10,2 April 1994 104398
K. Krishnakumar

The Tandem Global Update Protocol R.Carr TSR 1,2 June 1985 83935

PERFORMANCE AND CAPACITY PLANNING

A Performance Retrospective P. Oleinick, P. Shah TSR 2,3 Dec. 1986 83938

Buffering for Better Application Performance R. Mattran TSR 2,1 Feb. 1986 83936

Capacity Planning Concepts R. Evans TSR 2,3 Dec. 1986 83938

Capacity Planning With TCM W. Highleyman TSR 7,2 Oct. 1991 65248

COO TMDS Performance J. Mead TSR 4,1 Feb. 1988 11078

Credit-authorization Benchmark for High Performance and T. Chmiel, T. Houy TSR 2,1 Feb. 1986 83936
Linear Growth

Debugging Accelerated Programs on TNS/R Systems D. Gressler TSR 8,1 Spring 1992 65250

DP2 Performance J. Enright TSR 1,2 June 1985 83935

Estimating Host Response Time in a Tandem System H. Horwitz TSR 4,3 Oct. 1988 15748

Expand High-Performance Solutions D. Smith TSR 9,3 Summer 1993 89806

FASTSORT: An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938
A. Tsukerman, S. Uren,
B. Vaughan

Getting Optimum Performance from Tandem Tape Systems A. Khatri TSR 2,3 Dec. 1986 83938

How to Set Up a Performance Data Base with M. King TSR 2,3 Dec. 1986 83938
MEASURE and ENFORM

Implementing a Systems Management Improvement Program J. Dagenais TSR 9,4 Fall 1993 89807

Improved Performance for BACKUP2 and RESTORE2 A. Khatri, M. Mccline TSR 1,2 June 1985 83935

Improving Performance on TNS/R Systems With the Accelerator M. Blanchet TSR 8,1 Spring 1992 65250

MEASURE: Tandem's New Performance Measurement Tool D. Dennison TSR 2,3 Dec. 1986 83938

Measuring DSM Event Management Performance M. Stockton TSR 8,1 Spring 1992 65250

Message System Performance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938

Message System Performance Tests s. Uren TSR 2,3 Dec. 1986 83938

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

Nonstop NET/MASTER: Configuration and Performance Guidelines M. Stockton TSR 9,4 Fall 1993 89807

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938

Optimizing Sequential Processing on the Tandem System R. Welsh TJ 2,3 Summer 1984 83933

Pathway TCP Enhancements for Application Run-Time Support R. Vannucci TSR 7,1 April 1991 46988

J U L Y I 9 9 4 T A N D E M S Y S T E M S REVIEW 87

Volume, Publication Part
Article title Author(s) Publication Issue date number

PERFORMANCE AND CAPACITY PLANNING (cont.)

Performance Benefits of Parallel Query Execution and Mixed S. Englert, J. Gray TSR 6,2 Oct. 1990 46987
Workload Support in Nonstop SOL Release 2

Performance Considerations for Application Processes R. Glasstone TSR 2,3 Dec. 1986 83938

Performance Measurements of an ATM Network Application N. Cabell, D. Mackie TSR 2,3 Dec. 1986 83938

Predicting Response Time in On-line Transaction Processing Systems A. Khatri TSR 2,2 June 1986 83937

RDF Enhancements for High Availability and Performance M. Mosher TSR 10,3 July 1994 104400

Sizing Cache for Applications that Use B-series DP1 and TMF P. Shah TSR 2,2 June 1986 83937

Sizing the Spooler Collector Data File H. Norman TSR 4,1 Feb. 1988 11978

Tandem's 5200 Optical Storage Facility: Performance and s Coleman TSR 5,1 April 1989 18662
Optimization Considerations

Tandem's Approach to Fault Tolerance B. Ball, W. Bartlett, TSR 4,1 Feb. 1988 11078
S. Thompson

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

The ENCORE Stress Test Generator for On-line Transaction S. Kosinski TJ 2,1 Winter 1984 83931
Processing Applications

The PATHWAY TCP: Performance and Tuning J. Vatz TSR 1,1 Feb. 1985 83934

The Performance Characteristics of Tandem Nonstop Systems J. Day TJ 1,1 Fall 1983 83930

Understanding PATHWAY Statistics R. Wong TJ 2,2 Spring 1984 83932

PERIPHERALS

5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940

An Introduction to DYNAMITE Workstation Host Integration s. Kosinski TSR 1,2 June 1985 83935

Application Profile: Storing Macintosh Graphics on the D. Broyles TSR 9,3 Summer 1993 89806
Tandem 5200 Optical Storage Facility

Data-Encoding Technology Used in the XL8 Storage Facility D.S.Ng TSR 2,2 June 1986 83937

Data-Window Phase-Margin Analysis A. Painter, H. Pham, TSR 2,2 June 1986 83937
H. Thomas

Introducing the 3207 Tape Controller S. Chandran TSR 1,2 June 1985 83935

Peripheral Device Interfaces J. Blakkan TSR 3,2 Aug. 1987 83940

Plated Media Technology Used in the XL8 Storage Facility D.S. Ng TSR 2,2 June 1986 83937

Streaming Tape Drives J. Blakkan TSR 3,2 Aug. 1987 83940

Terminal Selection E. Siegel TSR 8,2 Summer 1992 69848

The 5200 Optical Storage Facility: A Hardware Perspective A. Patel TSR 5,1 April 1989 18662

The 6100 Communications Subsystem: A New Architecture R. Smith TJ 2,1 Winter 1984 83931

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

The DYNAMITE Workstation: An Overview G. Smith TSR 1,2 June 1985 83935

The Model 6VI Voice Input Option: Its Design and Implementation B. Huggett TJ 2,3 Summer 1984 83933

The Role of Optical Storage in Information Processing L. Sabaroff TSR 3,2 Aug. 1987 83940

The VB Disc Storage Facility: Setting a New Standard for M. Whiteman TSR 1,2 June 1985 83935
On-line Disc Storage

88 TANDEM SYSTEMS REVIEW J U L Y 9 9 -l

Volume, Publication Part
Article title Author(s) Publication Issue date number

PROCESSORS

Fault Tolerance in the Nonstop Cyclone System S. Chan, R. Jardine TSR 7,1 April 1991 46988

A Hardware Overview of the Non Stop Himalaya K10000 Server C. Kong TSR 10,1 Jan. 1994 104396

Nonstop CLX: Optimized for Distributed On-Line D. Lenoski TSR 5,1 April 1989 18662
Transaction Processing

NonStop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938

Overview of Tandem Nonstop Series/RISC Systems L. Faby, R. Mateosian TSR 8,1 Spring 1992 65250

The High-Performance Nonstop TXP Processor W. Bartlett, T. Houy, TJ 2,1 Winter 1984 83931
Transaction Processing D. Meyer

The NonStop Himalaya K10000 Interprocessor Bus R. Jardine, S. Hamilton, TSR 10,2 April 1994 104398
K. Krishnakumar

The Nonstop TXP Processor: A Powerful Design for On-line P. Oleinick TJ 2,3 Summer 1984 83933
Transaction Processing

The VLX: A Design for Serviceability J Allen, R. Boyle TSR 3,1 March 1987 83939

SECURITY

Dial-In Security Considerations P. Grainger TSR 7,2 Oct. 1991 65248

Distributed Protection with SAFEGUARD T.Chou TSR 2,2 June1986 83937

Enhancing System Security With Safeguard C. Gaydos TSR 7,1 April 1991 46988

SYSTEM CONNECTIVITY

Basic Uses and New Features of Extended GDS A. Hotea TSR 10,1 Jan. 1994 104396

Building Open Systems Interconnection with OSI/AS and OSI/TS R. Smith TSR 6,1 March 1990 32986

Connecting Terminals and Workstations to Guardian 90 Systems E. Siegel TSR 8,2 Summer 1992 69848

Implementing Client/Server Using RSC M. lem, T Kocher TSR 8,3 Fall 1992 89803

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

Terminal Connection Alternatives for Tandem Systems J. Simonds TSR 5,1 April 1989 18662

Terminal Selection E. Siegel TSR 8,2 Summer 1992 69848

The OSI Model: Overview, Status, and Current Issues A. Dunn TSR 5,1 April 1989 18662

SYSTEM MANAGEMENT

Configuring Tandem Disk Subsystems s. Sitler TSR 2,3 Dec. 1986 83938

Data Replication in Tandem's Distributed Name Service T Eastep TSR 4,3 Oct. 1988 15748

Enhancements to TMDS L. White TSR 3,2 Aug. 1987 83940

Event Management Service Design and Implementation H. Jordan, R. McKee, TSR 4,3 Oct. 1988 15748
R. Schue!

Implementing a Systems Management Improvement Program J_ Dagenais TSR 9,4 Fall 1993 89807

Instrumenting Applications for Effective Event Management J. Dagenais TSR 7,2 Oct. 1991 65248

Introducing TMDS, Tandem's New On-line Diagnostic System J. Troisi TSR 1,2 June 1985 83935

Measuring DSM Event Management Performance M. Stockton TSR 8,1 Spring 1992 65250

Network Statistics System M. Miller TSR 4,3 Oct. 1988 15748

Nonstop NET/MASTER: Configuration and Performance Guidelines M. Stockton TSR 9,4 Fall 1993 89807

Nonstop NET/MASTER: Event Management Architecture M. Stockton TSR 9,4 Fall 1993 89807

Nonstop NET/MASTER: Event Processing Costs and M. Stockton TSR 9,4 Fall 1993 89807
Sizing Calculations

Overview of DSM P. Homan, B. Malizia, TSR 4,3 Oct. 1988 15748
E. Reisner

SCP and SCF: A General Purpose Implementation of the T. Lawson TSR 4,3 Oct. 1988 15748
Subsystem Programmatic Interface

RDF: An Overview J. Guerrero TSR 7,2 Oct. 1991 65248

RDF Enhancements for High Availability and Performance M. Mosher TSR 10,3 July 1994 104400

RDF Synchronization F. Jongma, W. Senf TSR 8,2 Summer 1992 69848

J U L Y I 9 9 -l TANDEM SYSTEMS REVIEW 89

Volume, Publication Part
Article title Author(s) Publication Issue date number

SYSTEM MANAGEMENT (cont.)

Tandem's Subsystem Programmatic Interface G. Tom TSR 4,3 Oct. 1988 15748

Using FOX to Move a Fault-tolerant Application C. Breighner TSR 1,1 Feb. 1985 83934

Using the Subsystem Programmatic Interface and Event K. Stobie TSR 4,3 Oct. 1988 15748
Management Services

VIEWPOINT Operations Console Facility R. Hansen, G. Stewart TSR 4,3 Oct. 1988 15748

VIEWSYS: An On-line System-resource Monitor D. Montgomery TSR 1,2 June 1985 83935

Writing Rules for Automated Operations J. Collins TSR 7,2 Oct. 1991 65248

UTILITIES

Enhancements to PS MAIL R. Funk TSR 3,1 March 1987 83939

90 TANDEM SYSTEMS REVIEW J U L Y I 9 9 4

Index by Product
Volume, Publication Part

Article title Author(s) Publication Issue date number

3207 TAPE CONTROLLER

Introducing the 3207 Tape Controller S. Chandran TSR 1,2 June 1985 83935

5120 TAPE SUBSYSTEM

5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940

5200 OPTICAL STORAGE

Application Profile: Storing Macintosh Graphics on the D. Broyles TSR 9,3 Summer 1993 89806
Tandem 5200 Optical Storage Facility

Tandem's 5200 Optical Storage Facility: Performance and S. Coleman TSR 5,1 April 1989 18662
Optimization Considerations

The 5200 Optical Storage Facility: A Hardware Perspective A. Patel TSR 5,1 April 1989 18662

The Role of Optical Storage in Information Processing L. Sabaroff TSR 4,1 Feb. 1988 11078

6100 COMMUNICATIONS SUBSYSTEM

The 6100 Communications Subsystem: A New Architecture R. Smith TJ 2,1 Winter 1984 83931

6530 TERMINAL

The Model 6VI Voice Input Option: Its Design and Implementation B. Huggett TJ 2,3 Summer 1984 83933

6600 AND TCC6820 COMMUNICATIONS CONTROLLERS

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

BASIC

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984 83932

C

State-of-the-art C Compiler E. Kit TSR 2,2 June 1986 83937

CAM

Automating Call Centers With CAM W. Choi TSR 10,2 April 1994 104398

CIS

Customer Information Service J. Massucco TSR 3,1 March 1987 83939

CLX

Nonstop CLX: Optimized for Distributed On-Line D. Lenoski TSR 5,1 April 1989 18662
Transaction Processing

COBOL85

Tandem's New COBOL85 D. Nelson TSR 2,1 Feb. 1986 83936

COMINT(CI)

Writing a Command Interpreter D. Wong TSR 1,2 June 1985 83935

CYCLONE

Fault Tolerance in the Nonstop Cyclone System S. Chan, R. Jardine TSR 7,1 April 1991 46988

DAL SERVER

The DAL Server: ClienVServer Access to Tandem Databases W. Schlansky, TSR 9,1 Winter 1993 89804
J. Schrengohst

JULY 1994 TANDEM SYSTEMS REVIEW 91

Volume, Publication Part
Article title Author(s) Publication Issue date number

DP1 AND DP2

A Comparison of lhe BOO DP1 and DP2 Disc Processes T. Schachter TSR 1,2 June 1985 83935

Determining FCP Conversion Time J. Tate TSR 2,1 Feb. 1986 83936

DP1 -DP2 File Conversion: An Overview J. Tate TSR 2,1 Feb. 1986 83936

DP2 Highlights K. Carlyle, L. McGowan TSR 1,2 June 1985 83935

DP2 Key-sequenced Files T. Schachter TSR 1,2 June 1985 83935

DP2 Performance J. Enright TSR 1,2 June 1985 83935

DP2's Efficient Use of Cache T. Schachter TSR 1,2 June 1985 83935

Sizing Cache for Applications that Use B-series DP1 and TMF P. Shah TSR 2,2 June 1986 83937

DSM

Data Replication in Tandem's Distributed Name Service T. Eastep TSR 4,3 Oct. 1988 15748

Event Management Service Design and Implementation H. Jordan, R. McKee, TSR 4,3 Oct. 1988 15748
R. Schue!

Instrumenting Applications for Effective Event Management J. Dagenais TSR 7,2 Oct. 1991 65248

Measuring DSM Event Management Performance M. Stockton TSR 8,1 Spring 1992 65250

Network Statistics System M. Miller TSR 4,3 Oct. 1988 15748

Overview of DSM P. Homan, B. Malizia, TSR 4,3 Oct. 1988 15748
E. Reisner

SCP and SCF: A General Purpose Implementation of the T. Lawson TSR 4,3 Oct. 1988 15748
Subsystem Programmatic Interface

Tandem's Subsystem Programmatic Interface G.Tom TSR 4,3 Oct. 1988 15748

Using the Subsystem Programmatic Interface and Event K. Stobie TSR 4,3 Oct. 1988 15748
Management Services

VIEWPOINT Operations Console Facility R. Hansen, G. Stewart TSR 4,3 Oct. 1988 15748

Writing Rules for Automated Operations J. Collins TSR 7,2 Oct. 1991 65248

DYNAMITE

An Introduction to DYNAMITE Workstation Host Integration S. Kosinski TSR 1,2 June 1985 83935

The DYNAMITE Workstation: An Overview G. Smith TSR 1,2 June 1985 83935

ENABLE

The ENABLE Program Generator for Multifile Applications B. Chapman, J. Zimmerman TSR 1,1 Feb. 1985 83934

ENCOMPASS

The Relational Data Base Management Solution G.Ow TJ 2,1 Winter 1984 83931

ENCORE

The ENCORE Stress Test Generator for On-line Transaction S. Kosinski TJ 2,1 Winter 1984 83931
Processing Applications

ENSCRIBE

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986

EXPAND

Expand High-Performance Solutions D. Smith TSR 9,3 Summer 1993 89806

FASTSORT

FASTSORT: An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938
A. Tsukerman, S. Uren,
B. Vaughan

92 TANDEM SYSTEMS REVIEW J U L Y I 9 9 4

Volume, Publication Part
Article title Author(s) Publication Issue date number

FOX

Changes in FOX N. Donde TSR 1,2 June 1985 83935

Using FOX to Move a Fault-tolerant Application C. Breighner TSR 1,1 Feb. 1985 83934

FUP

Online Reorganization of Key-Sequenced Tables and Files G. Smith TSR 6,2 Oct. 1990 46987

GDS

Basic Uses and New Features of Extended GOS A. Hotea TSR 10,1 Jan. 1994 104396

GUARDIAN 90

Application Code Conversion for D-Series Systems K. Liu TSR 9,2 Spring 1993 89805

BOO Software Manuals s. Olds TSR 1,2 June 1985 83935

COO Software Manuals E. Levi TSR 4,1 Feb. 1988 11078

Highlights of the BOO Software Release K. Coughlin, R. Montevaldo TSR 1,2 June 1985 83935

Improved Performance for BACKUP2 and RESTORE2 A. Khatri, M. McCline TSR 1,2 June 1985 83935

Increased Code Space A. Jordan TSR 1,2 June 1985 83935

Managing System Time Under GUARDIAN 90 E. Nellen TSR 2,1 Feb. 1986 83936

Message System Performance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938

Message System Performance Tests S. Uren TSR 2,3 Dec. 1986 83938

Migration Planning for D-Series Systems S. Kuukka TSR 9,2 Spring 1993 89805

New GUARDIAN 90 Time-keeping Facilities E. Nellen TSR 1,2 June 1985 83935

New Process-timing Features S. Sharma TSR 1,2 June 1985 83935

Nonstop II Memory Organization and Extended Addressing D. Thomas TJ 1,1 Fall 1983 83930

Overview of the COO Release L. Marks TSR 4,1 Feb. 1988 11078

Overview of the D-Series Guardian 90 Operating System W. Bartlett TSR 9,2 Spring 1993 89805

Robustness to Crash in a Distributed Data Base: A. Borr TSR 1,2 June 1985 83935
A Nonshared-memory Multiprocessor Approach

Tandem's Approach to Fault Tolerance B. Ball, W. Bartlett, TSR 4,1 Feb. 1988 11078
S. Thompson

The GUARDIAN Message System and How to Design for It M. Chandra TSR 1,1 Feb. 1985 83934

The Tandem Global Update Protocol R. Carr TSR 1,2 June 1985 83935

HIMALAYA

A Hardware Overview of the Non Stop Himalaya K10000 Server C. Kong TSR 10,1 Jan. 1994 104396

The Non Stop Himalaya K10000 Interprocessor Bus R. Jardine, S. Hamilton, TSR 10,2 April 1994 104398
K. Krishnakumar

INTEGRITY S2

Overview of the NonStop-UX Operating System for the Integrity S2 P. Norwood TSR 7,1 April 1991 46988

MEASURE

How to Set Up a Performance Data Base with MEASURE M. King TSR 2,3 Dec. 1986 83938
and ENFORM

MEASURE: Tandem's New Performance Measurement Tool D. Dennison TSR 2,3 Dec. 1986 83938

MULTILAN

Introduction to MUL TILAN A. Coyle TSR 4,1 Feb. 1988 11078

Overview of the MUL TILAN Server A.Rowe TSR 4,1 Feb. 1988 11078

Using the MUL TILAN Application Interfaces M. Berg, A. Rowe TSR 4,1 Feb. 1988 11078

J U L Y I 9 9 -l TAt',DE:vI SYSTEMS REVIEW 93

Volume, Publication Part
Article title Author(s) Publication Issue date number

NETBATCH-PLUS

NetBatch: Managing Batch Processing on Tandem Systems D. Wakashige TSR 5,1 April 1989 18662

NetBatch-Plus: Structuring the Batch Environment G. Earle, D. Wakashige TSR 6,1 March 1990 32986

NONSTOP NET/MASTER

Nonstop NET/MASTER: Configuration and Pertormance Guidelines M. Stockton TSR 9,4 Fall 1993 89807

NonStop NET/MASTER: Event Management Architecture M. Stockton TSR 9,4 Fall 1993 89807

Nonstop NET/MASTER: Event Processing Costs and M. Stockton TSR 9,4 Fall 1993 89807
Sizing Calculations

NONSTOP ODBC SERVER

NonStop ODBC Server H. Mahbod, D. Slutz TSR 10,3 July 1994 104400

NONSTOP SQUMP

A New Hash-Based Join Algorithm for Nonstop SQUMP H. Zeller TSR 10,3 July 1994 104400

An Overview of Nonstop SOL/MP F. Ho, R. Jain, J. Troisi TSR 10,3 July 1994 104400

An Overview of Nonstop SOL Release 2 M. Pong TSR 6,2 Oct. 1990 46987

Concurrency Control Aspects of Transaction Design W. Senf TSR 6,1 March 1990 32986

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986

Gateways to Nonstop SOL D. Slutz TSR 6,2 Oct. 1990 46987

High-Periormance SOL Through Low-Level System Integration A. Borr TSR 4,2 July 1988 13693

Nonstop Availability and Database Configuration Operations J. Troisi TSR 10,3 July 1994 104400

Nonstop SOL Data Dictionary R. Holbrook, D. Tsou TSR 4,2 July 1988 13693

Nonstop SOL: The Single Database Solution J. Cassidy, T. Kocher TSR 5,2 Sept. 1989 28152

NonStop SOL Optimizer: Basic Concepts M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Query Optimization and User Influence M. Pong TSR 4,2 July 1988 13693

NonStop SOL Reliability C. Fenner TSR 4,2 July 1988 13693

Overview of Nonstop SOL H. Cohen TSR 4,2 July 1988 13693

Parallelism in Nonstop SOL Release 2 M. Moore, A. Sodhi TSR 6,2 Oct. 1990 46987

Periormance Benefits of Parallel Query Execution and Mixed S. Englert, J. Gray TSR 6,2 Oct. 1990 46987
Workload Support in NonStop SOL Release 2

Tandem's Nonstop SOL Benchmark Tandem Periormance Group TSR 4,1 Feb. 1988 11078

The Nonstop SOL Release 2 Benchmark S. Englert, J. Gray, TSR 6,2 Oct. 1990 46987
T. Kocher, P. Shah

The Outer Join in Nonstop SOL J. Vaishnav TSR 6,2 Oct. 1990 46987

NONSTOP TM/MP

Improvements in TMF T. Lemberger TSR 1,2 June 1985 83935

Enhancing Availability, Manageability, and Pertormance With M. Chandra, D. Eicher TSR 10,3 July 1994 104400
Nonstop TM/MP

TMF and the Multi-Threaded Requester T. Lemberger TJ 1,1 Fall 1983 83930

TMF Autorollback: A New Recovery Feature M. Pong TSR 1,1 Feb. 1985 83934

OSI

Building Open Systems Interconnection with OSI/AS and OSI/TS R. Smith TSR 6,1 March 1990 32986

The OSI Model: Overview, Status, and Current Issues A. Dunn TSR 5,1 April 1989 18662

PATHFINDER

PATHFINDER-An Aid for Application Development S. Benett TJ 1,1 Fall 1983 83930

PATHWAY

A New Design for the PATHWAY TCP R. Wong TJ 2,2 Spring 1984 83932

PATHWAY IDS: A Message-level Interlace to Devices and Processes M. Anderton, M. Noonan TSR 2,2 June 1986 83937

Pathway TCP Enhancements for Application Run-Time Support R. Vannucci TSR 7,1 April 1991 46988

The PATHWAY TCP: Periormance and Tuning J. Vatz TSR 1,1 Feb. 1985 83934

Understanding PATHWAY Statistics R. Wong TJ 2,2 Spring 1984 83932

94 TANDl:M SYSTEMS REVIEW JULY 199-l

Volume, Publication Part
Article title Author(s) Publication Issue date number

POET

Designing Client/Server Applications for OL TP on W. Culman TSR 8,3 Fall 1992 89803
Guardian 90 Systems

PS MAIL

Enhancements to PS MAIL R. Funk TSR 3,1 March 1987 83939

RDF

RDF: An Overview J. Guerrero TSR 7,2 Oct. 1991 65248

RDF Enhancements for High Availability and Performance M. Mosher TSR 10,3 July 1994 104400

RDF Synchronization F. Jongma, W. Senf TSR 8,2 Summer 1992 69848

RESPOND

The RESPOND OL TP Business Management System H. Bolling, W. Bronson TSR 9,1 Winter 1993 89804
for Manufacturing

RSC

Implementing Client/Server Using RSC M. lem, T. Kocher TSR 8,3 Fall 1992 89803

SAFEGUARD

Dial-In Security Considerations P. Grainger TSR 7,2 Oct. 1991 65248

Distributed Protection with SAFEGUARD T.Chou TSR 2,2 June 1986 83937

Enhancing System Security With Safeguard C. Gaydos TSR 7,1 April 1991 46988

SNAX

An Overview of SNAX/CDF M. Turner TSR 5,2 Sept. 1989 28152

A SNAX Passthrough Tutorial D. Kirk TJ 2,2 Spring 1984 83932

SNAX/APC: Tandem's New SNA Software for Distributed Processing B. Grantham TSR 3,1 March 1987 83939

SNAX/HLS: An Overview S. Saltwick TSR 1,2 June 1985 83935

SPOOLER

Sizing the Spooler Collector Data File H. Norman TSR 4,1 Feb. 1988 11078

TACL

Debugging TACL Code L. Palmer TSR 4,2 July 1988 13693

TACL, Tandem's New Extensible Command Language J. Campbell, R. Glascock TSR 2,1 Feb. 1986 83936

TAL

New TAL Features C. Lu, J. Murayama TSR 2,2 June 1986 83837

TCM

Capacity Planning With TCM W. Highleyman TSR 7,2 Oct. 1991 65248

TLAM

TLAM: A Connectivity Option for Expand K. MacKenzie TSR 7,1 April 1991 46988

TMDS

COO TMDS Performance J. Mead TSR 4,1 Feb. 1988 11078

Enhancements to TMDS L. White TSR 3,2 Aug. 1987 83940

Introducing TMDS, Tandem's New On-line Diagnostic System J. Troisi TSR 1,2 June 1985 83935

TNS/R

Debugging Accelerated Programs on TNS/R Systems D. Gressler TSR 8,1 Spring 1992 65250

Improving Performance on TNS/R Systems With the Accelerator M. Blanchet TSR 8,1 Spring 1992 65250

Overview of Tandem Nonstop Series/RISC Systems L. Faby, R. Mateosian TSR 8,1 Spring 1992 65250

JULY 199-1 TANDEM SYSTEMS REVIEW 95

Volume, Publication Part
Article title Author(s) Publication Issue date number

TRANSFER

The TRANSFER Delivery System for Distributed Applications S. Van Pelt TJ 2,2 Spring 1984 83932

TXP

The High-Performance Nonstop TXP Processor W. Bartlett, T. Houy, TJ 2,1 Winter 1984 83931
D. Meyer

The Nonstop TXP Processor: A Powerful Design for On-line P. Oleinick TJ 2,3 Summer 1984 83933
Transaction Processing

VS

The VB Disc Storage Facility: Setting a New Standard for M. Whiteman TSR 1,2 June 1985 83935
On-line Disc Storage

VIEWSYS

VIEWSYS: An On-line System-resource Monitor D. Montgomery TSR 1,2 June 1985 83935

VLX

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938

The VLX: A Design for Serviceability J. Allen, R. Boyle TSR 3,1 March 1987 83939

XLS

Data-encoding Technology Used in the XLS Storage Facility D.S. Ng TSR 2,2 June 1986 83937

Plated Media Technology Used in the XLS Storage Facility D.S.Ng TSR 2,2 June 1986 83937

96 TANDEM SYSTEMS REVIEW JULY 1994

TandemSystemsReviewOrderFarm
Use this form to order new subscriptions, change subscription information, and order back issues.

[] I am a Tandem customer. My Tandem sales representative is ____________ _

[] I am not a Tandem customer and am enclosing a check or money order for the requests indicated
on this form. (Subscriptions are $75 per year and each back issue is $20. Make checks payable to
Tandem Computers Incorporated.)

Subscription Information

[J New subscription

,-_ Update to subscription information
Subscription number: ________ _
Your suhscription number is in the upper rixht corner of the
mai/ini label.

COMPANY

N~ME

JOB TITLE

DIVISION

ADDRESS

COUNTRY

TELEPHOl\'E NLMBER (include all codes for U.S. dialing)

Title or position:

[J President/CEO

[J Director/VP information services

1: MIS/DP manager

[= Software development manager

l_J Programmer/analyst

[J System operator

1] End user

[J Other: ____________ _

Your association with Tandem:

I , Tandem customer

L: Third-party vendor

[] Consultant

1 7 Other: ______________ _

Back Issue Requests
.\'11mhn •

"r"'I"'' Tandem Systems Review
__ Vol.I, No. L Feb. 1985 __ Vol. 7, No. I, April 1991

___ Vol. I. No. 2, June 1985 __ Vol. 7, No. 2, Oct. 1991

__ Vol. 2, No. I, Feb. 1986 __ Vol. 8, No. I, Spring 1992

__ Vol. 2, No. 2, June 1986 __ Vol. 8, No. 2, Summer 1992

___ Vol. 2, No. 3, Dec. 1986 _ Vol. 8, No. 3, Fall 1992

__ Vol. 3, No. I, March 1987 __ Vol. 9, No. I, Winter 1993

__ Vol. 3. No. 2, Aug. 1987 __ Vol. 9, No. 2. Spring 1993

__ Vol. 4, No. I, Feb. 1988

__ Vol. 4. No. 2, July 1988

__ Vol. 4, No. 3, Oct. 1988

__ Vol. 5, No. I, April 1989

__ Vol. 5, No. 2, Sept. 1989

__ Vol. 6. No. I, March 1990

__ Vol. 6. No. 2, Oct. 1990

__ Vol. 9, No. 3. Summer 1993

__ Vol. 9, No. 4, Fall 1993

__ Vol. 10,No. l,Jan. 1994

__ Vol. 10, No. 2, April 1994

__ Vol. 10, No. 3. July 1994

Tandem Journal
__ Vol.I. No. I, Fall 1983 __ Vol. 2, No. 2, Spring I 984

__ Vol. 2, No. I, Winter 1984 __ Vol. 2, No. 3, Summer 1984

For questions or ordering information, call
800-473-5868 in the U.S. and Canada or
+ 1-408-285-0665 in other countries.

Send this form to:
Tandem Computers Incorporated
Tandem Systems Review, Loe 208-65
I 0400 Ridgeview Court
Cupertino, CA 95014-0723
FAX: + 1-408-285-0840

Tandem employees must order their subscrip
tions and back issues through Courier.

Menu sequence: Marketing Information _.
Literature Orders _. Technical Marketing
Pubs (TSR)

7/94

• FOLD

T FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 482

POSTAGE WILL BE PAID BY ADDRESSEE

TANDEM SYSTEMS REVIEW
LOC 208-65

CUPERTINO, CA U.S.A.

TANDEM COMPUTERS INCORPORATED
19333 VALLCO PARKWAY
CUPERTINO, CA 95014-9862

ll1l111l1l1ll111111ll1l11ll1l11l11l11ll1111l1l,ll11I

• FOLD

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

T FOLD

TandemSystemsReviewReaderSurvey
The purpose of this questionnaire is to help the Tandem Systems Review staff select topics for
publication. Postage is prepaid when mailed in the United States. Readers outside the U.S. should
send their replies to their nearest Tandem sales office.

I. How useful is each article in this issue?

Product Update
01 C Indispensable 02 rl Very

An Overview of NonStop SQUMP
05 :J Indispensable 06 D Very

03 C Somewhat

07 C Somewhat

NonStop Availability and Database Configuration Operations

04 LJ Not at all

08 L] Not at all

09 1_ Indispensable 10 D Very 11 [_I Somewhat 12 C Not at all

A New Hash-Based Join Algorithm for NonStop SQUMP
13 C Indispensable 14 D Very 15 D Somewhat 16 i----: Not at all

NonStop ODBC Server
17 C Indispensable 18 D Very 19 D Somewhat 20 :J Not at all

Enhancing Availability, Manageability, and Performance With NonStop TM/MP
21 L, Indispensable 22 D Very 23 D Somewhat 24 rl Not at all

RDF Enhancements for High Availability and Performance
25 L Indispensable 26 n Very 27 [l Somewhat 28 □ Not at all

Technical Information and Education
29 Cc Indispensable 30 D Very 31 D Somewhat 32 □ Not at all

2. I specifically would like to see more articles on (select one):

33 r-1 Overview discussions of new products and enhancements 34 D Performance and tuning information

35 [] High-level overviews on Tandem's approach to solutions 36 D Application design and customer profiles

37 [' Technical discussions of product internals 38 [_I Strategic information and statements of direction

39 [] Other _____________________________________ _

3. Your title or position:

40 [] President. VP. Director

43 u MIS manager

41 r:-, Systems analyst

44 D Software developer

42 I I System operator

45 7 End user

46 :J Other _____________________________________ _

4. Your association with Tandem:

47 D Tandem customer 48 D Tandem employee 49 CJ Third-party vendor 50 □ Consultant

51 == Other _____________________________________ _

NAME

COMPA'JY NAME

ADDRESS

7Nl

& FOLD

T FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 482

POSTAGE WILL BE PAID BY ADDRESSEE

TANDEM SYSTEMS REVIEW
LOC 208-65

CUPERTINO, CA U.S.A.

TANDEM COMPUTERS INCORPORATED
19333 VALLCO PARKWAY
CUPERTINO, CA 95014-9862

ll1l1,1l1l,ll,,,,,,ll,l,,ll,l,,l,,l,,ll,,,,l,l,ll,,I

• FOLD

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

T FOLD

~TANDEM
Tandem Computers Incorporated
I 9333 Vallco Parkway
Cupertino, CA 95014-2599

Part No. 104400

All•n ~oldin
LOC NUN 128-00
J•rtcho Ny Long Island Bran

7/94 Printed in USA

