
VOL.LIMH1. Nl.11\IBEI~ I

T A N D E M

REVIEW
- - - - - - - - - -

Building Open Systems Interconnection
with OSI/AS and OSI/TS

NetBatch-Plus:
Structuring the Batch Environment

Converting Database Files from
ENSCRIBE to NonStop SQL

Concurrency Control Aspects of
Transaction Design

Index

MARCIi I 990

This issue of the Tandem Systems Review was
produced entirely on a Macintosh. Text files were
downloaded from the Tandem host and formatted
in Microsoft Word. Art figures were created in
Adobe Illustrator. The text and art were imported
into Aldus PageMaker for the page layout process.
The cover graphic was drawn by hand, traced
using Adobe Illustrator, and separated in Adobe
Separator. Films were output on a Linotronic 300.

Volume 6, Number I, March 1990

,:ditorial Director

Susan Wayne Thompson

~ditor

'\nne Lewis

:\.ssociate Editors
Steven Kahn
\,'lark Peters

l'echnical Advisors

\!lark Anderton
3art Grantham

\ssistant Editor
farah Rood
,lectronic Publishing
\nnie F. Val va

\rt Director
lanct Stevenson

~over A rt and Illustrations
\/iklas Hallin

rhc Tandem S_ntcms Rc1'1c11· i'> published
1y l~mdcm Computer-, Incorporated.

f>urpose: The Fandcm Sy.\!CfJI.\ Rn·it\\'
1ubJ[..,hcs technical int·onnarion aboui
randcm -..oftware rclcu-;c:-. and produch.
I\ purpo..,e h to help prograrnmer
maly,t:-. who u<,C ourcornpulcr -,y:-,tcrn:-,

o plan for_ install. w,c. and rune Tandem
1roduch.

'!ubscription additions and
:hanges: A.., of the March 199{) i:-. . ..,uc,
,uh..,cription:-. to the Tandem Systems
frl'il'e1· must he apprmcd by a Tandem
qm:-.enrative. Complete the first portion
Jf the order fl inn at the back of !hi.\ copy
md ..,end the fotm to your local Tandem
,ale.., office.

_'omments: The editors \\.dcorne

.uggc.\tiom for content and fonnat.
)]cu.\c \Clld them to the Timdcm
l\·stem.1 Rc\"lcw. LOC' 216-05. 18922
-·org.c Drive. Cupertino.CA 95014.

randcm Computers, Incorporated rnai..e..,
10 representation or warranty tliat the
nfonnation contained in thi-; puhlication
_.., applJCable tu \)''iteim, configured

liffercntly than tho:,,,e s,y..,rems on which

he infonnation ha-; been developed and

c-;tcd. It al.'>o as.'>ume:,,, no re:,,,pon:,,,ihili!J

or error.s, or rnniss;ions, that may occur in

his, publication.

~·opyrigh! (c) !990Tandcm Computers,
ncorporated. All right.s, n::-.crvcd.

~o pall of this, document ma) he
eproduccd in any fonn. including
Jhotocnpy or lran-;lation !o another
,mp:uage. withou! the prinr written
on ... cll! of Tandem Cornpu1cr.'>
ncorporated.

cl\FORM, EXPAND. Gl !ARlllAN,
vlEASURE. MULTILA!'\. NetBatch.

-.JonStop. PS TEXT, TACL TAL
r.u1dcm. the l~tndern logo. and TMF are

radcmar!..s, and M~rvicc m.irb ofTamklll

'omputers Incorporated, protected

hrough use and/or rc~i..,tr.ition in the
;nited States and m,rny foreign countries,.

\dohc. Adohe llJus,!rator. ,md Adohc
icpar<.llnr arc n:p:1:-.tercd trndcmarks of

\dobc S~ '>tCm:,,, Incorporalcd. LinotroniL'
"a trademark of Linotype AG and/or ih
uh..,idianc\. Macinto:-.h 1,s, .i rcgis,1ered
radcmar!.. of Apple Computer. Inc.
vlicros,oft i.s, a regi.'>fcred tr:idemark nf
~1icro,s,oft Corporation. Pa~eMakcr js, a
rndcmark of Aldus, Corporation.

TANDEM SYSTEMS REVIEW

1

2

16

30

46

67

Editor's Preface

Building Open Systems Interconnection
with OSI/ AS and OSI/TS
RhodSmith

NetBatch-Plus: Structuring the Batch Environment
Glenys Earle, Dean KK Wakashige

Converting Database Files from ENSCRIBE
to NonStop SQL
Wayne Weikel

Concurrency Control Aspects of
Transaction Design
WouterSenf

Index

pen Systems Interconnection
(OSI) is the international
seven-layer reference model
that sets standards for the
connection of heterogeneous
computer systems. Tandem
has developed two communi

cation software products that adhere to OSI
standards and thus enable Tandem'M systems to
operate with OSI-standard subsystems from other
vendors. The opening article by Smith describes
how the OSJ/AS (Application Services) and OSI/TS
(Transport Services) products use OSI Session and
Transport Layers to allow a direct dialogue with
applications in a multi vendor environment. The
author discusses the capabilities of the products
with reference to the appropriate OSI standards
and describes how they are implemented in the
Tandem environment.

The article by Earle and Wakashige is the third
in a series of articles published by the Tandem
Systems Review (April 1989 and September 1989)
on batch processing on Tandem systems. This
article describes the NetBatch"'-Plus product, the
enhanced version of the NetBatch batch scheduler.
The NetBatch-Plus software provides a full-screen
interface and database that integrates with the
original NetBatch software. The authors describe
how the NetBatch-Plus features meet the schedul
ing requirements of batch processing and suggest
ways to exploit these features to take advantage of
Tandem system architecture.

Editor's Preface

Because of the increasing interest in Structured
Query Language (SQL), a growing number of
Tandem users are considering converting from
the ENSCRIBE database record manager to a
NonStop'M SQL relational database management
system. Weikel explores the issues that must be
weighed when deciding to convert to NonStop SQL
and discusses the considerations that help to make
a conversion successful. The article also describes
the considerations for a successful conversion
and emphasizes the importance of redesigning
and rewriting the application during conversion.

The Tandem online transaction processing
(OLTP) architecture allows concurrent transactions
to operate on shared data and, at the same time,
maintain transaction integrity and high perfor
mance. When more than one transaction operates
on the same data, the database record locking
mechanisms ensure transaction isolation and opti
mum user response times. NonStop SQL and the
Transaction Monitoring Facility (TMFM) product
provide locking options that give programmers
flexibility when regulating contention among
concurrent transactions. The article by Senf
describes how the NonStop SQL options can be
used to regulate concurrency. The discussion also
includes techniques that application designers can
use to anticipate transaction wait times and
determine the chances of locks occurring.

Finally, this issue includes an index of Tandem
System Review articles. The purpose of this index
is to allow readers to have a list of all articles pub
lished on each subject or product. If you would
like to order back issues of the Tandem Systems
Review, submit the order form to your Tandem
representative.

Susan W Thompson

MARCH 1990•TANDEM SYSTEMS REVIEW

2

Building Open Systems
Interconnection with

I OSI/AS and OSI/TS

he Tandem Open Systems
Interconnection (OSI) network
ing products OSI/AS (Applica
tion Services) and OSI/fS
(Transport Services) enable
Tandem'M systems to interwork
with other vendors' systems and

workstations, thus allowing cooperative processing
between these systems. Two fundamental aspects
of the Tandem approach to networking are open
ness, or the ability to interwork with heterogeneous
equipment, and the support of standards. OSI/AS
and OSI/fS allow a wide range of users easy access
to database applications that run on Tandem
systems, including those using the Tandem
NonStop'M SQL relational database management
system.

This article discusses the capabilities of the
Tandem OSI products, with reference to the
appropriate OSI standards, and shows how the
various OSI products fit together. It also describes
how the OSI products are implemented in a
Tandem environment. 1

This article assumes the reader is familiar
with OS] concepts and nomenclature. Readers
unfamiliar with OSI are urged to read "The OSI
Model: Overview, Status, and Current Issues"
in the April 1989 issue of the Tandem Systems
Review (Dunn).

Overview of OSI/ AS and OSI/TS
OSI/AS is an implementation of the OSI Session
Layer. OSI/fS is an implementation of the OSI
Transport Layer and functions of the OSI Connec
tionless Network Protocol. These products can use
different wide area networks (WANs) and local
area networks (LANs). One advantage of the
Tandem approach to OSI is that OSI applications
need not concern themselves about the type of
network they are using. (See Figure 1.)

'The OSI/AS and OSI(fS products described in this article have the features
and functionalities of the initially released OSI core ~crvices products, which
were announced in April 1989.

TANDEM SYSTEMS REVIEW• MARCH 1990

Two separate Tandem products, the X.25 Access
Method (X25AM) and the Tandem LAN Access
Method (TLAM), provide the network connection.
X25AM is a WAN-oriented product and TLAM is a
LAN product. TLAM supports two different types
of LAN, carrier sense multiple access with colli
sion detection (CSMA/CD) and Token Bus. These
products, together with OSI/AS and OSI/TS,
implement the OSI layers l through 5 operating
under the Tandem GUARDIAN'M 90 operating
system. (See Figure 2.)

Using OSI/ AS and OSI/TS
The Tandem OSI products are meant to connect
heterogeneous systems to allow cooperative
processing. Users can provide OSI-defined appli
cations like FTAM (File Transfer, Access, and
Management) or X.400 that use OSI/AS or OSI/TS;
these applications take advantage of OSI products
supported by Tandem that can use WANs and
LANs. Users can also write their own applications
utilizing OSI/AS or OSI/TS and use the Session
Layer or Transport Layer connections as "pipes"
through which data can be passed.

Users that require high-speed data exchange
over a restricted area can use the OSI/AS and
OSI/TS products on a LAN. If a network has to
cover a wide geographical area at medium speed,
the users can choose a WAN. Users often have both
requirements and use a combination of LANs and
WANs.

Accessing OSI Networks
OSI/TS can use two types of network service, a
Connectionless Network Service supporting LAN
operation and a Connection-oriented Network
Service supporting WAN operation. Users of
OSI/AS need not be aware of whether the actual
network being used is a WAN or a LAN.

The configuration of OSI/TS, TLAM, and
X25AM differs depending on whether LAN or
WAN operation is used. IfLANs are selected,
Transport Protocol Class 4 is mandatory, as is the
use of the Connectionless Network Service and
Logical Link Control Type l (LLCI). The choice
of LAN type is limited to CSMA/CD or Token Bus.
For WAN operation, the user has a choice of all
five Transport Protocol classes above the X.25
WAN. The user can select a 1980 standard X.25
or a 1984 standard X.25; X25AM supports both.
Table I shows the OSI standards associated with
the various OSI layers.

Figure 1

Network
Type 1

I

OSI

APPL

Figure 2

Layer 5
Session

Layer 4
Transport

Layer 3
Network

Layer 2
Data Link

Layer1
Physical

Application

OSI/AS

OSI/TS

X25AM TLAM

Network
Type2

I

OSI

APPL

Class4

Network
Type3

I

OSI

APPL

Session Layer

Tran sport Layer

Connectionless
Internet layer

Logical Link
Control 1

Media Access Control

CSMA/CD

CSMA/CD
baseband

Token Bus

Token Bus
broadband

MARCH 1990 •TANDEM SYSTEMS REVIEW

Figure 1.

OSI access to Tandem
applications.

Classes0•4

X.25 (1980, 1984)

HDLC
LAPB

V.24, V.35, X.21,
RS449, RS422

Figure 2.

OSI layers I through 5.

3

Figure 3

Figure 3.

Application
program

TSP

NSP

OSI implementation on
the Tandem system for
LANs.

4

Application
program

SCF

Application
program

API procedures

t

SCP

TAPS Session Layer-----,

OSIMGR

Transport Layer _J
Class 4

Connectionless
network layer

LAN 1/0 process MLMAN

Tandem LAN controller

Logical Link Control
CSMA/CD or Token Bus

CSMA/CD or Token Bus

Table 1.

LDIB/
LMIB

The standards associated with the various OSI layers.

Layer

Session

Transport

Standard

ISO 8326, 8327

ISO 8072, 8073

Connectionless Connectionless Network layer corresponding
Network Service to ISO 8348/AD 1, 8473

Data Link
(LANs)

Physical
(LANs)

Network
(X25)

Data Link
(X25)

Physical
(X25)

Logical Link Control 1 corresponding to ISO 8802/2.
Media Access Control: if CSMA/CD then ISO
8802/3; if Token Bus then ISO 8802/4.

If CSMA/CD then ISO 8802/3; if Token Bus then ISO
8802/4

CCITT X25 (1980) and some CCITT X25 (1984)
features

CCITT X25 HDLC LAPS

Many types of electrical interface are supported.
CCITT V24, CCITT V35, CCITT X21, EIA RS449,
EIA RS442

The Tandem OSI Implementation
As shown in Figures 3 and 4, the OSI layers up
through the Session Layer (OSI/AS) are imple
mented on the Tandem system. Figure 3 shows
the configuration for LANs, and Figure 4
shows the configuration for WANs. The Tandem
processes are as follows:

■ The Tandem Session Service provider (TAPS)
process implements the OSI Session Layer.

■ The Transport Service provider (TSP) process
implements the OSI Transport Layer. If
LANs are used, the TSP process also provides the
OSI Connectionless Network Service.

■ The Network Service provider (NSP) process
contains the LAN I/0 process TLAM or the
Tandem X25AM process.

■ The OSI Manager (OSIMGR) process enables
the management and configuration of OSI/AS,
OSI/TS (when used with OSI/AS), and the local
directories.

For a LAN, the Tandem I/0 controllers include
the LLC I capability as well as the media access
control (MAC) for CSMA/CD or Token Bus.
For an X.25 network, the Tandem controllers
usually implement the link access procedure
balanced (LAPB) protocol and provide the
physical connectivity.

Typically, a system contains many copies of
each of the three process types (TAPS, TSP, and
NSP) and one copy of the OSIMGR for each OSI
end system. (See Figure 5.) The main advantage
of splitting the layers is flexibility. The OSI sub
system is merely another user of the I/0 processes
and uses their published programmatic interfaces,
which allows the I/0 products to be developed
and updated independently of the OSI products.
This flexibility makes it much easier to add new
1/0 processes and thus new subnetworks. For
example, users can easily add a new LAN access
manager supporting a new LAN type.

OSI standards can be divided into two logical
groups:

■ Application-related services include the user
application, Application Layer, Presentation
Layer, and Session Layer.

■ Transport-related services cover the Transport
Layer to the Physical Layer.

TANDEM SYSTEMS REVIEW• MARCH 1990

Because these two groups are logically sepa
rate, it makes good design sense to separate them
physically as well. This allows the Transport
Services and Application Services to work autono
mously and aids the distribution of the OSI subsys
tem across processors.

The split structure facilitates multiplexing
transpo,t connections onto X.25 virtual circuits.
The transport protocol allows multiple transport
connections to be carried over one network con
nection (virtual circuit). Thus, one can have many
TSP processes using the network connections from
only one NSP process. For example, each of the
255 virtual circuits supported by an X25AM (NSP)
process could carry ten transport connections.
This can be achieved by having ten TSP processes
above a single X25AM process, each TSP process
supporting 255 transport connections.

System Configuration and
Management
OSI/AS and OSI/fS operate within the Tandem
Distributed Systems Management (DSM) envi
ronment. The OSIMGR process, which is part of
OSI/AS, implements some OSI subsystem man
agement functions as well as the OSI directory
database management functions. If only OSI/fS is
used, the OSIMGR is not used for OSI system man
agement. The OSI subsystem (OSI/AS, OSI/fS,
X25AM, and TLAM) is configured through the
DSM Subsystem Control Facility (SCF) user inter
face that supplies input data to OSIMGR. In this
way the user, together with SCF, sets up the OSI
end-system addressing structure in a directory and
configures the processes needed to implement the
OSI end system.

A local directory information base (LDIB)
contains OSI addressing information through
which applications can select sessions to other
OSI applications simply by specifying their
names. The name-to-OSI address mapping is
done in the LDIB. In addition, a local manage
ment information base (LMIB) holds information

Figure 4

Application
program

Application
program

SCF

Application
program

AP/ procedures

SCP -

TAPS Session Layer ---~
1

OS/MGR
-

NSP

TSP Transport Layer
Classes O - 4

X.25 Network Layer

Tandem communications controller

LAPB
'--- -

V .35, X.21, V.24

describing the TAPS, TSP, and NSP process struc
ture and supports the OSI addresses set up in the
LDIB. The LDIB and LMIB are both logical struc
tures and are required only when the Session
Layer is being used and not when the application
interfaces directly to the Transport Layer or the
Network Layer.

_J

Figure 4.

LOIS/
LMIB

OSI irnp!C'mentation on thC'
Tandem system.for WANs.

MARCH 1990 •TANDEM SYSTEMS REVIEW 5

Figure 5

Application

AP!

~
TAPS TAPS

TSP

Application

API

Session
connections

TAPS

Transport
connections

TSP

A number of completely separate OSI end
systems, each with its own OSIMGR process and
its own unique addressing domain, can operate
within the same Tandem system. Furthermore, a
Tandem OSI end system can be distributed over a
Tandem EXPAND" data communication software
network.

Programmatic Interfaces

~ ~
X.25 network
connections or LAN
local connections

The application interfaces to the Transport Layer,
the LAN 1/0 process, and the X.25 1/0 process
provide a message interface based on Tandem
GUARDIAN 90 file system procedures. These
procedures operate on subdevices representing
transport connections, X.25 virtual circuits, or
LAN link-level ports.

In contrast, the Session Layer application
programming interface (the OSI/AS API) is imple
mented using specialized OSI Session Layer pro
cedures contained in the Tandem system library.
This complex subsystem looks simple to the
application programmer using the APL The user
need not be concerned about the complexities of
OSI addressing or the underlying OSI subsystem
process structure. The user simply has to ask that a
session be set up between the local application and
a remote application identified by name. The
OSIMGR resolves the name into an OSI address
and appropriately configures the various TAPS,
TSP, and NSP processes.

NSP

Figure 5.

A typical system containin[;
multiple copies of TAPS.
TSP. and NSP processes.

6

NSP NSP

Management functions for the NSP processes
are handled through their own management inter
faces. Thus, the LAN manager process, MLMAN,
handles management functions for the LAN 1/0
process and LAN controllers. X25AM handles
management functions for the X.25 I/0 process.
SCF provides the user interface for X25AM,
MLMAN, and OSIMGR, and it interfaces to these
processes through the DSM Subsystem Control
Process (SCP).

Tandem OSI Components
The remainder of this article examines the various
parts of the OSI/AS and OSI/TS products in detail.
It discusses the Tandem application programming
interface (API), the concept of OSI service primi
tives, and the use of local directories, and it exam
ines a session establishment. It also describes the
functions of OSI layers l through 5 as defined by
the OSI standards and discusses which options
and profiles are implemented by Tandem in the
OSI/AS, OSI/TS, X25AM, and TLAM products.

TANDEM SYSTEMS REVIEW• MARCH 1990

OSI/ AS Application Programming Interface
The APT under consideration is the Tandem inter
face between applications and the Session Layer.
It is based on a set of procedures resident in the
system library that are called by the application
program. These API procedures perform inter
process I/O operations to the OSI processes on
behalf of the application while hiding the I/O
from the application. In fact, one procedure call
can cause many interprocess messages to be sent
between the processes in the OSI subsystem,
without the application's knowledge. Table 2
contains examples of API procedure calls.

The application programmer need not be
aware of the processes in the OSI subsystem, as
would be necessary with the more common file
system type of programmatic interface. For
example, when an application issues a session
connect request (APS_ASSOC_CONNECTREQ_)
to set up a session connection with a remote
application, it can supply local and remote appli
cation names in the call to the API procedure. The
API procedure obtains the OSI address information
from the LDIB through the OSIMGR and then the
OSIMGR configures the relevant TAPS, TSP, and
NSP processes to allow processing of the connect
request by the OSI system.

To a large extent, the API procedures mirror
the OSI Session Service primitives" and allow
operation on the Session Layer connection end
point identifier (CEPI) once the connection has
been set up. As defined by OSI, the CEPI is similar
in function to the Tandem file number used after a
file name has been opened.

A feature of the APT is the ability to per-
form nowait I/O operations on a CEPI. For
example, a programmer who issues an
APS_ASSOC_CONNECTREQ_ call to initiate
a session connection does not have to wait for
it to be completed, but can proceed with other
operations. The programmer can then call the
MFM_AWAITIOX_ procedure to wait for the
CONNECT or any previously initiated I/O opera
tion to be completed. Whenever a program uses
the APT, it must use the MFM_AWAITIOX_ pro
cedure to wait for completions in place of the
AWAITIO or AWAITIOX procedures.

- - - - -

1Primitives are the mean~ of communication between applications and the OSI
Se~~ion Layer.

Table 2.
Examples of names of API procedure calls.

API procedures Session Service primitives

Examples of procedures for initiating requests

APS_ASSOC_CONNECTREQ_

APS_ ACTIVITY _STARTREQ_

APS_ACTIVITY _ENDREO_

APS_RESYNCREQ_

APS_TOKEN_PLEASEREQ_

Procedures for receiving indications

S-CONNECT

S-ACTIVITY-START

S-ACTIVITY-END

S-RESYNCHRONIZE

S-TOKEN-PLEASE

REQ

REO

REO

REQ

REO

APS_EVENT _RECEIVE

APS_STATUS_

Also other procedures depending on primitive received

Examples of procedures for sending responses

APS_ ACTIVITY _ENDRSP _ S-ACTIVITY-END RSP
-- ---------------------

APS_SYNC_MINORRSP _

APS_ASSOC_CONNECTRSP_

S-SYNC-MINOR

S-CONNECT

Procedures for receiving confirm primitives

APS_EVENT_RECEIVE_

APS_STATUS_

Also other procedures depending on primitive received

RSP

RSP

The new OSI/AS API has several advantages:

■ The configuration of the OSI subsystem is
hidden from the application.

■ The application programmer does not have
to worry about complicated OSI addresses and
need only use OSI application names.

■ The API procedures closely match the OSI
Session Service primitives, so that a programmer
familiar with these primitives will find the API
easy to use.

■ Because the API procedures closely reflect the
OSI Session Service primitives, it is likely that
third-party software already written to access the
Session Layer will be structured to call procedures
similar to the API procedures. This facilitates the
porting of such software to the Tandem system.

■ The OSI subsystem structure can be changed
without changing the user's application programs.

MARCH 1990 •TANDEM SYSTEMS REVIEW 7

Figure 6.

The jrmr types of"Session
layer primitives.

8

Figure 6

Local
application

Session Primitives

{1) Request

(4) Confirm

Local Session
Service

As shown in Figure 6, the primitives that provide
communication between applications and the OSI
Session Layer are of four types:

■ A request primitive is invoked by API when
a local application initiates a Session Layer
operation.

■ An indication primitive indicates to the remote
application that the local application has initiated
an operation. In some cases it indicates that the
remote Session Service provider has initiated an
operation.

■ A response primitive carries the response to an
indication primitive. Not all indications require a
response.

■ A confirm primitive completes the cycle by
providing the remote application's response to the
request that was sent. Confirm primitives can
carry a positive or negative response.

Remote Session
Service

(2) Indication

(3) Response

Remote
application

Information is sent to the remote application by
invoking request or response primitives. Informa
tion is received from the remote application or
Session Service provider (TAPS) by indication
or confirm primitives.

There are several classes of API procedures,
including those that generate request and response
primitives, those that detect the arrival of indica
tion and confirm primitives, and those that allow
the application to recover information from
indication or confirm primitives. An API pro
cedure exists for every request and response
primitive. Calling one of these API procedures
generates the primitive and causes it to be sent
to the remote application.

To detect the arrival of an indication or
confirm primitive, the application must
call APS_EVENT_RECEIVE_ using the CEPI
to identify the connection. When the
APS_EVENT _RECEIVE_ operation is complete,
the application is alerted to the fact that informa
tion has arrived. The application must then call
APS_STATUS_ to identify the information. The
next stage of operation involves calling a specific
API procedure to recover details of the indication
or confirm primitive and any user data.

TANDEM SYSTEMS REVIEW• MARCH 1990

Operations below the API Level
To understand how the API shields the application
from the complexities of OSI addressing and the
OSI subsystem structure, it is helpful to examine
what happens when an application issues an
APS_ASSOC_CONNECTREQ_ call with the local
and remote application names as parameters.

The process is as follows. The API issues a
request to OSIMGR that includes the application
names. The OSIMGR uses the LDIB to convert the
local and remote application names into OSI
addresses. (See Figure 7.) The LDIB also provides
the subnetwork point of attachment (SNPA), which
specifies the point at which a system is attached to
a real subnetwork.

The OSIMGR uses the LMIB to select the appro
priate TAPS, TSP, and NSP processes, depending
on the corresponding OSI addresses specified.
Thus, the TAPS process selected depends on the
local transport selector (TSEL), the TSP process
depends on the local Network Service access
point (NSAP), and the NSP process depends on
the local SNPA.

The system manager specifies these assign
ments by means of the SCF ADD ENTRY
command at the time the system is configured.
A one-to-many relationship exists between TAPS
and the local TSEL. That is, one TAPS process can
serve many TSELs, but each TSEL can only be
served by one TAPS process. The same one-to
many relationship also exists between TSP and the
local NSAP, and between NSP and the local SNPA.

The LMIB also provides connection-specific
configuration parameters. These parameters are
specified by means of a PROFILE object at the
time the system is configured. A PROFILE is a
group of parameters whose values typically
depend on either the local or destination OSI
address. Many different PROFILES can be con
figured, which allows the use of different values
(such as timers), depending on which remote
system is addressed on a particular connection.

Figure 7

PSEL SSEL TSEL

PSEL = Presentation selector
SSEL = Session selector
TSEL = Transport selector

NSAP

NSAP = Network service access point address

PROFILEs are currently defined for the
Transport Layer (Layer 4) and Network Layer
(Layer 3). PROFILEs are defined by the SCF ADD
PROFILE command. The following is an example
of a Layer 4 PROFILE:

ADD PROFILE $0MGR.#L4.profile-name,

CLASS 4, CONNECTTIMEOUT I 80,

DISCONNECTTIMEOUT 60,

MULTIPLEX ON, TPDUSIZE !024 ...

Layer 4 PROFILEs are assigned to local and remote
NSAP addresses; Layer 3 PROFILEs are assigned to
local and remote SNPAs.

MARCH 1990 •TANDEM SYSTEMS REVIEW

Figure 7.

OSI addresses prol'ided
hyLD/8.

9

10

At the time a connection is established, the
OSIMGR selects a PROFILE. If a PROFILE is
defined for the remote address, that PROFILE is
used on the connection. If no PROFILE is defined
for the remote address but a PROFILE is defined
for the local address, the latter PROFILE is used on
the connection. If neither the remote nor the local
address has a PROFILE assigned to it, the layer
specific default parameter values are used on the
connection.

After all processes and connection-specific
parameters are selected, the OSIMGR configures
a TSP subdevice using the Layer 4 and Layer 3
configuration parameters. The OSIMGR also
allocates a TAPS subdevice name, but it does not
configure the TAPS subdevice. The TAPS subde
vice is created when the API opens it.

Next, the OSIMGR returns the OSI addresses,
the TAPS subdevice name, and the TSP subdevice
name to the API procedure in the application
process. The user request and the OSIMGR
supplied information is then passed to the TAPS
process, which requests a transport connection
from the TSP.

If necessary, the TSP configures an NSP subde
vice and, if X.25 is being used, requests a network
connection. The NSP process establishes a net
work connection and returns confirmation to the
TSP process that the connection has been made. (If
multiplexing is being used and a suitable network
connection exists, the existing network connection
is used.) If LANs are used, the Network Service is
connectionless.

After the TSP confirms the connection, TAPS
writes the session connect request to the now open
transport connection. When this operation is
completed, control is returned to the application.

Finally, the remote system receives the connect
request as a connect indication and generates a
connect response that will be returned to the local
TAPS process. If the local application issued
an APS_EVENT_RECEIVE_ call, the arrival
of the connect confirmation causes the
APS_EVENT _RECEIVE_ call to be completed.
This indicates to the application that the connect
has been accepted.

Session Layer
The Session Layer is implemented in the TAPS
process. The Session Layer is application oriented,
unlike Layers 1 through 4, which are oriented
toward the transfer of data across networks. The
Session Layer allows cooperating applications to
organize and synchronize their dialogue and to
manage data exchange. The application can divide
work into logical groupings called activities and
can manage those groupings. The Session Layer
also provides mechanisms to synchronize and
resynchronize streams of data, and it establishes
the manner in which data is exchanged; that is,
whether in a two-way alternate (half-duplex) mode
or a two-way simultaneous (full-duplex) mode.

TANDEM SYSTEMS REVIEW• MARCH 1990

The OSI Session Layer protocol is organized
into a set of functional units that group together
related services. When an OSI session connection
is established, negotiation takes place with the
remote application to determine which functional
units to use. Only functional units that have been
negotiated can be used. Eleven functional units
are supported by the Tandem OSI/AS product:

■ Kernel contains functionality to make and
release connections and to transfer and receive
data.
■ Half Duplex allows operation in half-duplex
mode over a connection. In this mode, the data
token indicates which side can send data.

■ Duplex allows operation in full-duplex mode.
No data token is needed. A particular connection
can use half-duplex or full-duplex mode, but not
both.

■ Typed Data allows the sending of data over a
connection, ignoring any token restrictions.

■ Capability Data Exchange allows the sending
and receiving of data while not in an activity. It can
be used only if activity services are available but
no activity is in progress. It is subject to data-token
restrictions if operation is to be in half-duplex
mode.

■ Minor Synchronize permits the application to
define minor synchronization points in the com
munication flow to a remote application. In this
case, the sender of the request does not have to
stop data transfer while waiting for a confirmation.

■ Major Synchroni:e enables the application to
define major synchronization points in the com
munication flow to a remote application. In this
case, the sender will stop data transfer while
waiting for a confirmation.

■ Negotiated Release allows negotiation with the
remote application to ensure an agreed-upon
release of a connection. Without this functional
unit, orderly release is still possible, but a release
request cannot be refused.

■ Resynchronize allows the sending of resyn
chronize requests. Such a request resets the
connection to a defined state after an error or
lack of response by the local application, the
remote application, or the service provider.

■ Exceptions permit applications and the service
provider to issue exception reports.

■ Activity Manaiement allows the local applica
tion and the remote application to define logical
pieces of work as activities and to organize the
flow of work accordingly.

At present, the OSI/AS does not support two
features, the Session Layer Expedited Data
functional unit and the Extended Concatenation
capability. In practice, few Tandem installations
require Session Layer Expedited Data and even
fewer require Extended Concatenation.

The Session Layer functional units provide
mechanisms that applications can use in the
conversation between the local and remote appli
cation. For example, the Session Layer itself
cannot provide completely secure message trans
mission for the CCITT-defined X.400 messaging
service, but a specialized X.400 application (the
Reliable Transfer Service) can provide secure
message transfer by using functional units (such
as Activity Management and Resynchronize) in
the Session Layer.

MARCH 1990 •TANDEM SYSTEMS REVIEW 11

12

Table 3.

The five classes of service defined by the OSI Transport
Layer protocol.

Class of service Recovery

Non-multiplexing

0

Multiplexing

2

3

4

No recovery from Network-signaled errors.
No recovery is attempted; the connection is
released.

Error recovery from signaled errors.

No recovery from Network-signaled errors.
No recovery is attempted; the connection is
released.

Error recovery from Network-signaled errors.

Error recovery from Network-signaled and
unsignaled network errors.

Transport Layer
The Transport Layer provides for the reliable
transfer of data between Transport Service users,
who may be interconnected through a number of
intervening subnetworks. To the Transport Service
user, the Transport Layer provides a completely
reliable data transfer capability, regardless of the
quality of service provided by the Network Layer.
The Transport Layer contains procedures to
recover data lost in transmission, received out of
sequence, or corrupted; it can recover from certain
types of network errors, both signaled and unsig
naled. This layer also handles flow control.

The OSI Transport Protocol defines five classes
of service that provide different types of multi
plexing capability, error detection, and recovery.
(See Table 3.) The Tandem OSl{fS product sup
ports the following Transport Service primitives:

T-CONNECT REQUEST

T-CONNECT INDICATION

T-CONNECT RESPONSE

T-CONNECT CONFIRM

T-DATA REQUEST

T-DATA INDICATION

T-EXPEDITED DATA REQUEST

T-EXPEDITED DATA INDICATION

T-DISCONNECT REQUEST

T-DISCONNECT INDICATION

The OSI service primitives cannot necessarily
be mapped onto a single GUARDIAN 90 file
system call. The subdevice is the application's
basic unit of access, and each subdevice has the
potential of being mapped onto a transport
connection.

Before a subdevice can be used, the appli
cation must open it by name. SETMODE and
SETPARAM commands can then be issued to alter
its operational characteristics. WRITE, READ,
WRITEREAD, or CONTROL commands can be
issued to initiate or release a connection and to
perform data-transfer operations on the subde
vice. When the application no longer needs access
to a subdevice, it can terminate the conversation
with a CLOSE command.

TANDEM SYSTEMS REVIEW• MARCH 1990

An application can open multiple subdevices,
and multiple applications can use the same sub
device if it is opened with shared access. Subde
vice usage can be divided up into four phases:

■ Configuration. Operational parameters are
established through DSM or by SETMODE and
SETPARAM commands.

■ Connection Establishment. The subdevice is
mapped onto a transport connection (T-CON) and
the T-CON is established.

■ Data Transfer. Data is transferred on the trans
port connection.

■ Connection Release. The connection is cleared
and the subdevice freed.

The following conformance statements can be
made for the Tandem Transport Layer implemen
tation. First, it supports classes O through 4. If a
LAN is used with a Connectionless Network
Service, only Class 4 can be used. Second, split
ting is not performed in Class 4. Third, the system
is capable of both initiating and responding to
Connect Request TPDU s (transport protocol data
units). Finally, the maximum TPDU size imple
mented is 8192 octets.

Several optional procedures are not imple
mented in the Tandem OSI products. The Trans
port process always employs the flow control
procedure in Class 2. Class I does not use receipt
confirmation; the Transport process will send
Data Acknowledgment TPDUs to acknowledge
outstanding TPDUs. Class 1 does not use network
expedited; the Transport Layer will send TPDUs as
normal data requests to the Network Layer.

Connectionless Network Service in the
Network Layer
When a LAN is used, the Connectionless Network
Service is provided as part of the TSP process. The
Connectionless Network Service has no APL The
Tandem system acts as a Network Layer end
system and not as an intermediate system; the
Connectionless Network Protocol is responsible
for end-to-end communication across any number
of intervening subnetworks. The Connectionless
Network Service allows data-unit transfer without
the establishment of a network connection.

The N-UNITDATA, the OSI service element
that performs this data transfer, provides for
the data transfer of a discrete Network Service
data unit (NSDU). No other service elements
are required for any additional functionality.
For example, NSDUs can be delivered out of
sequence; thus, the Transport Layer Class 4 is
used above the Connectionless Network Service
to provide the data integrity required.

Tandem supports the following Connectionless
Network Protocol functions:

■ Protocol data unit (PDU) composition.

■ PDU decomposition.

■ Header format analysis.

■ PDU lifetime control.

■ RoutePDU.

■ Discard PDU.

■ Error reporting.

■ Header error detection.

This implementation supports the Inactive
subset but not the Nonsegmenting subset. The
use of the Inactive subset is included to allow
interworking with certain existing OSI implemen
tations from other vendors. Whenever possible,
the Inactive subset should not be selected.

MARCH 1990 •TANDEM SYSTEMS REVIEW 13

OSI Acronyms

AP!
CCITT
CEPI
CSMA/CD
DSM
FfAM
LAN
LAPB
LDIB
LLCI
LMIB
MAC
MLMAN
NSAP
NSDU
NSP
OSI
OSI/AS
OSI/TS
OSIMGR
POU
SCF
SCP
SNPA
TAPS
TLAM
TPDU
TSEL
TSP
UI
WAN
X25AM
XID

Application Programming Interface
International Telegraph and Telephone Consultative Committee
Connection end point identifier
Carrier sense multiple access with collision detection
Distributed Systems Management
File Transfer, Access, and Management
Local area network
Link access procedure-balanced
Local directory information base
Logical Link Control Type 1
Local management information base
Media access control
LAN manager process
Network Service access point
Network Service data unit
Network Service provider
Open Systems Interconnection
Open Systems Interconnection/Application Services
Open Systems Interconnection/Transport Services
OSI Manager
Protocol data unit
Subsystem Control Facility
Subsystem Control Process
Subnetwork point of attachment
Tandem Session Service provider
Tandem LAN Access Method
Transport Protocol data unit
Transport selector
Transport Service provider
Unnumbered information
Wide area network
X.25 Access Method
Exchange identification

LLCl in the Data Link Layer
The OSlffS product uses the TLAM product to
provide the necessary LAN connectivity. The
LAN 1/0 process allows connection of the LAN
controller to the Tandem system; the LAN con
troller runs LLC 1 and MAC and supports the
Physical Interface. The LAN 1/0 process also
provides a programmatic interface to allow
applications to access the LLCI layer. For more
information on this user interface, refer to the
Tandem MULTILAN" and TLAM manuals.

The purpose of any Data Link Layer is to
provide a reliable communication path between
two devices sharing a transmission medium. The
LLC 1 allows for the sending and receiving of LLC
frames with no form of acknowledgment needed
to ensure delivery. It supports point-to-point,
multipoint, and broadcast addressing and multi
plexing. LLCI allows for two service primitives.
L-DATAREQUEST and L-DATA INDICATION.
The protocol uses three unnumbered frame for
mats: unnumbered information (UI), exchange
identification (XID), and the TEST frame.

MAC in the Data Link Layer
The Tandem TLAM product supports two types
of media access control: CS MA/CD and Token
Bus. MAC manages the access of the media so
that controlled communication can take place.

CSMA/CD. The simplest form of MAC is
CSMA/CD, which operates on a bus topology.
This scheme requires that a station trying to send
data must first determine if the medium is busy.
If it is, the station does not send but tries again a
little later. If the medium is not busy, the station
sends. With this scheme, it is possible for two
stations to send at the same time, thus causing a
collision. If a collision occurs, both stations abort
the send operation, wait a random amount of time.
and resend.

Token Bus. In this scheme, the stations on the
bus, or tree, form a logical ring; that is, the sta
tions are assigned to logical positions in an
ordered sequence with the last member of the
sequence followed by the first. A control frame
known as the token regulates the right of access.
The station receiving the token is granted control
of the medium for a specified time. The station
may then transmit frames, poll stations, and
receive responses. Once the station has completed
its communication, it passes the token to the next
station in the logical sequence.

14 TANDEM SYSTEMS REVIEW• MARCH 1990

LANs in the Physical Layer
The CSMA/CD LAN uses baseband, 50-ohm,
coaxial cable; digital signals are transmitted using
Manchester encoding at 10 megabits per second
(Mbps). Tandem supports thick or thin Ethernet
cabling. CSMA/CD LANs are connected to Tandem
systems through type 5600, 3611, and 3613
controllers.

The Token Bus standard specifies three alterna
tive physical options. All three use 75-ohm, CATV
coaxial cable and analog (RF) signalling. Tandem
systems connect to broadband coaxial cable and
transmit at 10 Mbps.

X.25
The Tandem OSI products use X25AM for con
necting OSI end systems over a WAN. A WAN is
a network that can interconnect geographically
dispersed systems, terminals, and workstations
over distances greater than a few kilometers.
Such a network can span the globe.

X.25 provides a reliable, connection-oriented
Network Service. For communication to occur,
virtual circuits must be established with the net
work data circuit terminating equipment. The
Tandem implementation of X.25 contains 1980
and some 1984 functionality. Most important,
X25AM supports NSAP addressing. Note that a
GUARDIAN 90 WRITEREAD-type programmatic
interface exists to allow applications to interface
directly to X25AM.

The X.25 Data Link Layer is high-level data
link control LAPB. It provides a reliable data path
between the two Data Link Layer entities. X.25
supports the following electrical interfaces: V.24,
V.35, X.2 I. RS442, and RS449.

Conclusion
OSI/AS and OSI/TS allow heterogeneous work
stations and systems to interwork with Tandem
systems using software that supports OSI stan
dards. The OSI software can use WANs or LANs,
allowing users to geographically distribute their
processing or set up systems that interwork over
a limited distance using high-speed connections.
With OSI/AS and OSI/TS, a larger number of users
can take advantage of unique Tandem software
capabilities, including the high-performance
NonStop SQL database system, transaction
processing, and query processing.

Acknowledgments
The author would like to thank the following people for their valuable
help in the preparation of this article: Chris Annetts, Doug Bergh,
Huy Truong, Wilfried Kruse, John Lemon, Andrew Dunn, and
Mike Farrant.

References
CCITT X.25. 1984. Interface between Data Terminal Equipment
(DTE) and Data Circuit Terminating Equipment (DCE) for terminals
operating in the Packet Mode and connected to public data networks
by dedicated circuit.

Dunn, A. 1989. The OSI Model: Overview, Status, and Current
Issues. Tandem Systems Re,·iew. Vol. 5, No. I. Part no. 18662.

ISO 8072. 1986. Open Systems - Transport Service Definition.

ISO 8073. 1986. Connection Oriented Transport Protocol
Specification.

ISO 8073. 1987. PDAD2 Connection Oriented Transport Protocol
Specification -Addendum 2: Class 4 Operation over the Connec
tionless Network Service.

ISO 8326. 1987. Basic Connection Oriented Session Service
Definition.

ISO 8327. 1987. Basic Connection Oriented Session Protocol
Definition.

ISO 8348. 1987. ADI Network Service Definition-Addendum I:
Connectionless Mode Transmission.

ISO 8473. 1988. Protocol for Providing the Connectionless-mode
Network Service, with Addendum I: Provision of the Underlying
Service assumed by ISO 8473 integrated.

ISO 8802/2. 1987. Logical Link Control.

ISO 8802/3. 1987. Carrier Sense Multiple Access with Collision
Detect.

ISO 8802/4. 1988. Token Passing Bus.

MULTILAN!TLAM Mana1;ement and Operations Manual. Part no.
11757. Tandem Computers Incorporated.

MULTILAN!TLAM Mana1;ement Programmin1; Manual, Vols. I
and 2. Part nos. 11756 and 16224. Tandem Computers Incorporated.

MULTILAN!TLAM Programming Manual. Part no. 11758. Tandem
Computers Incorporated.

Tandem OSI Management Programming Manual. Part no. 13643.
Tandem Computers Incorporated.

Tandem OSI/AS Munugemenr and Operations Guide. Part no. 18189.
Tandem Computers Incorporated.

Tandem OSI/AS Programming Manual. Part no. 84274. Tandem
Computers Incorporated.

Tandem OS/ITS Manual. Part no. 84142. Tandem Computers
Incorporated.

X.25 Access Method-X25AM, Vols. I and 2. Part nos. 17464 and
17465. Tandem Computers Incorporated.

Rhod Smith joined Tandem as a communications and networking _
specialist in 1982 and has 18 years' experience in the industry working in

development, support, and consultancy. He became a consulting analyst
in 1985 and X.400 product manager in 1986. Today he works in the
European Product Marketing Group.

MARCH 1990 •TANDEM SYSTEMS REVIEW 15

16

NetBatch-Plus:
Structuring the
Batch Environment

atch processing provides
important support for the
data captured by online
transaction processing (OLTP).
NetBatch'M-Plus, Tandem's
batch scheduling software
available with the C20 release

of the GUARDIAN'M 90 operating system, offers
users a powerful, easy-to-use, full-screen interface
that structures and controls a batch scheduling
environment. With its database of job scheduling
information, NetBatch-Plus allows users to
schedule complex, multiple job runs across
multiple system nodes. It automates job submis
sion, executing jobs without operator intervention,

thus reducing demands on personnel. It also per
mits jobs to be submitted manually. NetBatch-Plus
enables users to balance the batch processing load
and control the impact of batch processing
on OLTP. Finally, it enhances visibility of the entire
batch environment, increasing the efficiency of job
management.

NetBatch-Plus integrates a new full-screen
interface and database, based on the Tandemrn
PATHWAY transaction processing system, with
the original NetBatch batch scheduling product,
designed to control the actual submission and
execution of jobs. NetBatch was discussed in the
April 1989 issue of the Tandem Systems Review
(Wakashige).

This article describes how the features of
NetBatch-Plus meet the scheduling requirements
of batch processing. It suggests ways to exploit
those features to take advantage of the benefits
of Tandem systems. It also offers practical tips
on how to design and organize an effective
NetBatch-Plus configuration. A checklist at the
end of the article summarizes the important steps
in creating a NetBatch-Plus scheduling database.

In a Tandem environment, batch scheduling is
defined as the structuring, submission, monitoring,
and control of job requests. This article focuses on
the structuring and control of batch jobs. Perfor
mance of batch processing is largely a separate
issue; refer to the September 1989 issue of the
Tandem Systems Review (Keefauver).

TANDEM SYSTEMS REVIEW• MARCH i<J<JO

NetBatch-Plus Features
NetBatch-Plus has two main components, in
addition to the NetBatch portion of the product.
First, the NetBatch-Plus database maintains
information about job definitions, their dependen
cies, and batch scheduling parameters. Second, the
screen-interface software allows the user to create
and manage the NetBatch-Plus database, commu
nicate with other systems in the Tandem environ
ment, generate reports, and submit jobs. The
following NetBatch-Plus features help users
structure and manage their batch processing
environment.

■ Defaults sets allow the user to group related
jobs and define default attributes for all jobs in
the group.

■ Parametric passing of inf"ormation enables
job attachments, such as ASSIGNs, PARAMs,
and DEFINEs, to be passed directly to a job's
EXECUTOR program when the job starts. For
greater control and easy maintenance, job attach
ments can be defined once and then used by a
virtually unlimited number of batch jobs.

■ Versatile Joh selection permits the user to submit
jobs individually or in a group (according to
various selection criteria).

■ System visibility allows a single terminal screen
to display information about each SCHEDULER 1

and provides a gateway to other Tandem subsys
tems without having to exit NetBatch-Plus.

■ Management reporting provides information
about job descriptions and other information in the
NetBatch-Plus database and the status of batch
processing jobs. Users can produce standard
reports or generate their own reports tailored to
their specific needs.

■ Indil·idually defined security enables a system
manager to define, for each user, a different level
of access to the NetBatch-Plus screens. Also,
access to each defaults set, job, catalog, and job
attachment can be restricted to different groups of
users.

■ Extensil'e on line help provides information
describing all screens on two levels. The user can
obtain a general overview of each screen or, by
positioning the cursor in a particular field of the
screen, can get a detailed explanation of that field.

'The SCHEDULER is a fault-tolerant. process-pair server that maintains
supervi ... ory access to all batch processing components.

NetBatch and NetBatch-Plus
Before the features ofNetBatch-Plus are described
in detail, it is useful to clarify what is new in
NetBatch-Plus in relation to the NetBatch portion
of the product. With NetBatch-Plus, the user
defines and maintains job schedules, dependen
cies, and other job attributes by choosing options
on the NetBatch-Plus screens. Jobs defined in
NetBatch-Plus can be submitted and executed
automatically, without operator intervention.

The actual execution of jobs is controlled by
the NetBatch portion of the product. NetBatch
SCHEDULERs control job execution according
to their scheduling options. For example, a
SCHEDULER can execute a job at midnight or
after another job has finished processing. Each
SCHEDULER is configured with JOBCLASSes and
EXECUTORS. JOBCLASSes provide a convenient
way to group jobs, such as payroll or high-priority
jobs, that have similar processing functions.
JOBCLASSes, in tum, are linked to one or more
EXECUTORs, each of which is associated with a
particular central processing unit (CPU). An
EXECUTOR starts the job's initial process, called
the EXECUTOR program, in its CPU. By designat
ing batch jobs to run only in specified CPUs, a
SCHEDULER allows the system manager to
control the batch environment and ensure that
batch processing does not adversely affect OLTP.
See Wakashige, 1989, for a detailed discussion of
NetBatch SCHEDULERS.

MARCH 1990 •TANDEM SYSTEMS REVIEW 17

Figure 1.

NetBatch-Plus can
schedule hatch processing
across an entire network of"
GUARDIAN 90 systems.

18

Figure 1

SCHEDULER
\VENUS.$LOVE / NetBatch-Plus

\MARS.$NBP
7 SCHEDULER
--- \JUPITER.$JOVE

I
SCHEDULER
\MARS.$WAR

Communicating with the SCHEDULERs
NetBatch-Plus can communicate with one or
more SCHEDULERs, which can be spread over
the entire Tandem network. For example,
NetBatch-Plus, which is running on the system
\MARS, can submit jobs to run on the
SCHEDULERS named \VENUS.$LOVE,
\MARS.$WAR, and \TUPITER.$JOVE. Figure 1
shows the relationship ofNetBatch-Plus to three
SCHEDULERs, each running on a different node.

Defaults Sets
Defaults sets are the key to setting up a complete
batch scheduling environment. A defaults set
contains the default attributes for a group of batch
jobs as well as static information common to their
scheduling environment.

Many jobs can share a single defaults set. When
creating a new job, the user can enter all the attri
butes of its defaults set with a single keystroke.
NetBatch-Plus provides additional flexibility by
allowing the user to override selected default
attributes in an individual job definition. However,
by defining an appropriate set of job attributes in
a defaults set, all or most job attributes for an
individual job can default, saving time and effort
in entering new jobs.

By defining global job attributes such as a node
or SCHEDULER, defaults sets make job definitions
easier to maintain. When a user changes an attri
bute in a defaults set, in most cases the attribute is
automatically changed in all the job definitions
belonging to that defaults set. The attribute is not
changed automatically in those job definitions that
have individually redefined the attribute.

TANDEM SYSTEMS REVIEW• MARCH 1990

As a guideline, it is recommended that ce1tain
job attributes be maintained at the defaults set
level; they should not be overridden in individual
job definitions. These job attributes include the
NetBatch-Plus node, SCHEDULER, JOBCLASS,
job owner and security, and the EXECUTOR
program that processes the job. Other recom
mended attributes to be maintained include a
default job output (OUT) file; a default volume for
job control files; job selection priority; the execu
tion priority for the EXECUTOR program; and a
start time. if appropriate. Depending on the choice
of EXECUTOR program, startup parameters can
also be made standard.

Normally, defaults sets can be set up for differ
ent groups of users. For example, programmers
could use a defaults set for running COBOL
compiles using COBOL85 as its EXECUTOR
program. Another defaults set using the Tandem
Advanced Command Language (TACL'") would be
suitable for most operational tasks such as backup
or housekeeping functions.

Figure 2 displays TRAVEL-UPD, a sample
defaults set for jobs that update an example
passenger-reservations database. All update jobs in
this database are assigned to TRAVEL-UPD. When
an update job is submitted, it inherits all default job
attributes that were not redefined in the individual
job definition.

Creating Effective Defaults Sets
To create an effective framework for defining the
batch scheduling environment, one should begin
by organizing jobs into logical groups. Consider
all regularly recurring tasks as well as jobs that
run infrequently. Because a defaults set stores a
permanent set of job descriptions, it is not appr?
priate to list unique jobs that will never be reqmred
agam.

Note the important characteristics of each job in
the environment, and arrange the data into a matrix
like the one shown in Figure 3. Characteristics
to consider include the node, SCHEDULER,
EXECUTOR program, OUT file, and job owner.

Figure 2

DEFAULTS SET DETAILS

SET : TRAVEL-UPD
SCHEDULER : \MARS.$WAR __
JOBCLASS : GALACTIC ____ _
OWNER : SOFTWARE MGR ____ /AOGO

COMMENT : ~-=-=-=c-c--::c:-c-=-=:-:--:-:=-:::c---
EXECUTOR: $SYSTEM.SYSTEM.TACL_
IN
OUT : $S.#UPDJOB ____ _
VOLUME : $DATA.DBASE __
STARTUP

SELPRI : 3
DRIVES 2
WAIT

PRI : 130
LINES:
AT/AF:

PAGES:
TIME

13Aug1991

RESTART _
STOP ON ABEND: Y

HOLD ANY USER SUBMIT:_
HOLD AFTER:

Users should consider other characteristics
essential to their site. For example, jobs can be
grouped according to departments within an
organization or according to functions such as
payroll and accounts payable. System managers
may wish to nominate defaults sets that suit the
requirements of their own organizations. Once the
attributes of the jobs are listed, patterns should
start to emerge.

To take advantage of the easy maintenance
of global job attributes, define as many attributes
as possible on the Defaults Set screen. In the
example shown in Figure 3, most jobs on the
same node and SCHEDULER have a common
EXECUTOR program, OUT file, and owner. The
few exceptions can be handled by overriding the
defaults on the Job Definition screen.

Figure 2.

The defaults set shown
aho\'C cstahlishcs com
monly used attri/mtesfrJr
similar groups ofjohs,
thcrehy sm·ing time and
reducing errors.

MARCH 1990 •TANDEM SYSTEMS REVIEW I'

Figure 3.

An important step in
structuring a hatch
emfronment is the
determination of "sets"
in which to file johs. Use
a matrix similar to the one
shown here to decide how
many sets and which johs
to assign to a set.

20

Figure 3

Job Name Node Scheduler Out Exec-Prag GUARDIAN User Set Name

A \VENUS $LOVE $S TACL SOFTWARE.RHONDA

B 1111!,l '"' rn, -HUim:~ :Jt11fiw1ilD· • ·
C \EARTH $LOVE $D ENFORM SOFTWARE ANNA SET 3

D \VENUS

E \JUPITER

F

G

H \VENUS

\JUPITER

J \VENUS

$LOVE

$JOVE

$LOVE

$JOVE

$LOVE

$S

$S

$S

$S

$S

In Figure 3, Jobs A, D, H, and J are scheduled
to \VENUS.$LOVE, owned by the user
SOFTWARE.RHONDA, and write to the collector
$S. They have TACL as their EXECUTOR program
(except Job J, which uses the File Utility Program).
They have enough characteristics in common to
fonn a logical defaults set. Similarly, a second
defaults set can be formed with Jobs B, F, and G,
which are scheduled to run under BPROC on
\MARS.$WAR, write to the collector $0, and are
owned by SOFTWARE.BRUCE (except Job B,
owned by SOFTWARE.ANNA). A third defaults
set schedules jobs to \JUPITER.$JOVE on behalf
of SOFTWARE.DAVID. A final defaults set contains
only Job C, which has almost no attributes in
common with the others.

TACL

TACL

TACL

TACL

FUP

SOFTWARE.RHONDA

SOFTWARE.DAVID

SOFTWARE.RHONDA

SOFTWARE.DAVID

SOFTWARE.RHONDA

Job Definitions

SET1

SET4

SET 1

SET4

SET1

Once appropriate defaults sets have been defined,
users may enter their individual jobs into the
NetBatch-Plus database by using the Job Defini
tion screen. A single keystroke enters all the
scheduling attributes of the defaults set into the
individual job definition. Users can then redefine
any attributes that are unique to the individual job.

Having supplied the job name, a job's input
(IN) file is the only required attribute for a job
definition. However, to take advantage of the
power of NetBatch-Plus, it is better to define as
many attributes as possible by taking attributes
from the defaults set and, if necessary, by defining
attributes specific to the job. It is recommended
that the user enter a comment into the job defini
tion to make it easier to identify later.

The job's security attribute restricts certain
users for read, write, or purge access. It is recom
mended that write access be limited to owner only
or group at most, especially for jobs owned by
SUPER users. Normally, only the owner of a job
can schedule it. However, the job definition can
be set to allow any GUARDIAN 90 user to submit
the job.

TANDEM SYSTEMS REVIEW• MARCH 1990

Parametric Passing of Information

Each job can have any number of ASSIGN s,
PARAMs, and DEFINEs passed directly to its
EXECUTOR program on startup. The user can
define this parametric information, also referred
to as job attachments, in a job definition or global
catalog. This allows a single ASSIGN, PARAM,
or DEFINE to be used by many jobs. When
NetBatch-Plus submits the job, the information
is passed automatically to its EXECUTOR program.
At submission time, the user does not have to
specify either the parametric information or its
environment, such as the subvolume in which an
assigned file resides; this information is passed to
the job by NetBatch-Plus. The job does not have
to rely on parameters from a user's current session
at a particular terminal.

When NetBatch-Plus submits a job with
PARAMs, ASSIGNs, or DEFINEs, it builds a new
IN file that contains the parametric information
followed by a RUN command, which executes
the original IN file commands. As an example,
suppose the job DEASE-REPORTS, which reports
on daily database transactions using the Tandem
ENFORM'M query language/report formatter, has
the following attributes:

EXECUTOR program:
$SYSTEM.SYSTEM.ENFORM

IN file: $DATA.TRAVEL.DEREPT

OUT file: $S.#UPDRPT

ASSIGNs: DB MASTER DAYLOG

The IN file, $DATA.TRAVEL.DBREPT, con
tains ENFORM source statements. When the job
is scheduled, a new IN file is built containing:

ASSIGN DEMASTER, $DATA.DEASE.MASTER

ASSIGN DAYLOG, $DATA.DEASE.LOG!

$SYSTEM.SYSTEM.ENFORM
/IN $DATA.TRAVEL.DBREPT,
OUT $S.#UPDRPT/

The new IN file is placed in the same sub
volume as the original IN file, and is purged aher
the job finishes executing. The EXECUTOR pro
gram is also altered to TACL. If the EXECUTOR
program is already TACL, a new IN file is built
by inserting the parametric information before
the original TACL commands, which are then
written to the new file. In addition to ASSIGNs
and PARAMs, the C20 release of NetBatch-Plus
supports five types of DEFINEs:

■ Map DEFINEs.

■ Tape DEFINEs.

■ Spool DEFINEs.

■ Catalog DEFINEs.

■ Defaults DEFINEs.

Maintaining Job Attachments in Catalogs
The user can define job attachments locally in a
job definition or globally in a catalog file. When
the information is defined in a catalog, the system
manager, or other users with write access to the
catalog record, can modify catalog entries once,
and the new values are passed to all jobs that
invoke them. By using catalogs, the system man
ager significantly reduces the effort and increases
the flexibility of maintaining batch jobs.

For example, suppose the reservations-system
database files residing in the subvolume
$DATA.DEASE are moved to the volume $TRANS.
If DEMASTER and DAYLOG, the two files refer
enced by ASSIGNs, are catalog entries, the user
only has to change each entry once to ensure that
all jobs using these ASSIGN s are automatically
updated.

MARCH 1990 •TANDEM SYSTEMS REVIEW 21

Figure 4

DEFAULTS SET SET1 SET2 SET3 SET1 SET4 SET2 SET2 SET1 SET4 SET1 CATALOG

JOB A B C D E F G H J SET

ATTACHMENTS

ASSIGNs Accounts

Customer

Card

Daylog X
Transactions

DBMaster X SET4

PARAMs Param-1

Param-2

Date

Version

X X X X SET2

Figure 4.

This matrix lists batch jobs
horizontally and their job
attachments vertically.
Users can draw such a
matrix to groupjob
attachments and to
determine which catalogs
to create.

22

X

Creating Catalog Attachments
To determine which job attachments belong
together in a catalog, one should begin by listing
all the ASSIGNs, PARAMs, and DEFINEs attached
to each job. The user can draw a matrix like the
one shown in Figure 4, which lists all jobs hori
zontally and lists all the ASSIGNs and PARAMs
belonging to those jobs vertically. The boxes
containing an "x" identify each job attachment.

Patterns may emerge from the matrix of jobs
and job attachments. The user can group shared
attachments into catalog records. Most attributes
in a catalog record should be identical. If there are
one or two exceptions, they can be modified in
individual job definitions.

Once the catalog records have been identified,
the user must organize them into appropriate
defaults sets. If all the jobs that share the attach
ments are in the same defaults set, choose that
defaults set. If the attachment is an ASSIGN or
MAP DEFINE, one could choose a defaults set
belonging to the owner of the file referenced by
the ASSIGN or DEFINE. Catalog attachments can
be shared by jobs in other defaults sets.

In Figure 4, Jobs A through J have a variety of
ASSIGNs and PARAMs. Some parameters are
attached to jobs that belong to the same defaults
set. For example, the ASSIGN ACCOUNTS is
attached to Jobs A, D, H, and J, which all belong to
DEFAULTS SETI. On the other hand, the PARAM
VERSION is attached to all the jobs, and the
decision to attach it to DEFAULTS SETI is arbi
trary. The ASSIGN DAYLOG and PARAM-2 are
attached to only one job each and need not be
placed in any catalog record.

Dependencies
Job dependencies are easily entered and
maintained in NetBatch-Plus. The release of a
NetBatch-Plus job can depend on up to eight other
jobs that must execute before the dependent job
is allowed to execute. NetBatch-Plus submits the
dependent job with a WAITON attribute set for
each master job. The command that releases the
dependent job must be inserted in each master
job's IN file. This procedure is documented in the
NetBatch User's Guide. In keeping with Tandem's
commitment to transparent distributed processing,
the master jobs do not have to execute in the same
node or SCHEDULER as the dependent job.

TANDEM SYSTEMS REVIEW• MARCH 1990

Versatile Job Selection

NetBatch-Plus offers three ways to select jobs for
submission to a SCHEDULER. Two methods select
jobs individually; the third selects jobs in bulk.
As well as providing flexibility, this variety of job
submission methods gives the system manager
a way to restrict a user to a limited number of
NetBatch-Plus functions and still allow that user
to submit jobs.

Submitting Jobs Individually
The first method allows a user with security access
to display a job on the Job Definition screen and
submit it directly to its SCHEDULER.

The second method allows a user to submit a
job by selecting it from a list of job names. The
Ad Hoc Job Selection screen lists jobs grouped
by defaults set and provides wild-card selection
mechanisms that make it easy to find jobs. The
user can also choose to list only those jobs with
no security restrictions; these are jobs that all
NetBatch-Plus users with access to the correspond
ing job screen are permitted to run. These jobs are
identified by setting the ANY USER SUBMIT flag
to Y. A short description helps to identify each job
listed on the screen.

Submitting Jobs in Bulk
The BULK SUBMIT program, the third method of
submitting jobs, allows the user to submit a large
number of related jobs to various SCHEDULERs.
After the user defines the overall batch schedule in
the NetBatch-Plus database, and if the user wishes
to select a daily bulk run, the BULK SUBMIT
program automatically submits jobs on schedule
by setting a control job to run daily at a specified
time. Through its BULK SUBMIT program,
NetBatch-Plus provides complete operator inde
pendence.

Users can select groups of jobs based on a range
of criteria, including jobs that run on specific dates
and those that run in special categories. Categories
are a convenient way to group jobs such as payroll
or administration jobs that are usually run together.
They can also be associated with dates entered on
a calendar.

NetBatch-Plus allows flexibility in choosing
start times for jobs in bulk runs. The user specifies
an overall start time and can also specify particular
start times for individual jobs. If required, the user
can override these individual jobs' start times and
force all jobs in the bulk run to start at the time
specified for the run.

Figure 5

NETBATCH-PLUS BULK JOB SELECTION CRITERIA

JOB SET: TRAVEL-UPD JOB NAME: DBASE-SORT

INclude/EXclude CATEGORY or DATE

EX ____ 30Jul1991_ Tue
EX ____ 24Dec1991 Tue
IN ____ 27Dec1991=Fri
EX END MONTH
EX HOLIDAYS
IN TUESDAYS-

Bulk Job Selection Criteria. For each job, the user
defines the dates and categories in which the job
executes when scheduled for a bulk run. A job can
be assigned to as many dates and categories as
necessary. The user can also explicitly exclude a
particular date or category from a bulk run. An
optional start time can be specified for each date
and category.

For example, Figure 5 illustrates the bulk
selection criteria of the batch job DBASE-SORT.
It runs every Tuesday after 15:00, except on public
holidays or the last day of the month. It has also
been excluded from running on two Tuesdays,
July 30 and December 24, 1991. On Friday,
December 27, 1991, it will run after 18:00. The
user has defined the categories TUESDAYS,
ENDMONTH, and HOLIDAYS in the calendar,
associating each category with the appropriate
dates.

MARCH 1990 •TANDEM SYSTEMS REVIEW

13Aug1991

AT/AFter TIME

AF 18:00

AF 15:00

Figure 5.

Multiple jobs can he
selected to run hy
including or excluding
categories, dates. and
times.

23

Figure 6

Default Job Attributes
NODE: \VENUS
SCHEDULER: $LOVE
JOB CLASS: GALACTIC
OWNER: OPS.MGR

SET1
J0B1 INCL: 13AUG

JOB2
JOBCLASS:

JOB3 PLANETARY
OWNER: OPS.KEN

JOB4 INCL: 13AUG

Default Job Attributes ~ NODE: \EARTH NODE: \MARS
SCHEDULER: $WAR

INCL: TUESDAYS
EXCL: 13AUG SET2 JOB CLASS: GALACTIC

OWNER: OPS.MGR

JOBA INCL: TUESDAYS

JOBS

SET3

Default Job Attributes
NODE: \JUPITER
SCHEDULER: $JOVE
JOB CLASS:

SET4 OWNER:

JOBX

JOBY

JOBZ

Figure 6.

Multip/ejohs can he
selected to run hased
on node, SCHEDULER,
JOBCLASS, and date.
/11 the case shown ahm·e,
two of ninejohs were
selected to run.

GALACTIC
ACC.MGR

--- INCL: TUESDAYS

Configuring Bulk Job Runs. When setting up
large batch environments, users should consider
carefully how they configure bulk runs of jobs.
If jobs run regularly, begin by deciding on their
scheduling criteria. List the dates when each job
runs and the dates, such as holidays, when it
should not run; list a category to which the job
should belong; or list both dates and categories.

\VENUS
$LOVE

JOB 1

OWNER:
OPS.MGR

\EARTH
$LOVE

BULK SUBMIT
FUNCTION

NODE: *
SCHEDULER: $???E
JOB CLASS: GALACTIC \MARS
DATE: 13AUG $WAR

I
CALENDAR \JUPITER

$JOVE
CATEGORY DATE

TUESDAYS 6 AUG JOBZ

13 AUG OWNER: 20 AUG ACC.MGR 27 AUG

Once the run dates for each job are determined,
patterns should emerge. The user can generate
categories in the calendar based on those patterns.
For example, certain jobs may run every Monday
except public holidays. Define the category
MONDAYS by using the automatic frequency
generation in the calendar. Next, generate the
category HOLIDAYS by explicitly defining all
public holidays in the calendar.

A category does not have to map to dates in the
calendar. It can identify a group of jobs that
perform a similar function. For example, a cate
gory for payroll or monthly backups could be
assigned to specific dates, such as the last day in
each month, and generated automatically. How
ever, a user may find it more convenient to sched
ule the run by explicitly selecting the category
instead of having it be selected automatically in
the BULK SUBMIT program's daily run. In that
case, one would not enter the category in the
calendar.

24 TANDEM SYSTEMS REVIEW• MARCH 1990

Three Ways to Submit Bulk Jobs
NetBatch-Plus offers three ways to control the
scheduling of bulk jobs. Once users decide to use
the BULK SUBMIT program for job submission,
users can combine all three types of bulk-job
selection to fit their batch scheduling needs.

Daily Run. First, the BULK SUBMIT control job
can run every day at a particular time, automati
cally selecting and submitting all jobs eligible to
run on the current day. The control job submits
each job to the specified SCHEDULER to start at
the specified time. The control job itself needs to
be submitted only once and continues to run at the
same time every day.

The user can choose to select only jobs defined
for certain SCHEDULERS or JOBCLASSes. For
example, \VENUS.$* * specifies that only jobs
belonging to any JOBCLASS in any SCHEDULER
on the system \VENUS would be submitted.
Similarly, *.$???E GALACTIC would select jobs
for all nodes; each job would have a SCHEDULER
with a four-character name ending in E and the
JOBCLASS must be GALACTIC. The nodes and
SCHEDULER names selected could include
\VENUS.$LOYE and \JUPITER.$JOVE.

Figure 6 illustrates a daily bulk run for several
jobs in three different defaults sets for Tuesday,
August 13, 1991. Jobs 1 and 3 in SETl explicitly
include AUGUST 13 in their selection criteria. Jobs
A and Z, in SET2 and SET4 respectively, include
the category TUESDAYS, which has been defined
to match AUGUST 13 in the NetBatch-Plus
calendar. Job 4 also includes TUESDAYS but
explicitly excludes AUGUST 13 and therefore
cannot be selected.

Of the remaining jobs, Job 3 belongs to a
JOBCLASS other than GALACTIC, which was
specified for the BULK SUBMIT run. Similarly,
Job A is assigned to a SCHEDULER with a three
character name of $WAR. In this run, only Jobs l
and Z have the JOBCLASS, date, and SCHEDULER
names that conform to the selection criteria. There
fore, only those two jobs are eligible for selection.

Bulk Run by Category. In the second method of
bulk-run selection, the user can explicitly select all
jobs that belong in a specific category, regardless
of whether that category is defined in the calendar.
Jobs can be selected by category when they must
run at times controlled by the user rather than by
predefined dates.

Suppose, for example, a user wants to man
ually initiate a complete batch run for the End
of Financial Year Tax Reporting job after the
accounts have been closed. All jobs to be included
in the Tax Reporting run have the category
TAX-REPORT among their selection criteria. This
category has no calendar entry because it has no
dates associated with it. When the user selects the
category TAX-REPORT for a bulk run, all the Tax
Reporting jobs will run at the specified start time.

The user can also select bulk runs for categories
that have user-defined dates in the calendar. For
example, one can select jobs in the category
TUESDAYS. The jobs run at the specified start
times on the day the selection is made. The dates
specified in the calendar are ignored.

Bulk Run by Date. In the third method of bulk-run
selection, the user can explicitly select all jobs due
on a specific run date, regardless of category. Bulk
jobs scheduled for a particular run date can be
selected and submitted on a different date. This
feature is particularly useful when one has to rerun
jobs or run them in advance.

Test Runs. The user can perform a test run before
actually submitting a group of jobs selected
explicitly by date or category. The test run gener
ates a report listing all jobs that would be submit
ted for that bulk run together with their start times.
The test run allows users to modify the actual bulk
run before submitting it, giving them better control
over the batch environment.

MARCH 1990 •TANDEM SYSTEMS REVIEW 25

26

System Visibility

The NetBatch-Plus Scheduler Interface gives
the user a full-screen interface to batch
SCHEDULERS. It is a superset of the functions
available in the BATCHCOM 2 component of
NetBatch (Wakashige, 1989). The Scheduler
Interface provides easier and faster control of the
batch environment and offers greater power and
flexibility.

Monitoring the Batch Environment
From a single terminal screen, the user can
obtain static and dynamic information on each
SCHEDULER in the batch processing environ
ment. With the proper security access and SUPER
user ID, a system manager or operator can start,
shut down, and update any SCHEDULER as well
as add and configure new SCHEDULERs without
having to use BATCHCOM. JOBCLASSes and
EXECUTORs can also be configured and updated.
There is no need to remember difficult keywords
with the user-friendly screens in NetBatch-Plus.

Any user can inquire on the status of a job or
can update its attributes. Jobs can be stopped; if
required, they can be suspended and reactivated.
Also, the user can monitor all the processes in any
currently executing job.

Invoking Utilities
The NetBatch-Plus Utility menu provides a
gateway to Tandem subsystems, allowing the user
to view and manage the entire system environ
ment without having to exit NetBatch-Plus. From
the Utility menu, the user can invoke Tandem
utilities and user applications.

;-BATCIICOM is a conversational interface to the SCHEDULER that allows a
user to submit. monitor. and control jobs throughout a distributed environment.

For example, the user can add a job and submit
it to run immediately on the Job Definition screen,
monitor its progress on the Job Status screen, and
then invoke the PERUSE utility of the SPOOLER
program to check its output. If the job does not
execute satisfactorily, the user can edit the IN
file of that job by invoking the PS TEXT" EDIT
(TEDIT) utility, then resubmit the job from the
Ad Hoc Job Selection screen. All this can be
accomplished from within NetBatch-Plus.

From the Utility menu, the user can invoke up
to 13 utilities, including BATCHCOM. To suit the
requirements of an individual site, the system
manager can easily replace up to 12 utilities in the
menu with user-written applications or Tandem
utilities. BATCHCOM is the only utility that is
mandatory and cannot be replaced. Appendix C in
the NetBatch-P!us User's Guide documents how
to reconfigure the Utility menu.

Management Reporting
The NetBatch-Plus reporting system provides a
variety of critical information from the NetBatch
Plus database, enhancing the visibility of the
batch environment. The reporting system is
flexible and easy to use. The system manager
can fully configure the Report menu, replacing
standard reports with those written by users.
Users are encouraged to modify the standard
reports or write their own reports to suit the
requirements of their installation. For details,
refer to Appendix C of the NetBatch-Plus
User's Guide.

NetBatch-Plus comes with 10 standard man
agement reports that use the ENFORM query lan
guage/report formatter; sources are supplied as
examples. In addition to the eight reports that
appear on the Report menu, users can select their
own ENFORM report simply by entering its name.
Users can easily limit any report to particular
dates, categories, defaults sets, and job names, by
specifying start and end values for parameters on
the menu. ENFORM selects only those records
that fall within the specified range or ranges.

TANDEM SYSTEMS REVIEW• MARCH 1990

BULK SUBMIT Reports
Each bulk run generates a standard report contain
ing details of all the jobs selected in the run. The
report lists each job by defaults set, job name,
node, SCHEDULER, JOBCLASS, and start time. It
also reports any errors or warnings issued during
the job submission.

A daily BULK SUBMIT run produces a report
that lists the jobs submitted that day and predicts
the jobs due on the next day. The user can examine
this report daily and adjust the list for the next day
to avoid any errors or omissions. The BULK
SUBMIT program also creates a database file
containing comprehensive information about the
jobs selected and any errors or warnings issued
during the run. Users can also write their own
customized reports for the bulk run by using the
record REPORT-BULK in the Tandem Data
Definition Language (DDL) dictionary, supplied
with NetBatch-Plus.

Individually Defined Security

NetBatch-Plus permits both fine-tuned control
over the security of the batch processing environ
ment and flexible access to that environment. First,
access to the NetBatch-Plus database is defined on
a record-by-record basis, giving users separate
control over each defaults set, catalog record, job,
and job attachment. Second, the system manager
can control the access to the NetBatch-Plus soft
ware and the batch environment by defining each
user's profile, which determines the user's access
to each NetBatch-Plus screen and to SCHEDULER
and utility functions.

Record Security
Each record in the NetBatch-Plus database
is assigned a particular owner by use of
GUARDIAN 90 user IDs. The record security
detern1ines which GUARDIAN 90 users can read,
write, use, or purge that defaults set, catalog, job,
or job attachment. Access to each record can be
restricted to the owner of the record, to members
of the owner's group, or to all users. These restric
tions apply to all NetBatch-Plus users, including
those on remote systems.

Read, write, and purge security apply to all
record types in NetBatch-Plus. However, only
defaults sets and catalog records can have use
access meaningfully defined. The owner of the
defaults set can restrict the users permitted to use
it. By specifying a particular access type for use
on a defaults set, the owner can limit the users who
can attach job definitions to it. Similarly, the use
access for a catalog determines which users may
attach that catalog ASSIGN, PARAM, or DEFINE
to their own jobs.

For each job definition, access may vary as to
who can read, update, or delete it from the data
base. However, the owner of the job is usually the
only one permitted to submit it to a NetBatch
SCHEDULER. Alternatively, by setting the ANY
USER SUBMIT flag on the job record, the job
owner allows any user of NetBatch-Plus to submit
the job on an ad hoc basis. In contrast, anyone who
has access to the Bulk Submit screen may select
eligible jobs for a bulk run, regardless of who
owns them.

Password Validation
A Password Validation screen allows the user to
validate one or more GUARDIAN 90 user IDs in
order to access different sets of NetBatch-Plus
records. All validated passwords remain current
until the end of the NetBatch-Plus session. To
prevent unwanted access to the batch scheduling
system, it is strongly recommended that users exit
NetBatch-Plus when they finish their scheduling
tasks. For additional security, a user-supplied time
out parameter automatically exits each NetBatch
Plus screen when no keyboard input occurs for the
time-out period. The user can adjust the time-out
period to any length above five minutes or can
effectively disable the time-out feature.

MARCH 1990 •TANDEM SYSTEMS REVIEW c_27

Figure 7

NetBatch-Plus
User

Manager

David

Rhonda

Anna

Bruce

Operator

Figure 7.

Use a matrix ol
NetBatch-Plus users
similar to the one shown
ahm·e to determine
security needsfor the
hatch em-ironment.

28

Supervisor Maintain jobs Submit jobs Job environment

X

and parameters Ad hoc Bulk limits

X X X All

X X X All

X \VENUS.$LOVE

X \MARS.$*, \EARTH.$*

X X \MARS.$WAR

X X Alf

Screen Security
User profiles give the system manager a way to
control each user's access to NetBatch-Plus. The
user profile defines three distinct areas of access:

■ Screen security defines the level of access the
user has to each NetBatch-Plus screen. Access
can be defined as update allowed, inquiry only,
or no access.

■ Job environment limits define the
SCHEDULERs and JOBCLASSes available
to jobs maintained or submitted by the user.

■ Utility security defines the level of access the
user has to the utilities, such as BATCHCOM,
available in the Utility menu and to the Scheduler
Interface.

Bulk Submit Environment
Although the jobs selected in a bulk run can be
submitted to many SCHEDULERs, the BULK
SUBMIT control job always runs in the same
SCHEDULER and JOBCLASS. It is recommended
that only the system manager or database adminis
trator have update access to the NetBatch-Plus
screen that maintains the control job's environ
ment and GUARDIAN 90 owner.

Access to
Change own Access to SCHEDULER interface
password utilities Job screens Other

X X X X

X X X X

X X X

X X

X X X

X X X

Security for the Bulk Submit environment is
further controlled by automatic purging of tempo
rary files created by NetBatch-Plus. A window
parameter allows users to define the number of
days temporary files remain in the database. It is
recommended that the BULK SUBMIT program
purge temporary files after the third day.

Defining Security for NetBatch-Plus Users
To determine the security for NetBatch-Plus
users, the system manager can create a matrix
like the one shown in Figure 7. First, list all
possible users; these users do not need to map
directly to GUARDIAN 90 users. Next, list the
major functions each user is permitted to perfonn.

The sample matrix in Figure 7 includes a
manager; an operator, which can be represented
by several people; and four other users listed by
first name. The matrix does not list all the func
tions available in NetBatch-Plus, but it provides
a basis on which to decide the users' access to
individual screens. The matrix shows the individ
ual requirements of each user, which can be
implemented in NetBatch-Plus. The system
manager still retains control of the total batch
environment.

The user Manager is made a Supervisor, which
automatically grants him or her full access to all
screens and functions in NetBatch-Plus. The
Operator can only submit jobs but has access
to all job environments. Therefore, the Operator
would be granted full access to the Ad Hoc Job
Selection and Bulk Submit screens as well as
inquiry access on the Job Definition screen. Also,
the Operator would probably be granted full
access to the Scheduler Interface and Utility
screens, but access to most screens that maintain
the NetBatch-Plus database would be denied.

TANDEM SYSTEMS REVIEW• MARCH 1990

The other four users in Figure 7 can submit ad
hoc jobs, inquire on the jobs' status, and change
their own passwords. However, most are limited to
submitting jobs to certain SCHEDULERs only and
may not submit bulk runs.

Setting Up a NetBatch-Plus
Database: A Checklist

In order to structure a batch environment to
suit a particular installation, the system man
ager needs to do some preliminary planning.
The following checklist summarizes the impor
tant steps required to design and implement a
NetBatch-Plus database.

■ First, list all batch tasks and give them unique
names. These are the job definitions.

■ Organize the jobs into logical groups or defaults
sets. For an example, see Figure 3.

■ For each job, list all its job attachments; that
is, all ASSIGNs, PARAMs, and DEFINEs. For an
example, see Figure 4.

■ From a matrix of jobs versus job attachments,
identify common or shared attachments that can
be grouped into catalog records. Organize the
catalogs into appropriate defaults sets.

■ Next, specify the dependencies among the
NetBatch-Plus jobs.

■ If jobs run on a regular schedule, decide on
their scheduling criteria: dates on which they run
or don't run, or categories to which they should
belong.

■ List regularly recurring dates and organize
them into categories. Enter the categories in the
calendar.

■ List all possible users, noting that they do not
need to map directly to GUARDIAN 90 users.
Next, list the major functions each user is permit
ted to perform. For an example, see Figure 7.

Conclusion

By adding structure to the batch processing
environment, NetBatch-Plus enhances the batch
scheduling facilities provided by NetBatch and
gives users the ability to handle complex bulk
scheduling. With NetBatch-Plus, users can catego
rize job information, specify defaults sets for
similar kinds of jobs, and utilize catalogs of batch
scheduling parameters. NetBatch-Plus simplifies
batch scheduling with its full-screen interface,
versatile database, system visibility, and the easy
access it provides to other Tandem subsystems and
utilities. NetBatch-Plus implements the Tandem
commitment to mainframe batch processing.

References
Keefauver, T. I 989. Optimizing Batch Performance. Tandem Systems
Review. Vol. 5, No. 2. Part no. 28152.

NetBatch Uscr"s Guide. Tandem Computers Incorporated.
Part no. 18097.

NctBatch-P/us User's Guide. Tandem Computers Incorporated.
Part no. 19527.

Wakashige, D. 1989. NetBatch: Managing Batch Processing on
Tandem Systems. Tandem Systems Rn·iew. Vol. 5. No. I. Part no.
18662.

-

Glenys Earle is a quality assurance engineer in the Batch Research and
Development Group in Melbourne, Australia. Before joining Tandem in
1988, she worked as a quality assurance engineer for a Tandem third
party vendor, as a support analyst, and as a technical programmer.

Dean K. Kaumaakani Wakashige is a senior staff analyst for the
Customer Support Organization. Before joining Tandem in 1987, Dean
was the support manager for a Tandem third-party vendor and a systems
analyst for a major bank.

MARCH 1990 •TANDEM SYSTEMS REVIEW 29

30

Converting Database Files from
I ENSCRIBE to NonStop SQL

ecause of the increasing
interest in Structured Query
Language (SQL) relational
database management, a
growing number of users of
Tandem"M products are consider
ing converting from the

ENSCRIBE database record manager, the original
Tandem data access system, to the NonStop'" SQL
distributed relational database management
system. There are many reasons to convert from
an ENSCRIBE to a NonStop SQL system, but con
version can be a complex endeavor. Users should
evaluate several critical factors before they decide
to convert. In some installations, it is more
practical to keep the ENSCRIBE system. In other
installations, it may be more efficient to support
some applications with ENSCRIBE files and other
applications with NonStop SQL database tables.

It should be emphasized that the NonStop SQL
file system is designed to coexist with the
ENSCRIBE file system. For example, the
ENSCRIBE and NonStop SQL systems share
modules for the OPEN function. The ENSCRIBE
file system supports unstructured files, object
files, and edit files, whereas NonStop SQL only
supports database files, which are called SQL
tables. Therefore, the ENSCRIBE system will
continue to be part of any Tandem environment,
including one that uses only NonStop SQL
databases.

This article initially explores the issues that
must be weighed when one is deciding whether
to convert and discusses several practical con
siderations that help to make a conversion suc
cessful. The article describes the benefits of
Nonstop SQL as compared to ENSCRIBE, and
it discusses whether conversion is warranted in
a few hypothetical scenarios. It emphasizes the
importance of redesigning and rewriting the
application during conversion. The article then
describes the considerations for a successful
conversion, including conversion methods,
conversion tools, program-code conversion,
and step-by-step programming changes. Tables
at the end of the article compare the features of
the NonStop SQL Report Writer to those of the
ENFORM'M query language/report formatter, the
report-writing system associated with ENSCRIBE.

The information presented in this article is
based on NonStop SQL Release 2, and all refer
ences to and examples of programming code
appearing in this article are based on COBOL85.
Readers using other programming languages need
to extrapolate the information for their particular
environment.

TANDEM SYSTEMS REVIEW• MARCIi 1990

Determining Whether to Convert
Before deciding to convert to a new system, users
should compare the benefits of NonStop SQL to
those of the EN SCRIBE system, examine their
reasons for converting, and consider the effort
required to redesign the application as well as to
convert the database files. Users should also
consider the costs associated with conversion,
which include staff time, staff training, CPU
resources, and other resources such as disk space.

Comparing the Nonstop SQL and
ENSCRIBE Systems
NonStop SQL is a relational database management
system that uses the ANSI (American National
Standards Institute) standard version of SQL to
define and manipulate data. It is integrated with
other Tandem system software so that it can be
used for online transaction processing (OLTP)
applications, batch applications, or both. NonStop
SQL can operate centrally or be distributed in a
network of systems.

The flexibility of the SQL language permits
NonStop SQL code to be embedded in COBOL85,
C, and Pascal programs. It can also be used for ad
hoc queries and update functions. The SQL lan
guage was specifically designed for easy access
to relational databases.

In contrast, the EN SCRIBE record management
system stores and retrieves data on a record-by
record basis, either by key or sequentially. It is not
a database management system.

Performance. The NonStop SQL system delivers
high performance for production OLTP applica
tions. A benchmark demonstrating several aspects
of NonStop SQL Release 1 produced a transaction
rate of over 200 transactions per second (Tandem
Performance Group, 1988). That benchmark was
based on the debit-credit banking application also
known as ET! (Datamation, April 1985).

Although the ENSCRIBE system performs rea
sonably well compared to NonStop SQL, it is much
more limited in scale. ENSCRIBE can have at most
16 partitions, so it cannot be expanded beyond 16
processors. NonStop SQL allows up to 100 parti
tions, supported by up to I 00 processors. NonStop
SQL, in general, offers better performance than
EN SCRIBE. However, as of version CI O of the
GUARDIAN'" 90 operating system, a few features,
such as file loading, perform better in ENSCRIBE
than in NonStop SQL.

NonStop SQL Release 2 is significantly
enhanced to deliver high performance. For
example, table joins, set operations, and batch
read-ahead buffering are improved in Release 2.

Application Development and Maintenance.
Application development time and the expense
of application maintenance are two key consid
erations in comparing the costs of developing
new ENSCRIBE and NonStop SQL applications.
Discounting the startup time and learning curve
for those who are unfamiliar with NonStop SQL,
NonStop SQL appears to be far superior in both
areas. Because most systems cost more to maintain
than to develop initially, a tool that aids in mainte
nance is a significant benefit.

NonStop SQL is easy to learn and use, yet it is
a fast and complete language that provides data
definition and data manipulation. Application code
is simplified because NonStop SQL has only four
Data Manipulation Language (DML) statements
to perform the retrieve, insert, update, and delete
functions. In some cases, a single NonStop SQL
statement can replace paragraphs of application
code. Using the Conversational Interface (SQLCI),
users can test NonStop SQL statements at their
terminals before embedding them into a program.

Programmers do not need to explicitly specify
the path for accessing data. To optimize database
queries, NonStop SQL manages the access path to
the data by using statistics for each database.

Programmers can use logical names for
NonStop SQL objects in the program code. The
logical names are mapped to the true names at
compile and execution time. This allows the same
program code to be used in multiple environments.
For example, the same code can appear in a test
system and a production system.

MARCH 1990 •TANDEM SYSTEMS REVIEW 31

32

Changing a Database. Changing a database is
easier in a NonStop SQL than in an ENSCRIBE sys
tem. For example, table columns can be added to
existing rows without having to change existing
code or to unload and reload the database.
Indexes can be added or deleted without having
to change either the existing code or the database.
Automatic data declaration retrieves the latest
data declarations from the dictionary into host
language declaration code. At run time, NonStop
SQL checks the program for consistency with
the database. If the database has changed, the
program is automatically recompiled before it
is executed. Also, changes can be made using
NonStop SQL statements from SQLCI. Some
changes, such as new data declarations in the
dictionary, are totally transparent; others may
require program recompilation.

Conversion Scenarios
These five scenarios explore possible conversions
from an ENSCRIBE system to NonStop SQL. Each
scenario presents the reasoning for conversion and
examines the effort and cost associated with the
scenario, as well as benefits or drawbacks.

Case 1. Users may want to convert to learn about
NonStop SQL. Converting for this reason is not
advisable. Database files should be converted
only when the applications that use them benefit
by that conversion. Users can gain the same exper
ience and reap greater benefits by developing a
new application that uses NonStop SQL.

Case 2. Users may want to convert to measure the
relative performance of the NonStop SQL and
EN SCRIBE systems. One should be careful when
converting for this reason. Depending on the
environment, application system, and database,
certain functions ofNonStop SQL may perform
poorly when compared to ENSCRIBE; other
functions will perform very well.

Case 3. Users may decide to convert when two
separate applications share common data, and one
of these applications must be rewritten. The
application to be rewritten has new requirements,
but normal operations for the other data-sharing
application must be preserved. The user must
either convert both applications or maintain two
copies of the database, one in EN SCRIBE and one
in NonStop SQL. The second alternative is not an
attractive prospect.

Case 4. Installations that have third-party software
systems are good candidates for conversion if one
wants to market these systems to SQL users. The
magnitude of effort must be determined on a case
by-case basis.

Case 5. Users may want to convert for the sake
of staying on the leading edge of technology. This
is not recommended. Conversion is costly, and a
straight conversion will probably not improve
the original system. If an ENSCRIBE application
is no longer adequate, one should develop a
new application rather than perform a straight
conversion.

Redesigning and Rewriting the Applirntion
When rewriting an application, users
should consider converting to NonStop SQL.
NonStop SQLcan add functionality, accommo
date user-requested changes, and make it easier
to combine applications. Also, the costs of
conversion are partly absorbed when resources
have already been committed to redesigning the
application.

When users plan to convert a database to
NonStop SQL, it is strongly recommended that
the application be redesigned and rewritten.
An application that is converted without being
rewritten fails to take advantage of the power of
Nonstop SQL and may not perform as well as
it did in an ENSCRIBE system. For example,
poorly written SELECTs can result in full file
scans and temporary tables with sorting. An
application that uses the ENSCRIBE START
statement and reads a predetermined number
of records is likely to perform poorly.

TANDEM SYSTEMS REVIEW• MARCH 1990

Users who are still deciding whether or not to
convert should take into account the added effort
and the benefits of rewriting the application. Even
in a simple conversion that replaces ENSCRIBE 1/0
statements with SQL statements, some areas of the
application should be redesigned. Applications are
affected by the different ways ENSCRIBE and
NonStop SQL handle data requirements; replicated
fields; normalized relational databases; updates,
either with or without prior reads; multiple reads;
table joins; and error handling.

Change of Data Requirements. Data requirements
may have changed since the database was de
signed. During conversion, the database should be
redesigned to meet the new requirements. Rede
signing also allows small enhancements to be
made with little effort.

Removal of Replicated Fields. Because ENSCRIBE
does not support noncontiguous or descending
keys, some files contain replicated fields used to
construct alternate keys. NonStop SQL does
support noncontiguous and descending keys.
Therefore, replicated fields should be removed
from files being converted to NonStop SQL.

Normalized Relational Databases. NonStop SQL
supports normalized relational databases. The
ENSCRIBE clause variations, OCCURS and
OCCURS DEPENDING ON, are not normalized
relations and are not supported in NonStop SQL.
A file containing these attributes must be changed.
The SQL table definition must contain a column
name for each individual column possible. In this
sense, NonStop SQL tables are fixed-length tables.
They can be variable-length tables only by specify
ing variable-length columns.

Assume, for example, that the ENSCRIBE Data
Definition Language (DDL) specifies a group item
named GROUP that contains FIELDA, FIELDB, and
an OCCURS 3 TIMES or OCCURS I TO 3 TIMES
DEPENDING ON II clause. When the item is
described in a NonStop SQL table definition,
provision must be made for three occurrences each
of FIELD A and FIELDB. Each occurrence must
have a unique name. Space will be allocated for all
six columns. The suggested alternative is to
normalize the data.

Figure 1

EXEC SOL UPDATE TABLEx
SET COL 1 = :COL 1,

COL2 = :COL2

Specifies which table.
Changes the values of

two columns.
WHERE KEY :KEY
AND COL 1 :OLDCOL 1
AND COL2 = :OLD COL2

END-EXEC.

Specifies the key of the row.
Only if the current value is

equal to what was originally
read.

UPDATE without Prior Reads. NonStop SQL
supports an UPDATE statement without prior
reads. This saves one logical l/0 per update.
Because ENSCRIBE requires an extra read before
any update, the application should be changed
to take advantage of this performance gain.

For example, it can be necessary to prevent
two users from updating the same record at the
same time without locking the record across screen
displays. The server code reads the record and
sends the information to the requester for screen
display. The user enters changes, and the requester
sends the complete original record along with the
changed record to the server for updating. The
server then reads the record, compares it to the
original, and updates it only if the original exactly
matches the current record. If two people had
viewed the record and both made changes, only
the first update to arrive would be applied. The
second user would have to read the record again.

The read and compare after the initial read
and before updating is not necessary with
NonStop SQL. The compare can be made during
the update by specifying the original data in the
WHERE clause using a statement similar to the
one shown in Figure I.

Figure 1.

UPDATE statement
without prior read.

MARCH 1990 •TANDEM SYSTEMS REVIEW 33

34

In ENSCRIBE, a read returns the whole record,
regardless of whether all the fields are necessary.
In NonStop SQL, the user can specify only those
columns that are of interest; because less data is
transferred, performance is improved. When
multiple records are read, NonStop SQL uses
virtual sequential block buffering to fill a block
with the needed data, and the block is transferred.

NonStop SQL sends fewer messages to the disk
process requesting data than does ENSCRIBE. In
the UPDATE example in Figure I, there is no
reason to compare the whole record and possibly
risk rejection of an update when this program is not
sensitive to a column that was changed by a second
program. One can also change the interprocess
messages to contain only the data columns to
which the program is sensitive. As of version C30
of the GUARDIAN 90 operating system, if the
index of a key-sequenced file contains the column
information necessary to evaluate a NonStop SQL
instruction, only the index will be accessed. No
access will occur to the base table.

ENSCRIBE Multiple Read versus SQL Join.
Typically, ENSCRIBE programs read more than
one file. Often data carried in one file functions as
the foreign key of another file. This requires the
code to read one file, obtain the foreign key, and
then read the second file. The program logic that
reads the second file may include a loop that
locates a specified item or range of items.

These operations can be performed in one
NonStop SQL statement using JOIN. To change
from reading multiple files to using a single JOIN
statement may require major modifications in the
program logic. For example, when an ENSCRIBE
program has a main program and all I/0 is per
formed in subprograms, each affected subprogram
must be changed.

Error Handling. ENSCRIBE programs usually
contain simple error-handling routines. The
number of return codes in ENSCRIBE is limited,
and the read-one-file-at-a-time approach makes
it easy to correlate an error with the related file.

NonStop SQL provides more comprehensive
error reporting. First, NonStop SQL includes
hundreds of possible return codes. Second, it can
return both errors and warnings following each
DML statement. Third, up to seven return-code
conditions are possible for each statement.

With features such as joins and subqueries, it
is difficult to correlate any one return code with
any one table. For example, when a SELECT
statement is issued for a joined table, a not-found
condition that follows does not identify which
table is missing the data. In a case like this, the
table name is stored in a location difficult to find
in the PARAMS-BUFFER area of the SQLCA (SQL
communications area) block.

Programmers should develop error routines that
are more sophisticated in NonStop SQL than those
in ENSCRIBE. Whole sections of exception
handling code must be redesigned and rewritten.
Because the ENSCRIBE error messages are likely
to be replaced and expanded upon, end users may
also have to be reeducated.

Considerations for Successful
Conversion
Once the decision to convert has been made, it is
useful to compare the two environments in certain
key areas to make the conversion as smooth as
possible. Specifically, users should compare
staffing requirements, dictionaries, programming
features, and data definition procedures in the
ENSCRIBE and NonStop SQL systems.

Staffing
A shortage of expertise in SQL may pose a barrier
to conversion from ENSCRIBE to NonStop SQL.
However, SQL programmers are more plentiful
than ENSCRIBE programmers; this is a particular
advantage for organizations that employ contract
programmers.

TANDEM SYSTEMS REVIEW• MARCH 1990

After conversion, more resources in database
administration may be required. Many functions
performed by programmers in an ENSCRIBE
environment are shifted to the database adminis
trator (DBA) in a NonStop SQL environment. Per
formance analysis, tuning, and modifications to
databases, such as creating or dropping indexes,
are centralized.

In an ENSCRIBE environment, users typically
think in terms of files and programs that support
the files. In many cases, applications are small and
isolated from one another, and programmers are
responsible for the applications.

In a NonStop SQL environment, users will
begin to think in terms of large volumes of data
logically related in some fashion and used by
multiple groups; that is, databases. This creates a
need for a single point of control; thus, database
administration becomes more important and
requlfes more resources.

Shifting the responsibility for the database from
the programmers to a single database-administra
tion staff increases productivity for both groups.
The DBA staff can become more proficient at
doing backup, restore, tuning, and performance
analysis, which frees the programmers from per
forming these tasks and allows them to concen
trate on developing application code.

Two Dictionaries
The NonStop SQL dictionary is the set of all
the catalogs on a network together with the disk
file labels for all the objects described in these
catalogs. All NonStop SQL object definitions are
stored in catalog tables. For example, the defini
tions of the SQL tables are stored in a catalog table
and may be brought into the program by using the
INVOKE statement.

The definitions of EN SCRIBE files are
described in the DDL dictionary and in copy librar
ies. Also, definitions of the interprocess messages
are typically stored in copy libraries.

The user must maintain the ENSCRIBE and
NonStop SQL dictionaries as well as the copy
libraries. Database changes are not reflected in the
interprocess messages stored in the copy libraries.
No tools or utilities are available to ensure consis
tency between the two dictionaries; however, the
ENSCRIBE system does not provide tools to
maintain consistency within the one dictionary.

Programming Issues
NonStop SQL programs must be written in
COBOL85, C, or Pascal. NonStop SQL does not
currently support TAL'M (Transaction Application
Language). Also, ENFORM reports must be entirely
rewritten by using the Report Writer feature of
NonStop SQL.

NonStop SQL supports only normalized data.
EN SCRIBE supports data definition features such
as levels, groups, and redefines.

NonStop SQL is very powerful. Indiscriminate
use of ORDER BY or GROUP BY on table columns
without an index may result in a full table scan
followed by a sort.

NonStop SQL automatically maintains indexes;
users cannot directly access indexes. ENSCRIBE
programs that perform manual maintenance of
alternate-key files cannot be converted and may
not be needed with NonStop SQL.

Error return codes and warning return codes
in NonStop SQL are different and more extensive
than those in ENSCRIBE. A single NonStop SQL
statement can return up to seven error or warning
return codes.

NonStop SQL locking is considerably different
from ENSCRIBE security procedures. ENSCRIBE
protects a program from reading uncommitted
updates even when locks are not used in the read
ing program. NonStop SQL offers the same protec
tion only through locks. NonStop SQL locks can
be obtained on audited tables only within a TMFM
(Transaction Monitoring Facility) transaction.
Therefore, programs being converted must be
changed to include BEGIN and END TRANSAC
TION statements. These statements are usually
issued within requesters, so the requesters must be
changed.

More locks can be acquired in NonStop SQL
than in ENSCRIBE, which can cause programs to
be enqueued or to receive Error 73 (timeout while
waiting for a lock) in unanticipated situations. In
ENSCRIBE, locks are not required with nonaudited
files to insert, update, or delete records. Locks are
required with nonaudited tables in NonStop SQL,
though TMF transactions are not.

MARCH 1990 •TANDEM SYSTEMS REVIEW 35

Table 1.

ENSCRIBE operations not supported in Nonstop SOL.

ALTER operations not supported in Nonstop SQL
-- --

1 alter file code

3 alter refresh attribute

5 alter alternate key

2• alter audited attribute

4 alter odd-unstructured attribute

6 alter partition

r alter broken flag s• alter no-purge-until

CONTROL ope~ations not supported in Nonstop SQL

2 write EOF 20 purge data

21 allocate/deallocate extents

SET~~DE [NOWAIT] operations not supported in Nonstop SQL

1 set security string, progid, and clearonpurge

2 set owner

4 set alternate lock rnode

90 set buffered option

92 set maximum extents

94 set audit-compress

3 set verify writes

57 set serial writes

91 set accesstype open

93 set unstructured buffer length

95 flush dirty cache buffers

'With Release C:3(),_l'JonStop SOL will support these AL TE:H operations.

Data Definition Procedures
The ENSCRIBE GUARDIAN 90 system call
procedures include these seven operations:

■ CREATE defines a file.

■ PURGE deletes a file.

■ RENAME renames a file.

■ ALTER alters file attributes.

■ CONTROL performs device-dependent 1/0
operations.

■ CONTROLBUF performs device-dependent
l/0 operations requiring a buffer.

■ SETMODE [NOWAIT] sets device-dependent

functions.

These procedures cannot be used to create or
alter NonStop SQL objects. Table I lists the
ALTER, CONTROL, and SETMODE [NOWAIT]
operations not supported in NonStop SQL. Also,
NonStop SQL does not currently support the
RENAME operation; however, it is supported in
Release 2.

NonStop SQL provides commands that perform
the equivalent functions, where appropriate, for
SQL objects. For example, the NonStop SQL
ALTER command sets the security string, owner,
audit attribute, and file attributes. The PURGE and
PURGEDATA utilities or the DROP command
delete data or tables. In a NonStop SQL environ
ment, the database administrator usually becomes
responsible for these functions; this shift in
responsibility changes operational procedures
for the OBA staff, programmers, and operators.

Conversion Methods
A NonStop SQL program can reference both
ENSCRIBE files and SQL tables. This allows users
to take one of three basic approaches to converting
from an ENSCRIBE to a NonStop SQL system.
Users can convert individual files, groups of files,
or all the files associated with the application.

One File at a Time
The least desirable method converts one file at a
time. An application using the ENFORM product
to generate reports from multiple files cannot
convert one file at a time. Neither ENFORM nor
the NonStop SQL Report Writer supports access to
both ENSCRIBE and NonStop SQL.

Users could convert a file and change all
programs using that file, but this should be done
carefully. If files are shared across applications,
programs would have to be modified in multiple
applications. The chance of corrupting any one
application increases with each additional applica
tion that must be changed.

If one takes the file-at-a-time approach, pro
grams must reference both ENSCRIBE and
NonStop SQL until all the files are converted.
This is acceptable, but it could result in a failure
to use NonStop SQL properly.

For example, assume that a program cannot join
two or more tables because one is an ENSCRIBE
file and the other is a NonStop SQL table. To pro
vide a temporary solution, code is written to read
each file separately. When the second file is con
verted, the user must change whole sections of
code to perform the JOIN. The user is more likely
to simply convert the access to the second table
and lose any chance to improve performance
provided by the JOIN.

36 TANDEM SYSTEMS REVIEW• MARCH 1990

Programs that use ENSCRIBE files and
NonStop SQL tables will contain two different
error routines for handling file-error conditions.
The method for presenting errors to end users
may have to be changed. For example, many
ENSCRIBE programs return the FILE STATUS
or GUARDIAN error; NonStop SQL has no exact
equivalents for these error codes.

Groups of Files
If the entire application cannot be converted at one
time, one can convert groups of related files. This
method allows programmers to take advantage of
NonStop SQL functions such as joins and subquer
ies. A special transaction matrix determines which
files constitute a group. (See Figure 2.) The matrix
lists transactions, the files they use, and the type of
reference made to the file.

From the transaction matrix shown in Figure 2,
it can be determined that files Fl and F2 constitute
a group because at least one transaction references
both files. Files F3 and F4 constitute a group for
the same reason. The matrix also indicates the
amount of effort involved in converting a group.
If Fl and F2 are selected as a group, the code that
manages three transactions must be converted.
If F3 and F4 are selected, two transactions must
be converted.

The matrix also can be applied to such tasks as
performing tuning functions and estimating system
load. If the number of logical I/Os is included with
the access type, the matrix can help to determine
file placement and predict the load when transac
tion volumes change.

Entire Application
If the application is small enough and has a limited
number of files, all programs and files of the entire
application can be converted at one time. This
method is the best one because it allows users to
complete the entire redesign at once. It also
requires only one testing period, allows program
mers to take full advantage of SQL functions such
as table joins and subqueries, and disrupts the ap
plication for the shortest length of time. A good
candidate for this approach is an application that
can be converted in three months or less, at a
reasonable cost.

Figure 2

Transactions

Files TRAN1 TRAN2 TRAN3 TRAN4 TRAN5

F1 RU RU I

F2 R RID RU

F3 RD RI

F4 R R

j
R = read, I= insert, U = update, D = delete

Conversion Tools

Tandem supplies the CONVERT and the LOAD
utilities to assist in the conversion process. The
CONVERT utility generates the statements required
to define and create NonStop SQL tables, and the
LOAD utility loads the tables with the data con
tained in ENSCRIBE files. These utilities are easy
to use and have contributed to a successful conver
sion from ENSCRIBE files to NonStop SQL tables.

CONVERT Utility
The CONVERT utility converts an ENSCRIBE file
described in a DDL dictionary to an SQL table
described in a catalog. It produces:

■ A table definition containing rows that corre
spond to the records of the ENSCRIBE file and
columns that correspond to the fields in each
record.

■ Indexes on the table that correspond to the
alternate-key files associated with the ENSCRIBE
file.

MARCH 1990 •TANDEM SYSTEMS REVIEW

Figure 2.

File groups hy transaction.

37

Figure 3

Conditions tested

EXEC SOL
WHENEVER NOT FOUND PERFORM : 9999-NOT-FOUND

END-EXEC

EXEC SOL
WHENEVER SQLERROR PERFORM : 9999-SQL-ERROR

END-EXEC

EXEC SOL
WHENEVER SQLWARNING PERFORM : 9999-SOL-WARN

END EXEC

Program code generated

IF (SOLCODE OF SQLCA=100)
PERFORM 9999-NOT-FOUND.

IF (SQLCODE OF SQLCA < 0)
PERFORM 9999-SQL-ERROR.

IF (SQLCODE OF SOLCA > 0) AND
(SQLCODE OF SQLCA NOT EQUAL 100)
PERFORM 9999-SOL-WARN.

Figure 3.

NonStop SQL program
directi\·es.

CONVERT generates the commands needed for
CREATE TABLE, CREATE INDEX, and the LOAD
utility and stores them in an edit file. Users can edit
this file before executing it.

The DDL record definition is reduced to two
levels by eliminating DDL group names, REDE
FINE statements, and OCCURS clauses. These
repeating fields are defined as individual columns
and are assigned system-generated names. These
names may not give meaning to the data content
or they may be confusing. Most users edit these
field names to be more descriptive.

If the data type of a DDL field is a NonStop SQL
data type, the column is assigned the same data
type. If the data type is not valid in NonStop SQL,
the column is assigned a compatible data type.
When performing edit functions, be cautious about
changing the data type. Column data is typically
moved around within a program, and, because the
destination fields have been defined previously
(for example, as working storage or interprocess
messages), the data must be converted when it is
moved if the data types do not match.

LOAD Utility
The LOAD utility loads data from an ENSCRIBE
file into a NonStop SQL table. This operation
automatically loads all indexes defined for the
table. Users are allowed to effect changes, such as
reordering or dropping fields, to a NonStop SQL
table through a mapping function in the LOAD
utility.

Program Coding Conversion
When ENSCRIBE files are converted to NonStop
SQL tables, every program referencing those files
must be modified. It is beneficial to standardize
certain tasks that appear in many programs. Some
tasks can be coded only once and copied into each
program. This helps minimize program develop
ment and testing time, and it assures adherence to
any established organization standards.

New Error Routines
Because NonStop SQL errors have different
values, are more extensive, and are reported
differently than ENSCRIBE errors, the program
routines that handle these errors must be changed.
NonStop SQL provides WHENEVER directives
that generate the host-language code needed to test
the result of each executable SQL statement and
the action to take when a particular condition
occurs. The conditions that are tested for include
NonStop SQL errors, NonStop SQL warnings, and
a not-found condition. The action to be taken can
be CONTINUE, GO TO paragraph, or PERFORM
paragraph. Figure 3 shows an example of each
condition tested and the action to be taken.

38 TANDEM SYSTEMS REVIEW• MARCH 1990

Standard Error Routine
It is recommended that a standard error routine
be developed and copied into each program. This
code would be performed as a result of the testing
described in the previous paragraph.

The programmer can set a switch, defined in
working storage, to reflect the result of a NonStop
SQL statement. For example:

■ 00 = successful operation.
■ 01 = not-found.
■ 02 = duplicate (INSERT operation).

■ 03 = SQL error.
■ 04 = SQL warning.

The switch can be tested following each
NonStop SQL statement. A decision can be
made to continue to the next statement or
return with a message.

Create messages in a common area to be
returned to the screen. For example:

■ REQUESTED RECORD NOT FOUND.

■ ADD FAILED - RECORD ALREADY EXISTS.

■ DATABASE ERROR - CONTACT SUPPORT.

■ DATABASE ERROR= 11111111 - FILE SYSTEM
CODE= 1111.

These messages should be easy to understand.
Most end users cannot determine or resolve a
problem when only a return code and file code are
presented. Most errors that cannot be identified
with a clear, simple message require Support or
Operations assistance.

Routines Supplied by Nonstop SQL
The NonStop SQL system supplies three TAL
routines, named SQLCAFSCODE, SQLCADIS
PLAY, and SQLCATOBUFFER, that can help
programmers create a standard error routine.
Programmers can use any combination of these
routines.

SQLCAFSCODE. This routine returns a file system
code if one is associated with the condition. This
code can be displayed in a message as shown in
the previous list of sample messages.

SQLCADISPLAY. This routine parses the
SQLCA control block and sends a message to an
output device, the default being the home terminal
(HOMETERM). The message:

■ Indicates an error or warning and contains the
return code.

■ Identifies the program and line number of the
SQL statement.

■ Displays the message text as shown in the
NonStop SQL Messages Manual.

When multiple errors or warnings occur for a
statement, the user can display only one message
or all the messages. SQLCI uses this error display
routine.

SQLCATOBUFFER. This routine builds mes
sages in the same format as the SQLCADISPLA Y
routine. The SQLCATOBUFFER then returns the
messages to a program-defined buffer.

Using the Supplied Routines
The standard error routine can send messages
to HOMETERM by using SQLCADISPLA Y. The
routine should be selective when writing to
HOMETERM, depending on whether the user
wants messages for conditions such as not-found.

The standard error routine can use SQLCA
TOBUFFER to obtain the formatted messages and
store them in a NonStop SQL table. The table can
have a column for the message text as well as
columns for the following data:

■ Date.

■ Time.

■ User ID (if available).

■ Error and warning codes.

■ Any file system code.

MARCH 1990 •TANDEM SYSTEMS REVIEW 39

40

The errors table allows the user to maintain a
permanent record of errors and provides columns
for later inquiries. By using SQLCI or user-written
transactions, users can query the table to resolve
problems. Queries can be made by the OBA, a
support group, or a resource center in response
to end-user requests for assistance.

An errors table can have interesting uses beyond
resolving user problems. For example, it could
generate a report that lists the number of errors
returned in a day, tells how frequently a particular
user group attempts to insert duplicates, and shows
how often another user group's updates fail
because constraints are violated.

A sample errors table and a common error
routine are included with the NonStop SQL sample
application. 1 Users can adapt them to meet their
application requirements. The sample application
also supplies a requester-server environment that
allows selective displays of errors from the table.

Locks
The NonStop SQL lock protocol provides more
options than the protocol provided by the
ENSCRIBE system. The additional versatility
of the NonStop SQL lock protocol includes more
table-Jocking options and the ability to read
Jocked records.

1The NonStop SQL sample application is provided on the site installation tape
and provides assistance for installation of the NonStop SQL product.

File and Table Locks. ENSCRIBE allows a file
lock; NonStop SQL allows a table lock. The
ENSCRIBE file lock prevents other programs
from accessing any records in the file. The
NonStopSQL table lock provides two options:
share mode or exclusive mode. Share mode
allows other programs to read but not update
data. Exclusive mode prevents other programs
from reading or updating data.

Record Locks. In the ENSCRIBE system, a pro
gram doing a READ operation without specifying
a lock is protected from reading uncommitted
updates (assuming there are no read-through
locks). A READ with a Jock prevents other pro
grams from reading the same record. Any locked
record remains Jocked until it is released by the
program.

In the NonStop SQL system, the user can read
records, whether they are locked or unlocked, by
using the browse mode. Because the browse mode
reads records that are locked or unlocked, it is
subject to reading uncommitted updates.

Alternatively, the user can choose to read only
those records that have no uncommitted updates
by using the stable or repeatable mode; stable is
the default. This choice places a shared lock on the
row while the NonStop SQL statement is executing
in the stable mode or until the end of the transac
tion in the repeatable mode. While the lock is in
effect, no other program can update the row. Other
programs can read the affected rows by using the
shared lock protocol.

Finally, the user can choose to read only those
records that have no locks; that is, records that do
not have shared locks or uncommitted updates
from other programs. The user specifies exclusive
mode as well as the stable or repeatable mode.
This choice is similar to the EN SCRIBE statement
READ WITH LOCK. Once locked, the row is
denied to any other program until it is released at
the end of the transaction.

Note that for audited tables, locks are released
at the end of the transaction. For nonaudited tables,
locks are released by the program using a FREE
RESOURCES or CLOSE CURSOR statement.

TANDEM SYSTEMS REVIEW• MARCH 1990

Lock Considerations. In some situations, NonStop
SQL programs using row locks can lock an entire
table. For example, the NonStop SQL optimizer2

estimates the number of locks that will be
obtained. If that number is very high, a table lock
is obtained.

Locks on individual rows can exceed the
internal lock limit of about 5000 locks per partition
per audited transaction or per non-audited process.
When this happens, the entire table is locked.

When a program specifies the repeatable mode,
no other program can make inserts anywhere
within the range of rows read by this program. To
ensure that this is done, NonStop SQL locks not
only the rows read, but also the row preceding and
the row following the rows read. This situation can
produce more locks than anticipated.

Generic Locks. In NonStop SQL, a generic lock
is a lock held by a process on a subset of the rows
within a key-sequenced table. When a table is
created or altered by the ALTER command, the
user can specify the LOCKLENGTH attribute,
which specifies the prefix of the primary key used
for locking. The prefix consists of one or more
leading bytes of the primary key; the integer
specified with LOCKLENGTH determines the
length of the prefix. The default length is the entire
primary key.

A generic lock is created when the prefix is
smaller than the entire key and a lock is obtained.
A generic lock works by locking all rows contain
ing the identical key values in the specified
number of bytes. To demonstrate generic locking,
Figure 4 uses these assumptions: a lock length
specification of 3, a table containing the keys
shown, and a SELECT on key 123040 with
REPEATABLE. Under these conditions, Figure 4
shows how all keys with a prefix of 123 are locked
by a generic lock.

~The optimi1er. a component of the NonStop SQL compiler. autom,Hically
selech the most efficient access plan for retrieving data from the databa~e.

Figure 4

122800
123000
123020
123040
123060
123080
125000

}--All ru, locked byooe lock

In some environments, there could be thou
sands of individual row locks. When generic
locks are used, the net effect is that fewer locks
are obtained on the database. This can be useful
in preventing table lock escalation as a result
of obtaining too many locks. Sometimes the keys
contain a prefix that denotes a group, such as
location, category, or type, and transactions per
form operations only within that group. A single
generic lock can lock that entire group at once,
avoiding the use of many individual row locks.

The danger in using generic locks is that they
are defined in the table specification and apply to
all transactions referencing the table. A transaction
that references only a single row or a few rows
could lock thousands of rows and affect the per
formance of other transactions by causing them
to wait for the lock to be released.

MARCH 1990 •TANDEM SYSTEMS REVIEW

Figure 4.

Rows locked hy a single
generic lock.

41

42

Existing Program Code
Typically, existing program code references 1/0
buffer areas for records, fields, and groups of
fields using names assigned with ENSCRIBE
RENAME, OCCURS, and LEVEL 88 functions.
Because NonStop SQL tables do not support these
functions, the names are changed or dropped
during the CREATE TABLE step. Then when a
NonStop SQL INVOKE statement creates an 1/0
buffer area, it generates names that differ from
the original EN SCRIBE names.

The programmer could examine every line of
program code and make all field names consistent
with the new NonStop SQL names, but this is a
long task, prone to mistakes. Instead, the pro
grammer can adapt an existing COBOL85 pro
gram to the NonStop SQL system without having
to change the field names.

ENSCRIBE COBOL85 programs to be con
verted contain a file description (FD) statement
followed by a record description, usually copied
from a library, that defines an 1/0 buffer in storage
and describes the format of the file record. This
definition usually contains group levels and
RENAMEs. Leave this definition in the program,
but move it to working storage.

Use the SQL INVOKE statement to define the
equivalent 1/0 buffer and a description of the SQL
table columns, called host variables. Convert
ENSCRIBE READ statements to equivalent
NonStop SQL SELECT statements. Following
these statements, move the NonStop SQL table
column data to the working storage area described
by the ENSCRIBE system.

When all columns are selected and the data
types match, the move can be made with one
MOVE statement specifying the 01 level names.
If the original DDL definition contained FILLER
fields, the definition must be changed, because
these fields will not exist in the SQL table defini
tion. The original COBOL85 code will now work
correctly without having to modify the field
names.

The same technique works when updates and
inserts are made to a NonStop SQL table. First,
be sure the code uses the working storage area
described by ENSCRIBE. Then move that area to
the NonStop SQL area before executing the
particular NonStop SQL statement. This technique
greatly reduces the amount of code modification
required.

Programming Changes
This section describes the required programming
changes for each section of a COBOL85 program.
Understanding these changes can help users to
determine the scope of effort required to convert
each program. The information must be extrapo
lated for other programming languages.

Input/Output Section. Remove any SELECT
statements for the ENSCRIBE files that are
replaced by NonStop SQL tables. Retain the
SELECT statements for the interprocess message
files.

Data Division: File Section. Remove any FD
statements for the ENSCRIBE files that are re
placed by NonStop SQL tables. Retain and move
the DDL definitions of the EN SCRIBE files to
working storage. Retain all the FD statements for
the interprocess messages.

Working Storage Section. Define the SQL
DECLARE section using BEGIN DECLARE and
END DECLARE SECTION statements. Within this
area, include the host variables for the NonStop
SQL tables by using INVOKE statements. Next,
include an area for testing SQL return codes by
using an INCLUDE SQLCA statement. Also, if
desired, include an area for NonStop SQL statis
tics by using an INCLUDE SQLSA.

TANDEM SYSTEMS REVIEW• MARCH 1990

Procedure Division: Declaratives. Remove all file
error statements for the ENSCRIBE files replaced
by NonStop SQL tables. Retain these statements
for the interprocess message files.

For program consistency, users might want to
place the NonStop SQL WHENEVER directives
here. These directives control the code logic to
be executed for the various conditions returned
following the execution of NonStop SQL state
ments. They can be placed anywhere and changed
anywhere in the program. They are compiler
directives and have no impact on the run-time
environment.

Procedure Division: Program Logic. Remove all
OPEN and CLOSE statements for the ENSCRIBE
files replaced by NonStop SQL tables. Retain these
statements for the interprocess message files.

Convert the EN SCRIBE READ, WRITE,
UPDATE, and DELETE statements to their
NonStop SQL equivalents. An ENSCRIBE opera
tion that reads multiple records sequentially
requires a cursor operation in NonStop SQL.
A cursor must be DECLAREd, OPENed, the rows
retrieved with a FETCH, and CLOSEd. Note that
simply changing 1/0 statements does not allow the
application to take advantage of the power
and sophistication of NonStop SQL.

If the EN SCRIBE description is retained in
working storage, after the NonStop SQL SELECT
statement, move the host variables to the DDL
area. Before an insert or update, move the DDL
area to the NonStop SQL host variables. Use
COBOL85 COPY or SQL SOURCE to move in the
common error routine.

Converting ENFORM Reports to
NonStop SQL Report Writer
ENFORM reports must be rewritten using the
NonStop SQL Report Writer product. Tables 2, 3,
4, 5, and 6 compare the features of ENFORM and
the Report Writer.

Table 2.

ENFORM statements and Nonstop SOL Report Writer.

ENFORM statements SQLCI with the Report Writer

AT END REPORT FOOTING and TOTAL commands (only current report)

AT START

CLOSE

DECLARE

DELINK

DICTIONARY

EXIT

FIND

FOOTING

LINK

LIST

OPEN

PARAM

SET

SUBFOOTING

SUBTITLE

TITLE

REPORT TITLE command (only current report)

RESET PARAM command, maybe CANCEL (nothing else comparable)

No user variables, user aggregates, or user tables; can use aggregates in
SELECT for grouped rows only

Not applicable

VOLUME command (not really comparable)

EXIT command

SELECT and LIST commands (not really comparable)

PAGE FOOTING command (only current report)
-- -- ------------ - - --

SELECT ... FROM TABLE1, TABLE2 ... (no LINK OPTIONAL-outer join)

SELECT, DETAIL, and LIST commands

Not applicable

SET PARAM command (to set in SQLCI, Command Interpreter parameters
passed automatically)
--- ---- - ---- --

SET LAYOUT I STYLE I SESSION I PA RAM (no user variables or user tables)

Not applicable

Not applicable

PAGE TITLE command (only current report)

MARCH 1990 •TANDEM SYSTEMS REVIEW 43

Table 3.

ENFORM clauses and Nonstop SOL Report Writer.

ENFORM clauses

AFTER CHANGE

AS.AS DATE,ASTIME

ASCD and DESC

AT END PRINT

AT START PRINT

BEFORE CHANGE

BY and BY DESC

CENTER

CUM and CUM over

FOOTING

FORM

HEADING

INTERNAL JULIAN-DATE

NOHEAD

NOPRINT

PCT PCT OVER

SKIP

SPACE

SUBFOOTING

SUBTITLE

SUBTOTAL

SUPPRESS

System variable

TAB

TIMESTAMP-DATE
TIMESTAMP-TIME

TITLE

TOTAL

WHERE

SQLCI with the Report Writer

BREAK TITLE command

Same. Use in print-item

SELECT.. .ORDER BY ... clause

REPORT FOOTING command (no default)

REPORT TITLE command (no default)
---- -- - -----

BREAK FOOTING command

SELECT, GROUP BY, ORDER BY, and BREAK ON clause

Only for column headings, titles, footings, and whole report body

Not applicable

PAGE FOOTING command

PAGE and NEED clauses of print-item

HEADING clause in DETAIL line

Not applicable

NOHEAD clause in DETAIL line

Use IFfTHEN/ELSE or AS clause, or omit from DETAIL but
include in ORDER BY

Use multiple-step queries

SKIP clause of print-item

SPACE clause of print-item

Not applicable

Not applicable

SUBTOTAL command (based on BREAK)

IF/THEN/ELSE of DETAIL command

Functions COMPUTE_TIMESTAMP,
CURRENT_ TIMESTAMP,
LINE_NUMBER, and
PAGE NUMBER

TAB clause of print-item

AS DATEfTIME clause

PAGE TITLE command (no default)

TOTAL command

SELECT.. .WHERE clause

Table 4.

EN FORM option variables and Nonstop SOL Report Writer.

ENFORM option variables

BLANK-WHEN-ZERO

BREAK-KEY

CENTER-PAGE

COPIES

COST-TOLERANCE

DATE-FORMAT

DECIMAL

DISPLAY-COUNT

HEADING

LINES

MARGIN

SQLCI with the Report Writer

Command(s)

SET [SESSION]
BREAK_KEY

CENTER REPORT

OUT _REPORT ...

DATE FORMAT

DECIMAL_POINT

LIST_COUNT

HEADINGS

PAGE LENGTH

LEFT_MARGIN

Option

Command

Layout

SPOOL3

NEWLINE NEWLINE_CHAR

Style

Style

Session

Style

Layout

Layout

Style

NONPRINT-REPLACE

OVERFLOW OVERFLOW_ CHAR Style
and TRUNCATE

PAGES PAGE COUNT Layout

PRIMARY-EXTENT-SIZE
--- --- -- ---

READS

SECONDARY-EXTENT-SIZE -

SPACE

STATS

--- --- -- ----

SUBTOTAL-LABEL

SUMMARY-ONLY

TARGET-RECORDS

TIME-FORMAT

UNDERLINE

VSPACE

WARN

WIDTH

SPACE

DISPLAY STATISTICS
and STATISTICS
options somewhat
comparable

SUBTOTAL_LABEL

Only by SELECT...
GROUP BY with
aggregate functions
in select-list

Layout

Style

TIME_FORMAT Style

UNDERLINE_CHAR Style

LINE_SPACING

WARNINGS

RIGHT_MARGIN

Layout

Session

Layout

44 TANDEM SYSTEMS REVIEW• MARCH 1990

Conclusion
Every ENSCRIBE application is a candidate
for conversion to the NonStop SQL system.
The decision to convert must be determined
on an application-by-application basis.

Conversion is expensive. It requires time,
eff011, and the commitment of staff and equip
ment. The costs should be carefully estimated
and weighed against the benefits, which also
must be carefully measured.

Before deciding on the actual method of con
version (file at a time, groups of files, or entire
applications), users must first choose between
two fundamental approaches to converting from
an ENSCRIBE to a NonStop SQL system. In one
approach, the user migrates to a new system as
quickly as possible. In this approach, the user
creates and loads NonStop SQL tables that match
the an ENSCRIBE files and replaces the program
1/0 statements one-for-one with NonStop SQL
equivalents. Although this approach keeps initial
costs down, it yields the smallest return. In most
cases, the converted application will be no better
than the original.

The second approach is slower and more
expensive but yields a far greater return. In this
approach, the user redesigns and rewrites the
application. The user can enhance the application,
normalize the databases, and take advantage of
the full complement of NonStop SQL functions.
The converted application can serve as the basis
of future expansion and enhancement or be used
as a model for developing future applications.

References
Anon. ct al. 1985. A Measure of Transaction Processing Power.
Datamation. Vol. 31. No. 7.

NonStol' SQL Messages Manual (Release I). Tandem Computers
Incorporated. Patt no. 82328.

Tandem Performance Group. 1988. Tandem's NonStop SQL
Benchmark. Tandem Srstems Rei-int·. Vol. 4. No. I. Part no. 11078.

Wayne Weikel is a specialist in Nonstop SOL. He has worked in
Large Systems Marketing Support at Tandem for over three years.

Table 5.

Nonstop SOL features not available in ENFORM.

NAME Command

CONCAT Clause

NEED Clause

VARCHAR_WIDTH Style option

LOGICAL_FOLDING Layout option

-- ------------

WINDOW Layout option

WRAP Session option

Assigns name for use in other commands.

Concatenates print items.

Prints lines conditionally, depending on space
remaining on current page.

Maximum number of VARCHAR characters to
be printed in a field.

Items that do not fit on a line are split or moved as
a whole unit to the next line.

Defines window to view a vertical segment of a report.

Lines not within device width are wrapped or truncated.
- ---------

In the first release of Nonstop SOL, SOLCI and the Report Writer did not provide directly the capability
of outer JOINS (LINK OPTIONAL), multiple-level group aggregates, or conditional aggregates. However,
these operations can be performed using multiple-step queries.

Table 6.

ENFORM features not available in Nonstop SOL.

EN FORM has a PROCESS interface A process can masquerade as a disk file to EN FORM.
There is a well-defined interface to EN FORM.

EN FORM supports "compiled" queries This functionally allows canned queries to be written
and executed (with OBEY command) without having the
source query available.

ENFORM allows programmatic manipulation Programs using the programmatic interface to EN FORM
of file names can manipulate the file names before calling ENFORMSTART.

Applications frequently contain configuration files that
essentially are logical-to-physical name maps which they
manipulate before running a query or opening a file. With
Nonstop SOL, since the user has no control over OPENs,
name mapping is impossible.

It would be impossible to have a Nonstop SOL table of define
names to physical table name mapping, to SELECT from the
table, then alter the process's defines, then query from a table
based upon the new defines.

MARCH 1990 •TANDEM SYSTEMS REVIEW 45

46

Concurrency Control Aspects of
Transaction Design

ne challenge for application
programmers is to implement
transaction designs for online
transaction processing (OLTP)
applications that have concur
rent access to a shared data
base. When more than one

transaction operates on the same data, the correct
usage of locking mechanisms is critical to main
taining transaction isolation and acceptable user
response times.

The NonStop"' SQL distributed relational data
base management system and the Transaction
Monitoring Facility (TMFM) product provide
locking options that give programmers flexibility
when regulating contention among concurrent
transactions. By using unique combinations of
lock mode, granularity, and duration, transaction
concurrency can be optimized for each portion of
the database. In addition, NonStop SQL and TMF
allow programmers to select from transaction
design alternatives, such as splitting large transac
tions into several smaller ones, that can also
enhance concurrency.

This article describes how NonStop SQL
facilities can be used to regulate concurrency
and thus optimize transaction isolation and per
formance. The article also describes techniques
to estimate transaction lock wait times and to
determine the chances of locks occurring. Based
on these estimates, application designers can
anticipate contention and accordingly alter
the transaction design. This article assumes a
NonStop SQL, TMF, and PATHWAY transaction
processing system environment.

TANDEM SYSTEMS REVIEW• MARCH 1990

Transactions and the ACID
Properties

A transaction mechanism gives the programmer a
simple way to handle exceptions and concurrency.
Using a transaction mechanism, the programmer
brackets a set of database operations with a pair of
BEGINTRANSACTION and ENDTRANSACTJON
statements and declares that all the intervening
operations are a group which should have the four
properties of atomicity, consistency, isolation, and
durability (ACID).

■ Atomicity requires that either all of the transac
tion's operations are performed or, in case of an
error, none of the operations are performed. For
example, completed operations are undone or
backed out in the case of a failure of any one
operation.

■ Consistency requires that the group of operations,
taken as a whole, are a correct, thus consistent,
transfonnation of the system and database state.

■ Isolation means that transactions are not
influenced by changes performed by concurrent
transactions.

■ Durability indicates that once the transaction
completes successfully, its effects on the database
will survive system and media failures.

At any time prior to the ENDTRANSACTION,
the application programmer can cancel all the
effects of the transaction by calling an
ABORTTRANSACTION statement.

These four properties and their order combine
into the acronym ACID. To address the topic of
concurrency control, this article turns its attention
to the third ACID property, transaction isolation,
and the mechanisms to regulate it in NonStop SQL.

Isolation of Concurrent Transactions
Isolation of transactions ensures accurate, success
ful operations on the database. Locking is the
standard technique for providing transaction
isolation. A lock is a gatekeeper on a record, table,
or other object. A request accessing the object first
acquires the lock. If the lock is busy, then the
request waits until the lock is free.

There are three basic violations of the isolation
property:

■ A lost update arises when one transaction updates
a data item, then a second transaction, unaware of
the first transaction's update, updates the same data
item based on that item's original value.

■ A dirty read occurs when one transaction reads
data which is not yet committed by another transac
tion. The second transaction subsequently further
changes the data or aborts. The data read by the first
transaction never was committed.

■ A.fuzzy read occurs when a transaction reads an
item and then at a later time rereads it and gets a
different value because some other transaction has
updated it in the interim.

MARCH 1990 •TANDEM SYSTEMS REVIEW 47

48

Concurrency refers to the number of transac
tions that are active at any time. The more transac
tions that are active, the higher the concurrency.
The basic theorem of concurrency control is: If
a transaction locks each object prior to accessing
it and if it keeps the locks until the end of the trans
action, the transaction is isolated from the effects
of other transactions. Although there are some
complex details to this theorem, it is used as the
basis for all of today's database products. Simple
locking may unacceptably restrict concurrency.
To eliminate this problem, Tandem'" systems have
automatic and manual ways to allow greater
concurrency.

Managing Data Locking
In Tandem systems, all locking is managed by the
disk process. Each time an item is accessed by the
disk process, the related locks are consulted and
updated. For example, a transaction that accesses
a table which is distributed on several nodes of the
network will have locks on each node.

Locking is generally automatic and invisible to
the application programmer. Most SQL programs
have no explicit locking statements. At the end of
each transaction, all locks are automatically
released. The explicit addition of locking options
and locking statements to an application or data
base design is necessary only when there is conten
tion among concurrent transactions.

Lock Modes
When two transactions merely read an item, they
can access it concurrently without violating the
ACID properties. The simplest optimization for
achieving transaction concurrency is for Tandem
systems to distinguish between exclusive mode
and shared mode access to a lock, rather than
simply locking an item when a transaction
accesses it.

An exclusive lock on a single item can be
acquired by one transaction only. This transaction
can update the item without affecting the other
transactions. Shared locks on a single item can
be acquired simultaneously by more than one
transaction.

The idea of having two lock modes can be
expanded to include many more than these two
modes; in fact, the Tandem Disk Process 2 (DP2)
product internally uses over 20 different lock
modes. However, for the application programmer,
only the two options of locking a table in shared
or exclusive mode are visible, and NonStop SQL
appears to the programmer to have only shared
and exclusive locks on records.

Shared locks cannot be used if data is updated.
A shared lock on data selected by a transaction is
converted to an exclusive lock if the data is
subsequently updated or deleted by the transac
tion. When multiple transactions hold a shared
lock on the data, none of them can update the data
before all other transactions have released their
locks. Further complications arise when two trans
actions try to update data on which they both hold
a shared lock. The transactions wait for each other
and cause a condition called deadlock.

TANDEM SYSTEMS REVIEW• MARCH 1990

Cursors, designed to retrieve multiple rows into
a host language program, support both shared and
exclusive modes. If one wants to retrieve data with
the intent to update some or all rows, the FOR
UPDATE OF clause must be specified. 1 In this case,
all locks are exclusive.

The compatibility matrix for the two visible
NonStop SQL lock modes is illustrated in Figure l.
This matrix shows which lock requests are com
patible with existing requests and which ones must
wait. Lock requests are compatible when new ones
can be granted at the same time as existing requests.

Lock Granularity
Lock granularity refers to the scope of a lock, from
a single record to an entire table. It is defined as
fine, intermediate, and coarse granularity for
record, generic, and table locking, respectively.
For example, interactive transactions accessing
only a few records want to lock individual records
and allow others to access other records. Small
batch transactions and the Nonstop SQL sequential
block buffering logic want to lock a page or group
of records. On the other extreme, batch transactions
needing to scan an entire file or table want to lock
the whole file without having to explicitly lock
each individual record. Figure 2 illustrates how
locking is affected by the granularity of the lock.

Records are the finest granularity for locking
in NonStop SQL. Record locking optimizes con
currency. It is the default choice for interactive
transactions.

Generic locks, an intermediate granularity, is
available on key-sequenced files. A generic lock
covers a group of records that have the same key
prefix. The database designer can specify that a
table has generic locks by specifying the length of
this prefix. If generic locking is specified, it is used
as the finest unit of locking for all accesses to the
table. The shorter the prefix, the coarser the generic
lock. The length of the prefix can be altered to
change the lock granularity by altering the table
definition.

Partitions are the coarsest lock granularity.
A partition lock covers all records in that partition
of the table or index. Table locks are actually
implemented by partition locks. Locking a table
means that a corresponding lock is acquired on
each partition of the table and on each partition
of each index of the table.

Figure 1

Requested
mode

Figure 2

Key

abc01
abc03
cdb05
cde01

cde03
cde15
cde96
cdz01
fgh03
fgh05
fgh06

Row lock

Shared

Exclusive

Data

abhsdtasdf
safhasdflas
skdfasdfkas

sadfbasdla
klSfgasdf
sakdt.asdf
sadf.fasdf
ascdvfbas
asdfaksdlhas
kljdhllsdg

Granted mode

Shared Exclusive

Yes No, wait

No, wait No, wait

Key Data

abc01 abhsdfasdl
abc03 salhasdflas
cdb05 skdfasdfkas

cdz01 sadf.fasdf
fgh03 ascdvfbas
fgh05 asdtaksdfhas
fgh06 kljdhflsdg

Generic lock
(lock length = 3)

Figure 1.

Compatihility matri.r
Ji!r No11Stop SQL lock
modes.

Data

Table lock

Locks held by: SELECT• FROM table WHERE key= "cde02"

Choosing Lock Modes and Granularity
The NonStop SQL compiler2 estimates an
appropriate lock mode and granularity for each
statement. For SELECT statements it uses shared
mode, and for INSERT, DELETE, and UPDATE
statements it needs exclusive mode. For SELECT
commands that access a small subset of the data,
the NonStop SQL compiler uses fine-granularity
locking; if the entire table is to be accessed, it uses
coarse-granularity locking.

-- -- - - --- --- --- --- -- -

'The FOR UPDATE OF clause also prevents a problem called the ""Halloween··
problem. This problem could occur if a column that is part of the access path
to the data (even if thi~ is not specified explicitly by an ORDER BY clause) i'.-.

updated. The row may then be updated multiple times. Non Stop SQL solves
this problem by not using the columns that were specified in the FOR UPDATE
OF claw,c in the acce~~ path.

2The NonStop SQL compiler reach the object program and transforms each
SQL statement into an access plan.

Figure 2.

The numher of"rows
locked hy a single lock
i·my with the three
locking granularities.

MARCH 1990 •TANDEM SYSTEMS REVIEW 49

50

If the NonStop SQL compiler estimates incor
rectly, the disk process adapts. In particular, if the
transaction acquires more than 512 locks (the limit
for the CI O and the C30 releases of NonStop SQL)
on a single partition, the fine-granularity locks are
automatically escalated by the disk process to a
coarse-granularity partition lock on that table.

The application programmer can influence
these locking decisions with one of two SQL com
mands. The table may be explicitly locked with the
command:

LOCK TABLE name IN [SHARE I EXCLUSIVE]
MODE

The programmer can alternately use this command
to direct the NonStop SQL optimizer3 to pick a
certain lock mode:

CONTROLTABLEnameTABLELOCK
[ON I OFF I ENABLE J

Incidentally, if the program locks the table and
does not tell the NonStop SQL compiler by way
of a CONTROL statement, the NonStop SQL sys
tem uses the default locking protocol for other
SQL statements on that table.

-'The optimizer, a component of the NonStop SQL compiler. automatically
~clccb the mo~t efficient access plan for retrieving data from the database.

Levels of Isolation
Operations such as INSERT, UPDATE, and
DELETE that update the database have only one
lock option, which is selecting the lock granular
ity. Beyond that option, the DP2 product enforces
a lock protocol that automatically acquires exclu
sive mode locks for record, generic, or partition
granularities and holds these locks until the
completion of the transaction.

By contrast, SELECT statements can read
the database at three levels of isolation: stable,
repeatable, or browse access. These three options
allow the application programmer considerable
flexibility in trading off isolation and consistency
by controlling the duration of locks acquired by
a SELECT statement.

In NonStop SQL, a transaction can select
different levels of isolation on a statement-by
statement basis. When considering isolation
levels, determine what each level allows other
transactions to do to the data being read by a
particular SELECT statement.

Stable Access. This access mode isolates a trans
action from selecting dirty data (uncommitted
updates or objects locked in exclusive mode). If
the SELECT statement is submitted via a cursor,
the record currently addressed by the cursor is
kept locked until the cursor moves. This gives
cursor stability (the terminology of Date and DB2
[Date, 1989]); the name "stable access" is thus
derived from that term. Stable access is the default
access mode to select data. Reducing the length of
time an item is locked may increase concurrency,
especially if the item is a "hotspot," an area where
numerous transactions concentrate their access to
the database.

TANDEM SYSTEMS REVIEW• MARCH 1990

Figure 3

Time

Fetch (get1)

Update 1

Fetch (get3)

Fetch (get4)

Fetch

(no more data)

End transaction

(2) 3

Ernpnurn Code

1 y
3 N
4 N

Stable access

Salary

100
150

200

Repeatable Access. Repeatable and stable access
differ in the duration of the locks and in the ability
to lock holes (positions in the database where
records could be locked) in a range of rows. For
repeatable access, all locks are held until the end
of the transaction, whether or not rows are updated.
Importantly, not only are the rows themselves
locked, but also the holes between the rows. This
prevents other transactions from inserting rows
(called phantoms) into a range of rows already
accessed by another transaction. This guarantees
that repeated access to the data during the same
transaction shows the data in exactly the same state
as before, thus the term "repeatable access."

Figure 3 shows the difference in lock duration
between stable access and repeatable access.
Note that row 2 represents the hole between rows
I and 3.

4 (2) 3 4

Repeatable access

Declare abc cursor for selecting code and
salary from saltab for update of salary

Open abc cursor ...

While anything to do

Fetch abc into :code, :salary

If code = "Y" then

Update saltab set salary = salary • 0.5

where current of abc cursor

Close abc cursor

Browse Access. This access mode does no locking
at all. Data that is accessed is not locked, and data
that is locked by other transactions can always be
accessed. Browse access does not offer any form
of data isolation. A particular transaction can read
data that was updated but not committed by other
transactions; possibly, the data will never be
committed. If the tables are accessed for update by
any concurrent transactions, browse access should
not be used for making critical business decisions.

MARCH 1990 •TANDEM SYSTEMS REVIEW

Figure 3.

Lock duration with sta/Jlc
and repcatah/e access.

51

52

Waiting for Locked Data
If a lock request from a transaction cannot be
granted immediately, there are two options: to
wait for the data to become available (wait option)
or to return immediately with an indication that
the requested data is locked (return option). The
syntax controlling these options is:

CONTROL TABLE name

{ I { RETURN I WAIT} IF LOCKED I }
{ ITIMEOUT {value I DEFAULT} [SECONDS]!)

where

value = 0.01 through 21474836.47 or-1;
the value -1 specifies an infinitely long
wait time

The decision to select one option over the other
depends on the length of the wait and the amount
of time the transaction (or rather the end user) is
prepared to wait.

The wait option is the default and should be
used if the data is rarely locked for long durations.
On encountering a lock, the transaction is sus
pended. This delay may be noticeable to the user;
however, the transaction usually completes
normally. If the wait is really a deadlock, the
timeout passes and the operation returns an error
indicator to the application. On encountering a
timeout, the transaction is not able to complete
normally. The restart mechanism in PATHWAY4

can be used to hide this from end users, although
the user will notice bad response time. In no case
should the timeout value be set to infinite. If this
happens, deadlocks remain unresolved; users must
wait forever; and the durations of the locks
become unpredictably long, causing unpredictable
response times.

'The PATHWAY restait mechanism allows for restarting transactions based
on the tram,action context at the beginning of the transaction. If no tcnninal I/Os
occur during the transaction, the restart is invisible to the u~er.

In general, the return option is only selected if
there are locks, possibly caused by different types
of transactions, that work on the same tables. Of
these transactions, some may be batch jobs or may
include operator think-times, which cause long
duration locks. The return option then results in
predictable and short response times. However, if
locked data is encountered, the transactions do not
succeed.

In all cases, whether the wait option or the
return option is used, the application must be
prepared to handle the temporary unavailability
of data. The wait option is a mechanism to deal
with temporary data unavailability.

Deadlock and Livelock
If one transaction waits for a second transaction
and the second waits for the first, neither can
proceed. Such situations are called deadlocks.The
most common form of deadlock is two programs
reading an item and having a shared lock on it
and then each transaction wanting to update that
record. This happens with REPEATABLE SELECT
statements and with cursor-based STABLE
SELECT statements.

NonStop SQL detects deadlocks by way of
timeouts. If a wait lasts a long time, it is probably
a deadlock. "Long" is hard to define in this case. If
no user activity is required during the transaction,
10 seconds is long; if user activity is required, a
minute can be short. The premise is that deadlocks
are rare. Improper programming techniques,
however, can increase the frequency of deadlocks.

Clearly, one wants to avoid deadlocks. The
standard way to avoid them is to acquire resources
in a fixed order. Because SQL is a nonprocedural
language, most of the locking is automatic, and the
programmer has relatively little control over it.
Deadlocks can be avoided completely if table
granularity locks are acquired explicitly, but this
limits concurrency. In addition, one can also avoid
deadlock by selecting data by way of cursors with
the FOR UPDATE OF clause (described previously
in the "Lock Modes" discussion).

TANDEM SYSTEMS REVIEW• MARCH 1990

An application must also be able to handle
situations when it receives an error, either a lock
timeout or a simple "is locked" return message,
from a lock request. If the transaction resubmits
the request and waits again, it runs the risk of
livelock: two transactions that repeatedly bump
into one another. This situation is worse than
deadlock because it consumes a significant amount
of computing resources and is not easily detected.
Generally, the transaction should not immediately
retry the operation. Instead, the transaction should
abort and choose one of two paths: restart from the
beginning after the abort completes or return to the
user with an error indication and let the user decide
whether to restart or not.

An Analytic Model of Lock
Wait Times
The different locking options can affect concur
rency in different ways, and they eventually affect
user response times. For example, the effect of one
simple option, exclusive long-duration locks, on
transaction concurrency and lock wait times is
easily estimated. However, the impact of locking
granularity and then isolation modes added to a
simple locking scenario compounds the complex
ity of the calculation.

Exclusive Long-Duration Locks
Exclusive locks have long duration due to their
nature of holding the lock until the end of a
transaction. If transactions encounter a row, a
range of rows, or a table locked by another transac
tion, they have to wait for the release of the lock.
The effect for the end user is an increased response
time. It is then important to estimate the frequency
of encountering a lock and to estimate the increase
in response time when a lock, especially an
exclusive lock, is encountered.

If queueing theory is applied to locking, the
following formula can be used to estimate W, the
average wait time in seconds that a transaction has
to wait for the release of a lock:

W = (0 I (I - 0)) x LD

where

LD = average duration of a lock, in seconds.
0 = occupancy, which is the percentage of time
that the object is locked divided by 100.

Figure 4

Row locks: Occupancy O = 0.002

Average wait-for-lock W = 0.002 sec

Generic locks on client-num: Occupancy O = 0.1

Average wait-for-lock W = 0.111 sec

Table locks: Occupancy O = 2

Throughput limited to 1 tps

Assume: Rows are accessed at random.
Each lock lasts 1 second.
Primary key is client-num / order-num.
One table of 1000 rows, with
20 clients, each having 50 orders.
Two transactions per second.

This formula assumes a random arrival rate for
the lock requests and an exponentially distributed
lock duration. For fixed lock durations, the average
wait time is shorter. The following formula takes
the more pessimistic approach.

Occupancy can be calculated as:

0 = (LT x LD x T) / R

where

LT= locks per transaction.
T = number of transactions per second.
R = number of rows in the table.

Figure 4.

The effect of"lock
granularity 011

concurrency when
a tahle is accessed
randomly.

MARCH 1990 •TANDEM SYSTEMS REVIEW 53

54

As an example for estimating an average wait
time, assume that exclusive row locking is used on
a table of I 000 rows, all rows are accessed with the
same frequency, and each lock lasts 30 seconds
(LD = 30). In that case, an arrival rate of 1 lock per
second (LT= 1, T = I) yields an occupancy (0) of
0.03, meaning that 30 out of 1000 rows are locked.
The average wait time is thus about 0.93 second. If
the arrival rate becomes 10 per second, the utiliza
tion is 0.3, and the average wait time is about 13
seconds. The values in this example are extreme,
but they emphasize the effects of the variables.

For low utilizations, most transactions do
not have to wait for the release of the locks. The
percentage of the transactions that have to wait
is determined by the occupancy value. The
average wait time for these transactions is about
30 seconds for exponentially distributed lock dur
ations. For fixed-lock durations, the wait time is
half of the lock duration; for the example above,
it is 15 seconds. In all cases, the end users will
notice unpredictable response times if the trans
action has to wait for a lock, even though average
response times may be acceptable.

The Impact of Lock Granularity
The different degrees of lock granularities can
affect lock wait times. As a general rule, the
coarser the granularity, the greater the chance for
lock contention. This is because the occupancy of
the data increases with the coarser granularity. If
contention is a problem, use the finest granularity
available. Figure 4 illustrates the effect of lock
granularity on the number of records that are
affected by a single lock.

Generic locking is especially useful if access is
pseudo-sequential; that is, if most transactions are
accessing a set of records with the same prefix.
Generic locking then helps in minimizing the
number of locks held by the disk process because
all records that are accessed have the same prefix.
Also, it helps to prevent deadlocks if access in the
generic subset is not in a predefined order for all
transactions, because the first transaction acquires
a lock on the complete generic subset.

The calculations for concurrency on generic or
table locks are basically the same as those for row
locking, but they are applied instead to the generic
sets of records that can be locked. If generic
locking is done on groups of I 00 rows, then the
occupancy for the group is 100 times as high as
it would be for each individual row.

While many applications access data randomly
across the range of items in the tables, some appli
cations may concentrate access in particular key
ranges, causing hotspots. The granularity chosen
for access to the table should be fine enough to
allow for sufficient concurrency at these hotspots.

NonStop SQL tries to convert row locks or
generic locks to table locks if a transaction
acquires many (currently 512) locks. This is
typically done for batch transactions. Once a
table lock is acquired, that lock stops all concur
rent transactions on that table. For this reason,
NonStop SQL should not use table locks for batch
processes that are running during OLTP process
ing. The SQL statement that sets this parameter is
CONTROL TABLE name TABLELOCK OFF.

TANDEM SYSTEMS REVIEW• MARCH 1990

The Impact oflsolation Modes
The case of the simple, but most pessimistic,
approach of using exclusive access to the data was
presented initially. When the impact of adding
both locking granularity and different locking
modes is considered on lock wait times, the model
for estimating wait time becomes much more
complicated. If shared access is used, there are
fewer waits. However, the most important consid
eration is that the chances of waiting increase with
the square of the degree of multiprogramming and
with the square of the transaction size (Gray,
1981; Tay, 1987). So, to avoid contention, one
wants to control the number of concurrent transac
tions as well as the transaction size (the duration
and number of locked resources).

Within this scope, a common application is one
that is dominated by read-only transactions that
are not allowed to read dirty data. Therefore, the
default of stable access and shared locks is
applicable. A small percentage of the transactions,
however, update the database; these transactions
have a longer duration.

A possible implementation of the application
uses the default access modes of stable access and
shared locks for the read-only transactions, and it
uses exclusive locks with repeatable access for the
update transactions. The read-only transactions
will encounter contention with the update transac
tions. The amount of contention can be deter
mined by the average lock duration of the exclu
sive locks and the occupancy of these locks on the
data. (See Figure 5.)

Transaction Design
The occupancy of the objects being locked is
determined by the frequency of locks on the object
and on the lock duration. The duration can vary
with different transaction designs. For batch
processing, there are two choices: running one
large transaction or breaking a large transaction
into many small batch transactions. For interactive

Figure 5

2 3 4 5

Time

processing, a designer can pick one of three
transaction designs:

6

■ One-shot transactions consist of a single con
text-free message in, some data processing, and a
single response message out.

■ Pseudo-conversational transactions involve
multiple context-sensitive interactions with the
terminal or client. Each interaction is structured as
a single TMF transaction.

■ Conversational transactions consist of multiple
interactions with the client or terminal. A single
TMF transaction covers the entire sequence of
message and database operations.

MARCH 1990 •TANDEM SYSTEMS REVIEW

7 8

Figure 5.

Subsequent
transactions

Waiting.fr1r e.rclusi1·e locks.
The rcad-only transactions
(shaded dark grey) hm·e
to wait.fr1r the update trans
action (shaded hlack). Note
that the wait time (in white)
depends 011/y on the length
of'time which the update
transaction holds its
exclusii·e locks.

ss

Figure 6

Transaction 1
SELECT

Transaction 2
A returns 100

FOR {BROWSE I STABLE} ACCESS

Compute new value of A: (1 00 -1 00) = 0
UPDATE A= A-90 = 10

COMMIT
UPDATE A=0

COMMIT

Figure 6.

An example of"an
occurrence of'the lost
update problem.

The most frequent designs are one-shot or
pseudo-conversational transactions. These designs
minimize lock durations and consequently maxi
mize concurrency. Although the conversational
transaction design is the most general and logical
to program and use, very few OLTP applications
use it because it implies lock durations that allow
for operator think-time, which is measured in
minutes or hours.

The One-Shot Transaction
One-shot transactions are the typical case in OLTP
systems. In general, these transactions involve a
single requester (a PATHWAY terminal control
process), a single server (application process), and
one or more disk processes supporting the SQL
tables. The programs typically have no special
locking statements in them. They accept the
default locking of NonStop SQL, which is cursor
stability, automatic granularity, and a 60-second
timeout for lock waits (the number of times a
request had to wait for the release of a lock).

These default lock modes are selected to
provide a trade-off between isolation and concur
rency. Because repeatable access is not the default,
the application runs some risk of experiencing lost
updates and fuzzy reads. If data chosen by a
SELECT statement via a short-duration lock is
updated, the lost update problem may occur; that
is, the data value may have been changed by
another transaction since the SELECT operation.
The update by the first transaction may overwrite
the other update.

Figure 6 presents an example of this situation.
Transaction I reads the value of A as I 00, but by
the time the update is applied, the value is really
10. There are many ways to correct the lost update
problem. The simplest approach is to always use
repeatable access. If this is unacceptable, one can
use cursor-based SELECT statements with stable
access. A third technique involves only using
update expressions, rather than literals, in the
update. This approach would also solve the prob
lem above. Transaction 1 can code the update as
UPDATE ... SET A = A - 100, rather than UPDATE
... SETA =0.

A related technique compares the current value
or version of the record with its value at the time
of the original SELECT operation. If the value or
version has changed, an update of the database
will be denied by NonStop SQL. The transaction
may then reread the data and retry the update.

56 TANDEM SYSTEMS REVIEW• MARCH 1990

Figure 7

Time

Accept data from terminal

BEGIN TRANSACTION

UPDATE ...
where key= ..

Display data on terminal

Standalone UPDATE

Accept data from terminal

BEGIN TRANSACTION

SELECT data (browse or
stable access)

UPDATE ...
where key= ..
and row unchanged

Display data on terminal

Browse or stable access

Transaction mode, no locks

Shared locks

Exclusive locks

Accept data from terminal

BEGIN TRANSACTION

SELECT data (exclusive lock
or update-mode cursor)

Display data on terminal

Exclusive access

Given that the program logic is correct and that
isolation is not violated, it is possible to minimize
lock durations by writing the same application in
many different ways. The simplest way is to defer
all updates to the end of the transaction, using only
browse mode locks in the early steps of the transac
tion. Of course, such designs must consider the
problems of lost updates and dirty data. Such
programs can be a maintenance problem, because
later changes to the application may violate as
sumptions that a particular program makes about
the behavior of others.

Scenario 1. In the first scenario of Figure 7, a
standalone UPDATE statement updates the data.
This scenario is suitable for simple transactions
such as withdrawing money from an account. The
UPDATE statement can explicitly check if the
transaction is allowed (for example, checking the
account balance) or if the database administrator
has defined constraints.

To improve concurrency, it is generally best to
place exclusive locks as late as possible in the
transaction and minimize the number of shared
mode locks. Figure 7 shows the three strategies for
updating a record: (1) package the selection and
updating operations as a single operation, (2) select
the data with a shared lock, or (3) acquire an update
mode or exclusive mode lock on the item when it
is selected.

MARCH 1990 •TANDEM SYSTEMS REVIEW

Figure 7.

Three different scenarios
j(lr implementating one
shot transactions.

57

58

Scenario 2. In the second scenario of Figure 7, a
standalone SELECT (no cursor) operation reads the
data. This way the transaction can programmati
cally access the data and can also determine
if an update will be done. The SELECT operation
uses browse or stable access. No locks are held on
the data after the SELECT operation. In this case,
checks that determine the item has not changed
can be included in the WHERE clause of the
UPDATE statement. This standalone SELECT
operation is useful if all SELECT statements do not
lead to an update and if the concurrency require
ments are relatively high.

Scenario 3. In the third case, the data is selected
in exclusive mode to the end of the transaction
and possibly updated later during the transaction.
This option is useful if concurrency requirements
are not extreme. If a cursor is used and the record
is not a candidate for an update, it is unlocked
when the cursor moves; this allows for more
concurrency.

In these scenarios transactions are not likely to
last long. Concurrency problems may arise only
if both the number of database accesses requiring
exclusive access and the concurrency requirements
on database hotspots are very high.

Simple Pseudo-Conversational
Transaction Design
A simple transaction can illustrate the different
approaches to designing a pseudo-conversational
transaction. In this transaction, the operator
requests information (a record) from the database;
once this information is displayed, the operator
can enter an amount to be subtracted from the
balance field of the record that was read in the first
step of the transaction. The server then applies this
change to the database. Even for such a simple
transaction, the isolation aspects may vary greatly
between various implementations. It is important
to note that the end user notices concurrency
aspects in different ways; most noticeably, in
response times.

If the options for specifying the lock modes
and the exclusion modes are omitted, the three
SQL statements for this sample transaction consist
of a SELECT statement and one of two UPDATE
statements:

SELECT CLIENTNAME, BALANCE
FROM ACCOUNT
WHERE ACCNR = :ACCNR;

and

UPDATE ACCOUNT
SET BALANCE= BALANCE - :AMOUNT

WHERE ACCNR = :ACCNR;

or

NEW-BALANCE= BALANCE - :AMOUNT
UPDATE ACCOUNT

SET BALANCE= :NEW-BALANCE
WHERE ACCNR = :ACCNR;

TANDEM SYSTEMS REVIEW• MARCH 1990

Figure 8

Time

Request data

SELECT data
(browse access)

Display data

Accept change

BEGIN TRANSACTION

UPDATE ...
where key= ..

Display data on terminal

Case A. Pseudo-conversational
with browse access

Request data

BEGIN TRANSACTION

SELECT data
(shared lock)

Display data

Accept change

BEGIN TRANSACTION

UPDATE ...
where key= ..
and row unchanged

Display data on terminal

Case B. Pseudo-conversational
with stable access

Transaction mode, no locks

Shared locks

Exclusive or locks

Request data

BEGIN TRANSACTION

SELECT data (exclusive lock,
or update-mode cursor)

Display data on terminal

Case C. Conversational

Using Browse Access. Using this method allows
for maximum concurrency. Case A in Figure 8
gives an overview of browse access. The data that
is retrieved by one or more SELECT statements
may not yet be committed by another transaction,
which is also updating the same record with an
INSERT, DELETE, or UPDATE statement. Thus the
application and user may see data that is incorrect.
Even though the data may not have been correct as
it was selected, the UPDATE operation can check if
the data that was selected is the same as the actual
data in the database when the UPDATE is done.
This requires some extra tests in the WHERE
clause of the UPDATE statement:

In this case, the end user never has to wait while
the data is selected. The UPDATE operation, how
ever, can either complete normally, perhaps after a
wait, or it can be empty because the row has been
changed or deleted by another transaction. The
application needs special logic to handle this
denial.

UPDATE ACCOUNT
SET BALANCE= BALANCE+ :AMOUNT

WHEREACCNR = :ACCNRAND BALANCE
= :OLD-BALANCE;

MARCH 1990 •TANDEM SYSTEMS REVIEW

Figure 8.

Pseudo-com·entional and
com·crsational transaction
design.

59

60

Several alternative designs are possible:

■ If insufficient funds is the the only reason for
denying a withdrawal from an account, the test
BALANCE > 0 could be declared as a constraint on
the account table. In this case, NonStop SQL will
deny an attempt to withdraw an amount that
would create a negative balance.

■ If having a negative balance would be less
cumbersome than denying a transaction that at a
first glance (using browse access) looked positive,
checking for a change in the balance could be
omitted.

In all cases, the actual business requirements with
respect to handling of the transaction determine
which option to choose.

During the second part of the transaction, the
program checks whether the database is still in the
same state it was when the program read the data.
The program must remember the original value.
The section titled "Pseudo-Conversational
Transactions" discusses this more general subject
of keeping context.

Using Shared Locks and Stable Access. Using
this method allows for medium concurrency.
Case B in Figure 8 gives an overview of this
technique. The data retrieved by the SELECT
statement is guaranteed not to be dirty. Thus, the
user does not see incorrect data. With this method
the data may still be changed by another transac- '
tion between a SELECT and an UPDATE opera
tion. If a decision based on outdated information
is not acceptable, the UPDATE operation has to
check that the data has not been changed since
the SELECT statement.

A TMF transaction is needed to acquire a
shared lock. This transaction is ended prior to
replying to the terminal so that no locks are held
for the duration accommodating an operator's
think-time. When the reply is read from the
operator, a new transaction is begun and the data
revalidated by a program check just as in the
paragraph above. This costs an extra TMF transac
tion, which translates into a higher demand on the
CPU and higher audit trail activity.

Simple Conversational Transaction Design
This design method does not optimize concur
rency. However, users can be sure that once the
data is shown on the screen, they can update it
without any risk of another concurrent update.
The only place where this transaction may have
to wait for a lock to be released is at the time the
data is selected. Case C in Figure 8 gives an
overview of this technique. The disadvantage of
this option is its minimal concurrency caused by
using repeatable and exclusive access SELECT
operations or update mode cursors involving
long-duration locks. However, the advantages,
with respect to ease of programming, are very
significant:

■ The data is guaranteed to be current and
available at the time of the UPDATE operation.

■ There is no need to check for such things as
versions during the UPDATE operation.

■ If updating is done on numeric fields, both
absolute settings and relative settings can be
used; for example, BALANCE= :NEW-BALANCE
can be used as BALANCE= BALANCE -
: WITHDRAWAL.

TANDEM SYSTEMS REVIEW• MARCH 1990

As was mentioned before, conversational
transactions are the most logical to use. If concur
rency is not an issue (a heavy restriction), using
conversational transactions may minimize
development efforts.

To prevent extremely long transactions, all
ACCEPT statements to the user terminals must use
a timeout. Extremely long transactions decrease
concurrency and may even cause TMF to abort the
transaction automatically if the MINFILES 5 limit is
reached. Note that there may also be other reasons
to handle timeouts.

Conversational and Pseudo-Conversational
Transaction Design
If the database cannot be brought from one
consistent state to another within one terminal
interaction, the conversational transaction size
increases. Typically these transactions select and
update multiple rows within multiple tables.
This leads to longer locks and to potentially less
concurrency.

To improve concurrency, one can implement
the conversation as a pseudo-conversational
transaction. Lock durations are much shorter for
pseudo-conversational transactions than for a
pure conversational transaction design because
no locks are held during operator think-times.

Several techniques are available to implement
conversations. Figure 9 illustrates a conversational
transaction, a pseudo-conversational transaction,
and an approach to conversational transactions
called collected updates. Keep in mind that these
techniques are all subject to the lost update
problem, dirty reads, and fuzzy reads. They
require careful design and careful program
maintenance to avoid serious business errors.

5 MINFILES i~ a TMF configuration parameter. TMF writes before and after
images and commits record~ to a rotating set of audittrails. Transactions cannot
span more than MINFILES audittrails.

Figure 9

Terminal
accesses

Accept

Accept

Display

Time Long transaction

In-memory update

Transaction mode

MARCH 1990 •TANDEM SYSTEMS REVIEW

Database access scenarios

Multiple short
transactions with
status record

Collected updates

Figure 9.

Implementations of'
transactions with multiple
terminal /!Os.

61

62

Conversational Transactions. An easy way to
develop transactions with multiple terminal I/Os
and database accesses is to define one TMF
transaction that covers all the operations; for
example, all operations involved in entering order
information. If, instead of a single TMF transac
tion, the TMF transaction must span entering of
data on one screen and entering of order details on
others, the transaction may last a significant length
of time. This has three negative effects that often
prevent conversational transactions from being
implemented successfully:

■ All locks last for a significant length of time.
This may become a problem if locks are held on
certain key data tables that are updated when
information is entered. Also, deadlocks on key
tables are hard to prevent.

■ In case of a failure that causes TMF or the
program to abort the transaction, all data being
entered is lost. While preserving database consis
tency, it is very unfriendly to the end user. The
additional programming effort to hide this occur
rence from the end user can be significant.

■ A backout of an individual subtransaction
cannot be handled by TMF but must be handled
programmatically. Only the complete transaction
can be backed out with TMF.

The positive aspect of this approach is that
database integrity can be easily maintained.
Nonetheless, if conversational transactions are
used and predictable response times are required,
the default method of waiting for locks cannot be
used. Instead the return option should be used (as
discussed previously).

Pseudo-Conversational Transactions. If a long
transaction is split into short subtransactions,
database integrity is harder to guarantee in case
of failures. One method that can be used to
maintain integrity is to maintain a status of the
transaction in an audited table. This status infor
mation is usually called the pseudo-conversa
tional transaction context table. This table con
tains an entry for each in-progress pseudo
conversational transaction.

Typically, the transaction context table has a
list of database changes by the transaction, current
cursor positions, and context information associ
ated with the terminal. If the operator requests
cancellation of a previous step or of the entire
transaction, the server uses the context informa
tion to logically undo all the operations of the
transaction.

An advantage of this application-managed
context table is that it is possible to back out indi
vidual subtransactions with TMF. Larger units can
be backed out by the application. The disadvan
tage is that it requires additional application
design, implementation, and testing.

Using a separate context table provides a
solution for developing pseudo-conversational
transactions. However, many applications allow
for a simpler approach. For example, a flag in an
orderheader record can indicate that work on an
order is in progress. Other transactions should not
access the header or detail records for the order if
the flag is set. If orderdetail records are added to
an order, the detailrecords themselves can be used
as the list of database changes. In this case, the
context handling is designed into the database.
This approach complicates the initial database
design and the structure of the database but
simplifies the transaction design.

TANDEM SYSTEMS REVIEW• MARCH 1990

The transaction context table can also be
maintained in the memory of the program. In
a PATHWAY environment, the terminal control
process (TCP) is responsible for maintaining the
context table in memory. If the system fails, the
context is lost. If the TCP is configured as a
NonStop process pair, the context table can
survive CPU failures at the cost of extra check
point messages.

Collected Updates. A related approach to conver
sational transactions is to postpone all database
updates to the end of the transaction. Until t~e last
step of the transaction, the database selects mfor
mation (typically through browse or stable
access). All update requests from the end user are
not applied to the database but are stored in a
memory area similar to the transaction context.

During the last step of the transaction, all
updates are applied within one short TMF transac
tion. As with the pseudo-conversational transac
tion design, collection of the updates must be
handled by the application program.

Two considerations must be weighed when
evaluating this approach. One very significant
obstacle is the limited size of the memory area,
however large it may be. If the updates do not fit
in the memory area, they are rejected unless
additional coding to handle buffer overflows is
developed. All complications of writing ps~u?o-.
conversational transactions apply if the dec1S1on 1s
made to write more code.

A second issue is keeping the updates during
the complete transaction. If the context table is
kept in memory, it will not survive a downed
system. It may not survive a single do~ned_ CPU
if the context is not checkpointed. So, Just hke
conversational transactions, the user must start
from the beginning again.

Concurrency and Consistency
Testing

When conducting concurrency tests, the use of
a large, life-size database is very important for
obtaining accurate, reliable results. Furthermore,
the normal load on the system should be simu
lated. The number of terminals that are used in
testing should be the same size as the number
of terminals that are connected to the real system.
If the transactions include terminal I/Os, the
expected operator think-times should be simu
lated. To test for database hotspots, a realistic
distribution of key values should be used.

If a large database is unavailable, another
approach would be to simulate only the hotspots
in the database. In that case a smaller database can
be used, and only the transactions that access the
hotspots need to be simulated.

When evaluating the results of concurrency
tests, both the average response times and the
distribution of those response times produced
during testing are important to access. If a high
percentage of the transactions complete in a
relatively short time, but the remaining transac
tions have an average response time that is much
higher than this value, this indicates that a re!a
tively small number of transactions must wait for
locks that are outstanding for a relatively long
time. In many cases, this is still unacceptable. The
analytical model presented here can be applied to
examine the cause of the problems.

MARCH 1990 •TANDEM SYSTEMS REVIEW 63

64

For larger applications, concurrency testing is
not trivial. If new transactions are added to the
application, two cases must be examined. The new
transactions have to be evaluated, and the existing
transactions must be reviewed in the changed
environment as well. For example, if a new
transaction is added to the system, existing trans
actions may encounter deadlocks. Automated test
procedures for both consistency and concurrency
testing seem the only adequate way to ensure that
the tests can be repeated over again in a changing
environment.

Information about concurrency can be obtained
from various places in the system. The File Utility
Program (FUP) and the operator interface of TMF
(TMFCOM) are suitable to gather information
about the current state of the system, and the
MEASURE'M system performance measurement
tool can be used to obtain statistical information.
SQLCI, the NonStop SQL conversational interface,
provides statistical information about data in the
database and about individual SQL statements.

FUP
The LISTLOCKS command can be used to obtain
a list of the locks that are currently granted or
waiting. Information can be retrieved per disk
volume or per table. The displayed information
shows the lock list per object that is being locked:
the objects are identified by their primary key.

The LISTLOCKS command is especially useful
for investigating locks with a long duration, or
even deadlocks. If deadlocks are detected by
using the default timeout mechanism, the locks
disappear after a relatively short period (within
one minute). Thus, in many cases, the deadlocks
vanish before an investigation can be done.
Because of this, it might be useful to increase
timeout values to a longer, possibly infinite,
period during testing. This way the operational
staff might be able to detect the cause of the
deadlocks. Note, however, that a very long or
infinite timeout value is totally unacceptable for
production environments. Deadlocks would hang
the system, making them visible to the user.

TMFCOM
The STATUS TMF command provides the current
transaction rate, and the STATUS TRANSACTION
command shows the number of active transac
tions. By using the following formula, the results
of these two commands can be used to determine
the average duration of the TMF transactions:

Average transaction duration
= active transactions/ transaction rate.

Note that the result of this formula provides only
an average. It can be built up from transactions
that complete very quickly and from transactions
with a very long duration.

TANDEM SYSTEMS REVIEW• MARCH 1990

MEASURE
The DISC, DISCOPEN, TMF, and SQLSTMT
entities all contain information about concurrency.

DISC and DISCOPEN reports show the number
of requests per disk volume and per opener of a
file that had to wait for the release of locked data.
This information is stored in the REQUESTS
BLOCKED counter. Note that the counter does not
reveal any information about the duration of the
waits.

TMF reports present statistical information
about the transaction rate and the duration of the
transactions. Also, the percentage of the transac
tions that were aborted can be determined.

An SQLSTMT (NonStop SQL statement)
report shows information per SQL statement.
The information includes:

■ Escalations of locks to table locks.

■ Lock waits.

■ Timeouts. These do not have to be caused by
deadlocks. However, in a well-tuned system with
reasonable timeout values, it is not likely that
timeouts are caused by other reasons.

Also, the average elapsed time for the execution
of the statements is presented in the ELAPSED
TIME-BUSY counter.

SQLCI
SQLCI, a dynamic NonStop SQL application,
allows static and dynamic SQL statements to be
executed interactively.

The SELECT statement can be used to obtain
statistical information about the distribution of
values in the primary keys. This information can
be valuable in determining the lock granularity.

The DISPLAY STATISTICS command provides
information about such things as the estimated
costs or the number of records that are accessed
per table.

Similar statistical information about the execu
tion of individual embedded SQL statements in a
host language can be obtained by examining the
NonStop SQL statistics area (SQLSA). The infor
mation includes lock waits and escalations that
can be examined with MEASURE tool on a statis
tical basis as well.

Conclusion

Transaction design for the ENSCRIBE and
NonStop SQL systems is similar. Both systems
encourage one-shot, pseudo-conversational, and,
for batch processing, small batch designs in prefer
ence to conversational and single-transaction
batch designs. The goals are to have highly
concurrent access to shared data and to minimize
the granularity and duration of locks. Simple
locking mechanisms in ENSCRIBE forced most
developers to design short TMF transactions.
NonStop SQL and TMF offer flexibility in regulat
ing concurrency primarily through the use of lock
modes, lock granularities, and the duration of
locks.

Two lock modes can be specified. Shared locks
allow for multiple owners of a lock, and exclusive
locks allow for only one owner of a lock. Once
a row is updated, the lock is always exclusive.

Lock granularity, the scope of a lock, can be
regulated by specifying row locking or generic
locking on a per table base. Generic locking can
often be used on tables without a negative effect
on concurrency. If generic locking can be used, it
may reduce the total number of outstanding locks
and the chance of escalation to table locks.
NonStop SQL may escalate fine-granularity locks
to a table lock once it has acquired a large number
of locks for one transaction on a table. Conversion
of row locks or generic locks to table locks may
virtually stop other application processing until the
table lock is released. NonStop SQL can be
directed not to escalate to table locks.

MARCH 1990 •TANDEM SYSTEMS REVIEW 65

66

Lock duration can be regulated by specifying
an access mode on SELECT statements. These
options are stable access, with short locks; repeat
able access, with long locks; or browse access,
with no locks at all. Stable access may cause lost
updates and fuzzy reads if the version of an up
dated row is not compared with the version at the
time the row was selected. The combination of
repeatable or stable access and shared locks may
cause deadlocks or lost updates. These deadlocks
can only be resolved with a timeout mechanism.
Deadlocks can often be avoided by accessing the
data via cursors with the FOR UPDATE OF clause.
This acquires exclusive mode locks on the data.

The chances that a transaction will have to wait
for locks to be released can be estimated on a
quantitative basis. The duration of the waits can
also be estimated. For short transactions, waiting
for the release of locks has a predictable effect
on response times; the magnitude of the effect
depends on both the occupancy of the locked data
and the lock duration. Hotspots in a database can
present concurrency problems in that some appli
cations experience lock contention. In those cases,
there are many techniques to minimize lock
duration.

There are a number of transaction designs. The
most typical transaction for OLTP applications is
the one-shot transaction design. Conversational
transactions, although the most natural to use, are
generally not recommended, as concurrency can
present problems. Pseudo-conversational transac
tion designs are optimizations for conversational
transaction design. This design splits up large
transactions into many short ones, and it implies
that the context of the conversation is stored
safely, preferably in an audited table, or that the
database is designed to hold the context itself.

NonStop SQL allows the several new locking
options discussed here that give the application
designer more design freedom. Designers must
note, however, that if isolation is not correctly
designed, it may limit concurrency as well as
system throughput and response times, or it may
lead to database inconsistencies.

References
Bernstein, P.A., Hadzilacos, V., and Goodman, N. 1987.
Concurrency Control and Recovery in Datahase Systems.
Addison-Wesley.

Date, C.J., and White, C.J. 1989. A Guide to DB2, 3rd ed.
Addison-Wesley.

Gray, J.N., Lorie, R.A., Putzolu, G.R., and Traiger, I.L. 1976.
Granularity ofLocks and Degrees of'Consistency in a Shared
Data Base. Proceedings IFIPTC-2 Working Conference on
Modelling in Data Base Management Systems (ed. G.M.
Nijssen). North-Holland.

Gray, J., Homan, P., Obermarck, R., and Korth, H. 1981.
A Strawman Analysis of the Prohahility of'Waiting and
Deadlock in Datahase Systems. IBM TR RJ 3066.

Tay, Y.C. 1987. Locking Pe1formance in Centralized
Datahases. Academic Press.

Acknowledgments
The author thanks all those who have contributed in the process of
writing this article, particularly Mark Anderton, Moore Ewing, Bart
Grantham, and Mike Noonan, who provided reviews. Special thanks
go to Jim Gray for his contributions in presenting the material in this
article.

Wouter Senf joined Tandem in 1984 after five years of experience in
software development for two software houses. He works in the Dutch
office as an advisory analyst in the areas of application and database
design and performance.

TANDEM SYSTEMS REVIEW• MARCH 1990

Tandem Systems Review Index March 1990

The Tandem J ourna/ became the Tandem Systems Review in February 1985. Four issues of the Tandem
Journal were published:

Volume 1, Number 1
Volume 1, Number 2
Volume 2, Number 2
Volume 2, Number 3

Fall 1983
Winter 1984
Spring 1984
Summer 1984

Part no. 83930*
Part no. 83931 *
Part no. 83932*
Part no. 83933*

As of this issue, 13 issues of the Tandem Systems Review have been published: 1

Volume I, Number I
Volume 1, Number 2
Volume 2, Number I
Volume 2, Number 2
Volume 2, Number 3
Volume 3, Number I
Volume 3, Number 2
Volume 4, Number I
Volume 4, Number 2
Volume 4, Number 3
Volume 5, Number 1
Volume 5, Number 2
Volume 6, Number 1

February 1985
June 1985
February 1986
June 1986
December 1986
March 1987
August 1987
February 1988
July 1988
October 1988
April 1989
September 1989
March 1990

Part no. 83934*
Part no. 83935*
Part no. 83936**
Part no. 83937*
Part no. 83938
Part no. 83939
Part no. 83940
Part no. 11078**
Part no. 13693**
Part no. 15748
Part no. 18662
Part no. 28152
Part no. 32986

The articles published in all 17 issues are arranged by subject below. (Tandem Journal is abbreviated
as TJ and Tandem Systems Review as TSR.) A second index, arranged by product, is also provided.

Index by Subject

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Application Development and Languages

Ada: Tandem's Newest Compiler and Programming Environment R. Vnuk TSR 3,2 Aug. 1987 83940

A New Design for the PATHWAY TCP' R. Wong TJ 2,2 Spring 1984 83932

An Introduction to Tandem EXTENDED BASIC' J. Meyerson TJ 2,2 Spring 1984 83932

Debugging TACL Code .. L. Palmer TSR 4,2 July 1988 13693

New TAL Features C. Lu, J. Murayama TSR 2,2 June 1986 83837

PATHFINDER-An Aid for Application Development' S.Benett TJ 1,1 Fall 1983 83930

PATHWAY IDS:A Message-level Interface to Devices M.Anderton, TSR 2,2 June 1986 83937
and Processes• M. Noonan

State-of-the-Art C Compiler' E. Kit TSR 2,2 June 1986 83937

TACL, Tandem's New Extensible Command Language .. J. Campbell, TSR 2,1 Feb. 1986 83936
R. Glascock

Tandem's New COBOL85 .. D. Nelson TSR 2,1 Feb. 1986 83936

The ENABLE Program Generator for Multifile Applications• B. Chapman, TSR 1,1 Feb. 1985 83934
J. Zimmerman

TMF and the Multi-Threaded Requester• T. Lemberger TJ 1,1 Fall 1983 83930

Writing a Command Interpreter• D. Wong TSR 1,2 June 1985 83935

'Articles and issues indicated by an asterisk (•) are no longer in stock.
Articles and issues indicated by a double asterisk (..) are available in limited quantities.

\1ARCH 1990 •TANDEM SYSTEMS REVIEW 67

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Customer Support

Customer Information Service J. Massucco TSR 3,1 March 1987 83939

Remote Support Strategy J.Eddy TSR 3,1 March 1987 83939

Tandem's Software Support Plan R. Baker, D. McEvoy TSR 3,1 March 1987 83939

Data Communications

An Overview of SNAX/CDF M. Turner TSR 5,2 Sept. 1989 28152

A SNAX Passthrough Tutorial· D. Kirk TJ 2,2 Spring 1984 83932

Changes in Fox· N.Donde TSR 1,2 June 1985 83935

Introduction to MULTILAN .. A. Coyle TSR 4,1 Feb. 1988 11078

Overview of the MULTILAN Server .. A.Rowe TSR 4,1 Feb. 1988 11078

SNAX/APC: Tandem's New SNA Software for Distributed Processing B. Grantham TSR 3,1 March 1987 83939

SNAX/HLS: An Overview• S. Saltwick TSR 1,2 June 1985 83935

Using the MULTI LAN Application Interfaces .. M. Berg, A. Rowe TSR 4,1 Feb. 1988 11078

Data Management

A Comparison of the BOO DP1 and DP2 Disc Processes• T. Schachter TSR 1,2 June 1985 83935

Concurrency Control Aspects of Transaction Design W. Senf TSR 6,1 March 1990 32968

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986

DP1-DP2 File Conversion: An Overview .. J. Tate TSR 2,1 Feb.1986 83936

Determining FCP Conversion Time .. J. Tate TSR 2,1 Feb. 1986 83936

DP2's Efficient Use of Cache· T. Schachter TSR 1,2 June 1985 83935

DP2 Highlights• K. Carlyle, TSR 1,2 June 1985 83935
L. McGowan

DP2 Key-sequenced Files• T. Schachter TSR 1,2 June 1985 83935

High-Performance SOL Through Low-Level System Integration .. A. Borr TSR 4,2 July 1988 13693

Improvements in TMF• T. Lemberger TSR 1,2 June 1985 83935

Optimizing Batch Performance T. Keefauver TSR 5,2 Sept. 1989 28152

Overview of Nonstop SOL•· H. Cohen TSR 4,2 July 1988 13693

NetBatch: Managing Batch Processing on Tandem Systems D. Wakashige TSR 5,1 April 1989 18662

NetBatch-Plus: Structuring the Batch Environment G. Earle, D. Wakashige TSR 6,1 March 1990 32986

Nonstop SOL: The Single Database Solution J. Cassidy, T. Kocher TSR 5,2 Sept.1989 28152

Nonstop SOL Data Dictionary .. R. Holbrook, D. Tsou TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Basic Concepts .. M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Query Optimization and User Influence .. M. Pong TSR 4,2 July 1988 13693

NonStop SOL Reliability .. C. Fenner TSR 4,2 July 1988 13693

The Relational Data Base Management Solution• G.Ow TJ 2,1 Winter 1984 83931

Tandem's Nonstop SOL Benchmark .. Tandem Performance TSR 4,1 Feb.1988 11078
Group

The TRANSFER Delivery System for Distributed Applications• S.Van Pelt TJ 2,2 Spring 1984 83932

TMF Autorollback: A New Recovery Feature• M. Pong TSR 1,1 Feb. 1985 83934

Manuals/Courses

BOO Software Manuals• S.Olds TSR 1,2 June 1985 83935

COO Software Manuals .. E. Levi TSR 4,1 Feb. 1988 11078

New Software Courses• M. Janow TSR 1,2 June 1985 83935

New Software Courses .. J. Limper TSR 4,1 Feb. 1988 11078

Subscription Policy for Software Manuals .. T. Mcsweeney TSR 2,1 Feb. 1986 83936

Tandem's New Products .. C. Robinson TSR 2,1 Feb. 1986 83936

Tandem's New Products· C. Robinson TSR 2,2 June 1986 83937

68 TANDEM SYSTEMS REVIEW MARCH 1990

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Operating Systems

Highlights of the BOO Software Release' K. Coughlin, TSR 1,2 June 1985 83935
R. Montevaldo

Increased Code Space' A. Jordan TSR 1,2 June 1985 83935

Managing System Time Under GUARDIAN 90" E. Nellen TSR 2,1 Feb. 1986 83936

New GUARDIAN 90 Time-keeping Facilities' E. Nellen TSR 1,2 June 1985 83935

New Process-timing Features' S. Sharma TSR 1,2 June 1985 83935

Nonstop II Memory Organization and Extended Addressing' D. Thomas TJ 1,1 Fall 1983 83930

Overview of the COO Release" L. Marks TSR 4,1 Feb. 1988 11078

Robustness to Crash in a Distributed Data Base: A. Borr TSR 1,2 June 1985 83935
A Nonshared-memory Approach'

The GUARDIAN Message System and How to Design for It' M. Chandra TSR 1,1 Feb. 1985 83935

The Tandem Global Update Protocol' R. Carr TSR 1,2 June 1985 83935

Performance and Capacity Planning

A Performance Retrospective P. Oleinick, P. Shah TSR 2,3 Dec. 1986 83938

Buffering for Better Application Performance" R. Mattran TSR 2,1 Feb. 1986 83936

Capacity Planning Concepts R. Evans TSR 2,3 Dec. 1986 83938

COO TMDS Performance" J. Mead TSR 4,1 Feb. 1988 11078

Credit-authorization Benchmark for High Performance and T. Chmiel, T. Houy TSR 2,1 Feb. 1986 83936
Linear Growth"

DP2 Performance' J. Enright TSR 1,2 June 1985 83935

Estimating Host Response Time in a Tandem System H. Horwitz TSR 4,3 Oct. 1988 15748

FASTSORT: An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938
A. Tsukerman, S. Uren,
B.Vaughan

Getting Optimum Performance from Tandem Tape Systems A. Khatri TSR 2,3 Dec. 1986 83938

How to Set Up a Performance Data Base with M. King TSR 2,3 Dec. 1986 83938
MEASURE and ENFORM

Improved Performance for BACKUP2 and RESTORE2' A. Khatri, M. McCline TSR 1,2 June 1985 83935

MEASURE: Tandem's New Performance Measurement Tool D. Dennison TSR 2,3 Dec. 1986 83938

Message System Performance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938

Message System Performance Tests S. Uren TSR 2,3 Dec. 1986 83938

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938

Optimizing Sequential Processing on the Tandem System' R. Welsh TJ 2,3 Summer 1984 83933

Performance Considerations for Application Processes R. Glasstone TSR 2,3 Dec. 1986 83938

Performance Measurements of an ATM Network Application N. Cabell, D. Mackie TSR 2,3 Dec. 1986 83938

Predicting Response Time in On-line Transaction A. Khatri TSR 2,2 June 1986 83937
Processing Systems'

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

The ENCORE Stress Test Generator for On-line Transaction S. Kosinski TJ 2,1 Winter 1984 83931
Processing Applications'

The PATHWAY TCP: Performance and Tuning' J. Vatz TSR 1,1 Feb. 1985 83934

The Performance Characteristics of Tandem Nonstop Systems' J. Day TJ 1,1 Fall 1983 83930

Sizing Cache for Applications that Use B-series DP1 and TMF' P. Shah TSR 2,2 June 1986 83937

Sizing the Spooler Collector Data File H. Norman TSR 4,1 Feb. 1988 11978

Tandem's 5200 Optical Storage Facility: Performance and S. Coleman TSR 5,1 April 1989 18662
Optimization Considerations

Tandem's Approach to Fault Tolerance" B. Ball, W. Bartlett, TSR 4,1 Feb. 1988 11078
S. Thompson

Understanding PATHWAY Statistics' R. Wong TJ 2,2 Spring 1984 83932

MARCH 1990 •TANDEM SYSTEMS REVIEW 69

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number
Peripherals

5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940

An Introduction to DYNAMITE Workstation Host Integration· S. Kosinski TSR 1,2 June 1985 83935

Data-Encoding Technology Used in the XL8 Storage Facility• D.S. Ng TSR 2,2 June 1986 83937

Data-Window Phase-Margin Analysis' A. Painter, H. Pham, TSR 2,2 June 1986 83937
H. Thomas

Introducing the 3207 Tape Controller• S. Chandran TSR 1,2 June 1985 83935

Peripheral Device Interfaces J. Blakkan TSR 3,2 Aug. 1987 83940

Plated Media Technology Used in the XL8 Storage Facility• D.S. Ng TSR 2,2 June 1986 83937

Streaming Tape Drives J. Blakkan TSR 3,2 Aug. 1987 83940

The 5200 Optical Storage Facility: A Hardware Perspective A. Patel TSR 5,1 April 1989 18662

The 6100 Communications Subsystem: A New Architecture· Fl.Smith TJ 2,1 Winter 1984 83931

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

The DYNAMITE Workstation:An Overview• G.Smith TSR 1,2 June 1985 83935

The Model 6VI Voice Input Option: Its Design and Implementation• B.Huggett TJ 2,3 Summer 1984 83933

The Role of Optical Storage in Information Processing L. Sabaroff TSR 3,2 Aug. 1987 83940

The VS Disc Storage Facility: Setting a New Standard for M. Whiteman TSR 1,2 June 1985 83935
On-line Disc Storage•

Processors

Nonstop CLX: Optimized for Distributed On-Line D. Lenoski TSR 5,1 April 1989 18662
Transaction Processing

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938

The High-Performance Non Stop TXP Processor• W. Bartlett, T. Houy, TJ 2,1 Winter 1984 83931
D. Meyer

The Nonstop TXP Processor: A Powerful Design for On-line P. Oleinick TJ 2,3 Summer1984 83933
Transaction Processing•

The VLX: A Design for Serviceability J. Allen, R. Boyle TSR 3,1 March 1987 83939

Security

Distributed Protection with SAFEGUARD' T. Chou TSR 2,2 June 1986 83937

System Connectivity

Building Open Systems Interconnection with OSI/AS and OSI/TS R. Smith TSR 6,1 March 1990 32986

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

Terminal Connection Alternatives for Tandem Systems J. Simonds TSR 5,1 April 1989 18662

The OSI Model: Overview, Status, and Current Issues A.Dunn TSR 5,1 April 1989 18662

System Management

Configuring Tandem Disk Subsystems S.Sitler TSR 2,3 Dec. 1986 83938

Data Replication in Tandem's Distributed Name Service T. Eastep TSR 4,3 Oct. 1988 15748

Enhancements to TMDS L. White TSR 3,2 Aug. 1987 83940

Event Management Service Design and Implementation H. Jordan, R. McKee, TSR 4,3 Oct. 1988 15748
R. Schuet

Introducing TMDS, Tandem's New On-line Diagnostic System· J. Troisi TSR 1,2 June 1985 83935

Overview of DSM P. Homan, B. Malizia, TSR 4,3 Oct. 1988 15748
E. Reisner

Network Statistics System M.Miller TSR 4,3 Oct. 1988 15748

SCP and SCF: A General Purpose Implementation of the T. Lawson TSR 4,3 Oct. 1988 15748
Subsystem Programmatic Interface

Tandem's Subsystem Programmatic Interface G.Tom TSR 4,3 Oct. 1988 15748

Using FOX to Move a Fault-tolerant Application• C. Breighner TSR 1,1 Feb. 1985 83934

Using the Subsystem Programmatic Interface and Event K. Stobie TSR 4,3 Oct. 1988 15748
Management Services

VIEWPOINT Operations Console Facility R. Hansen, G. Stewart TSR 4,3 Oct. 1988 15748

VIEWSYS: An On-line System-resource Monitor• D. Montgomery TSR 1,2 June 1985 83935

Utilities

Enhancements to PS MAIL Fl.Funk TSR 3,1 March 1987 83939

70 T A N D E M SYSTEMS REVIEW MARCH 1990

Index by Product

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

3207 Tape Controller

Introducing the 3207 Tape Controller• S. Chandran TSR 1,2 June 1985 83935

5120 Tape Subsystem

5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940

5200 Optical Storage

Tandem's 5200 Optical Storage Facility: Performance and S. Coleman TSR 5,1 April 1989 18662
Optimization Considerations

The 5200 Optical Storage Facility: A Hardware Perspective A. Patel TSR 5,1 April 1989 18662

The Role of Optical Storage in Information Processing" L. Sabaroff TSR 4,1 Feb. 1988 11078

6100 Communications Subsystem

The 6100 Communications Subsystem: A New Architecture• A.Smith TJ 2,1 Winter 1984 83931

6530 Terminal

The Model 6VI Voice Input Option: Its Design and Implementation• B. Huggett TJ 2,3 Summer 1984 83933

6600 and TCC6820 Communications Controllers

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

Ada

Ada: Tandem's Newest Compiler and Programming Environment R.Vnuk TSR 3,2 Aug. 1987 83940

BASIC

An Introduction to Tandem EXTENDED BASIC' J. Meyerson TJ 2,2 Spring 1984 83932

C

State-of-the-art C Compiler• E. Kit TSR 2,2 June 1986 83937

CIS

Customer Information Service J. Massucco TSR 3,1 March 1987 83939

CLX

Nonstop CLX: Optimized for Distributed On-Line D. Lenoski TSR 5,1 April 1989 18662
Transaction Processing

COBOL85

Tandem's New COBOL85" D. Nelson TSR 2,1 Feb. 1986 83936

COMINT(CI)

Writing a Command Interpreter• D. Wong TSR 1,2 June 1985 83935

DP1 and DP2

A Comparison of the BOO DP1 and DP2 Disc Processes· T. Schachter TSR 1,2 June 1985 83935

Determining FCP Conversion Time" J. Tate TSR 2,1 Feb. 1986 83936

DP1-DP2 File Conversion: An Overview" J. Tate TSR 2,1 Feb. 1986 83936

DP2 Highlights' K. Carlyle, TSR 1,2 June 1985 83935
L. McGowan

DP2 Key-sequenced Files· T. Schachter TSR 1,2 June 1985 83935

DP2 Performance• J. Enright TSR 1,2 June 1985 83935

DP2's Efficient Use of Cache' T. Schachter TSR 1,2 June 1985 83935

Sizing Cache for Applications that Use B-series DP1 and TMF' P. Shah TSR 2,2 June 1986 83937

DSM

Data Replication in Tandem's Distributed Name Service T. Eastep TSR 4,3 Oct.1988 15748

Event Management Service Design and Implementation H. Jordan, R. McKee, TSR 4,3 Oct. 1988 15748
R. Schue!

Overview of DSM P. Homan, B. Malizia, TSR 4,3 Oct. 1988 15748
E. Reisner

Network Statistics System M.Miller TSR 4,3 Oct. 1988 15748

SCP and SCF: A General Purpose Implementation of the T. Lawson TSR 4,3 Oct. 1988 15748
Subsystem Programmatic Interface

Tandem's Subsystem Programmatic Interface G. Tom TSR 4,3 Oct. 1988 15748

Using the Subsystem Programmatic Interface and Event K. Stobie TSR 4,3 Oct. 1988 15748
Management Services

VIEWPOINT Operations Console Facility R. Hansen, G. Stewart TSR 4,3 Oct. 1988 15748

MARCH 1990 •TANDEM SYSTEMS REVIEW 71

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

DYNAMITE

An Introduction to DYNAMITE Workstation Host Integration· S. Kosinski TSR 1,2 June 1985 83935

The DYNAMITE Workstation: An Overview• G.Smith TSR 1,2 June 1985 83935

ENABLE

The ENABLE Program Generator for Multifile Applications• B. Chapman, TSR 1,1 Feb. 1985 83934
J. Zimmerman

ENCOMPASS

The Relational Data Base Management Solution· G.Ow TJ 2,1 Winter 1984 83931

ENCORE

The ENCORE Stress Test Generator for On-line Transaction S. Kosinski TJ 2,1 Winter 1984 83931
Processing Applications·

ENSCRIBE

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986

FASTSORT

FASTSORT: An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938
A. Tsukerman, S. Uren,
B. Vaughan

FOX

Changes in Fox• N.Donde TSR 1,2 June 1985 83935

Using FOX to Move a Fault-tolerant Application• C. Breighner TSR 1,1 Feb. 1985 83934

GUARDIAN90

BOO Software Manuals• S.Olds TSR 1,2 June 1985 83935

COO Software Manuals .. E. Levi TSR 4,1 Feb. 1988 11078

Highlights of the BOO Software Release• K. Coughlin, TSR 1,2 June 1985 83935
R. Montevaldo

Improved Performance for BACKUP2 and RESTORE2' A. Khatri, M. McCline TSR 1,2 June 1985 83935

Increased Code Space' A. Jordan TSR 1,2 June 1985 83935

Managing System Time Under GUARDIAN 90 .. E. Nellen TSR 2,1 Feb. 1986 83936

Message System Performance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938

Message System Performance Tests S. Uren TSR 2,3 Dec. 1986 83938

New GUARDIAN 90 Time-keeping Facilities• E. Nellen TSR 1,2 June 1985 83935

New Process-timing Features· S. Sharma TSR 1,2 June 1985 83935

Nonstop II Memory Organization and Extended Addressing• D. Thomas TJ 1,1 Fall 1983 83930

Overview of the COO Release .. L. Marks TSR 4,1 Feb. 1988 11078

Robustness to Crash in a Distributed Data Base: A. Borr TSR 1,2 June 1985 83935
A Nonshared-memory Multiprocessor Approach•

Tandem's Approach to Fault Tolerance .. B. Ball, w. Bartlett, TSR 4,1 Feb. 1988 11078
S. Thompson

The GUARDIAN Message System and How to Design for It' M. Chandra TSR 1,1 Feb. 1985 83935

The Tandem Global Update Protocol• R.Carr TSR 1,2 June 1985 83935

MEASURE

How to Set Up a Performance Data Base with M. King TSR 2,3 Dec. 1986 83938
MEASURE and ENFORM

MEASURE: Tandem's New Performance Measurement Tool D. Dennison TSR 2,3 Dec. 1986 83938

MULTILAN

Introduction to MULTILAN .. A. Coyle TSR 4,1 Feb. 1988 11078

Overview of the MULTILAN Server .. A. Rowe TSR 4,1 Feb. 1988 11078

Using the MULTILAN Application Interfaces .. M. Berg, A. Rowe TSR 4,1 Feb. 1988 11078

NetBatch-Plus

NetBatch: Managing Batch Processing on Tandem Systems D. Wakashige TSR 5,1 April 1989 18662

NetBatch-Plus: Structuring the Batch Environment G. Earle, D. Wakashige TSR 6,1 March 1990 32986

72 TANDEM SYSTEMS REVIEW MARCH 1990

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

NonStopSQL

Concurrency Control Aspects of Transaction Design W. Senf TSR 6,1 March 1990 32986

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986

High-Performance SOL Through Low-Level System Integration .. A. Borr TSR 4,2 July 1988 13693

Nonstop SOL Data Dictionary .. R. Holbrook, D. Tsou TSR 4,2 July 1988 13693

Nonstop SOL: The Single Database Solution J. Cassidy, T. Kocher TSR 5,2 Sept. 1989 28152

Nonstop SOL Optimizer: Basic Concepts .. M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Query Optimization and User Influence .. M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Reliability .. C. Fenner TSR 4,2 July 1988 13693

Overview of Nonstop SOL .. H. Cohen TSR 4,2 July 1988 13693

Tandem's Nonstop SOL Benchmark .. Tandem Performance TSR 4,1 Feb. 1988 11078
Group

OSI

Building Open Systems Interconnection with OSI/ AS and OSI/TS R. Smith TSR 6,1 March 1990 32986

The OSI Model: Overview, Status, and Current Issues A.Dunn TSR 5,1 April 1989 18662

PATHFINDER

PATHFINDER-An Aid for Application Development' S.Benett TJ 1,1 Fall 1983 83930

PATHWAY

A New Design for the PATHWAY TCP' R. Wong TJ 2,2 Spring 1984 83932

PATHWAY IDS: A Message-level Interface to Devices M.Anderton, TSR 2,2 June 1986 83937
and Processes• M. Noonan

The PATHWAY TCP: Performance and Tuning• J. Vatz TSR 1,1 Feb. 1985 83934

Understanding PATHWAY Statistics• R. Wong TJ 2,2 Spring 1984 83932

PS MAIL

Enhancements to PS MAIL R.Funk TSR 3,1 March 1987 83939

SAFEGUARD

Distributed Protection with SAFEGUARD' T. Chou TSR 2,2 June 1986 83937

SNAX

An Overview of SNAX/CDF M. Turner TSR 5,2 Sept. 1989 28152

A SNAX Passthrough Tutorial' D. Kirk TJ 2,2 Spring 1984 83932

SNAX/APC: Tandem's New SNA Software for Distributed Processing 8. Grantham TSR 3,1 March 1987 83939

SNAX/HLS: An Overview• S. Saltwick TSR 1,2 June 1985 83935

SPOOLER

Sizing the Spooler Collector Data File .. H. Norman TSR 4,1 Feb. 1988 11078

TACL

Debugging TACL Code .. L. Palmer TSR 4,2 July 1988 13693

TACL, Tandem's New Extensible Command Language .. J. Campbell, TSR 2,1 Feb. 1986 83936
R. Glascock

TAL

New TAL Features C. Lu, J. Murayama TSR 2,2 June 1986 83837

TMDS

COO TMDS Performance .. J. Mead TSR 4,1 Feb. 1988 11078

Enhancements to TMDS L. White TSR 3,2 Aug. 1987 83940

Introducing TMDS, Tandem's New On-line Diagnostic System• J. Troisi TSR 1,2 June 1985 83935

TMF

Improvements in TMF' T. Lemberger TSR 1,2 June 1985 83935

TMF and the Multi-Threaded Requester· T. Lemberger TJ 1,1 Fall 1983 83930

TMF Autorollback: A New Recovery Feature· M. Pong TSR 1,1 Feb. 1985 83934

TRANSFER

The TRANSFER Delivery System for Distributed Applications· S. Van Pelt TJ 2,2 Spring 1984 83932

TXP

The High-Performance Nonstop TXP Processor· W. Bartlett, T. Houy, TJ 2,1 Winter 1984 83931
D. Meyer

The Non Stop TXP Processor: A Powerful Design for On-line P. Oleinick TJ 2,3 Summer 1984 83933
Trans action Processing•

MARCH 1990 •TANDEM SYSTEMS REVIEW 73

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

VB

The VB Disc Storage Facility: Setting a New Standard for M. Whiteman TSR 1,2 June 1985 83935
On-line Disc Storage•

VIEWSYS

VIEWSYS: An On-line System-resource Monitor• D. Montgomery TSR 1,2 June 1985 83935

VLX

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938

The VLX: A Design for Serviceability J. Allen, R. Boyle TSR 3,1 March 1987 83939

XLS

Data-encoding Technology Used in the XLB Storage Facility• D.S.Ng TSR 2,2 June 1986 83937

Plated Media Technology Used in the XLB Storage Facility• D.S. Ng TSR 2,2 June 1986 83937

Miscellaneous'

A Performance Retrospective P. Oleinick TSR 2,3 Dec. 1986 83938

Buffering for Better Application Performance" R. Mattran TSR 2,1 Feb. 1986 83936

Capacity Planning Concepts R. Evans TSR 2,3 Dec. 1986 83938

Configuring Tandem Disk Subsystems S.Sitler TSR 2,3 Dec. 1986 83938

Credit-authorization Benchmark for High Performance T. Chmiel, T. Houy TSR 2,1 Feb. 1986 83936
and Linear Growth"

Data-window Phase-margin Analysis• A. Painter, H. Pham, TSR 2,2 June 1986 83937
H. Thomas

Estimating Host Response Time in a Tandem System H. Horwitz TSR 4,3 Oct.1988 15748

Getting Optimum Performance from Tandem Tape Systems A. Khatri TSR 2,3 Dec. 1986 83938

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

New Software Courses• M. Janow TSR 1,2 June 1985 83935

New Software Courses" J. Limper TSR 4,1 Feb. 1988 11078

Optimizing Batch Performance T. Keefauver TSR 5,2 Sept. 1989 28152

Optimizing Sequential Processing on the Tandem System• R. Welsh TJ 2,3 Summer 1984 83933

Performance Considerations for Application Processes R. Glasstone TSR 2,3 Dec. 1986 83938

Performance Measurements of an ATM Network Application N. Cabell, D. Mackie TSR 2,3 Dec. 1986 83938

Peripheral Device Interfaces J. Blakkan TSR 3,2 Aug. 1987 83940

Predicting Response Time in On-line Transaction A. Khatri TSR 2,2 June 1986 83937

Processing Systems•

Remote Support Strategy J. Eddy TSR 3,1 March 1987 83939

Streaming Tape Drives J. Blakkan TSR 3,2 Aug. 1987 83940

Subscription Policy for Software Manuals" T. Mcsweeney TSR 2,1 Feb. 1986 83936

Tandem's New Products" C. Robinson TSR 2,1 Feb. 1986 83936

Tandem's New Products· C. Robinson TSR 2,2 June 1986 83937

Tandem's Software Support Plan R. Baker, D. McEvoy TSR 3,1 March 1987 83939

Terminal Connection Alternatives for Tandem Systems J. Simonds TSR 5,1 April 1989 18662

The Performance Characteristics of Tandem Nonstop Systems• J. Day TJ 1,1 Fall 1983 83930

The Role of Optical Storage in Information Processing L. Sabaroff TSR 3,2 Aug. 1987 83940

'This category contains Tandem Systems Review articles that contain product information, but are not specifically product-related.

74 T A N D E M S Y S T E M S REVIEW MARCH 1990

TANDEM SYSTEMS REVIEW CUSTOMER SURVEY

The purpose of this questionnaire is to help the Tandem Systems Review staff select topics for publication.
Postage is prepaid when mailed in the U.S. Customers outside the U.S. should send their replies to their
nearest Tandem sales office.

1. How useful is each article in this issue?

Building Open Systems Interconnection with OSI/AS and OSI/TS
01 □ Indispensible 02 [J Very 03 D Somewhat 04 D Not at all

NetBatch-Plus: Structuring the Batch Environment
05 U lndispensible 06 D Very 07 D Somewhat 08 [J Notatall

Converting Database Filesji-om ENSCRIBE to NonStop SQL
09 LJ Indispensible 10 □ Very 11 D Somewhat 12 D Not at all

Concurrency Control A.\pects of Transaction Design
13 [I lndispensible 14 D Very 15 D Somewhat 16 ll Not at all

2. I specifically would like to see more articles on (select one):

17 lJ Overview discussions of new products and enhancements.

19 D High-level overviews on Tandem's approach to solutions.

21 D Technical discussions of product internals.

18 D Performance and tuning information.

20 D Application design and customer profiles.

n □ ~ff _____________ _

3. Your title or position:

23 [J President. VP, Director 24 [l Systems analyst

26 C] MIS manager 27 [] Software developer

25 D System operator

28 IJ End user

29 lJ Other ______________________ _

4. Your association with Tandem:

.,o □ Tandem customer

34 D Other_

5. Comments

NAME

COMPANY NA"1E

31 [] Tandem employee 32 [J Third-party vendor

ADDRESS

33 [J Consultant

FOLD

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 482 CUPERTINO, CA. U.S.A.

POSTAGE WILL BE PAID BY ADDRESSEE

TANDEM COMPUTERS INCORPORATED
TANDEM SYSTEMS REVIEW
LOC 216-05
19333 VALLCO PARKWAY
CUPERTINO CA 95014-9990

ll1l111l1l1ll111111ll1l11ll1l1l11l11l1l11ll1111l11II

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

TANDEM SYSTEMS REVIEW ORDER FORM

Use this form to subscribe, change a subscription, and order back copies. Tandem customers must
complete the first portion of this form and submit it to their local Tandem representative for approval.
The Tandem representative will complete the second part of this form and submit it for processing.

To be completed by the Tandem customer.

Subscription information:

COMPANY

NAME

JOB TITLE

DIVISION

ADDRESS

Back order requests:

D Part No. 83938, Vol. 2, No. 3, December 1986

D Part No. 83939, Vol. 3, No. I, March 1987

D Part No. 83940, Vol. 3, No. 2, August 1987

D Part No. I l078, Vol. 4, No. I, February 1988

D Part No. 13693, Vol. 4, No. 2, July 1988

D PartNo.15748,Vol.4,No. 3,October 1988

□ Part No. 18622, Vol. 5, No. I, April I 989

D Part No. 28152, Vol. 5, No. 2, September 1989

Please allow eight weeks for back orders.

□ New subscription

□ Address change
COUNTRY Subscription number: _________ _

(Your subscription number is in the upper
TELEPHONE NUMBER (include all codes for U.S. dialing) right comer of the mailing label.)

To be completed by the Tandem representative.

Please complete this portion of the form to approve the above request.

NAME

TITLE

LOC

CUSTOMER NUMBER

SIGNATURE

I. For subscription processing only, send form to:

Tandem Computers Incorporated
Tandem Systems Review
LOC 216-05
18922 Forge Drive
Cupertino, CA 95014-070 I

DEPARTMENT NUMBER

TELEPHONE NUMBER

SYSTEM NUMBER

2. For requesting back orders for customers,
use COURIER. The menu sequence is:
Marketing Information, Literature Orders,
Tandem Systems Review. The COURIER
form allows the literature order to be sent
directly to your customer's address.

D Date of COURIER order submittal: __ _

3/90

~TANDEM
Tandem Computers Incorporated
19333 Valko Parkway
Cupertino, CA 95014-2599

Part No. 32986

MARC BRANlHI" .1NV
DEPT 8449
LOC NVM 50-00
NEW YORK NY DISTRICT

