
T A N D E M

SYSTEMS
-----·---·--~-----------~-·---·-.---

Implementing Decision Support Systems

DSS Database Design

Late Binding in NonStop SQLIMP

Technical Information and Education

Product Update

T A N D E M
- -·------------

-.--.---- - -------------

VOLUME 10, NUMBER 4

OCTOBER I 9 9 4

The Tandem Systems Review publishes technical information about Tandem software
releases and products. Its purpose is to help programmers, analysts, and other

IS professionals to plan.for, install, use, and tune Tandem systems.

~TANDEM

Editor's Note
The first two articles in this issue of the Tandem
Systems Review focus on decision support sys
tems (DSS). "Implementing Decision Support
Systems" discusses issues MIS planners and an
alysts will need to consider when they design,
create, and maintain a DSS. It explores each
stage of DSS development, from designing a
data warehouse to selecting workstation-based
software tools for querying the data, The article
draws on the experiences of users who have
implemented DSS on Tandem systems.

"Issues in DSS Database Design" describes
important differences between OL TP and DSS
databases, It focuses on three topics in DSS
database design: designing dimensional DSS
databases, defining views to simplify query gen
eration for end users, and partitioning strategies
for handling large amounts of historical data.

The third article, "Late Binding and High
Availability Compilation in NonStop SQL/MP,"
describes new features in NonStop SQL/MP that
make it easier to install and manage application
programs. By reducing the need for SQL-compi
lations and auto-compilations, the new features
improve the availability of applications and the
productivity of programmers and database admin
istrators. The user scenarios in the article suggest
how and when these features may be useful.

We regret to announce that this will be the
last issue of the Tandem Systems Review. The
magazine started in 1985 (replacing the Tandem
Journal, which started in 1983), and we hope
that you have found it useful over these many
years. Tandem continues to be committed to pro
viding technical information that addresses its
users' business concerns and to delivering that
information in a variety of forms.

-The TSR staff

EDITOR

Anne Lewis

ASSOC IA TE EDITORS

David Gordon, Steven Kahn,
Mark Peters

PRODUCTION MANAGER

Anne Lewis

ILLUSTRATION AND LAYOUT

Donna Caldwell

COVER ART: Brian Jeung, Steve Sanchez

SUBSCRIPTIONS: Elaine Vaza-Kaczynski

ADVISORY BOARD

Mark Anderton. Richard Carr, Jim Collins,
Moore Ewing, Terrye Kocher,
Randy Mattran, Mike Noonan

Tandem Systems Review is published 4uarterly
by Tandem Computers Incorporated. All corre
spondence should be addressed to Tandem
Systems Review, 10400 Ridgeview Court.
Loe 208-65, Cupertino, CA 95014.

Tandem Computers Incorporated assumes
no responsibility for errors or omissions that
may occur in this publication.

Copyright © 1994 Tandem Computers
Incorporated. All rights reserved. No part
of this document may be reproduced in any
form, including photocopy or translation to
another language, without the prior written
consent of Tandem Computers Incorporated.

CLX800, InfoWay, Integrity, NonStop,
NonStop-UX, Pathmaker, SNAX, T ACL,
T AL, Tandem, and the Tandem logo are
trademarks and service marks of Tandem
Computers Incorporated, protected through
use and/or registration in the United States
and many foreign countries.

Indigo2 and Indy are trademarks of Silicon
Graphics, Inc.

SQL Server is a trademark of Sybase, Inc.
UNIX is a registered trademark in the United

States and other countries, licensed exclusively
through X/OPEN Company Limited.

All other brand and product names are trade
marks or registered trademarks of their respec
tive companies.

DECISION SUPPORT

8 Implementing Decision Support Systems

Wayne Pearson

20 Issues in DSS Database Design

Ray Glasstone

NONSTOP SQL/MP

36 Late Binding and High Availability Compilation
in NonStop SQL/MP

Sunil Sharma

DEPARTMENTS

2 Product Update

58 Technical Information and Education

60 Index of Articles

2

NonStop-UX Based
Software

NonStop-UX Operating System,
Release 830
July /994

Tandem has announced a new release,
B30, of the NonStop-UX operating
system for Integrity FT systems. The
B30 release of the operating system
includes the following new avail
ability features and performance
improvements:

■ New online software upgrade. This
software upgrade reduces system
downtime for future system upgrades
to under two minutes (the previous
version required several hours).

■ New remote software installation.
This feature increases flexibility in
installing operating environment
options for networks of Integrity FT
systems.

■ New scheduled CPU reintegration.
This feature allows selective schedul
ing of CPU reintegration, facilitating
the reintegration of applications at
off-peak times.

■ New tunable CPU reintegration. This
feature sets an extended time frame for
CPU reintegration in order to limit the
amount of time that an application is
unavailable during CPU reintegration.

■ Faster CPU reintegration time. This
improvement speeds up CPU reinte
gration by 30 to 65 percent.

■ Improved availability monitoring
tools. These tools improve system
outage analysis by logging additional
availability events and system statistics.

■ New PIXIE application profiling
tool. This tool allows a developer to
profile an application during develop
ment in order to improve application
performance.

■ New multiprotocol support on syn
chronous controller. This feature
enables both X.25 and SNA protocols
to coexist on a single four-port syn
chronous controller.

Sybase System 10 for
Integrity NR Servers
June 1994

Sybase System IO software is now
available from Sybase for the Tandem
Integrity NR family of servers. Sybase
System IO is a modular family of inte
grated software products designed for
enterprise-wide client/server comput
ing. The System 10 software consists
of a distributed relational database
management system (RDBMS), appli
cation development tools, system
administration tools, and interoper
ability tools. The Sybase distributed
RDBMS runs on the server to support
online mission-critical applications as
well as decision support applications.

The Product Update department provides brief descriptions of new products announced by Tandem.
For more information on any o.f these products, please consult your local Tandem representative.

TANDEM SYSTEMS REVIEW OCTOBER 1994

Integrity Systems

New Integrity FT Systems
Products
Jul\' 1994

Tandem is offering a number of new
products for Integrity FT systems that
complement and take advantage of
new features in the B30 release of the
NonStop-UX operating system. The
new products include the following:

■ A 256-megabyte local memory
option for Integrity FT 1475 systems
that takes advantage of the new
384-megabyte total memory maxi
mum supported by the NonStop-UX
operating system.

■ An SCSI-2 controller that doubles
the maximum SCSI bus capacity com
pared to the older-technology SCSI
controller; the two-channel SCSI-2
controller supports twice as many
SCSI devices.

■ An Async II communications con
troller that improves performance by
as much as four times compared to the
asynchronous controller it replaces; it
also improves modem connectivity
and security as well as line utilization.

■ A fiber distributed data interface
(FDDI) communications option that
doubles the potential throughput com
pared to TCP/Ethernet in a LAN envi
ronment; the FDDI controller supports
100-megabyte/second communication
over fiber-optic networks.

■ Mass storage cabinets that are no
longer bundled with disk drives, allow
ing for maximum ordering flexibility.

■ Integrity CO System cabinet
doors with air filters to meet NEBS
regulations.

Client/Server
Computing Products

Pathway Open Environment
Toolkit, Release 2
June 1994

Pathway Open Environment Toolkit
(POET) is a middleware product that
makes it possible for programmers to
use popular Windows and OS/2 based
client tools in developing clients for
Tandem NonStop OLTP applications.
Release 2 of POET includes the fol
lowing major enhancements:

■ Custom server interface generation
and data conversion for Visua!Basic,
PowerBuilder, and SQLWindows.

■ Automatic data conversion by the
Communications Manager. A C com
piler is no longer required to use POET
data conversion.

■ Pathmaker is no longer required
when using POET. DDL dictionaries
and Pathmaker projects can be
accessed directly.

■ Support for Remote Server Call
(RSC) UMS for unsolicited message
processmg.

■ Data conversion support for servers
written in C and T AL.

Communications and
Networking Products

SX25 Software for Integrity NR
Servers and UNIX Workstations
July 1994

Based on the Spider Systems X.25
software, Tandem's SX25 software
package supports an integrated PAD,
Network Layer Interface (NU) pro
grammatic interfaces, switched virtual
circuits (SVC), and permanent virtual
circuit (PVC) operation. The software
supports the CCITT 1980, 1984, and
1988 standards as well as the X.3,
X.28, and X.29 standards. Currently,
SX25 can support as many as 255 vir
tual circuits per system. The software
also provides built-in tracing and mon
itoring tools to help users manage
their X.25 configurations.

The SX25 software product runs on
the Integrity NR servers as well as on
the Indy"M and Indigo2™ workstations
available from Tandem. The software
includes the system-specific drivers
for each of the supported servers and
workstations.

OCTOBER 1994 TANDEM SYSTEMS REVIEW 3

4

Token Ring Software for
Integrity NR SMP Servers
July 1994

The new token ring software for the
Integrity NR SMP servers provides
token ring system drivers and various
utilities. This software is required,
along with the new token ring con
troller, to run Transmission Control
Protocol (TCP) over token ring. This
software and the new token ring con
troller plus the SNA server software
and the appropriate SNA client soft
ware is required in order to run SNA
over token ring.

SNA Support for Integrity NR
Servers and UNIX Workstations
July 1994

Tandem now offers three new soft
ware products that support standard
SNA communications. These products
operate in a client/server configuration
and run on the Integrity NR servers
as well as on the Indy and Indigo2

workstations.
The new SNA Server software pro

vides the path from an NR server or a
workstation to another SNA host or
peer system. The physical path can be
either SDLC (via a synchronous con
troller) or token ring. The SMP servers
(NR4436 and NR44 I 2) support four
SDLC lines; the uniprocessor servers
and the workstations support two lines.
The SNA Server software supports
254 LU6.2 sessions and 32 3270 LU
sessions.

The new SNA 3270 software pro
vides emulation of IBM 3278 and 3279
terminals (models 2 through 5). The
software includes HLLAPI, support for
extended attributes and write struc
tured field program interface support,
IBM JND$FJLE file transfer, cursor
support for nongraphics terminals,
and IBM 3270 international keyboard
support.

The new SNA LU6.2 software sup
ports advanced program-to-program
communications (APPC) with other
LU6.2 nodes in an SNA network. The
software supports 254 parallel ses
sions per logical unit (LU), mapped
and basic conversations, multiple
modes of service, and a program
mable operator interface.

OSI Transport Software for
Integrity NR Servers and
UNIX Workstations
July 1994

The new OSI Transport software pro
vides support for third-party X.400
applications and other applications
that use the OSI transport protocol.
The OSI Transport software provides
Level 4 OSI transport protocol; TP0,
TP2, and TP4 service support; CL TP
support; and support for the UNIX
System V standard Transport Library
Interface (TU) for application usage.
The software is compatible with UK
GOSJP 3. I and USA GOSJP 2.0 and
supports connectionless-mode network
service (CLNS) and connection-mode
network service (CONS) as well as end
system to intermediate system (ES-JS)
routing.

The OSI Transport software sup
ports OSI communications on the
Integrity NR servers and Indy and
Indigo2 workstations over Ethernet,
fiber distributed data interface (FDDI),
or X.25. The server or workstation
must include the network controller
offered by Tandem appropriate for the
chosen protocol.

TANDEM SYSTEMS REVIEW OCTOBER 1994

Multiport Communication
Controllers for Integrity NR
Servers and UNIX Workstations
July 1994

Tandem now offers three new syn
chronous multiport controllers that
support X.25 and SNA/SDLC commu
nications on Integrity NR servers and
Indy and Indigo2 workstations. These
multiport controllers can support both
SNA and X.25 on the same controller,
freeing a system bus slot and reducing
the system's communications cost
when using both protocols. Each
controller port can be configured for
either an RS-232D, V .35, or X.21 elec
trical interface.

The new four-port synchronous,
VME interface controller for the
Integrity NR SMP servers provides
four ports of synchronous connectivity
at line speeds up to 64 kilobits/second
each. The NR44 I 2 server supports one
synchronous controller; the NR4436
server supports as many as four
controllers.

The new two-port synchronous,
ISA interface controller for the
Integrity NR uniprocessor servers and
the Indigo2 workstations provides two
ports of synchronous connectivity at
line speeds up to 64 kilobits/second
each. The uniprocessor servers sup
port four synchronous controllers; the
Indigo2 workstations support two syn
chronous controllers.

The new two-port synchronous,
GIO interface controller for Indy
workstations provides two ports of
synchronous connectivity at line
speeds up to 64 kilobits/second each.
The Indy workstations support one
synchronous controller.

Token Ring Controllers for
Integrity NR SMP Servers and
Indy Workstations
July 1994

Two new token ring controllers are
now available to provide IBM host
access and/or TCP/IP or SNA access
to other Integrity NR SMP servers and
Indy workstations. These new con
trollers comply with IEEE 802.2 and
802.5 standards.

The new token ring, VME inter
face controller for the Integrity NR
SMP servers operates at standard
4-megabit or 16-megabit line speeds
to support TCP/IP or SNA network
access. The SMP servers can support
one token ring controller per system.

The new token ring, GIO inter
face controller for Indy workstations
operates at standard 4-megabit or
16-megabit line speeds to support
TCP/IP or SNA network access. Indy
workstations can support one token
ring controller per system.

Ethernet Controller for Indy
Workstations
July 1994

A new Ethernet controller for the Indy
workstations is now available. Adding
this controller increases the total num
ber of Ethernet ports from one to two
on the Indy workstations. This new
AIU Ethernet controller supports
TCP/IP and OSI networks in the same
manner as the built-in Ethernet port.
The Ethernet drivers and utilities are
resident on the Indy workstations.

OCTOBER 1994 TANDEM SYSTEMS REVIEW 5

6

Storage Products

Modular Storage System
August 1994

Tandem's Modular Storage System is
an innovative packaging scheme that
lets users mix disk and tape devices
for NonStop servers in the space nor
mally occupied by a single-purpose
cabinet. In the Modular Storage
System, disk and tape drives stack
vertically, thus reducing the number
of required cabinets, the floor space
requirements, and the overall system
size. For example, a fully configured
stack using the 4560 disk subsystem
provides 160 gigabytes of formatted
storage capacity in a footprint of less
than 67 by 89 centimeters (26.2 by
35 inches).

Users can begin a Modular Storage
System with one module, then add
more as their needs increase. Each
stack can hold a mix of disk and tape
modules, and the system does not
have to be placed in a special com
puter room.

5411 and 5420 Optical Storage
Subsystems
August 1994

Tandem's 5411 and 5420 optical stor
age subsystems provide online access
to large archives of data. These devices
use write once, read many (WORM)
optical technology to provide online
access to archived data with response
times ranging from 0.5 to 8.5 seconds.
The 5411 and 5420 provide cost-effec
tive alternatives to conventional media
for archiving application data and for
storing and retrieving large objects
such as images.

The 5411 subsystem is a fully auto
mated device for medium-sized appli
cations. This low-cost, entry-level
subsystem includes an automatic disk
changer, one optical disk drive, and a
control unit. A fully configured 5411
contains 12 disk cartridges, providing
nearly 79 gigabytes of online storage.

The 5420 subsystem is designed
for very large storage requirements.
It includes an automatic disk changer,
one to four optical disk drives, and
a control unit. When fully config
ured, the 5420 handles as many as
77 disk cartridges, providing more
than 504 gigabytes of online storage.
With the 5420, users can customize
their applications by choosing the
most cost-effective combination of
performance (one to four optical disk
drives) and storage capacity (308 to
504 gigabytes).

4560 Disk Subsystem
August 1994

The Tandem 4560 disk subsystem pro
vides high-capacity, cost-effective
storage for high-performance online
transaction processing (OL TP) and
large-database applications. The 4560
uses high-capacity, low-cost-per
megabyte disk drives that each store
up to 2 gigabytes of formatted data.

As part of Tandem's Modular
Storage System, 4560 modules pro
vide high storage density and can be
stacked with various tape devices to
keep pace with growing storage needs
while saving floor space. The 4560 is
designed to operate in a normal office
environment and can be serviced
online.

TANDEM SYSTEMS REVIEW OCTOBER 1994

Using advanced fiber-optic
cabling. the Tandem 3129 disk con
troller connects 4560 disk subsystems
to the NonStop servers. The 3129 sup
ports cable lengths of up to 2.000
meters (6,560 feet), which allows
users to locate disk subsystems in a
different room or on a different floor
from the NonStop server.

Multifunction Controller
for 5190 Cartridge Tape
Subsystems
June 1994

Multifunction Controller (MFC) sup
port is now available for the 5190
family of cartridge tape subsystems.
With the 5190 attached to the MFC,
the entire range of tape utilities, in
cluding "'TAPEBOOT," is fully sup
ported on NonStop systems such as
the CLXS00. KI00. and Kl 000. MFC
support provides the following user
benefits:

■ An additional tape drive is no longer
needed to support utility functions.

■ The cost of a dedicated tape con
troller can be saved on small systems
where the sustained throughput of
the MFC is adequate to perform
all tape and backup functions.

■ The overall cost of a Tandem
NonStop system can be reduced,
since users can now match tape
subsystems to performance re
quirements as needed.

Workstation and
Terminal Products

Outside View with Tandem
Terminal Emulation v3.2
June 1994

Outside View with Tandem Terminal
Emulation (TTE) v3.2 is a new, more
powerful version of TTE for Windows.
The new release contains many new
features including the following:

■ Added Communications. TCP/IP:
FTP software; TCP/IP: Novell LAN
Workplace; TCP/IP: Windows
Sockets; interrupt 14h.

■ New User Functionality. Program
mable toolbar; active status line; pref
erence dialog; extensive online help.

■ New Macro Language. Visua!Basic
language compatible; built-in compiler
and editor; over 160 BASIC com
mands.

■ Additional New Features. IBM
TN3270 emulation; expanded docu
mentation; Windows installation
program.

OCTOBER 1994 TANDEM SYSTEMS REVIEW 7

8

D E C s 0 N S U P P O R T

Implementing Decision Support Systems

n a decision support system (DSS),
users retrieve information from
a large database, called a data
warehouse, that stores historical
as well as recent corporate data
gathered from multiple sources.
DSS applications allow users to

query the data warehouse and perform various
types of information analysis. For example,
corporate managers can identify trends in geo
graphic data, demographics, product sales, or
any other information that facilitates decision
making.

Rapidly decreasing technology costs make it
feasible to build a stand-alone DSS environment
that contains a data warehouse separate from
existing operational databases. By using sepa
rate technology for DSS, one can ensure that the
DSS environment does not affect the performance
of day-to-day operational systems. However,
given the large amount of data to be queried and
the variety of queries to be executed, a decision
support solution can succeed only with proper
planning and design.

Since the data warehouse stores historical
data for long periods of time, the appropriate
architecture must be in place before one loads
data into the warehouse. Once loaded, the data
is difficult, if not impossible, to redesign with
out reloading the entire data warehouse.

The applications that access the data
warehouse vary both in purpose and architec
ture. DSS applications can be host-based or
workstation-based. The trend is to use the work
station (client/server) approach, because with it
one can quickly apply new hardware and soft
ware solutions for accessing the data warehouse.

This article discusses some of the issues one
needs to address when implementing a decision
support system. It explores the following top
ics: designing the data warehouse, loading data
from various sources, keeping the data ware
house up-to-date, performing capacity planning,
using client/server technology and workstation
based software tools, and, finally, developing
appropriate DSS applications with those tools.

The article is based in part on the experi
ences of users who recently implemented a
decision support system on a Tandem™ database
server. The case study cited in the article shows
how, with careful planning and design, users
successfully built a Tandem DSS environment.

TANDEM SYSTEMS REVIEW• OCTOBER 1994

Decision Support Environment
A decision support environment usually consists
of one or more legacy systems such as batch or
online production systems, a data warehouse
system, and many client systems that access
both the legacy systems and the data warehouse.
The decision support environment discussed
in this article contains all three components:
a legacy system, a data warehouse, and client
systems.

Before installing DSS components, one must
be sure one can integrate the new components
into the existing operational environment. One
must consider issues such as the network infra
structure, connectivity to the legacy system, and
support for client workstations and software. In
the case-study system, the users met the require
ment to seamlessly integrate DSS components
into the existing environment by using several
Tandem products. For example, TCP/IP software
provided access to the legacy system, and the
NonStop™ ODBC Server allowed client systems
to access the data warehouse. Mahbod and Slutz
(1994) describe the NonStop ODBC Server in
the July 1994 issue of the Tandem Systems
Review.

The users in the case study selected a Tandem
database server to support the data warehouse
because of Tandem's NonStop SQL/MP relational
database management system, which allows
parallel execution of queries and online man
agement of the database. By using the parallel
capabilities of NonStop SQL/MP, the users could
populate the data warehouse in a relatively short
time. (It took only five days to load a 140-giga
byte database that had 80 partitions.) Several
articles in the July 1994 issue of the Tandem
Systems Review describe the new features in
NonStop SQL/MP (Ho et al., 1994; Troisi, 1994;
and Zeller, 1994).

Decision support encompasses the way data
warehouse information is used and the appli
cations that access that information. The data
warehouse maintains, in fixed formats, excerpts
(snapshots) of integrated data (summarized and
aggregated data from one or more legacy sys
tems) that at one time was operational. It can
support various types of information-access
processing required by decision support, execu
tive information, reporting, and other systems.
The data warehouse is updated periodically
from operational and other types of databases
and is designed to separate the operational envi
ronment from the historical environment. The
basic characteristics of the data warehouse are
as follows:

■ It contains a large amount (often hundreds
of gigabytes) of physical data.

■ The data is historical, possibly reflecting
years of information.

■ The data architecture is integrated to reflect
the business needs of the organization.

■ It is a nonvolatile environment.

■ Queries applied against the data may be
scheduled or ad hoc.

■ A facility exists to perform large data trans
fers between the legacy system and the data
warehouse.

■ Tools provide useful information to the end
users.

OCTOBER 1994 • TANDEM SYSTEMS REVIEW 9

Figure 1.

A t_;1Jical decision support
en,,iron,nent.

Figure 1

Operational environment Data warehouse environment DSS applications

Tandem system
Executive

Legacy -
Database connectivity r-+- information -

system system
software

I
Nonstop

Operational ODBC Server

data

DAL
Server

. .
Legacy -

.
system

I
Data warehouse

Operational access software

data
TCP/IP NonStop

SQUMP

Legacy -
I

system
Data

I warehouse

Operational
data

To build the proper data structures into
the data warehouse, one must understand that
it will be the querying environment for end-user
decision support applications. These applictions
create ad hoc queries that fluctuate greatly in
duration and complexity. Moreover, because the
data warehouse is so large, it can take weeks to
load the database for a data warehouse. Figure 1
illustrates a decision support environment simi
lar to the one discussed in this article.

TANDEM SYSTEMS REVIEW

I

Executive
workstations

Reporting toots

Workstations

Graphics tools

Workstations

Designing the Data Warehouse
Before designing the data warehouse, one must
create a corporate data model. (The structure of
the data warehouse will be a subset of the cor
porate data model.) Data modeling consists of
gathering requirements for the data that users
will access, designing a logical model based on
the requirements, and then imposing a physical
structure (including data keys, data fields, and
data attributes) on the logical model. Glass tone
(I 994) discusses design features of the decision
support database elsewhere in this issue of the
Tandem Systems Review.

In the case study, the users created a data
model from the ground up. This allowed them
to design the model to reflect the needs of the
DSS users, not those of the legacy system users.

OCTOBER 1994

After creating the corporate data model, one
must design the process of loading data into the
data warehouse. Thus, before the data is actually
loaded, one must include the following activities
in the plan to populate the data warehouse:

■ Determine which operational data is needed
for the decision-making process.

■ Add a time element to the key structure of the
data warehouse (if one is not already present).

■ Create appropriate processes to aggregate
data.

■ Transform data relationships into data arti
facts (data objects with a known meaning).

■ Accommodate the different levels of granu
larity (for example, the need to summarize data
at multiple levels) found in the data warehouse.

■ Identify like data from different operational
tables to avoid redundancy.

This article does not discuss the details of
each of the preceding activities. As these activi
ties indicate, however, it takes careful planning
to build and populate a data warehouse. The
users in the case study took about four months
to design their 140-gigabyte data warehouse and
create a plan to load it.

Loading the Data Warehouse
Once the environment, the data structures,
and the connectivity to the data warehouse
have been designed and planned for, users
must develop a plan to load the data ware
house. Three types of data loading must be
addressed (Inmon, 1992 and 1993b):

■ Loading data already archived from the
legacy system. This process is called the initial
load.

■ Loading current operational data generated
by existing applications.

■ Trapping ongoing changes in the operational
environment (those that have occurred since
the last time data was loaded into the data
warehouse).

The initial load moves archived data from
bulk storage into the data warehouse. The sec
ond type of loading accounts for changes that
occur in the legacy (operational) system during
the time lag between the latest archiving of data
from the operational system and the end of the
initial load. A process must load these changes
into the data warehouse, synchronizing the data
warehouse with the operational database. The
third type of loading, trapping data, is performed
periodically (daily or weekly, for example)
throughout the life of the system to keep the
data up to date. There are many ways to trap
data. For example, a process can capture after
images of transactions, or one can run batch
jobs that scan the operational database for
changes based on some criterion, usually a
date range.

The users in the case study planned to load
the data warehouse with archival and opera
tional data from bulk storage and then perform
an update with recent operational data. To facil
itate this strategy, they created two plans. The
first addressed the loading of the archival and
operational data; the second addressed trapping
ongoing changes. To minimize the loading time
and periodic synchronization of data, the users
decided to make use of the ability of Tandem
systems to perform parallel loads. By using
multiple tape drives as input devices and allow
ing many NonStop SQL processes to run in par
allel on separate processors, they could load the
data warehouse in a few days. If the load had
been performed sequentially, it would have
taken eight times longer (40 days instead of 5).

OCTOBER 1994 • TANDEM SYSTEMS REVIEW 11

Figure 2

Legacy systems Data transformation

Figure 2.

Compone11ts of' data
transfimnation that must
take place befc1re data is
loaded i11to the data
H"arehouse.

12

Summarize

Filter

Convert

Insert default
values

Consolidate from
many sources

Ensure easy
access

Restructure

Reformat tor
uniformity

Decision support

Data
warehouse

The archival and operational data from the
legacy system was sorted by date and loaded
onto input tapes. The users did not perform
data transformation on the legacy system; they
intended to minimize the overhead associated
with gathering the data. Instead, data transfor
mation was performed on the Tandem database
server. The users employed the Tandem Data
build product to convert the data from the
legacy-system format into a Tandem (ASCII)

TANDEM SYSTEMS REVIEW

format. The transformation program addressed
issues such as binary data representation and
date representation. Once a record was trans
formed and all edits passed, the record was
added to the user's data warehouse.

Figure 2 illustrates components of data trans
formation that must be accomplished before the
data can be loaded into the data warehouse.

Loading Archival Data
Loading existing archival data into the empty
data warehouse was the largest and most time
consuming of the three data loading operations
undertaken by the users in the case study. How
ever, this was also the simplest load to plan and
implement. The users established a recovery
point where partitions of the database could be
reinitialized, if necessary; the load could resume
from the recovery point. Recovery during a load
is not so easily accomplished after the data
warehouse goes online.

Archival data is usually stored in some form
of sequential bulk-storage device (such as a
StorageTek Silo or another type of tape library).
The data is read from bulk storage and trans
formed into the format needed by the data ware
house. The same data transformation occurs for
all three types of loads (Inmon, 1993a).

A load from archival data is performed only
once. The users in the case study were not too
concerned about the resources consumed be
cause the Tandem database server performed
both the loading and the data transformation;
the operational systems were not affected. The
users loaded the data warehouse using as much
processor utilization as possible for as long as
it took to complete the load.

Loading Data Contained in Existing Systems
Unlike the archival data, which is loaded when
the data warehouse is empty, the data contained
in existing operational systems must be loaded
into a growing data warehouse. The execution
of this process must be carefully timed because
the data in the warehouse begins to age as soon
as it is placed there. In addition, one must con
sider that loading the data entails moving it to
a different type of system. (The data warehouse
technology is rarely the same as the operational
one.)

OCTOBER 1994

Instead of directly reading the existing sys
tem's database, one can download it to a sequen
tial medium such as tape and then transform and
load the data into the data warehouse using the
flat files. This approach has many desirable
aspects. First, often one can download the data
to a sequential medium by executing a utility
that operates efficiently. Once the data is down
loaded, another processor can perform the trans
formation. Thus, the download places a minimal
burden on the online operational system.

Second, by moving the data from the legacy
system to a sequential medium and then trans
forming the sequential data in the data ware
house, one minimizes the complexity of
manipulating the data in the existing opera
tional environment. It is easier to convert the
data after it resides in the data warehouse be
cause the data warehouse can be designed to
accommodate the processing demands of data
transformation. As a result, resource (processor
and disk) consumption in the legacy system may
also be minimized.

The users in the case study followed this
approach. They downloaded the data contained
in their existing systems to an intermediate
sequential file. The Tandem database server
read the sequential file, transformed the exist
ing operational data into the appropriate format,
and loaded the data warehouse. The Tandem
server could accomplish this operation efficiently
because it could perform parallel queries and par
allel data loading, as shown in Figure 3.

Trapping Changes in Existing Systems
Since the Last Load
When the initial load is complete, many months
(or years) of data will be available to end users.
To keep the data in the data warehouse current,
the implementation plan must include processes
that move new and changed data from the oper
ational environment to the DSS environment.

OCTOBER 1994

Figure 3

Nonstop
SQUMP

The ongoing maintenance of the data ware
house has two objectives. First, the data ware
house must reflect the current state of the busi
ness; the data must remain up-to-date. Second,
when data becomes too old to be useful it
should be rolled over (removed) from the data
warehouse.

The third load operation loads changes made
in the operational environment since the last
time the data warehouse was refreshed. In the
case study system, the data is refreshed weekly.
The data from the new week rolls over data
from the oldest week. The rollover period will
vary for each decision support system. Most
installations store data for one to five years. For
some businesses, ten years is not impractical.

TANDEM SYSTEMS REVIEW

Nonstop
SQUMP

Figure 3.

Tandem servers can hreak
up individual queries and
execute them in parallel
across many processors
and disk volumes.

13

Figure 4

(a) Batch environment

100

90

l
80

C 70
0
''iii 60
.!::!

~ 50
E

* 40
>-

(/) 30

20

10

0

(b) Ad hoc environment

100

90

80

~ 70
C
0 60
~
~ 50
~
E 40
Q)

1n
30 >-

(/)

20

10

0

Figure 4.

(a) In an operational
(hatch) e11viro11111e111.
s,·stem utilia11io11 isf11irly
stead,·. (b) In a decision
support (cul hoc) e111·iro11-
111ent, system utili::.mion
fl uctuotcs greatly.

14

Time of day

Time of day

In the case-study system, data from the opera
tional environment refreshes the data warehouse
each weekend. During the week, the operational
environment sustains updates; end users insert,
delete, and change individual records. On
Friday, it is time to refresh the data warehouse
again. Only the changes made during the week
need to be entered into the data warehouse. The
challenge is how to identify the changed records.

TANDEM SYSTEMS REVIEW

The operational data usually cannot be recre
ated, scanned, and rescanned before it refreshes
the data warehouse. The resources and time
required to do this are beyond the means and
desires of most companies. In a good interface
design between the operational system and the
data warehouse, each unit of data is scanned
and transformed only once in its life.

Companies can use many techniques to iden
tify and segregate periodic changes in a file.
(Most companies have more than one approach
to this task.) The techniques include the follow
ing (Inmon, 1993a):

■ Replacing an entire table.

■ Using dates embedded in the operational file
to select only the appropriate records.

■ Using a delta or audit file created by the
operational application.

■ Altering application code to create a delta or
audit file.

■ Trapping changes at the database management
system (DBMS) level.

■ Comparing before-and-after images of the file.

The users in the case study use dates to iden
tify records that have been added or changed
since the last refreshment cycle. The changes
are written to a large sequential file. The users
then download the file from the legacy system
to the Tandem database server through a high
speed connection. A program in the Tandem
server transforms the data and loads the new or
changed records, refreshing the data warehouse.

Maintaining the Data Warehouse
Given the volume of data and the types of
queries that execute on that data, a DSS applica
tion can consume large amounts of resources.
Organizations can prepare for their hardware
resource utilization and anticipate response
times by developing maintenance schedules
and doing capacity planning before they build
the data warehouse.

OCTOBER 1994

However, capacity planning for the data
warehouse is challenging. First, unlike opera
tional systems, which have fairly regular work
loads and utilization patterns, DSS application
workloads can fluctuate greatly. Figure 4 com
pares the system utilization in a DSS environ
ment with that of a batch environment on a
given day.

Second, the data warehouse usually contains
much more data than does the operational en
vironment. The size of the data warehouse
is directly related to its design (which, on a
Tandem system, includes issues such as parti
tioning and index location) and the length of
time the data is stored in the warehouse. Longer
duration and finer granularity of data result in
more data in the warehouse and require more
disk space to support. The volume of data affects
not only disk storage, but also the resources
(such as CPU and memory) required to query
the data. Thus, in a data warehouse, the perfor
mance and capacity of a system are closely
linked to its design.

The users in the case study plan to enlarge
their DSS environment in a modular fashion,
adding disk and processing capacity as end-user
activity increases. The scalable Tandem database
server's ability to perform near-linear speedup
and scaleup satisfies these requirements.

Third, the dynamics of the operational envi
ronment, and thus the planning model for that
environment, cannot be applied to the data
warehouse. One must understand the differences
between an OLTP (operational) environment in
which response time is critical and the DSS envi
ronment in which response time may not be crit
ical. Further, in the DSS environment, system
resources may be lightly utilized one moment
and totally consumed the next. Tandem's mixed
workload environment addresses the dynamics
of the data warehouse environment by dynami
cally adjusting the priorities of long-running
queries so that queries of shorter duration can

execute quickly. This feature helps to balance
resource utilization, making the DSS environ
ment more predictable in spite of the unpre
dictable requests users make of the DSS
resources.

The operational environment uses hardware
in a static fashion. There are peaks and valleys,
but they change only as the business changes;
they are predictable and fairly constant. In con
trast, the users of the data warehouse use re
sources constantly or not at all, and at different
times. Thus, the pattern of hardware utilization
is unpredictable, making it more difficult to
address capacity planning for a data warehouse.
The different utilization patterns of the two
environments apply to all components of the
system, from disk and processor utilization to
the amount of memory available.

The following paragraphs describe a few
more characteristics of the data warehouse
environment as they apply to capacity planning
(Inmon, 1993a). Since the data warehouse is
usually built on database server technology,
capacity planning tends to center around issues
such as disk and processing resources.

Processor capacity is a function of the work
load passing through the environment. The
workload consists of background processing
(such as loads, database reorganizations, and
deletes), predictable DSS processing, and
unpredictable DSS processing. The capacity
planner pieces together the profiles of these
transaction and query types to produce the
anticipated model of the resources needed.

OCTOBER 1994 • TANDEM SYSTEMS REVIEW 15

Figure 5

Figure 5.

Sybase

NMStop
SOWi"

An example o{a data
warehouse being accessed
b_v various applications.

16

FOCUS

NenSlli!P
$~?

DAL ODBC

Ncil'!Sliilp
SOWF

In practice, capacity planning requires on
going attention. After the current planning
effort is completed, another planning effort is
undertaken to refine and enhance the previ
ously implemented changes. This cycle contin
ues for the life of the system.

TANDEM SYSTEMS REVIEW

Client/Server Environment
In a client/server environment, workstations
and servers are interconnected in a network.
Both client and server software can reside on
workstations or on other systems. Typically,
client applications reside on workstations, use
graphical user interfaces (GUis), and query
servers to retrieve data. A server manages data
for the network of clients that access it. Because
of the large databases typically used in a deci
sion support system, employing a client/server
solution can accelerate application development
and simplify the management of the database
server.

In the case-study system, the users employed
a client/server architecture to isolate database
activity (queries) from application activity. The
data warehouse resides on multiple platforms;
the Tandem database server is the central server.
The client/server environment houses a wide
variety of applications that access the data ware
house. Figure 5 shows an example of a data
warehouse being accessed by various client
applications.

By combining the data warehouse architec
ture and the client/server environment, one can
access large databases and develop applications
in a shorter time than was ever thought possi
ble. The rapid advances made recently in
client/server application development actually
make it feasible to employ a dedicated decision
support system. As with any information sys
tem, one must carefully consider the design of
the overall decision support system (both clients
and servers).

OCTOBER 1994

Decision Support Tools
The word tools has a many-faceted meaning
in a DSS environment. Some tools, such as
those supplied by Prism Technologies, Inc.,
manage the data warehouse and the transfor
mation of data into the warehouse. Other tools
facilitate access to the data. These tools can be
either host-based or workstation-based (in a
client/server architecture). One can use host
based tools such as FOCUS when ease of imple
mentation is a requirement. One should use a
client tool if one intends to distribute the pro
cessing, and potentially the data, to a worksta
tion environment. Many effective client tools
can access a Tandem database server using
Tandem open connectivity products such as the
NonStop ODBC Server, the Dynamic Data
Exchange (ODE) Gateway, or the Data Access
Language (DAL) Server. (One can easily imple
ment a client/server-based DSS environment by
using client tools.)

Selecting user tools can be complicated
when one expects many end-user communities
to have access to the data warehouse. The users
in the case study found that no single tool could
satisfy the diverse needs of the many end-user
groups in their organization. After gathering
information from the various groups, the DSS
designers derived a common set of similar re
quirements. They could then select three or four
tools that would likely satisfy all of the impor
tant user requirements.

To bring the data to the end users, the DSS
designers had to gather end-user requirements,
select the suite of tools that would satisfy those
requirements, and create pilot applications with
the selected tools.

Gathering Requirements
The first step in gathering requirements is to
document them. The DSS designers in the case
study used a standard form to document require
ments, which simplified the process. They held
many meetings with end-user groups. The dis
cussions revealed that the end users knew what
they needed from the data warehouse but not
what they wanted in an application. (The initial
list included more than 50 tools.) After compil
ing application-specific and data warehouse re
quirements into an overall document, the DSS
designers published the results, which were
reviewed by the end-user communities.

Based on the requirements, the DSS design
ers created an evaluation matrix and graded all
the tools on the list. Many tools were dropped
from the list because of low scores, which indi
cated missing features or lack of support for
the intended environment. The remaining tools
underwent a thorough hands-on evaluation; they
were also used to generate prototypes of the DSS
application.

Prototyping
The prototyping of a test application for each
tool lasted about a month. The prototypes were
then evaluated and shown to the end-user com
munity. The end users had a lab where they
tested the tools and provided feedback.

OCTOBER 1994 • TANDEM SYSTEMS REVIEW 17

18

The DSS designers used the end-user feed
back to evaluate and rate the tools and, finally,
to decide on a final suite of tools. The next task
was to distribute and support the tools. Fortu
nately, the DSS designers had begun preparing
a plan for supporting the end users before the
tools had been selected.

Support for Client/Server Applications
Many tools can access a Tandem database
server as soon as they are installed, using, for
example, the NonStop ODBC Server. The posi
tive impact of simply installing a suite of tools
cannot be underestimated. In the case study,
end users could access the data warehouse as
soon as the system was made available to them.

However, the quick access and ease of use of
these tools, which give end users the power to
work with the data warehouse almost immedi
ately, can affect the performance of DSS appli
cations. The client/server architecture leads to
unpredictable performance because it is hard to
control the load on the server at any given time.
When testing a client/server application, one
needs to consider issues such as the GUI behav
ior, the speed of execution and data access, the
application-specific logic, and the accuracy of
the returned data.

Testing client/server applications is difficult
because they are event-driven, run across a
LAN, may access one or many database servers,
use common objects that may change frequently,
and are completely under end-user control. Inter
process and interapplication communications,
especially between multiple vendors' products,
make the performance of the applications even
more unpredictable.

Ultimately, client/server testing requires that
one find out if the server returns the results
expected by the client. Tandem provides many
debugging tools with its client/server products.
For example, the NonStop ODBC Server comes
with the ODBC Administrator, Tandem Debug,
ODBC Test, and ODBC Tool to support ODBC
development. The Tandem ODE Gateway allows
the tester to trap unsupported messages and pro
vides a Browser and a Bridge utility to support
client/server development.

By providing debugging and development
support tools, Tandem allows DSS designers to
focus on the specifics of their applications; they
can concentrate on evaluating how well the
selected tools match up against the requirements
provided by the end users.

It is important to start the tools selection and
analysis process early. Extensive evaluation and
testing of a tool, regardless of the environment
in which it is running, is imperative because of
the impact it can have both on the end-user com
munity and the data warehouse environment. To
develop a productive suite of tools, one must
understand end-user requirements and scrutinize
the tools before they are implemented.

TANDEM SYSTEMS REVIEW• OCTOBER 1994

Conclusion
Decision support systems are becoming an
integral part of many companies' strategies
for using historical data as a competitive tool.
Creating a dedicated environment for decision
support makes it easier to address the imple
mentation and support issues discussed in this
article. Tandem's massively parallel and open
connectivity products make it feasible to build
a dedicated data warehouse environment. How
ever, one must still carefully plan the imple
mentation of a decision support system.

One must design a plan for loading, replac
ing, and maintaining the data in the data ware
house. It is equally important to select user
tools that will access the data warehouse. Al
though tools selection appears to be the sim
plest of these tasks, it can require as many
people and take as long as designing and
loading the data warehouse.

Client/server tools are constantly changing
and adding new features. To continue to use the
data warehouse effectively, one should evaluate
these tools frequently. By having appropriate
requirements in place, one can greatly simplify
the selection of new client tools.

OCTOBER 1994

References
Glasstone, R. 1994. Issues in DSS Database Design. Tandem
Systems Review. Vol. 10, No. 4. Tandem Computers
Incorporated. Part no. I 04402.

Ho, F., Jain, R., and Troisi, J. 1994. An Overview of NonStop
SQL/MP. Tandem Systems Review. Vol. 10, No. 3. Tandem
Computers Incorporated. Part no. 104400.

Inmon, W. 1992. Snapshots in the Data Warehouse. Tech Topic.
Vol. I, No. 4. Prism Solutions, Inc.

Inmon, W. 1993a. Capacity Planning for the Data Warehouse.
Tech Topic. Vol. I, No. 10. Prism Solutions, Inc.

Inmon, W. 1993b. Loading Data into the Warehouse. Tech Topic.
Vol. I, No. 11. Prism Solutions, Inc.

Mahbod, H. and Slutz, D. 1994. NonStop ODBC Server. Tandem
Systems Review. Vol. 10, No. 3. Tandem Computers Incorporated.
Part no. I 04400.

Troisi, J. 1994. NonStop Availability and Database Configuration
Operations. Tandem Systems Review. Vol. 10, No. 3. Tandem
Computers Incorporated. Part no. I 04400.

Zeller, H. 1994. A New Hash-Based Join Algorithm in NonStop
SQL/MP. Tandem Systems Review. Vol. 10, No. 3. Tandem
Computers Incorporated. Part no. 104400.

Wayne Pearson is a Professional Services project manager who
has supported DSS implementation and other major projects for
Tandem users. He joined Tandem in 1990.

TANDEM SYSTEMS REVIEW 19

20

DECISION SUPPORT

Issues in DSS Database Design

any, if not most, data
center managers would
prefer to have their deci
sion support systems
(DSS) use the same
database and run on the
same hardware plat

forms as their online transaction processing
(OL TP) workloads. In support of this, recent
years have seen dramatic improvements in per
formance when OL TP workloads run concur
rently with batch and DSS workloads. However,
for high-volume DSS workloads, most experts
still find that a separate database specifically
designed for DSS offers better performance and
is easier to use than a combined OL TP/DSS
database.

This article describes important differences
between OL TP and DSS databases and focuses
on three topics in DSS database design: design
ing dimensional DSS databases, creating views
to simplify query generation for end users, and

TANDEM SYSTEMS REVIEW

partitioning tables to reduce contention and
optimize parallel processing. Dimensional data
bases provide high performance on DSS queries,
are simple in design, and are easy for nontech
nical end users to understand and use.

Differences Between OLTP and DSS
OL TP databases manage information used for
the day-to-day running of a business. In con
trast, DSS databases include data from com
pleted transactions and are typically used to
analyze trends and patterns that may affect the
business over an extended period of time. These
functional differences are reflected in a number
of further differences, each of which has impli
cations for database design.

DSS is Information Oriented; OLTP is
Transaction Oriented
In OLTP, user transactions constantly change
the contents of the database. Most of these trans
actions only involve reading, updating, inserting,
or deleting a small number of rows. As a result,
it is important to optimize an OL TP database for
frequent updates and rapid retrieval of random
rows. This is primarily achieved by following
the rules of database normalization and usually
produces a database with a large number of
interrelated tables and many alternate keys.

OCTOBER 1994

DSS is very different. DSS end users rarely
update the database and they frequently gener
ate queries that require a large number of rows
to be processed. A DSS analyst is typically inter
ested in group data summarizing a large number
of instances, rather than information about indi
vidual cases. For example, a DSS analyst might
be interested in

■ Weekly sales of a given product.
■ Comparative sales of similar products from
different manufacturers.

■ All customers in a given geographical area.

■ All customers with a specific spending profile.

■ The effectiveness of an advertising campaign.

To provide acceptable response times, a DSS
database needs to be optimized for reading large
amounts of data. This requirement can best be
met by designing databases with a few very
large tables for storing data from business oper
ations and by supporting each data table with
several smaller dimension tables. The dimen
sion tables are used to provide descriptions
and map data for the larger tables, as described
later, in the section "Designing DSS Databases
Through Dimensional Database Modeling."

Because of the need for grouped data in DSS,
it is often desirable for a DSS database to contain
both detail tables, consisting of data on individ
ual transactions, and separate summary tables
containing grouped data derived from the detail
tables. Summary tables are primarily for the
benefit of specific user groups and individuals
who regularly generate queries for the same
types of summarized data.

If a database has detail and summary tables
for the same data, there will be considerable
redundancy between tables. This is usually not
acceptable in OLTP, because it makes updates
and maintaining database integrity more com
plicated. In a DSS database, where existing data
is rarely modified, redundancy is not as great
a problem, and the performance benefits of a
summary table are likely to outweigh its dis
advantages. For example, if analysts regularly

OCTOBER 1994

look at weekly sales data, defining a summary
table for weekly sales may eliminate the need
to scan a tremendous number of rows contain
ing data for daily sales.

Users Generate DSS Queries; Programmers
Code OLTP Transactions
The structure of an OLTP database is often highly
complex, but the complexity is dealt with by the
programmers of an application and is invisible to
the end user. Once implemented, the transaction
types defined in an OL TP application are used
repeatedly and seldom changed. When new
transactions are added or existing transactions
modified, the changes are implemented by pro
grammers with technical knowledge of the data
base and the application.

In DSS, queries are generated by the end user,
not hard coded in an application. The end user
may enter complete queries online or generate
them through the use of a query generation tool.
DSS queries are often ad hoc and may be very
complex. The precise form of a query is likely
to change from case to case, and some queries
are rarely, if ever, repeated. 1

Although DSS queries may be very complex,
the users who formulate them rarely have the
opportunity that OL TP application programmers
do to optimize performance or test the accuracy
of results. This makes it highly desirable to
keep the design of a DSS database as simple
as possible.

lThis is not to say that there arc not :-.ignificant patterns of u:-.agc. OYeralL
users will want to access tables and have data grouped or summarized in
some v.ays more than others. Advance knowledge of such patterns
typically plays an important part in the process of database design.

TANDEM SYSTEMS REVIEW 21

Figure 1.

Comparison (~(columns in
a DSS order-history table
with columns in an OLTP
order table.

22

Figure 1

DSS order-history table OL TP order table

DSS Databases Contain Historical Data
An OLTP database only needs to store the infor
mation necessary for completing current trans
actions. Much of this information, such as the
price of a product or a customer's address, is
subject to change.

DSS databases have a temporal dimension and
may include transactions that were completed
months or even years ago. Historical data, such
as the price of a product on October 5, 1993, is
generally not subject to change. One conse
quence of this is that a DSS history table often
has columns that would not be found in the cor
responding OL TP table. For example, Figure 1
shows columns in a DSS order-history table
compared with columns in an OL TP order table.

In Figure 1, the DSS order-history table con
tains columns for List_Price, Customer_Region,
Supplier, and Supplier_Location that are not
included in the OL TP order table. In an OL TP
database, each of these columns would be in a
reference table, from which it could be accessed
to provide a current value for use in transactions.
The columns would be redundant in the OL TP
order table and, because they are subject to up
dates, could eventually lead to inconsistencies
between the order table and one of the reference
tables. The columns can safely be included in
the DSS order-history table, because they con
tain historical values associated with a specific
time period and are not subject to change.

A second consequence of storing historical
data is that copying operational data, such as the
bin a part is stored in or special delivery instruc
tions for a particular order, from an OL TP data
base to a DSS database would be a waste of disk
space. In Figure I, for example, Carrier_ID and
Order_Status are operational information that is
not likely to be of interest to a DSS analyst.

DSS Databases are Batch Updated
In OL TP, a large number of transactions may be
executed in the course of a single day, and the
database is updated in real time as transactions
are completed.

In DSS, data is usually added to and deleted
from tables in batches at fixed time intervals,
such as nightly or weekly. During the day, data
that is already in the database is unlikely to be
modified. This means that there is little risk of
reading inconsistent data during the day and
that queries can usually be run with browse
access.

The columns used to partition a table and the
way partitions are defined can have a significant
effect on the addition and deletion of batch data.
If rapid addition and deletion of data is a high
priority for a DSS history table, it may influence
the choice of a first key column and partitioning
scheme for a table.

TANDEM SYSTEMS REVIEW• OCTOBER 1994

DSS Data Otten Comes From Multiple
Sources
Within a single organization, many OL TP and
batch databases may be distributed over differ
ent hardware and software platforms. This usu
ally has little effect on an OL TP application or
its users, since each database is likely to be de
signed for a different application or for a specific
department within the company. OL TP applica
tions rarely combine data from two or more data
bases. If an application does use combined data,
it is the responsibility of the application to handle
any complexities that arise and make the func
tionality transparent to the end user.

A DSS query often requires data from multi
ple databases, and this can be a source of diffi
culties for an end user or DSS application. For
example, suppose an organization has data in_
two separate databases on computer systems m
the United States and the United Kingdom. The
databases are on completely different hardware
platforms, the U.K. database on a UNIX system
and the U.S. database on a Tandem™ NonStop'M
Kernel system. The databases have similar, but
not identical, data structures, and each has its
own product table. The left side of Figure 2
shows the two product tables. As illustrated,
most, but not all, columns of the two tables
contain the same type of information. Columns
with the same type of information may have
different names and contents (for example,
dollars versus pounds), and different data-
type specifications. .

If a DSS user wanted to carry out an analysis
combining data from both tables, for example,
total U.S. and U.K. sales, by product, either the
user or the DSS application would have to deal
with the differences between data types in the
two tables and the conversion of currencies to
a common base. If this is something of a prob
lem with unrelated databases in two countries,
consider the implications of multiple unrelated
databases belonging to a large multinational cor
poration. A far simpler approach is to define a
single DSS product table, with its own column

Figure 2

USA product table

Paf'!llsy

l'-i•
-!lil'fflt!ii;,.,~
M~..'iiOlie<il~

.Nf,lff)er\c(!i)

~Ii{~)
'4~~.($,2}

~~rit{5, 6.)
DSS product table

flll'.O(lilct,.JO Char (10)

Name ~ar (J5)

UK product table Sates_prwe_in~IJSO . Numeric (1; 2}

names and specification of data types, as
shown on the right side of Figure 2, and load
it with data from the U.S. and U.K. product
tables. In this case, the application software
used to load the DSS database carries out the
conversions necessary in going from the two
OL TP product tables to the DSS product table,
and DSS users only need to generate queries
against the composite DSS table.

DSS and OLTP Have Different Performance
Requirements
OL TP applications need to handle tens, or pos
sibly hundreds, of discrete transactions per sec
ond. Typically each transaction performs from
5 to 20 random reads and writes. OL TP response
time requirements are usually on the order of
seconds or less per transaction.

In DSS, users execute queries, rather than
transactions, and a single DSS query is likely
to read thousands, and even millions, of records
from disk. DSS throughput is measured in quer
ies per hour or per day; acceptable response
times may be measured in minutes or hours.

Figure 2.

Comparison of columns in
DSS and OLTP product
tables.

OCTOBER 1994, TANDEM SYSTEMS REVIEW 23

Figure 3

PROMO

ITEM

ltEMn_Name
ltem_D~i;:

l\;1al'1W1Clt1riilr

Size

RetaiL~
Olffl

SUPPLIER

$upp .. Natne
Supp_Addl1e$$

Su,pp_Phone
Supp~Contoot

Figure 3.

Tables and columns
in a simplified OLTP
order-entry database.

24

In 0LTP, random 1/0 is very efficient for
accessing data, since only a small number of
rows are processed within a single transaction.
In DSS, random 1/0 on queries that require large
numbers of rows to be processed would result in
unacceptably slow response times. For effective
processing on DSS queries, a database must be
designed to maximize sequential 1/0. The fol
lowing section describes an approach that opti
mizes performance when large amounts of data
must be read and provides the end user with an
easily accessible database structure.

DEPT DIVISION

Designing DSS Databases Through
Dimensional Database Modeling
Dimensional database modeling is an approach
to database design that is especially suitable for
DSS. A dimensional database schema, often
called a star schema, has few tables, and the
tables stand in simple relationships to one an
other. For the end user, the database is easy to
understand and easy to use. In addition, a dimen
sional database lends itself to sequential 1/0,
which is necessary for achieving optimal per
formance on DSS queries. As a further benefit,
several new performance features of NonStop
SQL/MP, including cross products, hash joins,
and hash groupings, are particularly effective
with a dimensional database.2

2For an overview of new features in NonStop SQL/MP,
see Ho. et al.. 1994.

TANDEM SYSTEMS REVIEW• OCTOBER 1994

Figure 4

DSS columns OL TP columns not in DSS

Effeefilte_Oates
'Narehou~ _Addpii1111$

M,gUS~::J,l!Jm
Dill,...~~

MgrJ;;Y!rnp;JJ!Jm
~ilerj12D~
t~rmt.,Q~~
Ol_N~r

Selling_Price

Quantity

Onhand_Ouantity

Onorder _ Quantity

Backorders

Warehouse_lD

ltem_lD

Supp_lD

Order_Date

Promo_Code

Cust_Address

Account_Rep

Cust_Name

ltem_Name

ltem_Desc

Otdat;...I~
~erJ~
~r-~.

· C~Narl:ie
G~P~
Or~$!.!,,t~
~111'~
A~$Qfal!CQ

p~~
~-(li)fifli~
~J;;Phofi&

~-Addr~$

In dimensional database modeling, there
are two primary types of tables, fact tables and
dimension tables. Fact tables contain the numer
ical or transaction data that is to be analyzed.
Dimension tables correspond to primary-key
columns in fact tables and typically represent
basic elements in the functioning of a business.
such as products. stores, and customers. 3

The data in a dimensional DSS database
comes from one or more OL TP databases. but
not all data necessary for OL TP is useful for
DSS. For example. as discussed earlier, strictly
operational data in an OL TP database should
not be carried over to a DSS database. Figures 3
and 4 illustrate the relationship between the
tables and columns in a DSS database and an
OL TP database. Figure 3 shows tables and col
umns in a simplified order-entry OL TP database
and the relationships between tables. In Figure 4.

'Although all dimen...,ion tahlc~ corrc<.;pond to primary-key columns. there
can he columns in the primary key that do not have corresponding
dimen:--ion lahles.

OCTOBER 1994

Manufacturer

Retail_Price

Size

Supp_Name

Dept_Name

Div_lD

Promo_Desc

ltem_Class

Div_Name

columns in the OL TP database of Figure 3 are
divided into columns that would be carried over
into DSS and those that would not. Columns
carried over to DSS are further divided into fact
columns, dimension columns, and reference
columns. Fact columns contain numerical or
transaction data. This type of data is usually
aggregated in DSS queries. Dimension columns
are primary-key columns in fact tables and
dimension tables. They usually correspond to
the GROUP BY columns in a query. Reference
columns are columns in dimension tables and
typically provide descriptive data.

TANDEM SYSTEMS REVIEW

Figure 4.

OLTP columns from
the database of Figure 3
that are likely to be used
in DSS.

25

Figure 5.

Fact tahles based
on columns.from the
OLTP datahase of'
Figure 3. The.fact tables
contain summary data
hy week, rather than in
dividual transactions.
Week_Ending_Date is
derived from Order _Date
in the OLTP ORDER table.

Figure 6

DATE

Calendar_Week_No

Fiscal_JNeel<~No
Quarter
Holiday

CUSTOMER

ClilsLName
Cust_Address

Cust_Phone
Account_Rep

Figure 6.

Dimension tahles corre
sponding to primary-key
columns in the.fact tables
of' Figure 5.

26

Figure 5

SALES

ITEM

DEPT

Div~IO
li>!lP)t_Narne

Fact Tables

STOCK

-Omhai'l<l ... ~Mtil:y
Onordif,..Q~fjl:y

Baliil<~rs
Supply~Cos1

WAREHSE

PROMO

SUPPLIER

Fact tables store an organization's business
data. They can be very large, often tens or even
hundreds of gigabytes in size. A DSS fact table
is usually different from an OL TP table in two
regards: it stores historical rather than current
data and it condenses, and often summarizes,
OL TP data. The data may be condensed by
omitting operational or individual data, such

TANDEM SYSTEMS REVIEW

as customer names and numbers, from a DSS
table. Summarized data is presented in sum
mary tables containing, for example, daily sales
or sales by department, rather than individual
sales transactions.

Fact tables have multicolumn primary keys.
The leading columns, and sometimes all the
columns, in the primary key of a fact table cor
respond to dimension tables. A dimensional DSS
database is likely to contain several fact tables
representing different aspects of a business, such
as sales, shipping, and inventory. The database
may also have detail and summary fact tables
for the same data, as in the case of a sales detail
table, and separate summary tables for daily and
monthly sales. Detail tables and their summary
tables will share many of the same primary-key
columns and dimension tables; they are also
likely to share key columns and dimension tables
with other fact tables. Large fact tables rarely
have alternate indexes, because sequential access
via an index results in exessive random reads of
the base table. Figure 5 shows the columns and
primary keys of two fact tables derived from
the OL TP database in Figure 3.

Dimension Tables
Dimension tables are relatively small tables,
ranging in size from tens of rows up to a few
hundred-thousand rows. Figure 6 shows dimen
sion tables for the primary key columns in the
fact tables of Figure 5. Dimension tables are
primarily used to provide descriptive or map
ping data in joins with fact tables. For example,
the ITEM table in Figure 6 contains an Item_ID
column and several reference columns with des
criptive data. If the ITEM table is joined with the
SALES table of Figure 5, the reference columns
can be used to provide descriptive information
about ltem_IDs retrieved from the SALES table:
Item 1535 is an infant car seat from manufacturer
X. In this case, the SALES table is the outer table
in the join and the ITEM table the inner table.
As the outer table in a join with the SALES table,
the ITEM table can map descriptive information
to ltem_IDs and determine what is to be retrieved
from the SALES table: data on infant car seats is
to be found under item numbers 1293, 1452,
1535, and 1986.

OCTOBER 1994

Schematic Structure of a Dimensional
Database
In an OL TP database, including the simplified
database of Figure 3, one table may have a com
plex pattern of relationships with a number of
other tables. In a dimensional DSS database, a
fact table and its dimension tables are connected
in a simple pattern that is referred to as a star
schema. Figure 7 illustrates the star schema for
the SALES table of Figure 5 and its dimension
tables.

Defining Views To Simplify the
Database for End Users
Although the schematic design of a dimensional
DSS database appears far simpler than the typi
cal OL TP design, this does not always make it
easy for the DSS end user to generate efficient
queries. In many cases, satisfactory performance
on DSS queries requires joins that an end user
would be unlikely to specify without detailed
knowledge of the database. For example, the
first and second key columns of the SALES
table in Figure 5 are Week_Ending_Date and
Dept_lD. Suppose a DSS analyst wants sales
data for departments 23, 24, 36, and 42 during
the weeks between May 1, 1994 and May 31,
1994. The simplest query for obtaining this data
would be

SELECT <column names>
FROM SALES
WHERE

Week_Ending_Date BETWEEN
"1994-05-0 l" AND "1994-05-31" AND
Dept_ID in (23,24,36,42)

GROUP BY .. .
ORDER BY .. .

However, the NonStop SQL/MP optimizer
treats the date range in the query as a set of con
tinuous values and generates an execution plan
that reads all rows belonging to the date range

Figure 7

DATE

ITEM

PROMO
Sell!ng__Pooe
$1.lpply_Cost

from disk. Each of these rows is then read for the
specified departments. A far more efficient query
joins the SALES table with the DATE and DEPT
tables and allows the new cross-products fea
ture of NonStop SQL/MP to be used:

SELECT <column names>
FROM SALES
WHERE

SALES.Week_Ending_Date =
DATE.Week_Ending_Date AND
DATE.Week_Ending_Date BETWEEN
"1994-05-01" AND "1994-05-31" AND
SALES.Dept_ID =
DEPT.Dept_ID AND
DEPT.Dept_ID IN (23, 24, 36, 42)

GROUP BY .. .
ORDER BY .. .

DEPT

CUSTOMER

Figure 7.

Fact and dimension tables
forming a star schema.

OCTOBER 1994 • TANDEM SYSTEMS REVIEW 27

28

Table 1.
Join on qualifying Week-Ending-Dates from the DATE table
and qualifying Dept_lDs from the DEPT table.

Week-Ending-Date Dept_lD

1994-05-07 23

1994-05-07 24

1994-05-07 36

1994-05-07 42

1994-05-14 23

1994-05-14 24

1994-05-14 36

1994-05-14 42

1994-05-21 23

1994-05-21 24

1994-05-21 36

1994-05-21 42

1994-05-28 23

1994-05-28 24

1994-05-28 36

1994-05-28 42

Given this query, the NonStop SQL/MP
cross-product feature first joins qualifying rows
from the DATE and DEPT tables. There are four
qualifying Week_Ending_Dates in the DATE
table and four qualifying Dept_IDs in the DEPT
table. Table I shows the join result.

The join result consists of 16
Week_Ending_Date/Dept_ID pairs.
NonStop SQL/MP uses these pairs as key
values for probing into the SALES table, so
that it only has to read rows for sales made in
the specified departments during the given date
range and can skip rows for all other dates and
departments. On a query involving large quanti
ties of data, this can save many minutes, if not
hours, of processing time.

Although the preceding query is optimal for
NonStop SQL/MP, a DSS end user without spe
cific knowledge of the database would be un
likely to request joins between the SALES table
and the DATE and DEPT dimension tables. A
solution to the problem, in this case, would be
to define a view that joins the SALES table with
the DATE and DEPT tables in advance, and then
to present only the view, rather than the SALES
table, to the end user.4 Figure 8 illustrates such
a view for the SALES table of Figure 5.

Now, if the DSS analyst of the example is
presented with SALESYW instead of the SALES
table, it is only necessary to generate the
straightforward query

SELECT <column names>
FROM SALESVW
WHERE

SALESVW. Week_Ending_Date BETWEEN
"1994-05-01" AND "1994-05-29" AND
SALESVW.Dept_ID IN (23, 24, 36, 42)

GROUP BY .. .
ORDER BY .. .

➔Although the view i:-. defined in advance, il is not materiali/c<l by
NonStop SQL/MP until the query i, executed.

TAf'.DEM SYSTEMS REVIEW• OCTOBER 1994

The underlying form of this query is iden
tical to the previous query with explicit joins
between the SALES table and the DATE and
DEPT tables.

In general, if the selection restrictions on a
query involve multiple column values from both
the first and second key columns of a fact table,
joins between the fact table and the correspond
ing dimension tables will greatly improve per
formance. In all such cases, if the end user sees
a view that joins the fact table with its dimen
sion tables in advance, as in Figure 8, it will be
much easier to generate an efficient query.

Partitioning Strategies for Tables in a
Dimensional DSS Database
The way a table is partitioned will have impor
tant consequences for parallel processing with
in a query, if large amounts of data need to be
scanned, and for parallel processing between
queries, when multiple queries contend for the
same data. It also determines how efficiently a
table can be updated, if data is added and deleted
in batches at fixed time intervals.

The following subsections describe four par
titioning strategies. The first three strategies
are for partitioning a DSS fact table. In each of
these cases, it is assumed that the primary key
of the fact table contains a Date column and a
Department column, that most queries select
data on the basis of date, and that new data is
added and old data deleted on a weekly basis.
In the first strategy, the Date column is the first

Figure 8

CREATE VIEW SALESVW
AS SELECT DATE.Week_Ending_Date,

DEPT. Dept_lD,
< Other column names from DA TE>
<Other column names from DEPT>
<Other column names from SALES>

FROM SALES, DATE, DEPT
WHERE

SALES. Week_Ending_Date=DA TE. Week_Ending_Date AND
SALES.Dept_lD=DEPT.Dept_lD;

key column and determines all partitioning;
data is added and deleted by adding and deleting
partitions. The second strategy makes Depart
ment the first key column and uses it to deter
mine partitioning; new data is added to the end
of each department in a partition and deleted
from the beginning of each department in a par
tition. In the third strategy, a special Partition
column, defined only for purposes of partition
ing, is made the first key column. Dates and
departments are striped across many partitions;
the addition and deletion of data depends on the
implementation.

Figure 8.

A view combining the
SALES table of Figure 5
with the dimension tables
corresponding to its.first
two key columns.

OCTOBER 1994 • TANDEM SYSTEMS REVIEW 29

Figure 9

(a) Partitioning on Date, with Department as the second key column

Dept 1 Dept 1 Dept 1
Dept 2 Dept 2 Dept 2

Dept25 Dept 25

Partition f ~lilrfflidnla
(Week 1) {Week:2)

(b) Partitioning on Department, with Date as the second key column

Figure 9.

Week 1
Week2

Week 52

Partitidn.1
(Dept t)

Comparison of'partitioning
on Date with partitioning
on Departmentfi1r storing
weekly data.

30

Week 1
Week2

The fourth partitioning strategy is for parti
tioning small dimension tables. In this strategy,
a special Partition column is used to partition a
dimension table across CPUs in order to optimize
the use of resources when the dimension table is
joined with a large fact table.

It should be noted that the discussion of par
titioning strategies in this section is meant to be
suggestive, rather than comprehensive. Each of
the four strategies described can be varied and
extended in many ways.

TANDE:VI SYSTEMS REVIEW

Partitioning on the Date Column
Making the Date column the first key column
is likely to be the simplest and most effective
strategy when the majority of queries select
data according to date and contention for the
same date is likely to be low. Partitioning on
Date is especially efficient when data is added
and deleted at fixed time intervals. For exam
ple, if data is added and deleted weekly, a com
mon approach is to define partitions in terms of
date ranges for a week. Each week a new parti
tion is added at the end of the table and an old
partition deleted from the beginning of the table.
Data is added using the NonStop SQL/MP LOAD
utility. This is the fastest method of adding new
data to a table, but it can only be used to load
data into an empty table or partition. Data is
deleted from old partitions using the NonStop
SQL/MP DROP PARTITION statement. Drop
ping an entire partition takes only seconds. In
contrast, removing the rows of a partition through
delete operations can take many hours.

If a large amount of data is added at weekly
intervals or there is likely to be a high level of
contention among queries for access to newly
added data, rather than defining only one new
partition based on date, it may be desirable to
add several new partitions. In this case, the
LOAD utility can be used to add data to all of
the new partitions in parallel.

Partitioning on the Department Column
If partitioning on Date is likely to result in exces
sive contention for the same partitions, an alter
native strategy is to promote what would have
been the second key column, Department, to
first key column, and make the Date column
the second key column. This has the effect of
distributing weekly data across department
partitions. Figure 9 compares partitioning on
Date with partitioning on Department.

OCTOBER 1994

In Figure 9a, the Date column is used to
define weekly partitions. All queries requiring
data from the same week contend for access to
the same partition. In Figure 9b, weekly data is
distributed across 25 partitions. In this case, if
multiple users need data from the same week,
the likelihood of contention is considerably
reduced.

If weekly data is added to partitions based on
Department, the LOAD utility cannot be used,
since it requires empty partitions and, presum
ably, all Department partitions will contain some
data after the first week or so. Although it is not
likely to be as fast as the LOAD utility, to quickly
insert a large amount of weekly data into Depart
ment partitions, a site can develop software that
receives the data, divides it into separate streams
on the basis of partition boundaries, and launch
es the streams as parallel processes. Each stream
must then sort its data by the primary key and
sequentially insert it into the corresponding par
tition. A disadvantage of partitioning on Depart
ment is that weekly data cannot be deleted with
the DROP PARTITION statement, and must be
removed through far slower row deletions in
each Department.

Partitioning on a Partition Column
If partitioning on the Date column is likely to
cause contention and partitioning on the Depart
ment column is also likely to cause contention,
a third strategy is available. Under this strategy,
a special Partition column is defined and used
only for purposes of partitioning. In additio~,
a separate partition table is created and applica
tion software developed for distributing data
across partitions. Figure 10 illustrates partition
ing based on a Partition column. This strategy
maximizes parallel processing, since the distrib
ution of data forces all queries to retrieve data
from all partitions.

OCTOBER 1994

Figure 10

Partition 1
(Value in Partition

column= 1)

Partition 2
(Value in Partition

column= 2)

In Figure 10, a Partition column has been
used to define 20 partitions. User-developed
software has assigned rows to each partition in
such a way that for each week, rows for each
department are distributed across all 20 parti
tions. Distributing rows across partitions by
both Date and Department should keep con
tention on these columns to a minimum.

Defining a Partition Column. To implement the
third partitioning strategy, when a DSS fact
table is created, a Partition column is defined
and made the first key column. It is used to
define as many partitions as necessary for the
amount of data expected in the table. Partitions
are defined on sequential values in the Partition
column, as shown in Figure 10.

TANDEM SYSTEMS REVIEW

Partition 20
(Value in Partition

column= 20)

Figure 10.

Partitioning on a Par
tition column, with
Partition the first key
column, Date the second,
and Department the third.
Rows are assigned to
partitions by user
developed software.

31

Figure 11.

Partition ta hie (P _TABLE)

for use with the partitioned
fact table in Figure JO.

32

Figure 11

a. Partition table consisting of a single Partition column.

P _TABLE

Partition_Num~r
{valU$ 1 - .20)

b. Distribution of row values(= Partition-column values)
over partitions of P _ TABLE.

Partition 1

2

Partition 2

20

Partition 20

Developing Software to Assign Partition Values
to Rows. To distribute weekly data across parti
tions of the fact table, user-developed software
must read the data, assign each row a Partition
column value, and insert the data into the table.
There are many possible ways of making row
assignments. To achieve the distribution of rows
in Figure I 0, a user-developed application could
obtain a count of the number of rows in each
department, divide the count by 20, and distrib
ute the rows for each department equally across
all 20 partitions. For example, with 1,000 rows
for Department I and 2,000 rows for Depart
ment 2, the application would need to assign
50 rows from Department I to each partition
and 100 rows from Department 2 to each parti-

TANDEM SYSTEMS REVIEW

tion. To assign rows from Department l to par
titions, the application could simply give the
first 50 rows of Department l a Partition-column
value of l, the second 50 rows a Partition-column
value of 2, and so on. In order to insert rows into
partitions sequentially, the application would
need to sort the data for each partition by pri
mary key before inserting it.

When a Partition column is used to partition
a fact table, the LOAD utility cannot be used to
add data to partitions, and the same considera
tions apply to the insertion and deletion of data
as in the case of partitioning on Department.

Defining a Partition Table. As discussed earlier,
the leading columns in the primary key of a fact
table correspond to dimension tables. In many
queries, joins between a fact table and two or
more of its dimension tables are necessary for
efficient performance. If the first key column of
a fact table is a Partition column, there needs to
be a corresponding partition table that can play
the role of a dimension table and be used in joins
with the fact table. In keeping with this, the par
tition table also counts as a dimension table
when a view such as the one in Figure 8 is de
fined to join a fact table with its main dimen
sion tables.

The partition table consists of a single Parti
tion column, which is used to define partition
ing for the table. In some cases, the partition
table is assigned exactly the same partition
breaks as its fact table. For the example illus
trated in Figure I 0, this would mean creating
a partition table with 20 partitions based on
Partition-column values I through 20. In addi
tion, the partition table would have to be popu
lated with rows having Partition-column values
of 1 through 20. Figure 11 shows a partition
table, P _TABLE, that corresponds to the Parti
tion column of Figure I 0.

OCTOBER 1994

When two tables are joined, NonStop SQL/MP
starts an executor server process (ESP) for each
partition of the outer table. Each ESP joins its
partition with the inner table. A partition table
is always the outer table in a join with its fact
table. If a fact table is divided into a large num
ber of partitions per CPU, and its partition table
is partitioned in the same way, a query that
requires a join of the two tables will result in
many ESPs per CPU. For example, if partitions
are evenly divided over 10 CPUs and a fact
table with 200 partitions is joined with a parti
tion table containing 200 partitions, 20 ESPs
will have to start and execute in each CPU.

To avoid generating a large number of ESPs
on a single query, when a fact table is divided
into many partitions per CPU, it is often useful
to divide a partition table into a limited number
of partitions, sometimes as little as one per CPU.
For example, if 200 partitions of the fact table
are divided over IO CPUs, the partition table
can be divided into IO partitions, one in each
CPU, as illustrated in Figure 12.

In Figure 12, each partition is defined to con
tain a range of 20 Partition-column values. These
values must be inserted into the table before it is
used in a join. When the partition table is joined
with its fact table, an ESP in CPU O will join
Partition I of the partition table with partitions
l through 20 of the fact table. In parallel, an
ESP for each of the other partition table parti
tions will join its partition with 20 consecutive
partitions of the fact table. For optimal process
ing, the partitions of the partition table and the
fact table should be aligned so that the ESP for
each partition table partition only has to deal
with fact table partitions in its own CPU. In the
example, this would mean that fact table parti
tions 1 through 20 were placed in CPU 0, parti
tions 21-40 in CPU I, and so on.

OCTOBER 1994

Figure 12

Partition 1 Partition 2 Partition 10

Using a Partition Column to Partition a
Dimension Table Across CPUs
The preceding section showed how to optimize
the use of system resources by limiting the num
ber of ESPs used to join a partition table with a
fact table containing a large number of parti
tions. A similar strategy can be used when the
first key column of a fact table is represented
by a small dimension table. 5 In this approach,
a Partition column is made the primary key of
the dimension table and user-developed soft
ware assigns a Partition-column value to rows
of the dimension table.

s A pai1itioned table is considered small if none of its partitions contain
more rows than will fit into a single 56-kilobyte read. Larger partJt1ons
may also be acceptable. depending on the number of !/Os necessary for
reading them. In many case~, spending a few extra I/Os to read a parl1t10n
may not be significant relative to the total amount of time needed for
executing a large join.

TANDEM SYSTEMS REVIEW

Figure 12.

Partition table with
JO partitions for use
with a fact table of
200 partitions.

33

Figure 13.

JOO partitions of a fact
table distributed across
JO CPUs.

Figure 14.

Partitioning the DATE
table across CPUs so
that it is aligned with
the partitions of the
fact table in Figure 13.

34

Figure 13

Partition 1

Partition 11

Partition 91

(CPU 0)

Figure 14

Partition 1
(CPU 0)

Partition 2

Partition 12

Partition 92

(CPU 1)

Partition 2
(CPU 1)

Partition 10

Partition 20

Partition 100

(CPU 9)

Partition 10
(CPU 9)

The use of a Partition column to partition a
dimension table can be illustrated with a large
fact table partitioned on Date and a DA TE dimen
sion table. The fact table is divided into 100 par
titions distributed across IO CPUs, as illustrated
in Figure 13.

TANDEM SYSTEMS REVIEW

In Figure 13, the fact table is partitioned so
that consecutive dates are in different partitions
and in separate CPUs. Since DSS queries fre
quently specify date ranges, separating con
secutive dates in this way is likely to reduce
contention for the same partition and balance
processing across CPUs.

If the DA TE table were partitioned in the
same way as the fact table, joining the two
tables would require 100 ESPs, with 10 ESPs in
each CPU. This would result in a considerable
expenditure of memory and system resources.
To save resources, one can reduce the number
of ESPs used for the join. Suppose the goal is
to partition the DA TE table so that there is one
ESP per CPU, with each ESP only joining the
DATE table partition in its CPU with the fact
table partitions in its CPU. This requires divid
ing the DATE table into 10 partitions, one per
CPU, and defining partitions so that the dates in
each DATE table partition match the dates of
the 10 fact table partitions in the same CPU. The
necessary partitioning is illustrated in Figure 14.

Partitions can only be defined on consecutive
values in a given key column. Thus, the Date
column of the DATE table cannot be used to
achieve the partitioning in Figure 14, since the
individual partitions do not contain consecutive
dates. To achieve the required partitioning, a
Partition column needs to be defined as the pri
mary key of the DATE table. In addition, user
developed software must read data intended for
the DA TE table and assign each row a Partition
column value based on the date. Weeks 1, 11,
21, and so on, up to 91, would be assigned a
Partition-column value of 1. Weeks 2, 12, and
so on, up to 92, would be given a Partition
column value of 2. Partition-column values
for each of the remaining partitions would
be assigned in the same way.

OCTOBER 1994

The Partition column is the only column in
the primary key of the DATE table. Although an
ESP must read an entire DATE table partition in
order to execute a join on Date with the fact
table, this takes very little time, since each
DATE partition can be retrieved from disk with
a single 56-kilobyte read operation and the disk
process filters out dates not required for the
join. Partitioning a DSS dimension table on a
Partition column can reduce the number of
ESPs necessary for joins and makes it possible
to conserve memory resources, improve query
startup times, and reduce the number of mes
sages sent between ESPs for initiating queries
and other purposes.

Conclusion
OL TP and DSS databases have different design
requirements. For optimal performance, each
type of processing should have its own data
base. Dimensional database modeling is an
approach particularly suited to designing DSS
databases that provide high performance and
are easily accessible to an end user. Adding
views to a dimensional DSS database can fur
ther simplify the appearance of the database to
an end user and can make it easier to generate
efficient queries.

The way a table is partitioned can have an
important effect on query processing and the
addition and deletion of data. In some cases,
partitioning a DSS fact table on a specially
defined Partition column can reduce contention
for individual partitions and improve parallel
processing performance. In a DSS dimension
table, a Partition column can be used to reduce
the number of ESPs that process a query. This
may result in significant savings of memory
and system resources.

OCTOBER 1994

References
Ho, F., Jain, R., and Troisi, J. 1994. An Overview of NonStop
SQL/MP. Tandem Systems Review. Vol. 10, No. 3. Tandem
Computers Incorporated. Part no. 104400.

Acknowledgments
Thanks to all of the reviewers of the article. who helped to keep
me honest, and to the NonStop SQL/MP development team,
which implemented the features that make DSS databases work.
Thanks also to the Tandem users and prospective users whose
projects over the past 18 months have helped me to understand
the special requirements of DSS databases.

Ray Glasstone is an SQL performance specialist in the Tandem
OL TP performance group. He joined Tandem in 1984 as a staff
analyst in the United Kingdom, moving to the Cupertino Benchmark
Center in 1988 and to his current position in 1993.

TANDEM SYSTEMS REVIEW 35

36

N O N S T O P S Q L / M P

Late Binding and High Availability Compilation
in Nonstop SOL/MP

... he Tandem™ NonStop™
SQL/MP relational database
management system contains
new late binding features that
significantly reduce the num
ber of SQL compilations
needed when users develop

and install programs. These features also reduce
auto-recompilations when SQL statements are
executed at run time.

Program compilations affect application per
formance and can cause temporary user out
ages. Reducing the frequency of compilations
increases the availability of user applications. It
also limits the time-consuming activities associ
ated with compilation. Thus, the new features
make it easier to develop and manage applica
tion programs, improving the productivity of
programmers and database administrators
(DBAs).

In particular, the late binding features
include the following:

■ New execution-time name resolution rules
for SQL statements that make it easier to
develop certain types of programs.

■ Mechanisms that enable a program to tolerate
Data Definition Language (DDL) operations
without recompilation.

■ Facilities to install programs without SQL
compiling them (thus retaining the SQL state
ments' existing execution plans) and without
registering them in a catalog.

Another feature introduced in NonStop
SQL/MP, referred to in this article as high avail
ability compilation, complements the late bind
ing features by making it possible to compile
programs faster than in previous NonStop SQL
releases. New compiler options shorten SQL
compilation time and allow SQL statements to
use their previously-compiled execution plans.

This article discusses the late binding and
high availability compilation features. It briefly
explains the way a typical application is man
aged in previous releases of NonStop SQL, then
describes the new NonStop SQL/MP features in
detail. The last section, User Scenarios, pro
vides examples that show when and how the
features may be useful.

The article assumes that readers are familiar
with NonStop SQL. Those not interested in the
detailed descriptions of the new features might
want to read the first pages of the article (through
the Summary of New Features section) and then
skip to the User Scenarios section.

TANDEM SYSTEMS REVIEW• OCTOBER 1994

Managing Application Programs in
Previous Releases of Nonstop saL
Typically, a programmer develops an applica
tion program on a development system. The
SQL statements in the program use DEFINE
names to refer to SQL objects. The program
is SQL-compiled on the development system
against a test database (often in a staging sub
volume), and the execution plans examined to
ensure that they have the desired performance
characteristics. The DBA then moves the pro
gram to a production system and alters the
DEFINE names to point to the SQL objects on
the production system. Next, the DBA installs
the program by invoking the SQL compiler.
Figure 1 (on the following page) shows how
application programs are managed in previous
releases of NonStop SQL.

The DBA must SQL-compile the program
on the production system even though it was
previously compiled on the development system.
Recompilation can cause the new execution
plans to have significantly different performance
characteristics than those of the previous compi
lation. Therefore, the DBA must take time to
reexamine the execution plans. The new fea
tures in NonStop SQL/MP allow users to install
a program without recompilation.

Name Resolution in Previous Releases
In previous releases of NonStop SQL, SQL
object names referenced in static SQL statements
are resolved when the program is compiled. The
DEFINE names are resolved again when the pro
gram is started (when the first SQL statement is
executed). This feature, called compile-time
name resolution, allows the DBA to rebind the
static SQL statements to different physical objects
than the original objects specified when the pro
gram was compiled. (The SQL executor auto
recompiles the statements to establish the new
bindings.)

However, after the first SQL statement is
executed, further changes in the DEFINE names
do not cause static SQL statements to be rebound
to the new physical objects. If the users want
to resolve an object name during execution

OCTOBER 1994

List of Topics in This Article
This article discusses the following topics:

■ Managing application programs in previous
releases of Nonstop SQL.

■ Summary of new features.

■ Execution-time name resolution.

■ The similarity check.

■ Interaction between the features.

■ The CHECK compiler option.

■ Enabling the similarity check on database
objects.

■ The COMPILE option.

■ The REGISTERONL Y option.

■ The NOREGISTER option.

■ User scenarios.

(for example, allowing a transaction to execute
against one of several tables), they must use dy
namic SQL. Dynamic SQL, however, may affect
application performance and has a more com
plex programming interface than static SQL. 1

1Object names in dynamic SQL statement~ arc resolved when the statement
is compiled with the PREPARE statement. After the PREPARE is issued,
changes in the DEFINE names do not change the physical object:-. accessed
by the dynamic statement when it is executed. (EXECUTE IMMEDIATE
dynamic statements are compiled and executed at the same time; thus, this
issue does not arise for these statements.) To access another table. one
would have to alter the DEFINE name lo point to the table the program
wants lo access, recompile the dynamic statement using PREPARE. and
then execute the statement.

TANDEM SYSTEMS REVIEW 37

Figure 1.

Managing applications
in previous releases of
NonStop SQL.

38

Figure 1

Development system

Production
system

Set DEFINE
=TABLE ➔ T1

Execute the program
(Auto-recompiles take

place if timestamp
test fails)

=+- Table T1

The new execution-time name resolution rules
in NonStop SQL/MP address this issue, allowing
the DBA to rebind static SQL statements to new
physical objects after the DEFINE names are
changed without requiring recompilation.

DDL Operations, Program Invalidation, and
Auto-Recompilation
After a program is installed on the production
system, the DBA may change the logical
schema of one or more SQL objects accessed by
the program by, for example, adding a column
to a table. The DBA may change the physical
schema of an SQL object by, for example, mov
ing a partition of a table to a different volume.

A schema change (DDL operation) can affect
the status of a program because NonStop SQL
saves the execution plans for static SQL state
ments in the program file. (The SQL executor
can reuse the stored plans when an SQL state
ment is executed multiple times.) A stored exe
cution plan may be rendered inoperable (that is,
produce incorrect results) if a DDL operation is
performed on an object accessed by the plan.
NonStop SQL uses program invalidation to
notify the SQL executor that a program may
contain outdated plans.

The SQL executor determines whether to
auto-recompile an SQL statement by comparing
the timestamp stored in the statement's execu
tion plan with the redefinition timestamp of the
associated object. The process works as follows.

In previous releases of NonStop SQL, when
a DDL operation is performed on an object, the
SQL catalog manager invalidates all programs
that access the object by marking the programs'
file labels. It also alters the redefinition time
stamp of the object. (The timestamp is stored in
the object's file label and in the SQL catalog
where the object is registered.)

Altering a redefinition timestamp causes
the disk process to delete all active programs'
existing OPENs against the object. When the
SQL executor reopens (or opens) the object on
behalf of an active (or newly active) program,
it uses the outdated timestamp stored in the ex
ecution plan of the SQL statement being exe
cuted. It therefore gets a redefinition-timestamp
mismatch. The SQL executor must then auto
recompile the SQL statement. The new execu
tion plan generated by auto-recompilation is not
written to the program file on disk and is lost
when the program is stopped. Therefore, when
the program is restarted, it will undergo auto
recompilations again.

TANDEM SYSTEMS REVIEW• OCTOBER 1994

To summarize, the SQL executor auto
recompiles the SQL statements that refer to the
modified object in order to adapt to schema
changes. Alternately, if the program is not exe
cuting, the DBA can manually SQL-compile it
to avoid auto-recompilations at run time. (The
DBA may also choose to stop an active program
and then SQL-compile it.)

Both alternatives have consequences. Auto
recompilation increases the execution time
of an SQL statement, which can affect the
response times associated with the program.
SQL-compilation increases the downtime of
the program and forces the DBA to revalidate
the execution plans. The new features in
NonStop SQL/MP provide ways to avoid
auto-recompilation and SQL-compilation.

Summary of New Features
With the new execution-time name resolution
rules in NonStop SQL/MP, users can develop
programs that execute SQL statements against
different tables than those for which the pro
grams were originally compiled. (The tables
can reside in the same database or different
databases.) Execution-time name resolution is
implemented by an option in the CONTROL
QUERY statement.

New features in NonStop SQL/MP reduce the
extent of program invalidation caused by DDL
operations and enable programs to tolerate DDL
operations without recompilation. An SQL com
piler option, CHECK, implements the similarity
check, which allows the SQL executor to exe
cute previously invalidated SQL statements
without auto-recompilation.

The NonStop SQL/MP compiler option,
REGISTERONL Y, allows users to install
a program without recompilation. With the
REGISTERONL Y option, users can register a
program in the catalog and retain its existing
execution plans. Another compiler option,

OCTOBER 1994

Definitions
Automatic recompilation. Performed
by the SQL executor at run time if an
SQL statement is invalid. The SQL
executor compiles the SQL source
statement into a new execution plan.
Automatic recompilation may or may
not cause name resolution of objects
referenced in the SQL statement.

Execution characteristics.
Characteristics of an execution plan
that have no effect on its semantics.
Examples are the performance of a
plan, its resource consumption, and
the objects it accesses.

Inoperable plan. A plan that is
semantically incorrect; executing
such a plan will lead to incorrect
results.

Invalid plan. A plan that is semanti
cally incorrect (inoperable) or a plan
whose execution characteristics (such
as performance) are sufficiently dif
ferent from what they would be if the
statement were recompiled. The latter
plan is operable but not optimal. A
plan is invalid if an object it refer
ences has been changed by a DDL
operation. For a statement that uses
execution-time name resolution, a
plan is invalid if a DEFINE name has
changed and points to a different ob
ject than when the plan was generated.

Invalid program. An SQL program
whose file label has been marked
invalid by a DDL operation, or a pro
gram that is started with DEFINE
names pointing to different objects
than the compile-time objects.

Invalid statement. An SQL statement
whose current execution plan is
invalid.

Name resolution. The process of
resolving a name by expanding
DEFINE names and by fully quali
fying NonStop Kernel names using
the current defaults.

Optimal plan. An operable plan that
is the most efficient plan to process
the statement against a given set of
database objects.

Redefinition timestamp. An SQL
object has a redefinition timestamp
that is changed each time an invali
dating DDL operation is performed
on the object. The SQL executor uses
the timestamp to identify execution
plans that are invalidated by the DDL
operation.

SQL compilation. The manual act of
compiling an SQL program by invok
ing the SQL compiler, SQLCOMP, to
generate new execution plans for
SQL statements in the program. (Also
called static SQL compilation.)

NOREGISTER, enables some programs to be
installed without recompilation and without
being registered in a catalog. This option
makes it easier to install programs that do not
need to be registered in a catalog.

TANDEM SYSTEMS REVIEW 39

Figure 2

(a) New SOLCOMP options

{

PROGRAM [STORE SIMILARITY INFO]}
COMPILE INVALID PLANS

INOPERABLE PLANS

REGISTERONL Y { g~F}

NOREGISTER { ~~F}

{

INVALID PROGRAM }
CHECK INVALID PLANS

INOPERABLE PLANS

(b) {CREATE} .
ALTER TABLE table-name I view-name

[SIMILARITY CHECK { ENABLE }]
DISABLE

{
AT STARTUP }

(c) CONTROL QUERY BIND NAMES AT EXECUTION

Figure 2.

(a) New compiler options.
(b) New CRMTE TABLE
and ALTER TABLE options.
(c) New CONTROL
statement.

Finally, high availability compilation allows
users to SQL-compile a program containing
many SQL statements in much less time than
was required in previous releases. With the
NonStop SQL/MP compiler option, COMPILE,
users can SQL-compile only those statements
that require compilation. Statements that are not
compiled retain their existing execution plans,
thus preserving their performance and other
execution characteristics. This feature reduces
the total time needed to compile the program
and validate new execution plans generated by
the SQL compiler.

Figure 2 shows the syntax for the options
that implement late binding and high availabil
ity compilation. The new features are described
in the manual NonStop SQUMP Features for
Developing and Managing Application
Programs (1994).

Execution-Time Name Resolution
New optional rules in NonStop SQL/MP imple
ment execution-time name resolution for both
static and dynamic SQL statements. These rules
allow an SQL statement to access different
objects each time it is executed. The syntax
is as follows:

CONTROL QUERY BIND NAMES
{ AT EXECUTION I AT STARTUP}

This directive determines whether names of
SQL objects referenced in SQL statements are
resolved according to the previous name resolu
tion rules in NonStop SQL (AT STARTUP) or
the new rules (AT EXECUTION). If the directive
is not specified, the default is AT STARTUP.
One can enable execution-time name resolution
for both DDL and Data Manipulation Language
(DML) statements.

Figure 3 shows an example of execution
time name resolution. In the example, a static
SQL statement embedded in a T AL™ program
accesses two different tables. It modifies
DEFINE names programmatically by invoking
the relevant NonStop Kernel procedures.

To compile and execute the program shown
in Figure 3, one would take the following steps:

1. Before executing the program, establish a
DEFINE =Tusing the following TACL™
command:

ADD DEFINE =T,CLASS MAP,FILE TI;

2. Compile the program with the TAL compiler
and then with the SQL compiler. The cursor
C is now bound to table Tl.

3. Execute the program.

40 TANDEM SYSTEMS REVIEW• OCTOBER 1994

Figure 3

EXEC SOL CONTROL QUERY
BIND NAMES AT EXECUTION;

--Enable execution-time name resolution

EXEC SOL DECLARE C CURSOR
FOR SELECT • FROM = T;

--The cursor C is bound to table T1 at compile time because DEFINE= T
--maps to table T1 at compile time (see steps 1 and 2 on the previous page).

--Alter DEFINE= T to table T2 using the following invocations of Nonstop
--Kernel procedures;

CALL DEFINESETLIKE(...);
CALL DEFINESETATTR(. ..);
CALL DEFINEDELETE(...);
CALL DEFINEADD(...);

--Copy the attributes of the DEFINE= Tinto the working set.
--Alter the value of attribute "file" in the working set to T2.
--Delete the existing DEFINE= T.
--Add DEFINE= Tusing the attributes in the working set.

EXEC SOL OPEN C; --Read rows from T2.
EXEC SOL FETCH C INTO

host-variables;
--With execution-time name resolution, the cursor C is bound to the current
--table that DEFINE = T maps to, which is table T2.

EXEC SOL CLOSE C;

--Alter DEFINE= T to table T3 using Nonstop Kernel procedures shown
--above.

EXEC SOL OPEN C; --Read rows from T3.
EXEC SOL FETCH C INTO

host-variables;
--With execution-time name resolution, the cursor C is bound to the current
--table that DEFINE= T maps to, which is table T3.

EXEC SOL CLOSE C;

Without execution-time name resolution,
both cursor scans shown in Figure 3 would
have returned data from table Tl, because the
DEFINE =T mapped to table T 1 when the pro
gram was compiled. With execution-time name
resolution, the accessed table is determined
when the cursor is opened. Thus, in Figure 3,
the first cursor scan returns data from table T2
and the second returns data from table T3.

Execution-time name resolution requires that
each time a statement is executed against a dif
ferent object, it must be bound to that object.
The next section describes a new mechanism,
the similarity check, that allows one to bind a
statement to a different object without auto
recompilation, thereby significantly decreasing
the performance penalty of execution-time
name resolution.

OCTOBER 1994

The Similarity Check
The similarity check can determine if two SQL
objects are similar enough to allow the same
execution plan to access either object. For
example, when the object a statement refers to
at run time is similar to the object the statement
was compiled against, the similarity check lets
the statement execute without auto-recompila
tion. One can use the similarity check together
with execution-time name resolution and to
recover from DDL operations; in both cases it
can avoid the penalty of auto-recompilation.

TANDEM SYSTEMS REVIEW

Figure 3.

Execution-time name
resolution. A static SQL
statement embedded in a
TAL program accesses two
different tables.

41

42

To enable the similarity check at run time,
one invokes the new CHECK INOPERABLE
PLANS compiler option when SQL-compiling
the program. To enable the similarity check
at compile time, one invokes the COMPILE
INOPERABLE PLANS compiler option. Before
using the similarity check, one must also enable
it on the object (for tables and protection views)
by invoking a new option in the CREATE
TABLE I VIEW or ALTER TABLE I VIEW com
mand. The SQL catalog entry for programs,
tables, and protection views indicates whether
the similarity check is enabled or disabled.

Instead of auto-recompiling an invalid state
ment, the SQL executor performs the similarity
check on the statement's plan (if the check is
enabled). If the plan passes the check, it is
deemed operable (that is, the plan will produce
the correct results if executed) and will run
without recompilation. In addition, the executor
updates the redefinition timestamps in the plan
(in memory). If the similarity check fails (the
plan is inoperable) or is disabled, the statement
is auto-recompiled.

The similarity check compares the schemas
of the compile-time and run-time objects. Infor
mation about the schema of a compile-time
object is saved in the SQL statements' execu
tion plans. The SQL executor retrieves informa
tion about the schema of a run-time object from
the disk process.

The similarity check reduces the need for
recompilation and thus can improve the response
time of a program. However, an operable plan
may not be optimal for a specific set of database
objects. The user must weigh the cost of recom
piling a statement against the cost of reusing an
execution plan that might not be optimal.

Each invalid statement undergoes one or
more similarity checks for each object it refer
ences. The cost of each similarity check is
about the same as an OPEN operation (one mes
sage to the disk process). The disk process may
have to perform several physical disk I/Os to
retrieve the object's schema information from
disk labels. However, the cost of performing
similarity checks for any SQL statement is far
lower than the cost of compiling the statement.
(The similarity check currently does not support
parallel plans.)

Interaction Between the Features
The interactions between the features described
in this article are complex. To make the features
easier to understand and use, they have been
designed to be orthogonal. That is, the use of
one feature does not influence the behavior of
other features.

Assume, for example, that an SQL statement
in a program uses execution-time name resolu
tion. Because of the orthogonality principle,
this feature will work whether or not another
feature such as the similarity check is enabled.

TANDEM SYSTEMS REVIEW• OCTOBER 1994

Table 1.
Behavior of the new compiler (SQLCOMP) options in NonStop SQUMP.

Option

CHECK INVALID PROGRAM

CHECK INVALID PLANS

CHECK INOPERABLE PLANS

COMPILE PROGRAM

COMPILE INVALID PLANS

COMPILE INOPERABLE PLANS

REGISTERONL YON

NOREGISTER ON

During compilation

No impact on compilation.

No impact on compilation.

No impact on compilation.

All statements are compiled.

Invalid statements are compiled. Valid
statements are not compiled; their
existing plans are reused.

The similarity check is performed for invalid
statements. Only plans that fail the check
(inoperable plans) are compiled. Plans that
pass the check and plans for valid
statements are reused.

No statements are compiled. All execution
plans are retained. The program is
registered in a specified catalog.

Statements are compiled according to the
COMPILE option one uses. The program
can be installed on a new system without
registering it in a catalog (without processing
by SQLCOMP on the new system).

At run time

The SQL executor auto-recompiles all
statements if the program is invalid or if
run-time DEFINE names differ from
compile-time DEFINE names.

The SQL executor auto-recompiles invalid
statements. Valid statements are not auto
recompiled; their existing plans are reused.

The SQL executor performs the similarity
check for invalid statements. Only plans that
fail the check (inoperable plans) are auto
recompiled. Plans that pass the check and
plans for valid statements are reused.

No impact on run-time behavior.

No impact on run-time behavior.

No impact on run-time behavior.

No impact on run-time behavior.

No impact on run-time behavior.

For example, if the similarity check is dis
abled, the SQL statement will always undergo
auto-recompilation if an object reference in the
statement changes to a different physical object.
(Auto-recompilation binds the statement to a
different physical object.) If the similarity
check is enabled and it passes, the statement

in keeping with the principle of orthogonality,
the other features will function as they are sup
posed to whether or not one uses the similarity
check. Table l describes the behavior of the
new compiler options during compilation and
at run time.

is bound to a different object without auto
recompilation. Thus, execution-time name
resolution takes effect in both cases.

The similarity check plays a special role
among the features described in this article.
When a program is executed, one can use the
similarity check to avoid auto-recompilations
that might result because one has used another
feature. Thus, the similarity check can improve
the performance of the other features. However,

OCTOBER 1994

In practice, of course, the different combina
tions of features produce different results, and
users will want to choose combinations that
best suit their application environment. The
user scenarios at the end of the article give a
few examples.

TANDEM SYSTEMS REVIEW 43

44

The CHECK Compiler Option
When used with the RECOMPILEALL option,
the CHECK compiler option determines the
extent to which auto-recompilations take
place when an invalid program is executed.
(RECOMPILEALL, an existing compiler op
tion, tells the SQL executor to perform all auto
recompilations at program-startup time, when
the first SQL statement is executed.)

Although one specifies the CHECK op
tion when SQL-compiling a program, it influ
ences the behavior of the SQL executor at run
time. The CHECK option has no impact on
compilation.

The syntax for the CHECK option is as
follows:

CHECK { INV AUD PROGRAM I INV AUD
PLANS I INOPERABLE PLANS}

CHECK INV AUD PROGRAM, the default
option, provides the behavior found in previous
releases of NonStop SQL. All statements in an
invalid program are auto-recompiled.

CHECK INV AUD PLANS causes only invalid
statements to be auto-recompiled. The SQL exe
cutor reuses plans for valid statements.

CHECK INOPERABLE PLANS enables the
similarity check for the program. The SQL exe
cutor only auto-recompiles inoperable state
ments (that is, invalid statements whose plans
fail the similarity check).

The CHECK option also determines
whether the SQL executor auto-recompiles
a statement that is invalidated during program
execution or reuses the existing execution
plan. This also applies when one uses the
RECOMPILEONDEMAND option; with this
option, auto-recompilation of an invalid
statement is deferred until the statement is
executed.

If one uses CHECK INV AUD PROGRAM
or CHECK INV AUD PLANS, the invalid state
ment is auto-recompiled. If one uses CHECK
INOPERABLE PLANS, the invalid statement
undergoes similarity checks. If all the similar
ity checks pass, the existing execution plan
is reused. Otherwise, the statement is
auto-recompiled.

Using the CHECK Option With Execution
Time Name Resolution
To illustrate how the similarity check allows
one to avoid auto-recompilations when using
execution-time name resolution, assume first
that the program shown in Figure 3 is compiled
without enabling the similarity check.

When the program is statically compiled,
the DEFINE =T referenced by cursor C points
to table Tl. Therefore, the statement is bound
to table Tl when the statement is compiled.
When the DEFINE =Tis altered to point to table
T2 and the cursor C is opened, the cursor must
be rebound to table T2 (because the cursor
uses execution-time name resolution). To
change the binding of the statement, it must
be auto-recompiled.

Now assume one used the CHECK
INOPERABLE PLANS option to compile the
program. If the similarity check determines
that table Tl is similar to table T2, the state
ment can be bound to table T2 at execution
time without auto-recompilation. This signifi
cantly speeds up the process of reestablishing
a new binding for the statement.

TANDEM SYSTEMS REVIEW• OCTOBER 1994

Reducing the Impact of Program Invalidation
In NonStop SQL/MP, many DDL operations on
an SQL object do not invalidate programs that
reference the object if a program is compiled
with the CHECK INOPERABLE PLANS option
and the object has the similarity check enabled.
Not invalidating a program has the beneficial
side effect of retaining the usages for the pro
gram in the SQL catalog. These DDL operations
will update the redefinition timestamp of the
object.

Enabling the Similarity Check on
Database Objects
The CHECK INOPERABLE PLANS option
enables the similarity check for an SQL pro
gram. To succeed, the similarity check must
also be enabled on the objects being checked.
The user must explicitly enable the similarity
check for tables and protection views; it is
implicitly enabled for all other objects (except
shorthand views, which are not supported).

In the example shown in Figure 3, when the
DEFINE =Tis altered to point to table T2 and
the cursor C is opened, two components of the
similarity check must be enabled. First, the pro
gram must have been compiled with CHECK
INOPERABLE PLANS. Second, the similarity
check must be enabled on table T2. The simi
larity check must ensure that, among other
attributes, the column names are identical in
the two objects.

To accomplish this, one uses the new
SIMILARITY CHECK ENABLE option in
the CREA TE TABLE I VIEW and ALTER
TABLE I VIEW commands, which adds

OCTOBER 1994

Figure 4

[{
ENABLE }]

CREATE TABLE table-name SIMILARITY CHECK DISABLE ;

CREATE VIEW view-name

ALTER TABLE table-name

ALTER VIEW view-name

[SIMILARITY CHECK { ENABLE }] ·
DISABLE '

[{
ENABLE }]

SIMILARITY CHECK DISABLE ;

Figure 4.
column names to the disk labels for tables and
protection views.2 Figure 4 shows the syntax
of the SIMILARITY CHECK options for these
commands.

The similarity check also needs to be ena
bled on objects if the COMPILE INOPERABLE
PLANS option is used (described in the next
section).

Syntax of the SIMILARITY
CHECK option in the
CREATE TABLE I VIEW and
ALTER TABLE I VIEW
commands.

iAdding column names to the disk labels may cause the NonStop SQL
version of the object to be incremented; the version will be at least 310.
This will make the object inaccessible from remote systems running
NonStop SQL software that is a lower version than the version of the
object. Because of the potential for reduced network accessibility, NonStop
SQL/MP gives the DBA explicit control over enabling the similarity check
for table and protection views by providing the new CREATE and ALTER
options. (The similarity check is implicitly enabled for other objects
because lhey do not have columns.)

TANDEM SYSTEMS REVIEW 45

46

The COMPILE Option
A new NonStop SQL/MP feature, high avail
abilit~ compilation, allows one to selectively
compile only those static SQL statements that
need compilation. By not having to compile all
~QL statements, this feature speeds up compila
tion and retains existing execution plans when
ever possible.

The new feature, enabled with the COMPILE
option, differs from the CHECK option. The
COMPILE option influences the behavior of the
~QL compiler, whereas the CHECK option
~nfluences the behavior of the program when it
is executed.

The COMPILE option has the following
syntax:

COMPILE
{ PROGRAM [STORE SIMILARITY INFO l)
{ [NV AUD PLANS)
{ INOPERABLE PLANS)

COMPILE PROGRAM, the default option,
specifies the behavior in previous releases of
NonStop SQL. (All statements are compiled.)
If STORE SIMILARITY INFO is specified, the
SQL compiler stores similarity information in

t~e program file so that the user may later com
pile the program with the COMPILE INV AUD
PLANS or COMPILE INOPERABLE PLANS
option.
.. The COMPILE INV AUD PLANS option spec
ifies to the SQL compiler that it should compile
only invalid statements. Valid statements are
not compiled and their existing plans are reused.

The COMPILE INOPERABLE PLANS option
further reduces the number of statements that
are compiled. With this option, the SQL com
piler performs the similarity check for invalid
statements. Only invalid statements whose
plans fail the similarity check (that is, are inop
erable) are compiled. For all other statements
(valid or invalid), the existing plans are reused.

The execution plan for an invalid statement
may not be optimal even if it passes the similar
ity check (that is, is operable). Such a plan may
not have the best performance characteristics. If
this is a concern, one should use the COMPILE
INV AUD PLANS or COMPILE PROGRAM
option.

The REGISTERONLY Option
The new NonStop SQL/MP compiler option,
REGISTERONLY ON, allows one to install a
previously SQL-compiled program without
recompiling it. The program is registered in
a catalog and the existing execution plans
retained. The syntax for this option is as follows:

REGISTERONL Y { ON I OFF }

REGISTERONL Y OFF, the default option,
specifies the previous behavior. The program is
SQL-compiled and registered in the specified
catalog.

TANDEM SYSTEMS REVIEW, 0 C T O B E R I 9 9 4

The REGISTERONL Y ON option does not
SQL-compile the program; instead, it r~tains _the
existing execution plans. The program 1s regis
tered in the specified catalog.

With REGISTERONLY ON, one uses the SQL
compiler as a simple utility; the SQL con~.piler
does not modify the SQL objects (execut10n
plans) in the program.

A program installed using REGISTERONL Y
ON is marked vali 1, but SQL statements in the
program may be invalid, because the program
(when executed) may access different objects
than those with which the program was last
fully SQL-compiled (using REGISTERONLY
OFF). In addition, REGISTERONL Y ON does
not create usage entries in the catalog for the
program. Therefore, when a DDL operation is
performed on an object referenced by the pro
gram, the SQL catalog manager cannot explic
itly invalidate it.

In these cases, the user will not know that
some statements in the program are invalid and
may have to be auto-recompiled before they are
executed. To avoid auto-recompilation, one
should enable the similarity check, using the
CHECK INOPERABLE PLANS option, during
the last full SQL compilation.

In some cases, the statistics in the test
database catalog do not represent the produc
tion database. In others, parallel execution is
important for the application, and the table par
titioning in the test database differs from the
partitioning in the production database. ~n these
cases, plans generated using the production cat
alog may be more efficient than plans that used
the test catalog. Although REGISTERONL Y ON
is attractive for change-control purposes, it is
not recommended in these cases. Instead, users
should SQL-compile the program on the pro
duction system.

OCTOBER 1994 •

The NOREGISTER Option
A new NonStop SQL/MP feature makes it possi
ble to install an SQL program without register
ing it in a catalog (without invoking
SQLCOMP). Thus, one can move the program
to a new location (using the RESTORE or FUP
DUP operation) and execute it without any pro
cessing by SQLCOMP. To accomplish this, the
last SQL-compile of the program must have
been done with the new compiler option,
NOREGISTER ON. The syntax for this option
is as follows:

NOREGISTER {ON I OFF}

NOREGISTER OFF, the default option, spe
cifies the previous behavior. That is, to install
a program in a new location, one must register
the program in an SQL catalog at the new
location.

The NOREGISTER ON option differs from
REGISTERONL Y ON in two ways. First, it
allows one to install a program without regis
tering the program in a catalog. Second, one
invokes it during compilation when the pro
gram is still on the old (original) system. In
contrast, REGISTERONL Y ON is invoked after
the program is moved to the new system. One
cannot use NOREGISTER ON in conjunction
with REGISTERONLY ON.

TANDEM SYSTEMS REVIEW 47

48

For a program to be compiled successfully
with the NOREGISTER ON option, all static
DML statements in the program should use exe
cution-time name resolution. When a program
uses dynamic SQL, or static SQL statements
together with execution-time name resolution,
it does not have strong bindings to any SQL
objects. Therefore, there is no need to register
the program in a catalog in order to record
dependencies on any objects. For more infor
mation on the affected DML statements, refer to
the new manual NonStop SQUMP Features for
Developing and Managing Application
Programs (1994).

When one installs a program compiled with
the NOREGISTER ON option, it may undergo
auto-recompilation if it accesses different
objects at execution time than those with which
it was SQL-compiled. In addition, the SQL cata
log manager will not invalidate the program
after a DDL operation because the program is
not registered in a catalog, and there is no
record of dependencies it has on SQL objects.

As with REGISTERONL YON, one can
avoid auto-recompilations by enabling the
similarity check for the program. To do this,
one SQL-compiles the program using CHECK
INOPERABLE PLANS together with
NOREGISTER ON.

User Scenarios
The new options offer many choices that allow
the DBA to control the extent and timing of SQL
compilation and auto-recompilation. For exam
ple, REGISTERONL Y ON allows the DBA to
install a program on a new system without SQL
compiling it. However, REGISTERONL Y ON
does not record dependencies, and statements
may undergo auto-recompilation at run time.
Alternatively, the DBA can install the program
using COMPILE INV AUD PLANS or COMPILE
INOPERABLE PLANS. With these options,
compilation is minimized, but the SQL compiler
records dependencies and compiles statements
that might otherwise undergo auto-recompila
tion. The following user scenarios give exam
ples of how to use the new options.

Scenario 1: Moving a Program From
Development to Production Without
SOL-Compilation
In this scenario, users develop application pro
grams on a development system and move them
to execute on one or more production systems.
After the programs are moved to a new system,
they must refer to a new set of SQL objects
(such as tables). However, the objects on the
two systems have identical logical schemas.
Moreover, the users have made sure that com
piling the programs against the test database
on the development system produces execution
plans with appropriate performance characteris
tics for the production system. The users would
like to retain these execution plans when the
programs are installed on the production system.

With NonStop SQL/MP, the users can move
a program to the production system without
having to recompile it. In addition, the pro
gram retains its existing execution plans. Thus,
NonStop SQL/MP eliminates recompilation, and
the users save time because they do not have to
verify new execution plans.

TANDEM SYSTEMS REVIEW• OCTOBER 1994

In this scenario, the users should take the
following steps:

1. Compile the program on a development
system using the CHECK INOPERABLE
PLANS compiler option. Use DEFINE names
in SQL statements to refer to objects.

2. Move the program to a production system.

3. Register the program in the catalog on
the production system by using the
REGISTERONL Y ON option. This step
installs the program quickly and does not
change the execution plans.

4. Enable the similarity check for tables and
protection views (referenced by the program)
on the production system by using the
ALTER ... SIMILARITY CHECK ENABLE
statement (if this has not been done
previously).

5. Execute the program with DEFINE names
that point the program to the objects on the
production system.

Figure 5 illustrates Scenario 1. The CHECK
INOPERABLE PLANS option enables the simi
larity check and stores similarity information
in the execution plans when the program is
SQL-compiled. The REGISTERONL Y ON
option stores the program information in the
PROGRAMS table of the production catalog.
The program retains all of its attributes. Thus,
it is significantly faster than the full compile
required by previous releases of NonStop SQL.
Since static compilation is not performed on
the production system, the execution plans are
unchanged.

At run time, the SQL executor performs a
similarity check on the production objects
associated with the statement being executed.
The executor determines if the attributes of
the objects are the same as those of the
development-system objects with which the
program was compiled. If they are the same,
the execution plan is reused. Otherwise, auto
recompilation is attempted.

Users should be aware of two conditions in
this scenario. First, if the production objects
have different attributes than the development

OCTOBER 1994

Figure 5

Development system

objects (such as different default values for
columns), the similarity checks will fail, and
auto-recompilation will take place at run time.
Second, the REGISTERONL Y ON option does
not store usages in the catalog on the produc
tion system. If users want usages, they sh_ould
SQL-compile the program on the production
system without using REGISTERONL YON.

TANDEM SYSTEMS REVIEW

Figure 5.

Scenario I: Moving a
program from development
to production without
SQL-compilation.

49

Figure 6.

Scenario 2: Moving a
programfi·om develop
ment to production with
minimal SQL-compilation.

50

Figure 6

Development system

Set DEFINE
=TABLE ➔ T1 -TableT1

SOL-compile the - C I
program using COMPILE ata og

PROGRAM STORE
SIMILARITY INFO

FUP OUP orl3A~Uf>lR:ESTORE

Production
system

Enable the
similarity check using

ALTER TABLE
(if not done already)

+
Set DEFINE
=TABLE-• T2

* SOL-compile the
program using COMPILE
INOPERABLE PLANS

(Only statements that fail
the similarity check are

compiled)

i
Execute the program

- Catalog

---TableT2

Scenario 2: Moving a Program From
Development to Production With Minimal
SOL-Compilation
This scenario is similar to Scenario I except
that the users have changed a few SQL objects
on the production system. The execution plans
for the SQL statements that refer to the changed
objects will be inoperable when the program is

TANDEM SYSTEMS REVIEW

moved from the development to the production
system. However, only a few objects and state
ments are affected. The majority of production
objects are logically identical to those on the
development system, and most of the existing
execution plans (compiled on the development
system) are both semantically correct and have
appropriate performance characteristics for the
production system.

With NonStop SQL/MP, the users can selec
tively recompile only the inoperable plans after
moving the program to the production system.
They do not have to recompile the entire pro
gram. Thus, NonStop SQL/MP greatly reduces
recompilation time, and the users save time
because they only have to examine a few new
execution plans.

In this scenario, the users should take the
following steps:

I. Compile the program on the development
system using the COMPILE PROGRAM
STORE SIMILARITY INFO compiler option.
Use DEFINE names in SQL statements to refer
to objects.

2. Move the program to the production system.

3. Enable the similarity check for tables and
protection views (referenced by the program)
by using the ALTER ... SIMILARITY CHECK
ENABLE statement (if this has not been done
previously).

4. Alter the DEFINE names to point the
program to the objects on the production
system.

5. Compile the program using the COMPILE
INOPERABLE PLANS option.

6. Execute the program.

Figure 6 illustrates Scenario 2. Instead of
using REGISTERONL YON (as in scenario I),
the users SQL-compile the program to in
stall it on the production system. They use
the COMPILE INOPERABLE PLANS option,
which ensures that inoperable plans are re
compiled now so that they do not undergo
auto-recompilation at run time. The program
thus avoids the response-time penalty caused
by auto-recompilation.

OCTOBER 1994

With this COMPILE option, the SQL compiler
compiles only the inoperable plans. It retains
the existing plans for statements that are valid
or have operable plans, thus retaining their per
formance and other execution characteristics.
The SQL compiler also records the dependen
cies for the program in the catalog.

Scenario 3: Avoiding Unnecessary Auto
Recompilations After a DDL Operation
In this scenario, the users' application is work
ing fine. However, because the system is grow
ing or physically changing, the users perform
DDL operations (such as Split Partition) on
SQL objects.

The similarity check, together with new DDL
operation behavior, allows the users to avoid
explicit SQL-recompilation and run-time auto
recompilation after DDL operations occur. This
improves application availability and permits
the users to retain existing execution plans.

In this scenario, the users should take the
following steps:

1. Compile the program using the CHECK
INOPERABLE PLANS option when
developing the program.

2. Install the program on the production
system, as in Scenario 1.

3. On the production system, enable the
similarity check for tables and protection
views (referenced by the program) by using
the ALTER ... SIMILARITY CHECK ENABLE
statement (if this has not been done
previously).

4. Execute the program.

5. Perform the DDL operation.

Figure 7 illustrates Scenario 3. The users spec
ify the CHECK INOPERABLE PLANS option dur
ing the SQL compilation step when they are
developing the program. This enables the simi
larity check for program execution. The users
also enable the similarity check for the SQL
objects (in Step 3). If the DDL operation will
be performed on objects other than tables and
protection views, Step 3 is not needed.

OCTOBER 1994

Figure 7

Development system

SOL-compile the
program using CHECK
INOPERABLE PLANS

- Catalog

FUP DUP or BACKUP/RESTORE

Production
system

Install the
program using - Catalog

REGISTERONL YON

Enable the
similarity check using

ALTER TABLE
(if not done already)

i
Set DEFINE
= TABLE • T1

Execute the program

Perform DDL operation
(No auto-recompile

if similarity check passes)

~ __r- Table T1

After the DDL operation occurs, the SQL
executor performs the similarity check on state
ments that refer to the object. If the DDL opera
tion did not change any attributes relevant to
the correct execution of the plan, the plan is
executed without auto-recompilation. In addi
tion, the DDL operation will not invalidate the
program. Thus, for example, the users can
increase the number of partitions in a table or
create a new index on a table without invalidat
ing the program.

TANDEM SYSTEMS REVIEW

Figure 7.
Scenario 3: A voiding
unnecessary auto
recompilations after
a DDL operation.

51

Figure 8.

Scenario 4: Recovering
from a DDL operation with
minimal SQL-compilation
(!cir situations in which a
time window is availahle
for system management).

52

Figure 8

Production system

Enable the
similarity check using

ALTER TABLE

SOL-compile the - Catalog
program using COMPILE

PROGRAM STORE
SIMILARITY INFO

SOL-compile the
program using COMPILE

INOPERABLE PLANS
(Only statements that
fail the similarity check

are compiled)

Most, but not all, DDL operations support the
behavior described in this scenario. For a list of
DDL operations that do support this behavior,
refer to the new manual NonStop SQUMP
Features for Developing and Managing
Application Programs (1994).

TANDEM SYSTEMS REVIEW

Scenario 4: Recovering from a DDL
Operation with Minimal SOL-Compilation
In this scenario, an object has been changed
so that the similarity check will fail when the
statements that refer to the object are executed.
For example, the users drop an index that is
used by a plan. If the similarity check fails, re
compilation takes place. (In Scenario 3, these
statements would be auto-recompiled at run
time.)

In this scenario, the users prevent auto
recompilations by SQL-compiling the program
after the DDL operation is performed on the
object. They use an option that performs the
similarity check during explicit SQL compila
tion (rather than at run time), and that only
compiles the statements that fail the similarity
check. (This scenario assumes that a time win
dow is available for system management.)

Thus, this scenario allows the users to recover
from DDL operations with minimal recompila
tion. It also enables the SQL executor to run the
program without having to auto-recompile any
execution plans, thus retaining the application's
response time.

In this scenario, the users should take the
following steps:

1. Compile the program with the COMPILE
PROGRAM STORE SIMILARITY INFO
option to ensure that the execution plans
contain similarity information and that all the
SQL statements are compiled.

2. Execute the program.

3. Stop the program.

4. Perform the DDL operation on the object
referenced by the program.

5. Recompile the program using the COMPILE
INOPERABLE PLANS option.

6. Execute the program.

Figure 8 illustrates Scenario 4. The COMPILE
INOPERABLE PLANS option causes the SQL
compiler to perform a similarity check and com
pile the inoperable plans in the program. It does
not compile statements that are valid or have
operable plans; these statements retain their
existing execution plans.

OCTOBER 1994

Figure 9

Production system

Set DEFINE~ TABLE • T ~ Table T

Scenario 5: Allowing Different Users to Run
a Program Against Their Own Databases
Without Auto-Recompilation
In this scenario, each user of a program wishes
to run a copy of the program against the user's
own database. The database is supplied at pro
gram-startup time by using DEFINE names.

In previous releases of NonStop SQL, sup
plying a new set of DEFINE names at program
startup time causes auto-recompilation. With
NonStop SQL/MP, the users can employ the
similarity check to avoid auto-recompilation.
The similarity check eliminates auto-recompila
tion when the program is run against objects
different from those the program was compiled
against, as long as the two sets of objects have
similar attributes.

In this scenario, the users should take the
following steps:

1. Compile the program using the CHECK
INOPERABLE PLANS option and use
DEFINE names for object names.

I

2. If the objects the program will access are
tables or protection views, enable the
similarity check for them by using the
ALTER ... SIMILARITY CHECK ENABLE
operation (if this has not been done
previously).

3. Execute the program with DEFINE names
pointing to a different set of objects.

Auto-recompilations will not take place.
Figure 9 illustrates Scenario 5.

OCTOBER 1994 • TANDEM SYSTEMS REVIEW

Figure 9.

Scenario 5: Allowing
different users to run a
program against their
own databases without
auto-recompilation.

53

Figure 10

Figure 10.

Development system

Develop the program using
static SOL and execution-time

name resolution

FUP DUP or BACKUP/RESTORE

Production system

Set DEFINE
=TABLE •T

Enable the similarity check
using ALTER TABLE
(if not done already)

i
SOL-compile the

program using CHECK
INOPERABLE PLANS

Execute the program

Begin transaction
Alter DEFINE= TABLE

• desired table
Execute the static

SOL statement
(No auto-recompile if
similarity check passes)

End transaction

------ TableT

,-------►
1 Table T1
I
I
I
I
I
[__ ---•

------! Table T2

---►

. .
•

Table Tn

This solution has one potential disadvantage.

Scenario 6: D_rnamicallv
c!zC111ging the database

Whenever NonStop SQL reuses an execution
plan against a different set of objects than those
specified when the plan was generated, the plan
may not be optimal for the new objects. There
fore, the SQL statement may take longer to exe
cute than it would if the statement had been
auto-recompiled.

a program will Clccess
(without requiring
drnamic SQL).

54

One effect of using this scenario is that
dependencies for this program are only avail
able for the objects the program was compiled
against.

TANDEM SYSTEMS REVIEW

Scenario 6: Dynamically Changing the
Database a Program Will Access, Without
Requiring Dynamic SOL
In this scenario, the users have several data
bases that are all similar and contain identical
sets of tables and other objects. A program
decides on a per-transaction basis which data
base to use.

In previous releases of NonStop SQL, the
users can write this program by using dynamic
SQL to specify at run time the database to be
used for the query. Dynamic SQL, however,
may affect application performance and has a
more complex programming interface than sta
tic SQL. Another option is to combine all of the
databases into one, but managing such a large
database would be a complex task. NonStop
SQL/MP solves this dilemma by providing exe
cution-time name resolution for SQL state
ments.

In this scenario, the users should take the
following steps:

1. Add the CONTROL QUERY BIND NAMES
AT EXECUTION directive to specify
execution-time name resolution. Use
DEFINE names in static SQL statements to
refer to a dynamic database; write code to
modify the DEFINE values to specify the
desired database. (Figure 3 shows an
example of code that modifies DEFINE
names.)

2. If the objects the program will access are
tables or protection views, enable the
similarity check for them by using the
ALTER ... SIMILARITY CHECK ENABLE
operation (if this has not been done
previously).

3. Compile the program with the CHECK
INOPERABLE PLANS option.

4. Execute the program.

Figure 10 illustrates Scenario 6. In Step 1,
the users add the CONTROL QUERY BIND
NAMES AT EXECUTION directive to the pro
gram's SQL code, together with program logic
to manipulate the DEFINE values used in the
SQL statements. When this directive is spec
ified, NonStop SQL rebinds the DEFINE
names used in the SQL query at statement
execution time.

OCTOBER 1994

Thus, at run time, the program determines
the database to be used. The program logic
modifies the DEFINE names to point to the
appropriate database objects before it exe
cutes an SQL statement. The similarity check
then enables the statement to execute against
the new database without undergoing
auto-recompilation.

This scenario differs from Scenario 5 in the
following manner. In Scenario 5, DEFINE
names are set externally to the program. In this
scenario, DEFINE names are set by the pro
gram. In addition, in this scenario, the static
SQL statements in the program use execution
time name resolution to cause the DEFINE
changes to take effect when the statement is
executed. This scenario applies to several user
situations, some of which are described below.

Log File Rollover. Some applications create a
new log file and insert data into it starting at
midnight. Such applications would use the
CREA TE TABLE operation to create the new
log file; they would then modify the DEFINE
name to point to the new log file. The next
insertion into the log file would automatically
insert data into the newly-created file.

A Utility That Works on a Single Subvolume at
a Time. Some programs switch to a different
subvolume whenever the user switches context.
An example is a source-control program that
switches to a different database when the user
wants to manage a different set of source-code
programs. (The databases have identical schemas
but reside on different subvolumes.) Such a pro
gram would modify all of its DEFINE names to
point to a different database whenever the pro
gram wanted to switch context.

Choosing a Database on a Per-Transaction Basis.
In this situation, the program would change its
DEFINE names to point to a new set of tables
based on the transaction it would execute next.

Scenario 7: Switching Between Databases
and Always Using the Optimal Plan
This scenario is a variation of Scenario 6. In
this scenario, the users want to dynamically
switch between databases, or between objects

OCTOBER 1994

Figure 11

Development system

Develop the program using
static SQL and execution-time

name resolution

F!JP D!JP or BACKOP/RESTOOE

Production system

Set DEFINE
= TABLE • T

SOL-compile the program
using CHECK INVALID
PROGRAM or CHECK

INVALID PLANS

+
Execute the program

Begin transaction
Alter DEFINE= TABLE
➔ desired table

Execute the static
SQL statement

(Statement will be
auto-recompiled, thereby
using the optimal plan for
the table)

End transaction

- TableT

1-► TableT1
!
I
I
I
I
I

·--1- ► Table T2
I
I
I
I
l
l
J
J

.
• •

,_.,.._ Table Tn

in the same database, and always use the opti
mal plan. The users can accomplish this by
using the CONTROL QUERY BIND NAMES
statement and changing DEFINE names dynam
ically to switch to a different database object, as
in Scenario 6. The users can use either static or
dynamic SQL.

TANDEM SYSTEMS REVIEW

Figure 11.

Scenario 7: Switching
between databases and
always using the optimal
plan.

55

Figure 12.

Scenario 8: Installing a
program without register
ing it in a catalog.

56

Figure 12

Development system

Set DEFINE
=TABLE ➔ T1

SOL-compile the
program using

NOREGISTER ON and
CHECK INOPERABLE
PLANS (Program is not
registered in a catalog)

Production
system

Enable the
similarity check using

ALTER TABLE
(if not done already)

Execute the program
(No need to register

the program. No
auto-recompile if

similarity check passes.)

--'--~•TableT1

The users compile the program using the
CHECK INV AUD PROGRAM or CHECK
INV AUD PLANS option. At run time, these

TANDEM SYSTEMS REVIEW

options will cause the SQL executor to auto
recompile the SQL statement whenever DEFINE
names change, thus ensuring that the execution
plan for the SQL statement will be optimal for
the database being accessed. Figure 11 illus
trates this scenario.

Scenario 8: Installing a Program Without
Registering It in a Catalog
In this scenario, the users have an application
that only contains statements that do not have
any usages. These can be dynamic SQL state
ments, static SQL statements that use execution
time name resolution, and DDL and Data Con
trol Language (DCL) statements. The users want
to distribute the program to other users without
requiring them to recompile or register the pro
gram on their systems. This simplifies the
process of installing the program.

In this scenario, the users should take the
following steps:

1. Develop the program as in previous releases
of Nonstop SQL. Compile it using the
NOREGISTER ON and CHECK INOPERABLE
PLANS options.

2. Move the program to any system, using
Enscribe or NonStop SQL utilities.

3. Execute the program. No SQLCOMP step
is required to install the program.

Figure 12 illustrates Scenario 8. The
NOREGISTER ON compiler option allows the
SQL executor to run the program even though it
has not been compiled on the target system or
registered in a catalog on the target system.

The disadvantage of this scenario is that the
program installed using this method is not
invalidated by DDL operations. (Invalidation
does not occur because the program's depen
dencies on SQL objects are not registered in
a catalog.)

OCTOBER 1994

Conclusion
NonStop SQL/MP contains several new features
that help users develop and manage application
programs. Execution-time name resolution
enables a static SQL statement to access differ
ent SQL tables (with identical schemas). This
feature allows users to develop programs that
access multiple databases or tables using static
SQL.

One can use the REGISTERONL Y compiler
option to install a program without compiling
the SQL statements in the program. This speeds
up installation and preserves the execution
plans in the program. The NOREGISTER com
piler option allows users to install a program
without registering it in a catalog, thus making
it easy to install programs. The COMPILE
option preserves existing execution plans in a
program and speeds up the process of SQL
compiling a program.

Another new mechanism, the similarity
check, allows SQL statements in a program to
tolerate DDL operations (on objects referenced
by the statements) without auto-recompilation.
The similarity check makes execution-time
name resolution efficient by avoiding auto
recompilation whenever possible. The sim
ilarity check also enables programs installed
with REGISTERONL Y ON or compiled with
NOREGISTER ON to avoid auto-recompilation,
thus making these features more efficient.

These late binding and high availability com
pilation features reduce explicit and implicit
recompilations of programs, thereby decreasing
application downtime and increasing the avail
ability of applications running on Tandem
NonStop systems.

OCTOBER 1994

References
NonStop SQUMP Feuturesfl!r Developing und Munuging
Application Programs. 1994. Tandem Computers Incorporated.
Part no. 103386.

Acknowledgments
Many individuals in the NonStop SQL Development Group
contributed to the specification of the features described in this
article, including Pedro Celis, Liz Chambers, Gary Gilbert,
Louise Madrid, Gary Ngai, Franco Putzolu, Jim Troisi. and
Hans Zeller.

The following people implemented the new features: Pei-Jyun
Leu, Haleh Mahbod, Richard Meier, Tom O'Shea, Mike Stewart,
Jim Troisi, and Hans Zeller. Theresa Ledet provided quality
assurance, and John Spencer documented the new features.
Jim Troisi developed the scenarios in the article. The reviewers
greatly improved the clarity of the article.

Sunil Sharma helped design the late binding features and imple
mented the changes to the SQL compiler and SQL executor. Since
joining Tandem in 1983, Sunil has developed software for the
Nonstop Kernel operating system and the Disk Process (DP2) as
well as Nonstop SQL. He has a B.Tech. in Electrical Engineering
from the Indian Institute of Technology, New Delhi, and an M.S. in
Computer Engineering from Rensselaer Polytechnic Institute,
New York.

TANDEM SYSTEMS REVIEW 57

58

Tandem Education

The following paragraphs provide
highlights of the latest education
courses offered by Tandem. To sign up
for a class or to order an independent
study program (ISP), users should call
1-800-621-9198. Full descriptions of
all available courses and ISPs appear
in the Tandem Education Course
Catalog and on Info Way.

Integrity FT and
NonStop-UX Installation

In this five-day lecture-and-lab
course, students learn everything
they need to know about installing
the Tandem Integrity FT System and
the NonStop-UX operating system.
This course covers the details of pre
installation concerns for space, floor
ing, operating environment, electrical
power, and security. Extensive lab
exercises reinforce the skills needed
to install the hardware and begin
operation of the NonStop-UX oper
ating system. After completing this
course, students are able to perform
NonStop-UX operating system soft
ware installations, for both new instal
lations and upgrades.

(Note that this course does not
cover specific administration of the
Veritas storage subsystem. For gen
eral administration of the Veritas sub
system, users should complete the
NonStop-UX Veritas Administration
course before enrolling in this course.)

Integrity Systems Support,
SVR3 to SVR4 Upgrade

This nine-day lecture-and-lab course
is an update of the Integrity Systems
Support SVR3 version of the Systems
Maintenance course. This course cov
ers the maintenance and installation
of the Integrity S300 and S 1300 mod
els, with a strong emphasis on their
differences. Students review UNIX
System V, Release 4, administrative
functions and practice the trouble
shooting of hardware and administra
tive problems. After completing the
course, users are familiar with the
Tandem enhancements that differen
tiate the Integrity systems from other
available UNIX systems.

Nonstop IPX/SPX Product
Overview

This independent study program (ISP)
consists of a short videotape on the
NonStop IPX/SPX product, Tandem's
connectivity vehicle to Novell LANs.
After completing this ISP, users are
familiar with the principles of NonStop
IPX/SPX, its architecture, and related
planning and management issues.

The Technical Information and Education department is an annotated list qf new Tandem
education courses and consulting and information services, as well as other technical
information of interest to Tandem users.

TANDEM SYSTEMS REVIEW OCTOBER 1994

SNAX/XF Token Ring System
Management

This independent study program (ISP)
teaches students how to plan, configure,
and manage the Tandem SNAX/XF
Token Ring product in a token ring
LAN environment. Students learn about
Tandem's strategic commitment to the
token ring market, and about the avail
ability of SNAX/XF Token Ring LAN
background and planning information
for Tandem's SNAX users. Students
also engage in a technical overview
of the IEEE 802.2 and 802.5 specifi
cations as they apply to the implemen
tation in Tandem's SNAX/XF Token
Ring LAN product. After completing
this ISP, users have an understanding
of token ring LAN management
methodologies and are able to conduct
detailed SNAX/XF Token Ring PTrace
protocol analysis.

Token Ring Architecture
and Products

With this independent study program
(ISP), students learn the fundamentals
of the IEEE 802.5 token ring architec
ture and related products. Students
become familiar with the concepts and
implementations of the Physical and
MAC layers associated with the token
ring network. After completing this
ISP, users understand the operation
of the token ring protocol and inter
networking operation.

Tandem Education on
the Internet

Tandem Education made its Internet
debut on the World Wide Web in
August 1994. The United States cus
tomer catalog and schedule are now
electronically available to all Tandem
users. Clicking on highlighted words,
phrases, or pictures will take users
to up-to-the-moment information
24 hours a day, seven days a week.

To access the Tandem Education
information, users need to have access
to the Internet. Users should check with
their Internet provider to find out how
to access the World Wide Web.

OCTOBER 1994 TANDEM SYSTEMS REVIEW 59

60

TandemSystemsReview/ndex
The Tandem Journal became the Tandem Systems Review in February 1985. Four issues of the
Tandem Journal were published:

• Volume 1, No. 1
Volume 2, No. 1

Fall 1983 • Volume 2, No. 2
Winter 1984 Volume 2, No. 3

Spring 1984
Summer 1984

As of this issue, 27 issues of the Tandem Systems Review have been published:

'Volume I, No. 1
· Volume 1, No. 2
· Volume 2, No. 1
· Volume 2, No. 2
· Volume 2, No. 3
, Volume 3, No. I
. Volume 3, No. 2
, Volume 4, No. I
. Volume 4, No. 2
, Volume 4, No. 3

Feb. 1985
June 1985
Feb. 1986
June 1986
Dec. 1986
March 1987
Aug. 1987
Feb. 1988
July 1988
Oct. 1988

· Volume 5, No. 1
Volume 5, No. 2
Volume 6, No. 1
Volume 6, No. 2
Volume 7, No. 1
Volume 7, No. 2

, Volume 8, No. I
, Volume 8, No. 2
, Volume 8, No. 3

April 1989
Sept. 1989
March 1990
Oct. 1990
April 1991
Oct. 1991
Spring 1992
Summer 1992
Fall 1992

, Volume 9, No. 1
, Volume 9, No. 2
1 Volume 9, No. 3
· Volume 9, No. 4
, Volume 10, No. 1

, Volume 10, No. 2
Volume 10, No. 3

, Volume 10, No. 4

Winter 1993
Spring 1993
Summer 1993
Fall 1993

Jan. I 994
April 1994
July I 994
Oct. 1994

The articles published in all 31 issues are arranged by subject below. (Tandem Journal is abbreviated as TJ and
Tandem Systems Review as TSR.) A second index, arranged by product, is also provided.

Index by Subject
Volume, Publication Part

Article title Author(s) Publication Issue date number

APPLICATION DEVELOPMENT AND LANGUAGES

A New Design for the PATHWAY TCP R. Wong TJ 2,2 Spring 1984 83932

An Overview of Client/Server Computing on Tandem Systems H. Cooperstein TSR 8,3 Fall 1992 89803

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984 83932

Application Code Conversion for D-Series Systems K.Liu TSR 9,2 Spring 1993 89805

Application Profile: Storing Macintosh Graphics on the D. Broyles TSR 9,3 Summer 1993 89806
Tandem 5200 Optical Storage Facility

Automating Call Centers With CAM W. Choi TSR 10,2 April 1994 104398

Basic Uses and New Features of Extended GDS A. Hotea TSR 10,1 Jan. 1994 104396

Debugging TACL Code L. Palmer TSR 4,2 July 1988 13693

Designing and Implementing a Graphical User Interface S. Wolfe TSR 9,3 Summer 1993 89806

Designing Client/Server Applications for OL TP on W. Culman TSR 8,3 Fall 1992 89803
Guardian 90 Systems

Extending the Client/Server Model With Object-Oriented Technology T. Rohner TSR 10,1 Jan. 1994 104396

Implementing Client/Server Using RSC M. lem, T. Kocher TSR 8,3 Fall 1992 89803

Implementing Decision Support Systems W. Pearson TSR 10,4 Oct. 1994 104402

Instrumenting Applications for Effective Event Management J. Dagenais TSR 7,2 Oct. 1991 65248

New TAL Features C. Lu, J. Murayama TSR 2,2 June 1986 83837

PATHFINDER-An Aid for Application Development S. Benett TJ 1,1 Fall 1983 83930

TANDEM SYSTEMS REVIEW OCTOBER 1994

Volume, Publication Part
Article title Author(s) Publication Issue date number

APPLICATION DEVELOPMENT AND LANGUAGES (cont.)

PATHWAY IDS: A Message-level Interface to Devices and Processes M.Anderton, M.Noonan TSR 2,2 June 1986 83937

The RESPOND OL TP Business Management System H. Bolling, W. Bronson TSR 9,1 Winter 1993 89804
for Manufacturing

State-of-the-Art C Compiler E. Kit TSR 2,2 June 1986 83937

TACL, Tandem's New Extensible Command Language J. Campbell, R. Glascock TSR 2,1 Feb. 1986 83936

Tandem's New COBOL85 D. Nelson TSR 2,1 Feb. 1986 83936

The DAL Server: ClienVServer Access to Tandem Databases W. Schlansky, TSR 9,1 Winter 1993 89804
J. Schrengohst

The ENABLE Program Generator for Multifile Applications B. Chapman, J. Zimmerman TSR 1,1 Feb. 1985 83934

TMF and the Multi-Threaded Requester T. Lemberger TJ 1,1 Fall 1983 83930

Writing a Command Interpreter D. Wong TSR 1,2 June 1985 83935

CLIENT/SERVER

An Overview of ClienVServer Computing on Tandem Systems H. Cooperstein TSR 8,3 Fall 1992 89803

Application Profile: Storing Macintosh Graphics on the D. Broyles TSR 9,3 Summer 1993 89806
Tandem 5200 Optical Storage Facility

ClienVServer Availability A. Wood TSR 10,2 April 1994 104398

Designing and Implementing a Graphical User Interface S. Wolfe TSR 9,3 Summer 1993 89806

Designing ClienVServer Applications for OL TP on W. Culman TSR 8,3 Fall 1992 89803
Guardian 90 Systems

Extending the ClienVServer Model With Object-Oriented Technology T. Rohner TSR 10,1 Jan. 1994 104396

Gateways to Nonstop SOL D. Slutz TSR 6,2 Oct. 1990 46987

Implementing ClienVServer Using RSC M. lem, T. Kocher TSR 8,3 Fall 1992 89803

Nonstop ODBC Server H. Mahbod, D. Slutz TSR 10,3 July 1994 104400

The DAL Server: ClienVServer Access to Tandem Databases W. Schlansky, TSR 9,1 Winter 1993 89804
J. Schrengohst

DATA COMMUNICATIONS

An Overview of SNAX/CDF M. Turner TSR 5,2 Sept. 1989 28152

A SNAX Passthrough Tutorial D. Kirk TJ 2,2 Spring 1984 83932

Basic Uses and New Features of Extended GOS A. Hotea TSR 10,1 Jan. 1994 104396

Changes in FOX N. Donde TSR 1,2 June 1985 83935

Connecting Terminals and Workstations to Guardian 90 Systems E. Siegel TSR 8,2 Summer 1992 69848

Expand High-Performance Solutions D. Smith TSR 9,3 Summer 1993 89806

Introduction to MUL TILAN A. Coyle TSR 4,1 Feb. 1988 11078

Overview of the MUL TILAN Server A.Rowe TSR 4,1 Feb. 1988 11078

SNAX/APC: Tandem's New SNA Software for Distributed Processing B. Grantham TSR 3,1 March 1987 83939

SNAX/HLS: An Overview S. Saltwick TSR 1,2 June 1985 83935

TLAM: A Connectivity Option for Expand K. MacKenzie TSR 7,1 April 1991 46988

Using the MUL TILAN Application Interfaces M. Berg, A. Rowe TSR 4,1 Feb. 1988 11078

OCTOBER 1994 TANDEM SYSTEMS REVIEW 61

Volume, Publication Part
Article title Author(s) Publication Issue date number

DATA MANAGEMENT

A Comparison of the BOO DP1 and DP2 Disc Processes T. Schachter TSR 1,2 June 1985 83935

A New Hash-Based Join Algorithm for Nonstop SQUMP H. Zeller TSR 10,3 July 1994 104400

An Overview of Nonstop SQUMP F. Ho, R. Jain, J. Troisi TSR 10,3 July 1994 104400

An Overview of Nonstop SQL Release 2 M. Pong TSR 6,2 Oct. 1990 46987

Batch Processing in Online Enterprise Computing T. Keefauver TSR 6,2 Oct. 1990 46987

Concurrency Control Aspects of Transaction Design W. Senf TSR 6,1 March 1990 32968

Converting Database Files from ENSCRIBE to Nonstop SQL W. Weikel TSR 6,1 March 1990 32986

DP1-DP2 File Conversion: An Overview J. Tate TSR 2,1 Feb. 1986 83936

Determining FCP Conversion Time J. Tate TSR 2,1 Feb. 1986 83936

DP2's Efficient Use of Cache T. Schachter TSR 1,2 June 1985 83935

DP2 Highlights K. Carlyle, L. McGowan TSR 1,2 June 1985 83935

DP2 Key-sequenced Files T. Schachter TSR 1,2 June 1985 83935

Enhancing Availability, Manageability, and Performance With
Non Stop TM/MP M. Chandra, D. Eicher TSR 10,3 July 1994 104400

Gateways to Nonstop SQL D. Slutz TSR 6,2 Oct. 1990 46987

High-Performance SQL Through Low-Level System Integration A. Borr TSR 4,2 July 1988 13693

Improvements in TMF T. Lemberger TSR 1,2 June 1985 83935

Issues in DSS Database Design R. Glasstone TSR 10,4 Oct. 1994 104402

Late Binding and High Availability Compilation in Nonstop SOUMP S. Sharma TSR 10,4 Oct. 1994 104402

NetBatch: Managing Batch Processing on Tandem Systems D. Wakashige TSR 5,1 April 1989 18662

NetBatch-Plus: Structuring the Batch Environment G. Earle, D. Wakashige TSR 6,1 March 1990 32986

Nonstop Availability and Database Configuration Operations J. Troisi TSR 10,3 July 1994 104400

Nonstop ODBC Server H. Mahbod, D. Slutz TSR 10,3 July 1994 104400

Nonstop SQL: The Single Database Solution J. Cassidy, T. Kocher TSR 5,2 Sept. 1989 28152

Nonstop SQL Data Dictionary R. Holbrook, D. Tsou TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Basic Concepts M. Pong TSR 4,2 July 1988 13693

Nonstop SQL Optimizer: Query Optimization and User Influence M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Reliability C. Fenner TSR 4,2 July 1988 13693

Online Information Processing J. Viescas TSR 9,1 Winter 1993 89804

Online Reorganization of Key-Sequenced Tables and Files G. Smith TSR 6,2 Oct. 1990 46987

Optimizing Batch Performance T. Keefauver TSR 5,2 Sept. 1989 28152

Overview of Nonstop SQL H. Cohen TSR 4,2 July 1988 13693

Parallelism in Nonstop SQL Release 2 M. Moore, A. Sodhi TSR 6,2 Oct. 1990 46987

The Nonstop SQL Release 2 Benchmark S. Englert, J. Gray, TSR 6,2 Oct. 1990 46987
T. Kocher, P. Shah

The Outer Join in Nonstop SQL J. Vaishnav TSR 6,2 Oct. 1990 46987

The Relational Data Base Management Solution G.Ow TJ 2,1 Winter 1984 83931

Tandem's NonStop SOL Benchmark Tandem Pertormance Group TSR 4,1 Feb. 1988 11078

The TRANSFER Delivery System for Distributed Applications S. Van Pelt TJ 2,2 Spring 1984 83932

TMF Autorollback: A New Recovery Feature M. Pong TSR 1,1 Feb. 1985 83934

DECISION SUPPORT SYSTEMS

An Overview of Nonstop SOUMP F. Ho, R. Jain, J. Troisi TSR 10,3 July 1994 104400

Implementing Decision Support Systems W. Pearson TSR 10,4 Oct. 1994 104402

Issues in DSS Database Design R. Glasstone TSR 10,4 Oct. 1994 104402

Nonstop ODBC Server H. Mahbod, D. Slutz TSR 10,3 July 1994 104400

Online Information Processing J. Viescas TSR 9,1 Winter 1993 89804

The DAL Server: Client/Server Access to Tandem Databases W. Schlansky, TSR 9,1 Winter 1993 89804
J. Schrengohst

The RESPOND OL TP Business Management System H. Bolling, W. Bronson TSR 9,1 Winter 1993 89804
for Manufacturing

62 TANDEM SYSTEMS REVIEW OCTOBER 1994

Volume, Publication Part
Article title Author(s) Publication Issue date number

OBJECT-ORIENTED TECHNOLOGY

Extending the Client/Server Model With Object-Oriented Technology T. Rohner TSR 10,1 Jan. 1994 104396

OPERA TING SYSTEMS

Application Code Conversion for D-Series Systems K. Liu TSR 9,2 Spring 1993 89805

Highlights of the BOO Software Release K. Coughlin, R. Montevaldo TSR 1,2 June 1985 83935

Increased Code Space A. Jordan TSR 1,2 June 1985 83935

Managing System Time Under GUARDIAN 90 E. Nellen TSR 2,1 Feb. 1986 83936

Migration Planning for D-Series Systems S. Kuukka TSR 9,2 Spring 1993 89805

New GUARDIAN 90 Time-keeping Facilities E. Nellen TSR 1,2 June 1985 83935

New Process-timing Features S. Sharma TSR 1,2 June 1985 83935

Nonstop II Memory Organization and Extended Addressing D. Thomas TJ 1,1 Fall 1983 83930

Overview of the COO Release L. Marks TSR 4,1 Feb. 1988 11078

Overview of the D-Series Guardian 90 Operating System W. Bartlett TSR 9,2 Spring 1993 89805

Overview of the NonStop-UX Operating System for the Integrity S2 P. Norwood TSR 7.1 April 1991 46988

Robustness to Crash in a Distributed Data Base: A. Borr TSR 1,2 June 1985 83935
A Nonshared-memory Approach

The GUARDIAN Message System and How to Design for It M. Chandra TSR 1,1 Feb. 1985 83934

The Nonstop Himalaya K10000 Interprocessor Bus R. Jardine, S. Hamilton, TSR 10,2 April 1994 104398
K. Krishnakumar

The Tandem Global Update Protocol R. Carr TSR 1,2 June 1985 83935

PERFORMANCE ANO CAPACITY PLANNING

A Performance Retrospective P. Oleinick, P. Shah TSR 2,3 Dec. 1986 83938

Buffering for Better Application Performance R. Mattran TSR 2,1 Feb. 1986 83936

Capacity Planning Concepts R. Evans TSR 2,3 Dec. 1986 83938

Capacity Planning With TCM W. Highleyman TSR 7,2 Oct. 1991 65248

COO TMDS Performance J. Mead TSR 4,1 Feb. 1988 11078

Credit-authorization Benchmark for High Performance and T. Chmiel, T. Houy TSR 2,1 Feb. 1986 83936
Linear Growth

Debugging Accelerated Programs on TNS/R Systems D. Gressler TSR 8,1 Spring 1992 65250

DP2 Performance J. Enright TSR 1,2 June 1985 83935

Estimating Host Response Time in a Tandem System H. Horwitz TSR 4,3 Oct. 1988 15748

Expand High-Performance Solutions D. Smith TSR 9,3 Summer 1993 89806

FASTSORT: An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938
A. Tsukerman, S. Uren,
B. Vaughan

Getting Optimum Performance from Tandem Tape Systems A. Khatri TSR 2,3 Dec. 1986 83938

How to Set Up a Performance Data Base with M. King TSR 2,3 Dec. 1986 83938
MEASURE and ENFORM

Implementing a Systems Management Improvement Program J. Dagenais TSR 9,4 Fall 1993 89807

Improved Performance for BACKUP2 and RESTORE2 A. Khatri, M. McCline TSR 1,2 June 1985 83935

Improving Performance on TNS/R Systems With the Accelerator M. Blanchet TSR 8,1 Spring 1992 65250

MEASURE: Tandem's New Performance Measurement Tool D. Dennison TSR 2,3 Dec. 1986 83938

Measuring DSM Event Management Performance M. Stockton TSR 8,1 Spring 1992 65250

Message System Performance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938

Message System Performance Tests S. Uren TSR 2,3 Dec. 1986 83938

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

Nonstop NET/MASTER: Configuration and Performance Guidelines M. Stockton TSR 9,4 Fall 1993 89807

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938

Optimizing Sequential Processing on the Tandem System R. Welsh TJ 2,3 Summer 1984 83933

Pathway TCP Enhancements for Application Run-Time Support R. Vannucci TSR 7,1 April 1991 46988

OCTOBER 1994 TANDEM SYSTEMS REVIEW 63

Volume, Publication Part
Article title Author(s) Publication Issue date number

PERFORMANCE AND CAPACITY PLANNING (cont.)

Performance Benefits of Parallel Query Execution and Mixed S. Englert, J. Gray TSR 6,2 Oct. 1990 46987
Workload Support in Nonstop SQL Release 2

Performance Considerations for Application Processes R. Glasstone TSR 2,3 Dec. 1986 83938

Performance Measurements of an ATM Network Application N. Cabell, D. Mackie TSR 2,3 Dec. 1986 83938

Predicting Response Time in On-line Transaction Processing Systems A. Khatri TSR 2,2 June 1986 83937

RDF Enhancements for High Availability and Performance M. Mosher TSR 10,3 July 1994 104400

Sizing Cache for Applications that Use B-series DP1 and TMF P.Shah TSR 2,2 June 1986 83937

Sizing the Spooler Collector Data File H. Norman TSR 4,1 Feb. 1988 11978

Tandem's 5200 Optical Storage Facility: Performance and S. Coleman TSR 5,1 April 1989 18662
Optimization Considerations

Tandem's Approach to Fault Tolerance B. Ball, W. Bartlett, TSR 4,1 Feb. 1988 11078
S. Thompson

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

The ENCORE Stress Test Generator for On-line Transaction S. Kosinski TJ 2,1 Winter 1984 83931
Processing Applications

The PATHWAY TCP: Performance and Tuning J. Vatz TSR 1,1 Feb. 1985 83934

The Performance Characteristics of Tandem NonStop Systems J. Day TJ 1,1 Fall 1983 83930

Understanding PATHWAY Statistics R. Wong TJ 2,2 Spring 1984 83932

PERIPHERALS

5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940

An Introduction to DYNAMITE Workstation Host Integration S. Kosinski TSR 1,2 June 1985 83935

Application Profile: Storing Macintosh Graphics on the D. Broyles TSR 9,3 Summer 1993 89806
Tandem 5200 Optical Storage Facility

Data-Encoding Technology Used in the XLS Storage Facility D.S. Ng TSR 2,2 June 1986 83937

Data-Window Phase-Margin Analysis A. Painter, H. Pham, TSR 2,2 June 1986 83937
H. Thomas

Introducing the 3207 Tape Controller S. Chandran TSR 1,2 June 1985 83935

Peripheral Device Interfaces J. Blakkan TSR 3,2 Aug. 1987 83940

Plated Media Technology Used in the XLS Storage Facility D.S. Ng TSR 2,2 June 1986 83937

Streaming Tape Drives J. Blakkan TSR 3,2 Aug. 1987 83940

Terminal Selection E. Siegel TSR 8,2 Summer 1992 69848

The 5200 Optical Storage Facility: A Hardware Perspective A. Patel TSR 5,1 April 1989 18662

The 6100 Communications Subsystem: A New Architecture R. Smith TJ 2,1 Winter 1984 83931

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

The DYNAMITE Workstation: An Overview G. Smith TSR 1,2 June 1985 83935

The Model 6VI Voice Input Option: Its Design and Implementation B. Huggett TJ 2,3 Summer 1984 83933

The Role of Optical Storage in Information Processing L. Sabaroff TSR 3,2 Aug. 1987 83940

The VB Disc Storage Facility: Setting a New Standard for M. Whiteman TSR 1,2 June 1985 83935
On-line Disc Storage

64 TANDEM SYSTEMS REVIEW OCTOBER 1994

Volume, Publication Part
Article title Author(s) Publication Issue date number

PROCESSORS

Fault Tolerance in the Nonstop Cyclone System S. Chan, R. Jardine TSR 7,1 April 1991 46988

A Hardware Overview of the Nonstop Himalaya K10000 Server C. Kong TSR 10,1 Jan. 1994 104396

Nonstop CLX: Optimized for Distributed On-Line D. Lenoski TSR 5,1 April 1989 18662
Transaction Processing

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938

Overview of Tandem Nonstop Series/RISC Systems L. Faby, R. Mateosian TSR 8,1 Spring 1992 65250

The High-Performance Nonstop TXP Processor W. Bartlett, T. Houy, TJ 2,1 Winter 1984 83931
Transaction Processing D. Meyer

The Nonstop Himalaya K10000 Interprocessor Bus R. Jardine, S. Hamilton, TSR 10,2 April 1994 104398
K. Krishnakumar

The Nonstop TXP Processor: A Powerful Design for On-line P. Oleinick TJ 2,3 Summer 1984 83933
Transaction Processing

The VLX: A Design for Serviceability J. Allen, R. Boyle TSR 3,1 March 1987 83939

SECURITY

Dial-In Security Considerations P. Grainger TSR 7,2 Oct.1991 65248

Distributed Protection with SAFEGUARD T.Chou TSR 2,2 June 1986 83937

Enhancing System Security With Safeguard C. Gaydos TSR 7,1 April 1991 46988

SYSTEM CONNECTIVITY

Basic Uses and New Features of Extended GOS A. Hotea TSR 10,1 Jan. 1994 104396

Building Open Systems Interconnection with OSI/AS and OSI/TS R. Smith TSR 6,1 March 1990 32986

Connecting Terminals and Workstations to Guardian 90 Systems E. Siegel TSR 8,2 Summer 1992 69848

Implementing Client/Server Using RSC M. lem, T. Kocher TSR 8,3 Fall 1992 89803

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

Terminal Connection Alternatives for Tandem Systems J. Simonds TSR 5,1 April 1989 18662

Terminal Selection E. Siegel TSR 8,2 Summer 1992 69848

The OSI Model: Overview, Status, and Current Issues A. Dunn TSR 5,1 April 1989 18662

SYSTEM MANAGEMENT

Configuring Tandem Disk Subsystems S. Sitler TSR 2,3 Dec. 1986 83938

Data Replication in Tandem's Distributed Name Service T. Eastep TSR 4,3 Oct. 1988 15748

Enhancements to TMDS L. White TSR 3,2 Aug. 1987 83940

Event Management Service Design and Implementation H. Jordan, R. McKee, TSR 4,3 Oct. 1988 15748
R. Schue!

Implementing a Systems Management Improvement Program J. Dagenais TSR 9,4 Fall 1993 89807

Instrumenting Applications for Effective Event Management J. Dagenais TSR 7,2 Oct.1991 65248

Introducing TMDS, Tandem's New On-line Diagnostic System J. Troisi TSR 1,2 June 1985 83935

Measuring DSM Event Management Performance M. Stockton TSR 8,1 Spring 1992 65250

Network Statistics System M. Miller TSR 4,3 Oct. 1988 15748

Nonstop NET/MASTER: Configuration and Performance Guidelines M. Stockton TSR 9,4 Fall 1993 89807

Nonstop NET/MASTER: Event Management Architecture M. Stockton TSR 9,4 Fall 1993 89807

Nonstop NET/MASTER: Event Processing Costs and M. Stockton TSR 9,4 Fall 1993 89807
Sizing Calculations

Overview of DSM P. Homan, B. Malizia, TSR 4,3 Oct. 1988 15748
E. Reisner

SCP and SCF: A General Purpose Implementation of the T. Lawson TSR 4,3 Oct. 1988 15748
Subsystem Programmatic Interface

RDF: An Overview J. Guerrero TSR 7,2 Oct. 1991 65248

RDF Enhancements for High Availability and Performance M. Mosher TSR 10,3 July 1994 104400

RDF Synchronization F. Jongma, W. Senf TSR 8,2 Summer 1992 69848

OCTOBER 1994 TANDEM SYSTEMS REVIEW 65

Volume, Publication Part
Article title Author(s) Publication Issue date number

SYSTEM MANAGEMENT (cont.)

Tandem's Subsystem Programmatic Interface G.Tom TSR 4,3 Oct. 1988 15748

Using FOX to Move a Fault-tolerant Application C. Breighner TSR 1,1 Feb. 1985 83934

Using the Subsystem Programmatic Interface and Event K. Stobie TSR 4,3 Oct. 1988 15748
Management Services

VIEWPOINT Operations Console Facility R. Hansen, G. Stewart TSR 4,3 Oct. 1988 15748

VIEWSYS: An On-line System-resource Monitor D. Montgomery TSR 1,2 June 1985 83935

Writing Rules for Automated Operations J. Collins TSR 7,2 Oct. 1991 65248

UTILITIES

Enhancements to PS MAIL R. Funk TSR 3,1 March 1987 83939

66 TANDEM SYSTEMS REVIEW OCTOBER 1994

Index by Product
Volume, Publication Part

Article title Author(s) Publication Issue date number

3207 TAPE CONTROLLER

Introducing the 3207 Tape Controller S. Chandran TSR 1,2 June 1985 83935

5120 TAPE SUBSYSTEM

5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940

5200 OPTICAL STORAGE

Application Profile: Storing Macintosh Graphics on the D. Broyles TSR 9,3 Summer 1993 89806
Tandem 5200 Optical Storage Facility

Tandem's 5200 Optical Storage Facility: Performance and S. Coleman TSR 5,1 April 1989 18662
Optimization Considerations

The 5200 Optical Storage Facility: A Hardware Perspective A. Patel TSR 5,1 April 1989 18662

The Role of Optical Storage in Information Processing L. Sabaroff TSR 4,1 Feb. 1988 11078

6100 COMMUNICATIONS SUBSYSTEM

The 6100 Communications Subsystem: A New Architecture R. Smith TJ 2,1 Winter 1984 83931

6530 TERMINAL

The Model 6VI Voice Input Option: Its Design and Implementation B. Huggett TJ 2,3 Summer 1984 83933

6600 AND TCC6820 COMMUNICATIONS CONTROLLERS

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

BASIC

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984 83932

C

State-of-the-art C Compiler E. Kit TSR 2,2 June 1986 83937

CAM

Automating Call Centers With CAM W. Choi TSR 10,2 April 1994 104398

CIS

Customer Information Service J. Massucco TSR 3,1 March 1987 83939

CLX

Nonstop CLX: Optimized for Distributed On-Line D. Lenoski TSR 5,1 April 1989 18662
Transaction Processing

COBOL85

Tandem's New COBOL85 D. Nelson TSR 2,1 Feb. 1986 83936

COMINT(CI)

Writing a Command Interpreter D. Wong TSR 1,2 June 1985 83935

CYCLONE

Fault Tolerance in the Nonstop Cyclone System S. Chan, R. Jardine TSR 7,1 April 1991 46988

DAL SERVER

The DAL Server: Client/Server Access to Tandem Databases W. Schlansky, TSR 9,1 Winter 1993 89804
J. Schrengohst

OCTOBER 1994 TANDEM SYSTEMS REVIEW 67

Volume, Publication Part
Article title Author(s) Publication Issue date number

DP1 AND DP2

A Comparison of the BOO DP1 and DP2 Disc Processes T. Schachter TSR 1,2 June 1985 83935

Determining FCP Conversion Time J. Tate TSR 2,1 Feb. 1986 83936

DP1 -DP2 File Conversion: An Overview J. Tate TSR 2,1 Feb. 1986 83936

DP2 Highlights K. Carlyle, L. McGowan TSR 1,2 June 1985 83935

DP2 Key-sequenced Files T. Schachter TSR 1,2 June 1985 83935

DP2 Performance J. Enright TSR 1,2 June 1985 83935

DP2's Efficient Use of Cache T. Schachter TSR 1,2 June 1985 83935

Sizing Cache for Applications that Use B-series DP1 and TMF P.Shah TSR 2,2 June 1986 83937

DSM

Data Replication in Tandem's Distributed Name Service T. Eastep TSR 4,3 Oct. 1988 15748

Event Management Service Design and Implementation H. Jordan, R. McKee, TSR 4,3 Oct. 1988 15748
R. Schue!

Instrumenting Applications for Effective Event Management J. Dagenais TSR 7,2 Oct. 1991 65248

Measuring DSM Event Management Performance M. Stockton TSR 8,1 Spring 1992 65250

Network Statistics System M. Miller TSR 4,3 Oct. 1988 15748

Overview of DSM P. Homan, B. Malizia, TSR 4,3 Oct. 1988 15748
E. Reisner

SCP and SCF: A General Purpose Implementation of the T. Lawson TSR 4,3 Oct. 1988 15748
Subsystem Programmatic Interface

Tandem's Subsystem Programmatic Interface G. Tom TSR 4,3 Oct. 1988 15748

Using the Subsystem Programmatic Interface and Event K. Stobie TSR 4,3 Oct. 1988 15748
Management Services

VIEWPOINT Operations Console Facility R. Hansen, G. Stewart TSR 4,3 Oct. 1988 15748

Writing Rules for Automated Operations J. Collins TSR 7,2 Oct. 1991 65248

DYNAMITE

An Introduction to DYNAMITE Workstation Host Integration S. Kosinski TSR 1,2 June 1985 83935

The DYNAMITE Workstation: An Overview G. Smith TSR 1,2 June 1985 83935

ENABLE

The ENABLE Program Generator for Multifile Applications B. Chapman, J. Zimmerman TSR 1,1 Feb. 1985 83934

ENCOMPASS

The Relational Data Base Management Solution G.Ow TJ 2,1 Winter 1984 83931

ENCORE

The ENCORE Stress Test Generator for On-line Transaction S. Kosinski TJ 2,1 Winter 1984 83931
Processing Applications

ENSCRIBE

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986

EXPAND

Expand High-Performance Solutions D. Smith TSR 9,3 Summer 1993 89806

FASTSORT

FASTSORT: An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938
A. Tsukerman, S. Uren,
B. Vaughan

68 TANDEM SYSTEMS REVIEW OCTOBER 1994

Volume, Publication Part
Article title Author(s) Publication Issue date number

FOX

Changes in FOX N. Donde TSR 1,2 June 1985 83935

Using FOX to Move a Fault-tolerant Application C. Breighner TSR 1,1 Feb. 1985 83934

FUP

Online Reorganization of Key-Sequenced Tables and Files G. Smith TSR 6,2 Oct. 1990 46987

GOS

Basic Uses and New Features of Extended GOS A. Hotea TSR 10,1 Jan. 1994 104396

GUARDIAN 90

Application Code Conversion for D-Series Systems K. Liu TSR 9,2 Spring 1993 89805

BOO Software Manuals S. Olds TSR 1,2 June 1985 83935

COO Software Manuals E. Levi TSR 4,1 Feb. 1988 11078

Highlights of the BOO Software Release K. Coughlin, R. Montevaldo TSR 1,2 June 1985 83935

Improved Performance for BACKUP2 and RESTORE2 A. Khatri, M. McCline TSR 1,2 June 1985 83935

Increased Code Space A. Jordan TSR 1,2 June 1985 83935

Managing System Time Under GUARDIAN 90 E. Nellen TSR 2,1 Feb. 1986 83936

Message System Performance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938

Message System Performance Tests S. Uren TSR 2,3 Dec. 1986 83938

Migration Planning for D-Series Systems S. Kuukka TSR 9,2 Spring 1993 89805

New GUARDIAN 90 Time-keeping Facilities E. Nellen TSR 1,2 June 1985 83935

New Process-timing Features S. Sharma TSR 1,2 June 1985 83935

Nonstop II Memory Organization and Extended Addressing D. Thomas TJ 1,1 Fall 1983 83930

Overview of the COO Release L. Marks TSR 4,1 Feb. 1988 11078

Overview of the D-Series Guardian 90 Operating System W. Bartlett TSR 9,2 Spring 1993 89805

Robustness lo Crash in a Distributed Data Base: A. Borr TSR 1,2 June 1985 83935
A Nonshared-memory Multiprocessor Approach

Tandem's Approach to Fault Tolerance B. Ball, W. Bartlett, TSR 4,1 Feb. 1988 11078
S. Thompson

The GUARDIAN Message System and How to Design for It M. Chandra TSR 1,1 Feb. 1985 83934

The Tandem Global Update Protocol R. Carr TSR 1,2 June 1985 83935

HIMALAYA

A Hardware Overview of the Nonstop Himalaya K10000 Server C. Kong TSR 10,1 Jan. 1994 104396

The Nonstop Himalaya K10000 Interprocessor Bus R. Jardine, S. Hamilton, TSR 10,2 April 1994 104398
K. Krishnakumar

INTEGRITY S2

Overview of the NonStop-UX Operating System for the Integrity S2 P. Norwood TSR 7,1 April 1991 46988

MEASURE

How to Set Up a Performance Data Base with MEASURE M. King TSR 2,3 Dec. 1986 83938
and ENFORM

MEASURE: Tandem's New Performance Measurement Tool D. Dennison TSR 2,3 Dec. 1986 83938

MULTILAN

Introduction to MUL TILAN A. Coyle TSR 4,1 Feb. 1988 11078

Overview of the MUL TILAN Server A.Rowe TSR 4,1 Feb. 1988 11078

Using the MUL TILAN Application Interfaces M. Berg, A. Rowe TSR 4,1 Feb. 1988 11078

OCTOBER 1994 TANDEM SYSTEMS REVIEW 69

Volume, Publication Part
Article title Author(s) Publication Issue date number

NETBATCH-PLUS

NetBatch: Managing Batch Processing on Tandem Systems D. Wakashige TSR 5,1 April 1989 18662

NetBatch-Plus: Structuring the Batch Environment G. Earle, D. Wakashige TSR 6,1 March 1990 32986

NONSTOP NET/MASTER

Nonstop NET/MASTER: Configuration and Performance Guidelines M. Stockton TSR 9,4 Fall 1993 89807

Nonstop NET/MASTER: Event Management Architecture M. Stockton TSR 9,4 Fall 1993 89807

Nonstop NET/MASTER: Event Processing Costs and M. Stockton TSR 9,4 Fall 1993 89807
Sizing Calculations

NONSTOP ODBC SERVER

Nonstop ODBC Server H. Mahbod, D. Slutz TSR 10,3 July 1994 104400

NONSTOP SQUMP

A New Hash-Based Join Algorithm for Nonstop SQUMP H. Zeller TSR 10,3 July 1994 104400

An Overview of Nonstop SQUMP F. Ho, R. Jain, J. Troisi TSR 10,3 July 1994 104400

An Overview of Nonstop SQL Release 2 M. Pong TSR 6,2 Oct. 1990 46987

Concurrency Control Aspects of Transaction Design W. Senf TSR 6,1 March 1990 32986

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986

Gateways to Nonstop SQL D. Slutz TSR 6,2 Oct. 1990 46987

High-Performance SOL Through Low-Level System Integration A. Borr TSR 4,2 July 1988 13693

Late Binding and High Availability Compilation in Nonstop SOUMP S. Sharma TSR 10,4 Oct. 1994 104402

Nonstop Availability and Database Configuration Operations J. Troisi TSR 10,3 July 1994 104400

Nonstop SQL Data Dictionary R. Holbrook, D. Tsou TSR 4,2 July 1988 13693

Nonstop SQL: The Single Database Solution J. Cassidy, T. Kocher TSR 5,2 Sept. 1989 28152

Nonstop SQL Optimizer: Basic Concepts M. Pong TSR 4,2 July 1988 13693

Nonstop SQL Optimizer: Query Optimization and User Influence M. Pong TSR 4,2 July 1988 13693

Nonstop SQL Reliability C. Fenner TSR 4,2 July 1988 13693

Overview of Nonstop SQL H.Cohen TSR 4,2 July 1988 13693

Parallelism in Nonstop SQL Release 2 M. Moore, A. Sodhi TSR 6,2 Oct. 1990 46987

Performance Benefits of Parallel Query Execution and Mixed S. Englert, J. Gray TSR 6,2 Oct. 1990 46987
Workload Support in Nonstop SQL Release 2

Tandem's Nonstop SQL Benchmark Tandem Performance Group TSR 4,1 Feb. 1988 11078

The Nonstop SQL Release 2 Benchmark S. Englert, J. Gray, TSR 6,2 Oct. 1990 46987
T. Kocher, P. Shah

The Outer Join in Nonstop SQL J. Vaishnav TSR 6,2 Oct. 1990 46987

NONSTOP TM/MP

Improvements in TMF T. Lemberger TSR 1,2 June 1985 83935

Enhancing Availability, Manageability, and Performance With
Nonstop TM/MP M. Chandra, D. Eicher TSR 10,3 July 1994 104400

TMF and the Multi-Threaded Requester T. Lemberger TJ 1,1 Fall 1983 83930

TMF Autorollback: A New Recovery Feature M. Pong TSR 1,1 Feb. 1985 83934

OSI

Building Open Systems Interconnection with OSI/AS and OSI/TS R. Smith TSR 6,1 March 1990 32986

The OSI Model: Overview, Status, and Current Issues A. Dunn TSR 5,1 April 1989 18662

PATHFINDER

PATHFINDER-An Aid for Application Development S. Benett TJ 1,1 Fall 1983 83930

70 TANDEM SYSTEMS REVIEW OCTOBER 1994

Volume, Publication Part
Article title Author(s) Publication Issue date number

PATHWAY

A New Design for the PATHWAY TCP R. Wong TJ 2,2 Spring 1984 83932

PATHWAY IDS: A Message-level Interface to Devices and Processes M. Anderton, M. Noonan TSR 2,2 June 1986 83937

Pathway TCP Enhancements for Application Run-Time Support R. Yannucci TSR 7,1 April 1991 46988

The PATHWAY TCP: Performance and Tuning J. Vatz TSR 1,1 Feb. 1985 83934

Understanding PATHWAY Statistics R. Wong TJ 2,2 Spring 1984 83932

POET

Designing Client/Server Applications for OL TP on W. Culman TSR 8,3 Fall 1992 89803
Guardian 90 Systems

PS MAIL

Enhancements to PS MAIL R. Funk TSR 3,1 March 1987 83939

RDF

RDF: An Overview J. Guerrero TSR 7,2 Oct. 1991 65248

RDF Enhancements for High Availability and Performance M. Mosher TSR 10,3 July 1994 104400

RDF Synchronization F. Jongma, W. Senf TSR 8,2 Summer 1992 69848

RESPOND

The RESPOND OL TP Business Management System H. Bolling, W. Bronson TSR 9,1 Winter 1993 89804
for Manufacturing

RSC

Implementing Client/Server Using RSC M. lem, T. Kocher TSR 8,3 Fall 1992 89803

SAFEGUARD

Dial-In Security Considerations P. Grainger TSR 7,2 Oct. 1991 65248

Distributed Protection with SAFEGUARD T. Chou TSR 2,2 June 1986 83937

Enhancing System Security With Safeguard C. Gaydos TSR 7,1 April 1991 46988

SNAX

An Overview of SNAX/CDF M. Turner TSR 5,2 Sept. 1989 28152

A SNAX Passthrough Tutorial D. Kirk TJ 2,2 Spring 1984 83932

SNAX/APC: Tandem's New SNA Software for Distributed Processing B. Grantham TSR 3,1 March 1987 83939

SNAX/HLS: An Overview S. Saltwick TSR 1,2 June 1985 83935

SPOOLER

Sizing the Spooler Collector Data File H. Norman TSR 4,1 Feb. 1988 11078

TACL

Debugging TACL Code L. Palmer TSR 4,2 July 1988 13693

TACL, Tandem's New Extensible Command Language J. Campbell, R. Glascock TSR 2,1 Feb. 1986 83936

TAL

New TAL Features C. Lu, J. Murayama TSR 2,2 June 1986 83837

TCM

Capacity Planning With TCM W. Highleyman TSR 7,2 Oct. 1991 65248

TLAM

TLAM: A Connectivity Option for Expand K. MacKenzie TSR 7,1 April 1991 46988

TMDS

COO TMDS Performance J. Mead TSR 4,1 Feb. 1988 11078

Enhancements to TMDS L. White TSR 3,2 Aug. 1987 83940

Introducing TMDS, Tandem's New On-line Diagnostic System J. Troisi TSR 1,2 June 1985 83935

TNS/R

Debugging Accelerated Programs on TNS/R Systems D. Gressler TSR 8,1 Spring 1992 65250

Improving Performance on TNS/R Systems With the Accelerator M. Blanchet TSR 8,1 Spring 1992 65250

Overview of Tandem Nonstop Series/RISC Systems L. Faby, R. Mateosian TSR 8,1 Spring 1992 65250

OCTOBER 1994 TANDEM SYSTEMS REVIEW 71

Volume, Publication Part
Article title Author(s) Publication Issue date number

TRANSFER

The TRANSFER Delivery System for Distributed Applications S. Van Pelt TJ 2,2 Spring 1984 83932

TXP

The High-Periormance Nonstop TXP Processor W. Bartlett, T. Houy, TJ 2,1 Winter 1984 83931
D. Meyer

The Nonstop TXP Processor: A Powerful Design for On-line P. Oleinick TJ 2,3 Summer 1984 83933
Transaction Processing

VS

The V8 Disc Storage Facility: Setting a New Standard for M. Whiteman TSR 1,2 June 1985 83935
On-line Disc Storage

VIEWSYS

VIEWSYS: An On-line System-resource Monitor D. Montgomery TSR 1,2 June 1985 83935

VLX

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938

The VLX: A Design for Serviceability J. Allen, R. Boyle TSR 3,1 March 1987 83939

XLS

Data-encoding Technology Used in the XL8 Storage Facility D.S.Ng TSR 2,2 June 1986 83937

Plated Media Technology Used in the XL8 Storage Facility D.S.Ng TSR 2,2 June 1986 83937

72 TANDEM SYSTEMS REVIEW OCTOBER 1994

TandemSystemsReviewReaderSurvey
The purpose of this questionnaire is to help the Tandem Systems Review staff select topics for
publication. Postage is prepaid when mailed in the United States. Readers outside the U.S. should
send their replies to their nearest Tandem sales office.

1. How useful is each article in this issue?

Product Update
O I D Indispensable 02 D Very 03 D Somewhat 04 D Not at all

Implementing Decision Support Systems
05 [J Indispensable 06 D Very 07 D Somewhat 08 D Not at all

Issues in DSS Database Design
09 D Indispensable IO D Very 11 D Somewhat 12 D Not at all

Late Binding and High Availability Compilation in NonStop SQLIMP
13 D Indispensable 14 D Very 15 D Somewhat 16 D Not at aJI

Technical Information and Education
17 D Indispensable 18 D Very 19 [7 Somewhat 20 D Not at all

2. I specifically would like to see more articles on (select one):

21 [7 Overview discussions of new products and enhancements 22 D Performance and tuning information

23 D High-level overviews on Tandem's approach to solutions 24 D Application design and customer profiles

25 □ Technical discussions of product internals 26 D Strategic information and statements of direction

3. Your title or position:

28 D President, VP, Director

31 [] MIS manager

29 D Systems analyst

32 D Software developer

30 D System operator

33 D End user

34 D Other _____________________________________ _

4. Your association with Tandem:

35 □ Tandem customer 36 D Tandem employee 37 □ Third-party vendor 38 □ Consultant

5. Comments

NAME

COMPANY NAME

ADDRESS

10194

"'FOLD

T FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 482

POSTAGE WILL BE PAID BY ADDRESSEE

TANDEM SYSTEMS REVIEW
LOC 208-65

CUPERTINO, CA U.S.A.

TANDEM COMPUTERS INCORPORATED
19333 VALLCO PARKWAY
CUPERTINO, CA 95014-9862

II ii 11il ii ill 11111ill ii 1ill ii 11l1il 11ll1111l1l1ll11I

A FOLD

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

T FOLD

4lTANbEM
Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, CA 95014-2599

ParfNo. 104402
10/94 Printed in USA

