
T A N D E M

SYSTEMS
\l l[l \ii ,_ ';\ \ltll I(.'

An Overview of Nonstop SQL

The Nonstop SQL Optimizer

NonStop SQL Reliability

The Nonstop SQL Data Dictionary

High-Performance SQL

Debugging TACL Code

IEW
Ill! Y 1988

Correction:
Susan Wayne Thompson was inadvertently
omitted as co-author of the technical paper,
"Tandem's Approach to Fault Tolerance,"
which appeared in the February 1988 issue.

Volume 4, Number 2, July 1988

Articles Editor
Susan Wayne Thompson
Managing Editor
Ellen Marielle-Trehoiiart
Associate Editors
Steven Kahn
Wendy Osborn

Assistant Editors
Sarah Rood
Jodi Steiner
Technical Advisors
Mark Anderton
Bart Grantham
Art Director
Stephen Stavast
Cover Art
David Thompson
Production and Layout
Corporate Graphics
Typesetting
Tandem Typography
The Tandem Systems Review is
published by Tandem Computers
Incorporated.

Purpose: The Tandem Systems
Review publishes technical informa
tion about Tandem software releases
and products. Its purpose is to help
programmer-analysts who use our
computer systems to plan for, install,
use, and tune Tandem products.
Subscription additions and changes:
Subscriptions are free. To add names
or make corrections to the distribu
tion database, requests within the
U.S. should be sent to Tandem
Computers Incorporated, Tandem
Systems Review, 18922 Forge Drive,
LOC 216-05, Cupertino, CA 95014.
Requests outside the U.S. should be
sent to the local Tandem sales office.
Comments: The editors welcome
suggestions for content and format.
Please send them to the Tandem
Systems Review, 18922 Forge Drive,
LOC 216-05, Cupertino, CA 95014.

Tandem Computers Incorporated
makes no representation or warranty
that the information contained in
this publication is applicable to
systems configured differently than
those systems on which the informa
tion has been developed and tested.
It also assumes no responsibility for
errors or omissions that may occur in
this publication.

Copyright © 1988 by Tandem
Computers Incorporated. All rights
reserved.

No part of this document may be
reproduced in any form, including
photocopying or translation to
another language, without the prior
written consent of Tandem Com
puters Incorporated.

The following are trademarks or
service marks of Tandem Computers
Incorporated: ENCOMPASS,
ENFORM, GUARDIAN 90,
Nonstop, Tandem, the Tandem logo,
TXP.

IBM is a trademark of International
Business Machines Corporation.

TANDEM SYSTEMS REVIEW

2

14

22

39

52

63

73

Overview of NonStop SQL
Howard Cohen

Nonstop SQL Optimizer:
Basic Concepts
Mike Pong

Nonstop SQL Optimizer: Query
Optimization and User Influence
Mike Pong

Nonstop SQL Reliability
Claude Fenner

Nonstop SQL Data Dictionary
Rob Holbrook, Don-Min Tsou

Technical Paper:
High-Performance SQL Through
Low-Level System Integration
Andrea Borr

Debugging T ACL Code
Linda Gary Palmer

2

Overview
of NonStop SQL

andem's NonStop SQL is an
implementation of ANSI SQL
on Tandem™ computer sys
tems. In addition to the ease
of use implicit in SQL,
Nonstop SQL is a high
performance distributed SQL

that can be used both in the information cen
ter and in production on-line transaction pro
cessing applications. It has the performance,
integrity, administrative, and utility features
necessary to operate databases that run hun
dreds of transactions per second.

Development of Nonstop SQL
Tandem is a leader in providing highly reliable
computer systems for on-line transaction pro
cessing (OLTP). As the use of OLTP solutions
continues to grow faster than the rest of the
industry, database management systems
(DBMS) must satisfy two classes of require
ments. First, OLTP applications require a
robust DBMS for their large production envi
ronments; this DBMS must provide high per
formance, distributed processing, and high

reliability. Second, users require a relational
database management system (RDBMS) for
decision making in an information-center
environment; this RDBMS must be easy to
use and off er highly functional access to the
OLTP database.

Nonstop SQL, Tandem's implementation of
the American National Standards Institute
(ANSI) specification for the SQL database
language, is unique in the industry because it
satisfies both objectives. While other vendors
have implemented SQL exclusively as a
decision-support product, Nonstop SQL is the
first fully distributed, high-performance
RDBMS that can operate in a production
OLTP environment.

Nonstop SQL is compatible with B40, ClO,
or later versions of the GUARDIAN 90™
operating system. Because it exploits Tandem
system architecture and is fully integrated
with other Tandem products, NonStop SQL
provides the strengths traditionally associated
with Tandem, including fault tolerance, linear
expandability, and distributed processing.

What Is SQL?
SQL (Structured Query Language) is a lan
guage that is based on the relational model
(Codd, 1982) and is used for specifying Data
Manipulation Language (DML), Data Defini
tion Language (DDL), and Data Control
Language (DCL). It was derived from IBM
research prototypes (Astrahan, 1986) and later
appeared commercially from third-party ven
dors and from IBM. SQL is now an ANSI and
ISO (International Standards Organization)
standard. The Gartner Group predicts, with
90% confidence, that 60% of application
tools will generate SQL statements by 1990
(Braude, 1986).

TANDEM SYSTEMS REVIEW JULY 1988

An SQL RDBMS is a database system that
acts as a base for applications and fourth
generation productivity tools. SQL is a more
productive development base than traditional
file systems because it features data indepen
dence, simpler programs, integrity constraints,
and the active dictionary. This productivity
is most noticeable during the costly mainte
nance phase of an application's life cycle.
NonStop SQL beta customers attest to signifi
cant and measurable benefits.

Although good, logical database design will
not change with SQL, application programs
will change because of SQL semantics. For
example, SQL semantics include the use of set
operations rather than record-at-a-time inter
faces. This means that the database system
(i.e., SQL) will evolve toward doing more and
more of what has been, traditionally, applica
tion logic. Hence, looping constructs for mod
ifying multiple records will disappear, and
editing of data values will be replaced by
integrity constraints, referential integrity,
and triggers.

Implementation Decisions
The Tandem Database Group had several fun
damental decisions to make before the devel
opment of the SQL system began. They are
dicussed briefly below.

Abandoning Compatibility with
ENCOMPASS. Perhaps the most controversial
decision of the Nonstop SQL project was to
abandon compatibility with ENCOMPASS TM,

Tandem's existing group of database products,
and adopt an SQL interface. ENCOMPASS was
the first commercial distributed database sys
tem, and it has many strong features and a
loyal following. There were, however, two
major reasons for making this decision.

First, when the NonStop SQL project began
in late 1983, SQL had already appeared com
mercially in three products: D82, SQL/DS,
and ORACLE. Though the official standard
was not approved until 1986, SQL was rapidly
becoming a de facto standard.

Second, customers were asking for an inte
grated and active dictionary (that assures
consistency between the dictionary and
applications), support of views, and integrity
constraints. The ENCOMPASS dictionary is
passive and proprietary. Like most such sys
tems, ENCOMPASS (e.g., DDL, ENFORM™
query language) was built as a separate system

layer on top of the "file-and-security" system,
rather than being integrated with it. Also, the
ENSCRIBE database record manager provides
a record-at-a-time interface for programmers
and little data independence. In contrast, SQL
provides views and a standard data definition
and manipulation language. In addition,
NonStop SQL has added an active, distrib
uted, and integrated dictionary.

Build vs. Buy. Tandem also had to decide
whether to develop its own SQL system or buy
it from a software house. Several software
houses were willing to port their SQL systems
to Tandem hardware. While this alternative
was less expensive, it did not meet Tandem's
goal of providing an integrated, fault-tolerant,
high-performance, and distributed RDBMS.
So, the developers decided to "start from
scratch."

Key Objectives. Before the release of
Nonstop SQL, other vendors marketed SQL as
an RDBMS for decision support and marketed
a second (non-SQL) system for OLTP applica
tions. The second system was needed because
SQL could not perform well enough to handle
production applications. Tandem rejected this
"dual database" strategy as too expensive,
both for Tandem and for Tandem customers.

The primary goal in building Nonstop SQL
was to create a system that could be used on
large and small systems, for decision support
as well as for production OLTP applications.
This led to several corollary objectives:

■ Full integration with the Tandem networking
and transaction processing system.
■ Continuous access to data.

■ Support for modular hardware growth and
for tens of processors executing hundreds of
transactions per second.
■ Distribution of data and execution in local
and long-distance networks.

JULY 1988 TANDEM SYSTEMS REVIEW 3

4

NonStop SQL design allows the software to
be expanded into areas such as Teradata-style
transaction parallelism (Shemer and Neches,
1984) and heterogeneous database connectivity
and, also, to support user interfaces such as
QMF (Query Management Facility: General
Information) or fourth-generation languages.

ANSI Status
In October 1986, ANSI approved the SQL
standard. An addendum to that standard
(Overview of SQL/Extension-1, 1986), cover
ing features such as integrity constraints, is
expected to be approved in 1988. Tandem is
participating in the review of SQL 2 (Database
Language SQL 2, 1986), which encompasses
major extensions to the standard.

The 1986 standard identifies two levels of
compliance (Level 2 is a higher level of com
pliance than Level 1). NonStop SQL supports
Level 2 ANSI DML with the exception of
unions and nulls. The data manipulation inter
face was extended for concurrency control and
dynamic SQL. NonStop SQL supports Level 1
DDL; Level 2 exceptions are nulls, naming,
and security. Most exceptions were deliberate.
The objective of full integration with the
Tandem operating environment was judged to
be more critical than full ANSI compliance.
DDL extensions include partitioned and dis
tributed data.

Nonstop SQL Architecture
The ANSI standard for SQL specifies the syn
tax and behavior for the statements, but the
implementation of the RDBMS is left up to
each vendor. Nonstop SQI.:s implementation is
geared toward on-line transaction p.rocessing.
To explain how NonStop SQL provides ?Ll:P
capabilities, it is first necessary to descnbe 1t~
architecture. The basic elements of that archi
tecture are the NonStop SQL objects, compo
nents, and run-time environment.

Nonstop SQL Objects
The basic NonStop SQL objects are the dic
tionary, tables, indexes, views, and programs.

Dictionary. The Nonstop SQL dictionary
comprises sets of catalogs (each catalog is a set
of tables) and file labels, all protected by the
Transaction Monitoring Facility (TMF). These
objects contain the descriptions of all the
database objects (catalogs themselves, tables,
indexes, views, programs, columns) and are
used by the SQL compiler to get accurate
descriptions for producing an access plan.

The Nonstop SQl, dictionary is said to be
"active" because the system modifies both
versions of descriptive information (catalogs
and file labels) whenever the physical or logi
cal database is changed. It is not possible to
have descriptions that do not match the actual
objects they describe. . .

Compiled versions of the table descnpt1.ons
are stored in the file labels as part of the f 1le
manager's disk directory. All necessary run
time information about a table can be read
from the file label as part of the file system's
OPEN step. Consequently, the catalogs are
only examined at compile time.

Tables. Each table has rows and columns of
data and corresponds to one physical file.
A file can have one of three organizations:
key-sequenced, relative, or entr!'~sequenced._
Tables can be horizontally partitioned by pn
mary key and can have secondary indexes.

Views. A view is a logical table derived by
selecting a subset of the columns or rows from
one or more tables or other views. NonStop
SQL has two types of views: protection views
and shorthand views.

A protection view is derived from a single
table by taking either a projection of the
columns of the table or a selection of the rows
of the table, or both. This view inherits the
organization, indexes, and partitioning char
acteristics of its underlying table. Also, a pro
tection view can be updated and secured.
Because protection views are implemented by
the SQL kernel, access can be granted to th~
view without granting access to the underl~mg
tables. Another benefit of integrating SQL mto
the operating system is that there are no "back
doors" to Nonstop SQL protection views.

TANDEM SYSTEMS REVIEW JULY 1988

By contrast, a shorthand view is derived
from one or more tables or other views and
defined without the protection attribute. This
macro definition, therefore, can only be read;
it cannot be updated or secured independently
of a base table. When the view name is refer
enced, the system acts as though the macro
body had been entered directly. Thus, the user
of a shorthand view must be authorized to its
underlying protection views and tables. Short
hand views are very general. They allow com
binations of tables and views using projection,
selection, joins, and aggregates. Although not
protectable outright, shorthand views con
structed from properly secured protection
views provide security on joined data. For
data independence, shorthand views can be
used to denormalize the database or sort it in
convenient ways.

Programs. A Nonstop SQL program is a
standard T16 object program that contains
SQL statements in source form. It has been
run through the Nonstop SQL compiler to
create and store executable access plans and is
registered in a catalog (see Figure 1).

Components
The basic components of Nonstop SQL are the
COBOL preprocessor, C and Pascal, SQL com
piler, catalog manager, SQL conversational
interface (SQLCI), SQL executor, SQL file
system, SQL disk process, SQL utilities, and
TMF. Figures 1 and 2 illustrate the relation
ships of the components. The components are
briefly described in the following paragraphs.

COBOL Preprocessor. The COBOL preproces
sor transforms a COBOL program containing
embedded SQL statements so that:

■ Calls to the SQL executor replace the SQL
statements.

■ Address pointers connect host variables and
SQL run-time structures.

C and Pascal. C and Pascal also support
embedded SQL but without the need for a
preprocessor. The output of each of these com
pilers is an object program containing SQL
source code. To simplify customer use, the
effects of preprocessing are integrated directly
into these compilers, thus eliminating the extra
steps and work files that occur with
preprocessing.

Figure 1

j
~

JULY 1988 TANDEM SYSTEMS REVIEW

Source file

Process

Object file

COBOL only

j

l

j

Figure 1.

Preparation of an SQL
program.

5

Figure 2

Disk with table

Figure 2.

SQL program execution.

6

Disk with table Disk with table Disk with catalog

The SQL Compiler. When reading an object
program, the Nonstop SQL compiler trans
forms each SQL statement into an optimal
access plan that minimizes a cost function
based on 1/0, CPU, and messages. The SQL
executor implements this access plan, and the
Nonstop SQL compiler accepts directives
from the user.

Catalog Manager. The catalog manager han
dles all changes (i.e., DDL commands) to the
Nonstop SQL distributed dictionary (see
Figure 2). The catalog manager is imple
mented as a separate process for authorization
reasons-only the catalog manager process
can write to catalog tables.

SQL Executor. The SQL executor is a set of
procedures residing in the system library that
executes compiled SQL statements against
database tables, views, or the database cata
logs (see Figure 2). It can execute both DML
and DDL statements. DML statements use the
database access plan formed by the SQL com
piler, and DDL statements generate a request
to the catalog manager to update the appropri
ate catalog tables. In either case, the executor
manages the logical names, collects records
from various tables using the file system, joins
them, sorts where required, and returns the
results to the host-language variables in the
user program. The executor calls the file sys
tem with single-variable requests.

The File System. The file system manages the
physical schema. Residing in the system
library, the file system handles OPENs of files
and indexes, partitioning, sending requests to
appropriate disk processes, and buffering the
replies. When a table is updated, the file sys
tem manages the updates to a table and all its
secondary indexes. If a retrieval can be
entirely satisfied by the index, the base table is
not accessed. Typical uses of this feature are
simple selects, such as Palermo's semi-joins
(Palermo, 1974) and determination of mini
mum values.

Disk Process. Each disk volume is managed
by a set of disk processes, which have a com
mon request queue and a shared buffer pool.
Disk processes implement file fragments and
manage disk space, access paths, locks, log
records, and a main memory buffer pool of
recently used blocks. Each disk process autho
rizes the application process to the table when
the file system sends the OPEN request. An
OPEN to a protection view is authorized by
the disk process.

TANDEM SYSTEMS REVIEW JULY 1988

SQL Conversational Interface. SQLCI is a
dynamic SQL application, written in TAL
(Tandem Application Language), that not
only allows static and dynamic SQL state
ments to be executed interactively but also
includes extensive documentation via on-line
help text, on-line diagnostic messages, and a
report writer. Report writer commands are
separated from the SQL commands so that the
user defines the answer set with SQL and the
report with the report writer syntax. The
report definition is an iterative process in
which the report format can be altered and the
report regenerated.

Program Preparation
As is standard with most SQL systems (Data
base Language SQL 2, 1986), NonStop SQL
statements are embedded in the host language
and bracketed by EXEC SQL and END-EXEC
keywords. For a COBOL85 program, a
NonStop SQL preprocessor scans the program
text and produces a host-language program
(COBOL) with the SQL statements replaced by
calls to the SQL executor.

COBOL85 then compiles this new program.
(Because their compilers recognize SQL state
ments directly, C and Pascal do not require
separate preprocessors.) The NonStop SQL
compiler transforms source SQL statements
into a set of execution plans (one execution
plan for each SQL statement in the source
program) and registers the program in a cata
log; this is called "explicit" compilation.
After compilation, the program is ready for
execution.

After it has been compiled once, a
Nonstop SQL program automatically recom
piles when the database changes or the plans
become invalid. For example, dropping an
index or overriding logical names causes auto
matic recompilation. Updating statistics used
for access-path selection will, optionally, force
automatic recompilation. In addition, if a
needed access path is inaccessible (e.g., the
network is down), the program will be recom
piled to work with the available data. (As the
name suggests, automatic recompilation is
transparent to the application program.)

Executing a Nonstop SQL Program
The Tandem system is designed for on-line
transaction processing. After the operator
compiles, installs, and brings up the system,
the system might run for several months with
out change or interruption of service. To elim
inate extra instructions in the normal
operating path, a rule for OLTP systems is to
perform checking (e.g., opening files, check
ing addresses) at startup. Therefore, the
NonStop SQL executor "OPENs" tables when
the application first references them, and keeps
the tables open until the execution plan is
invalid and the application needs a new OPEN
with a new redefinition time. Subsequent ref
erences to the table by another SQL statement
in the same process will share this single OPEN.

The OPEN serves three purposes: It covers
the redefinition/invalidation issue, authenti
cates the requester, and provides a virtual cir
cuit between the SQL requester and the SQL
disk server. When a transaction commits, all
its locks are released and all its cursors are
invalidated, but the OPENs continue to sup
port the next transaction.

JULY 1988 TANDEM SYSTEMS REVIEW 7

8

Key Innovations
Nonstop SQL introduced key innovations in
the areas of performance, integrated architec
ture, distributed database design, and fault
tolerant production features.

Performance
A single-variable query is a selection and/ or
projection on a single table involving only
literals, host variables, and database columns.
A SET operation is a single request that can
update or delete multiple records. Single
variable queries and SET operations can be
contracted (assigned) to a disk process. This is
important to optimizing performance.

The disk process scans a table to find
records that satisfy the selection expression,

Tandem Nonstop SQL
1 is integrated with
GUARDIAN 90.

either returning quali
fying projected
records to the file
system or performing
the update or delete.
To prevent one
request from monop

olizing it, the disk process returns control to
the file system after ten I/Os; the file system
then continues a request by reissuing it.

Nonstop SQL developers expected the bene
fits of remote execution of single-variable que
ries for set operations but did not anticipate
the benefits for single-record operations. The
original goal was, when executing the debit
credit transaction1, to match (within 25%),
the performance of the COBOL record-at-a
time interface. Surprisingly, when the applica
tion was measured, it used less CPU time and
the same number of I/Os as the record-at-a
time interface (Nonstop SQL Benchmark
Workbook).

Though it can cost more to execute an SQL
statement than to make an 1/0 request to a
file manager, an SQL statement has more var
ied semantics. Because each SQL statement
accomplishes more, there is a strong possibility
that fewer statements will be executed.

Integrated Architecture
Nonstop SQL is integrated with the operating
system; when the system is up, Nonstop SQL
is up. One does not bring up or allocate an
SQL database; it is simply there. This con
trasts with most other SQL designs. In addi
tion, because the operating system and SQL
authorization are integrated, there is no
"logon" to SQL; when the user logs on to the
system, he is automatically logged on to SQL.
The entire network provides a single-system
database.

Naming and Security. Having site.process.
directory.object as one system-wide naming
convention simplifies learning and operation.
These names are used for tables, indexes,
views, and programs. Naming of columns
follows the ANSI SQL conventions. Integrity
constraints are named and numbered so that
diagnostic messages can explain which con
straint is violated. For similar reasons,
Nonstop SQL adopted GUARDIAN 90
security.

'A simple OLTP application that updates three tables by key and inserts a
record in a fourth table (Anon., et al., 1985).

TANDEM SYSTEMS REVIEW JULY 1988

Transaction Management. Tandem's
ENCOMPASS data management system pro
vides a mechanism that includes transaction
rollback (TMF) and distributed transactions
(Borr, 1981). NonStop SQL integrates with this
transaction manager, so that a single transac
tion log (audit trail) is maintained at each site.
This log provides undo, redo, and media
recovery for old (ENSCRIBE) and new (SQL)
data. One transaction can contain both
ENSCRIBE and SQL calls, and is recorded in
a single log per site. A single transaction man
agement facility for all data access greatly
simplifies system management.

Distributed Database
A distributed database has many aspects. The
Gartner Group (Braude, 1987) and Date
(Date, 1987) have published criteria for mea
suring the degree to which a product can be
considered distributed. The most important
factors are location transparency (data that
can be accessed from anywhere in a network),
local autonomy, data distribution, catalogs,
and processing. Nonstop SQL satisfies all
these criteria.

Local Autonomy. Local autonomy requires
that Nonstop SQL provide access to local data
even if part of it is unavailable and the site is
isolated from the rest of the network. For com
piled SQL plans, this means that the SQL com
piler must automatically and transparently
pick a new plan if a chosen access path (i.e.,
index) becomes unavailable.

Data definition operations are more diffi
cult. Dropping a partitioned table requires
work-both updates to the catalogs and dele
tion of the files-at each node in which a
partition resides. Changing table attributes
has similar requirements. In general,
Nonstop SQL requires that all nodes related to
a table participate in the DDL operation. If
any relevant node, catalog, or disk process is
unavailable, the DDL operation is denied. In a
distributed system, local autonomy is at odds
with data integrity. For DDL operations,
Tandem elected in favor of integrity over local
autonomy.

Data. A physical file, which may be horizon
tally partitioned across multiple disks and
nodes, represents the table content. Indexes on
a table may also be partitioned across multiple
disks and nodes that can differ from the loca
tion of the table's partitions. In addition,
Nonstop SQL provides a unified view of the
database; it eliminates the concept of
DBSPACE (IBM Database 2 General Informa
tion Manual, 1986) or separate, autonomous
databases offered by other vendors.

Catalogs. A traditional SQL system consists of
a catalog (a set of tables) that includes infor
mation describing the tables and other data
base objects. The catalog is restricted to a
single system. The database, which is defined
by all objects registered in that catalog, is dis
tinct from any other database represented by
other catalogs on the same or remote systems.

The NonStop SQL dictionary, on the other
hand, is the union of all such catalogs in a
network; the dictionary is distributed and
there are no barriers to accessing SQL data
throughout a Tandem network. To preserve
local autonomy, objects must be registered in
a local catalog, and to ensure the dictionary's
integrity, TMF protects all catalog tables.

JULY 1988 TANDEM SYSTEMS REVIEW 9

10

Because there can be many catalogs, the file
label of each table, view, or program includes
the name of the catalog for that object. Infor
mation about a table is replicated at every site
having a fragment of the table, so that the
local parts of the table can be accessed even if
the site is disconnected from the network.

Processing. Currently NonStop SQL provides
distributed processing by contracting single
variable queries to remote disk processes. The
current join strategy is to return the results of
each single-variable query (after selection and
projection) to the SQL executor running as
part of the application process.

Production Features
Nonstop SQL production features include
defines, locking, constraints, object files and
language support, host language features,
CONTROL TABLE, and utilities.

Defines. System administrators and applica
tion designers need to be able to bind a pro
gram to new tables without altering the source
code. This is necessary in production systems
where a program is tested in one environment
and moved to a production environment, in
distributed systems where programs are dupli
cated at different sites, and in situations where
a report runs against many instances of a
generic table. IBM JCL and COBOL FD state
ments solved this problem in 1964, but most
SQL implementations reintroduce the prob
lem. NonStop SQL, however, offers logical
names, called defines, which allow users to
rebind a program's table names at SQL com
pile time or run time without altering the
source program.

Locking. Major NonStop SQL DML innova
tions are in the areas of locking and consis
tency. The locking features include table, set,
and row granularities; automatic escalation to
coarser granularity; implicit or explicit shared
and exclusive lock modes; three degrees of
consistency (selectable on a per-statement
basis); and a LOCK TABLE verb. Deadlock
detection is via timeout. The default timeout is
60 seconds. Most defaults can be overridden
per statement or using CONTROL TABLE.

All update operations on transactional
(audited) files automatically acquire exclusive
locks held to end-of-transaction (degree 1 con
sistency is automatic). The programmer has
the option of accessing dirty data (BROWSE
ACCESS), cursor stability (STABLE ACCESS),
or repeatable reads (REPEATABLE ACCESS).
These correspond to degree 1, 2, and 3 consis
tency (Gray, 1976).

Constraints. Users may add integrity con
straints (named, single-variable queries) to a
table. When the constraint is first defined, it is
validated against the table. Thereafter, any
insert or update operation that violates the
constraint will be rejected. The disk process
(file server) enforces the constraints, which
removes many integrity checks from the appli
cation program. Updates through protection
views obey these constraints.

Since constraints are named and may be
added or dropped at any time, NonStop SQ~s
implementation is slightly more general than
the ANSI SQL definition of CHECK CON
STRAINT (Database Language SQL, 1986).

TANDEM SYSTEMS REVIEW JULY 1988

Object Files and Language Support. Tandem's
mplementation of program compilation is
,imilar to the original System R implementa
tion (Astrahan, 1986). Nonstop SQL, how
:!Ver, introduces the binding of SQL source and
object programs with the Tl6 object modules.
The resulting object program is a single object
that can be moved, copied, archived, or
purged without having to manipulate one or
more separate "access modules." In contrast,
most other SQL systems store the SQL pro
gram in the catalogs, requiring special han
dling and catalog access at run time.

The Tandem BINDER program was modi
fied to support SQL source program and
object sections and, also, to support relation
ships between the object program and its SQL
sections. The binder combines code sections,
data sections, symbol table sections (for the
symbolic debugger), and other types of sec
tions from separate compilations to produce a
single executable object-program file.

Because the SQL compiler reads SQL state
ments from the SQL source section of the
object-program file, programs can be archived
and moved without accessing the SQL source.
This greatly simplifies the management of
SQL programs. In this area, as with many
others, the close integration of Nonstop SQL
with standard system tools has considerable
benefits in simplicity and functionality.

Host Language Features. Nonstop SQCs pro
grammatic interface has many features to ease
programming, including:

■ Comprehensive diagnostics embedded in
output listings.

■ Ability to invoke data declarations of tables
from the catalogs.
■ Support for WHENEVER (exception
handling).
■ Support for multiple levels of copy libraries.
■ Generation of tracing information so that
application programmers can trace errors back
to source-language statements.

Because Nonstop SQL supports separate
compilation, a cursor may be defined in one
compilation and used (e.g., OPENed,
FETCHed) in another separately compiled
program. C, Pascal, and COBOL85 support are
currently available, and TAL support is under
development. Integrating C and Pascal sup
port directly into the compilers eliminates the
extra listings and work files resulting from
preprocessing.

CONTROL TABLE. A production-oriented,
OLTP-capable RDBMS had to provide user
controls not included in the SQL standards.
Rather than change standard SQL syntax,
Tandem added the
CONTROL TABLE
verb to allow specifi
cation of "lock-wait"
duration, "table
versus-record" locks,
and "bounce" locks
(i.e., never wait for a
busy resource).

Tandem's BINDER
1 program was modified
to support SQL source
programs.

Nonstop SQL also allows specification of
consistency on the basis of either a table or an
SQL statement.

This design contrasts with other SQL sys
tems that associate control with the transac
tion or program rather than the statement.
Finer granularity control on a statement-by
statement basis or table basis is essential for
tuning high-performance applications.

JULY 1988 TANDEM SYSTEMS REVIEW 11

12

Utilities. A distributed database poses new
challenges to managing data. Typical nondis
tributed SQL systems have taken the view that
the database is a single physical object to be
backed up and restored. In Tandem's view,
this is insufficient. The Nonstop SQL utilities
(BACKUP /RESTORE, TMF, LOAD, COPY,
CONVERT, DUP) must manage a logical view
of the database: individual tables, partitions,
and so on. Nonstop SQL developers are still
discovering new opportunities to improve
these capabilities (e.g., adding, dropping, and
splitting partitions).

Special Facilities

EXPLAIN. To assist with application design
and tuning, the EXPLAIN facility produces a
report showing the access plan chosen for an
SQL statement issued from SQLCI or for all
SQL statements in an SQL program. The
report documents the use of indexes, sorting,
and join operations.

HELP and ERROR Text. Documentation for
NonStop SQL is available in the NonStop SQL
manuals and, also, on-line via the SQLCI
facility. The documentation that appears using
SQLCI is identical to the information appear
ing in the manuals. The on-line documenta
tion is easy to maintain because it is derived
from the same source as the manuals.

Where-Used Reports. Many customers have
requested a facility to generate reports or que
ries indicating which programs use (or depend
on) particular objects (e.g., tables, views).
The Nonstop SQL DISPLAY command pro
vides that facility.

Conclusion
In the last few years, virtually every commer
cial computer vendor has built or bought an
SQL system. NonStop SQL is unique in that it
offers:

■ Distributed data, distributed execution, and
distributed transactions with full location
transparency.
■ A data management system that runs on
small and large computers.
■ Toleration of any single fault without inter
rupting service.
■ The first high-performance SQL bench
marked at over 200 transactions per second
(tps) with no bottlenecks in sight.
■ A cost per transaction comparable to non
SQL, record-at-a-time, high-performance data
management systems.

TANDEM SYSTEMS REVIEW JULY 1988

NonStop SQL can be used for both decision
support and OLTP, and disposes of the myth
that relational systems are inherently slow. The
combination of SQL semantics and a message
based, distributed operating system revealed
that the message savings of a high-level inter
face pay for the extra semantics of the SQL
language when compared to record-at-a-time
interfaces.

NonStop SQL is the first SQL system to be
integrated with an operating system. The SQL
executor and file system work together so that
the disk process directly executes single
variable SQL queries. Authorization covers
SQL objects, programs include SQL sections,
and the measurement facility measures SQL
events. Because of these characteristics,
Nonstop SQL has considerable benefits in
usability, simplicity, and performance.

References
Anon., et al. 1985. A Measure of Transaction Processing
Power. Datamation. Vol. 31.7, pp. 112-118.

Astrahan, M., et al. 1986. System R: A Relational Approach to
Database Management. ACM Transactions on Data Base Sys
tems. Vol. 1.2.

Borr, A. J. 1981. Transaction Monitoring in ENCOMPASS:
Reliable Distributed Transaction Processing. In Proceedings of
the Seventh International Conference on J:-ery Large Data Bases,
September. Republished as Tandem TR 81.2.

Braude, M. 1986. The Evolving Software Industry. In Second
Annual Software Management Strategies (SMS) Conference.

Braude, M. 1987. Rules for Distributed DBMS. Software Man
agement Strategies. Gartner Group, Inc. T-150-314.1, February.

Codd, T. 1982. Relational Database: A Practical Foundation
for Productivity. Communications of the ACM. Vol. 25 .2.

Database Language SQL. 1986. American National Standards
Institute. ANSI X3.135-1986.

Database Language SQL 2 (ANSI working draft). 1986. Ameri
can National Standards Institute. ANSI X3H2 87-8.

Date, C. 1987. Twelve Rules for a Distributed Data Base.
Computer World. June 8.

NonStop SQL Benchmark Workbook. Part no. 84160. Tandem
Computers Incorporated.

Overview of SQL/Extension-1. American National Standards
Institute. ANSI X3H2-86-14, February 1986.

Palermo, F. 1974. A Database Search Problem. Information
Systems: COINS IV. Plenum.

Query Management Facility: General Information. IBM Manual
GC26-4071. International Business Machines.

Tandem Database Group. 1987. NonStop SQL: A Distributed,
High-Performance, High-Availability Implementation of SQL.
Tandem Computers Incorporated. Part no. 83061. Also Tandem
Computers TR87.4.

The Genesis of a Database Computer: A Conversation with
Jack Shemer and Phil Neches of Teradata Corporation. 1984.
IEEE Computer. November.

Acknowledgments
Many people deserve credit for this paper and the introduction
of the Nonstop SQL product. I would like especially to
acknowledge the entire Nonstop SQL development team for the
April 1987 Tandem Database Group paper (Tandem Database
Group, 1987), from which most of this material has been
derived.

Howard Cohen is currently the manager of Nonstop SQL devel
opment. He has worked on Nonstop SOL since 1984, starting as
project technical leader. Before coming to Tandem, he worked for
a major semiconductor manufacturer responsible for defining
and implementing an information center, and for two time
sharing vendors as a software developer and a manager of
database development. Howard holds a B.S. in Mathematics
from Harvey Mudd College and an M.S. in Computer Science
from Stanford University.

J U L Y I 9 8 8 T A N D E M S Y S T E M S REVIEW 13

14

Nonstop SQL Optimizer:
Basic Concepts

-- andem's Nonstop SQL offers
_ high performance as well as

the ease of use and high

functionality associated with
--- the SQL database language.
_____ The Nonstop SQL optimizer,

a component of the
Nonstop SQL compiler, plays an important
role in the high performance of Nonstop SQL
by automatically selecting the most efficient
access plan for retrieving data from the
database.

In a traditional database management sys
tem (DBMS), such as IMS or ENSCRIBE,
there is a lack of data independence between
the database and the application. This has two
implications. First, the application must be
aware of the underlying physical structures
of the database. If these physical structures
change, the application must be modified
to reflect the new physical structures of
the database.

Second, the application has the responsibil
ity of selecting the access plan. The applica
tion must explicitly choose an index to access
a file. If multiple files are to be accessed, the
application must specify the order in which
each file is to be accessed and identify the
index that will access each file. Such specifi
cations can become very complex.

By contrast, NonStop SQL has data inde
pendence and automatic access-plan selection
(Tandem Database Group, 1987). The
NonStop SQL optimizer generates an efficient
access plan to evaluate a given query. This
frees the application programmer to concen
trate on designing query results rather than
specifying the means to achieve those results.

This is the first of two articles describing
the Nonstop SQL optimizer. This article
reviews the basic concepts important for
understanding the process of selecting an
access plan. They include the characteristics of
tables and indexes, the concept of selectivities,
and the various methods of performing joins.
They are discussed in the following order:

• Table and index.
• Sequential block buffering (SBB).

• Selectivity.
• Join evaluation.

This article assumes readers are familiar
with the SQL language and relational terms
such as selection and projection (Date, 1986).

The second article, "Nonstop SQL Optimi
zer: Query Optimization and User Influence,"
describes the heuristics used by the optimizer
in performing automatic access-plan selection.
The second article also discusses ways in
which the user can influence the optimizer in
choosing an access plan.

TANDEM SYSTEMS REVIEW JULY 1988

Table and Index
In Nonstop SQL, data items are logically
stored in a table (Date, 1986), which is made
up of user-defined fields called columns. Each
SQL table is implemented as a physical file
that can be key-sequenced, relative, or entry
sequenced (Tandem Database Group, 1987).

Each physical file has a unique primary
key. If the file is key-sequenced, the user or a
default called SYSKEY defines the primary key
to the file. If the file is relative or entry
sequenced, the key is the record number and
has the name SYSKEY. The physical file is
sometimes called the primary index. Addi
tional indexes may also be defined on one or
more columns of the table; the columns need
not be contiguous. Each additional index is
implemented as a separate key-sequenced file.

To access records in a table, one can read
the underlying file sequentially or supply a
primary key value. If an index is available, one
can read the index sequentially or supply the
key value for the index, obtain the primary key
value from the index record, and use this key
value to read the underlying file of the table.

An index is an efficient way to access data
only if the number of records to be retrieved is
small. For example, consider a table named
INVENTORY with the columns ITEM_NO,
ITEM_NAME, ITEM_DESCRIPTION,
RETAIL_PRICE, and PRODUCER. INVEN
TORY is implemented as a key-sequenced file.
The total length of each record is 400 bytes
and the block size is 4000 bytes. The file con
tains 100,000 items. ITEM_NO is the primary
key column. An index on the column
PRODUCER is also available. The index
column PRODUCER and the primary key field,
ITEM_NO, total 24 bytes. Suppose the user
wants to find the RETAIL_PRICE information
on items with an ITEM_NO between 20 and
2000 with the query:

SELECT ITEM_NAME, RETAIL_PRICE,
PRODUCER

FROM INVENTORY
WHERE ITEM_NO BETWEEN 20 AND 2000

If 1000 items fall within this range and if
Nonstop SQL uses the primary key, only 1000
records need to be retrieved because there is a
begin and end key (i.e., ITEM_NO BETWEEN
20 AND 2000). The number of physical I/Os
required is about 100 (10 records per block).

On the other hand, if Nonstop SQL uses the
index, the entire index must be read because
there are no begin-key and end-key values for
the index column PRODUCER. Because the
ITEM_NAME column is not part of the index,
the table must be read for each record in the
index. As a result, the number of physical
I/Os would be far greater than 100.

As a second example, suppose the user
wants information on the 1000 items produced
by DEL MONTE:

SELECT ITEM_NAME, RETAIL_PRICE
FROM INVENTORY
WHERE PRODUCER = "DEL MONTE"

If the index is not used, the whole table
must be read because there are no restrictive
begin- and end-key values for the primary key
ITEM_NO. SQL must perform about 10,000
physical 1/Os (100,000 items at 10 records !?er
block) to read through the table. However, 1f
SQL uses the index on PRODUCER, the num
ber of physical I/Os required is about 1000_
because the begin-key and end-key values (1.e.,
DEL MONTE) of the index have been specified
in the query.

Another situation in which using an index is
more efficient than reading the table directly is
when all the information can be obtained from
the index file. For example, the user wants the
information on PRODUCERS and ITEM_NOs:

SELECT ITEM_NO, PRODUCER
FROM INVENTORY

If the index is not used, the number of
physical I/Os is around 10,000 (see pre~ious
examples). If the index on PRODUCER 1s used,
the whole index must be read. This requires
only about 600 I/Os (each 4000-b~te index
block can contain 4000/24 ;:;- 160 mdex
records, and 100,000 records require about
600 pages). However, because all the requested
columns (PRODUCER and ITEM_NO) can be
found in the index, there is no need to read the
table.

JULY 1988 TANDEM SYSTEMS REVIEW 15

Figure 1

File system

Figure2

File system

Figure 1.

The record-at-a-time
interface returns one
record per message.

16

Get next record
where RETAILPRICE > 1 0

Returns one
record

Get next record
where RETAILPRICE > 1 0

Figure 2.

Returns one
page of records

The physical sequential
block buffering (SBB)
returns one page of
records per message.

Disk process

Disk process

A common misconception holds that if the
user specifies some columns of an index,
Nonstop SQL will use the index. This is not
necessarily true. For example, assume that the
first two columns of an index are PRODUCER
and ITEM_NAME, respectively. Specifying a
predicate on ITEM_NAME alone would not
make the index very useful. In the current
implementation, the general rule is that the
prefix (PRODUCER, in this example) of a key
must be specified before it is efficient to use
the index to retrieve records.

Sequential Block Buffering
In Tandem systems, the file system is a collec
tion of system library routines that run in the
process environment of the application pro
cess. Through file system-procedure invoca
tions, the application process sends requests to
the disk process.

In ENSCRIBE, each request for a record
from the application process causes a record to
be returned from the disk process unless the
application process requests the sequential
block buffering (SBB) feature. In this case, the
disk process returns a copy of a physical block
of records to the file system. When the appli
cation process requests the next record, the file
system returns the next record from the copy
of the physical block of records. Therefore,
SBB reduces the amount of requests (mes
sages) between the file system and the disk
process by the file's physical blocking factor
(i.e., the number of records per block).

In addition to supporting the record-at-a
time interface, Nonstop SQL supports physi
cal and virtual SBB. Physical SBB was
described in the previous paragraph. In virtual
SBB, the disk process does the selection and
projection of data. (For more information,
refer to the accompanying article, "High
Performance SQL through Low-Level System
Integration.") The first objective of virtual
SBB is to further reduce the number of mes
sages between the file system and the disk
process. The second objective of virtual SBB is
to reduce the amount of data transfer between
the file system and the disk process. Virtual
SBB is unique to NonStop SQL.

TANDEM SYSTEMS REVIEW JULY 1988

The following example illustrates the
differences among these interfaces. Consider
the query:

SELECT ITEM_NAME, RETAIL_PRICE
FROM INVENTORY
WHERE RETAIL_PRICE > 10

FOR REPEATABLE ACCESS

The table INVENTORY contains 100
records. Each record contains the columns
ITEM_NAME, RETAIL_PRICE,
ITEM_ON_HAND, and COMMENTS. There
are 90 items with a RETAIL_PRICE greater
than 10. The sizes of the columns are 20, 4,
4, and 400 bytes, respectively-a total of
428 bytes. There is no index on the table. The
query is evaluated by sequentially reading the
INVENTORY table.

In the record-at-a-time interface (Figure 1),
the disk process returns each complete record
that satisfies the predicate (RETAIL_PRICE >
10) to the file system. To evaluate this query,
the file system will send 90 messages to the
disk process. The disk process transfers 38,520
bytes of data (90 records of 428 bytes each) to
the file system.

If physical SBB (Figure 2) is used to evalu
ate the query, the disk process returns a physi
cal block of records to the file system. The file
system then examines each record in the
returned block and tests the record against the
predicate. After all the records in the block
have been processed, the file system asks for
another block. The amount of data transferred
from the disk process to the file system is the
same as in the record-at-a-time case. However,
the file system only needs to send two mes
sages (assuming 4-Kbyte data blocks) to the
disk process.

With the virtual SBB (Figure 3) interface,
the disk process returns in a block only the
requested columns from records that satisfy
the predicate. In the previous example, only
the columns ITEM_NAME and
RETAIL_PRICE are returned to the file
system. Therefore, the disk process returns
2160 bytes of data (90 records at 24 bytes per
record) to the file system. Because the answer
to the query can be contained in one 4-Kbyte
page, the file system needs to send only one
message to the disk process.

Figure 3

File system
Get next record
where RETAILPRICE > 1 0

Returns one page
of records

Figure 3.

Virtual sequential block
buffering (SBB) returns
one page of records (with
selection and projection)

JULY 1988 TANDEM SYSTEMS REVIEW

Disk process

5 .. .
11 .. .
20 .. .

25 .. . ao .. .
50 ---

per message. Data may
be from more than one
physical data page.

17

18

Selectivity
Selectivity, defined as the fraction of records
that satisfy a condition, is a concept central to
selecting an access plan in Nonstop SQL and
other relational systems (Selinger, 1979). There
are three types of selectivity: predicate, table,
and index.

Predicate Selectivity
A predicate is a condition that a record must
satisfy in order to be returned to the applica
tion. For example:

ITEM_NO > 10

is the predicate in the query:

SELECT ITEM_NAME, RETAIL_PRICE
FROM INVENTORY
WHERE ITEM_NO > 10

The selectivity of a predicate is the fraction
of records in a table that satisfy the predicate.
For example, assume there are 100 items in the
INVENTORY table. The selectivity of the
predicate

ITEM_NO > 10

is 0.9, or 900/o, if 90 out of 100 records will
satisfy the condition specified by the predicate.

Table Selectivity
Table selectivity is the fraction of records that
satisfy all the predicates of a query. Using the
previous example where 90 out of 100 items in
the table satisfy the search condition, the table
selectivity is also 0.9, or 900/o. Generally,
because more than one predicate may be speci
fied with a query, the table selectivity is not
equal to predicate selectivity. For example:

SELECT ITEM_NAME, RETAIL_PRICE
FROM INVENTORY
WHERE ITEM_NO > 10 AND

ITEM_NAME = "PINEAPPLE"

In this query, there are two predicates. Each
predicate has its own selectivity. Assume that
the predicate:

ITEM_NAME = "PINEAPPLE"

has a selectivity of 0.01, or 10/o. The table
selectivity is the product of the individual
predicate selectivities:

0.9 X 0.01 = 0.009

In general, if n predicates are all connected
by AND operators, and if the predicates are
independent of one another (i.e., the values in
different columns are independent of one
another), the table selectivity of the predicates
is estimated as the product of the n individual
predicates. If two predicates are connected by
the OR operator, the composite selectivity is
estimated as:

sum of the individual predicate selectivities -
product of individual predicate selectivities

Index Selectivity
Index selectivity is the fraction of index
records that must be examined in evaluating a
query. Consider the query:

SELECT ITEM_NAME, RETAIL_PRICE
FROM INVENTORY
WHERE ITEM_NO = 20

Suppose there is a unique index with a key
on ITEM_NO in the INVENTORY table. If this
index is chosen to evaluate the query, only one
record must be examined because the index is
unique. If there are 100 items, the index selec
tivity for the index is 1 OJo, or 0.01.

TANDEM SYSTEMS REVIEW JULY 1988

Computation of Selectivity
Nonstop SQL estimates selectivities based on
statistics obtained prior to the compilation of
queries. Statistics on a column can be col
lected with the UPDATE STATISTICS com
mand (NonStop SQL Programming Reference
Manual). Furthermore, the data is assumed to
be uniformly distributed within the range
specified by the statistics. The statistics used
by Nonstop SQL to compute selectivities are:

• The second-high and second-low values of a
column.
• The number of unique values of the column.

To avoid the extreme values that may be
very different from the rest of the values,
Nonstop SQL does not use the first-high and
first-low values of a column.

The selectivity of a predicate involving a
column with a numeric attribute is computed
as a linear extrapolation of the values within
the range of values specified by the second
high and -low values. For example, the
RETAIL_PRICE column of the INVENTORY
table has a second-high value of 99 and a
second-low value of 2. The selectivity of the
predicate:

RETAIL_PRICE > 10

is

second-high value - supplied value

second-high value - second-low value

which equals

99- 10

99-2
~ 0.91

For predicates of the form "column = value,"
the selectivity of the predicate is:

1

unique values of column

Selinger (1979) gives further examples of pred
icates and their selectivities.

If statistics are not available for a column
or if the value specified in a predicate is a host
variable (as in a COBOL program), Nonstop
SQL assumes an arbitrarily chosen selectivity
for the predicate if the predicate is not of the
form "column = value." The selectivity of a
predicate involving host variables cannot be
computed because the value of the host varia
ble is not known at compile time. For exam
ple, the selectivity of the predicate:

RETAIL_pRICE > :host_variable

is chosen to be 0.33. However, the selectivity
for:

RETAIL_PRICE = :host_variable

can be reasonably computed, since the compu
tation does not depend on the supplied value.
The selectivity of a predicate of the form
"column = value" is:

1

number of unique values of the column

If the default selectivity differs very much
from the actual selectivity, NonStop SQL may
choose an inefficient access plan for the query.
Therefore, it is strongly recommended that
users periodically collect statistics with the
UPDATE STATISTICS command. The accom
panying article, "Nonstop SQL Optimizer:
Query Optimization and User Influence," has
more information on the UPDATE STATISTICS
command.

JULY 1988 TANDEM SYSTEMS REVIEW 19

Figure 4

EMPLOYEE,..:NAME
FRANK

Qti;Pf_J\jf)

ti!)
HOWARD 10
LOUISE 1Q
MARY ~

EMPLOYEE table

Figure 4.

EMPLOYEE table
joined with DEPT table
and EMPLOYEE.

20

DEPT_NO =
DEPT.DEPT _NO.

DEPT table

Join Evaluation
Users may "join" two tables to form a new,
wider table with more columns. When tables
are joined, each new record is formed by con
catenating two records, one from each of the
original tables. The paired records must have
the same value in the joining column. For
example, the query:

SELECT EMPLOYEE_NAME, DEPT _NAME
FROM EMPLOYEE, DEPT
WHERE EMPLOYEE.DEPT _NO =

DEPT.DEPT _NO

joins the tables together on the column
DEPT_NO (Figure 4). The predicate
EMPLOYEE.DEPT _NO = DEPT.DEPT _NO
is called a join predicate. Note that this query
also requests a projection of the columns
EMPLOYEE_NAME and DEPT _NAME. The
join in this example is known as "equi-join."
If the joining criterion is a comparison opera
tor other than equality, the join is known as
"theta join" (Date, 1986). NonStop SQL sup
ports both types of joins. Two tables may be
joined even if there are no joining predicates.
In this case, concatenating every record in one
table with every record in the other table cre
ates the new table.

The most popular methods of implementing
the join operation are the nested loop and sort
merge methods (Selinger, 1979). Nonstop SQL
implements these two methods.

Nested Loop
The nested loop algorithm retrieves records
one at a time from a table called the outer
table and compares them with the records in a
second table, called the inner table. The algo
rithm retrieves the records from the inner table
that satisfy the join predicate and concatenates
them with the corresponding records from the
outer table.

Sort-Merge-Join
The sort-merge-join algorithm requires that
the joining columns of the outer and inner
tables be in ascending or descending order.
If the join column of a table is not in the
required order, the table is sorted on the join
column into a temporary table. A record is
retrieved from the outer table, another record
is retrieved from the inner table, and the val
ues of the join columns for the two records are
compared.

TANDEM SYSTEMS REVIEW JULY 1988

If the values are the same, the records are
concatenated, projected, and returned to the
user, and the position of this inner record is
remembered. The next inner record is retrieved
and the process is repeated until the join
column values of the inner and outer table
records are different. The next outer record is
then retrieved; if the join-column value is the
same as before, the inner table is positioned to
the "remembered" position and the process is
repeated.

If the join-column value of the inner record
is less than that of the outer record, the next
inner record is retrieved until the value of the
inner record is greater than or equal to that of
the outer record. If the join-column value of
the inner record is greater than that of the
outer record, the next outer record is retrieved
until the outer record has a value greater than
or equal to that of the inner record.

This process is repeated until all the records
from the outer table have been examined.

Conclusion
The basic concepts of access-plan selection
discussed in this article are important to
understanding the process of access-plan selec
tion used by the NonStop SQL optimizer. Dif
ferent indexes provide different degrees of
efficiency in accessing a table. Selectivities
(predicate, table, and index) are used to evalu
ate the efficiency of an index. Sequential block
buffering can be used to increase the efficiency
of an index. Finally, different join methods
are used to improve the efficiency of evaluat
ing join queries.

References
Date, C. 1986. An Introduction to Database Systems. Addison
Wesley.

Nonstop SQL Programming Reference Manual. Part no. 82318.
Tandem Computers Incorporated.

Selinger, P., et al. 1979. Access Path Selection in a Relational
Database Management System. In Proceedings of the Interna
tional Conference on Management of Data. Association for
Computing Machinery (ACM).

Tandem Database Group. 1987. NonStop SQL, a Distributed
High-Performance, High-Availability Implementation of SQL.
Tandem Technical Report 87 .4. Tandem Computers
Incorporated.

Acknowledgments
I would like to thank the members of the Tandem Database
Group for contributing ideas on optimization and reviewing this
paper.

Mike Pong is currently a member of the SQL Compiler Group in
Transaction Networks Division. Before joining the SQL Compiler
Group, Mike designed and implemented the autorollback feature
of DP1 TMF

JULY 1988 TANDEM SYSTEMS REVIEW 21

22

NonStop SQL Optimizer:
Query Optimization and
User Influence

he Nonstop SQL optimizer
plays an important role in the
high-performance operation
of Nonstop SQL. For each
SQ L query, the optimizer
generates an access plan that
efficiently retrieves the

requested data from the database. By auto
matically selecting an access plan, the optimi
zer frees the application programmer to
concentrate on designing query results, thus
improving programmer productivity.

This is the second of two articles describing
the Nonstop SQL optimizer. The first article,
"NonStop SQL Optimizer: Basic Concepts,"
briefly outlines the advantages of the NonStop
SQL optimizer over the mechanisms of tradi
tional database management systems. It then
reviews the basic concepts important for
understanding the optimizer. Readers who
have not had extensive experience with query
optimization are urged to read "Basic Con
cepts" before reading this article.

This article describes the heuristics used by
the optimizer in performing automatic access
plan selection. It also discusses ways in which
the user can provide access information (such
as creating additional indexes) that will influ
ence the optimizer to select a more efficient
access plan.

The Goal of Query Optimization
The goal of the Nonstop SQL optimizer is to
select the most efficient access plan to evalu
ate a query. For a query that references a single
table, an access plan consists of directions to
access the table using a specified index and
begin/ end keys. For a query that references
multiple tables, an access plan also specifies
the order in which the tables should be
accessed. NonStop SQL defines the most effi
cient access plan as the one that takes the least
time to complete the evaluation of a query.

A number of parameters affect the execu
tion time of a query, including the number of
physical I/Os to be performed, the number of
instructions to be executed, the number of
sorts to be performed, and the amount of data
to be transferred between processes. In deter
mining the most efficient access plan, the
optimizer performs the query modifications
and determines:

■ The indexes that should be considered.
■ The type of sequential block buffering (SBB)
that should be used.
■ The cost of using each index.
■ The order in which tables should be accessed
(in a query that references multiple tables).
■ The time when a subquery should be
evaluated.

■ The most efficient access plan when some
indexes are not available.

TANDEM SYSTEMS REVIEW JULY 1988

Query Modification
Query modification refers to the modification
of a query into another form that is logically
equivalent to the original query. The modified
query either exposes information hidden in the
original syntax or reduces the complexity of
the query. This section describes the query
modifications performed by the NonStop SQL
optimizer.

LIKE Processing
NonStop SQL supports the LIKE predicate of
the SQL language. The LIKE predicate allows
the user search for records that match a pat
tern. For example, the query:

SELECT NAME, PHONE_NUMBER
FROM PHONE_BOOK
WHERE NAME LIKE "CH%"

will retrieve all NAMEs that start with the
string "CH" (e.g., CHARLES, CHRIS, and so
on). Nonstop SQL transforms the above query
into:

SELECT NAME, PHONE_NUMBER FROM
PHONE_BOOK

WHERE NAME LIKE "CH%"
AND NAME>= "CH"
AND NAME < "CI"

With this modification, Nonstop SQL can
take advantage of an index on NAME (if one
exists) and use values in the predicates:

NAME > = "CH" and NAME < "CI"

as the begin and end keys to the index. Thus,
only records that are alphabetically equal to
or after "CH" and before "CI" will be
retrieved.

Remove Sort Requests
A sort is logically required when a query
specifies that:

■ The result should be presented in a certain
order (using the ORDER BY clause).
• Duplicates should be removed (via the
DISTINCT key word).
■ The result should be grouped (via the
GROUP BY clause) on certain columns.

Because sorting is an expensive operation,
NonStop SQL tries to minimize the number of
sorts that must be performed for a query.

When a query contains both an ORDER BY
and a SELECT DISTINCT request, it might be
possible to use one sort to satisfy both
requests if the ORDER BY list is a subset of the
DISTINCT list. Consider the query:

SELECT DISTINCT ITEM_NAME,
RETAIL_PRICE,
RETAIL_pRICE * ITEM_ON_HAND

FROM INVENTORY
ORDER BY ITEM_NAME, 3

Assume that INVENTORY is an entry
sequenced table with no index. The query can
be evaluated with a single sort if the sorting
with the no duplicate option is on columns
ITEM_NAME, RETAIL_PRICE x
ITEM_ON_HAND, and RETAIL_PRICE.
The result will be presented as specified in
the SELECT list, but the sort column order
will be altered.

In Nonstop SQL, the formation of groups
requires that the grouping columns must be in
ascending or descending order. If they are not
already in one of those orders, they must be
sorted before the grouping operation can be
performed. If a query contains both an
ORDER BY and a GROUP BY request, a sort
due to the ORDER BY request may be elimi
nated if the ORDER BY list is a "prefix" of the
GROUP BY list. For example:

SELECT ITEM_NAME, RETAIL_PRICE,
COUNT(*)

FROM INVENTORY
GROUP BY ITEM_NAME, RETAIL_PRICE
ORDER BY ITEM_NAME

is equivalent to:

SELECT ITEM_NAME, RETAIL_PRICE,
COUNT (*) FROM INVENTORY

GROUP BY ITEM_NAME, RETAIL_PRICE

JULY 1988 TANDEM SYSTEMS REVIEW 23

24

If a query contains both a DISTINCT func
tion and a GROUP BY request, and if the
DISTINCT column is not already in the
GROUP BY list, the sort due to the DISTINCT
function can be avoided by adding the
DISTINCT column to the list of ordering
columns when performing the sort. This tech
nique works because the SQL executor can
detect a change in value in the DISTINCT
column if it is in sorted order. For example,
the query:

SELECT PRODUCER, COUNT (DISTINCT
CATEGORY)FROMINVENTORY

GROUP BY PRODUCER

asks for a list of producers and a count of the
different categories of items produced by the
producer. The sort due to the COUNT
DISTINCT request can be avoided if, in sorting
for the GROUP BY request, the sort columns
are PRODUCER and CATEGORY instead of
PRODUCER only. Consider this sorted list
(ITEM_NAME has been added for clarity
only):

PRODUCER

DELMONTE
DELMONTE
DELMONTE

CATEGORY

FRUIT
FRUIT
VEGETABLE

ITEM_NAME

PINEAPPLE
PEACH
BEANS

When performing the grouping on
PRODUCER, the SQL executor remembers
the last value for CATEGORY and increments
the count for CATEGORY only if the new value
for CATEGORY is different from the old one
(as in the third record).

Finally, Nonstop SQL also avoids unneces
sary sorts by removing the ORDER BY clauses
if no column is present in the SELECT list.
The ORDER BY clause is also removed if it is
in a subquery.

Determining Useful Indexes
In some queries, the most efficient access plan
can be determined without doing much com
putation. In others, an index that seems to
have no use may actually play an important
role in the query optimization. This section
presents examples of these two cases.

The Halloween Problem
Consider the following query:

UPDATE INVENTORY SET RETAIL_PRICE
RETAIL_PRICE * 1.1

WHERE RETAIL_PRICE > 20

The query requests that the price of all items
in the INVENTORY table be increased by 10%.
Assume there is a non-unique index on
RETAIL_PRICE and the index contains the
following records before the update:

RETAIL_PRICE

10
40

Suppose the index on RETAIL_PRICE is the
chosen access plan in a query requesting
records that satisfy the predicate:

RETAIL_PRICE > 20

The system finds the record with a retail
price of 40 and updates it to 44. When the
system looks for the next record that satisfies
the predicate, it finds the same record but with
a value of 44 for RETAIL_PRICE. This goes
on forever. This phenomenon is known as the
"Halloween Problem." 1

1This problem is supposed to have been discovered on Halloween; hence the
name.

TANDEM SYSTEMS REVIEW JULY 1988

Many database management systems avoid
the Halloween problem by ignoring the index
on the column being updated (RETAIL_PRICE
in the previous example) and choosing another
index as the access path. Often, this results in
an inefficient access plan. However, it is per
fectly correct to choose the index on
RETAIL_PRICE for the following query, even
though RETAIL_PRICE is being updated:

UPDATE INVENTORY SET RETAIL_PRICE
= 200

WHERE RETAIL_PRICE BETWEEN 300
AND400

If there is no other index for the INVEN
TORY table and the index on RETAIL_PRICE
is not going to be used, the whole table must
be read. If the table is large, using the index is
much more efficient.

Nonstop SQL will consider using the index
on a column being updated if either one of the
following conditions is satisfied:

■ Predicates have specified all key columns in
the index with the "equal" binary operator.
For example:

UPDATE INVENTORY
SET RETAIL_PRICE = RETAIL_PRICE * 1.1
WHERE RETAIL_PRICE = 20

• No column is referenced on the right-hand
side of the SET clause, and the index selectiv
ity of the index is less than 20%. For example:

UPDATE INVENTORY
SET RETAIL_PRICE = 20
WHERE RETAIL_PRICE > 80

The less-than-20% restriction for index
selectivity limits the number of records
updated more than once.

MIN and MAX Functions
The processing of the MIN or MAX function
usually requires reading the entire table. How
ever, if an index exists on the column that is an
argument of the MIN or MAX function, read
ing the first or the last record will yield the
MIN or MAX value. For example:

SELECT MIN(RETAIL_PRICE)
FROM INVENTORY

Assume that RETAIL_PRICE is the first key
field of an index. In this case, other indexes
need not be considered.

Deciding If SBB Should Be Used
One goal of the NonStop SQL optimizer is to
minimize the number of messages and the
amount of data transferred between the file
system and the disk process. Using sequential
block buffering (SBB) is one way to achieve
this goal. However, the optimizer does not
always choose to use it, since SBB involves a
certain amount of overhead. For instance, if
only one or two records must be retrieved
SBB will not be used. '

If SBB is to be used, Nonstop SQL must
decide the type of SBB (physical or virtual) to
use. Remember that in virtual SBB, the disk
process does projections and selections before
returning a virtual block to the file system.
Therefore, physical SBB is used when the disk
process can only do a minimal amount of fil
tering (selection and projection). For example,
the query:

SELECT*
FROM INVENTORY

asks for the whole INVENTORY table. Virtual
SBB would provide no savings in this case. In
general, NonStop SQL uses physical SBB if
both the following conditions are satisfied:

• More than two-thirds of a record must be
retrieved or examined. (The value two-thirds is
arbitrarily chosen.)
• Most records examined will satisfy all the
predicates. (The difference between the table
and index selectivities is very small.)

JULY 1988 TANDEM SYSTEMS REVIEW 25

26

Assume that the primary key of the INVEN
TORY table is the column PRODUCER. The
query:

SELECT*
FROM INVENTORY
WHERE PRODUCER < > "DEL_MONTE"

requests all columns. The index selectivity and
table selectivity are the same. Physical SBB
will be chosen to evaluate the query.

Physical SBB has one restriction. If the user
specifies FOR CURSOR STABILITY or FOR
REPEATABLE READ access in a query, physi
cal SBB cannot be used because the disk pro
cess does not support the notion of "block
level" locking. However, if the FOR BROWSE
access is specified or the user has indicated to
the SQL compiler that the table is to be locked
via the CONTROL TABLE TABLELOCK com
mand, Nonstop SQL does consider using
physical SBB.

Virtual SBB is used when the disk process
can perform substantial filtering. In general,
virtual SBB is used when one of the following
conditions is satisfied:

■ Less than two-thirds of a record must be
retrieved or examined.

■ Most records examined will not satisfy all
the predicates. (The difference between the
table and index selectivities is large.)

Consider the following query:

SELECT*
FROM INVENTORY
WHERE PRODUCER > "DEL.MONTE"

AND RETAIL_PRICE BETWEEN 1 AND 2

Again, the primary key of the INVENTORY
table is the column PRODUCER. Further
assume that the selectivity of the predicate:

PRODUCER >"DELMONTE"

is 800/o (0.8) and the selectivity of the other
predicate:

RETAIL_PRICE BETWEEN 1 AND 2

is 20% (0.2). The index selectivity is 0.8 and
the table selectivity is 0.16 (0.8 x 0.2). Vir
tual SBB is used even though all columns are
to be retrieved because only a small fraction
of the records examined will satisfy all the
predicates.

Cost Associated with an Access Plan
In determining the most efficient access plan,
the NonStop SQL optimizer assigns a numeric
cost to each index it considers. If the query
references multiple tables, the optimizer also
considers the different combinations in which
the tables can be joined. Each of these combi
nations is also assigned a numeric cost. In the
final phase of access-plan selection, the
optimizer chooses the plan with the minimum
numeric cost.

What Is Cost?
In Nonstop SQL, cost is an estimate of the
amount of time the system takes to complete
evaluation of a query. It is an estimate be
cause there are many variables that the opti
mizer is not aware of at compile time or that
Nonstop SQL cannot control. For example:
the type of CPU can change at run time, the
load of the system may not be accurate by the
time that the query is executed, or the elapse
time for the completion of a query varies
depending on the type of output device. For
all these reasons, cost in Nonstop SQL does
not carry a unit of time.

Though cost is an estimate and not an exact
measure, it is very useful for comparing the
relative efficiency of different access plans for
a given query. Because the cost measurement is
an estimator and cannot use exact units of
time, Nonstop SQL expresses cost in the
"equivalent" number of physical I/Os that
must be issued to complete the query.

TANDEM SYSTEMS REVIEW JULY 1988

Cost has many components, only one of
which is the number of physical I/Os. How
ever, to facilitate the computation of cost, all
other components of cost are expressed in
number of physical I/Os. For example,
assume it takes 2000 instructions to evaluate a
predicate in a 2-MIPS CPU. The time to evalu
ate the predicate is 1 msec. If a physical I/O
takes 30 msec, the cost to evaluate the predi
cate is equivalent to 1/30 physical 1/0.

In other database management systems
(DBMS), the cost formula is much more sim
ple. For example, the cost includes only the
physical I/O cost.

The Cost of Accessing a Single Table
In Nonstop SQL, the cost of using an index to
access a table in a query that references only
one table is:

Cost(index)
Cost(physical 1/0)

+ Cost(record overhead)
+ Cost(evaluating predicates)
+ Cost(transfer)
+ Cost(message)
+ Cost(sub-query)
+ Cost(sort)

The resolution of cost is one physical 1/0.
Therefore, if the cost of a component is less
than one physical 1/0, the cost for the compo
nent will be truncated to 0.

Physical 1/0 Cost. Cost(physica/ I/0) is the
estimated number of physical I/Os that must
be performed to retrieve all the records that
satisfy the predicates of the query. This
includes all physical I/Os to retrieve the
requested data. Consider the query:

SELECT ITEM_NUMBER, ITEM_NAME,
RETAIL_PRICE

FROM INVENTORY
WHERE RETAIL_PRICE > 100

Assume there is an index on RETAIL_PRICE
of the table INVENTORY. INVENTORY con
tains 10,000 records, and each record is
100 bytes. Assuming a page size of 4 Kbytes,
INVENTORY has approximately 250 pages.
ITEM_NUMBER is the primary-key column
and is 4 bytes, and RETAIL_PRICE is also
4 bytes. Therefore, the index record has a size
of 10 bytes (key tag + 4 + primary-key size),
and the index has about 25 blocks. Finally,
assume that 100 records, or 1 % of the records,
will satisfy the predicate.

If the query is to be evaluated using the
primary key, 250 pages must be read from
disk, and the Cost(physical 1/0) would be 250.
If the query is to be evaluated with the index,
102 pages must be read (two index pages +
one data page for each qualifying index
record), and the Cost(physical 1/0) would
be 102.

Record Overhead. Cost(record overhead) is
the CPU time, expressed in terms of physical
I/Os, associated with handling records. This
includes the cost of setting up various control
blocks and is dependent on the number of
records examined. In Nonstop SQL:

Cost(record overhead)
= overhead per record
x number of records to examine

For example, assume that a processor can
perform 2 million instructions per second and
its disks can perform 30 I/Os per second. If
2000 instructions are required before a record
can be examined, the overhead per record
would be approximately 0.03 1/0 (2000
instructions would take 1 ms, which is approx
imately the time to perform 0.03 physical
I/O). If 10,000 records must be examined,
Cost(record overhead) would be 300.

JULY 1988 TANDEM SYSTEMS REVIEW

28

Cost Per Predicate. Cost(evaluating predi
cates) is the average CPU time, expressed in
terms of physical I/Os, spent in evaluating
predicates. It is dependent on the number of
records examined and the number of predi
cates that cannot be used as begin and/ or end
keys. In Nonstop SQL:

Cost(evaluating predicates)
number of predicates that cannot be used
as a begin/ end key

x number of records to be examined
x overhead in evaluating one predicate

In Nonstop SQL, the same code performs
the predicate evaluation even if the disk pro
cess, file system, and the SQL executor evalu
ate the predicate. The "overhead in evaluating
one predicate" is a weighing factor computed
in a fashion similar to the "overhead per
record" in the previous section.

Message Cost. Cost(message) is the CPU time,
expressed in terms of physical I/Os, spent in
sending messages between the file system and
the disk process. This measurement is depen
dent on the type of SBB being used. (The sav
ings achieved by using SBB was discussed in
the preceding article, "Nonstop SQL Optimi
zer: Basic Concepts.") Nonstop SQL com
putes Cost(message) as:

Cost(message)
= cost per message
x number of messages

The cost per message is a weighing factor
computed in a fashion similar to overhead per
record in the "Record Overhead" section.

'/rans/er Cost. Cost(transfer) is the estimated
elapsed time, expressed in terms of physical
I/Os, for transferring data from the disk pro
cess (possibly remote) to the file system. In
general, transfer cost is negligible for local
transfers; it becomes substantial with remote
transfers. Cost(transfer) is computed as:

Cost(transfer)
= transfer rate
x amount of data to be transferred

For example, assume that 4000 bytes are to
be transferred from a remote node to the local
node, and that the two nodes are connected by
one 4-Kbit-per-second communication line.
Using the typical disk-transfer rate of 30 I/Os
per second, Cost(transfer) is 240.

Subquery Cost. Cost(subquery) is the esti
mated cost of executing a subquery and is
computed as Cost(index'), where index' is the
index chosen to execute the subquery. The
evaluation of subqueries will be discussed in
the section "Subquery Processing."

Sort Cost. Cost(sort) is the estimated cost of
sorting records in a particular order. (The sort
would be initiated by an ORDER BY,
DISTINCT, or GROUP BY request or by the use
of the sort-merge join.) Nonstop SQL sup
ports two types of sort: in-memory and exter
nal. An in-memory sort is very efficient for a
small number of records (less than 400).
Tandem FASTSORT is used when more than
400 records are to be sorted (Tsukerman,
1986). Again, Cost(sort) is the estimated time
to sort the specified records expressed in terms
of equivalent physical I/Os.

The Effects of Indexes and Predicates
on Costs
Because the complete record is not stored in
an index, the cost of using an index is different
from the cost of scanning the table. Predicates
also play an important role in determining the
cost associated with an index because some
predicates can be used as a begin key or end
key for one index but not for other indexes.
This section describes the cost formulae when
different indexes and predicates are available.
NonStop SQL considers six different situations
when computing the cost of using an index.

TANDEM SYSTEMS REVIEW JULY 1988

Case I. The primary key file is available, and
predicates of the form "column = value"
specify all the key columns.

For example, assume the columns
LAST _NAME and FIRST _NAME are the
primary key columns of a local table
PHONE_BOOK and the following query is
specified:

SELECT LAST _NAME, FIRST _NAME,
LOCATION

FROM PHONE_BOOK
WHERE LAST _NAME, FIRST _NAME =

"DAVIS", "JOHN"

Because all key values have been specified
and the primary key is unique, a simple key
position and read will produce the desired
result. If the root of the file is assumed to be
in cache continuously, the following is true:

Cost(physical 1/0) = index levels - 1

Cost(index) equals Cost(physical 1/0)
because all other costs are much smaller than
1 and will be truncated to O.

Case 2. An index is available, and predicates
of the form "column = value" specify all the
key columns.

For example, assume the column
PHONE_NUMBER is the key column of a
unique index on PHONE_BOOK and the fol
lowing query is specified:

SELECT LAST_NAME, FIRST_NAME,
LOCATION

FROM PHONE_BOOK
WHERE PHONE_NUMBER = "725-6000"

Because all key values have been specified,
a simple keyed read on the index followed by a
keyed read on the base table will produce the
desired result. Again, assuming that the root
blocks of the files are always in cache:

Cost(physical 1/0)
= index levels of index - 1
+ index levels of primary file - 1

Again, Cost(index) equals Cost(physical
1/0) because all other costs are much smaller
than 1 and would be truncated to O.

Case 3. The primary key file is available; the
predicates of the form "column = value" has
not specified all the key columns.

Since only some of the key columns have
been specified by predicates, possibly more
than one record will satisfy the search condi
tions. First, the index selectivity is computed,
and if no key value can be used as a position
ing key, the whole index must be read. If some
predicates can be used as positioning keys, the
index selectivity is computed as the composite
selectivity of these predicates. Once the index
selectivity has been determined, the number of
blocks that must be read can be computed and
Cost(physical 1/0) is:

index selectivity
= number of non-empty blocks in the
x primary key file

The number of records that must be
examined is:

index selectivity
x number of records in the primary key file

Since more than one record may be exam
ined, Cost(record overhead) might be signifi
cant and is computed as:

Cost(record overhead)
= number of records examined
x overhead per record

For example, assume that LAST _NAME,
FIRST _NAME are the primary key columns of
a local table, PHONE_BOOK. Consider the
following query:

SELECT LAST _NAME, PHONE_NUMBER
FROM PHONE_BOOK
WHERE LAST_NAME > "DAVIS"

JULY 1988 TANDEM SYSTEMS REVIEW 29

30

Since the prefix (LAST _NAME) of the
primary key is specified in a predicate, the
predicate can be used as a positioning key.
However, not all the key columns
(LAST _NAME, FIRST _NAME) have been
specified. In this example, the predicate
selectivity of:

LAST_NAME > "DAVIS"

is also the index selectivity. Further assume the
following:

Predicate selectivity = 10%
Number of non-empty pages in index = 100
Number of records in the index = 10,000
Overhead per record = 0.025 1/0

Therefore, Cost(physical 1/0) is 10 (0.1 x
100). The number of records that must be
examined is 1000 (0.1 x 10,000) and
Cost(record overhead) is 25 (0.025 x 1000).
The other components of the cost are negligi
ble in the example and are truncated to 0.
Cost(index) is 35. In this example, the cost of
the plan is dominated not by 1/0 but by the
per-record cost.

Case 4. An index is available, and the predi
cates of the form "column = value" have not
specified all the key columns.

This case is similar to the previous one,
except that a physical I/O is incurred for each
qualifying record in the index. For example,
assume that PHONE_NUMBER is the key
column for the index and the following query
is specified:

SELECT LAST _NAME, LOCATION,
PHONE_NUMBER

FROM PHONE_BOOK
WHERE PHONE_NUMBER > "725-6000"

Using the same assumptions as in the pre
vious case, the cost of reading the index,
Cost(physical 1/0), is 10 (0.1 x 100). The
number of index records that satisfies the
predicate is 1000 (10,000 x 0.1). For each of
these records, another read must be made to
the table to obtain other requested data (e.g.,
LOCATION). If the table is much larger than
1000 blocks, each of these reads to the table
will result in a physical 1/0. Therefore:

Cost(table physical 1/0) ~ 1010
Cost(record overhead) ~ 25 (0.025 x 1000)

The other costs are insignificant compared
to the ones just computed. Cost(index) is
approximately 1035.

Case 5. An index is available, the predicates
of the form "column = value" have specified
all the key columns, and all the requested
columns can be found in the index.

This case has the same cost formula as
Case 1 because all the requested columns can
be found in the index.

Case 6. An index is available, the predicates of
the form "column = value" have not speci
fied all the key columns, and all the requested
columns can be found in the index.

TANDEM SYSTEMS REVIEW JULY 1988

Because all the requested columns can be
found in the index, the index behaves as if it
.vere the primary key file in the cost computa
:ions (no extra read is required on the base
table for each qualifying index record). Thus,
the cost computation is identical to Case 3.
For example, assume that PHONE_NUMBER
is the key column of the index and
LAST _NAME, FIRST _NAME are the primary
key columns of the table PHONE_BOOK. The
following query can be satisfied by the index
alone:

SELECT LAST _NAME, FIRST _NAME,
PHONE_NUMBER

FROM PHONE_BOOK
WHERE PHONE_NUMBER > "725-6000"

Choosing among Access Plans That Have
the Same Cost
Because the estimated cost associated with an
access plan is only approximate, the costs
associated with several access paths may be
very close to one another. Nonstop SQL cur
rently defines costs as "very close" if they are
within 100/o of one another. When this occurs,
Nonstop SQL uses the following heuristics,
listed in order of preference, in selecting
between two access paths with very close
costs:

■ A local index (as opposed to a remote
index).

■ An index in which predicates of the form
"column = value" have specified all the key
columns.
■ An index with a lower selectivity.
■ An index with a lower estimated cost.

The object of the heuristics is to choose a
local index that has the least number of quali
fying records that must be examined.

Determining Join Order
Selecting an access plan for queries involving
a join of two or more tables is an extension of
the process of selecting access plans for single
table queries. In addition to determining the
cost for accessing a table before the join, the
optimizer evaluates the different ways to join
the tables.

Nonstop SQL supports two methods of join
evaluation. Therefore, the number of combi
nations of joining two tables with no alternate
index is four. With three tables, this number
increases to 12. In general, the number of dif
ferent ways to join tables increases exponen
tially as the number of tables increases. To
reduce the number of possibilities the optimi
zer has to examine, certain heuristics are used.

When two tables Tl and T2 are joined, a
composite table (Tl join T2} is formed. This
notation will be used in the discussion of
joins. When considering the different ways of
joining tables, Nonstop SQL considers only
two-way joins that involve either two tables or
one table and a composite table. This reduces
the number of combinations that must be
examined and also simplifies evaluation. For
example, if tables Tl, T2, T3, and T4 are to be
joined, the following combination will not be
considered:

((Tl join T2} join (T3 join T4})

However, the following combination will be
considered:

(((Tl join T2} join T3) join T4)

For each two-way join, two join methods
are considered: nested join and merge join. If
their joining columns do not have the same
order, the optimizer considers sorting either or
both the outer and inner table before perform
ing the merge join.

JULY 1988 TANDEM SYSTEMS REVIEW 31

32

The number of join combinations is further
reduced by considering only combinations in
which a join predicate relating the inner table
and the outer composite table exists. This
means that, given a composite table C, a join
of C with a table A will be considered if either:

• There is a join predicate relating A with the
tables in C but not with any table not in C.

• There is no other table to join with C that
would satisfy the previous condition.

For example, consider the following query:

SELECT EMP _NAME, DEPT _NAME,
SALARY, JOB_ TITLE

FROM EMPLOYEE, DEPT, JOB
WHERE JOB_TITLE = "MANAGER"

AND DEPT.DEPT_NUM
= EMPLOYEE.DEPT __NUM

AND JOB.JOB_TYPE
= EMPLOYEE.JOB_TYPE

The EMPLOYEE table contains the columns
EMP _NAME, DEPT _NUM, JOB_TYPE, and
SALARY. The DEPT table contains the
columns DEPT _NUM, DEPT _NAME, and
LOCATION. The JOB table contains the
columns JOB_TYPE and JOB_TITLE. The
following join combinations will not be
considered:

((DEPT join JOB) join EMPLOYEE)

or

((JOB join DEPT) join EMPLOYEE)

The number of combinations is also
reduced by discarding more expensive combi
nations that give the same ordering of the
resultant records. For example, assume the
EMPLOYEE table has EMP _NAME as the pri
mary key and DEPT _NUM as the key column
of an index. The query:

SELECT EMP _NAME, DEPT _NAME,
SALARY

FROM EMPLOYEE, DEPT
WHERE EMPLOYEE.DEPT _NUM

= DEPT.DEPT __NUM

asks for employee and department informa
tion. The information is retrieved by joining
the EMPLOYEE and DEPT tables. There are
several ways to join the tables:

Choice A: (EMPLOYEE with primary key
file join DEPT)

Choice B: (EMPLOYEE with index join
DEPT)

Choice C: (DEPT join EMPLOYEE with
primary key file)

Choice D: (DEPT join EMPLOYEE with
index)

Depending on the access plan used for the
outer table, the order in which the records are
presented is different. For example, the
records will be presented in EMP _NAME order
for choice A and DEPT order for choices B, C,
and D. If another table, JOB, is to be joined,
Nonstop SQL will only consider joining JOB
with the composite from choice A or the com
posite from the least expensive of choices B, C,
and D. This reduces the number of combina
tions to be joined with JOB from four to two.
In general, Nonstop SQL will discard all but
the least expensive of the combinations for a
given order.

Join Cost. In estimating the cost of perform
ing a join, Nonstop SQL computes the cost of
accessing each of the tables involved in the
join. The cost of accessing each table is com
puted in the same way as in single-table
queries, except that predicates must be identi
fied as associated with a particular table. This
is necessary because some join predicates can
not be evaluated until a qualifying record for

TANDEM SYSTEMS REVIEW JULY 1988

an outer table has been retrieved. Consider the
query:

SELECT EMP _NAME, DEPT _NAME,
SALARY

FROM EMPLOYEE, DEPT
WHERE EMPLOYEE.DEPT _NUM =

DEPT.DEPT _NUM
AND DEPT _NUM < 100

If the D~PT table is the outer table of the join,
the predicate:

DEPT _NUM < 100

can be used to scan DEPT. Thus, it is involved
in the computation of the cost of accessing
DEPT. However, the predicate:

EMPLOYEE.DEPT _NUM =
DEPT.DEPT _NUM

cannot be used in the cost computation for
DEPT because no record has been retrieved for
EMPLOYEE yet. However, it could be used in
the computation of the cost of accessing
EMPLOYEE.

Once the cost of accessing each table in the
join has been determined, the cost of the join
can be determined. For a nested join of two
tables, the cost is:

Cost(A join B)
= cost(A) + n
x cost(B)

where n is the number of records that satisfy
the non-join predicates on table A (i.e., n is
the number of times the inner loop must be
performed). For example, assume that DEPT is
the outer table of the join, EMPLOYEE is the
inner table of the join, and 1000 employees are
in departments with department number less
than 100. If the cost of accessing DEPT is 10
and the cost of accessing EMPLOYEE is 20,
Cost(DEPT join EMPLOYEE) is 10 + 1000 x
20, or 20,010.

For a merge join, the cost is:

Cost(A join B)
= Cost(sortA if needed)
+ Cost(sortB if needed)
+ Cost(accessing A or sorted A)
+ Cost(accessing B or sorted B)

Subquery Processing
Nonstop SQL supports the construct of nested
queries or subqueries. A subquery is a query
that appears in a predicate. For example, the
query:

SELECT ITEM_NAME, RETAIL_PRICE
FROM INVENTORY
WHERE RETAIL_PRICE > SELECT

RETAIL_PRICE FROM INVENTORY
WHERE ITEM_NAME = "PINEAPPLE"

asks for information on items that cost more
than pineapples. The SELECT that appears on
the right-hand side of the predicate is a sub
query. The other SELECT is sometimes called
the outer SELECT. In the previous example,
the subquery will be evaluated to determine
the price of pineapples. This price is then sub
stituted in the predicate. For example, if the
price of pineapples is 20, the query will be
evaluated as if:

SELECT ITEM_NAME, RETAIL_PRICE
FROM INVENTORY
WHERE RETAIL_PRICE > 20

has been specified. Since the sub query is only
evaluated once, the cost of evaluating the orig
inal query is the sum of the cost of evaluating
the individual SELECTS. Theoretically, there is
no limit to the depth of nestings. The practical
limit is the amount of compile-time and run
time resources (e.g., stack space and extended
segment space).

In the previous example, the subquery is
independent of the outer SELECT because it
can be evaluated without any knowledge of
the result of the outer SELECT. This indepen
dence allows the subquery to be evaluated only
once.

JULY 1988 TANDEM SYSTEMS REVIEW 33

34

A subquery is dependent on the outer query
if the subquery references values from the
outer query. For example:

SELECT ITEM_NAME, RETAIL_PRICE
FROM INVENTORY OUTER
WHERE RETAIL_PRICE > SELECT

AVG(RETAIL_PRICE) FROM INVENTORY
WHERE PRODUCER = OUTER.PRODUCER

selects information on items that cost more
than the average price of the items produced
by the same producer. The subquery in this
example is dependent on the outer SELECT
because it references the PRODUCER column
of a record retrieved for the outer SELECT.
This correlation forces the evaluation of the
subquery for every record retrieved from the
outer SELECT. The overall query is more
expensive to evaluate because of the repeated
evaluation of the subquery. If the INVENTORY
table contains 100 records, the cost of evaluat
ing the query will be:

Cost(outer SELECT)
+ 100
x Cost(inner SELECT)

Choosing an Access Plan When
Some Indexes Are Not Available
In a distributed system where some or all
information is replicated (e.g., an index is a
special case of replication), it is useful to be
able to get to the required data if some system
resource (e.g., an index) is not available. For
example, assume the table PHONE_BOOK is in
the volume $PHONE, and it has an index on
PHONE_NUMBER that is stored in the volume
$NUMBER. Consider the following query:

SELECT LAST _NAME, FIRST _NAME,
PHONE_NUMBER FROM PHONE_BOOK

WHERE PHONE_NUMBER = "725-6000"

Suppose further that Nonstop SQL has
chosen to use the index on $NUMBER to
retrieve the requested data. If the volume
$NUMBER is not available at run time, many
DBMS would return an error to the applica
tion. Nonstop SQL will try to find an
alternate path to the data.

At static compile time, the SQL compiler
requires that all information on the table be
available so that the most efficient access plan
can be selected. This is a reasonable require
ment since statically compiled SQL objects
will be executed repeatedly. If any information
is not available at static compile time, the
compiler sets a flag indicating that the query
must be recompiled at run time. A valid SQL
object is still produced because all informa
tion may be available for other queries in the
same program.

At run time, the SQL executor recompiles
the query when it encounters the flag indicat
ing that such a recompile is necessary. The
SQL executor instructs the SQL compiler to
ignore unavailable information during this
compile. If all information is now available,
the most efficient access plan can be selected.
If some information is still not available, the
SQL compiler tries to select the most efficient
access plan based on the information that is
available.

If, after this recompilation, the chosen
index is still not available (e.g., the communi
cation line to a node is down, or the volume
containing the chosen index is down after the
recompile), the SQL executor tries once more.
This time it instructs the SQL compiler to
choose the primary key file of the table as the
access path. This allows the application to
access the data even when a system resource is
unavailable.

TANDEM SYSTEMS REVIEW JULY 1988

User Influence on Access-Plan
Selection
NonStop SQL automatically selects an effi
cient access plan. However, Nonstop SQL can
achieve even greater efficiency if the user pro
vides more information about the table being
queried or offers a greater choice of access
plans. For example, the database administra
tor can create indexes on fields that are fre
quently mentioned in queries. This section
describes operations a user can perform to
influence the choice of access plans by
NonStop SQL.

Creating Additional Indexes
If an application contains many queries that
reference a column in a table, an index on the
field would improve the performance of some
of the queries. For example, consider the
query:

SELECT ITEM_NAME, RETAIL_PRICE
FROM INVENTORY
WHERE RETAIL_PRICE = 100

If there is no index on RETAIL_PRICE,
Nonstop SQL has to scan the table and evalu
ate the predicate:

RETAIL_PRICE = 100

against each of the records in the table. An
index on RETAIL_PRICE would improve the
performance of the query dramatically. On the
other hand, the same index might not help the
following query:

SELECT ITEM_NAME, RETAIL_PRICE
FROM INVENTORY
WHERE RETAIL_PRICE > 100

The reason is that ITEM_NAME is not part
of the index. Thus, for every index record that
satisfies the predicate, a physical 1/0 must be
incurred before the column ITEM_NAME can
be retrieved from the table. However, if the
query only selects columns that are included in
the index, the index on RETAIL_PRICE will
help. For example, if ITEM_NO is the primary
key column:

SELECT ITEM_NO, RETAIL_PRICE
FROM INVENTORY
WHERE RETAIL_PRICE > 100

Index will also help the performance of a
query that requires the result to be presented
in a certain order or grouped according to
certain columns.

Thus, additional indexes will help the per
formance of some but not all queries. Users
should use the EXPLAIN facility to determine
if the extra index will be used by Nonstop
SQL. (See the Nonstop SQL Programming
Reference Manual for further details on this
facility.) Furthermore, while adding indexes
may help the performance of some select que
ries, queries that update the index columns
will incur the overhead of having one more
index to update.

Update Statistics
NonStop SQL provides an UPDATE STA
TISTICS utility to collect and save statistics on
columns and tables. The SQL compiler uses
these statistics to determine the selectivities of
predicates, indexes, and tables. Since selectivi
ties directly influence the cost of access plans,
it is important that statistics on a table are
close to the real values; this increases the like
lihood that Nonstop SQL will choose an effi
cient access plan.

JULY 1988 TANDEM SYSTEMS REVIEW 35

36

A NonStop SQL installation should follow
several simple rules in using the UPDATE
STATISTICS facility:

• Do not run UPDATE STATISTICS when a
table is empty. Run UPDATE STATISTICS only
after a table has been loaded with data.

• If the performance of many queries deterio
rates, do not run UPDATE STATISTICS before
consulting EXPLAIN. If the performance deg
radation is due to the fragmentation of blocks
in a table, running UPDATE STATISTICS and
recompiling the queries might not help. It
might be better to first reorganize (reload) the
table.

• It is usually a good idea to determine the
effect of UPDATE STATISTICS on production
queries. This can be accomplished by bracket
ing UPDATE STATISTICS and EXPLAIN on
the queries in a transaction.

Specifying Table Lock with the
Control Table Directive
Nonstop SQL may choose a different access
path if it knows that a table lock could be
used. In NonStop SQL, a user can specify the
use of table locks with either of two
commands:

• LOCK TABLE name.
■ CONTROL TABLE name TABLELOCK ON.

LOCK TABLE is an SQL statement.
CONTROL TABLE is an SQL compile-time
directive. Currently, each SQL statement is
compiled independently. Therefore, the SQL
compiler has no idea that a LOCK TABLE
statement has been encountered prior to the
current statement; it might even be in another
COBOL program. Because the CONTROL
TABLE command is a compile-time directive,
the SQL compiler is aware that the user wants
to use a table lock on queries that reference the
specified table.

Because it eliminates the overhead of lock
maintenance, requesting a table lock on a
table improves the performance of queries that
touch many records, and it is more likely that
real SBB will be selected. However, concur
rency will be reduced. Thus, an application
might want to request table locks with the
CONTROL TABLE directive for batch-type
queries.

Using Joins Instead of Subqueries
In SQL, certain queries can be formulated in
different ways and yet result in the same set of
records. For example, if DEPT_NO is unique,
the query to retrieve the names of employees in
DEVELOPMENT can be expressed as either:

SELECT EMPLOYEE.NAME
FROM EMPLOYEE
WHERE EMPLOYEE.DEPT IN

(SELECT DEPT.DEPT _NO FROM DEPT
WHERE DEPT.NAME =
"DEVELOPMENT")

ORDER BY EMPLOYEE.NAME

or:

SELECT EMPLOYEE.NAME
FROM EMPLOYEE, DEPT
WHERE EMPLOYEE.DEPT _NO

= DEPT.DEPT _NO
AND DEPT.NAME = "DEVELOPMENT"

ORDER BY EMPLOYEE.NAME

TANDEM SYSTEMS REVIEW JULY 1988

The first formulation of the query uses a
subquery; the second uses a join. Although
both formulations produce the same result,
their performances are likely to be very differ
ent. The second formulation will always match
or outperform the first one because, in the
first formulation, the user has dictated how
the query is to be performed (i.e., perform the
subquery first and then perform the main
query). In the second formulation, NonStop
SQL has the flexibility to determine the order
of the join and is therefore able to choose the
most efficient way to execute the query.

Using Multivalue Predicates
The current ANSI SQL language does not
allow a user to specify a concatenation of
columns in the specification of a predicate
(ANSI, 1986). To solve the problems arising
from this limitation, NonStop SQL provides a
multivalue predicate construct. The examples
in this section illustrate these problems and
show how NonStop SQL addresses them.

Assume that the table EMPLOYEE has an
index that consists of the columns
LAST _NAME, FIRST _NAME. The problem is
to list all employee records with names that
come after "DAVIS JOHN." A common but
incorrect formulation of the query is:

SELECT*
FROM EMPLOYEE
WHERE LAST _NAME > "DAVIS"

AND FIRST _NAME > "JOHN"

The problem with this query is that employ
ees such as "DAVIS STEVEN" will not be
listed, since LAST_NAME must be after
"DAVIS." The correct formulation using SQL
syntax is:

SELECT*
FROM EMPLOYEE
WHERE (LAST_NAME = "DAVIS" AND

FIRST _NAME > "JOHN")
OR LAST_NAME > "DAVIS"

However, such a formulation would cause
Nonstop SQL to read the entire table instead
of using the index on LAST _NAME to evalu
ate the query. One way to increase the chance
that the SQ L optimizer will use the index is to
formulate the query as follows:

SELECT*
FROM EMPLOYEE
WHERE LAST_NAME > = "DAVIS"

AND ((LAST_NAME = "DAVIS"
AND FIRST _NAME > "JOHN"}
OR LAST_NAME > "DAVIS")

This looks more and more like telling
Nonstop SQL how to evaluate the query
instead of describing the problem. This is, of
course, contrary to the spirit of relational
DBMS. Furthermore, if the index contains
more than two key columns, the formulation
becomes more complex.

JULY 1988 TANDEM SYSTEMS REVIEW 37

38

Using context-free servers is another com
mon application in which this problem
appears. For example, suppose a server pro
cesses only a batch of employees per request
from the requester. The server would like to
position to a record following one that has a
key value supplied by the requester. If the keys
supplied are the prefix of a multikey index, the
previously described problem will appear.
Also, unnecessary records are scanned many
times. For example:

SELECT*
FROM EMPLOYEE
WHERE LAST_NAME > = :/ast_name

AND ((LAST_NAME = :/ast_name
AND FIRST _NAME > :first_name)
OR LAST _NAME > :/ast_name)

would rescan all employees with
FIRST _NAME before :firstJZame.

NonStop SQL solves this problem with the
multivalue predicate construct. This feature
allows the user to specify composite keys as a
group. For example, it is easier and more logi
cal to write the previous query as:

SELECT*
FROM EMPLOYEE
WHERE LAST _NAME, FIRST _NAME

>"DAVIS", "JOHN"

The Nonstop SQL optimizer treats this
multivalue predicate like any other predicate.
The columns in the multivalue predicate are
used as keys if a multicolumn index exists on
say, LAST _NAME, FIRST _NAME. '

Conclusion
The NonStop SQL optimizer selects the most
efficient access plan for a given query by
examining the different ways to access tables.
The access plan consists of the index to be
used, the type of SBB to be used, the order in
which tables are to be accessed (in a query that
references multiple tables), when a subquery
should be evaluated, and what to do when an
index is not available.

The user can improve the performance of
evaluating a query by providing the optimizer
with additional information prior to SQL com
pile time. By creating additional indexes on
frequently used fields, keeping up-to-date
statistics on columns and tables, specifying
table locks, using joins instead of subqueries,
and using multivalue predicates, the user can
help the optimizer select the best methods to
access a given body of data, and thus maxi
mize the high performance of Nonstop SQL.

References
ANSI. 1986. Database Language SQL. American National
Standards X3.135-1986.

NonStop SQL Programming Reference Manual. Part no. 82318.
Tandem Computers Incorporated.

Tsukerman, A., et al. 1986. FASTSORT: An External Sort
Using Parallel Processing. Tandem Technical Report 86.3.
Tandem Computers Incorporated. Reprinted in the Tandem
Systems Review. Vol. 2, No. 3. Tundem Computers
Incorporated. Part no. 83938.

Acknowledgments
I would like to thank the members of the Tandem Database
Group for contributing ideas on optimization and reviewing this
paper.

Mike Pong wrote this article, as well as the preceding article,
"Nonstop SOL Optimizer: Basic Concepts."

TANDEM SYSTEMS REVIEW JULY 1988

andem's Nonstop SQL is the
----- database management system
-- (DBMS) foundation for
___ Tandem customers' on-line
--- transaction processing
_____ (OLTP) applications.

------ Nonstop SQL is also a com
plex software subsystem that achieves high
performance and user productivity by pushing
complicated decision making about optimal
data access into the SQL system, away from
user concern. While the payoff is great, this
level of sophistication raises important
reliability issues.

This article describes the methods Tandem
is using to ensure that Nonstop SQL is reliable
and remains so throughout its life. These
methods have been very effective in identifying
and correcting defects long before product
release. The result is an SQL system that has
been well received by Tandem customers and is
recognized in the industry as the first rela
tional DBMS to meet OLTP demands for per
formance and reliability.

Overall Approach
Tandem's Nonstop SQL Quality Assurance
(QA) team, within the Database Software
Development Group, performed the work
described in this article. The QA team
achieves its objectives by participating in all
phases of the software life cycle, beginning
with product requirements and continuing

Nonstop SQL Reliability

after product release. Ultimately, however, a
product must prove its acceptability by suc
cessfully running through a series of stringent
tests that demonstrate that the functional,
performance, and reliability goals of the
product have been achieved.

User Expectations for Reliability
Users expect Tandem to deliver reliable soft
ware, though most users do not commit
critical applications to new software until they
gain experience and become comfortable with
it. As the product becomes integrated into
their production environment, most users
expect the software's reliability to improve
over time. In fact, they gradually come to
trust features that have worked steadily and
tend to assume that once a function has
become stable, it will remain so forever.

Unfortunately, it is a property of the soft
ware development process that modifications
in one part of the system may lead to unex
pected side effects in some other, seemingly
unrelated, part. Subtle interactions of new
code with existing stable code can sometimes
destabilize trusted features. To ensure that a
user's expectations for reliability are not
betrayed, Tandem develops and maintains
extensive regression test libraries.

JULY 1988 TANDEM SYSTEMS REVIEW 39

Figure 1

Figure 1.

Layering of test units.
Core tests (e.g., table
creation, database popu
lation, rudimentary data
retrieval, and basic
embedded SQL process
ing) demonstrate correct

40

functioning of the simple
DDL and DML state
ments needed to create
an environment for the
SQL engine tests. SQL
engine tests focus on
SQL as a language,

independent of the
Tandem operating envi
ronment. The outermost
layer ties the SQL
language to the full
Tandem NonStop SQL
environment.

A regression test library is a systematically
developed collection of permanent tests and
tools designed to assess the quality of a spe
cific product. It is run with every release of
the software and is, therefore, a very powerful
tool for locating parts of the system in which
reliability has regressed.

Determining Functional Reliability
Determining whether or not Nonstop SQL
behaves according to its documented seman
tics is the first step toward ensuring its overall
reliability.

Layering of the Test Units
The NonStop SQL regression test library is a
collection of test-unit modules arranged in a
hierarchical manner. The layering follows a
natural ordering in which the functionality
tested by one layer solidifies the foundation
for the tests above it. QA considers the layer
ing approach to be superior to separating all
functions into independent, specialized test
units that focus solely on a single function.
Layering permits a gradual movement toward
more sophisticated combinations of features,
and it also maintains good fault-isolation
characteristics.

Figure 1 illustrates the layering of the test
units. QA applies tests from the core outward
to find fundamental problems quickly and get
them repaired before moving on to more
complex processing in outer layers.

Special-Purpose Databases
One of the challenges for the QA developers
was to construct a set of databases capable of
providing the full spectrum of attributes
present in real customer databases, while being
storage-efficient and transportable, and
having properties that could be understood
easily by QA and product development teams.
The simplistic solution of copying an existing
customer database was ruled out early in the
project. Previous experience with real cus
tomer databases and their applications has
shown that for testing and analysis purposes,
they tend to be bulky and lopsided. They
invariably exercise certain limited paths in the
product over and over again, leaving other
parts entirely untested.

TANDEM SYSTEMS REVIEW JULY 1988

It also became clear early in the project that
building one general-purpose database, which
would satisfy all the testing requirements,
would not be feasible. Therefore, five special
purpose databases were developed, each
designed to meet the needs of one area of
testing.

The order-entry database is used primarily
by the core test units and the SQL engine test
units. The tables represent customers, employ
ees, inventory, orders, and other data items
typically used in a company. It is easy to
understand the meaning of the tables and their
relationships by reading the databases or the
test queries. This database is ideal for the
initial shakedown of the product, since defects
produce results that are easily understood and
indisputable. The other databases tend to be
more esoteric and non-intuitive, requiring
greater time and effort to analyze problems.

The select database is structurally more
complex than the order-entry database; all
data types are represented, indexes are vari
ously ascending, descending, contiguous, non
contiguous, and so on. This database was
designed primarily with the semantics of the
SQL SELECT statement in mind, though it is
used for the other Data Manipulation
Language (DML) statements as well.

With the SELECT statement, a user can
express very complex retrieval requests involv
ing many tables, perhaps using nested
subqueries, and specifying operations such as
grouping, ordering, and aggregation. The
select database contains very carefully con
trived row values so that complicated SELECT
statements can be written that will demon
strate correctness by successfully retrieving
data. While the select database is very small
compared to a customer database, the relation
ships among the tables and their data are more
complex than those in a typical application
database. The result is that QA has tested
SELECT statements whose complexity ranges
from trivial to much more complex than most
users will probably need to write.

The optimizer database departs signifi
cantly in structure and philosophy from the
order entry and select databases. Occupying
disk space approaching 80 Mbytes and con
taining tables made up of 10 to 100 columns,
it dwarfs the other databases. The data in
these tables is not intended to be understood
on a row-by-row basis like the others, and is in
fact mechanically generated. Instead, it is the
gross properties of the optimizer database that
make it useful. Typical properties considered
in its design are ranges and distributions of
data values, column selectivities, uniqueness,
and block sizes. These properties are exploited
by carefully written tests that elicit certain
behavior on the part of the optimizer. The
optimizer database also supports UPDATE
STATISTICS, EXPLAIN, and normalizer
testing.

The report writer database is designed for
the SQL report writer. It contains text and
numeric data values in tables big enough to
generate reports typical of real applications.
Row and column sizes, data values, and
column data types were chosen to demonstrate
report writer functions, including totaling,
titles, breaks, and folding. Because the tables
in this database have no relationship to each
other, operations such as joins are not
expected, and there are no indexes or parti
tions; this database is only suited for report
writer testing.

JULY 1988 TANDEM SYSTEMS REVIEW 41

Figure 2.

Hierarchy of SQL engine
tests. SQL engine tests
include DDL and DML
tests. DDL tests create
and alter a wide range of
objects, from system
catalogs to objects with
complex view/index/
partition dependencies.
DML tests are divided
into data retrieval (read
ing), data manipulation
(writing), and embedded
SQL processing for all
host languages.

42

Figure2

~
···~ .. Single table

Joins

Subqueries

The convert database contains both
ENSCRIBE files and SQL tables. Its purpose is
to facilitate the conversion from ENSCRIBE
objects, described using ENSCRIBE Data
Definition Language (DDL), to equivalent
objects defined using NonStop SQL DDL,
and vice versa. Since not all elements of
ENSCRIBE DDL have equivalent representa
tions in NonStop SQL DDL (i.e., occurs, sub
fields), one of the key goals was to design a
database that could expose cases where conver
sion algorithms produced either intuitively
bad conversions or possibly even mangled
SQL tables. Because one-to-one conversion is
often impossible, particular care was taken to
make sure the convert database provided
well-balanced support for error-handling tests
as well as positive-function tests.

Tables

Views

flilbeddecl.SQI.;

COBOL

C

Pascal

Validating the SQL Engine (DML/DDL)
The first hurdle Nonstop SQL faces in testing
is the validation of the Nonstop SQL engine
the nucleus of the product that implements
NonStop SQL DML and DDL statements.
These test units view SQL in its purest form,
as a language independent of a particular sys
tem and operating environment. They are
arranged in a hierarchy (Figure 2) beginning
with the creation of the simplest, most funda
mental objects in an SQL system using DDL
and extending through complex manipulation
of SQL objects using DML statements. These
tests make extensive use of the order-entry and
select databases.

Distributed Testing
Distributed testing extends the SQL engine
software test units into the Tandem network
environment. All DDL and DML functions
that work in a single system must be demon
strated to be logically equivalent with objects
on remote systems. These SQL tests access and
manipulate combinations of remote catalogs,
network-partitioned and indexed tables, and
network views.

Negative testing is especially important for
distributed SQL applications because network
line failures may prevent access to a portion
of the database. The distributed tests carefully
set up scenarios that cause network-failure
events and then analyze error handling and
fault recovery.

TANDEM SYSTEMS REVIEW JULY 1988

One particularly interesting type of fault
recovery is known as "local autonomy." Some
network and disk failures may disconnect part
of the database but leave access to enough of it
to allow DML operations to continue. In fact,
when a strategy defined in an already com
piled query specifies a part of the database
removed by a disruption, NonStop SQL may
be able to use alternative access strategies to
perform the query.

Local-autonomy test units construct
scenarios in which partitions or indexes are
made unavailable; this is done by disabling
volumes or network lines or by removing file
labels while leaving catalog entries for the
index or partition intact. Run-time error
recovery is significant, since it involves one or
possibly two auto-recompilations. The tests
verify that the result is a transparent recovery
that returns the desired data despite the
disruption.

Levels of Integrity and Concurrency
Nonstop SQL provides levels of integrity to
ensure database consistency with concurrent
processing. Progressively higher levels of
integrity provide higher degrees of isolation
from other users but also reduce concurrency
by locking larger ranges of data.

When a user requests a certain level of
integrity, Nonstop SQL must lock, at a mini
mum, the specific set of rows in the database
that satisfies the request. Under certain
conditions, NonStop SQL may actually lock
more than the minimum required set, usually
for esoteric implementation reasons or because
a larger range may be judged to be more
efficient to process. The price, of course, is
potentially reduced concurrency because other
users have to wait on superfluous locks.

Naturally, improving locking schemes is an
ongoing design objective for NonStop SQL
development. However, modifications to the
programs that share this function (optimizer
and disk process) can be deceptively subtle,
because changes alter concurrency but do not
alter the meaning of SQL statements. Further
more, inadvertently introduced concurrency
degradation may not be obvious, especially
under moderate loads. There is a danger that
performance could drop unexpectedly under
heavy production loads.

Because this code is so complex, it is
possible for well-intentioned tuning in one
place to have severe effects in another place.
Consequently, level-of-integrity tests have two
equally important goals:

■ Make sure levels of integrity work.
■ Detect concurrency setbacks if they do
occur.

QA's approach meticulously diagnoses the
behavior of NonStop SQL using lock-step par
allel processing combined with knowledge of
how the locking algorithms should be working.
Locks are taken by a "locker" process and
systematically tested by a synchronized "chal
lenger" process. This method has been very
successful at rapidly pinpointing minute
changes in locking behavior.

JULY 1988 TANDEM SYSTEMS REVIEW 43

Figure 3

REPEATABLE ACCESS

STABLE ACCESS

BROWSE ACCESS

Lock Interaction

Auto-recompilation

Preemption

Figure 3.

Hierarchy of concurrency
tests. Concurrency tests
are divided so that com
peting elements of the
SQL language demon
strate their concurrency

interactions. DML/
DML tests concentrate
on levels of integrity,
DMLIDDL testsfocus
on the effects that DDL
statements have on DML

operations, and DDLI
DDL and DMLIDCL
tests confirm that the
correct locking interac
tions are taking place.

Concurrency Test Units
The most prevalent concurrent interactions in
an OLTP environment occur between pro
grams that each contain DML statements-for
example, servers accessing the same set of
tables. Extensive tests have been developed to
cover interactions of all combinations of DML
statement types with all combinations of levels
of integrity (Figure 3). These tests use the
lockstep synchronization approach, pitting
DML statements against each other and using
various mixes of lock granularity, lock dura
tion, exclusion mode, and ownership.

Though most concurrent interactions are
DML/DML interactions, several other very
important forms must be considered. Some
arise from the fact that NonStop SQL object
management is built on the principle of an
active dictionary. Nonstop SQL guarantees
that the user has a correct, well-formed defini
tion of an object at all times. This means that
DDL operations can change the characteristics
of objects while they are being used. This car
ries with it a whole new set of concurrency
issues, namely, how DDL operations interact
with other simultaneously occurring DML and
DDL operations.

DML/DDL interactions have locking issues
similar to their DML/DML counterparts but
also have several intriguing side effects. Natu
rally, DDL statements lock the object being
operated on, so DML statements (or other
DDL statements) must deal with handling
locks in the usual way. For example, lock gran
ularity and protocols for lock acquisition and
queuing are tested just as in the DML/DML
cases. However, this alone does not constitute
sufficient DML/DDL testing because a DDL
statement could cause auto-recompilation or
preemption.

44 TANDEM SYSTEMS REVIEW JULY 1988

A host-language program containing
NonStop SQL DML statements will have its
SQL statements transparently recompiled if an
SQL object that the program uses has been
altered by a concurrent DDL operation. The
automatic recompilation may apply to every
SQL statement in the program or to only one
or two statements, depending on precisely
when the DDL operation occurs. Similarly, in
certain cases, an active DML statement may
be preempted by certain DDL operations
rather than forcing the DDL statement to wait.
Tests have been carefully constructed to pro
voke all of these situations and to ensure
correct locking and error-handling behavior.

Concurrency is a typical example of where
SQL is uniformly tested, from the most com
mon to the most extreme cases. Though many
of these cases appear to fall outside the main
stream of concurrency functionality, QA is
committed to protecting the user from major
system failure or data corruption, even if it
stems from a rare concurrency event.

Determining Performance Reliability
In most database management systems prior
to SQL, the application programmer made all
decisions about how data was retrieved and
manipulated in the database. This included
fundamental access strategies such as uses of
indexes, file-positioning modes, lock granular
ity, types of buffering, choices of file ordering
for joins-in short, nearly all operations an
application needed to perform the desired
function. The application programmer had
total control of the methods used to access the
database, which meant he or she had direct
influence over the performance of retrievals
and manipulations.

Nonstop SQL dramatically changes this
situation by elevating programmer control
above direct file-system interface calls. Data
retrieval and manipulation occur exclusively in
SQL language statements embedded within the
host-application code. The resulting produc
tivity gain is tremendous, since application
programmers simply specify what they want to
have happen, rather than going through elabo
rate and error-prone programming steps to say
how the result is to be achieved. The methods
for retrieving data are now relegated to a
sophisticated component within NonStop SQL
called the optimizer.

While the productivity benefits are clearly
welcomed by SQL users, the loss of direct con
trol may make some users uneasy. These users
must now trust the optimizer to choose the
optimal access strategy for their queries. They
are concerned that the optimizer may make
fundamentally bad decisions that will lead to
unnecessary performance degradations in their
application. SQL QA has developed a strategy
for minimizing the risk of such events.

Optimizer Testing Strategy
Benchmarking probably comes to mind imme
diately as an attractive method for optimizer
testing. Rather than using benchmarking, the
SQL QA team directly examines the access
plans chosen by the optimizer. The main
advantages of this approach are a significantly
greater diagnostic capability over benchmarks
and independence from other parts of SQ L.

This has important strategic implications
because SQL QA must find optimizer prob
lems rapidly during the early part of the
release when other performance-critical parts
of the system, such as the disk process, may
not yet be reliable. This strategy insulates SQL
QA from those dependencies, so reliability
assessment can begin right away.

Overview of Optimizer Tests
The key to successful optimizer testing is the
design of the database. Data-value distribu
tions, placement of indexes, and precisely
generated selectivities must be carefully imple
mented to allow test queries to demonstrate
convincingly that the best access plan was
chosen over many possible candidate plans.
The test database must also be designed so
that its properties accurately represent those
of production databases.

JULY 1988 TANDEM SYSTEMS REVIEW 45

The optimizer database developed by
SQL QA has been carefully constructed to
embody the attributes of full-sized, distributed
production databases, while possessing well
understood properties required for determinis
tic testing. (For a definition of selectivities and
other concepts related to the function of the
optimizer, refer to the accompanying article,
"NonStop SQL Optimizer: Basic Concepts.")

The optimizer tests are divided into two
broad classes. The first deals with access-path
selection; the second with join-strategy
algorithms.

For access-path selection testing, queries
are designed so that predicates have predeter
mined selectivities using a carefully chosen set

Test automation plays a
1 key role in achieving

Nonstop SQL reliability.

of indexes. In these
tests, one of the many
indexes will be supe
rior to the others for
the given predicates.
Many variables, such
as physical-1/0 cost,

record overhead, cost of sorts, subquery
processing costs, and transfer costs, are con
sidered in the design of the tests to make sure
the cost-formula assumptions are correct.
Knowing the formulas, the test designer
attempts to construct scenarios in which the
optimizer could erroneously make less than
optimal trade-offs.

The join-strategy algorithm tests use a simi
lar philosophy but also consider which table
order and join method are optimal. These tests
use specially designed multiple-table join
predicates, single-table predicates with known
index selectivities, and ordering clauses to
challenge the optimizer. The cost formulas for
joins provide the variables that the test
designer manipulates in the test. These include
the relative costs of performing a merge join

or nested-loop join, sorting requirements
needed to support merge join and satisfy
ordering clauses, and the cost of joining the
tables in a particular order.

Distributed optimizer tests add another
dimension to access-plan selection and join
algorithm selection by considering the effects
of network access. The optimizer must take
into account factors such as the cost of choos
ing a remote index versus a local index, the
possibility of increased attractiveness of real
or virtual sequential block buffering, and the
cost of joining remote tables.

In both access-plan selection testing and
join-algorithm selection testing, correctness is
determined by using a special QA tool inter
faced to the SQL compiler. The tool displays
the final plan chosen by the optimizer as well
as the alternate plans considered and dis
carded. Armed with this information, SQL QA
and Development locate and eliminate bad
choices, thereby preventing poor optimizer
decisions from reaching production
applications.

Optimizer Reliability Assessment
Future Plans
Nonstop SQL QA is continuing to enlarge its
collection of tools and techniques for assessing
the reliability of the optimizer. Several new
methods are planned that will further improve
the testing process.

For example, the SQL development team is
building a QA tool interface for inhibiting
normal optimizer access-plan selection that
determines the least costly access plan. This
technique will allow QA to check the relative
cost of many rejected alternatives by compar
ing run times and actual 1/0 costs with esti
mates. The QA tool will automatically spot
serious discrepancies between the approxima
tions made by the optimizer and the real cost
of an operation, especially when a sub
optimal plan was chosen as the best one.

The Nonstop SQL QA team will also be
developing a benchmark to provide end-to-end
checking of the optimizer, executor, file sys
tem, and disk process. The benchmark will be
run early in the release cycle, typically several
months before full-scale benchmarking. Its
purpose is to quickly identify release-to-release

46 TANDEM SYSTEMS REVIEW JULY 1988

regressions in performance. The benchmark
will have little diagnostic capability, but it will
provide early warnings of performance prob
lems. It will also help focus the other optimi
zer tests that do have excellent fault-isolation
characteristics.

The Effect of Test Automation on
SQL Reliability
Running all of the Nonstop SQL tests through
one complete pass requires five days, 24 hours
per day on a dedicated four-processor TXP™
system. In a typical major release, four to six
passes of testing, analysis, and repair are
required before all significant problems have
been shaken out. Obviously, thorough regres
sion testing of SQL does not come cheaply.
Test run time and consumption of human and
machine resources are significant.

Test automation plays a key role in
achieving Tandem's SQL reliability and cost
effectiveness objectives. Labor-intensive test
units, no matter how good they are, fall
victim to human error and fatigue when run
over and over again. Moreover, a regression
test library that cannot guarantee absolute
repeatability will let problems slip through and
erode everyone's confidence in the testing
process. This is potentially acute for SQL
because, in the worst case, testing could take
months. Without automation, it would be
impossible to have confidence in the complete
ness and correctness of the crucial final cycles
of testing.

QA realized this danger at the beginning of
the SQL project. Consequently, a goal going
into the project was to achieve lOOOJo automa
tion by investing in automation tools at the
start. These tools confine labor intensity to
tool and test development and analysis of SQL
failures, and exclude it entirely from test
running.

ALIEN (Automated Library Environment),
the Nonstop SQL frame manager, and COVER
are three of the tools that have given SQL QA
concrete yet economical ways of increasing
confidence in the reliability of SQL. With a
product as large and complex as SQL, these
tools provide an invaluable means for system
atically managing, implementing, and measur
ing the testing process.

Automated Library Environment
The first tool developed for SQL was ALIEN,
a general-purpose productivity tool for
regression-test library management. ALIEN
provides a standardized, modular structure for
supporting fully automated test units. By
managing test selection, setup, execution,
logging, error recovery, results reporting, and
cleanup, ALIEN removes the QA developer
from the testing loop. The tester selects any
combination of tests through an easy-to-use
keyword interface, leaves the tests running
unattended, and returns later to examine
the test-results report. The tests are self
evaluating, so human intervention is required
only to analyze the causes of failures.

SQL Script Processing
Another key productivity tool developed for
the SQL project is called the SQL frame man
ager. It is essentially a customized script pro
cessor that runs under ALIEN and divides a
test unit into subtests known as "frames."

The payoff from the SQL frame manager is
best illustrated by the following observation.
Suppose an SQL user is given an SQL query to
try out. The user would almost certainly run it
on the SQL conversational interface (SQLCI)
rather than embedding the statement in a host
language, since embedded SQL requires an
order-of-magnitude greater effort. The SQL
frame manager eliminates this difference by
allowing a QA developer to write an embedded
SQL test as easily as an SQLCI test.

JULY 1988 TANDEM SYSTEMS REVIEW 47

Figure 4.

SQL frame manager.
The SQL frame manager
accepts an input script
containing SQL state
ments and SQL frame
manager commands,
merges program shells
(templates) and prede
fined run-time libraries
with the SQL statements
to form programs, han
dles all necessary compi
lation steps including
error recovery, and fin ally
executes the program.

Test results can include
compiler listings, utility
output, and SQL state
ment results. The SQL
frame manager automati
cally compares test results
with a database of known
correct results to deter
mine whether the tests
pass or fail.

48

Figure 4

Input script

Listings

T A N D E M

--
--

COBOL

SQLCI

C

COBOL

Object

I
~

SYSTEMS

Script processing

Pascal

C

Pascal

Compile/run time

Results analysis

REVIEW

Output results
to ALIEN

J U L Y I 9 8 8

The SQ L frame manager does this by mak
ing all scripts look like SQLCI input, except
that legal input is extended to allow embedded
SQL statements such as cursor operations. If
the user tells the SQ L frame manager to test
using SQLCI, the script text is passed directly
to SQLCI for processing. If the user selects a
particular language (COBOL, C, or Pascal),
the SQL frame manager processes the state
ments into the correct form for the target lan
guage, embeds them into a generic "template"
program, provides error and 1/0 routines, and
then manages the preprocessor, language com
pilation, SQL compilation, and execution
steps as needed (Figure 4). The process that
makes embedded SQL more difficult to use
than SQLCI has been made transparent by the
SQL frame manager.

The transparency concept is extended even
further into the complex domain of concur
rency testing, again improving productivity
dramatically. A single SQL frame manager
script can be written that describes the actions
of two completely separate host-language
processes. The script for each process is writ
ten in the usual way but is divided down the
middle of the page using the vertical bar char
acter. The script text to the left of the line
belongs to one process; the text on the right
belongs to the other. The SQL frame manager
decomposes the script into two actual host
language programs and then runs them. The
SQL frame manager also supplies semaphore
primitives to allow the test developer to fully
synchronize the two processes.

Figure 5 shows a concurrency-script seg
ment involving process A (left-hand text) and
process B (right-hand text). SQL frame man
ager statements appear inside angle brackets.
The SQL frame manager translates most
commands into host language code. For exam
ple, < BEGIN WORK> generates a call to
BEGINTRANSACTION. Synchronization prim
itives <WAIT> and < SIGNAL-n > allow the
processes to operate in lockstep. When process
A executes a <WAIT> statement, it will wait
at that point in the program until process B
executes a <SIGNAL-A> statement.

Figure 5

Figure 5.

<COMMENT> Show that if process A obtains locks using an update
<COMMENT> statement with repeatable access, and process B
<COMMENT> attempts to select an updated row, then process B
<COMMENT> will timeout waiting for the locks to be released.

<COMMENT>

<WAIT>
< BEGIN-WORK>

UPDATE table01
set coL1 = 100

PROCESS A

where coL2 between 40 and 60
repeatable access

<SIGNAL-B>
<WAIT>

<COMMIT-WORK>

<SIGNAL-A>
<WAIT>

PROCESSB

<BEGIN-WORK>

SELECTcol_1
into : user _hosL var
from table01
where coL2 = 50
stable access

<SIGNAL-A>

<COMMIT-WORK>

SQL frame manager
concurrency script seg
ment. The script is
decomposed into two
embedded SQL host-

language programs. Text
on the left belongs to
process A; on the right,
to process B. This format
makes the test objective

self-evident, which would
not be true using two
decoupled host-language
programs.

JULY 1988 TANDEM SYSTEMS REVIEW 49

50

The SQL frame manager simplifies embed
ded SQL programming by hiding an enormous
amount of irrelevant detail from the script
developer. Examples include transparent error
handling and reporting, the striking absence of
all host-language code except for host-variable
references, and simultaneous management of
two separate compilation and execution
streams.

With the SQL frame manager, a complex
concurrency test can be written that very
clearly expresses the desired interaction
between the two programs. Once again, the
SQL frame manager has transformed the
trouble-prone test scenario of setting up and
controlling two embedded SQL processes into
a task as simple as writing an SQLCI OBEY
file.

Besides simplifying embedded SQL process
ing, the SQL frame manager supports a robust
testing environment for the scripts. The SQL
frame manager provides easy ways to modu
larize large tests into test cases, initialize the
test environment, capture the results of test
runs, and automatically compare expected
versus actual results. It also couples directly
into the ALIEN system, so that the results of
SQL frame manager script runs are handled
without any interface programming between
the two tools.

All of the reliability benefits the SQL frame
manager provides stem from the basic fact
that it significantly simplifies the task of
developing SQL tests. For example, it elimi
nates the incentive to rely too heavily on
SQLCI, thereby removing a bias that could
cause embedded SQL to be under-tested. Also,
hiding the mundane details of the embedded
SQL environment allows more tests to be writ
ten in the same amount of time. Similarly,
isolating the code under test from test-support
activities such as test setup and evaluation
leads to cleaner, more focused tests. The SQL
frame manager has made SQ L tests cheaper to
develop and test coverage more robust, espe
cially in the embedded SQL and concurrency
areas.

The COVER Program Path Analyzer
COVER is a path-analyzer tool that measures
which statements in a program have been exe
cuted as a result of running a test. COVER
indicates what percentage of a program has
been traversed and exactly which statements
and procedures have not been executed. While
many COVER users are interested in overall
coverage percentages, SQL QA concentrated
on using it to discover untested parts of SQL.

From the start of the project, the strategy
was to apply COVER halfway through the SQL
test-development cycle to determine whether
areas of SQL were unaccounted for in the
formal test plan and test-specifications docu
ments. The objective was to avoid a surprise
test deficiency near the time when the first
customer shipment occurred. Fortunately, no
oversights in the plan were discovered. How
ever, if there had been an oversight, there
would have been sufficient time to react and
correct the exposure.

TANDEM SYSTEMS REVIEW JULY 1988

Conclusion

This article has described some of the methods
used to ensure the reliability of Nonstop SQL.
Only a small fraction of Tandem's total qual
ity assurance effort is mentioned here. Other
Tandem QA organizations, including Low
Level Database QA, File System and Disk
Management QA, and Systems Integration
QA, use their own techniques to uncover
SQL-related defects. Alpha and beta site test
ing, careful development-cycle phase reviews,
unit testing, and performance assurance test
ing also make significant contributions to
total product quality. Tandem's ongoing com
mitment of significant resources and technol
ogy to Nonstop SQL is a commitment to
maintaining high quality and customer
satisfaction.

Reference
Tandem Performance Group. 1988. Tandem's Nonstop SQL
Benchmark. Tandem Systems Review. Vol. 4, No. l. Tandem
Computers Incorporated. Part no. 11078.

Acknowledgments
I would like to thank the members of the Nonstop SQL Quality
Assurance team, Steve Flournoy, Phil Koza, Bruce Maigatter,
and Joan Zimmerman, for their significant contributions to the
content of this article.

Claude Fenner joined Tandem in 1980 and is currently the man
ager of the Nonstop SOL High Level Quality Assurance team. He
has participated in a number of projects, including TMF, PDT,
ENCOMPASS, and tool development. Prior to joining Tandem, he
worked for several software houses.

JULY 1988 TANDEM SYSTEMS REVIEW 51

52

NonStop SQL Data Dictionary

he Nonstop SQL data die
-----~ tionary embodies the quali

ties of NonStop SQL as a
whole: availability, reliability,
flexibility, and ease of use. It
is active and closely inte
grated with the Tandem™

operating system. Because the dictionary is
distributed, users can always access available
data even when other nodes in the network are
not available. It also supports the concept of
location transparency in that the user observes
the same function whether the dictionary
comprises one catalog or many.

This article assumes knowledge of distrib
uted data and distributed database manage
ment systems (DBMS). However, a brief
overview of the issues surrounding a data
dictionary is provided prior to discussing the
Nonstop SQL data dictionary, the objects it
describes, and the SQL catalog manager that
maintains it. Some standard dictionary terms
are defined at the end of the article.

What Is a Data Dictionary?
A data dictionary is the repository for record
ing, storing, and processing information about
the system objects that contain or manipulate
data. It is actually a database that describes
the database managed by the DBMS. It is not
an application dictionary, which describes
information about the objects needed to
develop applications (e.g, interprocess mes
sage definitions and COBOL structure defini
tions). Nor is a data dictionary a media
catalog describing information pertaining to
data-storage devices. The set of all such dic
tionaries, taken together, is sometimes referred
to as a repository.

Data Dictionary Functions
A data dictionary has five basic functions.

Object Description. All objects in the data
base should be described in the data diction
ary. Most databases have logical and physical
objects, corresponding to a logical schema and
a physical schema.

Logical objects provide users with a per
spective of the database that is devoid of any
physical information about database charac
teristics. Tables and views are two examples.

On the other hand, physical objects are
described by the physical attributes of a data
base. They represent the physical organization
of the database. Examples are files, partitions,
indexes, and replicas. Physical attributes of
these objects include location on disk, file
organization, and storage allocation.

TANDEM SYSTEMS REVIEW JULY 1988

Relationships among Objects. Most objects in
a database are related in one way or another.
Semantic relationships between objects should
be kept in the data dictionary, so that the same
relationship can be enforced by the system
under different applications. For example, a
typical relationship between the department
record and employee record is that each and
every department name in the employee record
must also exist in the department name of the
department record. The enforcement of all
such relationships provides what is called ref
erential integrity.

Access Paths. Access paths are used to move
data from an external storage device to an
application. A dictionary contains informa
tion about all available access paths of any
particular object-for example, the physical
structure and location of the data or the num
ber and types of indexes.

Statistics on the Database. Statistics on the
database are very useful in query optimization.
Statistics that can help the query optimizer
choose a better execution plan should be
stored and maintained in the dictionary. Some
important statistics are the file size, the distri
bution of data values in a column of the table,
the number of rows in a file, and the number
of unique values in a column.

Protection of the Database. Database protec
tion includes database security and database
consistency. The data dictionary may include
the information about the users' authorization
to access the database and the integrity con
straints of the database.

The Nonstop SQL Data Dictionary
The Nonstop SQL data dictionary contains
descriptions of all Nonstop SQL objects as
well as information about their use. It is dis
tributed, active, and integrated with Tandem
system software.

Distributed
A distributed dictionary can provide better
availability of dictionary definitions. If
objects are described in a fragment of the dic
tionary at the local site, then work need not be
interrupted when the system is disconnected
from the network.

An object's data definition is stored in the
system where the data resides. To obtain the
definition of a remote object, the application
must access the remote file. This approach
eliminates redundant copies of a data defini
tion and facilitates creation and alteration of
objects.

Each object or partition of an object is only
stored once. However, if two related objects
are described in two different dictionaries,
then the relationship between those objects is
stored in both dictionaries.

Active
The Nonstop SQL dictionary always correctly
describes the objects in the database. When an
object such as a table is altered, programs that
were compiled using an old description of the
object are invalidated. The next time the pro
grams are executed, they are automatically
recompiled to use the current definition of the
altered object.

An active data dictionary contains descrip
tions that exactly reflect the way the system
treats the object at all times. Conversely, a
passive data dictionary does not reflect
changes to system objects in the data diction
ary. When this happens, the data dictionary
no longer reflects the state of the object.

The term, "active data dictionary," is some
what misleading. The data dictionary itself is
not active-it is only a collection of data on
disk. What makes the dictionary active is that
all system software that accesses the database
has been coded to reference and, when neces
sary, alter the data dictionary whenever an
object is manipulated. If any interfaces alter
the structure of the database and bypass the
dictionary, the dictionary cannot be said to be
active.

JULY 1988 TANDEM SYSTEMS REVIEW 53

Figure 1. Figure 1

Catalog structure.

54

BASETABS
COLUMNS
COMMENTS
CONSTANT
FILES
INDEXES
KEYS
PARTNS
PROGRAMS
TABLES
TRANSIDS
USAGES
VERSIONS
VIEWS

'.v'IEWS

-.~
~ -•~··

.~
-~ -.~--

- Describes attributes of tables.
- Describes the columns of tables and views.
- Keeps comments on columns, constraints, indexes, tables, and views.
- Describes constraints defined on tables.

Describes attributes of files that contain tables and indexes.
Describes indexes defined on tables.
Describes key columns on indexes.
Describes partitions of tables and indexes.
Describes SOL object program files.
Describes tables and views.
Keeps TMF transaction IDs for current DDL operations on the catalog.
Describes dependencies between SOL objects.
Keeps version information about the catalog.
Describes attributes of views.

TANDEM SYSTEMS REVIEW J U L Y I 9 8 8

Integrated with Tandem System Software
The Nonstop SQL dictionary is fully inte
grated with Tandem's GUARDIAN 90™ oper
ating system, SQL compiler, Transaction Mon
itoring Facility (TMF), file system, and disk
process. This integration offers many benefits.
For example, if the dictionary security were
not integrated with the operating system's
security, a hostile programmer could subvert
the DBMS's security mechanism by issuing
operating-system calls to open, read, and write
data files managed by the DBMS, thereby cor
rupting the database.

Nonstop SQL Data Dictionary
Structure
The Nonstop SQL data dictionary has two
components: a compile-time dictionary com
prising a set of catalog tables, and a run-time
dictionary comprising a set of disk-file labels.
Taken together, all the SQL file labels and SQL
catalog tables form the SQL data dictionary.

Catalogs
A catalog is an application database made up
of SQL tables; the function of the application
is to describe SQL objects. Together, these SQL
tables can be used to describe any SQL object
in the system. The data in the SQL tables is
stored in text form and can be queried with
standard SQL statements. The catalog struc
ture is shown in Figure 1.

Each SQL object must be described in a
catalog at that system. Therefore, each system
using NonStop SQL must have at least one
catalog. Partitioned objects (tables, indexes,
and views) have one complete catalog entry
per partition. A partition must be described in
a catalog residing at the same node as the
partition. This restriction is made so that
Nonstop SQL can provide local autonomy for
data access.

A catalog has the same name as the sub
volume in which it resides. All the catalog
tables that make up a catalog reside in the
same subvolume. Each subvolume can have
only one Nonstop SQL catalog, but any num
ber of catalogs can be created on a system. It
might be useful to store logically separate

databases in different catalogs for ease of use
or for security purposes. However, storing
objects in different catalogs provides no func
tional benefit. The DBMS always functions as
if all database objects were stored in a single
catalog.

Disk-File Labels
Each disk volume on a system has a disk
directory. For each Nonstop SQL object on
the volume, there is one disk-file label in the
directory that contains the name of the object,
the name of the catalog in which the object
resides, the security information associated
with the object, and other information about
the object. The file labels are not in text form.

The disk-file labels contain all the informa
tion needed by the low-level run-time compo
nents of Nonstop SQL, the file system, and
the disk process. This information allows
NonStop SQL to open and operate on data
without accessing the catalog. Since the
catalogs are not accessed at run time, they
should not become a performance bottleneck.

The Catalogs Table
Each system in the network has a single table,
called the Catalogs table, that describes all the
catalogs in the system. This table is modified
only when a catalog is created or destroyed.
By restricting write authority to this table, the
user can prevent catalogs from being created
and dropped. By further restricting write
authority to the catalogs that exist on the sys
tem, the user can prevent new SQL objects
from being created. This ability to limit the
number of people who can create database
objects is called resource authority.

JULY 1988 TANDEM SYSTEMS REVIEW 55

56

System Catalog
Each system in a network has a special catalog
called the system catalog. In the system cata
log, the DBMS records its own database
objects such as the Catalogs table and the
Programs entry for the SQL conversational
interface (SQLCI) command interpreter.

Local Autonomy and Catalog Consistency
NonStop SQL supports local autonomy for
data access. The NonStop SQL compiler can
compile SQL statements against local data
using only the information present in local
catalogs. The file labels contain all the infor
mation the NonStop SQL system needs at run
time. Thus, the local catalogs and file labels
provide enough of the dictionary to permit
access to local data.

For certain Data Definition Language
(DDL) operations, the DBMS designer must
choose between local autonomy and data
dictionary consistency. For example, suppose a
system administrator wants to remove an
object from the system, but that object (such
as an index on a remote table) is reflected in a
catalog at another system that is unavailable.
In this case, NonStop SQL will not allow the
object to be dropped using a standard DDL
command. Thus, where DDL operations are
concerned, NonStop SQL opts for the integrity
of the data dictionary over local autonomy.

Nonstop SQL Naming
Nonstop SQL users may refer to database
objects using either logical names or physical
names. A logical name is also known as a
define name. It can have up to 30 characters,
and the first character must be an equal sign.
Logical names can be used wherever a physical
name is expected by the DBMS.

Physical names conform to the Tandem
convention for GUARDIAN 90 file names:
"system.volume.subvolume.object". An exam
ple is \DC.$A.B.PARTS. The sole exception is a
catalog name, which stops at the subvolume.

When using define names, the user must
establish an operating context that maps all
the logical names to their corresponding physi
cal names. If the logical-to-physical mapping
in effect at run time differs from the mapping
in effect when a program was compiled, the
section of the program referring to that logical
name will be dynamically recompiled.

Nonstop SQL Objects
Nonstop SQL objects are database entities
that can be created, manipulated, or dropped
by means of SQL commands. All Nonstop SQl
objects are described in the Nonstop SQL
dictionary. The basic NonStop SQL objects
are catalogs, files, tables, indexes, partitions,
views, and SQL object programs.

Catalogs
The system catalog is created automatically
when SQL is first installed on the system.
Users can create other catalogs to suit their
own policies. A sample catalog can be created
as follows:

CREATE CATALOG \DC.$A.CAT1

Files
A disk file is the physical storage for data in
the database. Like ENSCRIBE, NonStop SQL
supports three types of file structures:

■ In an entry-sequenced file, each new record
is stored at the end of the file in chronological
sequence and the primary key is a system
generated record address.

TANDEM SYSTEMS REVIEW JULY 1988

•Ina key-sequenced file, each new record is
stored in the sequence of the primary key
value, using B-trees.

• In a relative file, each new record is stored at
the relative record location specified by its
primary key, which is either a user-defined or
system-defined relative record number.

Base Tables
A Base table is the logical representation of
data stored in a physical disk file. It defines
data in columns and specifies a primary key.
In addition, the CREATE TABLE statement
defines physical file attributes, such as block
size, file organization, and so on. The creation
of a Base table implicitly creates a physical
disk file with the same name. For example, an
Orders table in a key-sequenced file is created
as follows:

CREATE TABLE \DC.$A.B.ORDERS
(LOCATION CHAR(l0}
,PARTNO INTEGER
, UNITCOST INTEGER
, QUANTITY INTEGER
, KEY (LOCATION, PARTNO)
)
ORGANIZATION KEY SEQUENCED
CATALOG \DC.$A.CAT1

Figure 2 shows sample data in the table
\DC.$A.B.ORDERS.

Indexes
An index is an alternate access path to data in
a table and is stored in a key-sequenced file.
The creation of an index implicitly creates a
physical disk file with the same name. For
example, for the Orders table created above,
one can create an index called ORDERS0 that
will use the PARTNO column to provide fast,
indexed access, as follows:

CREATE INDEX
ON
(PARTNO)
CATALOG \DC.$A.CAT1

\DC.$A.B.ORDERS0
\DC.$A.B.ORDERS

Figure 3 shows sample data in index
\DC.$A.B.ORDERS0.

Figure 2

Figure 3

··'.•~

l~ ,~·
t~1
j-••

Figure 2.

~.

£IS
.!il;J
£IS
U.· •

Sample data in table
\DC.$A.B.ORDERS.

JULY 1988 TANDEM SYSTEMS REVIEW

~•.· .. ·.
f~
l~
ll:ltL
1~.
~ .

Figure 3.

Sample data in index
\DC.$A.B. ORDERS0.
The KEYTAG column is
provided for future
extendability. This per
mits storing multiple
indexes in a single file.

57

Figure 4

Partition \DC.$A.B.ORDERS

Partition \LA.$LOCAL.B.ORDERS

Figure 4. Partitions

Sample data in partitions. A partition is a portion of a table or index that
resides in a particular disk volume. It is based
on the concept of horizontal fragmentation.
(A relation is horizontally fragmented if the
rows in the relation are grouped into separate
files. A relation is vertically fragmented if the
columns of the relation are grouped into sepa
rate files.) Tables, indexes, and protection
views can be partitioned.

An entry in a catalog for each partition of a
table or index fully describes the table or
index. Each partition contains relationships
indicating the names of all the other partitions
of the same object. This is different from the
mechanism for storing relationships between
different objects, in which only the relation
between the primary partitions of those
objects is stored. The following table creation
command creates a table partitioned across
two sites of the network.

CREATE TABLE \DC.$A.B.ORDERS
(LOCATION CHAR(l0)
,PARTNO INTEGER
, UNITCOST INTEGER
, QUANTITY INTEGER
, KEY (LOCATION, PARTNO)
)
CATALOG \DC.$A.CAT1

PARTITION(\ LA.$LOCAL.B.ORDERS
CATALOG \LA.$LOCAL.CAT2
FIRST KEY ("LA", 0))

The logical table definition is stored in catalog
\DC.$A.CAT1. The second partition defini
tion is stored in catalog \LA.$LOCAL.CAT2.
When the table is referenced at SQL compile
time, either catalog can provide the necessary
information.

The physical table definition is stored in the
disk label of \DC.$A.B.ORDERS. The second
partition definition is stored in the disk label
of \LA.$LOCAL.B.ORDERS. Figure 4 shows
sample data in partitions.

Views
A view is a logical definition of a relation but
has no physical existence. The data presented
by a view is, instead, derived from a Base
table. Nonstop SQL supports two types of
views: protection views and shorthand views.
There is no performance penalty for using
either type of view.

Protection Views. A protection view has pro
tection attributes. It can be derived from a
single table by taking either a projection of the
columns of the table, a selection of the rows of
the table, or both. A protection view provides
a form of field-level security because the view
can be secured, updated, and read.

For example, for the Orders table, one can
create a protection view to ensure that all
local users can access the PARTNO, QUANTITY,
and LOCATION of orders issued from San
Jose, as follows:

CREATE VIEW \DC.$A.B.LORDERS
(PARTNO, QUANTITY, LOC)
AS SELECT PARTNO, QUANTITY, LOCATION
FROM \DC.$A.B.ORDERS
WHERE LOCATION = "SJ"
FOR PROTECTION
SECURE "AAAA"

58 TANDEM SYSTEMS REVIEW JULY 1988

Figure 5 shows sample data in protection
view \DC. $A. B. LORDERS derived from the
table \DC.$A.B.ORDERS.

Each protection view has a separate disk
file label that contains the compiled form of
the view definition to be used by the disk pro
cess at run time. The logical description of the
view is recorded in the catalog. This is used by
the SQL compiler or catalog manager when the
view is referenced in an SQL statement. It can
also be used for reporting purposes. For parti
tioned tables, the protection view is parti
tioned like the table. The view definition is
replicated in every catalog that describes the
partition and in every disk-file label of the
partition.

Shorthand Views. A shorthand view can be
derived from one or more tables or views by
joining tables or views, taking projections of
the columns, taking selections of the rows, or
a combination of these methods. A shorthand
view can be read but not updated or secured.
Moreover, the user's security is tested against
the security of each table and protection view
that the shorthand view comprises.

For example, a shorthand view can be cre
ated to retrieve a list of part numbers, the
names for suppliers of each part, and the
quantity on hand, as follows:

CREATE VIEW \DC.$A.B.GETPARTS
(PNUM,SNAME,QTY)

AS SELECT PARTNO, SUPPNAME, QUANTITY
FROM \DC.$A.B.ORDERS,

\SJ. $A. B. PARTSUPP
WHERE \DC.$A.B.ORDERS.PARTNO =

\SJ.$A.B.PARTSUPP.PARTNO

Figure 6 shows sample data in the short
hand view \DC.$A.B.GETPARTS, derived from
the table \DC.$A.B.ORDERS and the table
\SJ.$A.B.PARTSUPP.

Each shorthand view has a separate disk
file label that contains the name of the catalog
describing the view. The logical description of
the view is recorded in the catalog that is used
by the SQL compiler or catalog manager when
the view is referenced in an SQL statement.

It should be restated that shorthand views
can derive data from protection views. Thus,
a secure view of two tables can effectively be
realized by creating protection views with the
desired security on the underlying tables and
then joining them together with the shorthand

Figure 5

Figure&

Sample data in table \DC.$A.BORDERS

Sample data in table \SJ.$A.B.PARTSUPP

Sample data in shorthand view \DC.$A.B.GETPARTS

view. This approach was taken in preference to
allowing shorthand views to be secured
directly, because in a distributed system it is
important for security to be tested where the
data, not the user, resides. Protection views
provide this mechanism; shorthand views
do not.

JULY 1988 TANDEM SYSTEMS REVIEW

Figure 5.

Sample data in protection
view \DC.$A.B.ORDERS
derived from the table
\DC. $A.B. ORDERS.

Figure 6.

The sample data in
shorthand view
\DC.$A.B.GETPARTS
is derived from table
\DC.$A.B.ORDERS
and table
\Sl $A.B.PARTSUPP.

59

60

SQL Object Programs
An SQL object program is an object file con
taining executable machine-language instruc
tions produced from a host-language source
program with embedded SQL statements. It
also contains an SQL plan corresponding to
each SQL statement that was embedded in the
program along with the text of that statement
(for dynamic recompilation). All valid SQL
object programs are described in an SQL cata
log. When a program containing SQL state
ments is compiled, the program is registered in
a catalog, and relationships are recorded that
indicate which SQL objects are used by the
program. Users can invoke a where-used util
ity that traverses these relationships and
reports which SQL objects depend on other
SQL objects in the system.

User-Defined Constraints
User-defined constraints are as much attri
butes as objects. Constraints are conditions
associated with a table that must be satisfied
before rows can be inserted or updated. These
conditions help to maintain data integrity.
A constraint is an expression that combines
the values found in a row of a table with any
number of comparison operators and literals.
A constraint cannot ref er to other rows or
tables.

For example, for the Orders table, one can
create an integrity constraint to ensure that
the ordered quantity must be a positive inte
ger, as follows:

CREATE CONSTRAINT
QUANTITY_CONSTRNT
ON ORDERS
CHECK QUANTITY > = 0

After a constraint is created, it is added to
the Constrnt table of the catalog and into the
file label. In the previous example, the Con
strnt table will contain the text string
"QUANTITY > = 0", which is used by the
catalog manager when the constraint is refer
enced in an SQL DDL statement. The file label
will contain the compiled form of the con
straint, which can be executed by the disk
process at run time. If the Orders table has
partitions, the constraint will be replicated in
every catalog that describes the partitions and
every disk-file label of the partitions.

NonStop SQL Catalog Manager
The Nonstop SQL catalog manager is the focal
point for all updates to the SQL data dictio
nary. The catalog manager is the only process
licensed to update the data dictionary. All
dictionary updates are routed through it. In
particular, the catalog manager executes all the
SQL DDL commands. The catalog manager
coordinates catalog-table updates with disk
label updates to preserve consistency between
catalog tables and disk labels.

Catalog Manager Architecture
The catalog manager consists of the main pro
gram, the parser, the binder, the normalizer,
and the execution routines. The main program
interfaces with other SQL components and
passes commands to the other catalog
manager components. The parser is responsi
ble for parsing SQL DDL statements. The
binder is responsible for name resolution. The
normalizer is responsible for parse-tree trans
formation for the execution routines. The exe
cution routines are responsible for performing
operations such as CREATE, DROP, and
ALTER that are specified in the parse tree.

Dictionary Services Provided by the
Catalog Manager

SQL Initialization Service. The SQL initial
ization service is supported by a special inter
face to the SQLCI. As part of the initialization
process, the SQLCI invokes the catalog man
ager to create the system catalog.

TANDEM SYSTEMS REVIEW JULY 1988

Execution of DDL Commands. The execution
of Nonstop SQL DDL commands is supported
by an interface to the SQL executor. The SQL
executor executes compiled SQL commands or
statements against the database. However,
when the executor encounters a DDL com
mand, the executor sends the request to the
catalog manager. This results in updates to the
appropriate catalog tables and to the corre
sponding disk-file labels.

In addition to supporting the creation,
alteration, and dropping of system objects, the
catalog manager supports the collection and
storing of statistics on the distribution of data
in a table. Statistics are refreshed when the
user issues the UPDATE STATISTICS command.

DDL Utility Service. The NonStop SQL DDL
utility service is supported by an interface to
the SQL utilities. For example, when restoring
an SQL object, the BACKUP/RESTORE utility
program invokes the catalog manager to create
the object.

File System Service. The Nonstop SQL file
system service is supported with the interface
to the ENSCRIBE procedures RENAME,
SECURE, and PURGE. For example, when
purging an SQL program, the PURGE proce
dure invokes the catalog manager to purge the
disk-file label of the SQL program and to
delete the corresponding catalog entries. This
is necessary for the data dictionary to be
active.

Object-Program Maintenance. The NonStop
SQL object-program maintenance service is
supported with the interface to the SQL com
piler. For example, when compiling a host
language source program with embedded SQL
statements, the SQL compiler invokes the cata
log manager to register the SQL object pro
gram and the relationships between the pro
gram and all SQL objects referenced by the
program. This is necessary for the data dic
tionary to be active.

Database Consistency and Security
The Nonstop SQL data dictionary depends on
the Transaction Monitoring Facility (TMF) to
ensure consistency between the catalog tables
and the file labels. TMF protects SQL tables
and file labels from damage due to system or
media failures. TMF transactions are used in
the catalog manager to coordinate all activity
affecting the SQL catalog and file labels.

Nonstop SQL is integrated with the
Tandem GUARDIAN 90 operating system.
GUARDIAN 90 protection mechanisms also
apply to SQL objects. The security informa
tion of SQL objects is stored in the disk-file
label and in the SQL catalog. The catalog
manager enforces certain security policies
between SQL objects to facilitate the SQL
operations. For example, the catalog manager
insists that a user who is authorized to access
an SQL table must also have the same author
ity on all associated indexes.

All security checks are performed by the
disk process. Furthermore, the disk process
checks for the caller's licensed bit for certain
operations. For example, only licensed pro
cesses can create (or change) disk-file labels of
SQL objects or update entries stored in the
SQ L catalog.

Conclusion
Nonstop SQL provides a distributed DBMS
and a distributed database. A distributed data
dictionary is used to describe this database.
It comprises a compile-time dictionary and a
run-time dictionary. The compile-time dictio
nary allows the user, the SQL compiler, and the
utilities to easily access the definition of all
SQL objects, while the run-time dictionary
allows the file system and the disk process to
efficiently access all required definitions on
SQL objects.

The data dictionary is designed to be active
and integrated with Tandem system software
to satisfy the customer's requirements on
function, security, integrity, performance,
availability, and ease of use.

JULY 1988 TANDEM SYSTEMS REVIEW 61

62

Dictionary Terminology

Distributed Database

A distributed database is a single database whose objects
reside on more than one system in a network of systems.
It functions in all respects as if the entire database resided
at a single site. Moreover, a distributed database can, in
theory, allow for the creation of relations that span multi
ple machines. Two techniques for distributing relations
across systems are partitioned (or fragmented) data and
replicated data.

Relations: Partitioned and Replicated

When a relation is partitioned across many sites, each site
contains a subset of the relation. There are two types of
partitions: horizontal and vertical. A relation is horizon
tally partitioned if the rows in the relation are grouped
into separate files. A relation is vertically partitioned if
the columns of the relation are grouped into separate
files.

When a relation is replicated at many sites, each site
contains a copy of the relation. Data is replicated either to
obtain higher availability of the data in a network or to
improve performance.

References
Cardenas, A. 1984 (2nd Edition). Data Base Management
Systems. Allyn & Bacon.

Ceri, S., and Pelagatti, G. 1984. Distributed Databases:
Principles & Systems. McGraw-Hill.

Braude, M. 1987. Rules for Distributed DBMS. Software Man
agement Strategies. The Gartner Group, Inc. T-150-314.1.

Anderton, M., and Gray, J. 1985. Distributed Computer
Systems-Four Case Studies. TR 85. 5. Tandem Computers
Incorporated.

Location Transparency

Using a distributed DBMS, a distributed database should
behave exactly as an ordinary centralized database does.
Security issues aside, any stream of database commands
should provide identical results when entered at any system
in the network.

Information Resource Dictionary System

The American National Standards Institute (ANSI) is
working on an industry-wide dictionary standard called
the Information Resource Dictionary System (IRDS).
This standard would allow people to create objects of
arbitrary types to be included in a dictionary. The struc
ture of this dictionary is predefined. Because this diction
ary does not come with definitions of specific object
types, the IRDS dictionary is not a data dictionary, but
rather a dictionary that could be used to describe a data
dictionary or any other kind of dictionary.

NonStop SQL Conversational Interface Reference Manual. Part
no. 82319. Tandem Computers Incorporated.

Tandem Database Group. 1987. Non Stop SQL: A Distributed,
High-Performance, High-Availability Implementation of SQL.
Tandem Computers Incorporated.

Wiederhold, G. 1984. Databases. Computer. Vol. 17, No. 10.

Rob Holbrook is the software product manager responsible for
Nonstop SQL. He has six years of experience as a software
designer in Tandem's Database Group. He worked for three years
on the development of Nonstop SQL. He received a B.A. in Eco
nomics and M.S.E.E. in Computer Engineering from Stanford
University.

Don-Min Tsou is one of the original designers of Nonstop SQL.
He joined Tandem Software Development in May 1983. Prior to
this, he participated in the development of several widely used
software products, including an easy-to-use query language. He
received a B.S. in Electrical Engineering from National Taiwan
University, and a Ph.D. in Computer Science from Pennsylvania
State University.

T A N D E M SYSTEMS REVIEW J U L Y I 9 8 8

ne of Tandem's major goals
when implementing NonStop
SQL was to provide not only
the high functionality and
ease of use associated with
SQL, but also a performance
rating high enough to make

SQL an efficient choice in a production envi
ronment. NonStop SQL achieves high per
formance through an implementation that
integrates SQL record access with the pre
existing disk 1/0 and transaction management
subsystems, DP2 and TMF (Transaction Moni
toring Facility). This low-level system integra
tion reduces message traffic and CPU
consumption by putting SQL optimizations at
the lowest levels of the system. Examples of
these optimizations are message traffic reduc
tion by filtering data and applying updates at
the data source, 1/0 savings by SQL-optimized
buffer pool management, and locking and
transaction journaling techniques, which take
advantage of SQL semantics. The result is an
SQL system that matches the performance of
the ENSCRIBE database management system,
while inheriting such pre-existing architectur
ally derived features as high availability,
transaction-based data integrity, and distribu
tion of both data and execution.

Technical Paper:
High-Performance SQL through

Low-Level System Integration

Tandem's Approach to a
High-Performance SQL
Many other vendors have implemented SQL as
an "add-on layer" to the existing system and,
as a result, provide minimal integration with
the pre-existing architecture. This approach
keeps development costs low and has a mini
mal impact on underlying system software but
results in poorer performance. The "add-on
layer" approach introduces one or more of the
following:

■ An SQL-specific transaction management
system with a proprietary audit trail (log).
■ A disk cache (buffer pool) management
mechanism that operates as a layer above the
native file system.
■ An SQL-specific concurrency control mecha
nism that operates as a layer above the pre
existing concurrency control mechanism.
■ New access method logic, specific to SQL
tables, that operates as a layer above the native
file system.

JULY 1988 TANDEM SYSTEMS REVIEW 63

64

When these SQL system-support mecha
nisms operate as a layer above (not integrated
with) the pre-existing database management
system (DBMS) mechanisms, they cannot per
form as efficiently as the native file system or
DBMS. There are two reasons for this. First,
multiple layers increase the path length. Sec
ond, low-level optimizations that improve the
performance of the old DBMS do not necessar
ily apply to the SQL layer.

By contrast, Tandem's integrative approach
does not re-implement any of these DBMS
system-support mechanisms. Instead, SQL
specific logic has been introduced into the
corresponding subsystems supporting
ENSCRIBE, the pre-existing DBMS. Integra
tion with Tandem's networking and distrib
uted transaction management subsystems
allows Nonstop SQL to inherit pre-existing
facilities for high availability, fault tolerance,
and distribution. In addition, the inherited
distributed architecture will allow progres
sively fuller exploitation of parallelism to
improve performance in the future.

As compared with the layered approach,
pushing Nonstop SQL support logic to the
lowest levels of the system produces perfor
mance gains by reducing low-level path
lengths. It further provides the opportunity for
significant SQL-specific disk cache manage
ment optimizations, resulting in fewer and
more efficient transfers of data to and from
disk. Given the message-based nature of
Tandem's distributed operating system, how
ever, perhaps the most significant performance
gains are achieved via message traffic savings,
which are also in part describable as low-level,
path-length savings.

Compared to the ENSCRIBE record-at-a
time interface, Nonstop SQL significantly
reduces message traffic by introducing a field
level interface to the low-level disk 1/0 system
and by delegating to the disk process (low-level
disk-file server) such SQL functions as field
projection, predicate evaluation, and set
oriented retrievals, updates, and deletes. In
addition, delegating an update via "update
expression" (e.g., SET ACCOUNT.BALANCE
= ACCOUNT.BALANCE - DEBIT) to the disk
process eliminates the extra message that
would otherwise be needed by the requester to
read the record before updating it.

These message savings, optimized cache
management, and reduced path lengths for
1/0 and transaction management compensate
for increased path lengths at higher levels to
support the higher functionality and ease of
use of the SQL language. The result is the
functionality of SQL with performance com
parable to that of ENSCRIBE (NonStop SQL
Benchmark Workbook, 1987).

Overview of Tandem Architecture
The Tandem NonStop™ architecture consists
of up to 16 loosely coupled processors inter
connected by dual high-speed buses to form a
single system or node (Katzman, 1978). Nodes
can be connected into clusters by fiber-optic
links or into "long-haul" networks via X.25,
SNA, or other protocols. The goals of the
architecture are fault tolerance, high availabil
ity, and modularity.

Hardware and software redundancy main
tain 1/0 device availability despite single mod
ule failure. Hardware redundancy provides
alternate physical paths to 1/0 devices, and
software redundancy provides fault-tolerant,
device-controlling "process pairs." The "pri
mary" process and its hot-standby "backup"
process run in two processors physically con
nected to the device (Bartlett, 1981). A trans
action mechanism coordinates the atomic
commitment of updates by multiple processes
in the network (Borr, 1981).

TANDEM SYSTEMS REVIEW JULY 1988

A message-based operating system manages
system resources and provides communication
between processes executing in the same or
different processors. The message system
makes the distribution of hardware compo
nents transparent (Bartlett, 1981). I/0 pro
cesses are system-level processes that manage
1/0 devices; the disk process is the I/0 process
that manages disk volumes (optionally repli
cated on "mirrored" physical drives for fault
tolerance).

Components of the Disk Process
The disk process is actually a group of cooper
ating processes that share a message-input
queue. The process group acts as the I/0
server for files resident on the volume it man
ages. These files include code files and virtual
memory swap files as well as Nonstop SQL
and ENSCRIBE database files. The disk pro
cess performs disk 1/0 by invoking a set of
subroutines, collectively called the "driver,"
which run in the process environment of the
invoker.

The record management component of the
disk process implements the access methods
that support the file structures common to
ENSCRIBE and Nonstop SQL:

■ Key-sequenced (B-tree).

■ Relative (direct access).
■ Entry-sequenced (insert only at end of file).

The cache management component of the
disk process manages a main memory buff er
pool that stages data to and from disk, using a
least-recently-used algorithm that obeys
"write-ahead-log" protocol (Gray, 1978). The
cache provides transaction-protected database
read and write services while minimizing disk
I/0 accesses.

Disk cache management is integrated with
the operating system's processor-global,
virtual-memory management mechanism in
the sense that the latter uses a globally opti
mized page-replacement algorithm, which
can, via handshakes with the disk processes of
the processor, cause the "stealing" of clean
database buffers and the "cleaning" (writing)
of dirty ones in order to make the underlying
physical memory pages available for a higher
priority use.

The lock management component of the
disk process provides concurrency control for
both NonStop SQL and ENSCRIBE; it locks at
the file, record, or "generic" (key prefix) level
for volume-resident SQL or ENSCRIBE data.

Transaction-management code and audit
generation code permeate the record manage
ment, cache management, and lock manage
ment components. Transaction commit and
abort are supported by tight integration with
the operating system's Transaction Monitoring
Facility, TMF (Borr, 1981). The dual roles of
TMF and the backup disk process in maintain
ing high device availability, fault tolerance,
transaction consistency, and robustness to
crash have been described in other literature
(Borr, 1984).

NonStop SQL and ENSCRIBE share the
same TMF audit trail (log), which resides on
the audit-trail vol-
ume. A standard disk
process manages the
audit-trail volume.
The audit-trail writ
ing component of the
audit-trail volume's
disk process is highly
optimized for long or

The disk process is a
1 group of processes

sharing a message-input
queue.

"bulk" sequential I/Os using "group commit"
(Gawlick, 1985) and audit piggy-backing to
maintain a high transaction commit rate with
a minimal number of I/Os.

JULY 1988 TANDEM SYSTEMS REVIEW 65

Figure 1.

The structure of a com
piled and executing
program. The application
calls the SQL executor,
which calls the file sys
tem. The file system
sends single-variable
query requests to the
disk process, which does
projections and selections
on tables and protection
views to produce a record
subset. This subset is
returned to the file sys
tem and executor or is
updated or deleted by the
disk process.

66

Figure 1

Rationale for Division of Labor
between File System and Disk Process
The file system is a set of system library rou
tines that have their own data segment but run
in the process environment of the application
program. These routines format and send to
various disk processes messages requesting
database services for files residing on their
volumes. Through file system invocations, the
application process becomes a requester
(client) and the disk process a server in the
requester-server model.

Disk servers

Oata

~ =
Disk lmflsaeti<ln
~ log

l

In ENSCRIBE, the application program
invokes the file system explicitly, calling such
routines as OPEN, READ, WRITE, and
LOCKRECORD to perform key navigation
and record-oriented 1/0.

In Nonstop SQL, the application program's
SQL statements invoke the SQL executor, a set
of library routines that run in the application's
process environment. The executor invokes the
file system on behalf of the application. Its
field-oriented, and possibly set-oriented, file
system calls implement the execution plan of
the compiled query (see Figure 1).

The distributed character of the Tandem
architecture mandates division of labor
between the file system and the disk process.
Typically, database files in a Tandem applica
tion are spread across multiple disk volumes,
which are attached to different processors
within a node or to different nodes within a
cluster or network.

Base files may have multiple secondary
indices (implemented as separate key
sequenced files), and these may be located on
arbitrary volumes. Base files and secondary

TANDEM SYSTEMS REVIEW JULY 1988

indices may each be horizontally partitioned,
based on record key ranges, into multiple frag
ments residing on a distributed set of disk
volumes. Thus, the file fragment managed by
the disk process as a single B-tree may in fact
be merely a single partition of an ENSCRIBE
or SQL file or a secondary index (or partition
thereof) for an ENSCRIBE or SQL base file.
The file or table is viewed as the sum of all its
partitions and secondary indices only from the
perspective of the SQL executor or ENSCRIBE
file system invoker.

This architecture makes the file system the
natural locale for the logic (transparent to the
caller) that manages access to the appropriate
partition based on record key, manages access
to the base-file record via a secondary key, or
maintains secondary indices consistent with
the update or delete of a base-file record.

For example, to implement a request to
read via a secondary index, the file system
first sends to the disk process that manages the
index's volume a read request for the appropri
ate index record. After extracting the base-file
record key from the index record, it sends a
request to the base file's disk process to read
the base-file record having that key. To imple
ment a read or write request to a partitioned
file, the file system uses the record key to iden
tify the partition in which that record resides,
then sends the read or write request to the disk
process that manages that partition. These file
system functions are common to both
NonStop SQL and ENSCRIBE, although sepa
rate file system procedures perform them for
the two systems.

The following sections describe the nature
of the file-system disk-process (FS-DP) inter
face for ENSCRIBE and the reasons for design
ing a new FS-DP interface for NonStop SQL.

The Old FS-DP Interface Mandated
byENSCRIBE
The record-oriented user interface of
ENSCRIBE mandates a record-oriented FS-DP
interface to support it. The ENSCRIBE user
issues requests to read, write, or delete a whole
record, specified by the record's primary or
alternate (secondary) key. The only exception
to this record-at-a-time interface is a user
controlled sequential read optimization called
sequential block buffering (SBB).

When enabled, SBB for reads causes each
FS-DP request message to return a copy of a
physical file block. SBB reduces FS-DP mes
sage traffic by the file's physical blocking fac
tor (i.e., the number of records per block).
After an FS-DP message returns a block to the
file system, multiple record-at-a-time
ENSCRIBE READ requests cause the file sys
tem to de-block its local block copy; then a
message requesting the next block is sent to the
disk process.

However, SBB under ENSCRIBE has limited
utility because it locks at the file level only; no
other locking is effective when SBB is in use.
Because of this limitation, the user must have
an OPEN-exclusion mode that excludes other
write-access openers.

The New FS-DP Interface Tailored
for Nonstop SQL
The SQL language is characterized by a field
oriented user interface and set-oriented selec
tion, update, and delete operations (Database
Language SQL 2, 1986). User-specified predi
cates define selection criteria, update expres
sions, and integrity constraints. The field and
set orientation of the user interface extend
down to a field-oriented and set-oriented FS
DP interface, requiring less total message
traffic between the file system and the disk
process than a record-at-a-time interface.

When the selection predicate (e.g., WHERE
ACCOUNT.BALANCE >0) involves only one
table (actually, one file fragment managed by
a single disk process), the disk process can
evaluate this "single-variable query" for each
record in a key range and use the query as a
filter limiting the set of records processed or
returned in the reply to the FS-DP message.

JULY 1988 TANDEM SYSTEMS REVIEW 67

68

When an update expression specifies a new
value for a field by using an expression that
involves only literals and fields of the record
at hand (e.g., SET ACCOUNT.BALANCE =
ACCOUNT.BALANCE * 1.07), subcontracting
the expression evaluation and update to the
disk process avoids the necessity of returning
the record to the file system invoker, which
would subsequently request the update via a
new message.

Where an integrity constraint (e.g., CHECK
ACCOUNT.BALANCE > = 0) limits the
allowable updates to a table, its enforcement
at disk process level may likewise obviate the
need for a preliminary read by the file system
for constraint verification prior to an update
request via a second message.

Nonstop SQL Statement Execution
Reduced to Single-Variable Queries
Though a general SQL predicate can be multi
variable (i.e., involve joins or expressions
using fields of more than one table), the exec
utor's file system invocations, mandated by
the compiled query-execution plan, are
expressed in terms of a single table, with
optional access using a secondary index. The
file system dynamically decomposes this
single-table request into messages to individ
ual disk processes managing partitions (if any)
and/ or secondary indices.

If the SQL statement decomposes so that a
single-variable query can be attached to the
request message sent by the file system to the
disk process, message traffic over the FS-DP

interface can be reduced by filtering the data
at its source. Because SQL selection and pro
jection logic is pushed as low as possible in the
system, the data is filtered early. In a distrib
uted system, this produces important perfor
mance benefits due to reduced message traffic,
since only selected and projected data is
returned to a remote requester.

Continuation Re-drive Protocol for
Set-Oriented FS-DP Requests
The Nonstop SQL FS-DP interface, which has
a set-oriented option, subcontracts selection
and projection to the disk process wherever
feasible. The disk process may be requested to
operate on (i.e., to retrieve, update, or delete)
a set of records that span a specified primary
key range (may include all) and, optionally,
satisfy a predicate. To prevent a single set
oriented FS-DP request from monopolizing a
disk process over a long period of time, limits
on the elapsed and processor time spent per
request message are set. If exceeded, a contin
uation re-drive protocol is triggered. The disk
process then returns to the file system the key
of the last record accessed, together with any
data selected during the current request execu
tion (retrieval case). The file system then sends
a re-drive message.

Sequential Block Buffering
Using disk process selection and projection,
the ENSCRIBE concept of sequential block
buffering has been extended for NonStop SQL
from "real" (RSBB) physical disk-block copies
to "virtual" (VSBB) blocks. In VSBB, data is
returned through the set-oriented FS-DP read
interface after projected fields have been
extracted from key-range-satisfying records
that have optionally been subjected to a filter
ing predicate. This is similar to the concept of
portals described by Stonebraker (Stonebraker
and Rowe, 1984).

The locking restriction under ENSCRIBE
(file locking only), which limited the useful
ness of SBB, has been removed for Nonstop
SQL. Record locking has been extended to a
form of virtual-block locking in which the
records of the virtual block are locked as a
group.

TANDEM SYSTEMS REVIEW JULY 1988

The selection and projection performed by
the disk process in filling the virtual block
buffer, particularly if the predicate is very
selective, give VSBB a much reduced message
cost over the record-at-a-time interface and
even over the RSBB interface. RSBB gives a
factor of three over the record-at-a-time inter
face, and VSBB gives NonStop SQL an addi
tional factor of three over RSBB on many
benchmark queries (Tandem Database Group,
1987). The performance gains of VSBB can be
attributed to the reduced message traffic
resulting from filtering data at its source and
only returning selected and projected data to
the requester.

Mapping SQL to FS-DP Interface:
Examples

Example 1: Virtual Sequential
Block Buffering
The following statement maps into a series of
set-oriented read requests that involve selec
tion and projection and return data by VSBB.

Message types:
GET /\FIRST t\ VSBB
GETANEXTAVSBB

Table EMP has the following fields:
EMPNO (primary key), NAME, HIRE_DATE,

SALARY, ...
SELECT NAME, HIRE_DATE FROM EMP
WHERE EMPNO < = 1000 AND SALARY

>32000;

The initial FS-DP message is of type
GET /\FIRST t\ VSBB. It specifies the projection
of the fields NAME and HIRE_DATE (identi
fied by their record descriptor field numbers),
the primary key range [LOW-VALUE, 1000] for
EMPNO, and the predicate SALARY >32000.
The returned virtual block contains (NAME,
HIRE_DATE) from records in the primary key
range that satisfy the selection predicate.

If a full VSBB condition or a time limit
expiration makes a continuation re-drive nec
essary, message type GET /\NEXT A VSBB is
used. It specifies the new key range (LAST
PROCESSED-KEY, 1000] for EMPNO but does
not resend the predicate or the projection.
These latter were saved in the subset control
block created by the disk process at
GET /\FIRST time.

Example 2: Real Sequential Block Buffering
The following statement, which involves no
selection or projection, maps into a series of
set-oriented read requests that return data
using RSBB.

Message types:
GET /\FIRST ARSBB
GET /\NEXT ARSBB

SELECT * FROM EMP;

The initial FS-DP message is of type
GET /\FIRST ARSBB. It specifies the primary
key range [LOW-VALUE, HIGH-VALUE] for
EMPNO. Each re-drive, using message type
GET /\NEXT ARSBB and specifying the new key
range (LAST-PROCESSED-KEY, HIGH-VALUE],
returns one real sequential block.

Example 3: Update Subset
The following statement maps into a series of
set-oriented update requests involving a selec
tion predicate and an update expression.

Message types:
UPDATE/\SUBSET /\FIRST
UPDATEASUBSET/\NEXT

Table ACCOUNT has the following fields:
ACCTNO (primary key), BALANCE, ...

UPDATE ACCOUNT
SET BALANCE = BALANCE * 1.07
WHERE BALANCE > O;

The initial FS-DP message is of type
UPDATE/\SUBSET /\FIRST. It specifies the
primary key range [LOW-VALUE, HIGH
VALUE] for ACCTNO, the predicate BAL
ANCE >0, and the update expression:
BALANCE = BALANCE * 1.07.

JULY 1988 TANDEM SYSTEMS REVIEW 69

70

If a time limit expiration makes a con
tinuation re-drive necessary, message type
UPDATE/\SUBSETANEXT is used. It specifies
the new key range (LAST-PROCESSED-KEY,
HIGH-VALUE] for ACCTN0 but does not
resend the predicate or the update expression.
These latter expressions were saved in the sub
set control block created by the disk process at
GETAFIRST time.

Set Interface Facilitates Cache
Optimizations for Sequential Access
The set-oriented FS-DP requests specify a pri
mary (physically clustered) key range of
records to be processed. The begin-key and
end-key are specified at the initial FS-DP
interaction. From then on, the disk process
can optimize, reading the blocks containing
the required key span from disk into cache
using a minimal number of I/Os. Where pos
sible, the disk process reads into cache buffers
sequential strings of physical blocks (currently
limited to 4 Kbytes maximum each) using
"bulk" I/Os (currently limited to 28 Kbytes
maximum). Of course, where physical cluster
ing of key-sequenced data blocks has been
broken due to B-tree splits and collapses, some
bulk I/Os may be less than maximal length.

In addition to using bulk 1/0 to minimize
the number of reads, the disk process attempts
to "pre-fetch" data (i.e., to perform bulk
reads asynchronously in anticipation of their
need by an active request). Advance knowl
edge of the required key span and use of the
multi-process structure of the disk process
group make asynchronous pre-fetch possible.
With asynchronous pre-fetch, CPU-bound
processing using data from the cache can
occur in parallel with disk I/Os.

The disk process also uses bulk 1/0 for
asynchronous "write-behind." This mecha
nism uses idle time between disk process
requests to write out strings of sequential
blocks updated under a subset. By using its
subset control block (created as a result of the
initial set-oriented FS-DP interaction), the disk
process can keep track of strings of sequential
blocks which are "dirty" (i.e., have been
updated in cache). Once a string of dirty data
blocks has aged to the point that the audit
related to the blocks of the string has already
been written to disk, then the string of dirty
data blocks can be written to disk without
violating "write-ahead-log" protocol (Gray,
1978). The disk process then writes the string
to disk using the minimal number of bulk I/Os.

Field Interface Enables Audit Record
Size Reduction
The field-oriented nature of the SQL FS-DP
interface allows the record management com
ponent of the disk process to generate SQL
specific TMF audit records containing
field-oriented before- and after-images. The
resulting "field-compressed" audit records are
generally smaller than ENSCRIBE audit
records, which by default contain full-record
before- and after-images.

SQL naturally lends itself to audit compres
sion because SQL syntax specifies the fields
that are being updated. By contrast, the
ENSCRIBE user's unit of update is a record,
and while an ENSCRIBE audit-compression
user option is available, its implementation is
costly because the identity of the updated
fields must be computed by comparing the
record before- and after-images. Therefore,
ENSCRIBE audit records contain full record
images by default.

TANDEM SYSTEMS REVIEW JULY 1988

The reduction in SQL audit-record size
resulting from field compression has perfor
mance benefits in many areas. For example,
there are fewer sends of audit to the audit-trail
disk process due to audit buffer full condi
tions, since the audit buffer fills up less fre
quently. Less audit per transaction allows each
bulk-write of the audit trail to commit a larger
group of transactions. The size of the audit
trail data on disk and all audit-containing
messages throughout the system is reduced
as well.

Opportunities for Future
Performance Enhancements for SQL
This paper has described the performance
gains achieved by integrating Nonstop SQL
with pre-existing, low-level system mecha
nisms. These gains point the way to improving
SQL performance in other areas, including:

■ The FS-DP sequential-write interface.
■ The constructs UPDATE WHERE CURRENT
and DELETE WHERE CURRENT.
■ A fuller exploitation of the Tandem system's
parallel architecture.

The FS-DP Sequential Write Interface
Changing the FS-DP sequential write interface
could result in performance gains similar to
those achieved by using sequential block buf
fering for reads. Currently, the interface for
sequential SQL inserts is a message per record
inserted.

If a blocked interface for inserts were intro
duced, the message traffic between the file
system and the disk process could be reduced
by the blocking factor. Multiple sequential
inserts issued to the file system by the SQL
executor would then be accumulated in a local
buffer by the file system, which would, when
required, send the buffer of inserted records to
the disk process using one message.

However, to avoid a late-detected,
duplicate-key condition, the disk process
would have to keep an empty, sequential,
target-key range locked by prior agreement
with the file system. With this interface, the
disk process could maintain an insert control
block, similar to the subset control block,
which would keep track of strings of sequen
tial blocks previously dirtied. Strings of dirty
blocks old enough not to cause write-ahead
audit if written to disk would then be written
out using bulk I/0.

Update and Delete WHERE CURRENT
Constructs
The performance gains achieved by using set
oriented update- and delete-request messages
suggest that similar improvements may be
made for the constructs UPDATE WHERE
CURRENT and DELETE WHERE CURRENT.
Currently, these constructs require one mes
sage per updated or deleted record. If the
updates (deletes) were to occur in a buff er
local to the file system and the buff er full of
updates (deletes) was sent to the disk process
in one message, substantial message traffic
savings in the FS-DP interface could be
realized.

Exploiting Tandem's Parallel Architecture
An open-ended area for improving the per
formance of Nonstop SQL is the fuller exploi
tation of the parallel architecture of the
Tandem system. Parallelism is currently
exploited in the sense that multiple indepen
dent transactions can execute simultaneously
(Tandem Database Group, 1987). The overlap
of 1/0 and CPU-bound processing inherent in
asynchronous pre-fetch and write-behind is
also a form of parallelism.

JULY 1988 TANDEM SYSTEMS REVIEW 71

72

Furthermore, a current user option directs
the SQL compiler to cause the invocation at
execution time of the parallel sorter, FastSort,
which uses multiple processors and disks if
available (Tsukerman, 1986). Future opportu
nities for using intra-query parallelism include
distributed query optimization, parallel
executor-process structure, and no-wait disk
process "message-sends" in the file system.

Tandem's continuing commitment to the
implementation of Nonstop SQL ensures that
these performance-enhancement opportunities
will be fully explored in the future.

Conclusion
By pushing SQL-specific logic to the lowest
levels of the operating system, Tandem has
obtained an SQL system that today matches,
and is expected one day to surpass, the per
formance of its pre-existing DBMS. The low
level path-length savings, disk-cache
management optimizations, and reduced mes
sage traffic resulting from low-level integra
tion compensate for the increased path length
at higher levels needed to support the high
functionality and ease of use of the SQL
language.

In addition, system integration allows
NonStop SQL to inherit from the pre-existing
system the facilities that support high avail
ability, fault tolerance, and data and execution
distribution. In particular, the inherited facili
ties for distribution make the increased exploi
tation of parallelism an avenue for major
performance gains in the future.

References
Bartlett, J.F. 1981. A NonStop Kernel. In Proceedings of
Eighth Symposium on Operating System Principles. Association
for Computing Machinery (ACM).

Borr, A. J. I 981. Transaction Monitoring in ENCOMPASS:
Reliable Distributed Transaction Processing. In Proceedings of
the Seventh International Coriference on ~ry Large Data Bases.
September. Republished as Tandem TR 81.2. Tandem
Computers Incorporated.

Borr, A.J. 1984. Robustness to Crash in a Distributed Data
base: A Non Shared-Memory Multi-Processor Approach. In
Proceedings of the Tenth International Coriference on ~ry
Large Data Bases. September. Republished in Tandem Systems
Review. Vol. I, No. 2. Tandem Computers Incorporated. Part
no. 83935.

Database Language SQL 2 (ANSI Working Draft). 1986. ANSI
X3H2 87-8.

Gawlick, D., and Kinkade, D. 1985. Varieties of Concurrency
Control in IMS/VS Fast Path. IEEE Database Engineering.
June.

Gray, J.N. 1978. Notes on Data Base Operating Systems. IBM
Research Report: RJ 2188. International Business Machines
Corporation.

Katzman, J.A. 1978. A Fault-Tolerant Computing System. In
Proceedings of the Eleventh Hawaii International Coriference on
System Sciences.

Nonstop SQL Benchmark Workbook. Part no. 84160. Tandem
Computers Incorporated.

Pong, M. 1988. Access Plan Selection in NonStop SQL.
Tandem Systems Review. Vol. 4, No. I. Tandem Computers
Incorporated. Part no. 400103.

Stonebraker, M., and Rowe, L. 1984. Database Portals: A New
Application Program Interface. In Proceedings of the Tenth
International Coriference on ~ry Large Data Bases. September.

Tandem Database Group. 1987. Nonstop SQL, A Distributed,
High-Performance, High-Availability Implementation of SQL.
Tandem Technical Report 87 .4. Tandem Computers
Incorporated.

Tsukerman, A., et al. 1986. FastSort: An External Sort Using
Parallel Processing. Tandem Technical Report 86.3. Tandem
Computers Incorporated.

Acknowledgments
While many members of the Tandem Database Group contrib
uted ideas to the design of the low-level architecture for
NonStop SQL, I would particularly like to acknowledge the
contributions of Franco Putzolu.

Andrea Borr is currently working on disk process DP2 support
for Nonstop SQL. She previously worked on the design and
development of the ENCOMPASS products ENFORM, TMF, and
DP2. Before joining Tandem, Andrea spent 8½ years as a soft
ware developer and field analyst for two other mainframe ven
dors. Andrea holds a bachelor's degree in Mathematics from the
University of Chicago and a master's degree in Computer Sci
ence from the University of Wisconsin. She was also a doctoral
candidate at Stanford University.

TANDEM SYSTEMS REVIEW J U L Y I 9 8 8

he Tandem Advanced Com
mand Language (TACL) is
the standard interface to the
GUARDIAN 90™ operating
system. In addition to pro-
viding full command inter
preter facilities, TACL can be

used as a programming language.
Writing TACL routines involves a readjust

ment in perspective for programmer-analysts
who are used to working with a traditional
language such as COBOL. TACL is interpretive
and is focused toward providing a high-level
language for command processing. Functions
such as system initialization, system monitor
ing, and job control are excellent uses for
TACL.

In an error situation, TACL, like any other
programming language, interprets code as far
as it can before producing an error message.
The TACL built-in debugger visibly demon
strates how TACL interprets code. It allows
step-by-step execution, shows control flow,
and permits examination and modification of
variables. Because the debugger displays each
step, it is especially useful when learni~g how
to work with conditionals and arithmetic
computations.

This article describes how to debug both
high-level TACL code and #DELTA code. It is
intended for programmer-analysts who are
interested in writing TACL code and are famil
iar with the concept of a TACL macro and
TACL constructs (e.g., #PUSH and #FRAME).
An understanding of variable "invocation"
and "expansion" is also helpful, but an under
standing of #REQUESTER and #SERVER con
structs is not necessary.

Debugging TACL Code

Terminology
For the purposes of this article, the term
"TACL commands" refers to high-level TACL
constructs such as #PUSH, #FRAME, and
#SET. #DELTA constructs are referred to as
"#DELTA commands."

In addition, a distinction is made between
TACL user commands and debug commands.
The TACL user commands include all nonde
bugging TACL commands, including STATUS,
WHO, and RUN. These are described more
fully in the TACL Reference Manual. Debug
commands are used strictly for debugging.

JULY 1988 TANDEM SYSTEMS REVIEW 73

74

Interactive TACL Debugger
TACL is a very powerful language; the fact
that it has a good debugging environment pro
vides added strength. This section describes
how to use the interactive TACL debugger and
includes syntax and examples of use.

Enabling the TACL Debugger
The TACL debugger can be enabled interac
tively from the TACL prompt, or by adding a
line of code to a macro or routine. The syntax
is as follows.

■ At a TACL prompt1
, before invoking the

macro or routine:

10 > BREAK variable

where variable is a macro name or the name of
a routine that has already been loaded.

• From inside a macro or routine:

?SECTION name MACRO
#SET #TRACE -1

When the debugger is enabled, TACL waits
for an instruction before it does its first expan
sion. (This is similar to the INSPECT debug
ging facility's RUND operation.) At this
point, the user can set breakpoints and resume
execution or step through the code.

'The TACL prompt is a "greater than" sign(>). The number appearing to the
left of the prompt is the count of the command in the sequence of commands
the user has entered (e.g., a number I to the left of the prompt indicates the
first command typed in, a 2 indicates the second command, etc.). The double
equal signs (--) introduce TACL comments.

Table 1.
Debug command syntax.
Command Syntax

BREAK B[REAK] [variable]

CLEAR C[LEAR] variable

C[LEAR]*

DISPLAY D[ISPLAY] variable

MODIFY M[ODIFY] variable

RESUME R[ESUME]

STEP ST[EP]

Description

Set a breakpoint on the
specified variable or variable
level. If variable is omitted, all
breakpoints are listed.

Clear the breakpoint for the
specified variable or variable
level.

Clear all breakpoints.

Display the contents of a
specified variable or variable
level.

Enter new contents for the
specified variable or variable
level. To use, type M variable at
the debug prompt. It will ask
for the new contents. Press
carriage return after each line.
When done, type CTRUY.

Stop debug mode and
continue execution of code.

Perform the next expansion
and return to debug prompt.
Press RETURN to continue
stepping.

TACL Debugger Commands
The six TACL debugger commands are shown
in Table l 2.

Anything other than a debug command
(e.g., user commands, such as STATUS*,
TERM) will be passed through to the com
mand interpreter (TACL). Note, however, that
since the debugger is part of the TACL process
running on the user's terminal, commands
that could impact the routine being debugged
(e.g., #UNFRAME) are not recommended.

Debug commands must reference declared
variables. The TACL debugger displays each
line before it is evaluated; therefore, a declara
tion (#PUSH) will be in effect when the debug
ger is displaying a line after the #PUSH.

A breakpoint will stop execution when the
referenced variable is invoked as a function.
A breakpoint is not effective when the variable
is used as an argument to a function-for
example, the code #SETx will not cause a
breakpoint on variable x.

'In Table 1, brackets indicate an optional portion of the command. In all other
places, brackets are part of the command syntax.

TANDEM SYSTEMS REVIEW J U L Y I 9 8 8

Debugging a TACL Macro
There are many ways of writing a TACL macro
to list suspended PATHWAY terminals. Fig
ure 1 is a sample macro showing one very sim
ple way of doing this. This macro, however,
has an error which can be located by using the
debugger.

TACL debugging allows an inside view of
how TACL is interpreting code.

When the INFO macro is invoked, it runs
but does not display any data. The following
appears:

5>RUN INFO
Suspended terminal(s):
6>

A manual run of PATHCOM shows two
terminals in suspended state. This means that
the TACL macro is not working correctly and a
debug session is needed. The debug facility is
enabled by adding the line #SET #TRACE -1
after the #SETMANY command. INFO is then
invoked again:

9>RUN INFO
PATHCOM /OUTV rslt/ $trpm; status term*; &
exit3

-TRACE-
-10-

At the first prompt, set a breakpoint on state
and resume execution:

-10-B state
-11-R

Continue to the first invocation of state:

Suspended terminal(s):
[#IF [#MATCH SUSPENDED [state]

I\
-BREAK-
-12-

The contents of variables can be displayed at
this point:

-12-D state
-13-D termname
line

-14-

3For the purpose of formatting this article, some of the lines of code were split.
Normally, these examples would appear on one line.

Figure 1

Figure 1.

NOTE: This example can be adapted for any PATHWAY environment by changing "$TRPM"
to an appropriate PATHMON name.

?TACLMACRO
#FRAME
#PUSH rslt termname state line
#SETMANY rslt termname state line,

PATHCOM /OUTV rslt/ $!rpm; status term •, exit

SINK [#EXTRACT rsltl[#EXTRACT rslt]
#EXTRACTV rslt line

#OUTPUT Suspended terminal(s):
[#LOOP IWHILEI NOT [#EMPTYV rslt]
IDOi

#SETMANY termname state, line
[#IF [#MATCH SUSPENDED [state]]
ITHENI

#OUTPUTV line
]== endoflF
#EXTRACTV rslt line
] == end of LOOP
#UNFRAME

= = declare variables
= = initialize variables

== run PATHCOM, store
= = output in rslt

= = throw out 2 header lines
= = store first data line of
= = mlt into line

= = loop until all !Sit
= = lines have been read
= = get 1 st 2 columns of line
= = see if 2nd = SUSPENDED
= = if so, print the line

= = put next !Sit line into
== line

Sample TACL macro.
The macro is stored in a
file called INFO. After
doing a PATHCOM
STATUS TERM * to

investigate terminals
running under a
PATHMON named
$TRPM, it stores the
results into a variable

called rslt and checks for
suspended status. Finally
it prints status informa
tion for each suspended
terminal.

JULY 1988 TANDEM SYSTEMS REVIEW 75

76

Nothing is displayed for state, indicating
null contents. The #SETMANY statement,
which should have put the first two columns
from line into term name and state, is not
working as intended. Instead, it is putting the
actual word "line" into termname. Brackets
([]) must be placed around line in order to get
the correct results.

After making this change, invoke INFO
again:

7>INFO
-TRACE-
-248-

Enter the RESUME command to begin nor
mal execution:

-248-R
Suspended terminal(s):
FAX1 SUSPENDED 1121 FAX-TCPI $FAX0
MSCI SUSPENDED 1121 FAX-TCPI $FAX0
8>

The macro now works correctly.

Interactive #DELTA Debugger
#DELTA is a programmable text manipulation
facility that can be considered a special sub
layer of TACL. #DELTA functions are charac
terized by one- or two-character command
sequences and can be called by TACL routines
and macros when special string editing needs
to be done.

#DELTA functions must be operating cor
rectly before the routine is used by the TACL
code. TACL receives the result of a #DELTA
function; the intermediate steps within a
#DELTA function are not visible to the TACL
debugger.

Interactive #DELTA can verify #DELTA
results by allowing a user to step through test
data with #DELTA commands.

Interactive #DELTA is enabled as follows:

8>#DELTA
#DELTA9>

A text string can be passed to interactive
#DELTA by appending it to the #DELTA com
mand. However, it can be very useful to set up
TACL variables with values that can then be
used by multiple #DELTA tests. Variables for
use by #DELTA are set up as follows:

lO>#PUSH inp == declare an input variable
11 > # PUSH outp = = declare an output

variable
12 >#APPEND inp TEST DATA
13 > #OUTPUTV inp = = display variable's

contents
TEST DATA
14>#DELTA
#DELTA 15>

Interactive #DELTA Commands
Two interactive #DELTA commands are used
in conjunction with #DELTA command
streams to view intermediate #DELTA results.
(See Table 2.)

Table 2.
Interactive #DELTA commands.
Command Syntax

View

Display
pointer
position

V

Description

View the contents of the
buffer. The pointer is
represented by a period (.).
Note: The view command
allows additional range
specification. For more
information, please refer to
the TACL User's Guide.

Display the character
position of the pointer
as an integer.

Note: Enter CTRUY to see the results of the view and Display
pointer commands. Enter CTR UY twice to exit interactive
#DELTA.

TANDEM SYSTEMS REVIEW JULY 1988

Debugging #DELTA Code
Figure 2 shows the INFO macro from Fig
ure 1. The macro has been modified so that
#DELTA is used to look for the suspended
lines.

Before using the macro, the #DELTA por
tion can be tested using interactive #DELTA.

First, declare two variables for use by the
#DELTA function:

10 > #PUSH susp
11 > #PUSH rslt

Next, place appropriate test data into rslt:

12>#APPEND rslt 177T RUNNING
M6530-TCP1 $TB1
13 > #APPEND rslt FAX1 SUSPENDED
1121 FAX-TCPI $FAX0
14 >#APPEND rslt MSC 1 SUSPENDED
1121 FAX-TCPI $FAX0

Display the contents of rslt to verify that the
test data is correct:

16 > #OUTPUTV rslt
177T RUNNING M6530-TCP1 $TB1.#D
FAX1 SUSPENDED 1121 FAX-TCPI $FAX0
MSCI SUSPENDED 1121 FAX-TCPI $FAX0

Run interactive #DELTA, using the #DELTA
command:

17>#DELTA
#DELTA 18>

Clear the text buffer, using the H and K
#DELTA commands. (These commands are
described more fully in the TACL User's
Guide.)

#DELTA 18>HK

Display the contents of the buffer:

#DELTA 19>V
#DELTA 20 > CTRL/Y
(.)

The buffer contains only the buffer pointer.
Bring the contents of rslt into the buffer

using #DELTA's G command. The Band J
commands will reset the pointer to the begin
ning of the buffer. Examine the contents with
the V and CTRL/Y debug commands:

#DELTA 21 >Grslt$
#DELTA 22>BJ

#DELTA23>V
#DELTA 24> <control>-Y
(.)177T RUNNING M6530-TCP1 $TB1.#D

Figure2

?TACLMACRO
#FRAME

#PUSH rslt susp
#SETMANY rslt susp,

[#DEF lines DELTA IBODYI
HK
Grslt$
BJ
< :S SUSPENDED$; DL :Xsusp$ 1 L>

HK

PATHCOM /OU1V rslt/ $!rpm; status term *; exit
SINK [#EXTRACT rslt][#EXTRACT rslt]

SINK [#DELTA /COMMANDS lines/]
#OUTPUT Suspended terminal(s):
#OUTPU1V susp

#UNFRAME

= = declare variables
= = initialize to 0

= = clear buffer
== get PATHCOM result
= = start at beginning
= = loop through buffer
= = looking for
== "SUSPENDED", then
= = store each suspended
= = line into susp
= = clear buffer when
== done

= = invoke function

= = display contents of
== susp

After one iteration of the search command,
display the contents again:

Figure 2.

Modified INFO macro.

#DELTA 25 > S SUSPENDED$
#DELTA26>V
#DELTA 27 > CTRL/Y
FAX1 SUSPENDED(.) 1121 FAX-TCPI $FAX0

The buffer is now pointing to the first occur
rence of SUSPENDED.

For the macro to operate correctly, the
entire line must be returned; use the 0L com
mand to move the buffer pointer to the begin
ning of the line. Again, V and CTRL/Y are
used to display the buffer.

#DELTA 28 >0L
#DELTA29>V
#DELTA 30>CTRL/Y
(.)FAXI SUSPENDED 1121 FAX-TCP1$FAX0

JULY 1988 TANDEM SYSTEMS REVIEW 77

78

The pointer was moved successfully. Next,
check the code used to store the result.

#DELTA 31 >Xsusp$

Finally, exit interactive #DELTA in order to
check the contents of susp:

#DELTA 37>HK
#DELTA 38 > CTRL/Y
#DELTA 39 > CTRL/Y
39 > #OUTPUTV susp
FAX1 SUSPENDED 1121 FAX-TCPl $FAX0
40>

The #DELTA code worked correctly. It can
now be incorporated into the TACL routine.
(Interactive #DELTA could also be used to test
the full iterative statement enclosed by < > .)

The #DELTA programmer must be aware
not only of buffer contents, but also of what is
happening with the result (expansion) of his
#DELTA function. When a #DELTA function
finishes, it will return the contents of the
buffer as its expansion-potentially a

multiple-line result. All functions (e.g.,
#OUTPUT) expect single-line arguments
unless enclosed in square brackets. If the
#DELTA result buffer is not needed, either an
HK can be done within the #DELTA function,
or a SINK can be done on its expansion.
Results can be displayed or discarded as
follows:

[#OUTPUT [#DELTA /COMMANDS lines/] to
display results

[SINK [#DELTA /COMMANDS lines/] to dis
card results

Conclusion
Both the interactive TACL debugger and the
interactive #DELTA functionality are straight
forward and well integrated into the TACL
development environment, and do not require
much extra work or knowledge. They provide
considerably more information than would be
available from iterations of writing TACL
code, running it, analyzing the output results
and error messages, and rewriting the code.
Both mechanisms greatly enhance TACL pro
gramming productivity and can also assist
programmer-analysts in learning new TACL
capabilities.

References
TACL User's Guide. Part no. 82420. Tandem Computers
Incorporated.

TACL Reference Manual. Part no. 82421. Tandem Computers
Incorporated.

TACL Programmer's Guide. Part no.84111. Tandem Com
puters Incorporated.

Acknowledgments
The author would like to thank Roland Finlay, Dick Mahoney,
and Alex Bentley for providing information about TACL.

Linda Gary Palmer is a senior account analyst in the Seattle
District. Before joining Tandem in 1983, she worked in operating
system development for another computer vendor. Linda has a
degree in Information and Computer Science from the University
of California, Irvine.

TANDEM SYSTEMS REVIEW JULY 1988

TANDEM PUBLICATIONS ORDER FORM

The Tandem Systems Review and the Tandem Application Monograph Series are combined
in one free subscription. Use this form to subscribe, change a subscription, and order back
copies.

For requests within the U.S. , send this
form to:

Tandem Computers Incorporated
Tandem Systems Review
18922 Forge Drive, LOC 216-05
Cupertino, CA 95014

For requests outside the U.S. , send this form
to your local Tandem sales office.

Check the appropriate box(es):

D New subscription (# of copies desired ___)
D Subscription change (# of copies desired __ _
D Request for back copies. (Shipment subject to

availability.)

Print your current address here:

COMPANY NAME

ADDRESS

ATTENTION

PHONE NUMBER (U.S.)

If your address has changed, print the old
one here:

COMPANY NAME

ADDRESS

ATTENTION

PHONE NUMBER (U.S.)

To order back copies, write the number of
copies next to the title(s) below.

___ Part No. 83930, Vol. I, No. I, Fall 1983

___ Part No. 83931, Vol. 2, No. I, Winter 1984

___ Part No. 83932, Vol. 2, No. 2, Spring 1984

___ Part No. 83933, Vol. 2, No. 3, Summer 1984

Tandem Systems Review
_ __ Part No. 83937, Vol. 2, No. 2, June 1986

___ Part No. 83938, Vol. 2, No. 3, December 1986

___ Part No. 83939, Vol. 3, No. I, March 1987

___ Part No. 83940, Vol. 3, No. 2, August 1987

___ Part No. 11078, Vol. 4, No. I, February 1988

___ Part No. 13693, Vol. 4, No. 2, July 1988

Tandem Application Monograph
Series

___ Part No. 83900, Developing TMF-Protected
Application Software, March 1983, AM-005

___ Part No. 83901, Designing a Tandem/Word
Processor Interface, March 1983, AM-006

___ Part No. 83902, Integrating Corporate Infor
mation Systems: The Intelligent-Network
Strategy, March 1983, AM-007

___ Part No. 83903, Application Data Base Design
in a Tandem Environment, August 1983

___ Part No. 83904, Capacity Planning for Tandem
Computer Systems, October 1984

___ Part No. 83905, Sociable Systems: A Look at
the Tandem Corporate Network, May 1985

___ Part No. 83906, Transaction Processing on the
Tandem Nonstop Computer: Requestor/Server
Structures, January 1982, SEDS-001

___ Part No. 83907, Designing a Network-Based
Transaction-Processing System, April 1982,
SEDS-002

___ Part No. 83909, A Multi-Function Network
for Business Automation, May 1982, SEDS-004

TANDEM EMPLOYEES: PLEASE ORDER YOUR COPIES THROUGH YOUR MARKETING LITERATURE COORDINATOR.
7/88

~TANDEM COMPUTERS

400104 7188 Printed in USA

