
T A N D E M

SYSTEMS REVIEW
VOi U!\1F -1. NU!\lBI R 2

Enhancements to TMDS

Streaming Tape Drives

The 5120 Tape Subsystem
Recording Technology

Ada: Tandem's Newest Compiler
and Programming Environment

Peripheral Subsystems and Interfaces

rnaex

AUGUST 1987

Correction:
Please note the following correction to the
article titled "Performance Measurements of
an A TM Network Application,'' which
appeared in the December 1986 issue.

Page 103, Table 3. The numbers under the
heading Transactions per month were
calculated in millions. For example, Bank
of America averaged 13.0 million trans
actions per month (as of September 1985).

Volume 3, Number 2, August 1987

t:ditor
Ellen Marielle-Treholiart
Associate Editors
Wendy Osborn
Carolyn Turnbull White
Assistant Editor
Sarah Rood
Technical Advisors
Mark Anderton
Bart Grantham
Dick Thomas
Cover Art
Stephen Stavast
Production and Layout
Niklas Hallin
Janet Stevenson
Typesetting
Tandem Typography
The Tandem Systems Review is
published by Tandem Computers
Incorporated.

Purpose: The Tandem Systems
Review publishes technical informa
tion about Tandem software releases
and products. Its purpose is to help
programmer-analysts who use our
computer systems to plan for, install,
use, and tune Tandem products.

Subscription additions and changes:
Subscriptions arc free. To add names
or make corrections to the distribu
tion data base, requests within the
U.S. should be sent to Tandem
Computers Incorporated, Tandem
Systems Review, 1309 South Mary
Avenue, LOC 5-04, Sunnyvale,
CA 94087. Requests outside the U.S.
should be sent to the local Tandem
sales office.

Comments: The editors welcome
suggestions for content and format.
Please send them to the Tandem
Systems Review, 1309 South Mary
Avenue, LOC 5-04, Sunnyvale, CA
94087.

Tandem Computers Incorporated
makes no representation or warranty
that the information contained in
this publication is applicable to
~ystems configured differently than
those systems on which the informa
tion has been developed and tested.
It also assumes no responsibility for
errors or omissions that may occur in
this publication.

Copyright @ I 987 by Tandem
Computers Incorporated. All rights
reserved.

No part of this document may be
reproduced in any form, including
photocopying or translation to
another language, without the prior
written consent of Tandem Com
puters Incorporated.

The following are trademarks or
service marks of Tandem Computers
Incorporated: DYNAMITE,
ENABLE,ENCORE,ENFORM,
FASTSORT, FOX, GUARDIAN,
GUARDIAN 90, MEASURE,
NonStop, NonStop CLX,
NonStop EXTIO, NonStop EXT25,
Nonstop II, NonStop TXP,
NonStop VLX, PATHFINDER,
PS MAIL, SAFEGUARD, TACL,
TAL, Tandem, TMF, TRANSFER,
XL8.
Ada is a registered trademark of the
U.S. Government (Ada Joint
Program Office).

TANDEM SYSTEMS REVIEW

2

9

17

23

29

37

Enhancements to TMDS
Cindy Anderson Blain, Leslie White, Wes Witte

Streaming Tape Drives
John Blakkan

The 5120 Tape Subsystem Recording
Technology
Wesley Phillips

Ada: Tandem's Newest Compiler and
Programming Environment
Richard Vnuk

Peripheral Subsystems and Interfaces
John Blakkan

Index

2

Enhancements to TMDS

he smooth functioning of the
hardware in Tandem™ sys
tems is a shared responsibil
ity between the customer's
system manager and
Tandem's customer engineer
(CE). The Tandem Mainte

nance and Diagnostic System (TMDS), a diag
nostic software system for Tandem hardware,
helps them perform their jobs. Although
TMDS is known primarily for its abilities on
the Nonstop VLX™ system, TMDS runs on all
NonStop™ systems. It is distributed automati
cally to all Tandem service customers and runs
under the GUARDIAN 90™ operating system.
For a description of TMDS's basic capabilities,
refer to an earlier issue of the Tandem Systems
Review (Troisi, 1985).

In addition to providing information on
the state of Tandem hardware, TMDS contains
an automatic fault analysis (AFA) portion.
This most recent enhancement uses the artifi
cial intelligence techniques of expert systems. 1

Though the VLX has had fault analysis since
the B30 software release, starting with the coo
release, fault analysis will be available on all
Nonstop systems, diagnosing the peripheral
equipment, such as disks and tapes.

This article describes the features provided
by TMDS, its components, and uses. It also
gives an overview of the new AFA portion of
TMDS and concludes with future directions.

1 An expert system is a program that emulates the knowledge of a human expert
in a particular field. The human expertise is represented in a knowledge base,
and an inference engine uses that base and other state information to reach the
needed conclusion.

Features
TMDS delivers its diagnostic benefits within
the on-line processing environment while
observing certain design goals that ensure the
continued health of the system. Those goals
include minimizing the consumption of system
resources, causing the least possible impact on
customer applications, and maximizing safety
during the diagnostic process through careful
failsafe mechanisms.

TMDS offers the following features:

• Diagnostic tools are consistent, easy to use,
and do not require an intimate knowledge of
hardware subsystems, their status codes, or
specific error values.

• Hardware subsystem problems are diagnosed
on-line with a minimum disruption of system
activity.

• Diagnostics yield meaningful output (such
as the isolation of a faulty field-replaceable
unit).

Two Distinct Functions
TMDS's hardware and software can be divided
into two distinct functions: the diagnostic
portion, used by the Tandem CE to run device
diagnostics on the system hardware; and the
monitoring portion, which continuously moni
tors and analyzes the system. (Figure 1 shows
the architecture of TMDS with fault analysis.)

The diagnostic portion of TMDS contains
a core of commands that apply to all subsys
tems and additional commands that apply

TANDEM SYSTEMS REVIEW AUGUST I 9 8 7

Figure 1

Diagnostic
programs

FOX

Disk

Tape

CPU

Commmunications
controller

to specific subsystems. For example, the
SWITCHTO command is used to switch to a
specific subsystem. That subsystem contains
tests and diagnostics for devices specific to
that subsystem. (See Figure 2 for more detail.)

TMDS's monitoring portion is designed to
track the system's hardware status. (See Fig
ure 3.) This portion contains AFA to facilitate
the diagnosis process. Fault analysis is dis
cussed in more detail later in this article.

A System Management Tool
Frequently, TMDS notices equipment problems
before they affect the operation of the system.
This makes it a valuable system management
tool. It is useful not only to the CE doing a
job, but also to the system manager overseeing
the health of the hardware. The following fea
tures are useful in system management:

■ Event log, a historical document that con
tains entries of hardware status events. Fault
analysis uses the data in the event log to make
its diagnoses.
■ DISPLAY, a command that shows the user
all system problems determined by TMDS.
■ FIND, a command that allows users to
browse the log for various occurrences.

AUGUST l 9 8 7 T A N D E M

Figure 2

In addition to these features, the CE also
uses diagnostics to identify problems that fault
analyzers (FAs) don't cover. TMDS allows the
CE to perform diagnostics on-line. In fact,
many diagnostics can be performed while the
device itself is on-line, the worst case being
that only the device needs to be downed.
Under the previous diagnostic systems, the
device and its controlling CPU both needed to
be down.

S Y S T E M S REVIEW

Figure 1.

TMDS architecture.

Figure 2.

TMDS commands.

3

Figure 3

Events

$ZLOG

Figure 3.

TMDS monitoring.

4

Event
log

Improved Service

$ZMOM

TMDS gathers information required by CEs.
In fact, CEs were involved in the early design
of TMDS to ensure that the information they
need most gets collected. CEs can now access
information about hardware involved in the
occurrence of specific events-information
such as specific product type, controller
addresses and paths, and the current oper
ation. TMDS also aids the CE by capturing
intermittent errors that are difficult to recreate
in a diagnostic environment.

Retrieving relevant data from the TMDS
event log is now faster and easier. The CE can
request event history by device name starting
at any time on any date (e.g., yesterday at
noon or two weeks ago at 9:35 a.m.).

By viewing a device's event history, the CE
can examine the specific actions leading up to
the problem being investigated. The CE can
sometimes forestall a potential problem
because the early signs are detected and cor
rected. Trends in the type of event being
logged and the frequency of the occurrence are
often signs of potential trouble.

When the system is linked to the Tandem
National Support Center (TNSC), the history
can also be monitored remotely. Remote diag
nosis can sometimes prevent small problems
from developing into serious problems, with
out requiring a CE on-site. If a problem
detected by the TNSC cannot be solved
remotely, a CE will be assigned to troubleshoot
the problem on-site. However, the CE confers
with the TNSC on the circumstances surround
ing the problem before leaving the support .
office, and is therefore better able to determme
the equipment or parts required to solve the
problem.

The customer's system manager is able to
help monitor system performance by running
the DISPLAY, FIND, and STATUS commands
on the system on a regular basis. As the person
most intimately concerned with the system's
daily operations, the system manager monitors
the TMDS event log as a natural extension of
ensuring that the system is running at its best.
If the system manager has any questions or
doubts about the system's performance, a
Tandem representative can be contacted for
resolution.

Flexible On-line Diagnostic Testing
After examining the system's event log, a CE
or a TNSC specialist initiates the necessary
diagnostic tests to aid in the evaluation. The
CE can run the entire series of tests or select
exactly which segments of the device or system
require more in-depth attention. This flexibil
ity saves time by running only the pertinent
tests. And by allowing the CE to customize the
testing pattern, the problem can be evaluated
more accurately.

In addition to flexibility, TMDS's testing
and system verification are performed on-line
with minimal effect on system performance.
No system resource other than the device in
question need be engaged to run tests or verifi
cation after repair. Processing continues
unhindered by the diagnostic tests, unless the
processor itself is being tested. This means
that CEs can run their tests immediately, with
out having to wait for an opportunity to dedi
cate the processor to diagnostics. In the past,
waiting for the processor often meant a second
trip for the CE, which left the system running
in a degraded mode.

TANDEM SYSTEMS REVIEW AUGUST I 9 8 7

Automatic Fault Analysis (AFA)
Traditionally, hardware and software failures
on Tandem systems have been reported via
messages sent to a console device. It has been
the responsibility of the operator to monitor
these messages, interpret them, and take
appropriate actions. TMDS automates much
of this work for the system operator by provid
ing AFA. AFA provides the automatic detec
tion, analysis, and reporting of hardware
and software failures. Results of the analysis
are reported locally to the event log. On
NonStop VLX and Nonstop CLX™ systems the
analysis is reported remotely to the Tandem
On-line Support Center (OSC) (Allen, 1987).

TMDS fault analysis is based on packets of
information known as event signatures. These
machine-readable buffers are generated by
low-level software products to report hardware
failures, state changes, and other statistical
information vital to fault diagnosis. By exam
ining these signatures in detail, TMDS is able
to isolate failures in the system.

Components and Implementation
Tandem hardware and low-level software have
been designed so that when an unusual event
occurs on the system, information about the
event is captured and included in an event
signature that is shipped to the TMDS process
$ZLOG. An unusual event is any occurrence
about which information must be retained for
examination by a CE or diagnostic (e.g., when
a disk drive goes into the down state, or when
the temperature in a CPU cabinet goes out of
range). The $ZLOG process receives event
signatures and stores them in a TMDS event
log on disk.

The $ZMOM process examines each event
signature logged by $ZLOG. If the signature
requires examination, $ZMOM opens a TMDS
investigation, called a case, and starts the
appropriate fault analyzer (FA) to investigate
the event in more detail. (Cases are described
in more detail later in this article.)

AUGUST l 9 8 7 T A N D E M

The FA performs detailed analysis on a
very narrow range of events. Any conclusions
reached are placed back into the TMDS event
log and, in this way, are made available to the
user and the TMDS system.

The entire AFA system is monitored by the
TMDS DISPLAY command. This command
provides information to the user on completed
and ongoing fault analysis.

Cases
A case is a failure investigation. It is identified
by a unique number that is included in all
results related to the investigation.

A case is always in one of three states:
open, solved, or closed. When an interesting
event is noticed and an investigation started, a
case is opened. The case stays in the open state
until the results of fault analysis are placed
into the log. At this point, the case enters the
solved state, indicating that some analysis has
been performed. The case remains in the
solved state until it is closed by either a person
or a machine. A closed case remains in the
TMDS log for some time, thereby making the
machine's failure history available to the user.

Opening Cases. All cases are opened by the
$ZMOM process. $ZMOM is a rule-based pro
gram that contains a number of individual
rule sets, each of which can interpret a small
subset of events. A rule-based program is one
in which the rules about how to perform some
function-in this case deciding when to open a
case and start an investigation-are kept sepa
rate from the code that applies these rules.
This separation makes it easy to expand
$ZMOM's capabilities as more subsystems are
added to the TMDS system and as fault analy
sis becomes more comprehensive.

SYSTEMS REVIEW 5

6

When an event signature (one that a
$ZMOM rule set is interested in) is logged, the
rule set is executed. Based on its conclusions,
it takes one of several actions, including stor
ing partial conclusions for later use, incre
menting a counter, or opening a case. Partial
results and counters are stored in a private
memory associated with each rule set and can
be used to extend analysis over several event
signatures.

$ZMOM checks each new case opened by a
rule set to see if the failure is related to an
existing open or solved case. If it is, $ZMOM
includes the new failure information in the
existing case. If not, $ZM0M assigns a unique
case number to the failure, and a special
TMDS OPEN event is logged, announcing the
opening of a new case. At this time, any FAs
associated with the rule set are started.
$ZMOM monitors the FAs to ensure that
they run to completion, restarting them if
necessary.

Once an event is completely processed,
$ZMOM examines the next event in the TMDS
log, and the cycle continues.

Solving Cases. Cases are solved by FAs. When
an FA is started by $ZM0M, the appropriate
event signature is identified in the TMDS log
that caused it to be started. The FA processes
this and other information in the log necessary
to analyze a failure. When the cause of the
failure is determined, the FA places a TMDS
SOLVED event into the log. This event con
tains the results of the diagnosis, including the
names of any broken parts in both a textual
and programmatic form. This information is
made available to users through the TMDS
DISPLAY command.

Closing Cases. A case is closed when the inci
dent it describes needs no further attention.
Typically this is done by the user using the
TMDS CLOSE command. The CLOSE com
mand prompts the user for a case number and
a synopsis of why the case is being closed.
This information is included in a CLOSED
event signature that is placed into the TMDS
log where $ZM0M and other interested parties
can access it.

CASES can also be closed programmati
cally by an FA under the following circum
stances: when analysis indicates that there is
no substantial failure; or when the failure can
be corrected programmatically, such as in the
case of automatic disk-sector sparing.

Monitoring AFA
AFA activity is monitored with the TMDS
DISPLAY command. This command gives the
user several views of the AFA system with
varying levels of detail. Refer to Figure 4 for
more information on the DISPLAY command.

Remote Support
In VLX and CLX systems, TMDS optionally
relays the results of AFA to the 0SC.

All solved events placed into the TMDS log
by FAs are "dialed-out" to the 0SC. In addi
tion, open and closed events can be dialed-out
to the OSC as requested by the generators of
these events.

Dial-out is accomplished using the TMDS
FA, DIALFA. Just as for all FAs, $ZMOM has a
rule set that specializes in the events DIALFA
is interested in. (See Figure 5.)

Open, closed, and solved events are exam
ined to see if conditions justify starting
DIALFA. If these conditions are met, a case is
opened by $ZMOM for this dial-out attempt,
and DIALFA is started. When started,
DIALFA is notified of the event in the TMDS
log that caused it to be invoked. DIALFA takes
the information from this signature, adds
some system-specific information, and ships
the signature to the OSC. If the transfer is suc
cessful, the case related to the attempted dial
out is closed by DIALFA. If unsuccessful, a
solved event describing the failure is logged in
the TMDS event log. This notifies the user that
a dial-out was attempted and failed.

TANDEM SYSTEMS REVIEW AUGUST 1987

Figure 4

(a)
The command below is used to display a list of cases that are in the SOLVED state, giving the user a list of known
active problems on the system. The user enters:

TMDS>display ',detail on

Display for time 4 FEB 87 15:24 onward on system \TSII.
Print time is 18 FEB 87 15:24.

Case
2

(b)

State
Solved

Time
18 FEB 87 14:17

Probable FRU: 3206 Controller Board. Controller
address: %3, Term code: %126 (Z80 test hard failure).

Subsystem/Device
TAPE$TAPE2

The following command is used to display all AFA activity that has occurred in the last two weeks. This information is
useful for determining failure trends or problem areas. The user enters:

TMDS>display • ,case all,detail on

Display for time 4 FEB 87 15:25 onward on system \TSII.
Print time is 18 FEB 87 15:25.

Case
1

State
Open

Time
18 FEB 87 14:17

Solved
A TAPEES"SOFT"SELFTEST"ERROR event was received.

18 FEB 87 14:17

Closed

Probable FRU: 3206 Controller Board. Controller
address: %3, Term code: %106 (Soft Z80 test failure).

18 FEB 8715:00
Board was replaced.

18 FEB 8714:17 2

2

Open

Solved
A TAPEES"HARD"SELFTEST"ERROR event was received.

18 FEB 87 14:17
Probable FRU: 3206 Controller Board. Controller
address: %3, Term code: %126 (Z80 test hard failure).

Future Directions
TMDS is constantly extending its coverage of
existing products, and as new products
emerge, they are being incorporated into the
diagnostic subsystem.

Since the basis for the entire TMDS system
is event generation, there is ongoing work to
improve event reporting. Tandem is using its
experience to retrofit event reporting into
older products as we develop new devices.
It has been found that products must be
designed with diagnosability in mind to ensure
that information critical to diagnosis is trans
ferred from hardware through controlling soft
ware to the TMDS log.

TMDS is also developing interactive diag
nostic aids to direct and help the CE or user in
troubleshooting the system. These aids will be
a new rule-based system, separate from
$ZMOM, that will be run as commands. The
CE will consult with the system to diagnose a
particular system problem. Producing these
aids will help Tandem gather the rules and
procedures that will enable more complete
automatic FAs to be built.

AUGUST I 9 8 7 T A N D E M

Figure 5

S Y S T E M S

Subsystem/Device
TAPE $TAPE

TAPE$TAPE

TAPE $TAPE

TAPE$TAPE2

TAPE $TAPE2

REVIEW

Figure 4.

TMDS commands for
monitoring AFA. (a) The
command for displaying
a list of cases in the
solved state. The user is
given a list of known
active problems on the
system. (b) The com
mand for displaying all
AFA activity that has
occurred in the last two
weeks. This information
is useful for determining
failure trends or problem
areas.

Figure 5.

TMDS dialing out to an
event.

7

8

Tandem is also making products with
improved on-line serviceability. For example,
in the new CLX system, on-line repair aids
guide local assistants interactively through the
steps to repair the machine.

A local assistant is a customer staff mem
ber who has had minimal training on system
operation and maintenance. The level of help
and detail offered by these aids is adjustable
by the user, so that the novice receives much
more instruction than the experienced CE.
TMDS leads the local assistant through each
step and assures correct procedures are fol
lowed. For example, before instructing the
assistant to remove a disk drive, the device is
set in the DOWN state and powered OFF. After
the unit is replaced, diagnostics are automati
cally run to ensure that the problem was cor
rected. The new unit is then set in the UP
state.

Finally, TMDS is working to automate the
machine-service process by allowing software
to make explicit requests of the user. This is
called task capability. For example, if an FA
concludes that a part is broken and needs to
be replaced, it can generate a task that calls
for the replacement of that part. The task is
available to the user through the TMDS DIS
PLAY command. When the user picks this task

T A N D E M S Y S T E M S

to work on, the proper repair aid is automati
cally run. This in turn can generate other
tasks, such as part ordering, etc. In this way,
the various facets of the TMDS diagnostic and
service environment are integrated into one
easy-to-understand user interface.

Conclusion
The TMDS fault analysis capability is the result
of commitment from all levels of the Tandem
product: hardware, low-level software, the
operating system, and TMDS itself. This coop
erative effort has introduced for the first time
a coherent diagnostic and serviceability stand
ard for present and future Tandem products.

References
Troisi, J. 1985. Introducing TMDS, Tandem's New On-line
Diagnostic System. Tandem Systems Review. Vol. I, No. 2.
Tandem Computers Incorporated. Part no. 83935.

Allen, J. 1987. The VLX: A Design for Serviceability. Tandem
Systems Review. Vol. 3, No. I. Tandem Computers Incorpo
rated. Part no. 83939.

Cindy Anderson Blain, a service marketing analyst, joined
Tandem in 1984 as a production supervisor in the Cupertino
systems integration and test facility. Later she worked in Corpo
rate Materials Planning. Since joining the Service Marketing
Group, she has worked primarily on the service aspects of new
product introductions.

Leslie White is product manager for TMDS and Al. She joined
Tandem seven years ago and has worked in various technical
support positions as well as in product management. Prior to
Tandem, she worked in database software development. Leslie
has a bachelor's degree in Mathematics from the University of
Colorado at Boulder.

Wes Wille joined Tandem in 1983 as a software designer for the
TMDS group. His main focus for the last year has been the
evaluation and integration of Al tools for Tandem use. Wes
received his master's degree in Computer Science from Stanford
University.

REVIEW AUGUST I 9 8 7

class of magnetic tape
drive called streaming
tape drives or streamers
is available. Streaming
tape drives are less expen
sive, quieter, and more
reliable than conventional

tape drives. Because of this, the recent trend is
toward streamers. Eventually, streamers will
replace conventional tape drives in most
applications.

Streamers have operational characteristics
that must be accommodated to achieve good
performance. If tape system software is not
well suited to streaming operation, actual per
formance may be much lower than the stream
ers' potential. A tape system attempting to use
a streamer in the same way it used a conven
tional drive may show poor performance, even
if the streamer is nominally faster than the
conventional drive it replaces.

This article describes how streamers differ
from conventional drives and explains how to
use them effectively.

Conventional Tape Drive Hardware
In a conventional tape drive, three parts move
tape over the read/write head: the capstan, the
reel motors, and the vacuum columns. (See
Figure 1.)

Streaming Tape Drives

Figure 1

(b) Reel motors
(behind the reels)

LJ (a)Cap1J
(c) Vacuum columns

The capstan is a wheel, usually covered with
rubber. As it turns, it pulls the tape over the
read/write head. The capstan is connected to
a motor, a tachometer, and control electronics.
These components form a feedback system
that controls the tape speed to within a few
percent.

The reel motors wrap and unwrap the tape
on the supply and takeup reels. They can move
the tape as fast as the capstan motor does, but
they can't accelerate as quickly.

Figure 1.

A conventional tape
drive has three parts that
move the tape: (a) the
capstan, (b) the reel
motors, and (c) the vac
uum columns.

AUGUST I 9 8 7 TANDEM SYSTEMS REVIEW 9

Figure 2.

The tape tension and the
wrap angle around the
head induce a force
which holds the tape
against the head.

Figure 3

(a) Air bearings

Figure 2

Force of air
pressure
pushes
tape
down

Air is removed from the bottom
of the column by a vacuum pump

Vacuum column

Figure 3.

(a) A vacuum column
uses air pressure to put
tension on the tape.
(b) A tension arm uses a
spring-loaded arm to put
tension on the tape.

10

Induced force

i
Tape tension

Read/write head

(b) Fixed position rollers

Force of spring
pushes
tape
down

Tension arm

T A N D E M SYSTEMS

The vacuum columns regulate tape tension
by providing a steady pull on the tape on both
sides of the head. Tape tension induces a force
against the head. (See Figure 2.) If the tape is
under insufficient tension it will not hold to
the head as the tape moves. Excessive tension
may stretch the tape, causing data loss. Exces
sive tape tension may also wear out the read/
write head prematurely.

Vacuum columns also act as buffers
between the quickly accelerating capstan and
the slowly accelerating reels. A capstan motor
may accelerate the tape to 100 inches per sec
ond (ips) in milliseconds, while reel motors
may take hundreds of milliseconds. Tape is
pulled from one vacuum column by the cap
stan and pushed into the other vacuum
column by air pressure. Before one column
has emptied and the other has filled, the reel
motors will have come up to full speed.

Some tape drives (usually less expensive,
lower performance drives) substitute tension
arms for vacuum columns. Figure 3 shows a
vacuum column and a tension arm in detail.
The vacuum column can supply and take up
tape faster than the tension arm. It is also
gentler on the tape at high rates of accelera
tion than the tension arm. The tension arm is
preferred for slower speed tape drives because
it is less expensive, and having no pneumatic
components, it is quieter, more reliable, and
easier to maintain.

Conventional Tape Drive Operation
With a conventional tape drive, system com
mands go to the capstan. Capstan commands
are:

• Accelerate tape and run forward.

■ Accelerate tape and run backward.

• Stop tape.
■ Rewind tape.

Sensors in the vacuum columns control the
motion of the reel motors. As the capstan fills
a vacuum column, the nearest reel motor emp
ties the column. As the capstan empties a vac
uum column, the closest reel motor refills the
column. The reel motors generally keep both
vacuum columns about half filled with tape.

REVIEW AUGUST 1 9 8 7

A feedback system controls the capstan
speed. A separate feedback system controls the
reel motor speed. Most conventional tape
drives read and write at a tape speed of 25 to
200 ips. They typically rewind at two or more
times the speed at which they read and write.

A conventional tape drive operates in either
start/stop mode, or in streaming mode.
Figure 4 illustrates the difference.

Figure 4a shows tape speed as a function of
time. One data block is written. At time W,
the drive receives a write command and accel
erates the tape (to 100 ips in this example). By
time X, the tape is at full speed. In the time
required to bring the tape to full speed, part of
an interblock gap has been put on the tape.

In this example an interblock gap is
0.6 inch. Of this, 0.150 inch is put on the end
of each record by the head during a read
after-write check because the read gap is
0.150 inch behind the write gap. Between
times Wand X, 0.225 inch of interblock gap
is put on the tape.

When the tape is at full speed, the data
block is written. As soon as all of the data
block has been written (at time Y), the tape is
slowed to a stop. This takes until time Z. In
this example, 0.225 inch of the next interblock
gap is put on the tape between Y and Z.

For a 100-ips, nine-track tape drive, the
time from W to Xis about 3.750 ms. The time
from Y to Z is also about 3. 7 50 ms.

Figure 4b shows the drive writing several
blocks. For every block there is a 7 .5-ms over
head for starting and stopping the drive in
each interblock gap.

Figure 4c shows how to eliminate 40% of
this overhead. The drive keeps the tape moving
at full speed between writing blocks. This is
called streaming mode operation. It increases
the average data rate but can only be used if a
data block is always ready to be written fol
lowing each interblock gap. The computer
must have the data for block D2 ready by
time T. If time T is reached and the data is not
ready, the drive must be slowed to a stop after
a complete interblock gap has already been
put on the tape. Beginning to stop the drive at
time T results in an extra long interblock gap
following block D 1.

AUGUST I 9 8 7 T A N D E M

Figure 4

(a)

U) 100
Cl.

"O
Q)
Q)
Cl.
(f)

Q)
Cl.

~ 0

w X
Time~

(b)

U)
Cl. 100

"O
Q)
Q)
Cl.
(f)

Q)
Cl.

~ 0
7.5 ms 7.5 ms

Time~

(C)

U) 100 Cl.

"O
Q)
Q)
Cl.
(f)

Q)
Cl.

~ 0

Time~

To maintain a standard interblock gap on
the tape, the drive will assume that it is to stop
after each block unless it is told very soon
after writing a block that another is to be writ
ten. This delay is called the drive's reinstruct
time.

SYSTEMS REVIEW

y z

Figure 4.

Conventional tape drives
operate in both start/stop
and streaming mode.
(a) Writing a single
record in start/stop
mode. (b) Writing several
records in start/stop
mode. (c) Writing several
records in streaming
mode.

II

Figure 5.

A streaming tape drive.
Unlike conventional
drives, it has no capstan
drive, vacuum columns,
or tension arms.

12

Figure 5

Compliance arm

How Streamers Work
A streamer is a conventional tape drive that
has had the most expensive (and least reliable)
portions of the tape path removed. It can only
operate in streaming mode. It does not have a
capstan or vacuum columns (or tension arms).
In addition to improving reliability and lower
ing cost, this reduces size and noise. (See
Figure 5.)

The reel motors (usually under microproces
sor control) move the tape at precise speed
over the head. The motors cannot start or stop
the tape quickly, nor can they start or stop in
an interblock gap. Instead of starting in
3. 750 ms, they may require 200 ms to bring
the tape to full speed.

Many open reel streamers have small com
pliance arms to maintain tape tension.
Quarter-inch cartridge streamers regulate tape
tension by pulling the tape through the car
tridge with an elastic belt. Tandem's model
5120 half-inch cartridge tape drive uses micro
processor control of reel motor torque to regu
late tape tension.

Repositioning
Earlier it was noted that streaming mode is
only possible if a block of data is always avail
able when the device needs it. If the computer
system does not meet the reinstruct time limit,
the drive should recover in some way that does
not lose user data. Streamers usually use a
technique called repositioning.

Figure 6a illustrates repositioning with a
graph of tape speed as a function of time.
When the drive finishes writing the first data
block (time = A), the computer system has
until the reinstruct time limit to issue the next
write command. If the system fails to do so
within the reinstruct time limit (time = B),
the drive slows to a stop (time = C), runs the
tape in reverse, and stops (time = F). The
drive will wait with the read/write head posi
tioned on the block previously written until the
next write command arrives. When it gets
another command (time = G) the drive accel
erates the tape, spaces over the data block D 1,
and writes the next data block D2 (time = H).

Figure 6b is another way of looking at the
same time sequence. It shows how the tape is
positioned over the read/write head during
repositioning.

TANDEM SYSTEMS REVIEW AUGUST 1 9 8 7

Because the time between A and F is so
long (hundreds of milliseconds to several sec
onds), the computer system usually has more
data ready to write by time F. Assuming that
time between F and G is zero, it is possible to
define the time from A to H as the reposition
cycle time of the drive. The time from B t? G
is called the drive's reposition time. The time
from F to His called the drive's access time.
Typical reposition times are 600 ms to 3 sec
onds. Typical access times are 100 ms to
300 ms.

There is one case where repositioning does
not reduce system throughput. If a program is
infrequently logging data to the drive (e.g.,
one write every minute) and the program does
not wait for the reposition to complete before
continuing processing, the reposition time is
overlapped with processing of the next write
and does not affect system performance.

Reduced Interblock Gaps
Streaming mode makes very small interblock
gaps possible. If the system always has data
ready for the next block while writing the cur
rent block, it isn't necessary to write any
interblock gap at all. Even though streaming
drives could write open reel tapes with very
small interblock gaps, this is not done because
these tapes could not be read by conventional
tape drives. The standard interblock gap for
NRZI (800 bpi) and PE (1600 bpi) tapes is
0.6 inch; GCR (6250 bpi) tapes have 0.3-inch
interblock gaps as a standard. 1

Most cartridge tape drives are designed for
use in streaming mode with repositioning.
With no requirement for interchange with
start/stop drives, these tape formats have a
very small interblock gap. (One format for the
quarter-inch cartridge has a 0.03-inch inter
block gap.) This increases tape capacity and
overall data transfer rate.

The Tandem 5120 tape subsystem has a
4.5-inch interblock gap in start/stop mode
and a 0.8-inch interblock gap in streaming
mode where repositioning is used.

1NRZI = -Non-return tl~ Zero Inverted; PE = Phase Encoded; GCR =
Group Code Recording.

Figure 6

(a)

100 t----Dl---t. U) "2
C. (1) l = 2: I

"O I
Q) .2 I
Q)

0 l
C. , .
Cl) "2 1·
Q) (1) I C. 5 I
~ "" I CJ 100 I I I (1)

I I I .0

A B C 0 E
Time----

(b)

U) "2 1~01----------.1 1~02~1
C. (1) 100

EG< AB)C "O 2:
Q) .2
Q)

0 C.
Cl) "2
Q) (1)
C. 5
~ "" 100 CJ

E 0 (1)
.0

Getting Good Performance with
Streaming Tape Drives

I
I
I
I
I
I
F

Using a streaming tape drive in a system
designed for a conventional drive is likely to
result in poor performance. The streamer may
be slower in the system environment than a
lower speed conventional drive because it
spends time repositioning. For example, a
45-ips conventional drive may give better per
formance than a streamer rated at 100 ips if
the streamer must reposition often. Following
are some techniques-some available to appli
cation programmers, others limited to operat
ing system or hardware developers-for
getting good performance with streaming tape
drives. The list at the end of this article gives
recommendations for getting the best possible
performance from streamers.

AUGUST I 9 8 7 TANDEM SYSTEMS REVIEW

~oz.......,
I
I
I
I
I .. , I

I I
I I
I t
I I
I I
I I

G H

Figure 6.

Repositioning. (a) Tape
speed changing with
time. (b) Tape position
changing with time.

13

14

Improving 1/0 System Speed
Repositioning can be avoided by making the
computer 1/0 system fast enough to keep up
with the drive. If the reinstruct time limit is
always met, repositioning is unnecessary.

Bypassing File System Overhead. One method
used to improve 1/0 system speed when back
ing up disks is to bypass the overhead of the
file system. A program doing such a "physi
cal" or "image" backup reads disk sectors
and writes them to tape. This method of disk
backup eliminates file open and close oper
ations, as well as most disk seek time. It main
tains a high, uniform data transfer rate from
the disk which is well suited to transferring
data to a streaming tape drive.

Because the checking, protection, and secu
rity mechanisms of the file system are
bypassed, physical I/0 is generally not avail
able to application programs. In the Tandem
environment it is only available to system utili
ties, such as the volume mode operation of
Tandem's BACKUP and RESTORE tape
utilities.

Transfer Overlap. Another approach to
improving 1/0 system speed is to overlap disk
and tape transfers. Two areas in main memory
are used as buffers. The disk process fills one
as the tape process empties the other. This
"double buffering" technique is used by
Tandem's BACKUP and RESTORE tape
utilities to increase device and 1/0 process
utilization.

Data Buffering. Even if the system is able to
sustain the average data rate of the drive, there
may be a problem with short-term variance in
the system's data rate. It is not sufficient to
have an average data rate equal to the drive's
data rate. Every reinstruct time limit must be
met, or repositioning will occur. If a program
produces data for the tape in bursts, some
type of buffering should be used to even out
the flow of data and match it to the streamer's
data rate.

Buffering can be done in many places in the
system. A program can combine output
records into blocks before writing them. Pro
grams can write data blocks to a disk file and
periodically transfer the file to tape. The oper
ating system can provide multiple buffers so
that physical 1/0 is performed by the control
ler while the program prepares another block
for output. An 1/0 controller can contain
multiple block buffers.

If a fixed number of block buffers are avail
able, it is better to write large blocks into
them. Increasing the block size reduces the
amount of time spent on overhead relative to
the time spent doing data transfer. Improve
ments may involve rewriting programs or sim
ply specifying different block sizes to utility
programs. For example, the Tandem BACKUP
program defaults to an 8-Kbyte block length
but permits the user to increase the block
length with command line parameters.

A related issue is file size. Typically, end of
file processing will require a reposition cycle.
Regardless of block size, tapes that hold many
small files require more time to read or write
than tapes that hold a small number of large
files.

TANDEM SYSTEMS REVIEW AUGUST 1 9 8 7

Increased Reinstruct Time. Another way to
keep a drive streaming is to increase its rein
struct time. A common technique is interblock
gap extension. On a 100-ips nine-track
streamer, every 0.1 inch added to the inter
block gap gives an additional millisecond of
reinstruct time. Some drives permit an
extended gap as a programmable option, while
others extend the gap automatically each time
the computer fails to meet the standard rein
struct time limit. This can substantially reduce
the tape capacity if done frequently, particu
larly if the tape has many small blocks written
on it.

Reduced Tape Speed. A final technique that
may be used to balance the system data rate
with the tape data rate is tape speed reduc
tion. A low-speed drive without repositioning
may give better performance than a high
speed drive with repositioning. For this rea
son, a 50-ips streamer may outperform a
75-ips streamer under some conditions.

Combining Techniques. Frequently a combi
nation of these approaches is used. For exam
ple, it may be better to implement buffering
and accept a small number of reposition oper
ations rather than to reduce the tape speed.

Data Integrity Considerations
If data buffering is used to keep a drive
streaming, there are data integrity consider
ations. The program will continue processing
as soon as a data block is written into the
buffer, rather than waiting until it is written to
tape. Consider the case where the program has
written three blocks to the buffer and only the
first is written to tape. If there is a write fail
ure in the tape drive, the program must some
how be informed about which blocks are on
the tape. One approach is to define how the
data is committed to tape and let each pro
gram manage the buffering. There are three
typical modes of operation.

Implicit Record Commit
The implicit record commit makes programs
wait for data write completion on every
record. This allows the same error-recovery
methods as conventional start/stop drives but
will be slow because the drive will reposition
every time a record is written.

Explicit Record Commit
This requires programs to explicitly commit
data blocks to tape with a Synchronize com
mand. Data streaming is possible, and pro
grams may use record commit checkpoints to
guarantee that the buffered data blocks are
written to tape (at the cost of a reposition
cycle time).

Implicit File Commit
The implicit file commit writes all buffered
data blocks and repositions the tape when a
file mark is written. This provides file level
recovery and is usually acceptable for most
applications.

The Tandem 5120 drive operates with
implicit record commit when in start/stop
mode and combines implicit file commit with
explicit record commit when in streaming
mode.

------ -- - - ------ - --~-- -- ---~

AUGUST I 9 8 7 TANDEM SYSTEMS REVIEW 15

16

Getting Good Performance from Streamers

General Recommendations

Avoid using the tape in streaming mode when the system
is very busy. If other jobs are doing a lot of disk accesses,
they may slow 1/0 down to the point where the drive
must reposition.

Consider changing programs to write to disk files which
are later backed up to tape.

Avoid using the BACKSPACE RECORDS control oper
ation in programs. This is not a characteristic of all
streamers, just the Tandem 5120.

Conclusion
Streaming drives offer the potential for high
performance at low cost. They require some
changes in the way tape is used to get maxi
mum benefit. The advantages in cost and reli
ability will promote the use of streamers over
conventional tape drives. Developers of new
programs that use tape should consider how
well their programs would run with a stream
ing tape drive.

------------- -------

T A N D E M S Y S T E M S

When Using Tandem BACKUP /RESTORE
Utilities

Use a large block size for BACKUP when possible. This
applies to start/stop mode as well as streaming.

BACKUP on large files is better than on small files when
in streaming mode. Experiment with start/stop and
streaming mode to find which works better for your
files.

Try volume mode backup. This feature of BACKUP/
RESTORE does a physical backup of a disk which
bypasses the file system. When run in streaming mode
with a large block size, it is faster than file-by-file
BACKUP.

Use VERIFYREEL rather than VERIFYTAPE, espe
cially when in streaming mode.

References
Bashe, C.J., Johnson, L.R., Palmer, J.H., and Pugh, E.W.
1986. IBM's Early Computers. The MIT Press.

Harris, J.P., Phillips, W.B., Wells, J.F., and Winger, W.D. 1981.
Innovations in the Design of Magnetic Tape Subsystems. IBM
Journal of Research and Development. Vol. 25, No. 5.

Acknowledgments
The author would like to thank all the reviewers of this paper,
particularly Charles Levine and Dan Watson.

John Blakkan has worked in magnetic tape hardware develop
ment since joining Tandem in 1984. He holds B.S. and M.S.
degrees in Computer Science.

REVIEW AUGUST l 9 8 7

andem's new 5120 tape
subsystem is used in the
Nonstop EXTIO™ and
NonStop EXT25™ computer
systems. It features low cost
small size, and cartridge '
media with a storage capac

ity more than twice as large, and data integrity
100 times higher, than that of comparable
open-reel tape drives. The subsystem (drive
and formatter) connect to the tape controller
via a small computer system interface (SCSI).

Although the 5120 uses the same basic ferric
oxide media as conventional open-reel drives
increased storage density and reliability are '
achieved by application of state-of-the-art
recording technology. This article discusses
some of the techniques used:

• Basic operation.
• Serpentine format.
• Head design.

• Data formatting.
• Storage capacity.
• Error retry and recovery.

The 5120 Tape Subsystem
Recording Technology

Basic Operation
The cartridge contains a spool with approxi
mately 600 feet of tape. Cartridge insertion
engages the spool with a motor hub. In the
load operation, tape is threaded past the head
and wrapped around a take-up reel in the drive
until the beginning of tape (BOT) marker is
found. This takes 7 5 seconds and allows the
drive to measure the length of tape as well as
providing a retensioning pass.

The drive operates as a reel-to-reel unit with
motion controlled only by the two reel motors.
(For more information on drive operation,
refer to the accompanying article, "Streaming
Tape Drives," by John Blakkan.) The drive is
capable of both streaming operation and
start/ stop operation by means of a longer
interblock gap (IBG) in start/stop mode. Data
is recorded in MFM self-clocking code at
12,000 bits per inch (Ng, 1986).

AUGUST 1987 TANDEM SYSTEMS REVIEW 17

Figure 1

Tape reference edge

Figure 1.

Track layout.

18

19 -11 -15 -13 -11 ~

A 1Q -12 -14 -16
18 -9 -7 -5
3 ~

1
0 -:!' -4 -6 -8 -

Head Track Direction

Serpentine Format
Reducing the number of active data channels
reduces the cost of a tape drive. Originally,
Tandem tape products had nine active data
channels (tracks) covering the full width of the
tape. The 5120 subsystem has only two active
data channels reducing the head cost as well as

the amount of read and write circuitry. While
a moving head and its associated stepping
motor mechanism is needed to use the full
tape width, the cost is minor compared to a
fixed, multitrack head for the same number of
tracks on tape.

Increased storage capacity results from the
high linear recording density as well as the
number of tracks across the width of the tape.
The use of a moving head with appropriate
track widths allows as many tracks as desired,
subject to mechanical and electrical design
trade-offs. The 5120 drive has ten head posi
tions (20 physical tracks). The serpentine
format makes the 570-foot recording area of
the cartridge appear to be a 5700-foot two
channel tape.

The serpentine format is created by record
ing a tape from one end to the other. The head
is then moved to a new track position, and the
tape is recorded in the opposite direction. This
is repeated until the tape is full.

The physical tracks O through 9 correspond
to the "A" data channel and the physical
tracks IO through 19 are the "B" data channel.
(See Figure I.) Since channels A and Bare
used simultaneously, the drive is considered a
ten-track, dual-channel device.

All recording starts on track O and proceeds
sequentially to track 9. Recording starts near
the center of the tape and proceeds outward
towards the edges. This track layout was
chosen to maximize the tape lifetime. The tape
is positioned in relation to the head by guides
that touch the edges of the tape. Therefore,
using the tape wears the edges. When the edge
wear affects the recording area of the outside
tracks, the tape is considered worn out. In
applications where the full cartridge capacity is
not required, the outside tracks are not used
and the effective cartridge lifetime is
improved.

T A N D E M SYSTEMS REVIEW AUGUST I 9 8 7

Head Design
The head configuration used in nine-track
tape drives is an erase head that erases the full
width of the tape, followed by a read/write
head with a gap for writing and a gap for read
ing for each data channel. (See Figure 2.) This
allows writing only when the tape is moving in
one direction (forward) so that the read chan
nel may verify that the data was written with
out error. Reading of data is also usually done
in the forward direction.

The serpentine format requires writing with
the tape moving in either direction. For good
data integrity, the tape should be erased prior
to writing, and a read gap should follow the
write gap for error detection. Some cartridge
drive manufacturers satisfy this requirement
with a head configuration using a full-width
erase head energized only when writing
track 0, and two sets of gaps for each data
channel-one set for each direction. One
manufacturer of a widely used quarter-inch
cartridge drive provides no erase and post
write check at all. A single-gap head is used
for both write and read, relying on a fixed
small record size and a 50% redundancy data
format to recover read data.

The 5120 subsystem drive has a more elegant
solution: the three-gap head. Each data chan
nel has a write gap in the center of the head
with a combined function read/ erase gap on
each side. (See Figure 3.) During forward tape
motion the leading gap is driven to erase and
the trailing gap reads. When the direction is
reversed, the gap that was read now becomes
erase and vice versa. The erase gap is
degaussed whenever the erase current is turned
off to prevent residual magnetism from bias
ing the read gap.

Data Formatting
All information recorded on tape may be cate
gorized as either records or file marks. Nine
track drives use a unique track pattern and
IBG size to differentiate a file mark from a
record. The 5120 only reads one track at a time
and so must use the information contained in
the recorded format to identify records and
file marks.

Figure 2

R w
R w
R w .
R w .
R w E
R w
R w
R w
R w Tape direction (read or write)

Front

Figure 3

Front

Data records are formatted into either
one or two physical blocks. Records of
16,384 bytes or less fit in one physical block
per data channel, while records between the
ranges of 16,385 and 32,768 bytes require two
physical blocks. Each physical block contains
eight data sub-blocks and two error correcting
code (ECC) sub-blocks that are variable in
size. All data and ECC sub-blocks are the same
size for a given record.

Side

Tape direction

Side

Figure 2.

Nine-track head.

Figure 3.

Three-gap head.

AUGUST l 9 8 7 TANDEM SYSTEMS REVIEW 19

Table 1.
A comparison of tape recording densities.

BPI

TP(1/2)I

Areal density
(Kbytes/sq. in.)

Capacity/unit
media (Mbytes)

Figure 4

IBG

Figure 4.

NRZI PE GCR
tape tape tape

800 1600 6250

9 9 9

14.4 18.8

20 40
(2400-foot reel)

112.5

160

5120 IBM 3480 IBM 3380
tape tape disk

12,000 38,000 15,000

20 18 400

240 684 12,000

130 200 1260

Physical data block.

Within each physical block, data is divided
equally between 16 sub-blocks, padded as
required to fill all sub-blocks, and then
unpacked between the two data channels on a
sub-block basis. A single physical block for
one data channel is shown in Figure 4.

The header (HDR) sub-block contains infor
mation on the size of the data and ECC sub
blocks, the record size, and the position of the
record on the tape. It also indicates if the
record required one or two physical blocks.

All sub-blocks contain cyclic redundancy
check (CRC) bytes used for error detection
when the sub-block is read.

The ECC sub-block data is the exclusive-OR
of the data in four data sub-blocks on a byte
by-byte basis. The ECC is generated across
the sub-blocks in data channels A and B as
follows:

A ECC 0 = XOR (AO, B2, A4, B6)
A ECC 1 = XOR (Al, B3, A5, B7)
B ECC 0 = XOR (BO, A2, B4, A6)
B ECC 1 = XOR (Bl, A3, B5, A7)

Spacing the ECC generation between sepa
rated sub-blocks decreases the possibility that
tape defects such as debris particles could
affect more than one sub-block involved in the
ECC generation.

File marks look like data records with all
the data and ECC sub-blocks removed. The
HDR identifies the block as a file mark. To
make the file mark more certain of recogni
tion, the physical block is written twice.

Storage Capacity
The 5120 significantly improves recording den
sity by increasing both linear density and the
number of tracks across the tape. (See
Table 1.) The recording density increase offers
a potentially higher storage capacity for a
given length of tape.

Tape storage capacity in the 5120 is highly
dependent on the record size and the chosen
operating mode. The IBG necessary to identify
records reduces the amount of tape available
for recording data. Therefore, the longer the
record, the better the recording capacity. The
IBG between records depends on the operating
mode of the drive. Start/stop mode has an
IBG of 4.5 inches while streaming mode has
an IBG of 0.8 inch.

20 TANDEM SYSTEMS REVIEW AUGUST 1987

As an example, a 4-Kbyte record takes
2.1 inches of tape; a 16-Kbyte record takes
7 .2 inches. In start/stop mode the 4-Kbyte
recording has over twice as much gap as data.
In the 16-Kbyte recording, the gap is less than
40% of the recorded area. Figures 5 and 6
show the effect of record size on capacity and
effective transfer rate.

Error Retry and Recovery
Tape operates in a relatively harsh, uncon
trolled environment compared to disk storage.
Defects in the oxide surface as well as debris
particles (such as dust) contaminate the media
during use. All cause write and read errors,
yet the drive must be able to tolerate area
sonable number of such errors with its retry
procedures.

The error recovery scheme used in the 5120
tape subsystem relies on writing a record with
out error. This is assured when the regenerated
CRC on data read from tape matches the CRC
read from tape on each sub-block during write
operations. During subsequent read oper
ations, a data sub-block with error can be
reconstructed by exclusive-ORing the ECC and
associated data sub-blocks. Multiple data
errors can be corrected as long as only one of
the four sub-blocks for a given ECC has an
error detected. This format and error recovery
yields substantially improved error rates. The
uncorrectable read error rates compared to
open reel tapes are:

5120
GCR
PE

1 in 10"12 bits
1 in 1 O"l 1 bits
1 in 10"10 bits

Error retry sequences for either write or
read errors are automatically performed by the
drive/formatter. Up to 16 retrys are attempted
before an uncorrectable error is reported.

Write error retry in start/stop mode is simi
lar to that used in earlier tape products. The
tape is spaced back over the record in error,
then erased several inches in the forward direc
tion, and then the record is rewritten. If there
is still an error, the operation is repeated.

AUGUST I 9 8 7 T A N D E M

Figure 5

Figure 6

u
Q)
1/)

140

120

in 100
Q)

>,
.0 e.
2l
~ 80
ai
cii
C

Jg 60
"' <ii
Cl

40

8 16
Block length (Kbytes)

8 16
Block length (Kbytes)

Figure 5.

Capacity vs. block size.

SYSTEMS REVIEW

24 32

24 32

Figure 6.

Transfer rate vs. block size.

21

22

Write retry in streaming mode wastes tape
instead of time. When a write error is
detected, the record is rewritten immediately
without erasing the defective copy of the
record. This operation is repeated until no
error is detected. With a maximum record
size, 14 inches of tape are used for each retry
(considerably more than are used in start/ stop
mode). The trade-off is speed, since a record
can be written in less than 0.2 second; a repo
sition cycle to erase and rewrite takes more
than 2 seconds.

In start/stop mode, read error recovery is
attempted from the ECC data regeneration. If
this is not successful, the tape is backspaced
and the record reread with the ECC correction
applied again.

T A N D E M S Y S T E M S

Streaming mode read recovery also uses
ECC regeneration. If this is not successful, the
next record is read. If this record has the same
block number as the record with error, this
record is used for error recovery. If, however,
the record has a higher block number, the tape
is backspaced to a record with a block number
less than the block in error, then spaced for
ward to the correct block number and the read
operation repeated.

Conclusion
State-of-the-art recording technology is the
key to the high capacity, high reliability, data
integrity, and low cost of the 5120 cartridge
tape subsystem. Tandem benefits from an
improved price/performance, while the user
benefits from improved storage capacity in a
small, easily handled cartridge.

Reference
Ng, D. 1986. Data-Encoding Technology Used in the XL8
Storage Facility. Tandem Systems Review. Vol. 2, No. 2.
Tandem Computers Incorporated. Part no. 83937.

Wesley Phillips has been with Tandem since 1984 and is cur
rently a development engineer in the Peripherals department. He
has over 30 years of engineering experience, 15 of them in tape
controller and drive design and evaluation.

REVIEW AUGUST I 9 8 7

he Ada programming lan
guage was developed in
response to several problems
faced by any large systems
user with multiple computer
languages and systems to
support:

• The difficulty and cost of training program
mers in several languages, development envi
ronments, and application environments.

■ The difficulty of porting a program written
in a given language from one computer to
another.
• The increased cost to support those
languages.
■ The problem of getting those languages to
work together.

Ada was designed to handle many different
programming tasks; a single language could
now address requirements that previously
required several languages. In addition, Ada
was designed to be portable so that Ada pro
grams could run on almost any computer,
reducing software costs to the customer.

Ada: Tandem's Newest Compiler
and Programming Environment

Evolution of Ada
In an environment where application software
lasts from 10 to 20 years or more, the overall
cost of the software becomes increasingly
important. Initially, the primary emphasis in
the development of computer languages was to
improve the speed and efficiency of program
mers in getting an application up quickly. Lit
tle analysis was done about the ongoing
maintenance cost for the application software.
If new hardware were to be installed for new
applications and processing requirements,
conversions and/or emulators were viewed as
new costs, seldom tied to the life-cycle cost of
the existing applications software.

These problems were especially true in the
U.S. Department of Defense (DoD), where
teams of hundreds of programmers write thou
sands of programs for a single application. To
meet future needs for large scale real-time
systems, the DoD needed a single high-level
language that could be used for all military
contracts.

AUGUST 1987 TANDEM SYSTEMS REVIEW 23

24

In 1975 the DoD commissioned the High
Order Language Working Group to investigate
such a language. The group consisted of repre
sentatives from the military services, other
DoD agencies, and several other countries. In
1977, after several years of formal study and
review, the DoD announced that it would
accept bids from private companies to develop
an appropriate language.

In 1979 an international team from Cii
Honeywell Bull in France developed the lan
guage now known as Ada. 1 The first standard
for Ada was approved in December 1980 by
the DoD and became MIL-STD-1815. In Febru
ary 1983 the Ada Joint Program Office
(AJPO) asked for standardization from ANSI
(American National Standards Institute),
which was granted, resulting in the current
ANSI/MIL-STD-1815A.

Ada has a reputation for being expensive in
terms of resources (CPU cycles, memory, and
disk space) and challenging to learn in the
sense that it encourages a different, more mod
ern programming style. It was designed to
reduce costs over the entire software life cycle,
not necessarily the costs during just the coding
phase.

Early problems included the scarcity of
both trained people and validated compilers.
In 1984 there were just 10 validated Ada com
pilers. By 1986 there were over 55 validated
compilers. Currently, more than 20 companies
offer education in Ada-related areas, and sev
eral major universities offer Ada program
ming classes. As the number of Ada compilers
and products is increasing, the rate of intro
duction is accelerating, and the price/
performance for the products is improving.

'The language was named after Augusta A-~:£a Byron, a mathematician who
worked with Charles Babbage and who is thought by some to be the first
programmer.

Ada Application Areas
There are actually several arenas for the use of
Ada within the DoD. When the DoD wanted a
single language for all its contracts, that ini
tially included what is known as "embedded
systems." These are computers which are a
part of larger systems, such as a guidance
computer on a missile, a business communica
tions network, or a microprocessor to control
a VCR. The computer in an embedded system
could be a processor such as the Intel 80286,
the Motorola 68020, the military's 1750A, a
Tandem Nonstop system, or a network of
Tandem NonStop systems. Embedded systems
cover a wide range of applications, but they do
tend to have similar requirements that match
well with Tandem's strengths: parallel process
ing, real-time control, and high reliability.

Ada is also well suited for general applica
tions and systems programming, and its use is
now required in all DoD mission-critical
systems.

Ada Compiler Validation
Ada is defined by a strict standard and has a
large suite of test programs used to determine
conformance to the standard. The name Ada
is a trademark of the AJPO, and for a compiler
to use the name "Ada," it must pass the test
suite.

This test suite, part of the Ada Compiler
Validation Capability (ACVC), contains
approximately 2400 tests. (Certification for
most other languages may require from 300 to
600 compiler tests.) The addition of new
ACVC tests and the modification of existing
ones is an ongoing process, and Tandem is
committed to passing the ACVC test suite as
each new version is released. In June 1987 a
new test suite which included approximately
800 new tests became mandatory. Compiler
validation expires one year after the certificate
is issued. Each year, a compiler must pass the
updated ACVC test suite in order to be issued
another validation certificate. Of course, test
ing, no matter how rigorous, is no guarantee
of correctness except in the most trivial situa
tions. But one can be sure that a compiler
passing all of the ACVC tests very closely con
forms to the standard.

TANDEM SYSTEMS REVIEW AUGUST I 9 8 7

In addition to validation testing, a second
factor eases portability and helps ensure con
sistency among different vendors' compilers:
the AJPO will not allow a compiler for a sub
set or superset of Ada capability to use the
Ada trademark. The subset prohibition means
that something called an "Ada compiler" can
process all Ada language features; the superset
prohibition helps guarantee that a program
compiled by one Ada compiler can be com
piled by all Ada compilers.

Ada Programming Support
Environment (APSE)
A compiler alone does not provide a complete
programming environment. The DoD recog
nized this and sponsored the development of
requirements for such an environment. While
the APSE is not as completely defined as the
Ada language, it is intended to support the
development, maintenance, and enhancement
of applications produced in Ada. It consists
primarily of "tools" needed for a large devel
opment effort with a long software life cycle.
Typical APSE tools are the compiler, linker or
binder, text editor, loaders, configuration
managers, a program database or library man
ager, and debugging facilities. According to
the requirements, most of these tools should be
written in Ada.

For Tandem Ada, some of the APSE tools
are provided as a part of the product itself (the
compiler, binder, and program library man
ager), while other components are provided by
other Tandem products (e.g., a text editor and
symbolic debugger).

Ada Language Features
Ada, like Pascal, is a structured language with
strong type checking. However, Ada has more
features than Pascal. Some of the major fea
tures are packages, tasks, and generic units;
these are discussed in this section. The source
list at right contains more information on Ada
features as well as requirements, standards,
and programming.

AUGUST I Y 8 7 T A N D E M

Packages
The Ada package feature allows a programmer
to group together various logically related enti
ties, for example, related type declarations,
variables, and subprograms. Packages are
divided into two parts: the specification and
the body. The specification defines the inter
face that a user of the package has to the facil
ities provided by the package. The body
defines the implementation of the package; the
details appearing in the body cannot be used
by the user of the package. The package fea
ture supports modularity, data abstraction,
and information hiding.

Source List*

Information on Tandem Ada
products:

Contact your local Tandem office or
Tandem Computers
Marketing Services
19191 Valko Parkway, LOC 4-31
Cupertino, CA 95014
(408) 725-6000

Information on Ada requirements and
standards:

Contact:
Ada Information Clearinghouse
3D139(1211fern, C-107)
The Pentagon
Washington, D.C. 20301-3081
(703) 685-1477

Information about programming in
Ada:

The following list is a sample of the
types of books available on the sub
ject of Ada.*

Comparing & Assessing Programming
Languages ADA C PASCAL
Feuer & Gehani
Prentice Hall Inc.
Engelwood Cliffs, NJ 07632

Software Engineering with Ada
(Second Edition)

Grady Booch
Benjamin/Cummings Publishing
Company
2727 Sand Hill Road
Menlo Park, CA 94025

*Tandem makes no recommendation for, or endorsement of, any of these books, nor docs Tandem intend to imply
anything by the absence of any book from this list.

SYSTEMS REVIEW 25

Figure 1

-- Ada comments begin with a"--" and end at the end of the line.
-- This is the specification of a package defining a stack data
-- structure. The stack contains integer values. A user of this
-- package can only make use of entities declared in the
-- specification. In this case, the only things a user has access to
-- are three stack operations. Note that in this simple example, the
-- stack contains integers and there is only one stack. Ada has a
-- feature called "generic units" which could be used to allow the
-- user to customize the type of the stack elements. There are also
-- ways to define packages which would allow multiple instances of
-- stacks.

package Stack is
procedure Push (Pushval : Integer);
function Pop return Integer;

function Tos return Integer;

end Stack;

-- Push a value onto the stack.
-- Return and pop off the top
-- of the stack.
-- Return the top of the stack,
-- without popping it off.

-- This is the body of the stack package. Implementation details in
-- the body do not directly affect a user of the package. In this
-- body the stack is implemented with an array. However, a new body
-- implementing the stack with a linked list could replace this array
-- version (to allow a dynamically sized stack rather than a fixed
-- sized stack). The user of this package would not be affected and
-- need not recompile or modify any code since the specification
-- remains unchanged. The implementation of the stack is hidden from
-- the user. Note that in this simple example, error conditions
-- (e.g., stack overflow) are not handled. Ada has a built-in feature
-- called "exceptions" which makes such error processing convenient.

package body Stack is

-- A constant defining the size of the stack.
Stack_Size: constant Integer:= 4;

-- The stack pointer, the index of the top element of the stack in the
-- array. The value is initialized to zero, which denotes an empty
-- stack. Note the value must remain between zero and the stack size.
Sp: Integer range O .. Stack_Size: = O;

-- The array holding the stack elements.
Stack_Object: array (1..Stack_Size) of Integer;

procedure Push (Pushval : Integer) is
begin

Sp:= Sp+ 1;
Stack_Object (Sp) : = Pushval;

end Push;

function Pop return Integer is
Popval : Integer;

begin
Popval : = Stack_Object (Sp);
Sp:= Sp - 1;
return Popval;

end Pop;

function Tos return Integer is
begin

return Stack_Object (Sp);
end Tos;

end Stack;

Figure 1. The separation of the specification and
body is especially useful in large software pro
jects. If the various package specifications are
defined early in the project, programmers can
write the package bodies independently. Since

Example of a package
implementation of a
stack data structure.

26 T A N D E M S Y S T E M S

a user's interface to a package is completely
defined by the specification, changes to the
body do not affect any users. Figure 1 is an
example of a simple stack package that might
be used by Ada programmers.

Tasks
Tasks are Ada entities that execute logically in
parallel. Tasks can be used for processing
interrupts, routing messages, and controlling
resources. On a Tandem system supporting
Ada, tasking is a way of specifying threads of
concurrency within the language for a single
(GUARDIAN 90) process.

Generic Units
A generic unit defines a template for a subpro
gram or package. By "instantiating" a generic
unit, a specific instance is created. By "param
eterizing" the generic unit, the created
instances can be customized. For example,
suppose the Ada application needs two linked
lists, one of integers and another of floating
point numbers. Rather than writing two linked
list packages, only one generic linked list is
needed. This generic unit would be parame
terized so that the type of elements of the list
is given at the time of instantiation. Having
written this one generic unit, it can be instan
tiated twice, once for integers and again for
floating point numbers. The generic unit fea
ture is particularly useful for writing sharable,
reusable code.

Tandem's Ada Products
Tandem has worked with Ada since 1980.
Development efforts for Tandem's production
quality Ada compiler for Nonstop systems
began in late 1984. At about the same time,
the DoD, probably the largest single computer
market, began emphasizing Ada as a language
requirement for use in new hardware appropri
ations. By late 1986, a company without Ada
on its system could not get a DoD contract
without a special waiver.

REVIEW AUGUST I 9 8 7

The current Tandem development team
consists of nine people with more than 35
years of Ada experience. The Tandem Ada
Compiler, Ada Library Manager, Ada Binder,
and a large part of the Ada-specific portions
of the symbolic debugger are all written in
Ada. Quality assurance for the Ada product
was begun in 1985, so that it could be per
formed synchronously with development. This
reduces regressive problems with the product
and expedites the quality assurance cycle.

Tandem's Ada compiler conforms to both
the ANSI/MIL-STD-1815A specification and
OSl/8652-1987 Programming Languages-Ada.
It requires the floating-point microcode option
and is capable of supporting programs of up
to 4 Mbytes of code space and up to
128 Mbytes of data space. It is available with
the COO software release on NonStop systems.

In addition to the packages defined and
described in MIL-STD-1815A (e.g., TEXT_IO,
SEQUENTIAL_IO), Tandem provides an addi
tional predefined package with its Ada prod
uct. The COMMAND_INTERPRETER_
INTERFACE permits access to start-up mes
sage information such as the in-file and out
file, parameters, and ASSIGNS and PARAMs.
It is via this interface that Ada programmers
access the input from the command inter
preter. Tandem Ada can also call TAL routines
to perform other system functions the pro
grammer desires.

Libraries
Ada shifts responsibility for many "bookkeep
ing" functions from the programmer to the
compiler and the Ada binder. Ada compilation
units are compiled into a "library" that
records information about compilations.
While a mechanism such as this is required to
support the separate compilation of multiple
compilation units, it requires processing over
head to update all of the necessary information.

The ADALMGR command is used to create
a library. The ADA command is used to com
pile source files into libraries. The user speci
fies the name of the "primary" library into
which the files are to be compiled and the
names of other libraries containing units that
might be needed by the compilation.

AUGUST I 9 8 7 T A N D E M

After units have been compiled into
libraries, the ADALMGR command can be
used to find out information about these units
or to delete them from the libraries. The ADA
BIND command is used to create an executable
object program after all the compilation units
that it needs have been compiled. The user
tells ADABIND the name of the main program
and the library in which it resides.

DIANA
Most Ada implementations use an intermedi
ate language to represent the source code along
with additional information gathered during
semantic processing. Tandem's compiler uses a
de facto standard language called Descriptive
Intermediate Attributed Notation for Ada, or
DIANA. DIANA files are produced by the front
end of the compiler and contain all the essen
tial syntactic and semantic information for a
given program unit.

Since DIANA is well defined, various tools
can use a DIANA representation of a program
as input. For example, the symbolic debugger
provided with Tandem Ada obtains informa
tion about symbol names from the DIANA
intermediate form.

SYSTEMS REVIEW

,,...., '

(17.!

Figure 2

Ada
source

Ada
Program
Ubrary

r
Ada Ubrary
Manater

Front End
Lexical, syntactic
semantic analysis

Back End
Middle pass

High-level optimizer
Code selector

Peephole optimizer

j

_J

In this case, the command line
invokes the Tandem Ada compiler signified by
>Ada !in sourceJilename, out listing_filename/libraryJilename

Figure 2.

Tandem Ada program
ming environment. The
Ada development envi
ronment is complex.
Because of the number
of Jiles accessed and the

activities taking place,
Ada requires more
resources and more time
to compile code than
most other language
compilers.

Errors

28 T A N D E M S Y S T E M S

An example of this implementation on a
Tandem system is shown in Figure 2. Note that
the Ada compiler and programming environ
ment are more complex and resource-intensive
than those of other languages. This is because
the Ada language is more complex and
requires more processing, the Ada compiler is
large and requires more main memory to run
efficiently, and Ada requires additional disk
space for the information and files maintained
by the library.

Conclusion
Ada is one of the most rigorously defined
ANSI-standard languages. By requirement, it
has a support environment that enables easy
maintenance of the software produced by the
compiler. It is ideal for applications which will
have long life cycles. With Ada, most of the
application life cycle costs tend to occur early
and decline as the application ages.

Ada is a very young language. As more and
better formal Ada education (university level)
grows, more validated Ada compilers of ade
quate performance become available, and the
user community gains a better understanding
of the Ada language and environment, Ada
will surely become more widely used.

References
ANSI Reference Manual for the Ada Programming Language.
ANSI/MIL STD-!815A-I 983. U.S. Government-Ada Joint
Program Office. (This manual is available from Tandem Com
puters Incorporated, part no. 84063.)

NonStop Systems Ada User's Guide. Tandem Computers Incor
porated. Part no. 82523.

Acknowledgments
In addition to the Ada product developers and manual writers,
the author would like to thank Dick Thomas for his advice on
structure and content, and Jim Meyerson and Katie Pepper for
their technical input. Special thanks to Paul Delvigna and
David M. Ng for all of the above.

Richard Vnuk joined Tandem in 1980 and is currently the product
manager for Languages and Tools. He has also held such posi
tions as regional education specialist, division MIS manager,
and senior systems analyst in the Performance Support Group.
Prior to joining Tandem he was a programmer and systems
analyst for end users, developing and designing large databases
for on-line transaction processing. He also worked for a main
frame vendor supporting marketing, installing, converting, and
designing large databases for OLTP functions.

REVIEW AUGUST I 9 8 7

ontrollers built by Tandem
interface purchased disk
and tape drives to the
Tandem 1/0 channel. Inter
faces provided by drive
manufacturers are becom
ing more complex as

recently designed drives incorporate functions
previously performed by the controller. This
article discusses several types of disk and tape
interface and explains why one type might be
preferred.

Input/output Subsystems
Disk and tape drives move a magnetically
coated medium past electromagnetic read and
write heads. The write head applies to the
coating a pattern of magnetization that can be
detected as a sequence of electric pulses in the
read head. Some combination of hardware and
software must convert computer data bytes to
head pulses and back again for a disk or tape
drive to be used for data storage.

Drive operation must also be controlled in
response to requests from the computer's oper
ating system. Disk heads must seek the proper
track for file access, and tape drives must
rewind or otherwise move the tape to locate
user data.

Most large computer systems use input/
output subsystems to perform these data
transfer and drive control functions. Figure 1
shows an 1/0 subsystem for disk or tape. The
subsystem is shown as a series of layers

AUGUST I 9 8 7 T A N D E M

Peripheral Subsystems
and Interfaces

between the drive and the 1/0 channel. The
layers correspond to portions of the data
transfer and device control functions. The
subsystem may be divided at any layer
boundary. The layers on the 1/0 channel side
of the division constitute the l/0 controller.
The remaining layers, together with the
mechanical disk or tape drive, comprise the
I/0 device.

Figure 1

S Y S T E M S

Computer
main

memory

Drive

REVIEW

Figure 1.

Model of I/O subsystem
with computer and drive.
The names of the inter
faces between the layers
of the subsystem corre
spond to the form in
which information is
transferred.

29

Figure 2.

Example of division of
l/0 subsystem between
a Tandem 3108 disk
controller and device.

Figure 3.

Example of division of
I IO subsystem between
a Tandem 3209 cartridge
tape controller and
device.

30

Figure 2

Tandem designs
and builds this

1/0 controller

Bits
interface~

Tandem evaluates [
and purchases
this 1/0 device

Figure 3

Tandem designs [
and builds this

1/0 controller

Blocks
interface~

Tandem evaluates
and purchases
this 1/0 device

Computer
main

memory

Data separator
preoomi:>arator

Drive

Computer
main

memory

Drive

T A N D E M S Y S T E M S

A computer system manufacturer could
purchase a device with a bits interface and
build a controller providing the host adaptor,
buffer/ECC, and serdes/deskew functions. 1

The Tandem 3108 disk controller shown in
Figure 2 is an example of this configuration.
Alternatively, a manufacturer can purchase a
device with a blocks interface and build a con
troller which provides only the host adaptor
function; e.g., a Tandem 3209 cartridge tape
controller. (See Figure 3.) The choice of sub
system layers to build into an I/0 controller
and what type of peripheral device interface to
purchase affects I/0 system performance,
maintenance policies, and the time required to
integrate a peripheral into a computer system.

This article identifies and describes each of
the layers shown in Figure 1 . It also describes
the interfaces between these layers and dis
cusses the effect of building the layers into an
I/0 controller as opposed to buying them
from a device manufacturer.

Function of the Layers of an
1/0 Subsystem
To understand I/0 subsystem interfaces it is
first necessary to understand the function of
the drive and of each layer in the subsystem.

Magnetic Transitions for Information Storage
The magnetic coating on computer disks and
tape may be magnetized in one of two direc
tions. The direction of magnetization is not
detected with a read head in high-density digi
tal recording. Instead, a reversal in the direc
tion of magnetization is detected; it induces
an electrical pulse when passing the read head.
(See Figure 4a.)

Usually a flip-flop circuit drives the write
head. Each pulse input to the flip-flop reverses
the direction of current flow in the write
head's coil. When this occurs, the direction of
magnetization in the magnetic coating is also
reversed. (See Figure 4b.) Thus, when reading
and writing the medium, an electric pulse cor
responds to a reversal in the direction of mag
netization; the absence of a pulse corresponds
to no reversal.

Magnetization of disk media was discussed
more fully in a previous issue of the Tandem
Systems Review (Ng, 1986).

'A disk serializer and deserializer together are often called a "serdes." Error
correcting code (ECC) and deskew are discussed later in this article.

REVIEW AUGUST I 9 8 7

Write Compensation
Write compensation improves the magnetiza
tion patterns written, increasing the precision
with which magnetization reversals (and there
fore the corresponding pulses) can be located
on the medium. This also increases the density
at which data may be recorded. Forms of
write compensation are used on both disk and
tape.

There are two common write-compensation
techniques: reduced write current precompen
sation is performed in the drive; timing pre
compensation is handled in the data encoding
section of the I/O subsystem.

Reduced Write Current. Usually it is possible
to write the same amount of information on a
track near the center of a disk as on a track
near the outer edge. The inside track is shorter
than the outside track, which means that the
magnetic transitions must be physically closer
together. Adjacent pulses will interfere with
each other unless the write current in the head
is reduced, applying less magnetization to the
inside tracks. Small Winchester disks have
only two values of write current: standard and
reduced. Larger disks may have many write
current values.

Some high-density tape drives write a test
pattern on the leader of each tape and use it to
adjust the value of the write current, permit
ting the drive to optimize the magnetization of
each tape. This is necessary because tape
media are produced by several manufacturers
and have different magnetic properties.

Timing Precompensation. Timing precompen
sation is a fine tuning of magnetic transitions
to accommodate the "peak-shift" phenome
non (Ng, 1986). If the series of pulses shown
in Figure Sa is written to a disk or tape drive
and then read back, peak-shift will move the
fourth pulse to the right. (See Figure Sb.)
Timing precompensation moves pulses in the
opposite direction of anticipated peak-shift
before the pulses are written to the drive. (See
Figure Sc.) When the precompensated pulses
are read, peak-shift will move the fourth pulse
to its proper position. (See Figure Sd.)

AUGUST I 9 8 7 T A N D E M

Figure 4

(a)

(b)

Figure 5

(a)

(b)

(c)

(d)

Direction of --~-----~---~---~--
magnetization ~ ~~I\..- - -..,JI\..- -___}I\.. _ ___)I__~

of medium --~------~----~----~---

Resulting
electrical

pulses read --~

Electrical pulses
written to drive

Resulting direction -----r-------,------r---....,--
of magnetization -..,JI'-._-~ -)1\...-~-..,JI'-.__- ~)l\..-of medium _;;__.__:;_----'--'-----'-----....:;_-'-· _;;_ __ _. __ _

Figure 4.

(a) Pulses corresponding
to magnetic reversals
when read. (b) Magnetic
reversals corresponding
to pulses when written.

Figure 5.

(a) Uncompensated
series of pulses.
(b) Series of pulses show
ing effect of peak-shift.
(c) Pulses after precom
pensation. (d) Precom
pensated pulses showing
effect of peak-shift.

SYSTEMS REVIEW 31

Figure 6

Bit value,.,.._....._.....,.
into encoder

Bit cell
boundaries

MFM pulses
from encoder

Figure 7

MFM pulses
from drives

Binary data
from separator

Clock
from separator

Binary data
recovered

Figure 6.

Example of MFM data
encoding.

32

Time ---

Time---

Figure 7.

Example of MFM data
separation.

T A N D E M

1

S Y S T E M S

Data Encoding and Separation
Each bit of digital information is contained in
a small piece of the magnetic medium.
Because the magnetic medium moves at a con
stant speed over the head, these fixed-length
segments of the medium correspond to fixed
amounts of time. The space taken up by a bit
on the medium and the time it takes to write it
are called a "bit cell."

Figure 6 illustrates one system of data
encoding called Modified Frequency Modula
tion (MFM). The rules for turning binary data
into pulses in bit cells are simple:

■ A binary zero is translated into a pulse at the
beginning of the bit cell.
■ A binary one is translated into a pulse in the
middle of the bit cell.
■ Anytime a binary zero follows a binary one,
the pulse for that binary zero is omitted.

Data separation is the inverse of data
encoding. A string of pulses is transformed
into two separate signals, one representing
data and the other a data clock. The data sep
arator uses a phase-locked oscillator to deter
mine where the bit-cell boundaries are relative
to the pulses.

Figure 7 shows an example of MFM data
separation. In this case, the rules are as
follows:

■ Any bit cell with a pulse in the middle corre
sponds to a binary one.
■ Any bit cell with a pulse at the beginning
corresponds to a binary zero.
■ Any bit cell with no pulse, immediately fol
lowing a bit cell containing a binary one, cor
responds to a binary zero.

There are other systems of data encoding,
such as RLL 2-7 for disk, and PE and GCR for
tape. 2 Details about data encoding and separa
tion for disk drives were described in a pre
vious issue of the Tandem Systems Review
(Ng, 1986).

'RLL 2-7 ~ Run Length Limited 2-7; PE ~ Phase Encoded; GCR ~ Group
Code Recording.

REVIEW AUGUST I 9 8 7

Serialization and Deserialization (Serdes)
Usually, a computer system transfers data
internally as bytes or words. Manipulation of
streams of bits to the data encoder and from
the data separator is performed by the 1/0
subsystem.

In a disk subsystem, a byte from the com
puter is converted by a serializer into a string
of bits before being written. (See Figure 8.) In
a tape subsystem, the bytes are divided into
eight parallel bit streams, which are written
with a ninth parity track simultaneously on
the tape.

When a string of bits is read from a disk
data separator, a deserializer converts groups
of bits into bytes. (See Figure 9.) A nine-track
tape subsystem has a functional unit analo
gous to a deserializer called a deskew buff er,
which synchronizes the nine bit trains from
the nine data separators and assembles them
into bytes. The buffer is needed because tape
head misalignment interferes with the pulses
from each track differently: the nine bit cells
for each byte are not read simultaneously as
the tape moves over the head.

Error Detection and Correction
Error detection and correction are performed
in the 1/0 subsystem by adding error correct
ing code (ECC) information to the data when
it is written on the medium, and checking the
data and ECC information for validity when
the medium is read.

The subsystem uses error detection to deter
mine whether or not information read from
the medium has been damaged. The subsys
tem then deduces the correct data values from
damaged data and ECC information.

Disk subsystems usually try to prevent
errors rather than correct them routinely.
When a disk is formatted, it is also tested for
errors. Any sectors or tracks which cannot be
written to and read from without error are
marked as unusable. Tape subsystems also
avoid using bad portions of the media. Tapes
are read and checked for errors as they are
written. Records which show errors are erased
and rewritten farther down the tape.

Figure 8

Figure 9

Binary
data from -
separator

Data byte loaded in parallel

----+- ' -----+' '

Data byte read in parallel

A disk subsystem detecting a read error
may attempt to reread the data, or may
attempt to use the ECC to correct the errone
ous data. Frequently, disk errors do not recur
if the read operation is retried. Disk subsys
tems may retry before attempting to correct
with the ECC, or they may use the ECC first
and reread only if this fails to correct the
error. Tape subsystems also use a combination
of read retries and ECC. For example, when
the Tandem 5120 cartridge tape device finds a
read error it backspaces and attempts to
reread up 'to 15 times, attempting correction
with ECC each time.

AUGUST 1 9 8 7 TANDEM SYSTEMS REVIEW

Binary
-data to

encoder

Figure 8.

Disk serializer.

Figure 9.

Disk deserializer.

33

34

There are many types of error detecting and
error correcting codes, with certain basic
differences:

• Detection capability, the number of errone
ous bits in a disk sector or tape record that can
be detected.

• Correction capability, the number of errone
ous bits in a disk sector or tape record that can
be corrected.

• Code length, the number of bits of ECC
information added to the recorded data.

• Generation time, the length of time required
to generate the correction information added
to the data when recorded.
• Correction time, the length of time required
to correct an error or determine that an error
exceeds the correction capability of the code.
• Probability of miscorrection, the probability
of miscorrecting an error exceeding the detec
tion capability of the code and falsely report
ing successful correction.

Data Buffering
The data buff er is used to match the data rate
of the disk or tape drive to that of the com
puter's I/O channel, and to provide a place to
process the data and ECC information if error
correction is necessary. Some high-performance
disk subsystems also use the data buffer as a
disk data cache (Grossman, 1985), and stream
ing tape subsystems use a data buffer to facili
tate streaming mode operation. (See the accom
panying article, "Streaming Tape Drives.")

T A N D E M S Y S T E M S

Host Interface
The host interface is the 1/0 subsystem's con
nection to the computer's I/O channel or sys
tem bus. Tandem's host interface is unique in
that it connects to two channels for fault
tolerance.

Peripheral Device Interfaces
Four types of interface between the layers in
the I/O subsystem model are used as device
level interfaces. These are compared in
Table 1 ; their relationship is shown in
Figure 1.

Table 1.

A brief comparison of device interfaces.

Interface Advantages Disadvantages

Pulses Low device cost Short cables

Controller must have
data separator

Bits No data separator Short cables
in controller

Bytes Long cables Fixed byte length

Blocks Long cables High cost

Ease of Loss of control
integration to device manufacturer

Pulse Interface
The pulse interface is also called the "bare
drive interface." Compared to other inter
faces, it provides the least functionality in the
disk or tape device.

The data interface is a stream of digital
pulses. The controller must generate encoded
pulses and perform timing precompensation
when writing. The controller may also be
responsible for signaling the drive when to use
reduced write current. A data encoder and
data separator must be built into the
controller.

The device control interface is very simple.
Typically, there are individual signals which
are pulsed by the controller to perform func
tions such as track seek on a disk drive or
rewind tape on a tape drive.

REVIEW AUGUST 1 9 8 7

This is the least expensive interface and is
frequently chosen for high-volume, cost
sensitive applications (e.g., floppy disk drives
in personal computers). Data separators are
difficult to design, and they limit the device
data rate. Higher data rate devices cannot be
used with the controller unless the data separa
tor is redesigned. Therefore, the trend among
drive manufacturers and computer system
manufacturers is to use a bits interface rather
than a pulses interface except for the most
cost-sensitive applications.

The ST-506 interface used on personal com
puter Winchester disk drives and the device
interface in the Tandem 3207 / 5104 tape subsys
tem when in 1600 bpi mode are two examples
of a pulse interface.

Bits Interface
This type of interface puts the data encoding
and separation function into the drive and uses
data bits rather than pulses. When recording
the data on the magnetic media, the device
implements some type of encoding system
(such as MFM or RLL 2-7 for disk and PE,
GCR, or MFM for tape). The interface pro
vides the controller with a binary data signal
and a clock signal during read operations. It
provides a write clock signal and requires
binary data during write operations.

The device manufacturer selects the pattern
of magnetization corresponding to the binary
values of the bits, but does not control the
grouping of data bits into bytes or words. The
controller performs the disk serdes or tape
deskew function. Precompensation is handled
entirely by the disk or tape device.

The bits device control interface may be
different from that of the pulse device. Most
floppy disk devices with a pulse interface
require a separate command to move the head
from a track to the next adjacent track. A
controller must remember the head's position
and generate an appropriate number of track
seek commands when the computer requests a
seek to a particular track. Most small Win
chester disk devices with bits interfaces accept
commands for multitrack head repositioning.
The controller needn't remember the head's
position.

Examples of this type of interface are the
enhanced small device interface (ESDI), which
is used between the Tandem 5120 tape drive
and formatter, and the storage module drive
(SMD) interface used in the Tandem 3107/4120
disk subsystem.

Bytes Interface
A disk or tape device with a bytes interface
transfers data to and from the controller as
bytes. Disk devices have a serdes, and tape
devices have a deskew buffer. The control
interface may be as simple as a pulse control
interface, with commands sent over individual
signal lines, or the commands may be encoded
as a binary number on several signal lines.

A bytes interface has several advantages
over a bits interface:

■ It uses lower frequency signals to transmit
data. For example, an 8-Mbit-per-second
serial data stream becomes eight 1-Mbit-per
second parallel data streams.

■ Lower data rate signals permit lower cost
cables and transceiver circuits (e.g., twisted
pair rather than coaxial cable).
■ Frequently the same signal lines carry con
trol information and data. In this case, the
bytes interface requires fewer signal lines than
a bits interface.
■ Some bytes interfaces permit considerably
longer cables between controller and device
than many bits interfaces.

A bytes interface allows less flexibility as to
how a disk is formatted. Typically, the manu
facturer defines a byte length. Fields in disk
sectors must be byte-aligned, which may cause
difficulties for computer systems with a differ
ent byte length. (Most disks and tapes with
byte interfaces have an 8-bit byte length, while
some computer systems have a 6-bit byte
length).

AUGUST 1 9 8 7 TANDEM SYSTEMS REVIEW 35

36

When operated in 800 bpi mode, Tandem's
3207/5104 tape subsystem uses a bytes inter
face with ari individual command line control
interface. A more complex control interface
using five signal lines to encode up to 32 com
mands is available on several manufacturers'
streaming tape drives.

Blocks Interface
A disk or tape device with a blocks interface
performs many of the functions traditionally
provided by the controller. It presents a view
of "perfect" blocks of data; this means that
error detection, error correction, media defect
management, and data buffering are all han
dled by the device. The device control inter
face is typically time-multiplexed on the same
signal lines as the data path. Commands and
data are distinguished by interface tag signals,
or by interface sequence definitions. Com
mand packets and responses are defined.
Devices may perform sophisticated operations
(such as device to device copy) under their
own control.

The advantage for a system manufacturer is
that controllers are easier to design; a control
ler designed for a disk drive may also work
with a tape drive.

The disadvantage is that the drive manufac
turer has already made many system design
choices. For example, many of the software
copy protection techniques used on floppy
disks are not possible in a device with a blocks
interface. Also, the device contains a micro
computer programmed by the device manufac
turer rather than the system manufacturer.
Errors or undocumented features in this pro
gram must be discovered and accommodated
by the system manufacturer who is unable to
change the program.

T A N D E M S Y S T E M S

Performance optimization may also be dif
ficult since the device incorporates some of the
functions that the system manufacturer may
wish to handle in the operating system (e.g.,
disk-seek scheduling).

Finally, field diagnostic techniques are
largely determined by the drive manufacturer.
If sufficient diagnostic and self-test functions
are not provided by the drive, field diagnosis
may be difficult.

The small computer system interface (SCSI)
used in the Tandem 3209/5120 cartridge tape
system is one example of a blocks interface.

Conclusion
The main considerations in choosing the inter
face between a peripheral device and an 1/0
controller are:

• Quality and reliability of the resulting 1/0
subsystem.
■ Cost and availability of peripheral devices
with the various types of interface.
■ Ease of integration into the computer
system.

Pulse interfaces will continue to be used in
low-cost, low-performance, high-volume prod
ucts such as 3. 5-inch floppy disks on personal
computers. The trend in the mid-range and
high-performance 1/0 subsystems is toward
devices with bytes or blocks interfaces.

References
Ng, D.S. 1986. Plated Media Technology Used in the XLS
Storage Facility. Tandem Systems Review. Vol. 2, No. 2.
Tandem Computers Incorporated. Part no. 83937.

Ng, D.S. 1986. Data-encoding Technology Used in the XLS
Storage Facility. Tandem Systems Review. Vol. 2, No. 2.
Tandem Computers Incorporated. Part no. 83937.

Grossman, C.P. 1985. Cache-DASO Storage Design for
Improving System Performance. IBM Systems Journal. Vol. 24,
Nos. 3/4.

John Blakkan wrote this article, as well as "Streaming Tape
Drives."

REVIEW AUGUST 1 9 8 7

AUGUST

Tandem Systems Review Index August 1987

The Tandem Journal became the Tandem Systems Review in February 1985. Four issues of the
Tandem Journal were published:

Volume 1, number 1
Volume 2, number 1
Volume 2, number 2
Volume 2, number 3

Fall 1983
Winter 1984
Spring 1984
Summer 1984

Part no. 83930
Part no. 83931
Part no. 83932
Part no. 83933

As of August 1987, seven issues of the Tandem Systems Review have been published: 1

Volume 1, number 1
Volume 1, number 2
Volume 2, number 1
Volume 2, number 2
Volume 2, number 3
Volume 3, number 1
Volume 3, number 2

February 1985
June 1985
February 1986
June 1986
December 1986
March 1987
August 1987

Part no. 83934*
Part no. 83935*
Part no. 83936*
Part no. 83937**
Part no. 83938
Part no. 83939
Part no. 83940

The articles published in all eleven issues are arranged by subject below. (Tandem Journal is abbre
viated as T J and Tandem Systems Review as TSR.) A second index, arranged by product, is also
provided.

Index by Subject

Season
Volume, or Month Part

Article title Author(s) Publication Issue and Year Number

Application Development and Languages

Ada: Tandem's Newest Compiler and Programming
Environment R. Vnuk TSR 3,2 Aug. 1987 83940

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984 83932

State-of-the-art C Compiler** E. Kit TSR 2,2 June1986 83937

Tandem's New COBOL85* D. Nelson TSR 2,1 Feb. 1986 83936

The ENABLE Program Generator for Multifile Applications* B. Chapman, TSR 1,1 Feb. 1985 83934
J. Zimmerman

PATHFINDER-An Aid for Application Development S.Benett TJ 1,1 Fall 1983 83930

A New Design for the PATHWAY TCP R. Wong TJ 2,2 Spring 1984 83932

PATHWAY IDS: A Message-level Interface to Devices and
Processes•* M. Anderton, TSR 2,2 June 1986 83937

M. Noonan

TACL, Tandem's New Extensible Command Language• J. Campbell, TSR 2,1 Feb. 1986 83936
R. Glascock

New TAL Features** C. Lu, TSR 2,2 June 1986 83837
J. Murayama

TMF and the Multi-Threaded Requester T. Lemberger TJ 1,1 Fall 1983 83930

Writing a Command Interpreter* D. Wong TSR 1,2 June 1985 83935

Customer Support

Customer Information Service J. Massucco TSR 3,1 March 1987 83939

Remote Support Strategy J. Eddy TSR 3,1 March 1987 83939

Tandem's Software Support Plan R. Baker, TSR 3,1 March 1987 83939
D. McEvoy

'Articles and issues indicated by an asterisk(*) are no longer in stock. Preliminary versions of these articles are available on the CIS
(Customer Information Service) system. Issues indicated by a double asterisk(**) are available in limited quantities.

1 9 8 7 T A N D E M S Y S T E M S REVIEW 37

Season
Volume, or Month Part

Article title Author(s) Publication Issue and Year Number

Data Communications

Changes in FOX' N. Donde TSR 1,2 June 1985 83935

A SNAX Passthrough Tutorial D. Kirk TJ 2,2 Spring 1984 83932

SNAX/APC: Tandem's New SNA Software for Distributed
Processing B. Grantham TSR 3,1 March 1987 83939

SNAX/HLS: An Overview' S. Saltwick TSR 1,2 June 1985 83935

Data Management

A Comparison of the BOO DP1 and DP2 Disc Processes• T. Schachter TSR 1,2 June 1985 83935

DP1-DP2 File Conversion: An Overview' J. Tate TSR 2,1 Feb. 1986 83936

DP2's Efficient Use of Cache' T. Schachter TSR 1,2 June 1985 83935

DP2 Highlights• K. Carlyle, TSR 1,2 June 1985 83935
L. McGowan

DP2 Key-sequenced Files' T. Schachter TSR 1,2 June 1985 83935

Determining FCP Conversion Time' J. Tate TSR 2,1 Feb. 1986 83936

The Relational Data Base Management Solution G.Ow TJ 2,1 Winter 1984 83931

Improvements in TMF' T. Lemberger TSR 1,2 June 1985 83935

TMF Autorollback: A New Recovery Feature' M. Pong TSR 1, 1 Feb. 1985 83934

The TRANSFER Delivery System for Distributed
Applications S. Van Pelt TJ 2,2 Spring 1984 83932

Manuals/Courses

BOO Software Manuals' S. Olds TSR 1,2 June 1985 83935

New Software Courses• M. Janow TSR 1,2 June 1985 83935

Subscription Policy for Software Manuals' T. Mcsweeney TSR 2,1 Feb. 1986 83936

Tandem's New Products• C. Robinson TSR 2,1 Feb. 1986 83936

Tandem's New Products" C. Robinson TSR 2,2 June 1986 83937

Operating Systems

The GUARDIAN Message System and How to
Design for It' M. Chandra TSR 1,1 Feb. 1985 83935

Highlights of the BOO Software Release' K. Coughlin, TSR 1,2 June 1985 83935
R. Montevaldo

Increased Code Space' A. Jordan TSR 1,2 June 1985 83935

Managing System Time Under GUARDIAN 90' E. Nellen TSR 2,1 Feb. 1986 83936

New GUARDIAN 90 Timekeeping Facilities' E. Nellen TSR 1,2 June 1985 83935

New Process-timing Features• S. Sharma TSR 1,2 June 1985 83935

Nonstop II Memory Organization and Extended Addressing D. Thomas TJ 1,1 Fall 1983 83930

Robustness to Crash in a Distributed Data Base:
A Nonshared-memory Approach' A.Borr TSR 1,2 June 1985 83935

The Tandem Global Update Protocol' A.Carr TSR 1,2 June 1985 83935

Performance and Capacity Planning

Capacity Planning Concepts R. Evans TSR 2,3 Dec. 1986 83938

A Performance Retrospective P. Oleinick, TSR 2,3 Dec. 1986 83938
P. Shah

The Performance Characteristics of Tandem Nonstop
Systems J. Day TJ 1,1 Fall 1983 83930

Performance Considerations for Application Processes R. Glasstone TSR 2,3 Dec. 1986 83938

Buffering for Better Application Performance' R. Mattran TSR 2,1 Feb. 1986 83936

Optimizing Sequential Processng on the Tandem System R. Welsh TJ 2,3 Summer 1984 83933

Predicting Response Time in On-line Transaction
Processing Systems'• A. Khatri TSR 2,2 June 1986 83937

The 6600 and TCC6820 Communications Controllers:
A Performance Comparison P. Beadles TSR 2,3 Dec. 1986 83938

Improved Performance for BACKUP2 and RESTORE2' A. Khatri, TSR 1,2 June 1985 83935
M. McCline

Credit-authorization Benchmark for Performance and
Linear Growth· T. Chmiel, TSR 2,1 Feb. 1986 83936

T. Houy

DP2 Performance' J. Enright TSR 1,2 June 1985 83935

The ENCORE Stress Test Generator for On-line Transaction
Processing Applications S. Kosinski TJ 2,1 Winter 1984 83931

FASTSORT An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938
A. Tsukerman,
S. Uren, M. Vaughn

38 T A N D E M SYSTEMS REVIEW AUGUST I 9 8 7

Season
Volume, or Month Part

Article title Author(s) Publication Issue and Year Number

Performance and Capacity Planning (Continued)

Performance Measurements of an ATM Network N. Cabell, TSR 2,3 Dec. 1986 83938
Application D. Mackie

How to Set Up a Performance Data Base with MEASURE
and EN FORM M. King TSR 2,3 Dec. 1986 83938

MEASURE: Tandem's New Performance Measurement
Tool D. Dennison TSR 2,3 Dec. 1986 83938

Message System Performance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938

Message System Performance Tests S. Uren TSR 2,3 Dec. 1986 83938

The PATHWAY TCP: Performance and Tuning• J. Vatz TSR 1,1 Feb. 1985 83934

Understanding PATHWAY Statistics M. Pong TJ 2,2 Spring 1984 83932

Sizing Cache for Applications that Use B-series DP1 and
TMF .. P. Shah TSR 2,2 June 1986 83937

Getting Optimum Performance from Tandem Tape Systems A. Khatri TSR 2,3 Dec. 1986 83938

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938

Peripherals

The 5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940

The 6100 Communications Subsystem: A New Architecture R. Smith TJ 2,1 Winter 1984 83931

The 6600 and TCC6820 Communications Controllers:
A Performance Comparison P. Beadles TSR 2,3 Dec. 1986 83938

Data-encoding Technology Used in the XLB Storage
Facility .. D.S. Ng TSR 2,2 June 1986 83937

Data-window Phase-margin Analysis•• A. Painter, TSR 2,2 June 1986 83937
H. Pham,
H. Thomas

The DYNAMITE Workstation: An Overview• G. Smith TSR 1,2 June 1985 83935

An Introduction to DYNAMITE Workstation Host
Integration• S. Kosinski TSR 1,2 June 1985 83935

Introducing the 3207 Tape Controller· S. Chandran TSR 1,2 June 1985 83935

The Model 6VI Voice Input Option: Its Design and
Implementation B.Huggett TJ 2,3 Summer 1984 83933

Peripheral Subsystems and Interfaces J. Blakkan TSR 3,2 Aug. 1987 83940

Streaming Tape Drives J. Blakkan TSR 3,2 Aug. 1987 83940

Plated Media Technology used in the XLB Storage
Facility .. D.S. Ng TSR 2,2 June 1986 83937

The VB Disc Storage Facility: Setting a New Standard for
On-line Disc Storage' M. Whiteman TSR 1,2 June 1985 83935

Processors

The High-Performance Nonstop TXP Processor W. Bartlett, TJ 2,1 Winter 1984 83931
T. Houy,
D. Meyer

The Nonstop TXP Processor: A Powerful Design for On-line
Transaction Processing P. Oleinick TJ 2,3 Summer 1984 83933

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938

The VLX: A Design for Serviceability J. Allen, TSR 3,1 March 1987 83939
R. Boyle

Security

Distributed Protection with SAFEGUARD•• T. Chou TSR 2,2 June 1986 83937

System Management

Configuring Tandem Disk Subsystems S. Sitler TSR 2,3 Dec. 1986 83938

Using FOX to Move a Fault-tolerant Application• C. Breighner TSR 1,1 Feb. 1985 83934

Introducing TMDS, Tandem's New On-line Diagnostic
System· J. Troisi TSR 1,2 June 1985 83935

Enhancements to TMDS L. White TSR 3,2 Aug. 1987 83940

VIEWSYS: An On-line System-resource Monitor• D. Montgomery TSR 1,2 June 1985 83935

Utilities

Enhancements to PS MAIL R. Funk TSR 3,1 March 1987 83939

AUGUST I <J 8 7 T A N D E M S Y S T E M S REVIEW 39

Index by Product

Season
Volume, or Month Part

Article title Author(s) Publication Issue and Year Number

3207 Tape Controller

Introducing the 3207 Tape Controller• S. Chandran TSR 1,2 June1985 83935

5120 Tape Subsystem

The 5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940

6100 Communications Subsystem

The 6100 Communications Subsystem: A New Architecture R. Smith TJ 2,1 Winter 1984 83931

6530 Terminal

The Model 6VI Voice Input Option: Its Design and
Implementation B.Huggett TJ 2,3 Summer 1984 83933

6600 and TCC6820 Communications Controllers

The 6600 and TCC6820 Communications Controllers:
A Performance Comparison P. Beadles TSR 2,3 Dec. 1986 83938

ADA

Ada: Tandem's Newest Compiler and Programming
Environment R.Vnuk TSR 3,2 Aug. 1987 83940

BASIC

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984 83932

C

State-of-the-art C Compiler·· E. Kit TSR 2,2 June 1986 83937

COMINT(CI)

Writing a Command Interpreter• D. Wong TSR 1,2 June 1985 83935

CIS

Customer Information Service J. Massucco TSR 3,1 March 1987 83939

COBOL85

Tandem's New COBOL85• D. Nelson TSR 2,1 Feb. 1986 83936

DP1 and DP2

Sizing Cache for Applications that Use B-series
DP1 and TMF .. P. Shah TSR 2,2 June 1986 83937

A Comparison of the BOO DP1 and DP2 Disc Processes• T. Schachter TSR 1,2 June1985 83935

DP1-DP2 File Conversion: An Overview· J. Tate TSR 2,1 Feb. 1986 83936

DP2's Efficient Use of Cache· T. Schachter TSR 1,2 June 1985 83935

DP2 Highlights• K. Carlyle, TSR 1,2 June 1985 83935
L. McGowan

DP2 Key-sequenced Files• T. Schachter TSR 1,2 June 1985 83935

DP2 Performance• J. Enright TSR 1,2 June 1985 83935

Determining FCP Conversion Time• J. Tate TSR 2,1 Feb. 1986 83936

DYNAMITE

The DYNAMITE Workstation: An Overview· G.Smith TSR 1,2 June 1985 83935

An Introduction to DYNAMITE Workstation Host
Integration• S. Kosinski TSR 1,2 June 1985 83935

ENABLE

The ENABLE Program Generator for Multifile Applications· B. Chapman, TSR 1,1 Feb. 1985 83934
J. Zimmerman

ENCOMPASS

The Relational Data Base Management Solution G.Ow TJ 2,1 Winter 1984 83931

ENCORE

The ENCORE Stress Test Generator for On-line Transaction
Processing Applications S. Kosinski TJ 2,1 Winter 1984 83931

FASTSORT

FASTSORT: An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938
A. Tsukerman,
S.Uren,B.Vaughn

FOX

Changes in Fox• N. Donde TSR 1,2 June 1985 83935

Using FOX to Move a Fault-tolerant Application• C. Breighner TSR 1,1 Feb. 1985 83934

40 T A N D E M SYSTEMS REVIEW AUGUST I 9 8 7

Season
Volume, or Month Part

Article title Author(s) Publication Issue and Year Number

GUARDIAN

The GUARDIAN Message System and How to Design
for It' M. Chandra TSR 1,1 Feb. 1985 83935

Improved Performance for BACKUP2 and RESTORE2* A. Khatri, TSR 1,2 June 1985 83935
M. McCline

Increased Code Space• A. Jordan TSR 1,2 June 1985 83935

Introducing TMDS, Tandem's New On-line Diagnostic
System• J. Troisi TSR 1,2 June 1985 83935

Enhancements to TMDS L. White TSR 3,2 Aug. 1987 83940

Managing System Time Under GUARDIAN 90* E. Nellen TSR 2,1 Feb. 1986 83936

Message System Performance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938

Message System Performance Tests S. Uren TSR 2,3 Dec. 1986 83938

New GUARDIAN 90 Timekeeping Facilities• E. Nellen TSR 1,2 June 1985 83935

New Process-timing Features• S. Sharma TSR 1,2 June 1985 83935

Nonstop II Memory Organization and Extended Addressing D. Thomas TJ 1,1 Fall 1983 83930

Robustness to Crash in a Distributed Data Base:
A Nonshared-memory Multiprocessor Approach* A. Borr TSR 1,2 June 1985 83935

The Tandem Global Update Protocol* R. Carr TSR 1,2 June1985 83935

MEASURE

How to Set Up a Performance Data Base with MEASURE
and EN FORM M. King TSR 2,3 Dec. 1986 83938

MEASURE: Tandem's New Performance Measurement
Tool D. Dennison TSR 2,3 Dec. 1986 83938

PATHFINDER

PATHFINDER-An Aid for Application Development S.Benett TJ 1,1 Fa/11983 83930

PATHWAY

PATHWAY IDS: A Message-level Interface to Devices
and Processes•• M. Anderton, TSR 2,2 June 1986 83937

M. Noonan

A New Design for the PATHWAY TCP R. Wong TJ 2,2 Spring 1984 83932

The PATHWAY TCP: Performance and Tuning• J. Vatz TSR 1,1 Fell. 1985 83934

Understanding PATHWAY Statistics M. Pong TJ 2,2 Spring 1984 83932

PS MAIL

Enhancements to PS MAIL A.Funk TSR 3,1 March 1987 83939

SAFEGUARD

Distributed Protection with SAFEGUARD•• T. Chou TSR 2,2 June 1986 83937

SNAX

A SNAX Passthrough Tutorial D. Kirk TJ 2,2 Spring 1984 83932

SNAX/APC: Tandem's New SNA Software for Distributed
Processing B. Grantham TSR 3,1 March 1987 83939

SNAX/HLS: An Overview• S. Saltwick TSR 1,2 June 1985 83935

TACL

TACL, Tandem's New Extensible Command Language• J. Campbell, TSR 2,1 Feb. 1986 83936
R. Glascock

TAL

New TAL Features•• C. Lu, TSR 2,2 June 1986 83837
J. Murayama

TMF

Improvements in TMF* T. Lemberger TSR 1,2 June 1985 83935

TMF and the Multi-Threaded Requester T. Lemberger TJ 1,1 Fall 1983 83930

TMF Autorollback: A New Recovery Feature• M. Pong TSR 1,1 Feb. 1985 83934

TRANSFER

The TRANSFER Delivery System for Distributed
Applications S. Van Pelt TJ 2,2 Spring 1984 83932

TXP

The High-Performance Nonstop TXP Processor W. Bartlett, TJ 2,1 Winter 1984 83931
T. Houy,
D. Meyer

The Nonstop TXP Processor: A Powerful Design for
On-line Transaction Processing P. Oleinick TJ 2,3 Summer 1984 83933

AUGUST I 9 8 7 T A N D E M S Y S T E M S REVIEW 41

Season
Volume, or Month Part

Article title Author(s) Publication Issue and Year Number

VB

The V8 Disc Storage Facility: Setting a New Standard for
On-line Disc Storage* M. Whiteman TSR 1,2 June 1985 83935

VIEWSYS

VIEWSYS: An On-line System-resource Monitor* D. Montgomery TSR 1,2 June 1985 83935

VLX

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938

The VLX: A Design for Serviceability J. Allen, TSR 3,1 March 1987 83939
R. Boyle

XLS

Data-encoding Technology Used in the XL8 Storage
Facility*' D.S. Ng TSR 2,2 June 1986 83937

Plated Media Technology used in the XL8 Storage
Facility** D.S. Ng TSR 2,2 June 1986 83937

Miscellaneous'

Performance Measurements of an ATM Network
Application N. Cabell, TSR 2,3 Dec. 1986 83938

D. Mackie

Buffering for Better Application Performance* R. Mattran TSR 2,1 Feb. 1986 83936

Capacity Planning Concepts R. Evans TSR 2,3 Dec. 1986 83938

Credit-authorization Benchmark for High Performance and
Linear Growth* T. Chmiel, TSR 2,1 Feb. 1986 83936

T. Houy

Data-window Phase-margin Analysis•* A. Painter, TSR 2,2 June 1986 83937
H. Pham,
H. Thomas

Configuring Tandem Disk Subsystems S. Stiler TSR 2,3 Dec. 1986 83938

Peripheral Subsystems and Interfaces J. Blakkan TSR 3,2 Aug. 1987 83940

A Performance Retrospective P. Oleinick TSR 2,3 Dec. 1986 83938

Performance Considerations for Application Processes R. Glasstone TSR 2,3 Dec. 1986 83938

The Performance Characteristics of Tandem Nonstop
Systems J. Day TJ 1,1 Fall 1983 83930

Predicting Response Time in On-line Transaction
Processing Systems·· A. Khatri TSR 2,2 June 1986 83937

Remote Support Strategy J. Eddy TSR 3,1 March 1987 83939

Optimizing Sequential Processing on the Tandem System R. Welsh TJ 2,3 Summer 1984 83933

Tandem's Software Support Plan R. Baker, TSR 3,1 March 1987 83939
D. McEvoy

Streaming Tape Drives J. Blakkan TSR 3,2 Aug. 1987 83940

Getting Optimum Performance from Tandem Tape Systems A. Khatri TSR 2,3 Dec. 1986 83938

Highlights of the BOO Software Release• K. Coughlin, TSR 1,2 June 1985 83935
R. Montevaldo

BOO Software Manuals· S. Olds TSR 1,2 June 1985 83935

New Software Courses· M. Janow TSR 1,2 June 1985 83935

Subscription Policy for Software Manuals· T. Mcsweeney TSR 2,1 Feb. 1986 83936

Tandem's New Products· C. Robinson TSR 2,1 Feb. 1986 83936

Tandem's New Products*' C. Robinson TSR 2,2 June 1986 83937

'This category contains Tandem Systems Review articles that contain product information but are not specifically product-related.

42 T A N D E M S Y S T E M S REVIEW AUGUST I 9 8 7

TANDEM PUBLICATIONS ORDER FORM

The Tandem Systems Review and the Tandem Application Monograph Series are combined
in one free subscription. Use this form to subscribe, change a subscription, and order back
copies.

For requests within the U.S. , send this
form to:

Tandem Computers Incorporated
Tandem Systems Review
1309 South Mary Avenue, MS 5-04
Sunnyvale, CA 94087

For requests outside the U.S. , send this form
to your local Tandem sales office.

Check the appropriate box(es):

D New subscription (# of copies desired ___)
D Subscription change (# of copies desired __ _

D Request for back copies. (Shipment subject to
availability.)

Print your current address here:

COMPANY NAME

ADDRESS

ATTENTION

PHONE NUMBER (U.S.)

If your address has changed, print the old
one here:

COMPANY NAME

ADDRESS

ATTENTION

PHONE NUMBER (U.S.)

To order back copies, write the number of
copies next to the title(s) below.

___ Part No. 83930, Vol. 1, No. I, Fall 1983

___ Part No. 83931, Vol. 2, No. I, Winter 1984

___ Part No. 83932, Vol. 2, No. 2, Spring 1984

___ Part No. 83933, Vol. 2, No. 3, Summer 1984

Tandem Systems Review

_ __ Part No. 83937, Vol. 2, No. 2, June 1986

___ Part No. 83938, Vol. 2, No. 3, December 1986

___ Part No. 83939, Vol. 3, No. I, March 1987

___ Part No. 83940, Vol. 3, No. 2, August 1987

Tandem Application Monograph
Series

___ Part No. 83900, Developing TMF-Protected
Application Software, March 1983, AM-005

___ Part No. 83901, Designing a Tandem/Word
Processor Interface, March 1983, AM-006

___ Part No. 83902, Integrating Corporate Infor
mation Systems: The Intelligent-Network
Strategy, March 1983, AM-007

___ Part No. 83903, Application Data Base Design
in a Tandem Environment, August 1983

___ Part No. 83904, Capacity Planning for Tandem
Computer Systems, October 1984

___ Part No. 83905, Sociable Systems: A Look at
the Tandem Corporate Network, May 1985

___ Part No. 83906, Transaction Processing on the
Tandem NonStop Computer: Requestor/Server
Structures, January 1982, SEDS-001

___ Part No. 83907, Designing a Network-Based
Transaction-Processing System, April 1982,
SEDS-002

___ Part No. 83908, A Close Look at PATHWAY,
June 1982, SEDS-003

___ Part No. 83909, A Multi-Function Network
for Business Automation, May 1982, SEDS-004

TANDEM EMPLOYEES: PLEASE ORDER YOUR COPIES THROUGH YOUR MARKETING LITERATURE COORDINATOR.
8/87

~TANDEMCOMPUTERS

Part No. 83940 400102 8/87 Printed in USA

