
T A N D E M
COt'ZPORATE

INFORMATION CENTER

SYSTEMS REVIEW
-. ,, l '; ,

TMF Autorollback:
A New Recovery Feature

The ENABLE Program Generator
for Multiple Applications

The PATHWAY TCP:
Performance and Tuning

The GUARDIAN Message System
and How to Design for It

Using FOX to Move
a Fault-tolerant Apflication

Tandem Information Center

For Reference

~ ll!l ,.1

INTRODUCTION

T
his is the first issue of the Tandem
Systems Review. The purpose of
this publication is to provide
programmer-analysts who use

Tandem computer systems with useful
technical information about Tandem's
software releases and products. This infor
mation includes descriptions of product
design, implementation, and performance;
practical information to help users install,
use, and tune products; and support infor
mation, such as software release plans,
software manual information, and course
offerings. From time to time, the Review
may also contain technical customer pro
files and articles on industry topics of rele
vance to users of Tandem systems.

Subscriptions to the Tandem Systems
Review are free. Its publication schedule
will be coordinated with Tandem product
releases rather than following a regular
quarterly schedule. Two issues are planned
to support the BOO software release and
new product releases in the first half of
1985. Volume 1, Number 2 is planned for
April, and Volume 1, Number 3 for July.

I hope you'll find the Tandem Systems
Review useful and interesting. Please send
me your comments and suggestions.

Carolyn Turnbull White
Editor

Volume I, Number I, February 1985

Editor
Carolyn Turnbull White
Technical Advisor
Geary Arceneaux
Copy Editor
Sarah Rood
Art Director
Terri Hill

Designer
Joanne Danforth

Cover Art
Stephen Stavast
John Tomasini

The Tandem Systems Review is
published by Tandem Computers
Incorporated.

Purpose: The Tandem Systems
Review publishes technical informa
tion about Tandem software releases
and products. Its purpose is to help
programmer-analysts who use our
computer systems to plan for, install,
use, and tune Tandem products.

Subscription additions and changes:
Subscriptions are free. To add names
or make corrections to the distribution
data base, requests within the U.S.
should be sent to Tandem Computers
Incorporated, Sales Administration,
19191 Valko Parkway, Cupertino,
CA 95014. Requests outside the U.S.
should be sent to the local Tandem
sales office.

Comments: The editor welcomes
suggestions for content and format.
Please send them to the Tandem
Systems Review, I 309 South Mary
Avenue, Sunnyvale, CA 94087.

Copyright @ 1985 by Tandem
Computers Incorporated. All rights
reserved.

No part of thi-. document may be
reproduced in any form, including
photocopying or translation to
another language, without the prior
written consent of Tandem Computers
l ncorporated.

The following are trademarks or
servicemarks of Tandem Computers
Incorporated: DDL, DYNABUS,
ENABLE, ENCORE, EXPAND,
FOX, GUARDIAN, PATHWAY,
NonStop, NonStop II, NonStop
TXP, TMF, Tandem.

IBM is a registered trademark of
International Business Machines
Corporation.

TANDEM

2

8

14

22

36

CC:?PORATE
fNFORMA TION CENTER

SYSTEMS REVIEW

TMF Autorollback: A New
Recovery Feature
Michael Pong

The ENABLE Program Generator
for Multifile Applications
Bobbie Chapman, Joan Zimmerman

The PATHWAY TCP:
Performance and Tuning
Joel Vatz

The GUARDIAN Message System
and How to Design for It
Mala Chandra

Using FOX to Move a Fault-tolerant
Application
Craig Breighner

2

TMF Autorollback:
A New Recovery Feature

utorollback is a new
feature of Tandem's
Transaction Monitoring
Facility (TMF™). It is
used to restore logically
inconsistent data files to

_ _ _ _ their most recent consis
tent states after a TMF crash. It recovers the
inconsistent files much more quickly than
TMF rollforward. Autorollback has been
available to a limited number of users since
July 1984 and is available to all users of
TMF as of the BOO software release. This
article describes the concept, benefits, and
limitations of autorollback.

Autorollback Features
Autorollback is available only on Tandem™
NonStop II™ and NonStop TXP™ systems.
Its main features are listed below:

• Autorollback is initiated automatically
and requires no operator intervention.

• It is significantly faster than rollforward.

• It improves TMF on-line performance.

Some users find the interaction between
TMF and the operator too complex, and
thus prone to error. Autorollback improves
the user-friendliness of TMF by eliminating
the need for operator intervention to start
the recovery processes. Autorollback initi
ates recovery automatically when a volume
containing logically inconsistent audited
files is being enabled for TMF transaction
processing (with the START TMF or ENABLE
VOLUMES commands).

The time it takes autorollback to restore
logically inconsistent data files to their most
recent consistent states depends on several
factors, such as the number of files to be
recovered and the amount of system
resources available. The time required by
Autorollback to complete recovery, how
ever, is much less than that required by
rollforward.

The Rollback Concept
Before autorollback, TMF provided two
forms of recovery: backout and rollforward.
Backout reverses the effect of a single trans
action in response to the ABORTTRANSAC
TION request. Rollforward restores from
tape an old (and fuzzy) image of a data
base and reapplies the after-images of all
committed transactions.

TANDEM SYSTEMS REVIEW FEBRUARY 1985

Since the most recent on-line dump could
be several days old, rollforward can be very
time consuming. Ideally, it should be
required only in the event of a media fail
ure, something that is very rare in a Tandem
system with mirrored discs. As the size of
application data bases increased, a fast
recovery mechanism became more and more
important to the success of TMF. (Other
vendors' products with functions similar to
that of TMF, e.g., IBM's data-base manage
ment systems, IMS, SQL/DS, and DB2,
already provided rollback.)

Rollback basically involves "undoing"
(or backing out) all incomplete transactions
at the time of a crash. In a 16-processor sys
tem, there are at most 2304 active (16 * 128
local + 256 network) transactions at any
time. Therefore, rollback has to undo at
most 2304 transactions to return a data
base to its last consistent state. Rollforward,
however, has to restore a copy of the data
base from tape and then "redo" hundreds
of thousands of transactions. It is because
of this that autorollback is much faster than
rollforward.

Autorollback could not have been imple
mented without a change to the disc pro
cess. Before autorollback, the disc process
implemented what is known as the write
through--cache algorithm, in which an
update to a file is immediately reflected in
the file on disc.

Figure 1 illustrates the write-through
cache concept. The deletion of record R
from the file on disc is part of the WRITE
UPDATE processing. After the file on disc
has been updated, the before and after
images for record R are still in the audit
buffer and have not been written to the
audit-trail file on disc. The audit for the
update is only written to the audit-trail file
on disc as part of ENDTRANSACTION pro
cessing or when the audit buffer becomes
full. (The example in Figure 1 assumes that
the audit buffer does not become full.)

Suppose a TMF crash occurred after
record R had been deleted from the file on
disc but before the audit buffer were written
to disc. The file would then be logically

Figure 1

Transaction
history

Updates to
data files
on disc

Updates to
audit-trail
file on disc

lBegin
transaction

lDelete
record R

l R deleted
from file

inconsistent because the transaction would
not have been committed and record R
would have been deleted from the file.
Worse yet, there would be no audit record
indicating that record R had been deleted.
The only way to restore the file to its most
recent consistent state would be to perform
a rollforward.

Even if the audit buffer had become full
and had been written to disc before the TMF
crash, rollforward would still be the only
way to recover the file because there would
be no guarantee that all audit buffers had
been written to disc before the TMF crash.

To support autorollback, the disc process
has been modified to implement a write-in
cache algorithm. In this algorithm, updates
to a file are not written to disc immediately.
Instead, the updated page of a file is kept in
cache until the memory occupied by the
page is required by another process. The
write-in-cache concept is especially suitable
for batch-oriented transactions, as several
logical updates to the same data page result
in only one physical update.

FEBRUARY 1985 TANDEM SYSTEMS REVIEW

Time

lEnd
transaction

L Audit buffer
for transaction
written to
audit-trail file

Figure 1.

With the write-through
cache algorithm, an
update to an audited
file is reflected on disc
immediately after the
WRITE or WRITE
UPDATE request. The
log for the update is
added to the audit-
trail file on disc at a
later time.

3

Figure 2

T, T, T,
Transaction Time history

lBegin lDelete lTMF
transaction record R crash

Updates to
data file
in cache

LR deleted from
file in cache

Updates to
T,

data file
on disc

l R deleted from
file on disc

Updates to T,
audit buffer
and audit-trail

l Audit added l Audit written
file on disc

to audit buffer to audit-trail
in cache file on disc

Figure 3

T, T, T, T,
Transaction Time
history

[Begin
.,,LDelete

[End [TMF
transaction record R transaction crash

Updates to
data file
in cache

Updates to
data file
on disc

Updates to
audit buffer
and audit-trail
file on disc

Figure 2.

With the write-in-cache
algorithm, an update to
an audited file may not
be reflected on disc
even though the in
memory copy of the
data page has been

R deleted from
file in cache

. f Audit added
to audit buffer
in cache

l Audit written
to audit-trail
file on disc

updated. The system
determines when to
update the datafile on
disc according to the
write-ahead-log protocol
and the utilization of its
physical memory.

Figure 3.

If a TMF crash occurs
and the update to an
audited file for a com
mitted transaction is
not reflected on disc
yet, the transaction can
be redone because the
log for the transaction
is flushed to disc at
ENDTRANSACTION.

The second major modification to the
disc process for autorollback is the imple
mentation of the write-ahead-audit protocol.
Under this protocol, the disc process guar
antees that the audit corresponding to an
update is always written to disc before the
updated data is reflected on disc. (Note
that this protocol cannot be efficiently
implemented with the write-through-cache
algorithm.)

Figure 2 illustrates the processing involved
with the write-in-cache algorithm and the
write-ahead-audit protocol. At time T1,
record R is deleted from the file in cache in
response to a WRITEUPATE request. The
audit record for the delete is added to the
audit buffer in cache.

Suppose, at T2 , the memory occupied by
the page that used to contain record R were
required by another process. The disc pro
cess would attempt to write the page to disc.
Since the write-ahead-audit protocol dictates
that the audit be written to disc before the
data, the disc process would first write the
audit buffer to disc. After the audit had
been successfully written to disc, the disc
process would then write the data to disc
at T3.

Notice that if a TMF crash occurred before
T2 , the file would still be consistent, as the
update would not be on disc. If a TMF crash
occurred at T4 , TMF would have complete
audit information for the file and would use
this information to undo the incomplete
transaction (in this example, to reinsert R).

Control Points
Suppose that the transaction described in
Figure 2 had committed, but that the dele
tion of record R had not been written to
disc when the TMF crash occurred (see Fig
ure 3). Although the delete of record R
would not be reflected on disc, the audit for
the delete of record R would have been writ
ten to the audit-trail file on disc as part of
ENDTRANSACTION processing. Since auto
rollback would have the audit information
indicating that the transaction had commit
ted and that record R should be deleted from
the file, autorollback would redo the trans
action to make the file consistent.

4 TANDEM SYSTEMS REVIEW FEBRUARY I 9 8 5

As illustrated in these examples, auto
rollback is a combination of a "mini
rollforward" and backout. Like backout,
autorollback must completely undo all
incomplete transactions. Like rollforward,
autorollback must also redo all completed
(both committed and aborted) transactions
that have updates which may or may not be
reflected on disc.

How does autorollback determine what
transactions to redo? It limits the amount
of "redoing" (and thus the time to recover
logically inconsistent files) by requiring the
disc process to periodically perform what is
known as control-point processing. In a
simple implementation of control-point pro
cessing, the disc process performs the fol
lowing tasks every time a control point is
required:

1. Suspends the processing of audited
requests.

2. Flushes all the dirty audit buffers to disc
(write-ahead-audit protocol).

3. Flushes all of its dirty data buffers in
cache to disc.

4. Writes a control-point record into the
data audit trail.

5. Resumes the processing of audited
requests.

When it is time to perform rollback, auto
rollback begins the redo processing by read
ing the audit trails forward from the most
recent control-point record. Autorollback
does not need to reapply any after-images
before this control point record since the
disc process has already written them to
disc during the control-point processing.

The algorithm described above works,
but it has one major drawback. If the num
ber of cache pages were very large and if
they were all dirty, it would take a long time
to write all of them to disc. When this hap
pened, the system would periodically
"hiccup", at which time the response time
to an audited request would be quite long.

Figure4

Control
point A

Control
point B

lMarkdirty
pages 2, 4, 10,
and 20.

lNormal
processing
writes pages
4, 10, and 20
to disc.

lNormal
processing
dirties pages
5, 7, and 10.

Autorollback solves this problem by
implementing a two-phase control-point
algorithm. This algorithm is as follows:

Phase 1 ---

1. Look for dirty and "marked" data pages
which have not been flushed since the
last control point.

2. Flush all audit buffers to disc.

3. Flush all dirty and marked pages found
in Step 1 to disc.

Phase 2

Mark all dirty data pages that are still in
cache.

The purpose of the two-phase control
point algorithm is to minimize the number
of marked and dirty data buffers that must
be written to disc in Phase 1 of the algo
rithm (see Figure 4). In a balanced system,
most of the dirty data buffers that are
marked in Phase 2 should be written to disc
as part of the normal processing between
control points. In other words, the two
phase control-point algorithm guarantees
that all dirty data buffers "older" than 2
control points have been written to disc.

Time

lwrite page
2 to disc
and mark pages
5, 7, and 10.

Figure 4.

The two-phase control
point algorithm mini
mizes the number of
dirty data pages that
must be flushed to disc
during each control
point. For example,
only one dirty data
page has to be flushed
at control point B,
even though there are
4 dirty data pages
in cache.

FEBRUARY 1985 TANDEM SYSTEMS REVIEW 5

Figure 5

Figure 5.

File description

Number of
File name Record size records File type

ACCOUNT 100 1,000,000 Key-sequenced
BRANCH 100 18 Relative
TELLER 100 180 Relative
HISTORY 50 1 per Sequent'1al

transaction

High-level description of the COBOL application program

Begin transaction.

Read a 100-byte message from a teller terminal.

Read the customer account from the Account File (random read).

Update the customer account (random update).

Write to the History File (sequential write)

Read the teller record from the Teller File (random read).

Update the Teller File (random update)

Read the branch record from the Branch File (random read).

Update the Branch File (random update).

Write a 100-byte message to the teller terminal.

End transaction.

A description of the
files and application
program used in the
benchmark comparing
TMF with autorollback
against the A06 version
ofTMF.

Thus, autorollback begins the redo of
committed transactions from the second
most-recen t control point before the TMF
crash. As in the simple implementation of
control-point processing, the disc process
for each audited volume periodically goes
through the 2 phases of the algorithm.

The two-phase control-point algorithm in
other data-base management systems has
been observed to prevent periodic hiccups
in the system.

The Benefits of Autorollback
Autorollback offers a number of benefits
for a TMF installation. Its performance
improvement over rollforward has already

been discussed. Also, as autorollback does
not require operator intervention, most
human errors associated with rollforward
are eliminated. It is now possible to have
fast recovery at nodes that do not have a
TMF operator.

Finally, it improves TMF performance. In
a comparison of the performance of TMF
with autorollback against the A06 verson of
TMF, the following preliminary results were
observed when an on-line transaction bench
mark involving a bank-teller credit-debit
application was run:

• The number of physical I/Os per transac
tion was reduced from 19 to 13.

• The transaction response time was
reduced by 8.6% with a corresponding
increase in transaction throughput.

The benchmark simulated the processing
that occurs when a bank customer deposits
or withdraws money from a teller. In Fig
ure 5, the files and application program
used in the benchmark are described. The
performance gain for TMF with autoroll
back was the result of buffering updates to
the Branch, Teller, and History files. 1

The Cost of Autorollback
The conveniences and performance gains
provided by autorollback are accompanied
by some cost in TMF and disc-process
resources. TMF may have to keep an audit
trail file on disc longer than it did in the
A06 version. Previously, an audit-trail file
was kept on disc until it had been dumped
to tape and was no longer needed by the
TMF backout process. With autorollback,
an audit-trail file must be kept on disc as
long as it is needed by autorollback.

-------- -

'In the benchmark, all the files were kept on separate volumes. Since each
current disc-process volume that participates in a transaction causes an audit
flush at ENDTRANSACTION, the performance could have been better if the
Teller and Branch files had been kept on the same volume. Furthermore, no
attempt was made to balance the system when running the benchmark.

6 TANDEM SYSTEMS REVIEW FEBRUARY I 9 8 5

Also, audit-trail files may become full
more quickly with autorollback than with
A06 TMF for 2 reasons. First, each disc pro
cess periodically generates a control-point
record of (12 + 4 * the number of active
transactions) words. Second, autorollback
audits backout. It does this because:

1. Autorollback is faster.

2. Potentially fewer audit-trail files have to
be kept on disc.

To understand the value of auditing back
out, consider the example shown in Fig-
ure 6. A transaction starts when the audit
trail file is AT0O00l0. Sometime afterward,
an ABORTTRANSACTION is issued, and the
abort does not complete until the audit-trail
file is AT000012. After 2 control point
records have been written to the audit-trail
file AT000012, TMF crashes.

When backout is audited, autorollback
processing for the transaction shown in Fig
ure 6 consists of reapplying its after-images
found between control point 1 and the point
at which the abort completed. Otherwise,
autorollback would have to undo the trans
action by reapplying all its before-images
found in audit-trail files AT0000lO through
AT000012.

Furthermore, when backout is audited,
audit-trail files AT0000l0 and AT0000l 1
do not have to be kept on disc for autoroll
back. Only audit-trail file AT000012, con
taining the last two control points, need be
kept on disc (assuming, of course, that all
other active transactions at the time of the
crash began in audit-trail file AT000012).

Even if the requirement for all audit-trail
files needed by autorollback to reside on
disc were relaxed, auditing backout would
still allow faster recovery and less operator
interaction (to mount tapes). The latter
alone makes auditing backout worthwhile.
Costs in disc-process resources result from
the following:

■ More memory is locked down for a longer
period of time because of the write-in-cache
algorithm.

■ The disc process must periodically per
form control-point processing.

• The backup disc process performs more
work because of the increased amount of
data checkpointed.

Figures

Control Control
point 1 point 2

Time

l Begin
transaction

l Abort
transaction

l lcrash
Abort
completed

I II II
Audit trail Audit trail
AT000010 AT000011

Audit trail
AT000012

The Limitations of Autorollback
Currently autorollback cannot recover key
sequenced and/ or relative files that have
become physically inconsistent as a result of
a system crash in the middle of an index
block split or delete. Autorollback detects
the presence of such a file and flags it with
"rollforward needed." The user must then
use rollforward to recover the file. Tandem
Software Development is working to elimi
nate this limitation in a future release.

References
Crus, D. 1984. Data Recovery in IBM Database 2. IBM System
Journal. vol. 23, no. 2.

Gray, J. 1978. Notes on Data Base Operating Systems. In
Operating Systems, an Advanced Course, Lecture Notes in
Computer Science 60, eds. Goos and Hartmanis, pp. 393-481.
Springer-Verlag.

SQL/Data Systems Planning and Administration - VSE.
SH24- 5014-2. IBM Corporation.

Transaction Monitoring Facility (TMF) Reference Manual. Part
No. 82341 BOO. Tandem Computers Incorporated.

Acknowledgments
The author would like to thank Phil Garrett, Keith Hospers,
Gary Tom, and Mike Treese, all of whom contributed their
time and ideas to this article.

Michael Pong is currently a member of the High-level Data-base
Group in Software Development. He joined Tandem in December
1981 to work on the TMF Recovery Project. Before joining
Tandem, Michael was involved in the implementation of IBM's
Database 2. He received a S.S. and M.S. in Electrical Engineer
ing from Stanford University.

I

Figure 6.

Auditing backout elimi
nates the need to keep
audit trails AT000010
and AT000011 on disc,
as the effect of aborting
the transaction can be
achieved by redoing the
transaction after the
crash from control
point 1.

FEBRUARY I 9 8 S T A N D E M S Y S T E M S R E V I E W 7

8

The ENABLE Program
Generator for
Multifile Applications

he ENABLE™ program gen
erator can be used to create
application programs from
a high-level, nonprocedural
specification. Applications
generated by ENABLE can
do the following:

1. Display data to the user on customized
screens.

2. Perform record additions, deletions, and
modifications.

3. Allow the user to browse through the
data by generic and approximate key
positioning.

This article highlights the features in the
most recent release of ENABLE. It then sum
marizes how one interacts with a generated
application and how one uses ENABLE to
generate an application. A working example
illustrates the generation process.

What Does ENABLE Do?
ENABLE generates applications designed for
the PATHWAY™ transaction processing sys
tem. The user interacts with the generated
application by entering data on the screen
and pressing the terminal's function keys.
Figure 1 illustrates a sample application
screen.

The generated Screen COBOL application
is run in the PATHWAY environment estab
lished by PATHCOM instructions that are
also generated by ENABLE. Transactions
requested by the user are passed to the
ENABLE General Server.

In its recently released version, ENABLE
is an order of magnitude more sophisticated
than its earlier, single-file version. 1 The ear
lier version is upwardly compatible with the
latest one: instructions from the earlier ver
sion generate the same application (with
minor cosmetic differences) when given to
the latest version.

The major enhancements in the latest
version (as illustrated in Figures 1 and 3)
include:

■ Display and update of multiple records
within a file.

■ Columnar display format for multiple
records within the same file.

■ Selection of chosen fields and rearrange
ment of their layout on the screen.

■ Access to multiple files per application.

■ Links between records from different
files.

Interacting with an Application
Generated by ENABLE
To see records from an existing data base,
one presses the key for READ FIRST, and the
first 8 records from the data file are then
displayed on the screen (as in Figure 1). To
see the next 8 records, one presses the READ
NEXT key. (These keys are documented in
the ENABLE Reference Manual and also on
the HELP screen, displayed when the HELP
function key is pressed.)

;The Ia;;;;i versio-n--;;r;he ENABLE Program Generator is product T9l55. The
earlier version is product T9105.

TANDEM SYSTEMS REVIEW FEBRUARY 1985

After entering a value into a key field
(e.g., an employee field), one can:

■ Press a key to READ EXACT. This displays
the record(s) in which the corresponding
field has exactly the value entered.

■ Press another key to READ APPROXI
MATE. This displays records starting with
the first one in which the corresponding
field begins with the value entered.

■ Press another key to READ GENERIC, and
enter a number specifying how many char
acters at the start of the first value entered
must be matched by the value in the corre
sponding field. This displays those records
in which the value in the corresponding field
exactly equals the entered value for the spec
ified number of characters.

To add new records to the data base, one
enters them individually on the screen, then
adds them all in a single keystroke with
INSERT BOX. (The term box is defined in a
later section.) Similarly, one displays a
screenful of records and deletes them all
with DELETE BOX or modifies them and
then changes the data base with UPDATE
BOX. Keys to perform single-record INSERT,
DELETE, and UPDATE are also available.

Generating an Application with
ENABLE
Input to ENABLE is a high-level, nonproce
dural specification of the capabilities desired
for the application. The ENABLE instruc
tions specify:

1. The screens to be displayed to the appli
cation user.

2. The transactions (inspections, additions,
modifications, and deletions) to be per
formed on data-base records.

ENABLE starts with a Data Definition
Language (DDL™) dictionary containing a
description of each record type. From the
dictionary, it generates:

■ A Screen COBOL program that describes
the screen display and the transactions that
can be performed on records in the various

Figure 1

1-aPk,Up 5cyreen
. .. •.•. · . ..· . • Appr~x k~y !;MP.NAME

•·".':idir,~:limt~~u::;a{fi~Q:program, pre$$ SF16 "'**•*

Dept EmplO

... _,,_.,. __ ,,__ ~01 3001
$456 0978
Of.lia 11ss
0201 031/1
12QO 1090
83/1~ Hl87
0089 4~1
009$ 4476

files the generated application is to access.
Typically, from ENABLE instructions of a
dozen lines, a Screen COBOL program con
taining thousands of lines is generated.

■ A file of PATHCOM instructions for con
figuring a PATHWAY environment in which
the application is to run.

Thus, an ENABLE user can avoid writing
any Screen COBOL code or PATHCOM
instructions for those applications whose
requirements can be met by ENABLE.

ENABLE comprises not only the generator
of the above application components, but
also the ENABLE General Server, a program
that performs the selected operations. It is
context-free, requiring each transaction
request to include the name of the logical
record against which the transaction is to be
performed.

FEBRUARY 1985 TANDEM SYSTEMS REVIEW

Figure 1.

A screen generated by
ENABLE for the inspec
tion, addition, modifica
tion, and deletion of up
to 8 records from an
employee file. New
features include the
display of more than
one record from any
file, columnar data
display, and the selec
tion of chosen fields
and rearrangement
of their layout on
the screen.

9

Figure 2

Figure 3

Figure 2.

-- Identify the DDL record description
SET RECORD dept-employees
-- Provide user information
SET BOXTITLE 1 "***** To return to a calling program. press SF16 *****
SET BOXTITLE 2 " "
-- Provide a tabular format for the screen, including appropriate
-- screen field names
SET SIZE 8
SET SCREEN FORMAT COMPRESSED
SET HEADINGS NULL
SET BOXTITLE 3 "+ Employee Name Dept Emp ID"
-- Identify the order in which the fields are to appear on the screen
SET INCLUDE (emp-name. emp-dept, emp-no)
ADD BOX employees

-- Provide a screen title
SET TITLE "Employee ID Look-Up Screen"
-- Identify the file for the PATHCOM commands
SET PATHCOMFILE prfile3 I
ADD APPL look-up

GENERATE APPL look-up

Project Entry Screen
Page 111

* .. • * To assign employees to events, press SF3 ** * * *

+ Manager Name * ID No.
Smith_John ________________ 1090

I Proj. Dates
I Proj. Starting Ending Proj. Proj.
I Description cly mo yr dy mo yr Stat. Code
I TX-9300-Development 01 02 85 10 11 85 ACL- 930011
I ~ -~~~~~~~~-~~~--~~~~~~~~~-~~~
I Event Dates
I ' Event Event Starting Ending
I No. Description dy mo yr dy mo yr
I 000001 Planning Stage____ 01 02 85 15 02 85
I 000002 Prototype Develop._ 16 02 85 07 03 85
I 000003 Stage_L_______ 11 03 85 15 04 85
I 000004 Stage-2________ 20 04 85 06 06 85
I 000005 Stag9_3________ 10 06 85 15 08 85
I -·--~~~~~~~~~~-~~~~~~~~~~~~--~

Ready for input F3 lor help, shift F16 to exit

Figure 3.

Sample ENABLE com
mands for the screen in
Figure 1. Note the
commands BOXTITLE,
SIZE, INCL UDE, and
TITLE, which are
included in the most
recent release of
ENABLE.

Project Entry Screen,
displaying data from
the employee file, the
project file, and the
events file. A box out
line distinguishes the

data from each file. To
establish such a multi
file application, the
user defines a tree-like
relationship between
the data Jiles.

There are 3 steps in generating an
ENABLE application. The first is to define
the record descriptions using DDL and to
compile them into a dictionary. The second
is to define the ENABLE commands for each
application and compile them. The third is
to create the supportive code necessary to
integrate the individual applications. The
code for the third step has 3 components:

1. The instructions for starting PATHMON
or augmenting an existing PATHWAY
environment.

2. A Screen COBOL program from which to
branch to the individual programs that
have been generated. (This avoids the
need to return to PATHCOM to select a
different program.)

3. Code for the generated Screen COBOL
program that allows chaining between it
and the generated programs. (This avoids
the need to return to the menu or
PATHCOM to change programs.)

A Sample Application
Generated by ENABLE
The following is a description of a sample
project-management application built with
ENABLE. This application was developed to
allow managers to track the projects under
their control.

The program accesses an employee file
and displays several employee records at one
time. Figure 1 shows a screen displayed by
one of the programs in this application.
Figure 2 shows the ENABLE commands
used to generate the program. These com
mands are defined below:

SET RECORD tells ENABLE the name of the
record description for the employee file.

SET SIZE specifies the number of employee
records to be displayed by the program.

SET SCREENFORMAT specifies the type of
screen format desired.

SET INCLUDE specifies which fields from
an employee record are to be displayed by
the program.

SET PATHCOMFILE specifies the name of
the file to which ENABLE is to direct
PATHCOM instructions.

10 T A N D E M SYSTEMS REVIEW FEBRUARY I 9 8 S

The program that produces the screen
shown in Figure 1 can display several
records in a single data-base file at the same
time. ENABLE can also generate programs
that access records from several data-base
files. Figure 3 shows the screen displayed by
a program that can be used to access infor
mation about a manager, the projects under
that manager, and the events associated
with those projects.

Notice the boxes displayed on the screen
in Figure 3. Each box contains fields
and/or records from a single data-base file.
In ENABLE, the term box means a "win
dow" on a data-base file. An ENABLE pro
gram can open the same file several times,
with each box presenting a different per
spective of the records in the file. For exam
ple, a program could open an employee file
3 times to access information about an
employee, his or her manager, and the man
ager's manager.

Note also that in Figure 3, one box
appears to be nested within the other. This
reflects the hierarchical manner in which
the ENABLE program accesses the data-base
files. The user defines the hierarchical rela
tionship by identifying the level of each box
within the hierarchy and by identifying a
field from each box that connects it to
another box. The user describes the relation
ship by supplying a value with the TREE
attribute of the SET command. For example,
the screen in Figure 3 was generated as
follows:

SET TREE (01 manager
02 projects LINK emp-no TO OPTIONAL

proj-mgr
03 events LINK projects TO OPTIONAL

events VIA proj-code)

Note that the LINK OPTIONAL clause in
ENABLE serves the same purpose as the
LINK OPTIONAL statement in ENFORM.

Chaining Between Programs
Users who have generated several related
programs may want to connect or chain
between these programs to enhance their
usefulness. ENABLE facilitates this by pro
viding a special area of code in a generated
program. To chain between programs, one
requests Screen COBOL source code when
generating an ENABLE program, makes
simple modifications to the source code,
and recompiles the program.

For example, modifications have been
made to the source code of several of the
programs in the sample project-management
application. These modifications allow the
user to call the Employee Assignment Pro
gram (see Figure 4) from the Project Entry
Program (Figure 3).

The Complete Application
The complete project-entry application con
sists of several programs generated by
ENABLE that are integrated into a single
application via a user-written menu
program.

Figure 4

Employee Assignment Screen
Page 111

* * • • • For an employee JD number, press SF3 • * • • *

Figure 4.

The Employee Assign
ment Screen, to which
the user can chain from
the Project Entry Screen
shown in Figure 3.

+ Project Name _____ _ * Project Code _____ _

I • Evt.
I No.
I -----
1 -----
1 -----' -----
! ------' ----' ------
! ----
! -----' -----

tDofEmp. I
Assigned I

I
I
I
I
I
I
I
I
I
I

Ready for input F3 for help, shift F16 to exit

FEBRUARY 1985 TANDEM SYSTEMS REVIEW 11

Figure 5.

The structure of the
sample project manage
ment application, show
ing the 6 application
programs generated by
ENABLE and the user
written program (the
Project Tracking Menu).
The screens from Fig
ures 1, 3, and 4 corre
spond to the Look-up,
Project Entry, and
Employee Assign
screens.

12

Figures

Project Employee
Ehtry Look·IJP

j ~ Employee
Al!Sign

Figure 5 diagrams the structure of this
application. The application consists of 6
programs:

■ Project Entry allows users to enter, main
tain, and display information about projects
and their events.

■ Employee Assign allows users to assign
an employee to a particular event within a
project.

• Employee Look-up allows users to obtain
the identification number of each employee.

■ Project Info allows users to obtain
detailed information about each project.

■ Event Detail allows users to obtain
detailed information about the milestones
associated with each event and the employ
ees assigned to each event.

• Event Revised allows employees to revise
milestones associated with their assigned
events.

The ENABLE User's Guide contains more
information about this application. The
sample program is also available on tape
through Tandem analysts.

Project
1l'aelilng.

Menu

Project
lhfO

Event
Detail

Event
Revised

The Advantages of Using ENABLE

In addition to generating data-base editing
applications such as that described above,
ENABLE is excellent for generating the
following:

■ Prototypes of production applications.
User requirements can be transformed into
a working prototype that can be used to
further define the problem an application is
to solve.

■ Test-data generators. ENABLE can gener
ate a data-entry application for entering test
data into a sample data base. The data can
then be used in testing other developing
applications.

■ Reference-file maintenance. Such files
contain relatively static but widely used
information.

• Multifile data-base maintenance. ENABLE
can generate applications for correcting
errors in production files, freeing program
ming resources for more sophisticated tasks.

TANDEM SYSTEMS REVIEW FEBRUARY 1985

The first use listed above, application
prototyping, is becoming increasingly popu
lar, for the following reasons:

■ Users become involved in the application
design from the earliest stages of the pro
ject, and therefore identify with the project.
Their enthusiasm contributes significantly
to the success of the implementation.

• Users of a new software application are
often unable to picture how it will work and
what its interface to other applications will
be like. A prototype is a tangible, working
application for users to test.

• Prototypes are quickly developed and
easily modified to conform to users'
requests and system changes. As a result,
users regard the prototype, and hence the
application, as friendly and flexible.

■ Users may be completely satisfied with
the prototype, so that no further develop
ment is required.

Enhancing Programs
Generated by ENABLE
With ENABLE, basic programs can be gener
ated by users inexperienced in application
design and development. Sometimes, how
ever, an application must accomplish more
than those generated by ENABLE, and the
Screen COBOL code generated by ENABLE
can be modified to accommodate this. For
example, an application prototype generated
by ENABLE could be modified to satisfy the
following application requirements:

■ One application program must call
another.

■ A menu must relate a set of ENABLE
applications.

• Integrity constraints must be followed,
e.g., the insertion, deletion, or modification
of a record in one file must trigger associ
ated changes to the data base.

■ The user must be able to alter the place
ment of displayed text, box borders, or data
fields.

Modifying one generated application to
call another is straightforward. The changes
for the other needs require more substantial
effort, but they can be accomplished far
more readily by modifying the generated
Screen COBOL source than creating the pro
gram afresh.

Conclusion

The ENABLE program generator is a
powerful productivity tool within the
ENCOMPASS™ distributed data-base system.
It produces application programs that can
access many related data files simultane
ously, and it provides users with considerable
control in specifying screen formats.

References
Boar, B.H. 1984. Application Prototyping. New York: John
Wiley and Sons.

ENABLE Reference Manual. Part No. 82360 BOO. Tandem
Computers Incorporated.

ENABLE User's Guide. Part No. 82361 BOO. Tandem
Computers Incorporated.

Acknowledgments
The authors are grateful to Kay Carlyle, Ernie Chilberg, Deborah
Evelyn, Jim Gray, Rob Holbrook, and Howard Moehrke for
reviewing versions of this article. Without their time and energy,
this article would have been written sooner, but would probably
not have been published.

- ------

Bobbie Chapman joined Tandem as a technical writer, document·
ing high-level data-base products. In 1983, she wrote an update to
the ENABLE User's Guide for the T9105 version of the product.
Early in 1984, she began work on the ENABLE Reference Manual
and the ENABLE User's Guide for the most recent version of the
product. In April, she transferred to Software Quality Assurance
where she tests ENABLE, DDL, and portions of the PATHWAY
transaction processing system.

Joan Zimmerman joined Tandem's Software Education Group in
May 1978. She wrote a course on MUMPS and enhanced a course
on the EN FORM relational query language, adding sections on
unusual EN FORM reports and ways to enhance query perfor
mance. In January 1982, she joined Software Quality Assurance,
where she developed test libraries for EN FORM, ENABLE (includ
ing the new extended version), the TRANSFER delivery system,
and the Data Definition Language (DDL). Before joining Tandem,
Joan developed computer-aided instruction
and medical-record applications at Washington University,
St. Louis, MO.

FEBRUARY I 9 8 5 TANDEM SYSTEMS REVIEW 13

14

The PATHWAY TCP:
Performance and Tuning

n the E07 version of the
PATHWAY transaction process
ing system, a new version of
the Terminal Control Process
(referred to as TCP2) was intro
duced. Before TCP2, the
PATHWAY TCP performed a

number of disc 1/0 operations for check
pointing, terminal-context swapping, and
fetching Screen COBOL pseudocode. TCP2
reduces disc 1/0 operations in the TCP by
using an extended data segment to store
terminal context and Screen COBOL pseudo
code. This reduction has resulted in signifi
cant performance improvement for applica
tions based on the PATHWAY system.

In the Spring 1984 issue of the Tandem
Journal, the article "A New Design for the
PATHWAY TCP" described TCP2's design
and general performance implications. This
article provides the following additional
information about the performance of the
TCP:

1. Benchmark comparisons of TCPl and
TCP2.

2. Discussion of the components that con
tribute to the performance improvements.

3. Guidelines for tuning applications that
use TCP2.

4. Discussion of the costs of TCP functions.

The Performance Comparison
Benchmarks were performed to compare the
performance of TCPl and TCP2, to further
understand the performance characteristics
of TCP2, and to identify improvements to
be made in the future. The objectives of the
benchmarks were as follows:

■ To measure the performance of the TCP
within a complete application, not as a
stand-alone program.

■ To measure and compare performance in
"bottom-line" terms of response time and
throughput, not in terms of CPU millisec
onds or physical disc 1/0 operations.

Tests were performed using both TCPs, at
several transaction throughput rates for
each. Each version of the TCP was tuned to
favor its characteristics. For example, more
TCPs were configured for TCP 1 than for
TCP2, so that no context swapping occurred
in TCPl.

The application, software environment,
and hardware environment for the TCP
benchmarks are summarized in Figure 1.
As benchmark results are dependent on the
characteristics of the application used, the
TCP benchmarks should be evaluated within
their application context.

TANDEM SYSTEMS REVIEW FEBRUARY 1985

Benchmark Results
The percentage of improvement in through
put for TCP2 over TCP 1 at various response
times is shown in Table 1. Figure 2 shows
the same comparison graphically.

While average response time is an impor
tant indicator of performance, it does not
reflect the range of response times in a
benchmark. For example, if the average
response time is 2 seconds but a number of
transactions took more than 30 seconds, the
performance is not acceptable.

Table 1.
A throughput comparison of TCP1 and TCP2 for
average response times.

Average
response time (seconds)

1.5

2.0

2.5

3.0

3.5

Figure 2

Q)
Ol
~
Q)

_&
U)
cl
C
0

al
U)

_.;
Q)

E
"'

I
Q)
er:

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Percentage of improvement
in throughput
for TCP2 over TCP1

85%

30%

19%

20%

20%

Transaction throughput

Figure 1.

The benchmark environ
ment used to compare
TCP1 with TCP2.

Figure 2.

A throughput compari
son of TCP1 and TCP2
for average response
times.

Figure 1

FEBRUARY I 9 8 5 T A N D E M

Hardware environment

6 Nonstop II CPUs

2Mb of memory in each CPU

6 mirrored-disc volumes

180 terminals (simulated with ENCORE™)

Software environment

TCP1 TCP2

A05 version of the GUARDIAN™
operating system

A06 version of the GUARDIAN
operating system

24 TCPs (4 per CPU)

24 to 48 servers

6 TCPs (1 per CPU)

6 to 30 servers

The number of server processes varied with throughput. More TCP1 s were
configured to avoid context swapping.

Software used for both TCP1 and TCP2 included:

N onStop TCPs
The Transaction Monitoring Facility (TMF 1M)

The ENCORE stress test generator (for terminal simulation)

COBOL servers

Application data base

Number of records

FILEA 1,000,000

FILEB 180

FILEC 18

LOG 1 per
transaction

Assignments of files to disc volumes:

FILEA was partitioned on 2 volumes.
FILEB and FILEC shared a volume.
LOG was dedicated to a volume.

File type

Key-sequenced

Relative

Relative

Entry-sequenced

Record size

100

100

100

50

The other two volumes contained the TMF monitor and data audit trails.

Application server transaction flow

7 logical 1/0 operat",ons (3 reads and 4 updates or writes audited by TMF). as
follows:

READ 100-byte message
READ and UPDATE FILEA
READ and UPDATE FILEB
READ and UPDATE FILEC
WRITE LOG
REPLY with 100-byte message

Because of the large size of FILEA, each read required 2 physical reads of an
index and data block.

Because of the small sizes of FILEB and FILEC, reads to these files were always
satisfied from disc cache.

Application requester (Screen COBOL) transaction flow

ACCEPT ten 10-byte fields
PERFORM DEPENDING ON function-key (always F1)
BEGIN TRANSACTION
SEND 100 bytes with 100-byte reply
1 O MOVE statements
5 ADD statements
5 SUBTRACT statements

10 IF statements
END TRANSACTION
DISPLAY ten 10-byte fields

The terminal type was T16-6530.
The terminal context size was 6000 bytes.

SYSTEMS REVIEW 15

Figure 3.

A throughput compari
son of TCPJ and TCP2
for 90th-percentile
response times.

16

A second, more demanding performance
criterion is one referred to as 90th-percentile
response time. In this criterion, 90% of the
transactions for each response time repre
sented were completed in that amount of
time or less. Table 2 compares the 90th
percentile response-time results for TCPI
and TCP2. Figure 3 shows the same compari
son graphically.

Analyzing the Results
The percentage of performance improvement
for TCP2 over TCP I is very high at low
response times, decreasing as the response
time is increased. There are 2 reasons for
this.

Table 2.

A throughput comparison of TCP1 and TCP2 for
90th-percentile response times.
90th-percentile
response time
(seconds)

1.5

Percentage of improvement
in throughput for
TCP2 over TCP1

184%

2.0 75%

2.5 30%
-- --- ---- - -- - -- -- ---- -

3.0 18%

3.5 17%

Figure 3

3.5

Q)
a, 3.0 f'!
(l)

~
rn 2.5 1J
C
0

~
rn 2.0 _.,
(l)

E
:;:; 1.5
(l)
rn
C

8. 1.0 rn
(l)
a:

0.5

Transaction throughput

First, at lower response times, TCPI
approaches its minimum possible response
time. Because TCPl consumes more CPU
cycles and disc-device time than TCP2, its
minimum response time is higher. To
achieve lower response times for TCP 1,
throughput must be decreased to reduce
contention for resources among concurrent
transactions.

Second, for higher response times, both
TCPs approach a throughput close to the
maximum for this application, in which the
maximum throughput is determined not by
TCP demand but by disc demand. For these
benchmarks, the disc volume containing
FILEB and FILEC was the bottleneck.

In any case, TCP2 performs noticeably
better at any throughput or response time.
The difference is more dramatic when one
considers that the majority of the CPU and
disc demand for this application was inde
pendent of the TCP used for the comparison.
For the TCP2 tests, the TCP consumed only
about 27% of the CPU demand and none
of the disc demand. For the TCPl tests, the
TCP consumed about 35% of the CPU
demand and 48% of the disc demand.

TCP2 reduced CPU demand by 170 ms
per transaction, and it reduced disc-device
demand by 280 ms per transaction. These
reductions were primarily due to the elimi
nation of disc I/0 operations in TCP2 and
resulted in its increased throughput and
lower response times.

How Much Will an Application's
Performance Improve with TCP2?
Several major factors, discussed below,
affect an application's performance with
TCP2.

■ Context size. The larger the context size,
the greater the improvement with TCP2.
TCP2 is relatively insensitive to context size
when performing checkpoints. For TCPI,
every 4K bytes of context produces an addi
tional disc I/ 0 operation for each
checkpoint.

T A N D E M S Y S T E M S R E V I E W FEBRUARY 1985

• Amount of TCP data and code swapping.
The more TCP data and code swapping, the
greater the performance improvement with
TCP2. TCP2 does no data swapping, and
code swapping can be eliminated if a large
enough pseudocode area is configured.

• Complexity of the data base. The simpler
the data-base portion of the application, the
bigger the increase for TCP2. If an applica
tion does 50 disc-file updates on every trans
action, the relative cost of the TCP is insig
nificant in the whole transaction, so a
50% improvement in the TCP portion may
only create a 5 OJo improvement in total
throughput.

• Percentage of updates to inquiries. The
greater the percentage of updates to inqui
ries, the greater the improvement for TCP2.
The TCP2 improvements reduce dramati
cally the cost of checkpointing. If an appli
cation performs relatively few checkpoints
or little context swapping, the performance
of TCPI and TCP2 is similar. For those appli
cations based on the PATHWAY system that
use TMF, inquiry transactions perform no
checkpointing in the TCP, whereas update
transactions perform 2 terminal context
checkpoints, at BEGINTRANSACTION and
ENDTRANSACTION.

• Amount of memory versus number of
disc devices. TCP2 uses more physical mem
ory than TCP I, while TCP I creates more
disc demand than TCP2. The cost of the
additional memory for TCP2 is less than the
cost of the additional disc devices for TCP I;
however, if the hardware configuration is
not changed, the performance difference
depends on how "tight" the configuration
is on memory versus disc devices. The
reduced sensitivity to context size and the
reduced data and code swapping of TCP2
mentioned above rely on sufficient physical
memory.

Performance improvements will continue
to be made to TCP2, increasing the relative
improvement of its performance over that
of TCPI.

Tuning Applications that Use TCP2
Number of Terminals per TCP
An important decision to be made whenever
TCPI was used concerned how many termi
nals to configure per TCP and, thus, how
many TCPs to configure. Because TCPI had
a limited area for terminal context, if too
many terminals per TCP were configured,
significant TCP context swapping would
occur as the terminals contended for context
space. TCP2 does no context swapping, as
each terminal has its own context area in
extended memory.

In the benchmarks, 24 TCPs were config
ured with TCPI, each with 7 or 8 terminals.
This was necessary to avoid context swap
ping. For TCP2, 6 TCPs were configured,
each with 30 terminals, so that each CPU
had one primary TCP process.

New users of TCP2 often ask the following
questions about the number of terminals to
configure:

1. Now that TCP2 has removed the context
area limitation, are there other limitations
on the number of terminals per TCP?

2. How many terminals per TCP should be
configured?

3. Is it best to run only one TCP per CPU?

The answers can be found in the consider
ations discussed below.

• Control-block Memory Limitations. TCP2
is theoretically designed for up to 255 termi
nals per TCP. A limiting factor on the num
ber of terminals per TCP for TCP2, however,
is control-data space for terminals, server
classes, server processes, and external
PATHMONs. A second limiting factor is the
size of the TCP's SERVERPOOL. The actual
limit is very dependent on the application
configuration. Memory size limits the num
ber of terminals per TCP2 to no more than
100; however, other factors such as manage
ability, discussed below, make one-third to
one-half that number desirable.

FEBRUARY 1985 TANDEM SYSTEMS REVIEW 17

18

■ TERMPOOL and SER VERPOOL Conten
tion. Since terminal context and the code
area have been moved to an extended seg
ment, more space is available in the user
data segment for TERMPOOL and SERVER
POOL With a large number of terminals
per TCP, however, contention for these areas
is still a limiting factor.

■ System Management. With TCPI, the pri
mary consideration was improving transac
tion performance by reducing context swap
ping. With TCP2, other considerations, such
as system management and recovery, become
important. If a TCP has 100 terminals, and
it fails or it must be stopped to be reconfig
ured and then restarted, 100 terminals must
be stopped and restarted. Therefore, even
though 100 terminals could be configured,
the recommended maximum number of
terminals per TCP is between 30 and 50.

• CPU Contention. A common misconcep
tion is that multiple TCPs in the same CPU
increase CPU demand due to additional pro
cess dispatching. In fact, measurements
have shown a slight decrease in CPU demand
with multiple TCPs as compared to that of a
single TCP per CPU, when the total number
of terminals remains constant. The decrease
is due to the efficiencies in the file I/0
achieved by the GUARDIAN operating sys
tem when less terminals are open in each
TCP.

■ Memory Consumption. The memory
required for terminal context is dependent
only on the number of TCP terminals in
each CPU. Each additional TCP has its own
copy of some global data, however, and
each TCP has its own copy of the Screen
COBOL pseudocode area. The code area
required varies for each application.

In summary, TCP2 allows the user to con
figure many more terminals per TCP than
TCPI did, resulting in less TCPs running in
the system. Instead of configuring the most
terminals per TCP possible, however, the
user should heed the considerations dis
cussed above. A key consideration is that of
system management: picking a manageable
number of terminals per TCP and a manage
able number of TCPs. For the benchmarks,
one TCP per CPU was configured, each
with 30 terminals. If the benchmarks had
required twice the number of terminals, two
TCPs per CPU would have been configured,
still with 30 terminals per TCP.

Memory Balancing
Since TCP2 uses more memory than TCPI,
memory balancing is important with TCP2.
When Nonstop TCPs are run, the primary
TCP and backup TCP both have an extended
segment, and both contain copies of the
terminal context for each terminal. Since
the backup TCPs have a copy of terminal
context, these processes should be evenly
spread across available CPUs to balance
memory utilization, even though the CPU
utilization for backup TCPs is relatively
small. Although both TCP processes have
a copy of terminal context, the primary
TCP uses a code segment for Screen COBOL
pseudocode, while the backup TCP does
not.

TCP2 statistics no longer indicate the
memory pressure for the terminal context
area because the memory is managed by the
GUARDIAN operating system. For monitor
ing memory pressure, XRAY must be used.

Ideal performance is attained with TCP2
when enough physical memory exists for all
terminal context and Screen COBOL pseudo
code. With some memory pressure, TCP2
still outperforms TCP I; however, as is true
of most performance behavior, response
time with TCP2 follows an exponential curve
as utilization increases. Thus, with too
much memory pressure, response time
degrades significantly.

TANDEM SYSTEMS REVIEW FEBRUARY 1985

In the benchmarks, there was effectively
no memory swapping for the TCP2 tests.
Memory was balanced by evenly spreading
all processes across the available CPUs, and
the system was configured with discs and
other devices also balanced across the CPUs.
When a system is being balanced, memory
allocation in each CPU for configured
devices should be checked on the SYSGEN
output.

TCP configuration parameters that affect
memory balancing include the TCP SWAP
parameter and the TCP C0DEAREALEN
parameter. The TCP SWAP parameter for
TCP2 defines the disc location of the
GUARDIAN swap file for extended segments.
These swap files should be evenly spread
across discs, just as the swap-file locations
for TCP 1 were balanced.

The TCP C0DEAREALEN is a new param
eter that defines the amount of space within
the extended segment used for Screen
COBOL pseudocode storage. Making the
code area larger reduces the number of disc
1/0 operations needed to load Screen
COBOL programs for repeated calls of the
same program unit. Making it very large
does not hurt, since GUARDIAN tends to
swap out pages containing seldomly used
Screen COBOL programs before swapping
out memory pages referenced more often.

The Cost of TCP Functions
Performance questions often asked about
TCP2 include:

1. Should NonStop TCPs be run?

2. How important is reducing the size of
terminal context in designing Screen
COBOL requesters?

3. Does running the TCPs with the STATIS
TICS option on affect performance?

4. When should tests or calculations be per
formed in the TCP or in a server?

5. What changes can be made to Screen
COBOL requesters to improve
performance?

The following is a discussion of each topic.

Running Nonstop TCPs
With TCPl, a Nonstop TCP could be expen
sive. Typically, each transaction requires
two checkpoints at BEGINTRANSACTI0N
and ENDTRANSACTI0N, or without TMF,
before and after each SEND. With TCPl, for
every 4K bytes of context, a disc 1/0 oper
ation to the TCP swap file was required. For
example, with the 6K context used in the
benchmarks, 4 TCP swap disc 1/0 oper
ations per transac
tion were required.
At each of two
checkpoints, a 4K
and a 2K block were
written.

The cost of
Nonstop TCP oper
ation is significantly

I select a manageable
number of terminals per

!
1

TCP and a manageable
number of TCPs.

reduced with TCP2. Only a single interpro
cess message per checkpoint from the pri
mary TCP to the backup TCP is required.
For typical transactions the cost is easily
less than 10% of the total CPU demand.

Reducing the Size of Terminal Context
With TCPl, large context degraded perfor
mance in two ways. First, if the context of
all terminals did not fit within the TCP's
context area, context was swapped to the
TCP swap file. Users could avoid the swap
ping by running more TCPs; for example, in
the benchmarks, 24 TCP ls were configured,
each with 7 or 8 terminals. Second, during
checkpointing, each 4K of terminal context
required a disc 1/0 operation to the TCP
swap file.

TCP2 is much less sensitive to context size
since a single interprocess message is sent,
regardless of the size of the checkpoint. For
example, an increase from 2K bytes to
6K bytes of terminal context with TCP2
increased CPU demand by less than 3 % for
the benchmark application.

FEBRUARY 1985 TANDEM SYSTEMS REVIEW 19

20

Note, however, that terminal context does
consume memory. Since TCP2 maintains
multiple copies of the context, with a large
number of terminals, a significant increase
in terminal context could affect physical
memory requirements. In any case, the cost
of the increased physical memory for TCP2
would be less than the cost of additional
disc drives required to support the TCP swap
file 1/0 with TCP I .

Performance with the TCP STATISTICS
Option On
Measurements of the TCP with and without
statistics show a cost of about 3 ms per
transaction to run with statistics, or less
than 0.5% of the transaction CPU demand.

Performing Tests or Calculations
in the TCP or Server
There are many reasons independent of per
formance for selecting the best place to per
form tests or calculations. These reasons are
based on ease of application design and
maintenance. In some cases, however, per
formance considerations may affect the
decision.

When the application is already sending
to a server, calculations by the server in
COBOL are much faster than those executed
in Screen COBOL. Relative speed needs to
be kept in perspective, however. For exam
ple, in the benchmarks, the 30 Screen
COBOL statements (10 MOVES, 10 IFS,
5 ADDS, and 5 SUBTRACTS) consumed
about 1 % of the total CPU demand of the
transaction. A common mistake in measur
ing the performance of Screen COBOL,
COBOL, and TAL™ is to compare their raw
calculation speeds. In most applications,
the total cost of disc-file 1/0, interprocess
messages, and data communications far
outweighs the cost of the calculations in any
language.

In some instances, applications make
additional SENDS to servers solely for calcu
lations or data manipulation. With TCP2,
about 60 simple operations can be per
formed in Screen COBOL for the same cost
as a SEND to a server. A simple operation is
defined as a MOVE, IF, ADD, SUBTRACT,
MULTIPLY, or DIVIDE. If indexing or sub
scripting is involved, each indexed reference
can be considered an additional operation.
If the SEND requires checkpointing, refor
matting of data, or other pre- and postpro
cessing, the ratio increases.

In future releases, performance enhance
ments are expected for both SEND and sim
ple operations. More improvement should
be seen in simple operations, causing the
ratio of simple operations to a SEND to
increase.

Changes to Screen COBOL Requesters
to Improve Performance
The objective of Tandem's PATHWAY devel
opment group is to make performance a
secondary consideration in the design of
applications based on the PATHWAY system.
The primary considerations should be clean
design and ease of maintenance. If perfor
mance is an issue, however, the following
information about Screen COBOL requesters
should be helpful to designers:

1. TCP2 is less sensitive to context size, as
was discussed earlier.

2. A few simple MOVES, IFs, or arithmetic
calculations do not noticeably affect total
throughput or response time; however,
massive table searches will.

3. For DISPLAY, ACCEPT, and SEND state
ments, the factor that affects perfor
mance most is not the number of bytes
transferred, but the number of fields
transferred. For each field in a block
mode terminal DISPLAY or ACCEPT, the
TCP must reformat and move data from
working storage to the screen, and decode
or format attribute bytes and terminal
buffer addresses.

TANDEM SYSTEMS REVIEW FEBRUARY 1985

For SENDS, a typical technique is to
build the server message directly from
the screen description using the TO
clause. Then the server message is sent
as a single Level O 1 message rather
than as a list of 10 to 20 fields. This
technique reduces the field-level moves
and data reformatting.

4. Simple Screen COBOL PERFORM state
ments are very inexpensive, about the
cost of a Screen COBOL MOVE statement.
Screen COBOL CALLS, assuming that the
program called has already been refer
enced once and is in memory, are about
one-fifth the cost of a single SEND,
ACCEPT, or DISPLAY. With these ratios
in mind, users should structure their
Screen COBOL programs for ease of
maintenance and design.

PATHWAY Performance in
Perspective
Significant improvements in the perform
ance of the PATHWAY transaction processing
system have been made, and more are in
progress.

In the E06 version of the PATHWAY sys
tem, the CHECK-DIRECTORY and REFRESH
CODE options were added to eliminate reads
of the Screen COBOL pseudocode directory
file during Screen COBOL program CALLS.
For production environments, this elimi
nated one logical disc I/0 for every Screen
COBOL CALL. Also in the E06 version, the
TCP swap file block size was increased from
2K to 4K bytes.

In the E07 version, TCP2 with extended
memory was introduced, eliminating all I/0
to the TCP swap file. Enhancements to the
TCP's dispatching algorithm and enhance
ments to the GUARDIAN operating system
for NOWAITed I/0 further reduced CPU
consumption by the TCP.

Most of the past improvements were
aimed at reducing disc I/0 in the TCP, which
was the major cost of TCP functions.

Future performance enhancements will
focus on 3 areas:

1. Streamlining basic TCP functions com
mon to all applications, i.e., SEND, termi
nal I/0, TMF BEGINTRANSACTION and
ENDTRANSACTION, and multithreaded
operation.

2. Speeding up simple Screen COBOL oper
ations such as MOVE, IF, and arithmetic
calculations.

3. Reducing the cost of screen formatting.

References
Wong, R. 1984. A New Design for the PATHWAY TCP. Tandem
Journal. vol. 2, no. 2.

Joel Vatz is a software developer for the PATHWAY Transaction
Processing System, working primarily on the Terminal Control
Process (TCP). Since joining Tandem in 1981, he has also been a
systems analyst and analyst manager, involved in benchmarks
and performance studies for several major customer projects.

FEBRUARY 1985 TANDEM SYSTEMS REVIEW 21

22

The GUARDIAN Message System
and How to Design for It

n order to guarantee that all
processors in a Tandem system

- have the same degree of accessi
bility to resources, regardless

- of their location, the
- GUARDIAN operating system

defines and implements a strict
message-exchange protocol with its Message
System. Almost all information transfer

' even within a single processor, is via mes-
sages rather than shared data structures.
The Message System plays a key role in pro
viding Tandem users with the ability to
incorporate features such as communica
tions homogeneity, location transparency,
geographic independence, and modular
expandability into their applications.

This article describes the user interface
to the Message System, the message
exchange protocol itself, and the inherent
advantages of its implementation. It con
cludes with suggestions for designing appli
cations that take advantage of the features
in the Tandem architecture. Systems analysts
who design applications for the Tandem
system and those who tune and balance
Tandem systems should find this informa
tion helpful.

An Introduction to the
GUARDIAN Operating System
The GUARDIAN operating system (for the
Tandem Nonstop™, Nonstop II, and
NonStop TXP systems) provides all the
standard services available with modern
operating systems: virtual memory manage
ment, resource allocation, process schedul
ing and control, I/0 and data communica
tions support, and a comprehensive set of
file-management functions. In addition,
GUARDIAN plays a key role in providing a
fault-tolerant operating environment for
applications running on Tandem systems.

Tandem hardware consists of multiple
processors and I/0 controllers connected
via dual, high-speed, parallel interprocessor
buses. GUARDIAN functions are distributed
over all the processors in the· system, certain
components existing in every processor,
others existing only in those processors
where they are necessary. For example, a
monitor process runs in every CPU to hand le
process starts and stops, maintain the sys-·
tern time of day, and return information
about resources attached to its proce<;sor.
~JO processes, however, are configured oniy
m those processors to which the devices
they control are attached. Thus, a separate
configuration of the operating system exists
in every processor. The operating system
processes communicate with each other via
fault-tolerant messages.

TANDEM SYSTEMS REVIEW FEBRUARY 1985

The User Interface
to the Message System
The GUARDIAN operating system links
together multiple discrete processors to form
a system, and extensions to GUARDIAN link
multiple systems to form a network. (These
extensions, the EXPAND™ networking soft
ware and the FOX™ fiber optic extension,
are described later.) Users need not be aware
of the physical boundaries between proces
sors within a system or between systems in
a network, and are able to access a resource
anywhere in the network without compli
cated programming. GUARDIAN makes this
possible by supporting a requester-server
approach to performing operations. In this
approach, user processes performing 1/0
operations are, for example, the requesters,
and 1/0 processes are the servers.

GUARDIAN can be viewed as having the
following components:

■ Various system processes.

■ The File System.

■ The Message System.

The system processes provide process
control, virtual-memory management, and
peripheral-device control functions. They
are configured by the SYSGEN program and
are started during system cold load.

The File System is a set of privileged
GUARDIAN procedures that provide users
with a uniform mechanism for performing
110 operations. Some of the File System
procedures are callable by nonprivileged
user code. For example, the callable File
System procedure READ enables a user pro
cess to obtain data from a disc file by
requesting the 1/0 system process responsi
ble for controlling that disc to perform the
necessary input logic.

The request is delivered to the 1/0 process
by the Message System, which is a set of
privileged GUARDIAN procedures and inter
rupt handlers. If the disc process is execut
ing in a different processor, the Message
System transfers the request over one of the
dual interprocessor buses that connect all

CPUs in the system. When it receives the
request, the disc process performs the physi
cal 1/0, if necessary, and formats a reply
containing the required data. The Message
System then transports this reply back to
the user process.

The File System provides an interface to
the Message System for nonprivileged users.
None of the Message System procedures
are callable by nonprivileged user code.
Privileged system processes such as 1/0 pro
cesses can interface directly to the Message
System.

Process Identification
Sending a message and requesting a reply
implies that both the sender (the requester)
and the receiver (the server) must be readily
identifiable. All processes, regardless of
whether they are application processes, 1/0
processes, or other system processes, are
distinguished by logical names, either of the
$<name) format or the CRTP ID format. 1

Figure 1 depicts the formats of these logical
names.

All systems in a network are distinguished
by a logical network node name or identifier.
The GUARDIAN operating system uses the
local process name to determine its physical
location in the system. It uses the local pro
cess name along with its system's network
node name to determine the process' physi
cal location in the network.

Figure 1

Figure 1.

Logical name formats.

$(name) format CRTPID format

$(name>

CPU,PIN

Word O

1

2

3

~
~

CPU.PIN

Example Example
$TEST1 0002047 100066 525153152515 0002047

1Uppe~~;se ch~racters represent keywords and reserved ~ords. Lo~ercase ,
characters enclosed in angle brackets (()) represent vanable entnes supplied
by the user.

FEBRUARY 1985 TANDEM SYSTEMS REVIEW 23

24

Physical Resource Location
The resolution of the logical name into a
physical path to a destination is performed
by the File System when a user process opens
a resource (such as a file, peripheral device,
or another process) by calling the File Sys
tem procedure OPEN. Information regarding
the location of a resource identified by the
$(name) format is obtained by the File
System from the Destination Control Table
(DCT), a copy of which exists in every CPU
in the system. For a resource identified by
the CRTPID format, a message is sent to the
monitor process in the destination CPU to
verify its existence.

Interprocess Communication
If the resource being opened is a "logical
device" (an I/0 process), an OPEN request
is sent to it, whereas if the resource being
opened is another user process willing to
participate in interprocess communications,
an OPEN message is sent to it. Included as
part of the OPEN request and OPEN message
is information such as the identity and secu
rity clearance of the opener and the desired
access mode. The receiving process (server)
has the option of either accepting and acting
on the request or rejecting it based on condi
tions such as security requirements.

A process can initiate a message exchange
with any known process anywhere in the
network. It is up to the receiver of the mes
sage to decide whether or not to participate
in the exchange. Thus, access security is the
responsibility of the receiving process. For
example, a request to open a disc file is
denied by the disc processes as a security
violation (Error 48) if the requester does not
have adequate security clearance.

If a server accepts the OPEN request and
returns a positive response to it, the File
System assigns a file number to it. This file
number is unique to the opening process
(requester) and can be viewed as a virtual
connection (file) through which all subse
quent communications with that server are
performed. All resources being accessed via
the File System must first be opened before
they can be used.

The Message Queue
Requesters and servers execute asynchro
nously. They can execute in the same CPU,
in different CPUs in the same system, or
even in different systems. The GUARDIAN
operating system enables processes to syn
chronize their activities so that they can
send and receive messages by providing each
process with event flags that signal the
arrival of a message or the completion of
a previously initiated message.

In addition, each process has an associ
ated incoming message queue, which has
the system-specified name of $RECEIVE.
A process can check for the completion of
a previously initiated message by calling the
procedure WAIT with a parameter of LDONE
(link done), and it can await notification of
an incoming message by calling WAIT with
a parameter of LREQ (link request). The
File System performs this logic for nonprivi
leged user processes when procedures such
as READ, WRITE, READUPDATE, and
AWAITIO are called.

When a requester initiates a message, the
address of the Message System data struc
ture used to control that message exchange
(see the section "Message Control") is
inserted into the server's $RECEIVE queue,
and its LREQ event flag is posted. The
requester is suspended from the time it initi
ates a message until the time the server noti
fication is posted. The requester can then
continue executing and check for the receipt
of a reply at a later time.

The requester can have several outstand
ing requests at the same time. The ability to
initiate several requests and check for their
replies at a later time is used by the File
System to allow user processes to perform
NOWAIT I/0 operations.

Although the arrival of the message is
posted as soon as the message is initiated,
the server can check for and process incom
ing messages at its convenience. File Sys
tem procedures enable servers to access
$RECEIVE by treating it like a file. In
order to invoke File System support for
$RECEIVE, server processes participating
in message exchanges must OPEN it. Once
$RECEIVE has been opened, the server
can receive and respond to requests via
$RECEIVE by calling the File System
procedures READUPDATE and REPLY
respectively.

TANDEM SYSTEMS REVIEW FEBRUARY 1985

To participate successfully in a message
exchange, both the requester and server
must understand what constitutes a message
and agree upon an exchange protocol. The
GUARDIAN operating system defines the
structure of a message and imposes an
explicit message-exchange protocol. The
File System procedures such as READ,
WRITEREAD, and WRITE, which are called
by the user to perform I/O operations,
understand the structure of a message and
comply with the message-exchange protocol
by invoking the appropriate Message System
procedures in turn. The message-exchange
protocol is described in detail below.

User processes exchanging messages must
define data-exchange sequences or dialogues
meaningful to their tasks. These data
sequences or messages are transferred
between the two participating processes in
accordance with the message structure and
exchange protocol defined by GUARDIAN.

Message Control

A message consists of a special data struc
ture called a Link Control Block (LCB) and
optional user data. LCBs contain informa
tion about the message, such as the identities
of the requester (Linker) and server (Lis
tener), the address and size of an optional
user-data buffer, and information as to
whether the message requires special security
checking.

The LCB also contains 6 parameter words
which may be sufficient to contain the text
of a short message. The optional user-data
portion of the message can be used to con
tain additional information. A process send
ing a WRITE request to a disc process would
include the data to be written to disc in the
user-data portion of the message. The File
System may include a message header con
taining control information meaningful to
the disc process as part of the user-data
portion of the message. At a minimum, a
message consists of an LCB.

In addition to containing information
about a message, LCBs are used by the Mes
sage System in implementing the message
exchange protocol. Figure 2 represents the
format of an LCB, and Table 1 describes the
data contained in it.

Figure 2

Word 0

1
·wsr

2 LI.INK
3 WNK1
4 LLIS
5 LSTATE
6 LFLAG
7 LEXT
8

LSUF
9

10 !..LIM
11 !..TRAN
12 P1
13 P2
14 P3
15 P4
16 P5
17 P6
18 ,;,: :::; JJ;t.AG2
19 ;:i;~~ ·:·

Table 1.

The data contained in a Link Control Block (LCB).
-- -

Words Data

0:1

2

3

4

5:6

7

8:9

10

11

12:17

18

19

LLIST. Linkage used by the Message System to attach
the LCB to various lists, such as $RECEIVE.

LLINK. Identity of the process initiating the message
(Linker).

LLINK1. Address of the sender's (Linker's) LCB in the
sender's CPU.

LLIS. Identity of the destination process (Listener)

LSTATE, LFLAG. State of the LCB in the
message-transfer protocol and bit fields used by the
Message System to keep control information.

LEXT. Address of the LCB extension, if any. (Used for
transfers to another system, for example.)

LBUF. Absolute extended address of the sender's data
buffer.

LLIM. Size, in bytes, of the sender's data buffer.

LTRAN. Transfer count in bytes. This may be different
from LLIM in word 10. It is used to prevent buffers from
being over-written.

P1-P6. User parameter words that have special
significance to the two processes participating in a
message exchange.

LFLAG2. Control information maintained by the Message
System.

LEXPANDLCASS. For future enhancement.

FEBRUARY 1 9 8 5 T A N D E M SYSTEMS REVIEW

Figure 2.

The format of a Link
Control Block (LCB).

25

26

A complete message exchange consists of
a request sent to the receiver (Listener) and,
optionally, a reply returned to the sender
(Linker). The successful transfer of a mes
sage requires that one LCB be allocated for
the Linker and one for the Listener, in their
respective processors. The LCBs are allo
cated out of a pool in system data. The
number of LCBs available in a processor is
configured by the user during SYSGEN. LCB
allocation is controlled by providing both
"pool" LCBs and "reserved" LCBs.

In order to ensure that message transfers
are not hampered due to the Message Sys
tem's inability to allocate LCBs, a process
can reserve LCBs for queuing incoming
requests and initiating requests by calling
the procedure RESERVELCBS. If a process
has all of its reserved LCBs (possibly none)
in use, pool LCBs are allocated when they
are available. If an LCB cannot be allocated
within 10 seconds, the message initiation
fails. System server processes reserve one or
more LCBs for incoming messages and a
sufficient number, dependent solely on the
server's needs during request processing,
for outgoing messages.

The Message System allocates LCBs and
initializes the various fields according to the
data supplied by the caller. For user pro
cesses, the caller is a File System procedure.
Once the LCBs are successfully allocated,
the Message System uses the information
contained in them to transport the message
to its destination. If unable to deliver a mes
sage either because the Listener did not exist
or a Listener's LCB could not be allocated,
the Message System returns appropriate
error indicators to the caller. The caller can
then take any recovery action desired.

The Message-exchange Protocol
The message-exchange protocol is imple
mented as the following sequence of events:

1. The initiator of the message (Linker)
informs the receiver (Listener) that it has
a message to send. It does this by insert
ing an LCB into the Listener's incoming
message queue.

2. The Listener, at some point in its process
ing sequence, determines that it has an
incoming message by examining its mes
sage queue. If it decides to accept the
message, the Listener requests the Mes
sage System to transfer any associated
user data.

3. When the complete request (LCB and
user data) is received, the Listener pro
cesses it and may return a reply.

4. When the Linker receives the optional
reply, the message-exchange protocol is
implicitly complete. If the Listener does
not reply within the time expected by the
Linker, the Linker may choose to com
plete the message explicitly.

The Message System uses the LSTATE
word in the LCB to keep track of the message
as it moves through the various stages in
the protocol. Figure 3 depicts a message
exchange between two processes executing
in different CPUs, which requires the
involvement of the interprocessor hardware
and software. Refer to it as the message
protocol is described.

LINK, LISTEN, READLINK, WRITELINK,
and BREAKLINK are Message System proce
dures called by the File System on behalf of
the user process. They can be called directly
by privileged system processes.

LINK initiates the message exchange. It
causes the allocation of an LCB for the
Linker and initializes the various fields
according to the information passed to it
by the caller. It calls other Message System
procedures that cause the message to be
queued for transmission to the destination
processor over one of the 2 interprocessor
buses.

TANDEM SYSTEMS REVIEW FEBRUARY 1985

The Linker is then suspended. The Dis
patcher interrupt handler subsequently
issues the SEND instruction to transfer the
LCB (in PMSO state) to the receiver's
processor.

The BUSRECEIVE interrupt handler in the
Listener's processor stores the incoming
message temporarily in a special control
package area while it determines whether
the Listener exists. If it does, a Listener's
LCB is allocated. If an LCB is successfully
allocated, BUSRECEIVE copies the contents
of the incoming message from the temporary
storage area into the Listener's LCB and
inserts it into the Listener's message queue.
BUSRECEIVE calls the procedure AWAKE
to post an LREQ (link request) condition
to the Listener. It then acknowledges the
transfer.

If the Listener has been WAITing on
LREQ, i.e., if it has called the procedure
WAIT to monitor link-request notification,
it is allowed to resume execution. When
BUSRECEIVE in the Linker's CPU receives
the acknowledgment, it allows the Linker to
resume processing. If unable to allocate a
Listener's LCB, or if the Listener does not
exist, BUSRECEIVE in the receiving CPU
notifies the Linker that it was unable to
successfully initiate the message, by return
ing a special acknowledgment word.

To check for incoming messages, the Lis
tener calls the procedure LISTEN, which
returns the address of the first element in
the caller's message queue. The Listener
now has the option of specifying how much
user data it is willing to accept from the
Linker and the location of the buffer where
it is to receive the data. The Listener then
calls READLINK, which causes the LCB in
the POD state to be sent to the Linker's
CPU. The Listener is suspended at this
point.

The BUSRECEIVE interrupt handler in the
Linker's CPU acknowledges receipt of this
LCB. Recognizing the POD state, it queues
the LCB for transmission after setting the
state to PHDR. The Dispatcher then issues
SEND instructions to transfer this LCB and
any associated user data to the receiver's
processor.

The BUSRECEIVE interrupt handler in the
Listener's CPU stores the incoming LCB in a
special control-packet area. Recognizing the
LCB in PHDR state, BUSRECEIVE uses the
LLIS field of the incoming LCB to determine
the identity of the Listener. With this infor
mation, BUSRECEIVE is able to locate the
corresponding Listener's LCB, which speci
fies the address of a buffer where the incom
ing user data is to be stored. When the entire
transmission is complete, BUSRECEIVE
returns an acknowledgment.

Figure 3

Link
Requester in CPU X

Call LINK

Call BREAKLINK
(If no reply)

LC8 in PMS &tale
(Here's a~.}

ACKNACK
!Sent by i!USM0£1VE.t

ACKNACK
(Sel'ttbV~CEIVE.j

ms lf',!~slale

ACKNACK
(Sef\tby 81:1SRECEf\l!l'.)

LCS in PCAN state
(Canoettlle~-1

FEBRUARY 1985 TANDEM SYSTEMS REVIEW

Figure 3.

The protocol for a mes
sage transfer.

Listener
Server in CPU Y

Call LISTEN

Call READLINK

Call WRITELINK
(Optional)

27

The Listener is now allowed to process
and may choose to return a reply by calling
the WRITELINK procedure. WRITELINK
causes an LCB in the PHDB state to be
queued for transmission to the Linker's
CPU. The Dispatcher then issues SEND
instructions to transfer the LCB and its asso
ciated data to the Linker's CPU.

Recognizing the LCB in PHDB state,
BUSRECEIVE in the Linker's CPU stores the
incoming reply data into the buffer specified
by the corresponding Linker's LCB and sets
the LDONEB bit in the LSTATE word of that
LCB to indicate message completion. It then

For transmitting data
over the interprocessor

buses, a protocol similar to
ISO's HDLC is used.

acknowledges this
receipt and calls
AWAKE to post
LDONE notification
to the Linker. If it
has called WAIT to
monitor LDONE,
AWAKE allows the
Linker to resume

execution. If the Linker has not been wait
ing on LDONE, a subsequent call to WAIT
on LDONE returns completion notification
to it.

Since the reply is optional, the Linker
may choose to complete the message by
calling either BREAKLINK or REVOKELINK.
BREAKLINK cancels the message by sending
an LCB in PCAN state to the Listener. If
REVOKELINK is called instead, it causes the
message to be deleted from the Listener's
message queue if it has not yet been listened
to. The Listener is thus unaware of that
message and does not have to spend time in
processing a cancelled message.

By convention, the Linker may not mod
ify the contents of its LCB once the message
has been successfully initiated. Since it can
not alter the LBUF field in the LCB during
the message exchange, the same buffer must
be used for sending request data and receiv
ing reply data. In order to prevent its buffer
from being overlaid by the reply data, the
Linker can request the Message System to
inhibit transfer of the user-data portion of
the reply.

The Listener is expected to initialize the
LBUF, LLIM, and LTRAN fields in its LCB
prior to calling the procedure READLINK.
This ensures that the user-data portion of
the message is transferred into a buffer that
belongs to the Listener. While the Listener
can use the same buffer for returning the
reply data, it can also use a different buffer
by modifying the LBUF, LLIM, and LTRAN
fields of the LCB before calling WRITELINK.
Both the Linker and the Listener can set
LTRAN to 0, indicating that no user data is
associated with the message.

The Messenger Process
Certain privileged processes that are send
ing noncritical, information-only messages
(such as the Command Interpreter sending
a CLOSE message to a process it has created)
may not want a reply or want to spend the
time to participate in the various stages of
the message-exchange protocol. These pro
cesses can request the Message System to
notify the messenger process when errors
occur or when the message completes suc
cessfully. The messenger process then retries,
if necessary, and handles message comple
tion. There is no way for a nonprivileged
user process to use this service of the
messenger.

The messenger process is also responsible
for notifying interested processes of the
arrival of system status messages, such as
those messages stating that a CPU or net
work line is up or down.

28 TANDEM SYSTEMS REVIEW FEBRUARY 1985

Interprocessor Bus Control
Message transfers between cooperating pro
cesses executing within the same processor
are handled entirely by the Message System
procedures, which use the standard mutual
exclusion primitives and perform the neces
sary M0VEs within memory. Messages
between processes executing on different
processors in the system are transferred over
one of the dual, high-speed, parallel
interprocessor buses (IPBs), the x or they
bus. Since bus transfer is much faster than
memory transfer, a hardware-buffering
scheme has been implemented to ensure
efficient use of the buses.

One set of registers for buffering incoming
?ata (INQ) and another for buffering outgo
mg data (0UTQ) exists for each bus in every
processor. The INQ and 0UTQ are capable
of buffering up to 13 words of data and
3 words of control information required for
managing the interprocessor transfer. There
fore, transfers across the bus occur in
"packets" of 16 words. If the size of the
message to be transferred is larger than 13
words, it is divided into as many packets as
necessary by the microcode controlling the
bus hardware. Since the size of a packet is
set at 16 words, messages with less than 13
words of data are padded out with zeroes.
Additional detail on the IPB is contained in
the System Description Manual.

For ~ra?smitting data over the IPB, a pro
tocol similar to the International Standards
Organization's High-level Data Link Con
trol (HDLC) is used. This protocol uses
sequenced packets and returns only positive
acknowledgments. Following transmission
by the sending processor, the message waits
on the wait acknowledgment (WACK) list. If
the message is still on the WACK list after
one second, it is re-sent over the other bus.
This cycle continues until either the transfer
is acknowledged or the receiving processor
is considered as having failed. Repeated
failures to acknowledge transfer over the
bus cause the sending processor to mark the
receiving processor as having failed. Each
processor can have up to 4 transfers awaiting
acknowledgment from each processor in the
system. Subsequent transfers are queued
until they have been acknowledged.

Each processor maintains a Bus Receive
Table (BRT) entry to control incoming data
from each processor. The BRT entry includes
a buffer address, a transfer count, and the
next-expected sequence number. When a
packet arrives, it is checked for correct rout
ing (the receiver's CPU number in the incom
ing packet is the receiving CPU), the
sequence number is verified, and the check
sum is computed by the IPB microcode. If
the packet is without error, the BRT entry is
updated. When the transfer count becomes
zero, or a packet error occurs, a software
BUSRECEIVE interrupt is posted. When a
packet error is detected, the receiving pro
cessor merely notes the type of error that
occurred, discards the packet, and flushes
the rest of the message. Error recovery is the
responsibility of the sending processor.

Since the IPB is implemented as a closed
environment, fewer errors occur within it
than occur within conventional data
communications environments. Observa
tions have shown that the rate of IPB error
occurrence is very low; for example, the
error log for the system on which this article
was prepared contained no IPB error entries
for the entire month the article was written.
Therefore, any time lost due to time-out pro
cessing or packet flushing is not the primary
concern in the error-recovery mechanism;
correctness of error detection and recovery
are.

Approximately every second, each pro
cessor sends an unsequenced packet over
each bus to each processor, including itself.
This packet serves 2 purposes: to recover
from lost acknowledgments and to inform
the other processors that it is up. Approxi
mately every 2.4 seconds, each processor
checks to see whether these packets have
arrived from all processors in the system. If
a packet from a particular processor has not
arrived, that processor is designated as
down.

FEBRUARY 1985 TANDEM SYSTEMS REVIEW 29

30

Message System Features
The message-exchange protocol described
above is used both for intraprocessor and
interprocessor message exchanges. Although
the latter cause additional LCB state
chan_ges, n~ additional user programming is
reqmred. Smee all message exchange is done
by moving data rather than with shared
data structures, the Message System appears
to function in the same way regardless of
the locations of the requester and the server.
The Message System also allows message
cancellation by both the requester and the
server.

The requester can cancel the message by
calling the procedures BREAKLINK or
REVOKELINK. If the message has not been
completed, BREAKLINK sets the cancelled
flag in the Listener's LCB and awakens it on
the LCAN (link cancelled) event. Calling the
procedure REVOKELINK causes the Listen
er's LCB to be deleted from its $RECEIVE
queue if it has not yet been been removed
by LISTEN. This saves the Listener the time
that would have been spent in processing a
cancelled message.

1:he server can also cancel the message by
settmg the LCAN flag in the LCB LSTATE
word and calling the procedure WRITELINK
without specifying a buffer address in the
LBUF field. This results in the requester
being AWAKEned on LDONE with both the
LDONE and LCAN flags set in its LCB.

The cancel flag provides a uniform mech
anism for signalling failures. It enables out
standing messages to be completed upon
process or processor failure by simulating
message cancellation on the part of the
failed end of the message transfer.
. _<:?nee a message has been successfully
m1tiated, no further participation is required
by the Linker in the message exchange. This
allows the Linker to continue with other
~rocessing and check for message comple
t10n later. It also allows the Linker to have
several requests outstanding at any given
time. The File System utilizes this ability in
supporting NOWAIT I/O operations for user
processes.

Incoming messages are inserted into the
Listener's $RECEIVE queue in first-in-first
out (FIFO) order. The Listener can option
ally request the Message System to insert
~ncoming messages into its $RECEIVE queue
m the order of the priority of the Linker.
The Listener can pick up multiple requests
by cal_ling LISTEN successively, queuing
them mternally, and not READLINKing or
WRITELINKing a request until ready to
process it.

When OPENing $RECEIVE, a nonprivi
leged server can specify the RECEIVEDEPTH
parameter with a value greater than 1.
This causes the File System to enable the
server to process that number of requests
concurrently.

If users can identify a resource by name
the File System can determine the location'
of that resource and handle the Message
System interface functions on their behalf.
It complies with the message-exchange pro
tocol described above by calling the various
Message System procedures in turn. The
File System provides users with a uniform
callable interface for accessing other
resources on the system. Regardless of
whether the other resource is a user process
a disc file, or other peripheral device, users'
are able to call the File System procedures,
such as OPEN, READ, WRITE, and CLOSE,
to perform I/O operations to it.

The File System, along with the Message
System, provides user processes with com
munications homogeneity and location
transparency. It allows systems analysts to
optimize system performance by distributing
the processing load among the available
processors.

Isolating user processes from configura
tion details by forcing them to communicate
with other entities via the Message System
facilitates on-line repair of failed compo
nents, an important feature of fault-tolerant
sy~tem availability. The message-based oper
atmg system also allows the addition of
hardware components such as CPUs, mem
ory boards, and peripheral devices, as
needed, to meet increased processing
requirements and obviates the painful
upgrades necessary with conventional com
puter architectures.

TANDEM SYSTEMS REVIEW FEBRUARY 1985

If the application software has been
designed to allow it, additional copies of
software modules (requesters and servers)
can be implemented to meet increased trans
action volumes. Benchmark results have
shown that in a well-balanced system, the
incremental increase in throughput resulting
from the addition of processing modules is
linear. Thus, a well-balanced 16-processor
system with an adequate complement of
peripheral devices supports twice the trans
action throughput of a well-balanced
8-processor system.

Message System Extensions
The Tandem hardware architecture and the
GUARDIAN operating system provide a local
network of CPUs. Processes executing in
one CPU have transparent access to pro
cesses and devices in other CPUs. The only
limitation of distance between processors is
that imposed by the interprocessor bus,
which can be no longer than approximately
20 feet.

In order to support the need for distrib
uted processing, or to meet processing
requirements that cannot be handled by one
16-processor system, additional systems can
be installed and connected together in a
network. EXPAND networking software
extends the GUARDIAN operating system
beyond the boundaries of a single system.
GUARDIAN/EXPAND allows up to 255 geo
graphically dispersed systems to be inter
linked via telephone lines and/ or satellites.
EXPAND maintains the geographic indepen
dence of resources provided by GUARDIAN,
so that any resource in the network can be
addressed by its logical file name, without
regard to its physical location. Figure 4
represents the formats of the network name.

The major components of the EXPAND
networking software are the end-to-end
protocol, the Network Control Process
{NCP), the line handlers, the Network Rout
ing Table (NRT}, and various network utili
ties. For additional information about the
GUARDIAN/EXPAND network, see Katzman
and Taylor.

Figure 4

Named network
process

Unnamed network
process

'·· $ystet'l'lf .. ··~--' CPU PIN

FOX, Tandem's fiber optic extension to
the bus architecture, can also be used to
connect systems located within 1 km of
each other into a network. Up to 14 systems
of up to 16 processors each can be con
nected with FOX. Geographically dispersed
FOX rings can then be connected with data
communications lines supported by
EXPAND.

FOX software includes enhancements to
the Message System and system processes,
such as the FOX line handler and FOX IPB
monitor. These perform start-up handshak
ing logic, maintain the Message System
data structures, and process "secured"
(described below) intersystem message traf
fic. The EXPAND and FOX extensions to
GUARDIAN enable users of Tandem systems
to use simple read/write communications
with other processes anywhere in the
network.

Messages bound for remote systems in an
EXPAND network require the participation
of the communications line handlers to
transport the message over the communica
tions line. Messages sent between systems
within a FOX network are transferred
directly over the extended bus hardware.
The majority of messages between systems
in a FOX ring do not require the service of
the FOX line handlers; they are handled
directly by the Message System procedures.
FOX line handlers are only required for the
establishment and management of node
connection and the processing of secured
messages.

Figure 4.

Network name formats.

FEBRUARY 1985 TANDEM SYSTEMS REVIEW 31

In both EXPAND and FOX networks, if a
direct connection does not exist between the
sending and receiving nodes, the line han
dlers take care of forwarding the message to
its ultimate destination. Message System
operation at the source and destination
nodes is the same as described above for
intrasystem messages.

GUARDIAN security includes features
designed specifically for the network envi
ronment. A password validation is per
formed when a remote file is opened or a
remote process is created. When a remote
OPEN or NEWPROCESS occurs, it is directed
to the EXPAND or FOX line handler in the

An application should
be composed of a set

of modular, tunable
entities.

remote system rather
than to the disc pro
cess or monitor pro
cess. For messages
bound for a remote
destination, the net
work software in the
sending node sends
the local remote

password along with the message. The net
work software on the receiving node checks
the USERID file for a match on that pass
word. If the check fails, the server is notified
of the security failure via the LSECUREB bit
in the LCB.

The LSECUREB bit in the LFLAG word of
the LCB must, by convention, be set to 1 for
secured messages, such as an OPEN message,
to indicate to the receiving process that the
sender has cleared security in the receiver's
system. If this bit is not on, the receiver
should reject the request. The Discprocess
enforces this rule; for example, OPEN
requests arriving on its message queue with
out LSECUREB being true are rejected as
security violations (Error 48).

The network extensions to the GUARDIAN
operating system provide user processes
with almost complete location transparency
in accessing remote resources. For the appli
cation programmer, accessing a remote file,
device, or process is the same as accessing a
local file, device, or process, with the fol
lowing exceptions:

1. Names of devices to be accessed remotely
are limited to 6 characters instead of 7.

2. Names of processes to be accessed
remotely are limited to 4 characters
instead of 5.

3. The backup process of a process pair
must execute in the same system as the
primary.

4. A program to be run remotely must exist
on a disc that is physically connected to
the remote system.

Application Design
Although GUARDIAN and its network exten
sions facilitate easy access to remote
resources, developing a distributed applica
tion requires careful analysis and the selec
tion of an application structure that opti
mizes system performance and reliability.

Requester-server Design Philosophy
The requester-server design philosophy is
recommended for applications. This
approach assigns separate application sys
tem modules to handle the user or terminal
interface (requesters) and the data-base
interface and management functions (ser
vers). It allows an application to take full
advantage of the inherent features of the
Tandem architecture.

In this approach, the interface between
requesters and servers is restricted to a well
defined and limited set of message formats
and request codes. The modular struc-
ture of well-designed requester-server soft
ware greatly facilitates the installation,

32 TANDEM SYSTEMS REVIEW FEBRUARY 1985

maintenance, modification, and expansion
of a system. In general, the following ideas
should be kept in mind when designing an
application for the Tandem system.

The application should be composed of a
set of modular, tunable entities, such that
additional copies of the modules can be
readily configured to meet increased
demand, new modules can be easily incor
porated into the system to implement new
functions, and the modules can be distrib
uted across all the processors in order to
tune and balance system performance.

The major components of an application
are shown in Figure 5. The communications
1/0 process performs processing that is
dependent on devices and communications
lines. It supports specific line protocols and
device types; handles error recognition,
reporting, and recovery; and performs func
tions such as software downloading to intel
ligent terminal devices.

The requester receives requests from the
user at the terminal by calling the File Sys
tem procedure WRITEREAD. It formats
requests from the user into messages,
ensures that all the information required to
process the request is present, and initiates a
message to the appropriate server by calling
the File System procedure WRITEREAD.

The server processes the functional
requests from the requester and performs all
the data-base 1/0 necessary. It obtains the
request by calling the File System procedure
READUPDATE, processes the request, and
returns a reply by calling the procedure
REPLY.

Figure 5

Comm
line Camrtll/0
~ PfQC8$$

Design Method
In this section, one method of achieving a
request-server design is described. As it is
beyond the scope of this article to discuss
the need for careful data-base design and
the problems of data-base integrity, recov
erability, system management, and oper
ation, refer to the Tandem Application Mon
ograph Series and applicable Tandem
product manuals for a discussion of these
critical issues.

With careful analysis, the requirements of
an application system can be grouped into
functional subsystems. For example, the
requirements for a banking money-transfer
system might be grouped into two subsys
tems: wire-transfer line management and
wire entry and repair service (WERS).

Within each subsystem, sets of related
functions can then be grouped to form
transactions. Transactions in this context
define units of work as perceived by the end
user. In the example above, the WERS sub
system might consist of the following
transactions:

1. A wire-entry transaction, in which a wire
to be sent over one of the wire services
(e.g., TWX, SWIFT, or FEDWIRE) is
entered.

2. A wire-review transaction, in which
incoming and outgoing wires are reviewed
and approved.

3. An inquiry transaction, in which, for
example, a customer's balance is queried
or a wire is queried by account number.

FEBRUARY 1985 TANDE\1 SYSTEMS REVIEW

Figure 5.

The components of an
application.

33

34

After the various transactions are defined,
the series of requests necessary to execute
each transaction can be defined. The inquiry
transaction might consist of the following
requests:

■ Perform access security clearance.

■ Format an inquiry request, and send it to
the inquiry server.

■ Receive the reply from the inquiry server,
and inform the user.

These requests can then be named by single
imperative statements as follows:

■ Accept customer account number and
password.

■ Send authorization request to security
server.

■ Send inquiry request to inquiry server.

■ Display customer account information.

Each request identified in this manner can
then be broken into a set of elementary ser
vices that must be performed by the server.
For example:

■ Read customer master record.

■ Authorize or deny access based on a com
parison of the password supplied by the
requester and that stored in the file.

■ Read customer detail record.

■ Format and return a reply to the requester.

Each of these services can then be described
by single imperative statements, as follows:

■ Read customer master file.

■ Authorize access.

■ Read detail record.

■ Reply to requester.

Once each transaction is analyzed in this
manner, the list of requests and services
should be examined to eliminate duplicates.
The result is a set of transactions that cause
specific requests, resulting in specific
services.

The next step is to define the relation
ship of each transaction with others in the
same subsystem so that duplicate or sim-
ilar requests and services within each subsys
tem can be isolated. Once this is done, it is
possible to map requests and services into
requesters and servers.

As a rule, those processes that initiate a
request for service are requesters. They call
the File System procedure WRITEREAD.
Servers are those processes that process a
request and return a reply. They call the File
System procedure READUPDATE to receive
an incoming message from $RECEIVE and
the procedure REPLY to respond to the
requester.

Request and Reply Formats. Once the
requesters and servers have been identified,
formats for a meaningful dialogue can be
defined. A successful message exchange
requires both the coordination of message
delivery and receipt, and cooperation in
formatting meaningful requests and replies.

The Message System provides the coordi
nation mechanism. For processes perform
ing 1/0 operations with peripheral devices,
the File System provides all the cooperation
logic because it understands and complies
with the format of the requests expected by
the 1/0 processes and the replies returned by
them. User processes communicating with
each other must similarly agree upon mes
sage formats. It is recommended that the
format of requests and replies be defined
using the Data Dictionary Language (DDL).
A central sourc~ will then exist which, when
copied by both the requester and server pro
grams, will ensure a meaningful dialogue
between them.

TANDEM SYSTEMS REVIEW FEBRUARY l<JK5

Subsystem Interdependencies. Once the
processing requirements within each subsys
tem have been defined, the interface require
ments between various subsystems must be
identified. Methods for detecting and han
dling errors, and requirements such as avail
ability and recoverability must also be
examined. Completion of the steps outlined
above will result in a top-level design which
can be used as a basis for developing a
detailed design and implementation.

Benefits of Requester-server
Modularity

When the application is divided into mod
ules of requesters and servers, each of them
can be configured in the processor or system
that is closest to the resource they control.
For example, in a distributed on-line trans
action processing system, the requesters can
be configured in the system to which the
terminals are attached and the servers can
be configured in the system on which the
data resides. Within one system, requesters
and servers can be distributed among the
available processors based on system-load
balancing and performance-tuning require
ments. In either case the GUARDIAN operat
ing system, along with the EXPAND and
FOX extensions, ensures that no special
programming effort is required.

Conclusion
The Tandem architecture enables a system
to expand from a single 2-CPU system to a
network of 255 systems of 16 CPUs each,
for a total of 4080 CPUs (excluding FOX
considerations). The CPUs in a system and
the systems in a network are connected by
powerful, fault-tolerant software that
enables applications to access files, pro
cesses, and devices anywhere in a network,
using simple read-write logic.

The GUARDIAN Message System (along
with EXPAND and FOX network extensions)
guarantees that all processors in a sys-
tem and in the network have access to all
available resources, no matter what their
locations. If designed to take full advan
tage of the Message System's features, an
application running on the Tandem system
will, in turn, use the architecture to its maxi
mum advantage, readily responding to
changes in transaction volumes and business
requirements.

References
Collins, J. 1982. Transaction Processing on the Tandem NonStop
Computer: Requestor/Server Structures. Tandem Application
Monograph Series. Tandem Computers Incorporated.

Katzman. J. A. and Taylor, H. R. 1978. GUARDIAN/
EXPAND: A NonStop Network. Tandem Computers
Incorporated.

Smith, L. 1982. Designing a Network-Based Transaction
Processing System. Tandem Application Monograph Series.
Tandem Computers Incorporated.

System Description Manual: NonStop fl System. Part No.
82077 D00. Tandem Computers Incorporated.

Acknowledgments
The author would like to thank Richard Carr, Kevin Coughlin,
Mike Lisenbee, Dick Thomas, and Denis Winn for providing
valuable technical reviews.

Mala Chandra joined Tandem in San Francisco as a Senior
Systems Analyst in August 1982. She transferred to the Customer
Application Support Group (CASG) in March 1984, where she
taught GUARDIAN Internals courses to Tandem software devel
opers. Currently she is with the lnstallability and QA group,
where she is working to ensure the supportability and quality of
Tandem products.

FEBRUARY I 9 8 5 T A N D E M S Y S T E M S R E V I E W 35

Using FOX to Move a
Fault-tolerant Application

Figure 1.

A FOX ring. Each clus
ter (system) is connected
to its neighbors via two
FOX links, which func
tion as X and Y exten
sions to the DYNABUS.
A ring can exist alone
or as part of an EXPAND
network. Here, Clusters
1 and 11 connect to
nodes outside the ring
via EXPAND lines.

he 6700 Fiber Optic Exten
sion (FOX) was designed to
connect NonStop II or
Nonstop TXP systems into
a high-speed fault-tolerant
local ring network. FOX's
fiber-optic technology

allows information to be sent and received
concurrently at almost 300 times the rate
provided by dual 56K-bit lines. This speed
and the amount of processing power in the
ring can create a "virtual system" that pro
vides more on-site transaction processing
power than that of most large mainframes.
Thus, FOX allows the extensive sharing of
resources between multiple systems that
large applications require without the per
formance penalties or CPU overhead associ
ated with lower-speed telecommunications.

Figure 1

Line to other nodes
in EXPAND network

FOX is also useful for other applications
for which a high-speed link between local
systems is required. This article describes
how Mellon Bank, in Pittsburgh, used FOX
to relocate their 8-CPU Tandem production
system with no interruption or slow down
of their 24-hour, 7-day-a-week automated
teller processing. Indeed, FOX was essential
to Mellon's success in avoiding more con
ventional (and costly) moving alternatives.

FOX Facts
FOX can be used to connect 2 to 14
NonStop II or NonStop TXP systems in a
local ring network. Each system in a FOX
network is called a cluster. These clusters
must be within 1 km of one another but
may contain up to 16 CPUs each, for a max
imum of 224 in a ring.

Each cluster in a ring connects to each of
its neighbors via two FOX links. These inter
system links function as X and Y extensions
to the interprocessor DYNABUS™. A single
connecting cable contains 5 optical fibers:
X-send, X-receive, Y-send, Y-receive, and a
spare. In this way the cable provides four
I-Mb/second links from each cluster (two
in each direction) for a theoretical aggregate
data-transfer rate of 4 Mb. A ring can exist
on its own, or it can be part of an EXPAND
network, as shown in Figure 1. EXPAND
lines connect the ring to other rings or
EXPAND nodes. (The maximum number of
nodes in an EXPAND network is still 255.)

36 TANDEM SYSTEMS REVIEW FEBRUARY 1985

Figure 2

', ', ' ,',;
,' ,,

LBU Y, LBU Y,

iifi LBU X, ~ LBU X,
/_...,-----serial"-""

Clusters

Data can move "left" or "right" around
the ring. The user can specify which link to
try first. If that link fails, the system auto
matically attempts to transfer data over the
next preferred link, and so on. Interestingly,
the ring topology creates an added measure
of redundancy, providing for continuous
operation in the unlikely event that both
links between adjacent clusters should fail.

Every cluster has a Local Bus Unit (LBU)
for each bus. A FOX network consists of
interconnected LBUs, as illustrated in
Figure 2. The LBU controls the interproces
sor bus and sends and receives packets over
the ring network. It consists of a set of 3
FOX circuit boards for each bus: the Serial
Link Board (SLB), the Control Processor
Board (CPB), and the Interprocessor Bus
Control board (IPC).

As long as a cluster's SLB is powered on,
data can pass through it (even if the cluster
is no longer in service). If the SLB should
fail or be powered off, data can still move
around the ring in the opposite direction.

The GUARDIAN interprocessor-bus moni
tor process controls the state of the LBU. It
also controls the downloading of the Load
able Control Store (LCS) with the LBU
microcode.

links

FOX provides a true system-to-system
link, not a device-to-CPU interface. Each
cluster in a FOX network appears to the user
to operate just as a system in an EXPAND
network.

Since most data transfers do not involve
communications line-handler processes, the
user should notice a reduction in CPU-busy
rates attributable to network functions. Spe
cifically, requests to OPEN or CLOSE files
require line handler intervention; file access
requests (such as READS and WRITES) do
not. As illustrated in Figure 3, data for file
access requests is passed in the following
manner:

1. Directly from the application process/
GUARDIAN message system over the
DYNABUS to the LBU.

2. Over the optical fibers to one or more
intervening LBU s.

3. From the destination cluster's LBU to its
DYNABUS and on to the destination appli
cation (or system) process.

FEBRUARY 1985 TANDEM SYSTEMS REVIEW

Figure 2.

Every cluster in a FOX
ring has two Local Bus
Units (LBUs), which
control the cluster's
interprocessor bus
and send and receive
packets over the ring
network.

37

Figure 3.

FOX provides a true
system-to-system inter
face (not a device-to
CPU interface).

38

Figure 3

Processor module

EXPAND line handlers assist in checking
remote passwords and in recovering from
certain kinds of errors (e.g., CPU failures
and controller-ownership switches).

Several techniques work to ensure data
integrity in a FOX network. FOX provides
parity checks on all data paths, the control
store, and control-store address. It provides
cyclical redundancy checks on all packets
sent over the fibers. The GUARDIAN oper
ating system provides CHECKSUM and
sequence-number checks via the message
system.

FOX Applications

FOX is primarily used to expand Tandem
systems beyond 16 CPUs or to configure
high-performance local ring networks. Users
are also discovering other, less permanent
applications, such as the system move dis
cussed in this article.

A fiber-optic link such as FOX transports
information at a much higher speed than
wire cable can. This is because, in parallel
or coaxial cable, the bandwidth is inversely
proportional to the square of the cable
length; in fiber-optic cables, it is inversely
proportional to the cable length only.

Fiber-optic
cables

Processor module

User
, ,. application

Meai,age
!lYstem

FOX also provides several other advan
tages inherent in fiber-optic technology. It
is impervious to electromagnetic interfer
ence, since data transmission is optical
rather than electrical. This means that FOX
cables can run through environments con
taining rotating machinery, transformers,
relay panels, high-voltage power supplies,
arc welding equipment, or industrial lighting
fixtures without distortion or significant
loss of signal.

FOX provides total electrical isolation
between systems. This helps to ensure that
large spurious signals, unexpected power
surges, or unwanted ground loops do not
damage hardware across network nodes.

The Mellon Bank Application
Environment
Mellon Bank operates 4 Tandem systems:
two each at Mellon Bank, Pittsburgh, and
Girard Bank, Philadelphia (Figure 4). These
systems constitute production and develop
ment environments for the CASHSTREAM
automated-teller (ATM) network. Mellon
has built its application software around a
multinode version of the Advanced Com
munications, Incorporated (ACI) BASE24
product.

With more than 1100 ATMs, CASH
STREAM is among the largest ATM networks
in the United States. On a given day, Mellon
might service over 50,000 CASHSTREAM
customers in Pittsburgh alone (more than
8% of the city's population).

T A N D E M S Y S T E M S R E V I E W FEBRUARY 1985

Many of the ATMs reside in Giant Eagle
grocery stores. These stores provide 24-hour
service and, since many customers use cash
from the ATMs to pay for their purchases,
demand continuous availability from the
Mellon network.

Much of Mellon's success derives from
its aggressive marketing organization, which
has capitalized on the reliability and data
integrity intrinsic to the Tandem architec
ture. In its two-year association with
Tandem, Mellon has evolved into a highly
sophisticated user willing to evaluate inno
vative technological solutions to their data
processing needs.

The Decision to Move
Last year, Mellon Bank faced several data
processing challenges. The unexpectedly
rapid growth of CASHSTREAM had pro
duced an I/O-intensive hardware configura
tion with a preponderance of 6202 byte
synchronous controllers. This resulted in a
skewing of 1/0 versus system cabinetry,
which would not allow the MELLON 1 system
to expand beyond 12 CPUs without incurring
a lengthy network outage to reconfigure
cabinetry and power supplies.

Also, the initial Tandem system had been
installed so close to other existing hardware
that there was no room to expand, even
within the 12-CPU limit mentioned above.

Finally, Mellon management found the
original installation site too close to the
main banking area of the building. To
upgrade security, they decided to move espe
cially critical hardware components to an
area where they would be inaccessible to
customers and unauthorized personnel.
These components included the MELLON 1
system (where the ATM software resided)
and the MELLON2 system (an EXPAND node
which Mellon uses for development and
testing of new application and system
software releases).

Traditional Approaches to the Move
In examining conventional ways to make
the move, Mellon came up with two unac
ceptable alternatives:

1. They could take an extended outage (24
to 48 hours) to relocate the entire hard
ware and software environment.

2. They could replicate the existing environ
ment in preparation for an almost instan
taneous application cutover.

The first alternative would not be very
expensive: while it included customer engi
neering fees for moving the hardware, it
required no additional hardware or soft
ware. Nevertheless, because the application
had to be accessible to ATM users continu
ously, Mellon could not accept an outage of
sufficient duration to both move and recon
figure their hardware in a single step.

The second alternative would eliminate
the prolonged outage; however, it would be
quite expensive, since it would include the
cost of an entirely redundant hardware sys
tem and the customer engineering fees to
install it.

Figure 4

Mellon Bank
production

system

Girard Bank
production

system

MEl.:I.ON:1 _______s--- GlflAfl01

Mellon Bank
development

system

.19600 Bd I" EXPAND lines

Girard Bank
development

system

FEBRUARY 1985 TANDEM SYSTEMS REVIEW

Figure 4.

Mellon Bank's CASH
STREAM ATM
Network before the
MELLONl system
was moved.

39

Figure 5.

(al The components of
MELLON1 and the
phases in which they
were removed. (bl The
components installed as
MELLON0 and the
phases in which they
were installed.

40

An Intermediate Solution with FOX

Since neither of the above alternatives
seemed viable, Mellon asked Tandem to
help them find a solution that would balance
the high cost of system replication against
the negative exposure that might result from
an extended outage. Tandem suggested using
FOX to make a phased move of system com
ponents while minimizing the frequency and
duration of application outages. FOX would
act as the bridge between the existing pro
duction system (MELLONl) and an addi
tional "skeleton" system (MELLONO), which
would become the new production system
as components were grafted onto it.

In this situation, FOX was to provide geo
graphic independence in the form of
increased bandwidth between nodes. While
conventional EXPAND lines could support
efficient internodal access to their data base,
Mellon felt that only FOX would provide the
throughput necessary to communicate with
communications protocol processes and
device drivers on another node. In fact, it
was reasoned, to use a conventional commu
nications line handler to reach communica
tions line handlers on another node would,
at best, result in double-handling of any
communications I/0 spanning the nodes.

The skeleton system was to consist of the
additional cabinetry required to solve the
skewing problem limiting MELLONl 's
expansion. Also, to allow for a more orderly
move, Tandem allowed 4 NonStop II CPUs
to remain in place on the original system

Figure 5

(a) MELLON1

for the duration of the move. (Mellon traded
these in under the upgrade program for
NonStop TXP systems.) Parts could be
borrowed from the MELLON2 development
system, but such borrowing was to be lim
ited to:

1. Brief periods, to avoid delaying testing
and user certification on the development
system.

2. Only those components that would sig
nificantly increase the cost of the move if
purchased.

As this system was a skeleton, it con
tained fewer peripherals than even the small
est Nonstop node. It did not begin to
approach the size (or cost) of the system
replication considered earlier as an
alternative.

The Move: A Closer Look
On the page opposite is a phase-by-phase
description of the move. With FOX, the
move became a fluid transposition of hard
ware modules from one cluster to another.
Although the system components described
here are unique to Mellon Bank, many of
the operations (i.e., the clearing of 6 I/0
slots for FOX) would apply in almost any
situation in which a hardware and software
environment were to be relocated with this
approach. Figure 5 shows the physical
results of the move.

'-----------------~~--~L___J
Phase 10 Phase 7 Phase 6

(b) MELLON0

L__jL__ ___________ JL_ _______ _JL _________ ___,

Phase 6 Phase 4 Phase 8 Phase 10

TANDEM SYSTEMS REVIEW FEBRUARY 1985

Phases of the Move

Phase 1

Non Stop II processors 6 and 7 on the MELLON I pro
duction system were replaced by 2 NonStop TXP proces
sors from the MELLON2 development system. This freed
a TXP system cabinet in the MELLON2 system for use in
building the new MELLON0 production system.

Phase 2

FOX requires 6 consecutive 1/0 slots under CPU 0. In
this phase, 2 of MELLON l's 6202 byte-synchronous
controllers and one 6303/6304 asynchronous controller
and extension were moved from CPU O to other proces
sors within MELLON! to make room for FOX.

Phase 3

The MELLON2 development system was moved to its
new location beside the planned MELLON0 site. Since
MELLON0 would not have an Operations Services Pro
cessor (OSP) until the original was disconnected from
MELLON!, this allowed Tandem customer engineers to
use the MELLON2 OSP for diagnostic testing.

Phase 4

Phase 4 included several critical subphases. First
MELLON0, the core of the new production system, was
installed. It included a patch cabinet, an 1/O-only cabi
net, and a Nonstop TXP system cabinet. Along with its
4 NonStop TXP processors, MELLON0 required the
purchase of the following additional hardware: one pair
of 3106 disc controllers, a 6303 asynchronous controller,
a disc patch panel, an asynchronous patch panel, a
4114/4115 mirrored system volume, two 6530 terminals,
and an OSP cable to be connected to the MELLON2 OSP.

MELLON0 did not contain a tape drive. Rather, a disc
drive containing an appropriate system image was
installed, and the system was COLDLOADed from disc.

After MELLON0 was thoroughly tested, the LBU
boards were installed in 1/0 slots I through 6 under
CPU 0. This provided a dry run for the FOX installation
on MELLON!.

Phase 5

Next, LBU boards were installed on MELLON!. This
required only a single processor outage (CPU 0) and
took down one IPB at a time, allowing processing to
continue as normal. The connection between MELLON!
and MELLON0 was then tested. Figure 6 shows the
Mellon network at the end of this phase.

Phase 6

All 1/0 controllers and associated devices attached to
CPUs 4 and 5 were moved from MELLON! to MELLON0.

Phase 7

The MELLON! NonStop II system cabinet, originally
containing CPUs 4 through 7, was moved to MELLON2,
replacing the NonStop TXP cabinet freed up in Phase I.

Phase 8

The NonStop TXP cabinet was then moved to
MELLON0 to comply with FCC requirements for pure
Nonstop TXP systems. (This was done to prepare for
a possible future upgrade of Mellon's remaining
NonStop II processors to Nonstop TXP processors.)

At the end of this phase, there were 8 CPUs on
MELLON0 and 4 CPUs on MELLON!.

Phase 9

All 1/O controllers and devices remaining in MELLON!
were moved to MELLON0.

Phase 10

The 2 remaining MELLON! system cabinets were
installed as a patch-panel cabinet on MELLON0 and an
1/O-only cabinet on MELLON2.

FEBRUARY 1 9 8 5 T A N D E M SYSTEMS REV!EW 41

Figure&

Figure 6.

Mellon Bank
old production

system

Mellon Bank's CASH
STREAM Network at
the end of Phase 5 of
the move.

42

Mellon Bank
new production

system

Mellon Bank
development

system

Conclusion

Girard Bank
production

system

J 9600 Bd I' EXPAND lines

Girard Bank
development

system

The success of FOX in the Mellon Bank
system move demonstrates that it is more
than a high-speed hardware extension to
the DYNABUS for permanent configurations:
FOX can also be used to move high-volume,
critical on-line transaction processing sys
tems with no noticeable down time. FOX
adds a new level of meaning to the Tandem
architectural features of geographic inde
pendence and modular expandability.

Significantly, Mellon Bank noticed no
degradation in performance while operating
during the move. This allowed the move to
be performed at a "comfortable" pace,
instead of being rushed through to regain
an acceptable level of performance. (As
mentioned above, at the end of Phase 8,
Mellon temporarily applied the CPU power
of 4 TXPs and 8 Nonstop Ils to an applica
tion that previously ran on 8 Nonstop II
processors. Along with their CPU cycles, the
4 residual Nonstop Ils added 20 Mb/second
of aggregate 1/0 channel capacity and actu
ally enhanced the system's ability to respond
to peak loads and survive the loss of periph
eral devices.)

Of course, the relocation of hardware
described above required corresponding
changes in the configuration of both system
and application software. In most instances,
the software changes reflected the hard
ware moves, but were much more easily
accomplished (e.g., with a COLDLOAD or
PUP UP /DOWN) than their hardware
counterparts.

A small part of the cost savings in this
move lay in the availability of the MELLON2
development system. This allowed the cus
tomer engineers to borrow its components,
eliminating the cost of purchasing redun
dant parts. Since users running critical on
line applications like Mellon's often use
development and test systems in addition to
their production systems, they should find
an approach similar to this one useful when
planning to move their systems without an
interruption of service.

References
Communications Management Interface (CMI) Operator's
Guide. Part No. 82344 BOO. Tandem Computers Incorporated.

GUARDIAN Operating System Tables Handbook. Tandem
Computers Incorporated.

System Management Manual: Nonstop II System. Part No.
82069 BOO. Tandem Computers Incorporated.

Acknowlegments
The writer acknowledges Fernando Alarcon (District Hardware
Specialist), Jim Hilinski (Senior Customer Engineer), and Mike
Krygowski (Senior Account Analyst), all of the Pittsburgh
District, for their contributions to the planning, execution, and
documentation of this project.

--- ---------------

Craig Breighner is a Senior Account Analyst in Tandem's Pitts
burgh Commercial Branch. After joining Tandem in March of
1983, one of Craig's first assignments was as account analyst
for Mellon Bank. The strategy for moving Mellon Bank's Tandem
systems was first championed by Craig, although the project's
success reflects the combined efforts of the entire Tandem
account-support team.

TANDEM SYSTEMS REVIEW FEBRUARY 1 9 8 5

TANDEM PUBLICATIONS ORDER FORM

The Tandem Systems Review and the Tandem Application Monograph Series are combined in
one subscription. Use this form to subscribe, change a subscription, and order back copies.

For requests within the U.S. , send this
form to:

Tandem Computers Incorporated
Sales Administration
19191 Valko Parkway
Cupertino, CA 95014-2599

For requests outside the U.S. , send this form
to your local Tandem sales office.

Check the appropriate box(es):

D New subscription(# of copies desired_ __)
D Subscription change(# of copies desired __ _
D Request for back copies

Print your current address here:

ADDRESS

ATTENTION

PHONE NUMBER (U.S.)

If your address has changed, print the old
one here:

ADDRESS

ATTENTION

PHONE NUMBER (U.S.)

To order back copies, write the number of
copies next to the title(s) below.

___ Vol. 1, No. 1, Fall 1983, Part No. 83930

___ Vol. 2, No. 1, Winter 1984, Part No. 83931

___ Vol. 2, No. 2, Spring 1984, Part No. 83932

___ Vol. 2, No. 3, Summer 1984, Part No. 83933

Tandem Systems Review
_ __ Vol. 1, No. 1, February 1985, Part No. 83934

Tandem Application Monograph
Series
Transaction Processing on the Tandem Nonstop
Computer: Requester/Server Structures,
January 1982, SEDS-001

___ Designing a Network-Based Transaction
Processing System, April 1982, SEDS-002

___ A Close Look at PATHWAY, June 1982,
SEDS-003

___ A Multi-Function Network for Business Auto
mation, May 1982, SEDS-004

___ Developing TMF-Protected Application Soft
ware, March 1983, AM-006

___ Integrating Corporate Information Systems:
The Intelligent-Network Strategy, March 1983,
AM-007

___ Application Data Base Design in a Tandem
Environment, August 1983, Part No. 83903

___ Capacity Planning for Tandem Computer
Systems, October 1984, Part No. 83904

02/85

~TANDEM
'COMPUTERS

Part No. 83934

BULK RATE

US.POSTAGE

PAID
PERMIT No. 659

400095 02/85 Printed in USA

