
T A N D E M

SYSTEMS REVIEW

Instrumenting Applications

Rules for Automated Operations

RDF • TCM

Dial-In Security

Index

Volume 7, Number 2, October 1991

Editorial Director
Susan W. Thompson
Editor
Anne Lewis
Associate Editor
Steven Kahn

Technical Advisors
Mark Anderton
Terrye Kocher
Mike Noonan
Assistant Editor
Sarah Rood
Electronic Publishing
Marcy Cross
Art Director
Janet Stevenson
Cover Art
Steve Elwood
Illustrations

Steve Elwood
Cynthia Moore
Circulation
Christina Cary

The fi:mdem .\)·s1em.\ Re\'iew is puhfo,hed

by Tandem Computers Inco'l)orated.

Purpose: The Tandem System., Re\'ic11
publi-;he:-, technical infom1ation about
Tandem software relea~es and products.
Its purpose i:-. to help programmer
analysts who use our computer sy:-,tcm'>

to plan for. im,talL u:-,e. and tune Tandem
products.

Subscription additions and
changes: A'> of the March 1990 i<;-;uc.
customer s;ub<;ctiptiom, to the llmd!'ln
.S\·stems Re1·iew must be approved by
a Tandem representative. Complete the
-;ubscriber portion of the order form
at the back of this copy and send the
fonn to your local Tandem ..,a\es office.
Anyone who docs not have a Tandem
repre~entative should fill out the
subscriber portion and follow the
in..,tructions on the form.

Comments: The editors welcome
suggestion~ for content and fonnaL
Please send them to the Tcmdem
S,·stem\· Revieir. LOC 216-05. 18922
Forge Drive. Cupertino. CA 95014.

Tandem Computer~ Incorporated make~
no representation or warranty that the
infonnatiun contained in this publication
is applicahlc to sy:,,tems configured
differently than those sy~tem~ on which
lhc information ha:,, hecn developed and
tested. It abo assumes no responsibility
for error~ or omission~ that may occur in
thi~ publication.

Copyright© 1991 Tandem Computers
Incorporated. All nght~ rc~crved.

No part of this document may he
reproduced in any form, including
photocopy or translation to another
language. without the prior written
consent of Tandem Computer-..
Incorporated.

Atalla. Challenge/Response. CLX.
Cyclone, Envoy. Expand. Guardian,
Measure. NetBatch. NonStop. ROF.
Safeguard. SNAX. TACL. Tandem.
the Tandem logo. and TMF arc
trademarks and service marks of
Tandem Computers Incorporated.
protected through u~c and/or registration
in the United State~ and many foreign
countne~.

IBM j.., a reg1~tercd trademark o!
International Bw,inc..,s Machine~
Clirporation.

TANDEM SYSTEMS REVIEW

2

4

22

34

44

60

71

Editor's Preface

Instrumenting Applications for Effective
Event Management
Jean Dagenais

Writing Rules for Automated Operations
Jim Collins

RDF: An Overview
Jorge Guerrero

Capacity Planning With TCM
Wilbur Highleyman

Dial-In Security Considerations
Peter Grainger

Index

2

Editor's Preface

vailability has become a
catchword in the online
transaction processing
(OLTP) industry. An increas
ing number of computer
vendors are claiming that
their systems provide high

availability and fault tolerance. To achieve high
availability, vendors must include fault preven
tion, detection, and management in the hardware
platform and the operating system. They must
also provide an environment in which users can
build applications that will support effective
fault management.

In the April 1991 issue of the Tandem Systems
Review, the first two articles discussed the level
of availability offered by Tandem'M hardware
architecture and the Guardian"' 90 operating
system. This issue continues the discussion
by describing how several Tandem products
address availability in the areas of operations
management, disaster planning, and system
responsiveness.

The fault-tolerant architecture of Tandem
systems addresses the system requirements for
high availability and reliability. On large sys
tems that include many applications and users,
the MIS operations personnel must be able to
respond quickly to problems that arise in the
user applications as well as the system configu
ration. The most cost-effective way to meet the
service objects of an application, such as con
tinuous availability, is to design operations man
agement instrumentation into the application
while it is being developed. The first two articles
in this issue discuss how application developers
can help the operations management staff with
application problem detection, isolation, and
recovery.

The article by Dagenais describes a general
approach to designing applications to generate
effective event messages that will help the
operations organization with problem detection,
isolation, and recovery. It provides examples
that illustrate the instrumentation in the Pathway
subsystem. The article emphasizes that good
instrumentation benefits human operators and
has even greater benefits when it is combined
with a complete automated operations solution.

Collins' article continues the discussion by
proposing a methodology for designing and
building rules for an automated operations
system. He advocates breaking complex prob
lems into sets of simpler ones and responding to
each individual problem as a unit. The philoso
phy and techniques proposed in this article apply
to any automated operations solution; extended
examples are taken from the Programmatic
Network Administrator (PNA) system. The
article also describes general requirements for
writing rules.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

Another important element of availability
is system protection in the event of a disaster.
An effective way to protect critical databases
is to duplicate them at a remote site that can be
isolated from the disaster. The Remote Duplicate
Database Facility (RDFM) maintains at a remote
site continuously up-to-date databases that can
be used for contingency planning.

The article by Guerrero shows how the RDF
product can play an important role in a disaster
recovery plan. It describes the process by which
RDF maintains duplicate databases and discusses
how one can use them as the primary database
during system outages.

Because system responsiveness is the primary
measure of performance for an OLTP system,
Tandem provides several tools that monitor and
tune system performance based on resource uti
lization. One of these tools, the Tandem Capacity
Model (TCM), allows users to predict changes in
system responsiveness as workloads and system
configurations change.

Highleyman discusses the functional steps re
quired for capacity planning with TCM and gives
examples showing how TCM can apply to typical
business problems. The independent audit from
which the article is derived concluded that TCM
can be a reliable source for the performance
predications required by capacity planners.

As host systems become increasingly avail
able through telephone dial-in connections,
system managers are examining the important
and complex issue of ensuring security while
maintaining availability. The final article, by
Grainger, explores some of the challenges
associated with providing dial-in access and
discusses a number of security solutions de
signed for Tandem systems. The author exam
ines possible problems, such as deliberate
attacks on the system and unintentional security
breaches, and describes options for recovery and
user authentication.

Finally, this issue includes an index of
Tandem System Review articles. The index is a
list of all articles, by subject and product, that
have been published in this and each previous
issue. If you would like to order back issues,
please submit the order form on the last page.

Susan W. Thompson
Editorial Director

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 3

4

Instrumenting Applications for
Effective Event Management

n the 1990s, companies can achieve
a competitive advantage by being
able to respond quickly to rapidly
changing business conditions with
the appropriate strategic applica
tions. These applications provide
new business functions that must

meet increasingly stringent service objectives.
MIS organizations face major challenges not

only when they design and code these applica
tions, but also when they deliver the new business
functions. If organizations do not put effective
management instrumentation into their applica
tions, the cost of operation may far exceed the
initial cost of equipment and development. The
users of an application include not only business
customers, but also the operations organizations
that must meet service level agreements.

The fault-tolerant architecture of Tandem"'
systems addresses the business requirements for
high availability and reliability. (Figure I shows
a formula that defines system availability.)
Nevertheless, on large distributed systems that
include thousands of components and users, and
that change rapidly, problems will continue to
arise in the applications, operating systems,
hardware configurations, and data communica
tions, and among human operators.

This article describes a general approach to
instrumenting applications to help the operations
organization with problem detection, isolation,
and recovery. It also describes how automated
operations software can use this instrumentation
to increase system availability. The article
assumes that good instrumentation benefits
human operators, but provides even greater
benefits when it is combined with an automated
operations solution.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

The article begins by presenting the business
case for instrumenting applications. Next, it
presents a methodology for defining object state
changes, using Tandem's Pathway distributed
transaction processing system as an example.
Finally, the article discusses important consider
ations that can help developers design good
event messages into their programs.

The first section in the article is intended for
all MIS personnel. The remaining sections are
intended for readers who will design and
implement instrumentation for their applica
tions; readers of these sections should be
familiar with the Pathway application environ
ment and with Tandem's Distributed Systems
Management (DSM) architecture and set of
products.

Instrumenting Applications to
Meet Service Objectives
When a company offers a new business func
tion, it must identify and meet the service
objectives of that function. Aggressive service
objectives allow the company to gain an edge
over its competition.

For example, a bank may want to offer
financial services such as home banking, ATM
services, and loan approvals. The service
objectives for one of these functions may be to
provide the same quick response to all custom
ers, be available at any hour of the day or night,
and lower the cost to customers. To meet these
objectives, the application supporting the
business function may have to execute hundreds
of transactions per second, complete transac
tions in less than 1.5 seconds 95 percent of the
time, and be available continuously. If the
application is down frequently or requires a
significant amount of operations support, the
bank fails to meet its objectives, and the cost of
providing the service escalates.

Figure 1

Availability = MTBF / (MTBF + MTTR)

where:

MTBF = mean time between failure.
MTTR = mean time to repair.

If a system is highly reliable (MTBF is large relative to
MTTR), availability is close to 1 (100%). If the MTBF is
smaller, availability varies significantly with repair time.

Other business functions such as online
lottery systems or services for stock market
traders involve a high number of financial
transactions. The supporting applications must
provide high performance and low response
times to process these transactions. Any delays
in processing the transactions can have a nega
tive impact on the service providers and their
customers. For example, delays in processing
the sales of state lottery tickets could lose
money for the lottery and prevent some cus
tomers from buying tickets.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW

Figure 1.

Defining availability.

5

When service objectives are not met, a
company can be exposed to financial risks
directly associated with its business. Assume,
for example, that a financial institution transfers
billions of dollars to another company. If a
communication line goes down, the money may
not be sent on time. The company receiving the
money can lose interest until the money is
transferred to the proper account. Interest on a
few billion dollars accrues rapidly; even a few
hours' delay can cause a major financial loss.
Restarting a downed communication line is an

Choosing to instrument
an application is a

sound business decision.

obvious task. However,
the problem can go
undetected because of
human oversight or
because the application
did not issue proper
notification.

Application designers can prevent such a
loss. If the application notifies an operator
(either human or automated) that the line is
down, it can be restarted. However, to have
proper notification, developers must design and
build instrumentation into the application when
it is being developed.

Users often find creative ways to use new
business services to enhance their work. In some
cases, they can employ the system in ways never
thought of by the designers. While some appli
cations may be able to meet a new user require
ment, others may have trouble doing so. For
example, a new type of transaction (such as a
new, exhaustive monthly report) might cause a
problem such as degraded system performance.
In this kind of situation, it is essential to design
instrumentation into the application so that
analysts can identify the new types of transac
tions and properly control system resources.

To meet the service objectives of a business,
one would like to develop a way to prevent
problems. Since this is not always possible, one
must also be able to detect and repair problems
in the shortest possible time. Automated opera
tions software, interacting with a properly
instrumented application, can help to achieve
both goals.

Defining the Application Instrumentation
To find out if a new business function meets its
service objectives, analysts need to instrument
the supporting application. Instrumentation
encompasses all the functions required to
measure and control the application.

Assume, for example, that users require the
application to be running 99.5 percent of the
time. This objective permits the application to be
unavailable 0.5 percent of the time, or 2,628
minutes per year. If human operators need 20
minutes to resolve the average problem, they can
resolve only about 125 problems (that affect
application availability) per year. Now assume
that an automated operator can resolve two
problems per minute. By using the automated
operator, the system can sustain more than 5000
problems per year and still meet the stated
service objective.

6 TANDEM SYSTEMS REVIEW• OCTOBER 1991

Application instrumentation must provide
information that allows automated operations
and performance measurement tools (as well as
other system tools) to increase availability and
measure performance. This information must
be provided simply and reliably. In addition,
depending on the business functions being
supported, the application may need instrumen
tation to support the measurement or control of
security, user profiles, and work profiles.

If the requirements for a new function specify
that charge-back services need to be provided,
transaction accounting may be essential. With
out proper information, it is extremely difficult
to keep track of the resources used by individual
departments or users and charge them for any
work done.

To satisfy these requirements, and to verify
that an application meets its service objectives
in areas such as transaction counts and response
time, one can instrument the application to use
the Measure" system performance measurement
product. The Measure product defines a set of
standard procedures that help one to instrument
applications and provides an extensive set of
capacity and performance management func
tions (Dennison, 1986).

Finally, analysts should define standard ways
to support the generation of error and exception
messages. Diagnostic facilities should be
provided to support the tracing of user requests,
transactions, and interprocess messages. Also, if
the installation is using automated operations
software, the application must define a standard
command and control interface such as the
Subsystem Programmatic Interface (SPI), a
subsystem of Tandem's Guardian"" 90 operating
system.

The remainder of this article focuses on using
events to help with problem detection, isolation,
and recovery. Instrumentation used for other
purposes (such as performance measurement)
is not discussed.

Deciding Whether to Instrument an
Application
Clearly, choosing to instrument an application
is a sound business decision. First, however,
analysts must decide when and how to make the
instrumentation effort. It is significantly easier to
incorporate appropriate instrumentation into the
application during the design phase than it is
later on, when the application is in production.

Because of budget and scheduling constraints,
application developers sometimes put off
creating instrumentation in their application.
They decide to concentrate solely on developing
the business functions of the project, which are
more visible to their customers. However,
without instrumentation, the application cannot
be managed effectively. Studies have shown that
while applications take one to three years to
develop, they can stay in production for five,
ten, or even twenty years. Thus, the cost of
managing a poorly designed application can
be astronomical (Jones, 1991).

Another reason to create a proper design
initially is that both design and code are reus
able. Studies have shown that if code is properly
designed and implemented, programmers can
reuse 60 percent of it (Lanergan and Grasso,
1984). Thus, if developers design well-thought
out instrumentation into their code, much of it
can be reused in subsequent projects.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 7

Figure 2

Managing system

Figure 2.

Management
application

DSM operations
manageml'nt modi'!.

8

Commands

Responses

Events

Managed system

Managed
objects

Using the DSM Operations Management
Model
The Tandem DSM architecture provides a gen
eral management model that defines manage
ment information structures and standards. (See
Figure 2.) Users can realize the greatest benefit
from automated operations software if their app
lications are compatible with the DSM model and
properly instrumented.

The DSM framework, standards, and products
can increase the overall efficiency of develop
ment efforts as well as enable more efficient
operation and management of applications. DSM
defines a message format and protocol standards
(for event messages, commands, and responses)
to ensure that managed applications offer con
sistent interfaces to management applications.

When user applications are compatible with
DSM, designers can develop their own manage
ment application or use a commercial product
such as Tandem's Programmatic Network
Administrator (PNA) automated operations
software. Management applications can recog
nize, diagnose, and fix problems before the end
users encounter them.

Every Tandem user and third party organiza
tion now has a strong incentive to gain compat
ibility with DSM. Pathway fully complies with the
DSM model; thus, it provides developers with a
solid foundation on which to build their applica
tions. This article assumes that developers will
use Tandem's Event Management Service (EMS),
a subsystem of the Guardian 90 operating system,
to generate events.

A Methodology for Defining State
Change Instrumentation
To instrument an application, one must identify
the objects it contains and define their behavior
and relationships. The methodology proposed in
this article involves developing a dynamic state
change model of the application. With the model,
users can analyze the operational properties of the
application and determine where they may need
to add instrumentation to their programs. A
comprehensive discussion of dynamic modeling
appears in Rumbaugh et al. (1991).

Object States
In this article, an object is a distinct entity that has
specifically definable behavior. Examples of
objects are a terminal, file, transaction, financial
institution, cashier, ATM, and cash card.

An object can have many valid states. For this
discussion it is useful to divide object states into
four main categories: up, down, unknown, and
odd.

An object is up when it is started. In this state,
the object is defined in the subsystem and fully
meets all of its operational objectives. It can be
used to provide services. Examples are an active
ATM and an executing server process.

An object is down when it is stopped. The
object is known to the subsystem, but it cannot
provide useful services for the application. An
example is a stopped ATM.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

An object is unknown when it is not defined.
As far as the subsystem is concerned, the object
does not exist. An example is a terminal that
hasn't been configured in Pathway.

An object is odd when it isn't in any of the
other states. An object in the odd state requires
some corrective action. For example, an ATM
that is low on cash can still provide services to
customers, but if a corrective action is not taken
before it runs out of money, the ATM will shut
down.

Table 1 shows an example of Guardian 90
object states classified according to the categories
described above. One can draw several conclu
sions about these states. First, based on the
classification, objects can provide useful business
services for applications when they are in the up
or odd state.

Whenever an object goes into a down state,
one needs sufficient information to recover from
this situation. One can think of this kind of
recovery as reactive recovery. This is similar to
what i~ known as first-level support in many
operations groups.

When an object goes into an odd state, one
needs sufficient information to bring the object
back into an up state. One can think of this kind
~f recovery as preventive recovery. It is preven
tive _because the object is still providing services,
but 1f this situation is not corrected, a more
important problem can occur.

Assume, for example, that an application
transaction log file becomes over 75 percent full
and that this is considered an odd state for this
object. The common corrective action is to create
a new log file or modify the attributes of the
existing file.

However, if this condition is not detected, the
log file could become full. If that happens, the
application might have to be stopped to correct
the problem. This type of recovery (preventive
recovery for objects in odd states) may require
much more sophisticated instrumentation and re
covery procedures than would reactive recovery.

Table 1.
Classifying object states.

Object type Unknown Down Odd

Transaction Not defined Aborting

Process Not started Suspended
Unstoppable
Wrong priority
Debug, inspect

Disk Not defined Down Revive
Wrong path
Wrong primary CPU

File Not defined Closed Over/Under
Corrupted Threshold
Broken

T~ detect that an object is in an odd state may
reqmre supplemental instrumentation for the
object. One can think of this kind of instrumen
tation as threshold alarm detection. One can
i~plement it either within or outside the applica
t10n controlling the object. For example, the
Tandem Disk Process 2 (DP2) does not indicate
that a file is over 75 percent full. Either the
application or, more realistically, a monitoring
subsystem must take responsibility for instru
menting for this condition.

This analysis suggests that there are two
kinds of events that are of interest for operations
management. The first kind tells when an object
changes state and requires reactive recovery.
The second kind tells when an object goes over
a threshold, which may also cause a state
change, and requires preventive recovery.
A dynamic state change model can help one
identify where to design events for both kinds
of recovery.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW

Up

Active

Running

Up

Open

9

10

Dynamic State Change Modeling
The dynamic modeling approach is not a me
chanical one. Many iterations may be required to
create a final model. This approach comprises
five steps:

1. Identify the objects that are meaningful to the
subsystem and specify their relationships and
attributes.

2. Prepare one or more typical dialogs (scripts)
between the operations staff and the system to
get a feel for expected and unexpected system
behavior.

3. Identify the behavior of the different objects.

4. Build a dynamic model of the objects' appli
cation.

5. Analyze the model and specify where instru
mentation is sufficient and where more
nstrumentation may be required.

The following discussion of dynamic model
ing uses the Pathway subsystem as an example.
It focuses on the types of events that are gener
ated when an object changes state. Pathway
encompasses a set of products aimed at develop
ing and managing large business applications.

From a developer's point of view, Pathway is
a framework for developing applications. From
an operator's point of view, Pathway is a sub
system running in a Tandem system. Pathway
makes an especially useful example because of
this double view. First, Pathway is an example
of a well-instrumented subsystem. Second, the
extensive instrumentation in the Pathway sub
system makes it easier to manage a user applica
tion based on Pathway. The instrumentation in
Pathway provides a solid foundation for creating
an application framework and using automated
operations software, which will increase system
availability.

By using the dynamic modeling approach to
examine the Pathway subsystem, one can see
how Pathway objects change states and which
EMS event messages are produced. One can also
determine if additional event messages are
needed.

Step 1: Identify Objects in the Subsystem
Each application has its own objects. One must
understand the problem and select which objects
are meaningful in one's situation. For example,
one can identify the following basic object
classes defined by the Pathway subsystem:

■ PATHMON.

■ Terminal control process (TCP).

■ Terminal.

■ Program.

■ Server class.

T/\NDEM SYSTEMS REVIEW• OCTOBER 1991

All these objects are meaningful in the context
of operating a Pathway environment. From an
application programmer's perspective, however,
only programs and servers may be relevant;
PATHMON, TCPs, and terminals are simply other
objects provided by Tandem. Nevertheless,
programmers need to understand how these
objects interact and what type of instrumentation
may need to be added to their programs.

Assume, for example, that an application
server abends and is not instrumented to generate
the information needed to identify the cause of
the problem. In such a case, it may be extremely
difficult to detect that a problem exists and, once
detected, to analyze and correct it.

After the objects are identified, one must show
how they relate to one another. Figure 3 is an
object diagram showing the associations (con
straints) between the Pathway objects. A con
straint is a functional relationship between
objects: a statement about a condition or rela
tionship that must be maintained as true. For
example, objects in a Pathway application
must satisfy the following constraints:

■ A Pathway system can have only one
PATHMON.

■ A PATHMON manages one or more TCPs and
one or more server classes.

■ A TCP manages one or more terminals.

■ A terminal can execute one or more programs.

As shown in Figure 3, multiple constraints
affect a number of related objects. For example,
a Pathway system can own only one PATHMON.
One terminal can execute one or more programs.
Developers must understand the constraints in
their application in order to design an effective
event management strategy.

Figure 3

Manages

TCP

I Manages

Terminal

I Executes

Program

Pathway

I Owns

PATHMON

Manages

Server class

Next, one must identify the attributes of each
object. An attribute is a named property of an ob
ject describing the data value held by that object.
Each object can have many attributes. Some
attribute values, such as a program name or the
object file name of a server, can be static. Other
attributes have values that can change frequently;
examples include the state of an object (started,
stopped, suspended), the CPU and priority of a
running process, or the end-of-file (EOF) pointer
of a log file. For each object, one must identify
at least two key attributes, the object name and
state, which will be required for the remaining
steps.

OCTOBER 1'!91 •TANDEM SYSTEMS REVIEW

Figure 3.

Pathway objects diagram.

11

Table 2.

Behavior of a Pathway terminal.
- - - ---

Current state Condition

Stopped START command

Running STOP command

Running SUSPEND command

Running ABORT command

Running File system error

Running STATUS command

Running INFO command

Pending All programs stopped
-- --

Pending ABORT command

Suspended RESUME command

Suspended ABORT command

Figure 4

State: Running

Action

Generate event 1043

Wait for term stopped

Generate event 1049

Generate event 1002

Generate event 1 048

Generate event 1047

Generate event 1002

Generate event 1 042

Generate event 1002

Description: The terminal is available for user work.

Condition that
produces the state:

START command

Next state

Running

Pending

Suspended
-- - -

Stopped

Pending

Running
- - --

Running

Stopped
- ------- --

Stopped

Running

Stopped

Precondition that
characterizes the state:

The TCP that owns the terminal must be running.
The PATHMON that owns the TCP must be running.

Conditions and commands accepted in the state:

Condition

SUSPEND
FS-ERROR
STOP
ABORT

Action

Suspend the terminal
Suspend the terminal
Stop the terminal
Stop the terminal

Next State

Suspended
Pending
Pending•
Stopped

·The terminal remains in a pending state until all programs running on it finish executing.

State:

Description:

Condition that
produces the state:

Precondition that
characterizes the state:

Suspended

The terminal is not available for user work; it was
suspended by a user.

A user entered a SUSPEND command from PATHCOM
or by using the SPI interface.

The TCP that owns the terminal must be running.
The PATHMON that owns the TCP must be running.

Conditions and commands accepted in the state:

Figure 4.

Condition

RESUME
ABORT

Ru1111i11g and suspended
states of'a Patlnrnr
tcr111i11a/.

Action

Restart the terminal
Stop the terminal

Next State

Running
Stopped

Step 2: Prepare Operations Scripts
In this step, one prepares operations scripts,
written dialogs describing the interactions
between the operations staff and the system.
The scripts may not cover every contingency,
but they ensure that common interactions are
not overlooked.

For example, consider a problem that can
occur frequently in a Pathway environment; a
user terminal goes into KBD LOCK because of
a transient failure and the user is unable to enter
data. The following script describes the interac
tion that allows an operator to fix the problem.

1. A user terminal encounters an error, which
causes the TCP to suspend the terminal.

2. An EMS event message, terminal-suspended
event, is generated, which informs the opera
tions staff of the terminal failure.

3. The operator starts PATHCOM and enters the
STATUS terminal-name command to inquire
about the state of the terminal.

4. If the terminal is in the suspended state, the
operator issues an ABORT terminal-name
command to change the state of the terminal
to stopped.

5. The operator enters a START terminal-name
command to restart the suspended terminal.

6. The operator may want to ensure that the
terminal was restarted by reissuing the
STATUS terminal-name command.

7. If the terminal is restarted, the operator can
concentrate on other work. Otherwise, he or
she may have to open a problem report and
call for an escalation procedure to identify
the cause of the problem.

12 TANDEM SYSTEMS REVIEW• OCTOBER 1991

Scripts such as this one are extremely useful
for identifying the management information that
is already available or that may be needed for
automatic recovery. In general, operations scripts
for the Pathway subsystem have the properties
shown below. (One can analyze the operations
scripts for other subsystems in a similar way.)

■ When an object changes state, the Pathway
subsystem manager generates an event message.
The structure of these event messages is based on
the EMS.

■ Commands and responses are used to direct the
recovery procedures.

■ Two types of commands are used, one (such as
STATUS) to inquire about the state of an object
and another (such as ABORT or START) to change
its state.

■ In certain cases, the scripts show how to recover
from a failure. In other cases (such as a user
terminal power supply failure or data communi
cation failure), no simple recovery is possible;
human intervention may be required on site.

Step 3: Identify the Objects' Behavior
For each object identified, one should define its
valid states, state transitions, possible conditions
that make it change states (such as a user com
mand or an internal error in the subsystem), and
the corresponding actions. For example, Table 2
lists the conditions that modify the states of a
Pathway terminal; this table represents the
behavior of a Pathway terminal.

For each state change caused by an internal
or external condition, the object may have a pre
defined set of actions. Often, the action is to
generate an EMS event message that informs the
system of the object's state change.

For each valid state of the object, one may
want to specify more information than is shown
in Table 2. For example, Figure 4 presents
information that defines the running and sus
pended states of a Pathway terminal.

Figure 5

Terminal
Start: generate event 1043

Program
Abort: generate
event 1002 Suspended

abort

error: generate
event 1048

l
Stopped

' t ___ _
Abort: generate
event 1002

"

Suspend: generate
event1049

Suspended
restart

I
Resume: generate
event 1042

Pending
Stop

Exit: generate event 1047

Abort: generate event 1002

Step 4: Build a Dynamic State Change Model
From the information shown in Table 2, one can
produce a state transition diagram that illustrates
the dynamic behavior of a terminal. Figure 5
shows the five valid states of a Pathway terminal:
stopped, running, suspended-abort, suspended
restart, and pending. A Pathway terminal will
change states only when an internal or external
condition occurs. (An internal condition can
be, for example, a problem with the object; an
external condition can be an operator command.)

Running

Figure 5.

State transition diagram
.fiJr a Pathway terminal.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 13

14

For example, the Pathway subsystem can only
accept a START command if the terminal is in a
stopped state. The START command causes a
transition from a stopped state to a running state.
This causes Pathway to generate an EMS event
message (I 043), which informs the operator of
the state change of the terminal.

If a running terminal encounters a program
error, the terminal goes into the suspended-abort
state and Pathway generates an EMS event
message (I 048). In this state, only the ABORT
command can be used to modify the state of the
terminal. If the operator issues an ABORT com
mand, the terminal goes into a stopped state and
PATHMON generates an EMS event message
(1002).

A state transition diagram is a powerful tool
for representing the dynamic properties of
objects. One can also use this dynamic model to
represent other aspects of one's application. For
example, in an ATM application, one could use
a state transition diagram to represent a typical
interaction between an ATM user and the banking
software. One could include both normal sce
narios and exceptions to represent the major
interactions between the objects.

In addition, one can use state transition dia
grams to represent the states of complex business
transactions or a series of batch jobs that have
complex interdependencies. With the information
provided by these models, it is easy to specify the
required instrumentation for the objects. For
example, EMS event messages can be generated
when a job starts and stops successfully, or stops
with errors. With this information, an automated
operator can reschedule some of the processing
automatically.

Using the Pathway object hierarchy model
developed in step 1, one can now represent a
whole Pathway system. Figure 6 shows the
relationships among the objects in a Pathway
dynamic model.

Step 5: Analyze the Model to Discover
Missing Instrumentation
Once the dynamic model is constructed, one can
analyze it. The Pathway subsystem example
shows how one can use the dynamic model to
identify where a subsystem requires more
instrumentation. The analysis of the Pathway
subsystem demonstrates that no messages are
generated when a server has a problem during
initialization (such as opening files) or when an
internal error occurs (such as an arithmetic
overflow).

For some of these conditions, the role of the
Pathway subsystem may be limited to trying to
restart the server. Therefore, application pro
grammers are responsible for designing and
implementing supplemental instrumentation in
order to identify these problems and recover
from them. Messages such as server abending,
internal errors, or application errors may be
useful for application diagnostics or recovery.

On the basis of the instrumentation analysis in
the Pathway subsystem, one can identify the
states of a server and create a state transition
diagram that will help to identify where supple
mental instrumentation may be required. One
can use this approach for transaction servers as
well as batch servers.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

Figure 6

TCP

Stopped

Allterminals L
stopped: generate
event 1047

Start

PATHMON

Start I Starting

Starting error I
Stopped

t
PATHMON stopped:
generate pm-shutdown
event 1005

PATHMON I
started t

Stopping

hep
I stopped

Internal error: generate
event1016

l
Running

Pending
__Jstop

Startup
completed

l
Started

_Jstop

PATHMON I
started t

Server class

t Server class
I frozen

Thaw: generate event 1065

Frozen -- Pending --
Generate event 1064 Freeze

'

Thawed

Wait for all terminals to be stopped

OCTOBER y 9

Terminal

TCP I
running t t Terminal

I stopped

Start: generate event 1043

Program
Abort: generate
event1002 Suspended

abort

error: generate
event 1048

l
..

Suspend: generate
event1049

Stopped Running

t
Abort: generate
event1002

Suspended
restart

I Resume: generate
event 1042

Pending
Stop

Exit: generate event 1047

Abort: generate event 1002

•TANDEM SYSTEMS REVIEW

Figure 6.

Pathway subsystem
dynamic model.

15

16

Transaction Servers
In a Pathway-based application, it is important
to understand the relationship between a server
class and an individual server process. A server
class is a logical object defined by Pathway. It
can contain one or more server processes, each
of which can be in a different state. A server
process can be started only when the server class
to which it belongs is in the thawed state. (See
Figure 6). A transaction server process has the
following states:

■ Stopped. The server is known to the subsystem
but not started.

■ Starting. The server performs two main
activities. First, it usually processes initialization
parameters and ASSIGN statements that specify
its run-time environment and the objects (such
as files and spooler locations) with which it will
communicate. Next, it tries to create a link with
these external objects by opening files or reading
initialization tables.

■ Running.The server is fully functional and can
process transactions.

■ Stopping.The server breaks the links to the
external objects by, for example, closing the files
and external tables.

■ Abending. The server terminates processing
because of an internal error.

■ Stopped. The server returns to its initial state.

By default, no messages are generated when
ever the server process changes states. (In
Pathway, these states are valid only when the
server class is in the thawed state.) Thus, without
instrumentation, there is no way to find out the
logical state of the server. One can solve this
problem by instrumenting the server so that it
generates event messages during the startup state,
while it is started and processing transactions,
and when it changes to the stopping state.

If an error occurs during the startup state,
exception messages can be generated. For exam
ple, one can generate a message if the server
receives a wrong parameter or cannot open the
database files. Each of these messages should
be well documented and contain all the required
information to help the human (or automated)
operator recover from the situation.

When the server changes to the started state,
an event message can be generated that specifies
that the object is fully functional. Monitoring
subsystems can use messages such as this one to
track the health of the application. Without these
messages, it becomes much more difficult to
determine whether or not an object is operational.

If a business logic error occurs while the ser
ver is processing transactions, the server should
only reply to the requester with the appropriate
information. There is no use in generating an
event message stating, for example, that the
transaction is not accepted because of a missing
account number.

However, any internal program error or severe
loss of resources (such as access to the account
master file) should be reported promptly. One
must understand the application context and envi
sion the recovery scenarios in order to provide all
the required information in the event message.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

When the server changes to the stopping
state, another event message can be generated.
This message can also be used by a monitoring
sub-system to track the state of the application
com-ponents. Figure 7 shows a state transition
diagram for a transaction server running within
the Pathway environment.

Batch Servers
The instrumentation of batch servers also
requires a thoughtful strategy. The states of a
batch server are similar to those of a transaction
server. However, the starting state may involve
reading more parameters and tables, opening
many files, and creating temporary files. Also,
when reports are involved, special forms may
have to be specified.

The major difference between instrumenting
a batch server and a transaction server is in the
choice of the recovery strategies if a problem
occurs. For a batch server, one must carefully
analyze problems such as data inconsistency,
temporary file full, CPU overutilization. and
unexpected termination.

When a prolonged job must be executed,
there may be a requirement to provide the right
information to restart the job at a specific time
or record in order to finish processing within the
available time (batch processing window). In
this situation, proper instrumentation may be of
great help by making it possible to automatically
restart the job.

One can use Tandem's NetBatch"'-Plus batch
scheduling product to control the execution of a
series of jobs. Nevertheless, well-instrumented
batch programs may greatly improve the control
and management of complex jobs.

Figure 7

Server process

Start server

r
Starting

Process running:
generate event

I Initialization errors:
generate
corresponding events

Stopped -Saveabend

Abending - Running

Run-time
file maybe
created
by Guardian

errors: generate
corresponding
events

Stopping
Process stopping:
generate event

Consider, for example, a scenario in which a
batch job is started and a special set of actions is
required in order to fully use all the available
resources in a system. One could write special
rules for an automated operator in order to re
configure the system dynamically for the batch
run. When the batch job begins, it sends a
message to EMS. The EMS message invokes
the rule for the automated operator, which
reconfigures the system. When the batch job
terminates successfully, it sends another EMS
message, which invokes another rule that returns
the system to the previous configuration.

Figure 7.

State transition diagram
for a transaction server.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 17

Figure 8.

Normalization of events
and commands.

18

Figure 8

Event

*Subsystem
identifier

*Event number

*Event subject

Other event info

*Required by EMS and SPI

Command

*Subsystem
identifier

*Command type

*Object type

*Object name

Other command
info

Considerations for Instrumenting
an Application
There are several considerations that can help one
to design effective instrumentation for an applica
tion. For example, the structure of the EMS event
messages can be optimized for automated opera
tions. One can also define a consistent set of
commands that control the application's objects.

Optimizing EMS Event Messages for
Automated Operations
Event design is of primary importance for auto
mated operations, because event messages may be
the only source of information available when an
unexpected condition occurs in an application. For
each object, one should define event messages
that are consistent with the object's states and
command set.

Each EMS event message should contain the
required information in the proper format to be
used by the appropriate command. For example,
a terminal-suspended event should contain all the
necessary information in the format required by
the ABORT and START commands. Figure 8
shows how pieces of information are mapped
from an event to a command.

EMS event messages should contain at least the
following fields: a subsystem identifier, event
number, and event subject. (By default, each EMS
event message also includes other fields such as
the time the message was generated, who gener
ated the message, and where the message was
generated.)

The subsystem identifier (SSID) field contains
the SSID of the application. Each application
should have a unique SSID so that the source of
the event can be recognized easily by an auto
mated operator.

The event number should be selected carefully.
A common mistake in application development
is to keep adding new event numbers without
verifying that there are no existing events similar
to the new ones. Another mistake is to use the
same event for multiple purposes, which makes it
difficult to isolate problems when they do occur.

An event message can represent an object state
transition (such as a stopped terminal). The event
number should represent an object state (such as
stopped) and an object type (such as a terminal).
Thus, from the event number, the monitoring
subsystem or application should be able to get
directly to the command type and object type
that should be issued.

For example, when Pathway suspends a
terminal, it generates an EMS event message.
The event number is I 048, terminal suspended
on program error. From this Pathway EMS event
number, one can infer that the next command
one must send is ABORT terminal-name, which
stops the terminal.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

In general, the event subject (subject name)
corresponds to what this article calls the object
name. The subject in the event should be nor
malized (standardized). Applications should
supply a subject in the format expected by the
command and control interface, such as the
Subsystem Programmatic Interface (SPI).

If the event subject is not normalized, the
automated operations software has to determine
if the subject is in external or internal format. It
is important to keep the subject in a single
format, either external or internal. For example,
a specific standard could recommend using a
64-byte subject length so that it can accommo
date an object name of any size. Also, the event
subject should be fully qualified to identify the
location of its generation.

If the subsystem has a manager process such
as PATHMON, the event message should contain
the name of the manager process. This is useful,
because an automated operator will normally
send the commands to this process.

If possible, an EMS event message should
contain other subsystem- or application-related
information. For example, some applications use
logical names for objects that are different from
their physical file names. (In the Tandem SNAX'M
communications services environment, the
Pathway terminal name MY-APPL-TERM32 can
also have the name $SNAl.#PU32.AFG0045.) For
these applications, one should report both names
in the EMS event messages. This may be useful
for finding out if the problem is with the logical
object or the physical object.

When constructing an EMS event message,
one can also add the name of the object file and
the name of the procedure that detects the
condition that generates the message. With this
standard, one can write a specific filter and use
an EMS Distributor to generate reports and
analyze trends in one's software. From these
reports, one can identify areas in the code that
may need more testing or review.

Table 3.

Classes of commands.

Class

State changes

Commands

ADD, DELETE, START,
STOP.ABORT

State inquiries STATUS, INFO, AGGREGATE
-- -- --

Attributes modifications ALTER (static),
CONTROL (dynamic)

Human interface commands HELP, SHOW, ENV, HISTORY

Commands and Responses
To control the objects in an application effec
tively, each subsystem (or application) should
support a set of commands consistent with the
management model to be used. Table 3 identifies
four classes of commands: state changes, state
inquiries, attributes modifications, and human
interface commands.

State change commands allow the subsystem
to change the state of an object. State inquiry
commands allow the subsystem to inquire about
the state of an object. The object can return
information about the values of its static and
dynamic attributes.

Attributes modifications allow the subsystem
to modify the values of the different attributes of
an object. One uses human interface commands
to implement a user interface for the application.

General Application Guidelines
The following guidelines are intended to help
developers increase the effectiveness of the
instrumentation in their applications. In general,
when one designs an event message, one should
ask what the purpose of the event is and what a
human or automated operator can do in response
to it. Event design goes hand in hand with
command and response design. They produce
related types of messages that need to be
considered together as one designs the
application.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 19

20

Missing Objects. No subsystem should report
an event (other than an expected object missing
event) against an object that is not physically or
logically in the system. For example, if a terminal
is not yet connected, there is no need to generate
an event that says the terminal is down.

Error Events. All error events should be reported
immediately when detected. Any delay in gener
ating a critical event message may prevent the
operator or automated operations software from
recovering from the error quickly. To achieve high
availability, one must have a short mean time to
repair (MTTR).

Generating a Single Event for a Single Resource.
A failure of a single lower-level resource used by
multiple entities in a subsystem should be reported
in a single event. For example, if a Pathway TCP
fails, Pathway generates only one event, even if
many terminals are connected to that TCP.

Unspecified Events. No subsystem should gen
erate an event whose meaning is not clear. The
reason for this is that the people who program au
tomated management applications are often not
the same as those who program the managed
applications. Developers' expertise must be
captured and made available internally and
externally.

Designing a Suitable Module for Event
Generation. A good approach to event design is
to develop a common code module for event gen
eration. One can specify parameters for this module
that allow one to select dynamically the types of
events a particular object will generate. For ex
ample, one rule specifies that only exception mes
sages should be generated at system startup time
(when one restarts the application). Later, if a
problem occurs, it may be useful to allow all event
messages (including started tenninal messages) to
be generated.

It may also be useful, during application
certification or testing, to control the kind of
information generated about the application's
objects. The use of an event generation module
can greatly simplify the implementation of these
features.

With this facility, one can define many levels
of errors in the application, from informative
messages to critical messages. By default, EMS
defines three types of messages: informative,
action, and critical. One can also add other types
(levels) of messages specific to one's application.
It is extremely useful to design instrumentation
services so that they can be configured dynami
cally.

Old Applications. In many applications designed
years ago, most of the event messages do not help
one to identify problems and recover from them.
Only a few events are useful, and even those have
an unstructured message format, which makes it
hard to use automated operations software with
them.

Converting these applications is not easy, be
cause no management model existed when they
were developed. If it is unacceptable to open
many mature application modules, one could use
an external software product to trap the event
messages and convert them to the standard EMS
format. However, if an application does not pro
vide a command and control interface, these
messages may be of help only to human operators.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

Conclusion
The most cost-effective way to meet the service
objectives of an application (such as providing
continuous availability) is to design instrumenta
tion into the application while it is being devel
oped. To achieve availability, application
developers should provide normalized event
message generation and command and control
interfaces.

To help one understand the properties of an
application's objects, this article has examined
Pathway, a good example of a well-instrumented
subsystem. One can model the dynamic behav
ior of an application's objects by building a state
transition diagram. Using the information
provided by the diagram, one can easily identify
where instrumentation is sufficient and where
more instrumentation may be needed (such as in
application server programs).

One can further increase the availability of an
application by using automated operations
software, which can repair simple problems
effectively. Automated operations software can
greatly reduce the mean time to repair (MTTR)
of problems and also provide a more consistent
recovery mechanism. A properly instrumented
application can provide the information that
allows automated operations software to work
most effectively.

References
Dennison, D. I 986. Measure: Tandem's New Performance
Measurement Tool. Tandem Systems Rei·iew. Vol. 2. No. 3.
Tandem Computers Incorporated. Part no. 83938.

Jones, C. 1991. Applied Sofiware Measurement: Assuring
Productivity and Quality. McGraw-Hill.

Lanergan, G. and Grasso. A. 1984. Software Engineering with
Reusable Design and Code. IEEE Transaction on Software
Engineerini;. Vol. SE- I 0, No. 5.

Rumbaugh, J. et al. 1991. 0/Jject-Oriented Modeling and Design.
Prentice-Hal I.

Acknowledgments
The author wishes to thank all the people who carefully reviewed
this article and made constructive comments. Special thanks go
to Paul Calhoun for his contribution to the first section of this
article. Thanks also to Ted Schachter, Mark Anderton, Terrye
Kocher. Mike Choi, Jim Collins, Mark Merala, Jim McHutchion,
and Spots Stoddard, as well as all the technical staff of the
Centre de Technologie Tandem de Montreal.

Jean Dagenais is the manager of the Centre de Technologie Tandem
de Montreal, where he supervises research and development in the
area of operations management. He joined Tandem in Montreal as
an account analyst in September 1984. In 1989, he transferred to the
LSMS tools development group, where he designed and implemented
Tandem's EMS FastStart product.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 21

22

Writing Rules for
Automated Operations

s large online transaction
processing (OLTP) systems
grow, demands on the
operations staffs increase at
a dramatic rate. Help desk
personnel become over
loaded with mundane tasks

while trying to maintain high levels of service to
end users. If single component failures are not
repaired promptly, they can quickly escalate and
cause significant outages.

Automated operations systems can help
alleviate these problems by responding imme
diately and reliably to initial problem reports.
By intervening programmatically, automated
systems reduce the burden on operations staff
and increase the availability of the system. To
take full advantage of the benefits of an auto
mated operations solution, users can write rules
customized for their particular installations.

This article proposes a methodology for
designing and building rules for an automated
operations system. The methodology entails
decomposing complex problems into corre
sponding sets of simple problems and dealing
with each individual problem as a unit. This
approach allows users to realize a rapid return
on their investment in an automated operations
solution.

One can apply the philosophy and techniques
proposed in this article to any automated opera
tions system. The article uses, as an example, the
Tandem•M Programmatic Network Administrator
(PNA) automated operations system. The article
defines the function of a rule in an automated
system and describes general requirements for
writing such rules. Finally, it discusses specific
ways to handle simple and complex problems.

The article assumes that the reader is familiar
with the basic architecture of the Tandem
Distributed Systems Management (DSM) and the
fundamentals of at least one Tandem subsystem
such as the Pathway transaction processing
system or Expand'M data communications
networking software.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

Definition of a Rule
A rule is a set of statements that, taken together,
comprise an operational procedure. There are
many reasons for writing a rule. For example, a
rule might schedule an activity to take place at a
certain time. A rule might also periodically wake
up and poll the environment, looking for abnor
malities.

This article focuses on a small subset of
reasons for writing a rule. For the purposes of the
article, a rule exists to address a specific problem
or condition, which is always identified by one
or more event messages.

How PNA Uses Rules
The PNA automated operations system analyzes a
system or application event message and invokes
a rule (procedure) that acts upon the event
message under analysis. PNA can analyze several
event messages concurrently. Any of these events
may have corresponding rules, and PNA can
execute these rules concurrently.

A rule analyzes the event message to find
appropriate actions to be taken. To carry out those
actions, the rule interacts with subsystems or
applications through gateway processes. Users
have full access to the PNA rules database and
can modify, add, or delete rules as system and
management requirements change. PNA comes
with a set of rules already written. These rules
handle a variety of situations that may occur in
any installation. The rules also serve as examples
for recommended rule-writing techniques.

The Origin of the Rule
A rule has its origin in an installation's runbook.
The runbook is a collection of procedures, each
of which is designed to resolve a specific prob
lem. The runbook may not actually exist outside
the minds of the operations staff. If it does exist,
the installation has a head start on the composi
tion of rules. If it does not exist, it will be created
by the time the installation implements its first
operational rule for an automated system. The
collection of rules in the rules database will
become the runbook.

If there is no runbook, users will have to
analyze their installation before they can success
fully implement an automated operations syst~m.
The analysis should begin with a recent samplmg
of log files and the help of one or two experi
enced operators. The log files should indicate the
types of problems that occur frequently, and the
operators should provide the procedure used to
solve each problem.

The log files are an important component of
this analysis. The automated operations system
can only react to an event that has been produced
by some subsystem or application. A human
being can react to a telephone call, but the auto
mated operations system must be made aware
of a problem by means of an event message.

The log files are also important because they
show how frequently any particular problem
occurs. Users should address the most frequent
problems first. An installation may not realize an
early return on its investment in an automated
operations solution if that solution concentrates
on infrequent problems merely because they were
easy to resolve.

Once one determines which set of problems to
tackle first, one must determine the exact series
of steps an operator would take to resolve each
problem. It is important to record e_ach ste~ and
any possible results of that step. It 1s temptmg to
write a rule that will exactly mimic the operator's
actions, but this may not be the proper choice.
Instead, one should note how a subsystem or
application may react to any one of the steps the
operator may take. Determining the operator's_
steps does not necessarily complete the analysis.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 23

24

Requirements for Writing Rules
Before writing rules, one should understand the
basic requirements for rule writing. There are
four such requirements.

1. A single event message may trigger only one
rule. (This rule may call other rules.)

2. A rule may be triggered by any one of several
event messages. (A single message will cause
a rule to be triggered. It is not possible to
cause a rule to be triggered by a combination
of event messages.)

3. A single event message is independent of
all other event messages. (This statement is
made from the point of view of the automated
operator, not the subsystem producing the
event messages.)

4. A rule is independent of all other rules.
(A rule may call another rule, but no rule
can determine that another rule is execu
ting or that it has executed.)

These requirements may appear to be so
restrictive that they could never solve any real
problems. This article shows how one can turn
these requirements to one's advantage. With
a little guidance, the restrictions coerce the rule
writer to produce generic rules that are useful
not only in any installation but in a variety of
circumstances.

Basic Rule Structure
The ideal rule should follow a simple, basic
structure. There are four general steps in this
structure.

I. Interrogate the event condition. ls the condi
tion that caused the event still in effect? The
rule, like the human operator, cannot afford
to assume that it is the only agent acting on
a problem. Another agent may already have
fixed the problem.

2. Attempt to resolve the problem.

3. Interrogate the event condition a second time.
The problem may still exist even if the rule
did not receive an error when it attempted the
resolution. Many subsystems reply to action
commands with a status code signifying only
that the command was received and was
formatted correctly, not necessarily that the
command was processed.

4. Take a secondary action if the resolution was
not successful. There are several possible
secondary actions. For example, the rule
could generate a special event message des
cribing the failure. (The event message may
end up being displayed on the operator
console; it also may be processed by a
problem management application.)

Another secondary action might be to exit
the rule. The failure of the resolution could
cause another event to be produced, thus causing
another rule to be executed. Alternatively, the
rule could retry the resolution or delay for some
time before taking any further action. Often, a
rule combines several secondary actions. For
example, the rule might issue an event message,
delay for a period of time, and then retry.

In PNA, two forms of delay are possible,
the DELAY statement and the QUEUE_EVENT
statement. DELAY suspends execution of
the rule for a specified period of time.
QUEUE_EVENT removes the rule from current
execution and places it on a queue. This frees
the thread used by that rule, allowing the thread
to be used by another rule. The QUEUE_EVENT
mechanism allows more events to be in the PNA
system than there are threads configured. This is
a very powerful feature and is the recommended
approach for the delay-retry combination of
secondary actions.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

The basic rule structure outlined in this article
may be more an ideal than a doctrine. Certainly,
in some instances, the four basic steps are not
used. However, one should be cautious about
eliminating any of these steps, particularly the
first. It may be superfluous to interrogate the
condition if the resolution is nondestructive. For
example, assume that an Expand line went down.
Attempting to bring up an Expand line that is
already up does not result in any significant
confusion, so the first step might be omitted.

However, the result can be different if the
resolution is destructive. For example, assume
that a Pathway terminal went into a suspended
state, pending an abort. The proper solution is to
abort the terminal. This is a potentially destruc
tive step because the problem may already have
been resolved. Failure to test the condition in
the first part of the rule may cause a running
Pathway terminal to be aborted. This may
unnecessarily arouse the ire of the end user.

The Atomic Rule
An atomic rule is one that will never cause a
subsystem to produce more than one new event
message as a result of actions taken by the rule.
In normal situations, the atomic rule is the best
possible kind, not only because it is inherently
simple, but also because nonatomic rules can be
so bad. A significant problem with nonatomic
rules is the phenomenon of cascading events.

To understand cascading events, consider the
problem of a Pathway terminal going into a sus
pended state, pending an abort. Figure 1 shows
a sample script for the solution of this problem.

A rule that exactly mimics the actions of the
operator may precipitate cascading events.
Figure 2 shows such a rule, as written in the PNA
Rules Definition Language (RDL). (Only the
most important steps appear in the example.)

The rule shown in Figure 2 causes several
new event messages to be generated. An event
message is generated at STEP _2, when the
terminal is aborted. This necessarily triggers
another rule. (After all, aborted terminals have
to be restarted.) The rule that is triggered may
be another copy of this rule.

An event message is also generated at STEP _3,
when the terminal is started. This event is likely
to be of little interest to the automated operator
because this is the desired outcome.

Figure 1

1. Get PATHMON name and terminal name.
2. Run PATHCOM.
3. STATUS TERM <name>.
4. ABORT TERM <name>.
5. START TERM <name>.
6. STATUS TERM <name>.
7. Repeat, if needed.
8. Exit PATHCOM.

Figure 2

Suspended terminal rule

LABEL: STEP_ 1;
SEND [STATUSTERM] TO PATHWAY;

IF RESPONSE= SUSPENDED THEN STEP _2;

LABEL: STEP _2;
SEND [ABORTTERM] TO PATHWAY;

IF RESPONSE= 0 THEN STEP _3;

LABEL: STEP _3;
SEND [STARTTERM] TO PATHWAY;

IF RESPONSE= 0 THEN STEP_ 4;

LABEL: STEP_ 4;
SEND [STATUSTERM] TO PATHWAY;

IF RESPONSE= STARTED THEN EXIT _RULE;
QUEUE_EVENT 1 MINUTE;

GOTO STEP_ 1;

What happens if the device is down? Here,
further analysis is required. One must know how
Pathway reacts in certain circumstances. Even if
the device is down, the Pathway terminal will
still move to the started state. The only prerequi
site for moving to this state was successful
communication between the PATHMON process
and the terminal control process (TCP) that
controls the device.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW

Figure 1.

Solution scnj,t for a
Pathway terminal going
into a suspended state.

Figure 2.

PNA rule mimicking the
operator's actions.

25

Figure 3.

Tll'o atomic rules. One
handles suspended
terminals; the other starts
stopped terminals.

26

Figure 3

Suspended terminal rule

LABEL: STEP __ 1;

SEND [STATUSTERM] TO PATHWAY;

IF RESPONSE= SUSPENDED THEN STEP _2;

LABEL: STEP _2;
SEND [ABORTTERM] TO PATHWAY;

EXIT;

Stopped terminal rule

LABEL: STEP_ 1;
SEND [STATUSTERM] TO PATHWAY;

IF RESPONSE= STOPPED THEN STEP _2;

LABEL: STEP _2;
SEND [STARTTERM] TO PATHWAY;

EXIT;

If the device is down, the TCP encounters an
error when it attempts to open the device. This
causes the Pathway terminal to move to a
suspended state, pending abort. This, in turn,
results in the generation of another event mes
sage, which triggers another copy of the original
rule. If that happens, the QUEUE_EVENT and
retry after STEP_ 4 are useless, because at least
two other rules have been triggered. Also, no
delays occur anywhere; actions are taken as fast
as events can be produced.

Clearly, the problem of cascading events is
one to be avoided. In constructing the Pathway
solution, one would replace the nonatomic rule
with two smaller, atomic rules. (See Figure 3.)
The first rule would handle suspended terminals.
It would abort the terminal, which would cause
another event message to be produced, trigger
ing the second rule. The second rule would start
stopped terminals. If the terminal does not start,
it will move to a suspended state, thus triggering
the first rule. The pair of atomic rules would
eliminate cascading events.

Of course, this solution does not allow for any
type of delay if the terminal does not start. It
would still take actions as fast as events could be
produced. Therefore, some delay is required. In
this situation, the proper place for a delay is just
before the action that causes a rule-triggering
event message to be produced. Starting the
terminal causes an event message to be pro
duced, but no rule is triggered as a result. (If the
terminal were to move to a suspended state, an
event message would be produced, but this
would not be a direct result of the action that the
rule took.) Aborting the terminal always causes
an event message to be produced, which always
triggers the execution of a rule. Thus, the proper
place for a delay is just before aborting the
terminal, as shown in Figure 4.

This solution is incomplete because it is
skewed toward the inability of the TCP to start
the terminal. The solution always waits one
minute before attempting anything. A complete
solution would respond to a problem that was
not so serious, in which one could restart the
terminal immediately. A solution later in this
article addresses this possibility.

A complete solution may also demand a
status check between the delay and the actual
abort. An outside agent might already have fixed
the problem.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

Prerequisites for Atomic Rule Composition
There are two basic prerequisites for atomic rule
composition:

■ One must know how the subsystem operates.
How does the subsystem accomplish its tasks?
What states do objects move through, and in what
order?

■ One must know the events produced at different
states.

This is the last phase of the analysis required
to convert a runbook procedure into a set of
atomic rules. Knowledge of the subsystem is
probably the most critical component. A rule
is only as smart as its author.

Simple Problems and Complex
Problems

The problems an automated operations system
attempts to resolve fall into two general catego
ries: simple problems and complex problems.
A simple problem is one in which the solution
script does not cross subsystem boundaries.
A complex problem is any problem that is not
simple.

This may seem like a trivial categorization.
In fact, understanding simple problems is key
to a successful implementation of an automated
operations system. If one is familiar with simple
problems, one will understand complex problems
and their solutions. Furthermore, understanding
these two types of problems should help those
responsible for implementing successful event
logging strategies in subsystems and applications.

Simple Problem Message Types
Two types of event messages identify simple
problems: single-purpose event messages and
multipurpose event messages. A single-purpose
event message has a unique message identifier
for each combination of object type and condi
tion. This is the most common type of message.
Figure 5 shows examples of such messages.

Figure 4

Suspended terminal rule

LABEL: STEP_ 1;
SEND [STATUSTERM] TO PATHWAY;

IF RESPONSE= SUSPENDED THEN STEP _2;

LABEL: STEP _2;
QUEUE_EVENT 1 MINUTE;

GOTO STEP _3;

LABEL: STEP _3;
SEND [ABORTTERM] TO PATHWAY;

EXIT;

Stopped terminal rule

Figure 5

LABEL: STEP_ 1;
SEND [STATUSTERM] TO PATHWAY;

IF RESPONSE= STOPPED THEN STEP _2;

LABEL: STEP _2;
SEND [STARTTERM] TO PATHWAY;

EXIT;

Expand Event #7
Meaning: Line is down.
Subject: ZEMS_ TKN_LDEVNAME.

Expand Event #45
Meaning: Line is not ready.
Subject: ZEMS_ TKN_LDEVNAME.

Pathway Event #1002
Meaning: Terminal aborted.
Subject: ZPWY _ TKN_ TERM NAME.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW

Figure 4.

Including a delay in the
suspended terminal rule.

Figure 5.

Single-purpose event
messages.

27

Figure 6.

Multipurpose e1•e11t
messages.

Figure 7.

A rule that handles a
simple problem.

28

Figure 6

Pathway Event #1038
Meaning: NEWPROCESS error.
Subject: ZPWY _ TKN_SCNAME

or ZPWY _ TKN_ TCP NAME.

Pathway Event #1047

Meaning: Object stopped.
Subject: Any Pathway object.

Figure 7

?SUBSYSTEM_EVENT TANDEM, EXPAND, (7, 45)

LABEL: STEP_ 1;
SEND [STATUSL] TO EXPAND;

IF RESPONSE= STOPPED THEN STEP _2;

LABEL: STEP _2;
SEND [STARTL] TO EXPAND;

IF SEND_ERROR = 0 THEN STEP _3;

LABEL: STEP _3;
SEND [STATUSL] TO EXPAND;

IF RESPONSE<> STOPPED THEN EXIT _RULE;
QUEUE_EVENT 1 MINUTE;

GOTO STEP_ 1;

For single-purpose event messages, the rule
can assume that the subject of the event message
is of a certain type. It can take appropriate
actions based on that assumption.

A multipurpose event message has a unique
message identifier for each condition, but
not each object type. These messages are less
common. Figure 6 shows examples of such
messages.

For multipurpose event messages, the rule
cannot assume anything about the subject. The
rule must interrogate ZEMS_ TKN_SUBJECT to
determine the appropriate actions that must be
taken against that subject.

A Very Simple Problem
Figure 7 shows an example of a rule that handles
a simple problem. An Expand line changes state
to down or not ready. The SUBSYSTEM_EVENT
statement identifies which events will trigger
this rule.

This is a simple problem because the solution
script does not cross subsystem boundaries. The
event originated in the Expand subsystem, and
that is the only subsystem used in the rule.

The rule is atomic because only one new
event is produced. The QUEUE_EVENT state
ment is there in case the line does not come up.
No new event is produced, so some method of
retry must be built into the rule.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

A Less Simple Problem
Figure 8 also shows an example of a rule that
handles a simple problem, but the problem
is complicated somewhat by a multipurpose
event message. The problem is one in which
a Pathway terminal stops or aborts. The
SUBSYSTEM_EVENT statement identifies
which events will trigger this rule.

The major difference between the example
in Figure 8 and the one in Figure 7 is that the
rule in the Pathway example (Figure 8) has to
determine the type of subject, whereas the rule
in the Expand example (Figure 7) can assume
that the subject of the message will always be
a line handler name.

Suppose the automated operations system is
also meant to handle a stopped TCP. A Pathway
event number 1047 indicates a stopped TCP.
Recall the first requirement for writing rules:
An event message may trigger, at most, one
rule. Thus, one must handle a stopped TCP in
the same rule that handles a stopped terminal.
Figure 9 shows a possible example.

As Figure 9 indicates, multipurpose event
messages can cause rules to become large. This
is not necessarily bad, but if a rule becomes too
large to manage, one can use the CALL state
ment to break it into smaller rules.

Figure 8

?SUBSYSTEM_EVENT TANDEM, PATHWAY, (1002, 1047)

LABEL: STEP_ 1;
IF SUBJECT _EVENT_ TOKEN = ZPWY _ TKN_ TERMNAME THEN HANDLE_ TERM;
EXIT;

LABEL: HANDLE_TERM;
SEND [STATUSTERM] TO PATHWAY;

Figure 9

?SUBSYSTEM_EVENT TANDEM, PATHWAY, (1002, 1047)

LABEL: STEP_ 1;
IF SUBJECT _EVENT_ TOKEN= ZPWY _ TKN_ TERMNAME THEN HANDLE_ TERM;
IF SUBJECT _EVENT_ TOKEN= ZPWY _ TKN_ TCP NAME THEN HANDLE_ TCP;
EXIT;

LABEL: HANDLE_TERM;
SEND [STATUSTERM] TO PATHWAY;

EXIT;

LABEL: HANDLE_ TCP;
SEND [STATUSTCP] TO PATHWAY;

EXIT;

Figure 8.

A rule that handles a
simple problem associated
with a multipurpose event
message.

Figure 9.

A rule that handles a
stopped terminal or a
stopped TCP.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 29

Figure 10.

Using the CALL statement
to hreak a large rule into
smaller ones.

30

Figure 10

Calling rule

?SUBSYSTEM_EVENT TANDEM, PATHWAY,
(1002, 1047)

?RULE 80

LABEL: STEP_ 1;
IF SUBJECT _EVENT_ TOKEN=
ZPWY _ TKN_ TERMNAME THEN HANDLE_ TERM;
IF SUBJECT _EVENT_ TOKEN =
ZPWY _ TKN_ TCPNAME THEN HANDLE_ TCP;
EXIT;

LABEL: HANDLE_ TERM;
CALL 801;

EXIT;

LABEL: HANDLE_ TCP;
CALL 802;

EXIT;

Terminal handler rule

?SUBSYSTEM_EVENT DUMMY, 1, (1)
?RULE 801

LABEL: STEP_ 1;
SEND [STATUSTERM] TO PATHWAY;

TCP handler rule

?SUBSYSTEM_EVENT DUMMY, 1, (2)
?RULE 802

LABEL: STEP_ 1;
SEND [STATUSTCP] TO PATHWAY;

In the example in Figure 10,
SUBSYSTEM_EVENT statements in the called
rules do not refer to real events. Each rule must
have at least one event, real or imaginary,
attached to it, even if it is designed to be a called
rule and never intended to be triggered directly
by an event message. Whether one prefers a
larger, single rule over smaller, multiple rules
is largely a matter of taste.

Secondary Actions and Atomic Rules
The major question in an atomic rule is where to
put the QUEUE_EVENT statement. Consider the
case in which a problem is identified by a single
event. The rule takes an action, but the action
does not succeed. At this point, many sub
systems will not produce a new event indicating
the failure. If a new event were produced, it
could trigger a new copy of the rule. However, if
no new event is produced, the rule must assume
responsibility for a retry. The rule should not
attempt a retry immediately. One should insert
a delay before the retry attempt, in order to
give another agent a chance to address the real
problem. Thus, in this case, the placement of
the QUEUE_EVENT statement is obvious, as
illustrated by the Expand rule in Figure 7.

Now consider the Pathway terminal example,
in which the solution script is broken down
into several atomic rules. In this case, the
QUEUE_EVENT statement has a slightly differ
ent function. In the Expand example, the func
tion of the QUEUE_EVENT statement was to
throttle the retries performed by the same rule.
In the Pathway example, one cannot delay
retrying the same rule because several rules
(or multiple occurrences of the same rule) are
involved in the solution.

Instead, one must delay the execution of the
next rule in the sequence. One can accomplish
this by placing the QUEUE_EVENT statement
in one of the atomic rules, just before taking
the action that would cause the next event to be
produced. Thus, in this case, the function of the
QUEUE_EVENT statement is to delay issuing
the next event, which will give another agent
a chance to address the real problem.

The suspended Pathway terminal example
would proceed as follows:

1. Get the status of the terminal.

2. If the terminal is suspended, pending an
abort, and this is not the first time through,
QUEUE_EVENT.

3. Abort the terminal.

4. Exit. The abort will cause a new event to
be produced.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

Examine step 2. First, one must determine
whether this is the first time through. One
cannot count the number of times
QUEUE_EVENT has been executed, because
the rule exits after the queue delay. (PNA
provides a QUEUE_COUNT, but, in this case,
it is of no use.)

The answer must come from the subsystem.
Pathway not only yields the specific error
encountered by the TCP, but also tells whether
the error occurred in the attempt to access the
terminal or to open it. If the error occurred
during accessing, the terminal was already open,
and one can assume that this is the first time
through. If the error occurred during an attempt
to open, one can assume that this is a retry,
because the original error probably occurred in
the attempt to access the terminal. Thus, one
should execute the QUEUE_EVENT statement if
the error was encountered in the attempt to open
the terminal. (Even if the original error occurred
during the attempt to open, it is appropriate to
delay.)

However, another subsystem may not yield
the same type of information as Pathway. In that
case, one should execute the QUEUE_EVENT
statement each time. It is better to throttle back
than to produce events and trigger rules as fast
as the system will allow.

The remaining problem with this approach is
that one cannot determine how many times the
retry has been attempted. QUEUE_COUNT is of
no value, because the rule uses QUEUE_EVENT
to control when the next event is issued rather
than to throttle retries within the same rule. This
problem has no ready solution.

The Pathway example used in this article
involves a complicated problem. That is why the
Pathway rule provided with the PNA package is
the most complicated of the standard rules.

Complex Problems
A complex problem is one in which the solution
script crosses subsystem boundaries. There are
two major types of complex problems:

■ Type I: One subsystem is involved in the
actual resolution of the problem, but other
subsystems must provide information. These
problems are usually identified by a single event
message.

■ Type 2: Several subsystems are involved in
the resolution of the problem. These problems
are usually identified by a combination of event
messages.

Type 1 Complex Problems. These definitions
use the term actual resolution to identify action
commands that bring about some change. It is
possible that a rule dealing with a type I com
plex problem could execute only the action
commands. It is also possible that, if the resolu
tion fails, the rule would not be able to deter
mine that the failure had occurred. One would
have to access the other subsystems to deter
mine the probability of the success of the
resolution. If the probability of success is low,
the rule might queue the event and retry later.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 31

32

Table 1.

Breaking a complex problem into several simple problems.

Event

1. ATP6100Iinegoesdown.

2. ATP6100 subdev goes down.
--- --- ----

3. ATP6100 subdev goes down.

4. ATP6100 subdev goes down.

5. ATP6100 subdev goes down.

6. Pathway thread goes down.

7. TACL terminates.

8. TACL terminates.

9. TACL terminates.

Rule

Bring up line.
- --

Bring up subdev.

Bring up subdev.

Bring up subdev.

Bring up subdev.

Start thread.

StartTACL.

StartTACL.

StartTACL.

For example, assume that a Tandem Ad
vanced Command Language (TACL'M) process
terminates because of an 1/0 error on its termi
nal. TACL produces one, and only one, event
message. The message occurs when the TACL
terminates because it encounters an I/0 error
while accessing an already opened terminal.
However, if the terminal is inaccessible at TACL
startup time, the TACL process abends without
producing any event message.

If the rule dealing with this problem only
attempts to start the TACL process, it cannot
determine that the TACL terminated because it
was unable to access the terminal. There is no
provision for retry. Therefore, the TACL restart
rule must determine whether the terminal is
available before attempting to start the TACL
process. If the terminal is unavailable, the rule
issues a QUEUE~EVENT statement and tries
again later.

In general, the ideal solution to type I com
plex problems resides in the subsystem itself.
Either the subsystem must produce adequate
event messages at appropriate times or it must
provide suitable information upon inquiry. For
example, TACL might produce a new event

message signifying termination because of an
error opening the terminal. This would remove
from the TACL restart rule the responsibility for
determining whether the terminal is available.
Because the TACL restart rule must fulfill this
role, a configuration assumption must be built
into the rule. This is undesirable because the rule
is less portable than it might be.

The concept of type 1 complex problems is
important not only for writing rules that resolve
the problems. It can also help one to identify
these problems, which can usually be avoided by
properly instrumenting the subsystem.

Type 2 Complex Problems. Typically, type 2
complex problems are identified by a combina
tion of messages. The messages can be related or
unrelated.

Usually, one can break up complex problems
identified by multiple, unrelated event messages
into several, simple problems. This may be the
most important point in this article. Breaking
complex problems into simple ones is how one
uses the requirements for writing rules to one's
advantage. This approach allows one to write
generic, portable rules. It also offers a way to
understand what future subsystems must do in
order to allow automation. Once one under
stands simple, atomic rules and how to design
them, one can make rational decisions about
how current and future subsystems should
correctly use the DSM architecture.

For example, assume that an ATP6100 line
goes down, killing three TACL processes and a
Pathway thread. This qualifies as a real and
complex problem. It is not particularly difficult
to solve, but an operator might take some time
to solve it. An automated operations solution
could probably solve it faster, and more accu
rately.

The complex problem is broken up into
several simple problems, each identified by an
event message. (See Table 1.) Each problem has
its own solution script.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

If the ATP6 I 00 line failure is a hardware
problem, the automated operations solution may
be of even greater value. A human operator may
take some time to address the hardware prob
lem, but that is the only problem he or she has to
address. One can forget about the other prob
lems (one might do so anyway). Moreover, new
problems requiring one's attention are likely to
arise before one has finished with the old ones.
The advantage of automatic restart and recovery
is that it focuses the human operator's attention
on only those problems that actually require it.

This strategy is based on the rule-writing
techniques recommended in this article and
on the fact that PNA can execute several rules
concurrently. This powerful combination elimi
nates dependence on the sequence of events
received. The techniques illustrated here are
the cornerstone of a rules-based automated
operations solution.

Type 2 Complex Problems and Multiple,
Related Events. Certain complex problems
cannot be broken up into several simple prob
lems. For example, a problem might arise when
a specific action should be taken only when an
event occurs a certain number of times within a
certain time limit.

Other types of stubborn, complex problems
are variations on this theme. (Assume, for
example, that two independent events have
happened recently.) PNA does not directly
support these problems, but one can address
them. One would have to build a special gate
way for them. Such a gateway must keep track
of all event number-subject-timestamp combina
tions. Furthermore, it must be able to respond to
queries about frequencies of events. Gateways
within PNA are much like server classes within
Pathway; each is context-free.

Conclusion
One should take advantage of the fact that PNA
is rule-based. In normal applications, a large
design effort must precede coding, which must
precede testing; one must wait some time before
getting a return on one's investment in the
application. In a rule-based automated opera
tions system, one can work toward a perfect
solution and still receive benefits from the
system before the final goal is met.

One should write one rule at a time and put
it into production when it is ready. With this
approach, the installation receives the immediate
benefit of the automated rule, and the rule writer
can learn by observing the way the rule operates
in the production system. Each completed rule
contributes to the rule writer's expertise in
creating a comprehensive automated operations
solution for the installation.

Acknowledgments
I'd like to thank Larry English for all his contributions to the
development of the techniques outlined in this article.

-

Jim Collins is a senior advisory analyst in Large Systems Marketing
Support. He is currently involved in automated operations. He has
worked with Tandem systems since 1979.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 33

34

RDF: An Overview

ith the advent of
business-critical online
transaction processing
(OLTP) applications,
users have a growing
need to protect data
and transactions from

total system disasters. A common way to protect
critical databases is to duplicate them at a remote
site that can be isolated from a disaster occurring
at the local site.

The Tandem'" Remote Duplicate Database
Facility (RDF") maintains replicated databases
at a remote site that can be used for contingency
planning. As end users modify the local data
bases, RDF replicates those changes in the
remote databases, keeping them continuously
up to date.

This article describes the process by which
the RDF product maintains replicated databases.
It discusses how one can use the replicated
databases for ad hoc query processing, which
relieves the primary system from having to
perform that task. Next, the article explores how
to use RDF as a key element in a data disaster
recovery plan. Finally, it discusses how RDF can
reduce the duration of planned application
outages (when users need to bring the primary
system down to perform change management
operations).

The Uses ofRDF
The RDF product can replicate databases at one
site, called the primary system, onto duplicate
databases installed at a remote site, called the
backup system. RDF performs the replication by
detecting all transactions (inserts, updates, and
deletes) that change the databases in the primary
system and applying those changes to the
databases in the backup system.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

The main purpose of RDF is to complement
a disaster recovery plan. If a mishap at the
primary site causes the primary system to be
unusable or inaccessible, users have access to an
up-to-date copy of the databases maintained on
a backup system by RDF. Examples of mishaps
from which a primary application would need
protection are fire, earthquake, flooding, and
sabotage (to mention a few).

RDF replicates the database transactions as
soon as the two systems can detect, transmit,
and apply them to the backup databases. Be
cause the backup databases are as current as
possible, one can use them in an ad hoc fashion
for inquiries and reports. By transferring these
tasks to the backup system, one can improve
the performance of the critical applications
supported by the primary system.

A third use for RDF is to reduce the applica
tion down time when users have to schedule
outages at the primary site to perform tasks such
as hardware or software maintenance. With
RDF, one can run the primary application on the
backup system during the outage, then switch
back to the primary system when it becomes
available again.

Because only the transactions are replicated,
the speed of RDF does not depend on the size of
the databases. Instead, it depends on the amount
of work being performed to update the primary
system's databases.

Topologies

One can set up the RDF product to replicate
transactions in different ways, depending on
the type of protection one requires. Figure I
shows the basic configuration, in which one pri
mary system's databases are replicated onto one
backup system's databases. This configuration
is the most common one. Typically, the primary
system supports production and the backup sys
tem supports software development and testing.

Figure 1

Figure 2

Primary
system

t
Primary

DB

Expand
-----z___ Backup

system

1
Backup

DB

Primary for D81 Backup for DB1
(Backup for DB2) --z__ (Primary for D82)

t l
Primary Backup Primary Backup

D81 D82 D82 D81

When two systems have their own applica
tions in geographically distinct locations, users
can augment each system to serve as a backup
for the other. In this configuration, called the
reciprocal configuration, each system acts as
both a primary and a backup. (See Figure 2.)
This is a very cost-effective configuration.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW

Figure 1.

Basic configuration for
use of'RDF.

Figure 2.

Reciprocal configuration
for use of RDF.

35

Figure 3

Figure 3.

Primary
system B

Primary
system A

Multisite configuration
.frJr use of RDF.

36

---z.

A -

/

Primary
systemC

Backup
system

~

-

"-

E

Primary
system D

Primary
system E

B D

C

When a network contains several remote sites
with their own applications and a centralized de
velopment or operations system, users can set up
one common backup site for multiple primary
sites. This is called the multisite configuration.
(See Figure 3.) It has the advantage of following
the model of centralized operations.

RDF also supports other configurations such as
daisy chains and rings. The only restriction in set
ting up a configuration is that one can set up a par
ticular system only once as the primary system.

How RDF Works
The RDF product maintains an up-to-date
backup of the databases by reading a log of the
database transactions that have occurred at the
primary site and transmitting it to the backup
site, where it is applied to the appropriate
databases. Tandem's Transaction Monitoring
Facility (TMFM) maintains the log of the database
transactions. The primary and backup sites must
be nodes in a Tandem Expand'M data communica
tions network; the logged data is transmitted
through the Expand link between the nodes.
Because RDF depends only on TMF, it is totally
application independent. User application
programs that already use TMF do not have to
be modified to be protected by RDF.

The Role of TMF
The TMF product manages the log of database
modifications for any audited databases at the
primary site. The log consists of audit trails (sets
of disk files), one set of which is designated as
the master audit trail (MAT).

TMF saves any database modifications in the
audit trails in the form of record images. The
saved information serves to protect database and
transaction integrity. For example, if a transac
tion is interrupted before it ends (whether by a
program abort, an extended power failu_re, ?r for
another reason), TMF uses the information m the
audit trails to restore the databases to the state
they were in before the transaction began. TMF
thus leaves the databases in a logically and
physically consistent state.

RDF also uses the database modification
records (images) in the MAT. It uses this infor
mation to keep the backup databases up to date.
RDF only transmits images for disk volumes that
have been configured under RDF protection. Any
audited files residing on those volumes become
protected by RDF. Unaudited files in those
volumes do not generate any audit information
and are therefore not in the realm of RDF
protection. Applications using some unaudited
files, such as error files, need to be examined
closely to determine the type of replication
required for the unaudited files.

T A N D E M SYSTEMS REVIEW• OCTOBER 1991

Managing RDF
The user manages the RDF product through a
command-level user interface process called
RDFCOM. One can use RDFCOM to configure,
start, monitor, and stop RDF.

To configure RDF, the user designates the
execution priorities, the CPUs to be used, the
processes' names, and the disk locations of the
swap files for the processes on the primary and
backup systems. Proper configuration allows for
load balancing, which optimizes the use of
system resources by RDF.

Also, the user must designate the volumes
that will be protected by RDF. For example, if a
system has several applications and only some
of them require RDF protection, the user needs
to configure only those disk volumes that
require replication. After all the configuration
parameters are set, the user can verify and
correct them with RDFCOM if there are any
discrepancies.

Starting RDF
The user starts RDF through RDFCOM, which
starts an RDF monitor process whose main
function is to start and control the rest of the
RDF processes. These processes send the audit
trail data, receive and store the data, and update
the backup database files.

Once RDF is running, the user can monitor
the activity of all the processes in both systems
with RDFCOM (by using a STATUS command).
This command displays the current status of
each executing RDF process. It also displays the
name of the file being processed and an RDF
time delay (known as RTD) reflecting the age of
the data being handled by the corresponding
process. The age of the data is set in relation to
the time that it was originally written by TMF
into the MAT.

Sending Data
RDF uses a process called the extractor to read
each block of data from the MAT on the primary
system. Only the records for configured volumes
are extracted from the block and transmitted to

Figure 4

Primary system Backup system

Database Database

$Vol 1 RDFCOM RDFCOM $Vol A

$Vol 2
RDF

$Vo1B

monitor

$Vol 3

Extractor / Receiver $Vol 11

$Vol 11 l j
MAT

Image . .
Config Config

Context Context
RDFLog RDFLog

the backup system. (See Figure 4.) As soon as
the backup system acknowledges that the block
of data has been received, the read-extract-send
operation is repeated. While RDF performs this
operation, it can encounter an end of file (EOF)
if TMF has not yet physically written an audit
block. Upon encountering an EOF, RDF waits for
a specified time and then performs another read.
This wait-read operation is repeated until TMF
writes another block of data, which will be
detected by RDF on its next read.

Figure 4.

Extractor and receiver
processes transfer data
from the master audit
trail (MAT) in the
primary system to the
RDF image.files in the
backup system.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 37

Figure 5.

Update processes update
the backup databases.

38

Figure 5

Primary system Backup system

Database Database

$Vol 1
RDFCOM RDFCOM

...... Updater 1 -~ ~

$Vol 2
RDF

monitor

,' .,"

,' ,-.. Updater 2
,' ,:___, /

' ,'
~ Updater3

____r-+- $Vol A

- $Vo1B

$Vol 3 Extractor /
JI>>;- --- Updater n

Receiver ◄- - - -- - - - -- - --►

1 Ji_____.
$Vol n

$Vol 11

MAT MAT

Config
Context
RDFLog

Config
Context
RDFLog

If the communication line becomes unavail
able while RDF is processing, RDF waits for a
predetermined, short period of time and retries
the send operation. RDF repeats these wait-send
operations until the line becomes available again.
Operating in this manner, RDF is able to with
stand communication line failures.

Receiving Data
As shown in Figure 4, a receiver process receives
the blocks of data sent to the backup system by
the extractor. This process has two functions. One
function is to receive the data and write it into
files known as RDF Image files. The other is to
communicate with other RDF processes regarding
the status of the transactions being received.

The RDF image files are sequentially num
bered files. As one file becomes full, RDF
creates a new file with the next higher number
and uses it immediately.

Updating the Backup Databases
The updater processes update the backup
databases. (See Figure 5.) There is one updater
process for each primary system volume pro
tected by RDF. For load balancing, the user can
configure more than one updater for a backup
system volume.

Through RDFCOM, the user can start or stop
the updating function separately from the other
RDF functions discussed so far. When the
updater processes are stopped, the image files
will continue to grow in size. Thus, there is a
potential for filling up the disk volume on which
the image files reside unless the user manually
stores, archives, and purges them. Therefore, it
is recommended to allocate one disk volume for
image file usage.

To accomplish its task, each updater reads the
image files in bulk transfer mode, looking for
data modification records corresponding to the
disk volume it is protecting. When an updater
process encounters such an image record, it
extracts the transaction ID and solicits the status
of that transaction from the receiver.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

The receiver keeps track of the completion sta
tus (committed or aborted) of the transactions be
ing received. The receiver keeps this information
in a status table cache that resides in an extended
memory segment. It keeps this table only when
the updater processes are enabled. When the re
ceiver gets the transaction status request, it looks
in its status table cache and responds with a buffer
containing the status of the requested transaction.
It also sends the status of other transactions not
yet encountered by the updater, in anticipation
of future requests. This minimizes the message
traffic between receiver and updater.

When it receives the transaction status, the up
dater determines which action to take. For trans
actions that have been committed, the updater
applies the modification records to the database
files in its corresponding volume on the backup
system. For transactions that have been aborted,
the updater bypasses the modification records.
After the current block of image data is dealt with,
the updater reads another block from the image
file and repeats the updating process.

When the updater encounters the current end of
the image trail, it waits for a predetermined period
of time (to minimize CPU resources). Then it reads
once again, repeating the update cycle.

Stopping RDF
The user can stop the RDF processes in two ways.
First, one can issue a TMF stop command at the
primary system. This causes TMF to write a TMF
stop record in the MAT after completing all trans
actions currently in progress. Eventually, the ex
tractor reads the TMF stop record, which will
signal all RDF processes to stop after they pro
cess all the image records.

Second, one can issue an RDF stop command
through the RDFCOM process. This notifies all
RDF processes to stop immediately.

Regardless of the way in which RDF is stopped,
the processes write the position of the file they are
currently processing into a file called the context
file. Each system has one context file to keep track
of the corresponding processes' locations. On
subsequent startups, the RDF processes read the
context file, which allows them to continue
processing where they stopped.

Database Synchronization
Before starting RDF for the first time, one must
synchronize the primary and backup databases.
In this context, database synchronization means
that the primary and backup databases must be
logically equivalent at a time when there is no
subsequent audit.

One can synchronize the databases by per
forming a static backup of the primary databases
to be protected. As soon as the backup is fin
ished, one can start RDF with updater processes
disabled. This approach will allow the primary
application as well as RDF to be started without
having to wait for the backup databases to be
restored on the backup system. While the
databases are in transit, RDF will accumulate
audit in the image files until the updater pro
cesses are enabled. As soon as the restore is
finished, one can enable the updater processes
through an RDFCOM command, which causes
the updater processes to start functioning.
Subsequent RDF startups do not require syn
chronizations.

The databases will have to be resynchronized
if a simultaneous double-CPU failure occurs in
CPUs in which the extractor or receiver pro
cesses are running. These are the only circum
stances in which resynchronization is required.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 39

40

Ad Hoc Query Processing
Users can perform ad hoc query processing on
the backup databases while RDF is running.
They can do this because the RDF updater
processes open the files in write-protected mode.
During query processing, the backup databases
are changing dynamically in a manner similar
to the primary databases, but no records are
locked. (Records in the backup databases do
not have to be locked because there is only one
updater process modifying each file or partition.
In the backup system, two updaters will never
attempt to change the same record at the same
time.)

Batch reporting or query functions that do
not require database activity to be quiescent can
also be performed on the backup databases. By
performing ad hoc queries and generating batch
reports on the backup databases, users can
reduce the workload on the primary databases.

Takeover Processing
Whenever the primary system is no longer
available (because of a catastrophe or for any
other reason), the user can tell RDF to finish
processing all the audit the backup system has
received and then stop. One does this by indicat
ing takeover processing through RDFCOM on
the backup system. RDFCOM directs RDF to
process all the image files to completion. Any
transactions found to be incomplete at the end of
the image file (because abort or commit records
were lost during the disaster) are not applied to
the backup databases. At the end of takeover
processing, the backup databases will contain
only completed transactions. Therefore, they
will be in a logically consistent state.

After RDF has finished processing the image
files, one can begin enabling the backup system
to assume all the functions of the primary
system. At a minimum, this task consists of
enabling all the backup databases for auditing,
starting the necessary applications, and switch
ing the communication lines from the primary
system to the backup system. One can perform
some of these tasks in parallel, depending on the
way they are originally set up. Completing these
tasks quickly depends on the degree of prepara
tion and testing done beforehand. The more one
tests the systems before a disaster occurs, the
easier it will be to perform a switchover.

Because RDF has no control over the applica
tion or the communication lines, it is only
considered a complement to a disaster recovery
plan. Users should not think of it as the com
plete solution for disaster recovery.

Minimizing Application Outages
The RDF product performs another important
service; it can help to minimize the duration of
planned application outages required to perform
change management operations such as:

■ System software changes.

■ Operating system releases.

■ System hardware changes.

■ Migrating to a new hardware platform.

■ Moving hardware to a new site.

For all of these changes, the system manager
has to stop the primary application for the
duration of the operation. To minimize the
impact the outage will have on the application,
one can use RDF to perform a planned
switchover to the backup site. One can restart
the application there, allowing access to the
backup databases. Before one can start the
application again on the original primary system,
any updates performed on the backup system
must be replicated on the primary system. Again,
one can use RDF to replicate the data and switch
back to the original primary system.

Ti\NDEM SYSTEMS REVIEW• OCTOBER 1991

RDF is meant to minimize the time during
which the application is unavailable. To further
reduce the outage, one should perform certain
oper~tions concurrently on both systems. Using
RDF ma carefully planned switchover can
greatly reduce the outage.

For example, installing a new version of the
application software may require an outaoe
lasting a few hours. If one uses RDF and ;pplies
some concurrent manual intervention, the
outage may last only a few minutes.

To perform a planned switchover, one must
analyze the required steps. One needs to stop the
application running on the primary system,
switch the communication lines, and prepare the
backup system to start up the application as
soon as possible.

Stopping the Application on the Primary
System
When the primary application is stopped, RDF
must apply to the backup databases all the audit
generated up to that point. A recommended
way to perform this step is to stop TMF before
stopping the application. This step disallows
any new transactions from taking place while
allowing any transactions in progress to be
completed. One can oversee this process through
TMFCOM, the TMF command interface. Recom
mended application design methodology allows
applications to be quiesced when new transac
tion generation has been disabled.

After all the transactions are completed, one
can stop the primary application. (See Figure 6.)
Now, because the primary databases are no
longer being accessed, one can disable them for
audit. This prepares the primary databases for
their backup function when RDF runs in reverse
mode. Stopping TMF causes RDF to shut down
automatically. One can oversee the RDF shut
down through RDFCOM.

Once the primary application has stopped,
one can switch over the communication lines
from the primary system to the backup system.
This part of the switchover tends to vary greatly,
as there are many different ways to set up the
communication lines.

!Figur;-;; - - -- - - - - --- - - - -,I

I

Primary system Backup system I

RDF

Primary
DB

-z...

MAT

RDF

Image Backup
DB

I

I

I

____ _J

Preparing the Backup System for the
Switchover
One can prepare the backup system for the
switchover ahead of time or at the same time as
one stops the application on the primary system.
Preparing and testing it ahead of time will
ensure smoother operations during the actual
switchover. As part of the preparation, one must
configure RDF at the backup site to indicate that
the application will be running on the backup
system. Because the copy of RDF that will run
on the backup system is independent of the copy
running on the primary system, one can take this
step before one stops the application on the
primary system.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW

Figure 6.

A recommended approach
to managing a planned
outage involves first
stopping TM F and then
stopping the application
on the primary system.

41

Figure 7.

Stopping TMF to prepare
the backup system for
takeover. This involves
having TMF write
shutdown records into the
MAT and the EMS log.

Figure 8.

Starting TMF and the
application on the backup
system to prepare for
transmission (if image
data to the primary
system.

42

1

Figu~~ --- -- -

Primary system Backup system

L __

f gure 8 -- ------

Primary system

L

TMF

MAT Oprlog

Backup
DB I

J
---- i

Backup system

Application

TMF

l
MAT DB

How one performs this initialization step de
pends on whether or not TMF is already running
at the backup site. Although TMF does not have
to be running before the takeover, it may already
be running to support other applications or SQL
catalogs. Assuming that TMF is already running,
one will have to stop it momentarily and restart
it with transactions disabled. (See Figure 7.)

The object of this step is to set up a starting
point at which RDF will begin sending replicated
data from the backup system to the primary
system. (After the outage, RDF will run in
reverse mode to bring the primary databases up
to date.) Just before TMF stops, it writes a date
time stamped shutdown record into the TMF
audit trail. TMF also writes a log record with the
date and time of the shutdown into the Tandem
Event Management Service (EMS) log file. One
can view the EMS log record and use its date
time information to initialize RDF. This opera
tion ensures that RDF will start at a point at
which no transactions are in progress.

Next, one must configure RDF in reverse
mode (since it has just been initialized.) Al
though RDF is configured, it does not run now
because the primary system is not available to
receive replicated data. One can verify the
completed configuration through RDFCOM.

Starting the Application on the Backup
System
As soon as RDF is configured in reverse mode,
one can start TMF transactions and enable the
backup databases for auditing to allow TMF
and RDF protection. Now one can start the
application on the backup system, as shown in
Figure 8.

In some cases, one can start the application
before or during any of the previously described
steps. This further reduces the switchover time.
One constraint is that the database files should
not be opened until all of the preparation steps
have been completed. However, this is the
typical situation with most database applications
that use Tandem's NonStop SQL relational
database management system.

When users finish the maintenance oper
ations at the primary site and the Expand line is
re-established between the systems, one can start
RDF at the backup site. RDF begins transmitting
the image data created since the beginning of the
outage. The image data is transmitted from the
backup system to the primary system, as shown
in Figure 9.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

Next, the updater processes bring the primary
site's databases up to date. One can supervise
the activity of the updater processes through
RDFCOM, which shows the RDF time delay
(RTD).

Switching Back to the Primary System
When the updater processes finish applying
modifications, one can switch back to the
primary system, restoring the original RDF
configuration. Switching back to the primary
system involves the same steps as switching
over to the backup system (described above).
One must identify the correct system names,
if they were used. Otherwise, switching back
involves no special considerations.

As noted, one can perform certain steps
concurrently to minimize the time it takes to
switch over. Other steps can be performed by an
automated operations tool to minimize the need
for human intervention. For information about
designing applications for automated operations,
see the article by Dagenais in this issue of the
Tandem Systems Review.

Conclusion
The RDF product provides a mechanism for
maintaining up-to-date databases at a remote
site. Primarily, one can use this facility to
complement a comprehensive disaster recovery
plan. RDF can also relieve the primary databases
of tasks such as ad hoc query processing and
certain batch reporting jobs. In addition, RDF
provides a way to minimize the duration of
planned application outages at the primary
databases' site, where high availability is of
utmost importance.

i Figure 9

Primary system

RDF

Backup Image
DB

References

Backup system

RDF

MAT Primary I

_ _::~--
Dagenais, J. 1991. Instrumenting Applications for Effective Event
Management. Tandem Systems Review. Vol. 7, No. 2. Tandem
Computers Incorporated. Part no. 65248.

-- --- ------- ---- ------

Jorge Guerrero is an advisory analyst in Large Systems Marketing
Support. He has worked with RDF since joining Tandem in 1987.
Previously, he worked for ten years supporting data management
products at another major computer vendor. Jorge has a B.A. in
Mathematics and Computer Science from the University of Maine,
at Orono, where he was a LASPAU scholar.

OCTOBER 1991 •TANDE:vl SYSTEMS REVIEW

Figure 9.

Transmitting image data
from the backup system to
the primary system.

43

44

I Capacity Planning With TCM

esponsiveness is the primary
measure of the performance
of an online transaction
processing (OLTP) system.
Tandem" provides several
tools that monitor and tune
system performance based

on resource utilization. Now Tandem also offers
a capacity planning product, the Tandem Capac
ity Model (TCM). With TCM, users can predict
changes in system responsiveness as workloads
change and grow, the system configuration is
modified, or applications are added or changed.

TCM is a powerful workstation-based model
ing product that uses performance data gathered
by Measure"', Tandem's system performance
measurement product. TCM can calculate
changes in the average transaction response time
based on planned or potential changes such as:

■ Adding Tandem NonStop"' processors or
disks to the system.

■ Changing the transaction mix.

■ Increasing the transaction throughput or
number of end users.

■ Adding a new function to an application.

Tandem recently asked the author of this
article to perform an independent audit ofTCM.
The audit results indicated that TCM can be a
reliable source of the performance predictions
required by capacity planners, system managers
and analysts, and MIS managers.

This article begins by discussing the business
uses of TCM. It then describes the functional
steps required for capacity planning with TCM:
gathering data, creating a capacity planning
model, validating the model, making predictions
based on a variety of hypothetical changes, and
reporting the predictions. Examples show how
TCM can apply to real-life problems.

The article also discusses how to use TCM
successfully in environments it does not directly
support, such as environments that have signifi
cant batch components or are heavily prioritized.
A supplemental note that follows this discussion
briefly explains the performance modeling prin
ciples on which TCM is based. This article is
based on the C20 version of TCM (release 1.0).

TA'.JDEM SYSTEMS REVIEW• OCTOBER 1991

Business Uses of TCM
TCM has a variety of business purposes. It can
help users plan for an expanding system, deter
mine the maximum capacity of the current
system, determine the effects of expanded
functionality, perform cost-benefit analyses, and
provide support for third-party software vendors.
In minutes, TCM can calculate answers that
would take days or weeks to calculate manually.

The most common use of TCM is for capacity
planning, determining the expansion of a system
as transaction volumes grow. With TCM, one can
increase the volumes of different transactions at
different rates. For each change in transaction
volume, one can try various configurations of
CPUs and disks to determine an appropriate
growth plan for the system for the foreseeable
future. Alternatively, one can determine the least
expensive system that will meet response-time
constraints under the modified transaction
volumes.

A related purpose is determining the capacity
of the current system. Given the response-time
constraints of the application, TCM can calculate
the largest transaction volume the current system
will handle.

TCM can also help users predict the impact of
expanded functionality on the system, that is, the
effect of adding new functions to the applica
tion. One can include new, unimplemented
transaction types by entering programmer
supplied best estimates of the CPU and disk
resources used by the new transactions. (One
can also change the profile of an existing
transaction.) With this information, TCM can
determine the system configuration required to
support given transaction rates (for the old and
new transactions) and meet specified response
time criteria.

One can use TCM for cost-benefit analysis,
estimating the performance impact of propose_d
modifications or enhancements to a system. If
users want to change the system to improve its
performance, TCM can accurately de.~ermi~e the
performance benefits of a given conhgurat1on,
which can be compared to its dollar costs.

TCM provides invaluable support for third
party software products. For users purchasin~
third-party software packages, TCM can predict
the system configuration required to meet a
specified combination and volume of transac~
tions. By using a validated TCM model supplied
by the third-party vendor, users can specify the
required workload and response time, and TCM
will determine the least-cost system configura
tion to meet those requirements.

A common question concerns the relationship
ofTCM and Surveyor, Tandem's performance
database management product. TCM is a capac
ity planning product that can answer what-if
questions regarding the impact of future sce
narios. Surveyor can automate performance data
collection and exception reporting, report
system usage on an ongoing basis, and can be
used to help in capacity planning efforts by
forecasting future system usage based on
historical trends. The two products complement
each other, especially because the performance
data stored in a Surveyor database can be used
to build TCM models. By incorporating the
usage trends provided by Surveyor, capa~ity
planners can refine the analyses they perform
with TCM.

OCTOBER 19'!1 •TANDEM SYSTEMS REVIEW 45

Figure 1.

TCM architecture.

46

Figure 1

Tandem system

Terminal Measure
TCM

! reports

i
Meas - Measure - TCM Tandem

host
Surv - Surveyor - TCM

i
Database

TCM Components
To create and use a successful capacity planning
model with TCM, one must do five things: gather
data from the Tandem system, create a transac
tion performance model that accurately reflects
the real system, validate the model, make predic
tions based on hypothetical scenarios (furnished
by the user), and report the predictions.

TCM uses Measure to gather critical CPU and
disk utilization data during representative periods
of system use. (Measure gathers information
from an operating Tandem system.) MeasTCM,
a TCM component running on the Tandem host,
categorizes and summarizes Measure data and
transfers the summarized results to the TCM
workstation. SurvTCM, a similar TCM compo
nent, can also perform this function.

TCM

Workstation

l
Workload Capacity

apportionment - history
(WA) model data

i
TCM

Performance reports
model

The remaining components of TCM run on
a PC or Macintosh workstation as a Microsoft
Excel application. Figure 1 shows how TCM
extracts data from the Tandem host, downloads
the data to the TCM workstation, and, guided by
the user, calculates capacity planning scenarios.

With the workload apportionment (WA)
component of TCM, users define the transactions
in their system. Next, they allocate to those
transactions the proportion of the CPU and disk
resource utilizations reported by MeasTCM or
SurvTCM. The WA component can then calculate
the CPU and disk resources used by each indi
vidual transaction.

Once the workload apportionment model has
been created, users validate the model by testing
it for consistency against a variety of Measure
data samples. One can perform a second type of
model validation by testing whether the TCM
model accurately predicts response times for the
system as it is currently configured.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

With the performance model (PM) component,
users can change transaction rates, modify the
system CPU and disk configuration, and add
projected new transaction types to determine the
system's reaction. The PM component calculates
resource utilizations and response times accord
ing to these what-if scenarios.

In addition, users can print a variety of pre
sentation-quality charts and reports to illustrate
selected scenarios. For complete information
about how to operate TCM, refer to the TCM
User'.,· Guide and Reference Manual (1990).

Measurement
The TCM process begins with Measure, which
accumulates performance data on the Tandem
system. Two similar tools are available to catego
rize and summarize Measure data: MeasTCM and
SurvTCM. SurvTCM interfaces with Surveyor,
Tandem's performance database manager.
Surveyor uses Measure data to establish a perfor
mance database created by Tandem's NonStop
SQL relational database management system;
SurvTCM processes the Surveyor data for TCM.
MeasTCM interfaces directly with Measure. This
article discusses MeasTCM only.

MeasTCM can merge Measure data taken from
multiple Tandem systems to create one set of
performance data that represents the activity of
multiple nodes in a Tandem network. By using
this merged data, TCM can perform its capacity
planning predictions for the Tandem network.

For MeasTCM, one must collect data on all
CPU. process, discopen, and disc entities. These
entities provide a variety of useful information
to TCM:

■ The CPU entity provides the CPU type and
count as well as the interrupt busy time.

■ The process entity provides CPU times and
interprocess message counts for each process.

■ The discopen entity provides cache activity
and physical disk access counts for each process.

■ The disc entity provides the number of disk
volumes and total seek-read-write disk times.

Figure 2

Measure---►
data

Process
categories

l
MeasTCM

1
Context

File transfer
utility

CSV
summary-z__

Figure 2.

TCM
workstation

The user invokes MeasTCM with an interac
tive or batch Tandem Advanced Communica
tions Language (TACL) routine. MeasTCM
summarizes the large amount of Measure data
(many megabytes) into a compact file (a few
kilobytes) in comma-separated value (CSV)
format. (See Figure 2.) MeasTCM operates in
part under the control of a context file, which
specifies the input and output files to use, the
CPUs to use, the Measure time window of
interest, and the CPU type for normalization

TCM host component.

if the system comprises multiple CPU types.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 47

48

Table 1.

MeasTCM process category types.

S = Server processes

R = Requester processes
-- ----- ----- -

L = Line handler processes

D = Disk processes

T = TM F processes

0 = Other processes

F = Fixed processes (not related to transactions)

Z - Ignore these processes

Fundamental to the MeasTCM function is the
process category control file. In this file, the
user specifies a series of process categories and
defines the criteria for assigning each process in
the system to a particular category. Each process
category is also assigned a process category
type. TCM recognizes eight process category
types, as shown in Table I.

MeasTCM allocates CPU and disk activity
to processes and thus to process categories. It
accomplishes this by linking process activity
(such as CPU seconds) with discopen activity
(such as cache hits).

CPU times are allocated directly to processes
by Measure. CPU interrupt seconds are allocated
to process categories in proportion to the send
and receive message counts for each process
category.

Disk read, write, and seek seconds are allo
cated to process categories in proportion to their
read, write, and seek counts. The seek seconds
are further divided between reads and writes
within a process category according to the pro
portion of read and write counts in that category.

Disk process CPU time is allocated among
process categories in proportion to their cache
activity. Cache misses are weighted twice as
heavily as cache hits because a cache miss
implies two cache searches, one before the 1/0
operation and one after.

MeasTCM writes the generated process cate
gory summary information to a CSV file. The
user then downloads the CSV file to the TCM
workstation, using any standard file transfer
utility. TCM provides a screen report of this
data. (See Figure 3.)

T A N D E \1 S Y S T E M S R E V I E W • 0 C T O B E R I 9 9 I

Figure 3

TCMC10 CATEGORY DEMAND REPORT

Application:

Category File:

Sample Window:

Window Size:

Interrupts:

Cat Name Type Revs Sends CPU Sec

Summary s 22244 118258 474.965

R 40781 85325 1062.313

D 239194 118076 1307.431

T 0 0 0.000

L 22239 486 183.779
----- ------

0 1444 57 2_130

F 5060 2707 22.424
-- -

ST1 s 12908 90309 292.342

BIG s 1099 6689 33.915

INQ s 1852 1853 10.978

UPDT s 6385 19407 137.73

NUCLEUS 0 798 0 0.5

$VIRTUAL 0 0 0.001

$TMF 0 636 36 0.849

DISC D 239194 118076 1307.431

Workload Apportionment
The TCM model is driven by transaction primi
tives that specify the CPU, disk read, and disk
write activity associated with each transaction.
Because Measure does not provide transaction
oriented data, the process category data accu
mulated by MeasTCM in the CSY file must be
apportioned to the users' transactions. This pro
cedure is called workload apportionment (WA).

Using the WA module ofTCM, users specify
the relative amount of each process category used
by each transaction. They also specify how
transactions will be counted by associating each
occurrence of a particular transaction with a
mesage sent or received by a key process or pro
cesses. TCM notes the number of sent or received
messages and determines the number of each
transaction type represented in the Measure data.

Example

EXAMPLE1 .CSY

16Jun89 12:24 PM 12:50 PM

1560 Sec

608.995 Sec

CHit CMiss Rd Sec WrSec

160664 85362 655.040 2564.549

0 0 0.000 0.000

0 0 0.000 0.000

0 0 0_000 0_000

0 486 0.000 20.773

0 7 10.924 6.964

539 1661 3.114 29_777

127375 66363 369.605 2181.132

8521 5124 79.857 98-986

4118 1702 53.417 0

20650 12173 152.161 284.431

0 3.84 2.383

0 0 0 0

0 6 1.073 0_962

0 0 0 0

Knowing the actual CPU and disk seconds
to be allocated to each transaction type, and
knowing the number of transactions of each
type seen in the Measure run, TCM can calculate
the CPU and disk resources used by each indi
vidual transaction.

OCTORER 1991 •TANDEM SYSTEMS REVIEW

Figure 3.

TCM summar_r o(
Measure data.

49

Figure 4

Transaction A 7 I
TCP

Transaction B ___J L

Figure 4. Table 2.

Server A

Server B

7
Disk

process (DP2} -- Database

_J

Workload Apportionment Weights. TCM
provides default values for the relative use of
process categories. When users indicate that a
particular process category is used entirely by
one transaction, TCM allocates that process to
the corresponding transaction.

A simple transaction
model.

Workload apportionment weights.

For example, consider the transaction flow
shown in Figure 4. Transactions A and B are
handled by the same terminal control process
(TCP) but routed to different servers, Server-A
and Server-B, respectively. The example as
sumes that the requester for Transaction A
requires twice as much processing time as the
requester for Transaction B. The transactions
use the same amount of server and disk time.

Process
category
name

TCP

Server-A

Server-B

Disk process

LH1

LH2

TMF

PATHMON

Measure

50

Type A

R 2

s
s
D

L

L

T

0

F

Transaction

B

Table 2 shows the process categories in this
simple model. They include the processes
shown in Figure 4 (TCP, Server-A, Server-B, and
Disk) and a few other representative processes
such as line handlers (LHI and LH2) and
PATHMON. Server-A and Server-B are the server
process categories (type S).

In the Server-A category, Transaction A has a
weight of one. (Transaction B will have a weight
of zero.) Whenever possible, TCM allocates the
entire server category to the corresponding
transaction. TCM assumes that the allocation of
the other process categories is uniform across all
transaction types. Thus, by default, TCM allo
cates the other process categories to all transac
tions. For example, both transactions, A and B,
have a weight of one in the PATHMON category.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

Users can modify the default values based on
their knowledge of the system. For each process
category requiring refinement, users enter the
relative weights used by each transaction. For
example, in the TCP category in Table 2, users
give Transaction A a weight of two and Transac
tion B a weight of one. (The requester for
Transaction A is twice as large as the one for
Transaction B.)

The workload apportionment weights illus
trated in Table 2 show the relative process
category usage. TCM calculates the actual
proportionate usage based on these relative
usage values.

Transaction Counts. Once transaction weights
are allocated, users determine how to count the
transactions that were included in the Measure
sample. Table 3 shows a transaction count table.
With this table, users specify how TCM should
calculate the number of transactions of each
type. Measure reports the number of
interprocess messages sent and received by each
process. TCM assumes that a message received
by a server process represents one transaction
passing through the system. Thus, in Table 3,
each message received by Server-A represents
one execution of Transaction A. Each message
received by Server-B represents one execution
of Transaction B.

To count a more complicated transaction,
users can modify the default values by choosing
a combination of messages sent or received by
multiple processes. They can add or subtract
messages to arrive at an accurate formula.

Table 3.

Transaction count table.

Transaction A

Process category name Type Receive Send

TCP R

Server-A s
Server-B s
Disk process D

LH1 L

LH2 L

TMF T

PATHMON 0

Measure F

If transaction counts have been determined by
another method, users do not have to use the
transaction count table. Instead, they can supply
TCM with a transaction count file containing
each transaction name together with the number
of those transactions that occurred during the
Measure sample.

OCTOBER 1991 •TAl\iDEM SYSTEMS REVIEW

Transaction B

Receive Send

51

Figure 5.

Tmnsuction primitii·cs
crrnted /Jr the irnrk/ood
Uflf!Orlir>llll/i'lll fl/"0/'l'SS.

Figure 5

TCMC/0 CAPACITY BASELINE

Application: Example

Sample File: EXAMPLE1 .SWA

Sample Date: 16Jun89

Planning Unit: Hour

Apportionment: EXAMPLE
-- ---

CPU Config: 4 TXP

Disk Config: 14 Unaud

Txn Name TPH CPU Sec . Disk Sec .
Average Txn 51330. 0.162

Fixed per sec 0.031

ST1 29787. 0.192

BIG 2536. 0.182
-

INQ 4273.

UPDT 14734.

Combining the user-supplied control informa
tion illustrated in Tables 2 and 3 (or supplied in
a transaction count file) with the actual mea
sured data, TCM can calculate the transaction
primitives (CPU seconds, disk read and write
seconds). Figure 5 shows a TCM summary of
these transaction primitives.

0.089

0.121

Read Write Total

0.030 0.117 0.146

0.002 0.019 0.021

0.029 0.170 0.199

0.073 0.092 0.165
--

0.029 0.002 0.031

0.024 0.046 0.071

Model Validation
TCM bases its predictions on the transaction
primitives created by the workload apportion
ment (WA) model. One caveat applicable to any
performance modeling effort is that the model
must be valid. A useful model must be accurate
(consistent), and it must correspond reasonably
well with reality. Before using the TCM results,
one should make sure that the model satisfies
these two important criteria.

Testing the Model for Accuracy. To test the
accuracy of the WA model, users should apply
the same WA model to several Measure data
samples with different transaction mixes and
workloads. Users can archive each set of trans
action primitives in a TCM history file and then
compare the primitives created for each Measure
sample. If the results of various samples are
consistent, the WA model is correct. If they are
inconsistent, users must manipulate the WA
model until they achieve consistent results
across multiple Measure samples.

TANDEM SYSTEMS REVIEW• OCTOHE R 1991

Figure 6

-- ----,------- ---- --- ------

TCMC10 CONSUMPTION MODEL
--- --------- ---- ----- -

Sample Date: 16Jun89
- ----- --- ----- ---

Actual Constraint Plan
--- --- ----- ---- --

CPUs: Number 4 5
- - ----- ---- - -I---- ---

Type TXP CLX7 CLX7
--- - -- - -- ---

Avg Utilization 58.68% 63% 62.24%
---- - - ----- ---- ---

Disks: Number 14 4
-- ---- --- -- ----I--- - ---

Type Unaud Unaud
-- ---- ---- ----

Avg Utilization 8.79% 35% 32.46%
-- ---- - ~- --- ----

~R_esponse Time: 0.505 0.700 0.696
- -- ---I---

Txn Name Txn Per Hour CPU Seconds Disk Seconds Avg Resp Time

Actual Plan MAX Actual
------ - i----------- --~

AverageTxn 51330 53866 58122 0.162
--- ---- --- -- ------· --

ST1 29787 29787 32140 0.192
-- --- ---- -~ --- - -

BIG 2536 5072 5472 0.182
----- --~- --

INQ 4273 4283 4610 0.089
-- - ---~-
UPDT 14734 14784 15898 0.121
--- --- --- -~ ----

Validating the Model's Predictive Ability. The
next test is to validate the model's ability to
predict the performance of a real system. To do
this, one uses the performance modeling compo
nent ofTCM (based on the WA model) to predict
response times for the system as it is currently
configured under known throughput conditions.
If the model results accurately reflect reality, the
model is valid.

If the model fails the test, the problem must
be found and corrected. The problem could be in
the model, which could require a finer categori
zation of processes, different process categoriza
tion, a different workload apportionment, or a
different transaction definition. Or, the problem
could be in the real system, which may be
poorly balanced or have a bottleneck caused by
a design issue. TCM assumes a well-balanced
system with no bottleneck processes and com
putes response times assuming that all proces
sors and disks are equally utilized. If the system
is not balanced, one should tune it to improve
the performance of the current system as well as
to validate the TCM model. Once the problem is
found and corrected, one should revalidate the
model before using it.

Plan Actual Plan Actual Plan
-----~-

0.205 0.146 0.147 0.505 0.606 -- --

0.241 0.199 0.199 0.610 0.835

0.229 0.165 0.165 0.584 0.709
~-

0.112 0.031 0.031 0.252 0.346

0.152 0.071 0.071 0.353 0.484

Performance Modeling
The forecasting function of TCM begins with
performance modeling. TCM provides three
performance models for evaluating what-if
scenarios: the Consumption Model, the Sensi
tivity Analysis Model, and the Planning
Timeline Model.

The Consumption Model allows the user to
determine the performance implications of
various system configurations and transaction
loads. (See Figure 6.) The user can change the
number and type of processors and disks,
specify the maximum utilization of processors
and disks, establish the required average re
sponse times, and specify transaction volumes.
TCM will determine the least-cost system (if it is
given flexibility with CPU and disk counts) and
calculate utilizations and response times consis
tent with the constraints imposed by the user.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW

Figure 6.

A TCM Consumption
model.

53

Figure 7.

Sensitil'itr analvsis model.

54

Figure 7

TCMC10 SENSITIVITY ANALYSIS

Sample Date:

Number of CPUs:

Number of Disks:

Txn Name Increment

10% CPU Util 40%

5% Disk Util 15%

AverageTxn Avg Rff 0.463

TPH 24615.0

Mix%

ST1 55.30% Avg Rff 0.558

TPH 13611.0

BIG 9.42% Avg Rrr 0.535

TPH 2317.0

INQ 7.93% Avg Rff 0.226

TPH 1952.0

UPDT 27.35% Avg Rff 0.318

TPH 6732.0

One can use the Consumption Model to
determine the least-cost system configuration.
Often, a given response-time requirement can be
met by more than one configuration of CPUs and
disks. TCM can, in effect, search through the
possibilities to find the least-cost configuration
that meets the response-time requirement. This
least-cost recommendation is not based on
empirical cost data, but rather on a proportional
costing of CPU to disk.

The Consumption Model is very effective in
helping companies establish new data centers
that will run new or existing applications. For
example, one retail company used the Consump
tion Model to help size two new regional data
centers created to service their two new distribu
tion centers.

16Jun89
------- -------

5CLX7

4 Unaud

50% 60% 70% 80% 90%
------ --

20~1o 25% 30% 35% 40%
- --- -

0.539 0.65 0.831 1185 2.225

32991.0 41368.0 49745.0 58122.0 58499.0

0.648 0.78 0.994 1.41 2.534

18243.0 22875.0 27508.0 32140.0 36772.0

0.621 0.746 0.949 1.344 2.504
-----·-

3106.0 3895.0 4683.0 5472.0 6261.0

0.266 0.325 0.421 0.611 1173

2617.0 3281.0 3946.0 4610.0 5275.0

0.373 0.454 0.585 0.845 1611
-- - - --- -

9024.0 11315.0 13606.0 15898.0 18189.0
----- -------

The company's order and stocking applica
tions resided on their existing centralized system.
Analysts developed a TCM workload apportion
ment model for these transactions. To simplify
the model, they decided to focus on their ten
most critical transaction types. They found that
these ten transactions accounted for most of their
workload and that the profiles of the remaining
transactions mapped closely to one of the ten
modeled transactions. This enabled them to
represent their entire anticipated workload with a
simplified model. By specifying their desired
average response time and the anticipated
transactions per second (tps) for each transaction
type, they were able to use the Consumption
Model to arrive at the least-cost number of CPUs
and disks required to meet their objectives in
each of the new data centers.

The Sensitivity Analysis Model lets the user
determine the effect of a growing transaction
volume on the existing system. (See Figure 7.)
It assumes the configuration proposed by the
Consumption Model as its baseline. From that
level, the user can specify incremental growth of
both CPU and disk utilization to get the resulting
knee of the performance curve, where increasing
utilization levels cause the response time to rise
exponentially.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

Charting this model into the Sensitivity Chart
gives the classic picture of the knee of the curve.
The Sensitivity Chart is one of the two TCM
presentation-quality graphical reports for
management purposes. It shows how response
times and CPU and disk utilizations increase as
throughput increases. (See Figure 8.)

Consider the example of the expanding retail
chain. After analysts used the Consumption
Model to determine the least-cost system for
their new data centers, they used the Sensitivity
Analysis Model to determine the approximate
amount of growth the proposed systems could
sustain. Next, they charted this model into the
Sensitivity Chart, which made it apparent that
the proposed system would not be adequate,
given the current growth rate and management's
desire to install a system that would be adequate
for two years.

As a result of this finding, the analysts
increased the tps input to the Consumption
Model to represent the anticipated two-year
growth. Again, TCM forecast the least-cost
solution. Using this forecast as the baseline for
the Sensitivity Analysis Model, the analysts
produced a Sensitivity Chart that met the
requirements for the new data centers.

The Planning Timeline Model shows the user
how system expansion will meet throughput
projections for the coming months or years. The
user specifies the length of time being analyzed,
the expected increases in transaction volume,
and the corresponding proposed changes to the
system configuration. TCM will calculate the
resulting response times for various transactions
at each of the future dates. (The user picks an
interval such as I month, 8 months, or 24
months, and TCM uses that interval to extrapo
late to six dates in the future.)

The Planning Timeline Model benefits high
growth industries and service bureaus that
maintain service-level agreements with their
users. For example, analysts at one fast-growing
telephone company used the Planning Timeline
Model to help them plan for system upgrades to
ensure that the promised response times were
obtainable. By being able to extrapolate in
creased transaction rates into hardware demands
the company gained a much needed perspective

Figure 8

Sensitivity of big transactions

Disk utilization

15% 20% 25% 30%
80,000

i 70,000

~ 60,000
0
.c
:;;

50,000

~ 40,000
C
0 30,000 ·u
co 20,000 (f)
C

~ 10,000 f-

0
40% 50% 60% 70%

CPU utilization
□ tph
♦ r/t

Figure 9

4TXP 4TXP 4TXP 4TXP
70,000

~ 60,000

5 50,000
0
.c
:;; 40,000
0.

8 30,000

u
20,000 co

Cf)
C

~ 10,000
f-

0
6/16/89 12/89 6/90 12/90

□ tph
Planning dates

♦ r/t

on their resource requirements. They were thus
better able to respond to the user community's
needs and budget for hardware expenditures.

TCM also provides a Planning Timeline
Chart, which indicates how planned system
expansions will meet throughput projections by
showing the responsiveness of the system at
each projection point. (See Figure 9.)

OCTOBER 1991 •TANDEM SYSTEMS REVIEW

35% 40%
3.5

JJ
(D

3.0 {l
0

2.5
::,
(f)
(D

2.0 3
(D

1.5 :3"
(f)
(D
CJ

1.0 0
::,
0.

0.5 ';::__
2

0
80% 90%

3VLX 4VLX
0.8

:r:J
0.7

(D
(f)

-,J

0.6
0
::,
(f)
(D

0.5
3

0.4
(D

s·
0.3 ~

CJ

0.2 0
::,
0.
(f)

0.1
2

0
6/91 12/91

Figure 8.

A TCM sensitivity chart.

Figure 9.

A TCM plannint; timeline
chart.

55

56

Other Considerations
TCM is designed for systems running OLTP
applications in which a work unit is an indi
vidual transaction requiring a rapid response.
However, TCM can also work successfully in
environments that include elements such as
batch jobs and SQL queries.

Using TCM to Model Batch Workloads
TCM can handle small batch jobs that consume
negligible processor and disk resources. It does
not address large batch runs that consume the
surplus processor or disk resources not used by
the concurrent OLTP functions.

However, by using the results of TCM, the
user can calculate manually the resources and
time needed to execute a batch job. For a given
OLTP load, TCM calculates the processor and
disk utilization, from which the user can deter
mine the amount of processor and disk resources
left over for batch processing. Assuming that the
batch workload can be characterized in terms of
total processor and disk time, the user can
determine how long the batch job will run.

For example, assume that a batch workload
comprises multiple threads (so that it can use all
processors) and requires 60 minutes of processor
time and 60 minutes of disk time. It runs in a
three-processor system that is 60 percent loaded
with OLTP functions. (Disks are 20 percent
loaded.) In this example, the processor time is
the limiting resource, not the disk time. Three
processors that are 40 percent available produce
the equivalent of 1.2 processors available for the
batch run. The job will be completed in a period
of 60 minutes divided by 1.2, or 50 minutes.

NonStop SQL Applications
NonStop SQL attempts to optimize its access
strategies based on the available access paths
and the sizes of the various tables. Therefore, as
an application grows, NonStop SQL may from
time to time change its strategies. When one
applies TCM to NonStop SQL applications, one
must remember that TCM is based on Measure
data valid for the strategy in effect when the
measurement was taken. TCM cannot predict
changes in NonStop SQL strategy.

However, NonStop SQL changes its strategy
only if it is more efficient to do so. Therefore,
for a NonStop SQL application, the TCM results
are conservative. The actual system should
perform as well as or better than the TCM
prediction.

One can obtain a more accurate picture from
TCM by running the application with test tables
that represent future growth. This gives the
NonStop SQL optimizer the opportunity to
devise new strategies consistent with the size
of the expanded database. One could then use
Measure samples taken during the test run as the
basis for more accurate TCM predictions.

T A N D E M SYSTEMS REVIEW• OCTOBER 1991

TCM Limitations
TCM imposes certain modeling limitations. It is
important to understand these limitations when
using TCM and interpreting its results.

Process Priorities. TCM assumes that all
processes run at the same priority. However, the
responsiveness of some OLTP systems depends
on priority assignments. TCM calculates the
average response time correctly for the whole
system. However, response times for transac
tions using predominantly higher priority
processes are reported conservatively, and
response times for transactions using lower
priority processes are reported optimistically.

Communication Network. TCM specifically
does not address delays caused by communica
tion systems. It deals only with the data process
ing environment. (Data communications is a
highly complex subject requiring a different
approach to performance modeling than the one
TCM uses.)

The Audit Results
The TCM audit analyzed the adequacy of the
modeling techniques, examining their accuracy
as well as their applicability to a real Tandem
system. It concluded that TCM is based on
accurate modeling equations and is a powerful
and flexible tool for making capacity planning
predictions.

There were a few recommendations for
enhancements, both to improve the modeling
accuracy and to add functionality. For example,
the audit suggested that TCM add functions to
address priority-assigned processes and batch
workloads.

In general, the enhancements recommended
to improve the modeling accuracy would have
small effects. In almost all cases in which the
model could be improved, the model erred on
the conservative side. Therefore, TCM response
time predictions should be slightly higher than
the actual response times found on the system,
leading one to safe conclusions.

A small part of the audit dealt with the TCM
user interface. The author learned to use TCM
without benefit of a TCM course. With the help
of the TCM User's Guide and Reference Manual
(1990) and the intuitively obvious windows
environment, the author learned TCM reasonably
well in a single day.

Although Tandem recommends using a
386-based PC for TCM because of the product's
substantial processing requirements, the author
used a 386SX-based PC for the audit and found it
to be quite adequate. Its multisecond processing
time for complex calculations compared favor
ably to the many hours the computations would
take if done manually. However, a faster 386 PC
could further cut the calculation time for very
large models from minutes to seconds.

Conclusion
The Tandem Capacity Model plays an important
role among Tandem's performance monitoring
products. It provides reliable performance
predictions to support capacity planning and
system management decisions. Aimed at the
system-knowledgeable person versed in his
or her application, it requires no specialized
knowledge of performance issues.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 57

Figure A.

A simple queueing model.

58

Some Underlying Performance Principles

Figure A

R transactions
0 per sec ueue

___.. IIIITI}---- Server
Response

Queue time Service time
---Tq--Ts-

Delay time
Td -------+'

The M/M/1 Model

TCM is based on the M/M/ I model for performance evalu
ation. Figure A shows a simple illustration of this model.

One can think of a transaction processing system as a
collection of servers. A server is a component that provides
a service to a transaction as it proceeds through the system.
Typical servers include processors, disks, and processes.
Communication lines or networks and 1/0 subsystems are
also servers.

A transaction competes with other transactions for the
services of a server. Because most servers can only service
one transaction at a time, a transaction may have to wait for
a server to become free before it can be serviced. It may
have to wait in line behind other transactions that have
arrived earlier or have a higher priority. This line is called
a queue.

The server has an average service time of T. (Typical
processor service times are I to 20 millisecond's: typical
disk service times are 20 to 50 milliseconds.) If transac
tions arrive randomly at a rate of R transactions per second,
the server is busy RT_ of the time. This is called the
utilization of the server, or the load Lon the server:

L=RT
I

(])

For example, if a transaction requires 50 milliseconds
of CPU time (T), and if the CPU is processing two
transactions pe; second (R), the load L imposed on the
CPU by this transaction is 2 x 0.05 = 0.1. That is, the
transaction utilizes 10 percent of the CPU's capacity.

When a transaction arrives at the queue of a busy server,
it will find that the transaction currently being processed
has, on the average, a remaining service time of kT,- The
average time a transaction has to wait in line in the queue
before being serviced is called the queue time T"
(Highleyman, I 989). I;, can be shown to be:

T
'I

kL
1-L

T
I

The total time the transaction is delayed as it travels
through the server system is called its delay time Td. The
delay time is the sum of the queue time and the service
time:

kL
1-L

T+ T
1· .\

(2)

(3)

Equation (3) is the Khintchine-Pollaczek equation. The
term k is a function of the distribution of the service time.
(Remember that k is the average portion of service time
remaining for the current transaction when a new transac
tion arrives at the queue.) For randomly distributed service
times, k = l. It doesn't matter when one looks at a transac
tion being serviced. Whenever one views it, it will always
have an average service time of 'I_ remaining. This is called
the memoryless feature of random distributions. Typically,
CPU processing times are randomly distributed.

Disk service times tend to be more uniformly distrib
uted. (They have an equal probability of service between
zero and the maximum access time.) For uniform distribu
tions, k = 2/3.

A communication line with fixed-length messages has
a constant service time. On the average, a message will
be half-transferred, and k = 112.

If k = 1, then, from equation (3),

L T
T =--T+T =-'-

" 1-L ' ·' 1-L

This is called the M/M/1 model. (M stands for
memoryless random distributions. The first M specifies
random inputs, the second M random service times, with
one server.) The M/M/1 model results in the familiar
performance curve shown in Figure B.

(4)

Assume, for example, that the average transaction
processing time in a CPU is 50 milliseconds (T,), and that
the CPU is 75 percent loaded (L = 0.75). The average
response time for a transaction is then 50 / (I - 0.75)
= 200 milliseconds. A transaction must wait in line for
150 milliseconds before it is given the CPU, and then it
requires an additional 50 milliseconds to be serviced.

TANDEM SYSTEMS REVIEW OCTOBER 1991

How TCM Uses the M/M/1 Model

Currently TCM uses the M/M/1 model for processors and
disk servers. This model is appropriate for processors and
conservative for disks (for which k is closer to 2/3).

TCM calculates transaction response times as follows.
The first task is to calculate CPU and disk utilizations.
TCM determines CPU utilization by summing the products
of the transaction rate and calculated CPU seconds for each
transaction. Next, it adds fixed CPU seconds and scales the
result if the calculation is being made for a CPU type
different from the one that was measured. Then it divides
this total by the number of CPUs.

TCM calculates disk utilization in an analogous manner.
One complication is that measured disk activity represents
the activity of all physical disks, but Measure reports the
number of logical disks. TCM deduces the number of
physical disks from the logical disk types (audited,
mirrored with serial or parallel writes, or unmirrored).

The response time of each transaction is calculated as
the sum of the CPU and disk response time components,
using the M/M/1 model. From equation (4),

Service Time Response Time = --------
! - Load

For each response time component, the service time is
the total CPU or disk time demand allocated to that
transaction. The load is the average CPU or disk utilization,
as previously calculated. TCM adjusts disk service time to
account for mirrored disks and TMF audit file activity.
TCM accounts for the fact that audit activity is capped by
the hoxcar effect; in a busy system, the audit function
becomes more efficient as multiple transaction audit
records are buffered into a single audit write.

Finally, TCM calculates the least-cost system (in terms
of numbers of processors and disk spindles) that satisfies
the constraints specified by the user. Typically, many
solutions satisfy the constraints. For example, a I-second
response time may be achieved with 2 processors and I 00
disks. or with 5 processors and 12 disks. TCM must choose
the most reasonable solution.

TCM does this by relating the cost of a disk to the cost
of a processor and then solving for the least-cost combina
tion of processors and disks that satisfies the user's
response time requirement. It substitutes the disk-to
processor cost relationship into the response time equation
and develops an equation for the cost of solutions that
satisfy the response time requirement. Next. it differentiates
this equation to find its minimum solution. This usually
results in a non-integer number of processors and disks.
For example. the least-cost solution may be 4.3 processors
and 8.7 disks.

Figure B

Q)
Cf)
C

5

4

8. 2
Cf)
Q)

a:

0

Server load (L)

TCM evaluates the relative cost of whole numbers
of processors and disks around this solution point and
proposes the minimum cost solution. In the preceding
example, it would evaluate the relative costs for 4 proces
sors plus 9 disks and 5 processors plus 8 disks, verify that
each combination satisfies the user's constraints, and
propose the combination with the lower cost.

References
Highleyman, W. 1989. Perjr,rmance Analysis of Transaction
Processing Systems. Prentice-Hall, Inc.

Tandem Capacity Model (TCM) User's Guide and Reference
Manual. 1990. Tandem Computers Incorporated. Part no. 50220.

Acknowledgments
I would like to thank the Tandem developers and customer support
staff who reviewed this article. Special thanks are due to Jane
Jensen, who provided the examples of how Tandem customers
have used TCM. (Jane works in the Performance Center in Large
Systems Marketing Support.)

Wilbur H. Highleyman is chairman of The Sombers Group, Inc., a
Tandem Alliance member specializing in heterogeneous applications.
He holds a doctorate in Electrical Engineering from the Polytechnic
Institute of Brooklyn. He is past president of the International Tandem
Users' Group and is the author of Performance Analysis of
Transaction Processing Systems (1989).

OCTOBER 1991 •TANDEM SYSTEMS REVIEW

Figure B.
The MIMI] performance
curve.

59

60

Dial-In Security Considerations

s data processing becomes a
larger part of business life,
the need to have more data
available and accessible
becomes increasingly im
portant. Dial-in access to
mainframe systems is one

method that makes data stored on mainframes
available to individuals. Additionally, a growing
need exists for providing distributed data and
allowing users to have both local and network
access. Access to data is often required by dif
ferent groups of people, for example, by data
processing staff and ATM users of the same
bank, at the same time, albeit for different
purposes.

The security issues inherent to dial-in access
are generic problems facing the computer in
dustry. This article, focusing primarily on the
Tandem M environment, explores some of the
challenges associated with providing dial-in
access to computer systems and discusses a
number of security solutions designed for

Tandem systems. Various forms of deliberate
attacks on the system, as well as unintentional
security breaches, can exist. This article exam
ines these possible problems, outlines some
deterrent or preventive actions, and describes
some options for recovery action to ensure the
application is confident of the identity and status
of the dialed-in user. Several examples of poten
tial security breaches show the sort of risks that
must be considered, and suggestions address
ways to circumvent these threats.

Ensuring Security With Increasing
System Access
The explosion in the number of personal comput
ers and the amount of people using them to work
from home has greatly increased the need for
dial-in access to both development and live sys
tems. While it is desirable to make access from
home as fast and easy as possible, it is essential
to maintain system security. Access to the system
must be limited to authorized users. The number
of unauthorized callers, those people who may
want to explore the system for amusement or
with criminal or malicious intent, is increasing.

TANDEM SYSTEMS REVIEW• OCTOBER 1991

These factors, combined with increasing
government legislation on data confidentiality,
have led to the realization that information,
being much more freely available, must be more
carefully protected than in the past. The level
of security that controls dial-in access to the
computer must at least match the level previ
ously used to limit physical access to the system.
Physical security controls, such as identity cards
or keys to the building, are effective when users
tend to work inside the user premises or from
physically controlled locations.

Various communications protocols can be
used for dial-in system access. Asynchronous,
bisynchronous, X.25, and Systems Network
Architecture (SNA) protocols or a combination
of protocols, such as dialing into a public packet
assembler-disassembler (PAD) asynchronously
and making an X.25 call into the target system,
are all commonly used access methods. While
the security implications are similar for all these
methods, this article concentrates mainly on
asynchronous dial-in access, which tends to be
the most common method of attack, as it has
fewer controls against errors or abuse than the
other protocols mentioned.

Deciding where and how to implement and
control the system's security means considering
a number of choices. Security can be executed
by the application, by the system, or by some
form of front-end device that filters access to the
application. One implementation may not work
perfectly in all cases, and a combination may be
the best solution. The application may not have
access at a level low enough to intercept certain
attacks, and complex customization may make it
unwieldy. Yet security implemented at the sys
tem level may not fully understand the meaning
of the application objects, such as a transaction
type or a data element, that are being protected.

Additionally, the security implementation
must allow for the features of the Tandem hard
ware architecture. The fault-tolerant Tandem
system may, in the event of an I/O failure, allow
applications to continue while retrying the I/O.
Other security systems without such fault
tolerant features may terminate the session, or
even the system, in the event of such an error.

There is, therefore, a balance to be struck
between allowing the application to be avail
able for as long as possible and ensuring that a
security breach cannot take advantage of a real
or simulated I/O problem. System intruders may
try subverting or bypassing security measures in
operation at the initial connection by attempting
an intrusion at retry time. With Tandem, the
security implementation can be designed to
tolerate communication errors and invisibly
reconnect a caller, or it can force the caller to
reauthenticate when the connection has lost
the assurance of the caller's identity.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 61

Figure 1

-- Modem Previous call

Figure 1.

Multiple user dial-in.

Modem

ModemL."

Host

User
application

Problems Associated With Dial-in
When dial-in communications allow multiple
users to use the same line, the security consider
ations can be divided into two main areas. One
consideration is the need to identify the user
to an appropriate level of assurance. The other
relates to the problems associated with unex
pected events or malfunctions. Figure 1 illus
trates a dial-in configuration that accommodates
multiple users.

Reliable Authentication: Security
Considerations
Reliable authentication of a dial-in user must
establish that the user is indeed who he or she
claims to be. The level of assurance needed
should be determined by the facilities that
become accessible to a user after authentication.
Although a user password may usually be
sufficient for most general applications, access
to a funds transfer application, for example,
often requires a much higher level of assurance.

Allowing system access to an unauthorized
user could have many adverse effects, depending
upon the facilities an authenticated intruder can
initially access. Sensitive data could be disclosed,
altered, or deleted, or the availability of the
application could be impaired. The whole net
work could be probed or attacked if the intruder
is able to break out of the application
or environment that is initially accessed.

There are, in addition, other considerations,
such as legal and contractual obligations as well
as the possible loss of business or business con
fidence following any security breach. A risk
analysis should highlight these and other areas.

Various methods, such as biometrics or
challenge-response devices, are available for user
authentication. Biometrics involves recognition
of specific physical attributes of the user, while
challenge-response devices generally require
the use of some form of hardware device. Most
commercial systems, however, base user authen
tication on passwords. Safeguard'", the Tandem
system protection product, has extensive pass
word management facilities. It enforces such
features as frequent password change and mini
mum password length and prohibits reuse or
rollaround of passwords.

User authentication is based on three funda
mental criteria:

■ What you know (such as a password).

■ What you have (a personal token, such as a
smart card or authentication device).

■ Who you are (as established, for example, by
a biometric method of fingerprint recognition,
retinal eye scan, or voiceprint).

More secure authentication can combine these
criteria. The thoroughness of the method or com
bination chosen should be defined by the security
policy implementation. This should usually de
pend on how seriously the implementer views the
perceived cost of any possible breach and ?n t?e
acceptability to the end user of the authent1cat1on
method.

62 TANDEM SYSTEMS REVIEW• OCTOBER 1991

Quite often in a support or development envi
ronment, it is necessary to allow a dialed-in user
to access data on another node, for reference or
for problem-solving assistance. For the sake of
convenience, the passwords for these user IDs
are not always changed as frequently as they
should be. Such network-wide access could give
the caller opportunity to probe the system for
inadequately secured files. Therefore, authenti
cation for any such users must be strictly
controlled.

Effects of Disorderly or Enforced
Disconnection
In many cases, dial-in lines are notoriously
unreliable. Line noise with a subsequent discon
nection is the most common error requiring
some form of recovery action. If the line noise
or parity error rate is excessive, the modems
typically break the connection. Sometimes the
line noise becomes so unacceptable that the
caller just hangs up, instead of shutting down the
session in an organized way. When a modem
disconnects or a user hangs up, the application
is left in a disorderly or confused state. The ap
plication must then take some form of cleanup
action, such as requiring a new logon, as soon
as it detects that the initial user is off the line.

Cleanup is easier for protocols such as X.25
and SNA, which require a form of handshake
(a call packet or bind). Both ends establish a
session and agree to a starting point where any
disorderly connection can be resynchronized.
Most asynchronous connections are much more
prone to confusion, as there is usually no
handshake. This type of protocol may merely
acknowledge that there is a call on the line,
indicated by the modem signals.

Any confusion due to a disorderly discon
nection could cause a new caller to inherit the
session of a previous user. The new caller would
have access to the privileges and opportunities
granted the initial user. Obvious security prob
lems, such as those discussed above, can result
from an unauthorized user inheriting a previous
session.

Additional problems occur if multiple pro
cesses were communicating with the same initial
user. The process detecting the broken connec
tion would have to find some means of informing
all other processes that the initial caller was lost.
The following examples describe the confusion
that could arise when the connection with the
caller is lost in an unexpected way.

Inheriting a Previous Session. Suppose a local
bank has an application based on the Pathway
transaction processing system that allows dial-in
access by its customers. If a requested transac
tion is slow, the dial-in user may become im
patient and hang up, disconnecting the line
before receiving the reply from the Pathway
server. If another dial-in occurs before that
transaction is completed (before the display is
sent to the caller), the new customer may see
possibly confidential financial information when
it, is displayed from the previous customer's
dial-in session.

This problem exists for Tandem's older 6303
controllers and for some half-duplex modem
connections. Upgrading to the newer 6100-style
communication subsystem allows a disconnec
tion always to be noticed for full-duplex opera
tion. With older controllers and half-duplex
connections, the Pathway terminal control
process (TCP) has no way to detect that while
it was processing a WRITE to the terminal, the
modem signals had changed and a new caller has
been connected. Some modems are switchable
between full-duplex and half-duplex operation,
which helps avert this problem.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 63

Asynchronous Configurations
Communications between the application and the dialed-in user are made via the
pins between the Tandem controller and the modem. Figure A illustrates a typical
connection. The signals that have significance for dial-in connections are:

■ Data terminal ready (DTR)

■ Data set ready (DSR)

■ Data carrier detect (DCD)

■ Request to send (RTS)

■ Clear to send (CTS)

■ Transmit data (TD)

■ Receive data (RD)

DTR is controlled by the application, which indicates that a session is available
at the host. DSR and DCD are both controlled by the modem. DSR indicates that the
modem is available, and DCD indicates the presence of a connected remote modem.
RTS is raised by the host to request permission to transmit data, and CTS is raised by
the modem to indicate the availability of the modem to receive data. TD carries data
transmitted to the modem, and RD carries data sent to the host.

When the modem port is opened by a process and a CONTROL l l (wait for
modem connect) is issued, the DTR pin is raised. This allows an incoming call to be
accepted (DCD and DSR raised) if the modem is configured for automatic answer.
Many modems allow for these actions to be individually altered.

Figure A

___ Modem----,,

Figure A.

Modem connections.

-RD-
-- TD -
-DSR-

Modem --DTR
-oco-
--RTS-
-CTS-

Host

continued on next page

If, instead, the initial caller disconnects and
no new call is received while a transaction is in
progress, some modem signals are low instead
of high, and the TCP detects the loss of the caller
and returns an error. This allows the screen
COBOL (SCOBOL) requestor to handle the
disconnection and reconnection programmati
cally, inhibiting the display from the previous
transaction. But whenever modem signals are the
same as when the transaction was issued, the TCP
does not know that a new user is connected and
the process therefore proceeds with the next
screen display.

Inheriting a Delayed Process. This second
scenario examines a development environment
wherein a security process screens and authenti
cates users before allowing them to start their
own processes. Suppose a user is successfully
authenticated and starts a Tandem Advanced
Command Language (TACL'M) process, while in
the meantime the security process waits for the
TACL to terminate before resuming control of the
line. The user starts a file utility program (FUP)
command to duplicate a file, which may take a
minute to complete. In that time, perhaps the
noise level on the line increases or the user hits
the break key and either logs off or hangs up.

The security process detects the loss of the
caller, issues a communication error, breaks the
connection, and waits for the next call. When it
arrives, the call is authenticated. Meanwhile the
FUP completes and, based on the ID of the
previous user, still attempts to talk to the previ
ous user. The next caller not only has a new
TACL process started but also gets the FUP
prompt from the previous user. That user's
privileges are now vulnerable to use or abuse.

64 TANDEM SYSTEMS REVIEW• OCTOBER 1991

Methods of Control
A variety of methods are available to counter
some of these potential security threats. Using
Tandem security products such as Safeguard
correctly is one option. Customizing or introduc
ing application code to protect port access or
implementing a solution such as a challenge
response device, a modem dial-back facility, or
a smart card are other possibilities. Depending on
the particular threat or set of threats being faced
by a system, security concerns can be addressed
by choosing a single method or by using a
combination of security controls.

Safeguard
With the introduction of Safeguard into the
Tandem Guardian'" 90 operating system environ
ment, control over the use of dial-in lines has
greatly improved. An access control list can be
set up against a dial-in line to ensure that only
specified individuals or group users have access
to open the device.

Because the current version of Safeguard of
fers greatly enhanced password management, its
abilities to ensure frequent changes of passwords
and to deny previously used passwords help en
sure that "well-known" logons do not remain as
a target. Safeguard can be configured to disable
both user IDs and ports after a threshold number
of failed logon attempts has been reached.

Another recently released Safeguard feature
allows terminals to be centrally controlled until
after a Safeguard logon has been accepted,
whereupon a user-specified process is started
against that terminal. A consistent system-wide
ring of security can be imposed before any caller
can obtain access to an application process.

If a full-duplex modem is being used and autodisconnect is specified, DTR is
dropped if DCD is lost. Any attempt to read when DCD (or DSR) is low, or if CTS
does not rise and fall in response to the raising or lowering of RTS, causes an error
140 (communication error). If a CONTROL 12 (disconnect modem) is issued from an
application, DTR is lowered until another CONTROL 11 is issued. After that, another
call can be accepted. DSR is also monitored once per second, and an error 140 is
issued if DSR is found to be low.

If, however, a half-duplex modem is used, DCD cannot be monitored as it rises
and falls with data transfers unless the modem has been adapted to keep DCD high.
Caller breaks and reconnects can be invisible, although modern modems are now
much more flexible and can sometimes be configured to detect these problems.

Tandem's older 6303 asynchronous controller works in a slightly different
manner than the newer 6106 and 3606 controllers. The 6303, which uses Tandem
Terminalprocess I/O process, does not notice an I/O error (such as DSR dropping)
unless there is an I/O outstanding on that port when the error occurs. It is possible
that a call can be broken and another call established without the application being
alerted that it is now connected to a new user.

Upgrading to the new controllers or using the READ CONTINUOUS feature to
ensure that a read is always posted solves this potential problem. This situation
should not exist for the NonStop'" CLX'" and NonStop Cyclone'" system emulation
of the 6303 controller, the 3603. This controller is for Envoy'" use, and the READ
CONTINUOUS feature can be used.

Similar problems exist with cluster controllers. The asynchronous caller may
be lost while the SNA or X.25 session possibly remains. Tandem's 6600 intelligent
cluster controller is sensitive to this potential threat and returns an error 140 to the
SNA session when a logoff or disconnect occurs. The recent 3270 Release 4 Port
Expansion Feature by IBM now addresses this problem. This feature also does not
allow a dial-in asynchronous session to inherit an SNA session left incomplete by
a previous user.

Pathway Error Handling
Pathway offers two options for managing errors. Pathway can handle errors itself, or
the SCOBOL programmer can handle errors using the USE FOR TERMINAL-ERRORS
feature. If Pathway handles errors internally, an error 140 causes that terminal thread
of the TCP to become suspended.

The CALL ON ERROR command used from the logon module level can trap all
errors. Any module doing local error correction can use the USE FOR TERMINAL
ERRORS declarative. If the application is handling them, the SCOBOL
RECONNECTMODEM statement is used to do a control 12 and 11 sequence. Good
programming here would include a logical logoff sequence before accepting the
next call when dial-in access is possible.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 65

Figure 2

Host environment

Application 1

/
-- Dial-in port -- Pass-through

process
Application 2

Application 3

Figure 2. Application Control

The pass-through process. One can see that to control a port securely and
maintain full knowledge about the connection
between a user and any application, one solution
is to use a pass-through process that opens the
port exclusively. Figure 2 illustrates how a pass
through process can be implemented.

In this configuration, all applications open this
process as if it were a port. Any error and recov
ery handling is done by the pass-through process,
which sees all errors and retries on the line and
can enforce a new logon by the caller to the
application.

The pass-through process opens the modem
device and its own $RECEIVE file for communi
cation to the application (both nowaited). Re
quests from the application are forwarded from
the $RECEIVE file to the modem port, returning
the data received from the modem in the REPLY
call back to the application. The status from the
modem is also passed back to the application in
this REPLY call (for all kinds of operations).

If the pass-through process detects a serious
error (such as a communication error or a line,
device, or path failure) when the line communi
cation has failed, it marks all current application
requester processes as invalid and constantly
returns an error 140 (communication error).
This continues until the process either closes
the line or issues CONTROL 12 and 11 messages
to disconnect and wait for modem connect,
respectively.

Figure 3 provides an example of recovery
logic for errors of this type. For a SCOBOL
program, the terminal type must be explicitly
specified. Special consideration must also be
given if the process is to simulate a block mode
terminal by running it as a subtype 30 process.
This allows the process to receive DEVICEINFO
messages. The process appears as the device
controller to the application, which then sends
device-specific requests to the process.

66 TANDEM SYSTEMS REVIEW• OCTOBER 1991

One advantage of a pass-through process, in
addition to new user detection, is that various
degrees of customization can be included. For
example, it is possible to specify a time of day
or a particular day when certain functions may
be performed. The pass-through process could
also monitor all processes communicating to
that port, all communications of a certain user
ID, or all the processes started by itself. If
necessary, the pass-through process can send
shutdown requests and warning messages when
the integrity of the caller or the application
becomes dubious.

There are several software packages that im
plement these features, one being the ION family
of products developed by TransComm, a divi
sion of Tandem. Using such packages would
allow a large degree of customization, the
possible inclusion of a challenge-response
device, and error translation on pass-through as
well as some options for reauthentication after
line failures.

Challenge-Response Devices
One authentication procedure that is more
secure than the use of static passwords involves
using a device that gives some form of indi
vidual response which varies with each logon
attempt. In this scheme, the user must have
knowledge of a password plus possession of a
physical device. Usually the device is activated
by using an individual piece of knowledge such
as a personal identification number (PIN) as the
password for the device.

Figure 3

Call OPEN (Allow 1/0 on the line)
Call SETPARAM

SETPARAM 1 (Get the remote DTE address)
(Note that this example is for an X.25 address and may not give the user's
REAL origin)

SETPARAM 9 (Get reason for line disconnect)
CONTROL 11 (Wait for incoming call)
Read initial message of next caller
Start application processing

If Communication Error (140)
Call CONTROL 12 (disconnect the line)
Reset application(s) to logged-off state
Return to wait for call (CONTROL 11)

If other (serious) error
Call CLOSE-close the line
Reset application(s) to logged-off state
Call OPEN-open the line again

If OPEN fails again, abend process and emit event message
Return to SETPARAM

This type of double check is similar to a user
having a cash card for an automated teller
machine as well as a corresponding PIN in order
to withdraw funds. This type of security blends
the what-you-have and what-you-know authenti
cation methodologies.

Figure 3.

An example of recovery
logic.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 67

Figure 4.

The modem dial-hack
.fc1cility. (a) Front-end
device accepts a call and
authenticates the user.
(h) The front-end device
breaks the call and
validates the dial-hack
number. (c) Finally, the
front-end device dials
hack and connects the
user to the host system.

68

Figure 4

(a)

------:7 Front-
~ end Host

device

(b)

Front-
end Host

device

(c)

~ Front-
L..___ end ____. Host

device

The Atalla'M Challenge/Response M (ACR) pro
duct employs this dual authentication method.
The ACR provides secure customer or employee
identification that is both geographically and
terminal independent. It is a small hand-held
device, similar in size to a pocket calculator,
containing a unique data encryption algorithm
(DEA) key. This key is used to ensure that the
requester has both knowledge of a PIN and
physical access to the device.

When a user begins a logon request, the host
machine generates a random numeric challenge
and sends it to the user's terminal. The user
enters that value into the ACR, after activating it
with the user's unique PIN. The ACR calculates
and displays a response to the challenge, which
can then be entered into the terminal. This
response is checked at the host, using one of
Atalla's host security modules for response
verification with the database of user devices,
thus ensuring a unique challenge-response for
each logon attempt. When the user receives
verification, the logon request is completed and
the user is granted system access. The ACR meets
two of the criteria for secure authentication, and
does so at a low cost.

Atalla also provides other security products.
One is a secure identification card that does not
require a challenge; it requires merely the input
of the currently displayed number for authentica
tion. Another is a software interface layer (the
Cryptographic Security Manager) that allows
many functions to be easily added into the
application at a high level to ensure ease of
implementation and maintenance.

Front-End Devices and Modem Dial-Back
Facilities
Several suppliers provide equipment that inter
cepts calls to the host and performs some type of
user authentication before the call is transferred
to the host system. Several methods are used to
authenticate the caller, such as the challenge
response technique or receipt of a specific
number. The database of authorized users and
telephone numbers is maintained by the front
end device.

Another authentication method often used
with front-end devices is the modem dial-back
facility. The front-end device receives a call and
performs a handshake whereby the caller's phone
number or password is accepted. (See Figure 4a.)
The call is then terminated while the device scans
its internal lists to validate the data it received.
(See Figure 4b.) The authenticated caller is then
dialed by the device once it has determined that
the call originated from an authorized address.
(See Figure 4c.)

TANDEM SYSTEMS REVIEW• OCTOBER 1991

Some users prefer a modem dial-back facility
because the host pays the cost of the line connec
tion and keeps a central record of the costs and
the locations it redials. Additional features can
also include audit trail facilities and both fixed
number dial-back and variable number dial-back.
For variable dial-back. users enter the number on
dial-in if they are authorized to do so. Both fixed
and variable dial-back can have time constraints
to allow more control of system security.

Automatic Logoff
Configuring TACL for automatic logoff can
greatly reduce the chances for an intruder to
access the system on an idle terminal while a
TACL prompt is on the screen. TACL can be
directed to log off the user automatically if no
activity is seen for a fixed. preferably short
amount of time since the last TACL command.
Applications can also be written this way with the
use of nowaited I/O. While this does not eliminate
the risk of an unauthorized user accessing a
logged-on terminal. it helps to ensure that a
terminal is not vulnerable for long periods, such
as lunch times or meetings, or when the autho
rized user has forgotten to log off.

Smart Cards for Personal Computers
Personal computers offer various methods for
authentication. Security boards or the addition of
smart card readers are two of the most common
options. These allow local processino of any

. . b
security operations. A smart card is the more
sophisticated method. in that both authentication
and security functions are possible right on the
card. This ensures that smart card users have the
knowledge to identify themselves to the card and
also have physical possession of their cards.

General Security Guidelines
A tradeoff always exists between security and
ease of operation. Each installation must choose
the appropriate dial-in security for avoiding any
damage that could result from inadequate
control of dial-in users.

The level of security should be scaled to
match the threat of intentional or accidental
abuse, and it should be justifiable on those
grounds. At the same time, the security should
be as unobtrusive as possible and should neither
encourage anyone to attempt to break into the
system nor discourage anyone from using it
legitimately.

The methods used should be decided not at
random but with reference to the company's
security policy. That policy should state the
terms of reference for the implementation of
the chosen security. In this way all data can be
protected in a consistent way, avoiding a situa
tion of having too much protection in some
areas while leaving an alternative path with
much slacker security in others. Security is
only as good as its weakest link.

OCTOBER 1991 •TANDEM SYSTEMS REVIEW 69

70

The following points suggest some general
security guidelines.

■ If the user can in some way break out of an
application, such as starting a new process from
TACL, then it is appropriate to have a much
higher level of authentication and auditing.

■ The dial-in security method should make it
impossible for a break in a call to result in a
session inheritance for the next caller.

■ Half-duplex asynchronous operation should be
avoided if possible. This reduces the possibility
that the security method will not detect a session
break and a new dial-in user. Check the modem
specification for clarification.

■ Any session controller should ensure that a dis
connect and reconnect (RECONNECTMODEM in
SCOBOL) are issued in any situation wherein the
identity of the user has become uncertain. One
such situation is an unexpected error or logoff.

■ Only one process should be actively using
the terminal at any point in the session. Truly
asynchronous processing is usually illogical in
a dial-in environment.

■ Any process started from another and detect
ing an error on its connection should report the
condition to the initial session logon process.
The session controller should abort the session
as well as any existing slave processes that may
have the terminal open. This minimizes the risk
of session inheritance.

Conclusion
Dial-in access is a necessary and desirable
feature in both development and live transaction
processing environments. If the power and
flexibility of this means of communication can
be harnessed without compromising the security
of the system, all of the services offered can be
made more available and the system resources
can be utilized more fully and efficiently.

Peter Grainger works in the European Consultancy Group and is
based at High Wycombe in the United Kingdom. He has been with
Tandem for ten years and specializes in security systems.

TANDEM SYSTEMS REVIEW• OCTOHER 19'JI

TANDEM SYSTEMS REVIEW INDEX

The Tandem Journal became the Tandem Systems Review in February 1985. Four issues of the Tandem
Journal were published:

Volume I, Number I
Volume 2, Number I
Volume 2, Number 2
Volume 2, Number 3

Fall I 983
Winter 1984
Spring 1984
Summer 1984

Part no. 83930
Part no. 83931
Part no. 83932
Part no. 83933

As of this issue, 16 issues of the Tandem Systems Review have been published:

Volume I, Number I February 1985 Part no. 83934
Volume I, Number 2 June 1985 Part no. 83935
Volume 2, Number I February 1986 Part no. 83936
Volume 2, Number 2 June 1986 Part no. 83937
Volume 2, Number 3 December 1986 Part no. 83938
Volume 3, Number I March 1987 Pait no. 83939
Volume 3, Number 2 August 1987 Part no. 83940
Volume 4, Number I February 1988 Part no. 11078
Volume 4, Number 2 July 1988 Part no. 13693
Volume 4, Number 3 October 1988 Part no. 15748
Volume 5, Number I April 1989 Part no. 18662
Volume 5, Number 2 September 1989 Part no. 28152
Volume 6, Number I March 1990 Part no. 32986
Volume 6, Number 2 October 1990 Part no. 46987
Volume 7, Number I April 1991 Part no. 46988
Volume 7, Number 2 October 1991 Part no. 65248

The articles published in all 20 issues are arranged by subject below. (Tandem Journal is abbreviated
as TJ and Tandem Systems Review as TSR.) A second index, arranged by product, is also provided.

Index by Subject

Season
Volume, or month

Article title Author(s) Publication Issue and year

Application Development and Languages

Ada: Tandem's Newest Compiler and Programming Environment R.Vnuk TSR 3,2 Aug. 1987

A New Design for the PATHWAY TCP R. Wong TJ 2,2 Spring 1984

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984

Debugging TACL Code L. Palmer TSR 4,2 July 1988

Instrumenting Applications for Effective Event Management J. Dagenais TSR 7,2 Oct. 1991

New TAL Features C. Lu, J. Murayama TSR 2,2 June 1986

PATHFINDER-An Aid for Application Development S.Benett TJ 1,1 Fall 1983

PATHWAY IDS: A Message-level lnteriace to Devices M.Anderton, TSR 2,2 June 1986
and Processes M. Noonan

State-of-the-Art C Compiler E. Kit TSR 2,2 June 1986

TACL, Tandem's New Extensible Command Language J. Campbell, TSR 2,1 Feb. 1986
R. Glascock

Tandem's New COBOL85 D. Nelson TSR 2,1 Feb. 1986

The ENABLE Program Generator for Multifile Applications B. Chapman, TSR 1,1 Feb. 1985
J. Zimmerman

TMF and the Multi-Threaded Requester T. Lemberger TJ 1,1 Fall 1983

Writing a Command Interpreter D. Wong TSR 1,2 June 1985

0 C T O B E R I 9 9 I • T A N D E M S Y S T E M S R E V I I' W

Part
number

83940

83932

83932

13693

65248

83837

83930

83937

83937

83936

83936

83934

83930

83935

71

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Customer Support

Customer Information Service J. Massucco TSR 3,1 March 1987 83939

Remote Support Strategy J. Eddy TSR 3,1 March 1987 83939

Tandem's Software Support Plan R. Baker, D. McEvoy TSR 3,1 March 1987 83939

Data Communications

An Overview of SNAX/CDF M. Turner TSR 5,2 Sept. 1989 28152

A SNAX PassthrouiJh Tutorial D. Kirk TJ 2,2 Spring 1984 83932

Changes in FOX N. Donde TSR 1,2 June 1985 83935

Introduction to MULTILAN A. Coyle TSR 4,1 Feb. 1988 11078

Overview of the MULTILAN Server A.Rowe TSR 4,1 Feb. 1988 11078

SNAX/APC: Tandem's New SNA Software for Distributed Processing B. Grantham TSR 3,1 March 1987 83939

SNAX/HLS: An Overview S. Saltwick TSR 1,2 June 1985 83935

TLAM: A Connectivity Option for Expand K. MacKenzie TSR 7,1 April 1991 46988

Using the MULTI LAN Application Interfaces M. Berg, A. Rowe TSR 4,1 Feb. 1988 11078

Data Management

A Comparison of the BOO DP1 and DP2 Disc Processes T. Schachter TSR 1,2 June 1985 83935

An Overview of Non Stop SOL Release 2 M. Pong TSR 6,2 Oct. 1990 46987

Batch Processing in Online Enterprise Computing T. Keefauver TSR 6,2 Oct. 1990 46987

Concurrency Control Aspects of Transaction Design WSenf TSR 6,1 March 1990 32968

Converting Database Files from ENSCRIBE to Nonstop SOL W Weikel TSR 6,1 March 1990 32986

DP1-DP2 File Conversion: An Overview J. Tate TSR 2,1 Feb. 1986 83936

Determining FCP Conversion Time J. Tate TSR 2,1 Feb. 1986 83936

DP2's Efficient Use of Cache T. Schachter TSR 1,2 June 1985 83935

DP2 Highlights K. Carlyle, L. McGowan TSR 1,2 June 1985 83935

DP2 Key-sequenced Files T. Schachter TSR 1,2 June 1985 83935

Gateways to Non Stop SOL D. Slutz TSR 6,2 Oct. 1990 46987

High-Performance SOL Through Low-Level System Integration A. Borr TSR 4,2 July 1988 13693

Improvements in TMF T. Lemberger TSR 1,2 June 1985 83935

Online Reorganization of Key-Sequenced Tables and Files G. Smith TSR 6,2 Oct. 1990 46987

Optimizing Batch Performance T. Keefauver TSR 5,2 Sept. 1989 28152

Overview of Non Stop SOL H. Cohen TSR 4,2 July 1988 13693

Parallelism in Nonstop SOL Release 2 M. Moore, A. Sodhi TSR 6,2 Oct. 1990 46987

NetBatch: Managin!J Batch Processing on Tandem Systems D. Wakashige TSR 5,1 April 1989 18662

NetBatch-Plus: Structuring the Batch Environment G. Earle, D. Wakashige TSR 6,1 March 1990 32986

Nonstop SOL: The Single Database Solution J. Cassidy, T. Kocher TSR 5,2 Sept. 1989 28152

Nonstop SOL Data Dictionary R. Holbrook, D. Tsou TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Basic Concepts M. Pong TSR 4,2 July 1988 13693

Non Stop SOL Optimizer: Query Optimization and User Influence M. Pong TSR 4,2 July 1988 13693

NonStop SOL Reliability C. Fenner TSR 4,2 July 1988 13693

The Nonstop SOL F1elease 2 Benchmark S. Englert, J. Gray, TSR 6,2 Oct. 1990 46987
T. Kocher, P. Shah

The Outer Join in Nonstop SOL J. Vaishnav TSR 6,2 Oct. 1990 46987

The Relational Data Base Management Solution G.Ow TJ 2,1 Winter 1984 83931

Tandem's Nonstop SOL Benchmark Tandem Performance TSR 4,1 Feb. 1988 11078
Group

The TRANSFER Delivery System for Distributed Applicar,ons S.Van Pelt TJ 2,2 Spring 1984 83932

TMF Autorollback: A New Recovery Feature M. Pong TSR 1,1 Feb. 1985 83934

72 TANDE:VI SYSTEMS REVIEW 0 C T O B E R lJ 9

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Manuals/Courses

BOO Software Manuals S. Olds TSR 1,2 June 1985 83935

COO Software Manuals E. Levi TSR 4,1 Feb. 1988 11078

New Software Courses M. Janow TSR 1,2 June 1985 83935

New Software Courses J. Limper TSR 4,1 Feb. 1988 11078

Subscription Policy for Software Manuals T. Mcsweeney TSR 2,1 Feb. 1986 83936

Tandem's New Products C. Robinson TSR 2,1 Feb. 1986 83936

Tandem's New Products C. Robinson TSR 2,2 June 1986 83937

Operating Systems

Highlights of the BOO Software Release K. Coughlin, TSR 1,2 June 1985 83935
R. Montevaldo

Increased Code Space A. Jordan TSR 1,2 June 1985 83935

Managing System Time Under GUARDIAN 90 E. Nellen TSR 2,1 Feb. 1986 83936

New GUARDIAN 90 Time-keeping Facilities E. Nellen TSR 1,2 June 1985 83935

New Process-timing Features S. Sharma TSR 1,2 June 1985 83935

Nonstop II Memory Organization and Extended Addressing D. Thomas TJ 1,1 Fall 1983 83930

Overview of the COO Release L. Marks TSR 4,1 Feb. 1988 11078

Overview of the NonStop-UX Operating System for the Integrity S2 P. Norwood TSR 7,1 April 1991 46988

Robustness to Crash in a Distributed Data Base: A. Borr TSR 1,2 June 1985 83935
A Nonshared-memory Approach

The GUARDIAN Message System and How to Design for It M. Chandra TSR 1,1 Feb. 1985 83935

The Tandem Global Update Protocol R.Carr TSR 1.2 June 1985 83935

Performance and Capacity Planning

A Performance Retrospective P Oleinick, P. Shah TSR 2,3 Dec. 1986 83938

Buffering for Better Application Performance R. Mattran TSR 2,1 Feb. 1986 83936

Capacity Planning Concepts R.Evans TSR 2,3 Dec. 1986 83938

Capacity Planning With TCM W. Highleyman TSR 7,2 Oct. 1991 65248

COO TMDS Performance J. Mead TSR 4,1 Feb. 1988 11078

Credit-authorization Benchmark for High Performance and T. Chmiel, T. Houy TSR 2,1 Feb. 1986 83936
Linear Growth

DP2 Performance J. Enright TSR 1,2 June 1985 83935

Estimating Host Response Time in a Tandem System H. Horwitz TSR 4,3 Oct. 1988 15748

FASTSORT: An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938
A. Tsukerman, S. Uren,
B.Vaughan

Getting Optimum Performance from Tandem Tape Systems A. Khatri TSR 2,3 Dec. 1986 83938

How to Set Up a Performance Data Base with M. King TSR 2,3 Dec. 1986 83938
MEASURE and ENFORM

Improved Performance for BACKUP2 and RESTORE2 A. Khatri, M. McCline TSR 1.2 June 1985 83935

MEASURE: Tandem's New Performance Measurement Tool D. Dennison TSR 2,3 Dec. 1986 83938

Message System Performance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938

Message System Performance Tests S. Uren TSR 2,3 Dec. 1986 83938

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938

Optimizing Sequential Processing on the Tandem System R. Welsh TJ 2,3 Summer 1984 83933

Pathway TCP Enhancements for Application Run-Time Support R. Vannucci TSR 7,1 April 1991 46988

Performance Benefits of Parallel Query Execution and Mixed S. Englert, J. Gray TSR 6,2 Oct. 1990 46987
Workload Support in Nonstop SOL Release 2

Performance Considerations for Application Processes R. Glasstone TSR 2,3 Dec. 1986 83938

Performance Measurements of an ATM Network Application N. Cabell, D. Mackie TSR 2,3 Dec. 1986 83938

Predicting Response Time in On-line Transaction A. Khatri TSR 2,2 June 1986 83937
Processing Systems

OCTOBER l) l) •TANDEM SYSTEMS REVIEW 73

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Performance and Capacity Planning

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

The ENCORE Stress Test Generator for On-line Transaction S. Kosinski TJ 2,1 Winter 1984 83931
Processing Applications

The PATHWAY TCP: Performance and Tuning J. Vatz TSR 1,1 Feb. 1985 83934

The Performance Characteristics of Tandem NonStop Systems J. Day TJ 1,1 Fall 1983 83930

Sizing Cache for Applications that Use B-series DP1 and TMF P. Shah TSR 2,2 June 1986 83937

Sizing the Spooler Collector Data File H. Norman TSR 4,1 Feb. 1988 11978

Tandem's 5200 Optical Storage Facility: Performance and S. Coleman TSR 5,1 April 1989 18662
Optimization Considerations

Tandem's Approach to Fault Tolerance B. Ball, W. Bartlett, TSR 4,1 Feb. 1988 11078
S. Thompson

Understanding PATHWAY Statistics R. Wong TJ 2,2 Spring 1984 83932

Peripherals

5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940

An Introduction to DYNAMITE Workstation Host Integration S. Kosinski TSR 1,2 June 1985 83935

Data-Encoding Technology Used in the XLS Storage Facility D.S. Ng TSR 2,2 June 1986 83937

Data-Window Phase-Margin Analysis A. Painter, H. Pham, TSR 2,2 June 1986 83937
H. Thomas

Introducing the 3207 Tape Controller S. Chandran TSR 1,2 June 1985 83935

Peripheral Device Interfaces J. Blakkan TSR 3,2 Aug. 1987 83940

Plated Media Technology Used in the XLS Storage Facility D.S. Ng TSR 2,2 June 1986 83937

Streaming Tape Drives J. Blakkan TSR 3,2 Aug. 1987 83940

The 5200 Optical Storage Facility: A Hardware Perspective A. Patel TSR 5,1 April 1989 18662

The 6100 Communications Subsystem: A New Architecture R. Smith TJ 2,1 Winter 1984 83931

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

The DYNAMITE Workstation: An Overview G.Smith TSR 1,2 June 1985 83935

The Model 6VI Voice lnQut O[2tion: Its Design and lmQlementation B. Huggett TJ 2,3 Summer1984 83933

The Role of Optical Storage in Information Processing L. Sabaroff TSR 3,2 Aug. 1987 83940

The V8 Disc Storage Facility: Setting a New Standard for M. Whiteman TSR 1,2 June 1985 83935
On-line Disc Storage

Processors

Fault Tolerance in the Nonstop Cyclone System S. Chan, R. Jardine TSR 7,1 April 1991 46988

Nonstop CLX: Optimized for Distributed On-Line D. Lenoski TSR 5,1 April 1989 18662
Transaction Processing

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938

The High-Performance Nonstop TXP Processor W. Bartlett, T. Houy, TJ 2,1 Winter 1984 83931
D. Meyer

The Non Stop TXP Processor: A Powerful Design for On-line P. Oleinick TJ 2,3 Summer 1984 83933
Transaction Processing

The VLX: A Design for Serviceability J. Allen, R. Boyle TSR 3,1 March 1987 83939

Security

Dial-In Security Considerations P. Grainger TSR 7,2 Oct. 1991 65248

Distributed Protection with SAFEGUARD T. Chou TSR 2,2 June 1986 83937

Enhancing System Security With Safeguard C. Gaydos TSR 7,1 April 1991 46988

System Connectivity

Building Open Systems Interconnection with OSI/AS and OSI/TS R. Smith TSR 6,1 March 1990 32986

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

Terminal Connection Alternatives for Tandern Systems J. Simonds TSR 5,1 April 1989 18662

The OSI Model: Overview, Status, and Current Issues A.Dunn TSR 5,1 April 1989 18662

74 TAl'iDEM S Y S T E M S REVIEW OCTOBER 19'!

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

System Management

Configuring Tandem Disk Subsystems S. Sitler TSR 2,3 Dec. 1986 83938

Data Replication in Tandem's Distributed Name Service T. Eastep TSR 4,3 Oct. 1988 15748

Enhancements to TMDS L. White TSR 3,2 Aug. 1987 83940

Event Management Service Design and Implementation H. Jordan, R. McKee, TSR 4,3 Oct. 1988 15748
R. Schue!

Introducing TMDS, Tandem's New On-line Diagnostic System J. Troisi TSR 1,2 June 1985 83935

Instrumenting Applications for Effective Event Management J. Dagenais TSR 7,2 Oct.1991 65248

Overview of DSM P. Homan, B. Malizia, TSR 4,3 Oct. 1988 15748
E. Reisner

Network Statistics System M.Miller TSR 4,3 Oct. 1988 15748

SCP and SCF: A General Purpose Implementation of the T. Lawson TSR 4,3 Oct. 1988 15748
Subsystem Programmatic Interface

RDF: An Overview J. Guerrero TSR 7,2 Oct.1991 65248

Tandem's Subsystem Programmatic Interface G.Tom TSR 4,3 Oct. 1988 15748

Using FOX to Move a Fault-tolerant Application C. Breighner TSR 1,1 Feb. 1985 83934

Using the Subsystem Programmatic Interface and Event K. Stobie TSR 4,3 Oct. 1988 15748
Management Services

VIEWPOINT Operations Console Facility R. Hansen, G. Stewart TSR 4,3 Oct. 1988 15748

VIEWSYS: An On-line System-resource Monitor D. Montgomery TSR 1,2 June 1985 83935

Writing Rules for Automated Operations J. Collins TSR 7,2 Oct.1991 65248

Utilities

Enhancements to PS MAIL R.Funk TSR 3,1 March 1987 83939

OCTOBER l) l) •TANDEM SYSTEMS REVIEW 75

Index by Product

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

3207 Tape Controller

Introducing the 3207 Tape Controller S. Chandran TSR 1,2 June 1985 83935

5120 Tape Subsystem

5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940

5200 Optical Storage

Tandem's 5200 Optical Storage Facility: Performance and S. Coleman TSR 5,1 April 1989 18662
Optimization Considerations

The 5200 Optical Storage Facility: A Hardware Perspective A. Patel TSR 5,1 April 1989 18662

The Role of Optical Storage in Information Processing L. Sabaroff TSR 4,1 Feb. 1988 11078

6100 Communications Subsystem

The 6100 Communications Subsystem: A New Architecture R. Smith TJ 2,1 Winter 1984 83931

6530 Terminal

The Model 6VI Voice Input Option: Its Design and Implementation B. Huggett TJ 2,3 Summer 1984 83933

6600 and TCC6820 Communications Controllers

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

Ada

Ada: Tandem's Newest Compiler and Programming Environment R. Vnuk TSR 3,2 Aug. 1987 83940

BASIC

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984 83932

C

State-of-the-art C Compiler E. Kit TSR 2,2 June 1986 83937

CIS

Customer Information Service J. Massucco TSR 3,1 March 1987 83939

CLX

Nonstop CLX: Optimized for Distributed On-Line D. Lenoski TSR 5,1 April 1989 18662
Transaction Processing

COBOL85

Tandem's New COBOL85 D. Nelson TSR 2,1 Feb. 1986 83936

COMINT(CI)

Writing a Command Interpreter D. Wong TSR 1,2 June 1985 83935

Cyclone

Fault Tolerance in the Nonstop Cyclone System S. Chan, R. Jardine TSR 7,1 April 1991 46988

DP1 and DP2

A Comparison of the BOO DP1 and DP2 Disc Processes T. Schachter TSR 1,2 June 1985 83935

Determining FCP Conversion Time J. Tate TSR 2,1 Feb. 1986 83936

DP1 -DP2 File Conversion: An Overview J. Tate TSR 2,1 Feb. 1986 83936

DP2 Highlights K. Carlyle TSR 1,2 June 1985 83935
L. McGowan

DP2 Key-sequenced Files T. Schachter TSR 1,2 June 1985 83935

DP2 Performance J. Enright TSR 1,2 June 1985 83935

DP2's Efficient Use of Cache T. Schachter TSR 1,2 June 1985 83935

Sizing Cache for Applications that Use B-senes DP1 and TMF P. Shah TSR 2,2 June 1986 83937

76 TA~DEM SYSTEMS REVILW 0 C T O B E R 9 9

Season
Volume, or month Part

Article title Author(s! Publication Issue and lear number

DSM

Data Replication in Tandem's Distributed Name Service T. Eastep TSR 4,3 Oct.1988 15748

Event Management Service Design and Implementation H. Jordan, R. McKee, TSR 4,3 Oct. 1988 15748
R. Schue!

Instrumenting Applications for Effective Event Management J. Dagenais TSR 7,2 Oct.1991 65248

Overview of DSM P. Homan, B. Malizia, TSR 4,3 Oct. 1988 15748
E. Reisner

Network Statistics System M.Miller TSR 4,3 Oct. 1988 15748

SCP and SCF: A General Purpose Implementation of the T. Lawson TSR 4,3 Oct. 1988 15748
Subsystem Programmatic Interface

Tandem's Subsystem Programmatic Interface G.Tom TSR 4,3 Oct. 1988 15748

Using the Subsystem Programmatic Interface and Event K. Stobie TSR 4,3 Oct. 1988 15748
Management Services

VIEWPOINT Operations Console Facility R. Hansen, G. Stewart TSR 4,3 Oct. 1988 15748

Writing Rules for Automated Operations J. Collins TSR 7,2 Oct.1991 65248

DYNAMITE

An Introduction to DYNAMITE Workstation Host Integration S. Kosinski TSR 1,2 June 1985 83935

The DYNAMITE Workstation: An Overview G.Smith TSR 1,2 June 1985 83935

ENABLE

The ENABLE Program Generator for Multifile Applications B. Chapman, TSR 1,1 Feb. 1985 83934
J. Zimmerman

ENCOMPASS

The Relational Data Base Management Solution G.Ow TJ 2,1 Winter 1984 83931

ENCORE

The ENCORE Stress Test Generator for On-line Transaction S. Kosinski TJ 2,1 Winter1984 83931
Processing Applications

ENSCRIBE

Converting Database Files from ENSCRIBE to Nonstop SQL W. Weikel TSR 6,1 March 1990 32986

FAST.SORT

FAST.SORT: An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938
A. Tsukerman, S. Uren,
B. Vaughan

FOX

Changes in FOX N. Donde TSR 1,2 June 1985 83935

Using FOX to Move a Fault-tolerant Application c. Breighner TSR 1,1 Feb. 1985 83934

FUP

Online Reorganization of Key-Sequenced Tables and Files G.Smith TSR 6,2 Oct. 1990 46987

GUARDIAN90

BOO Software Manuals S.Olds TSR 1,2 June 1985 83935

COO Software Manuals E. Levi TSR 4,1 Feb. 1988 11078

Highlights of the BOO Software Release K. Coughlin, TSR 1,2 June 1985 83935
R. Montevaldo

Improved Performance for BACKUP2 and RESTORE2 A. Khatri, M. McCline TSR 1,2 June 1985 83935

Increased Code Space A. Jordan TSR 1,2 June 1985 83935

Managing System Time Under GUARDIAN 90 E. Nellen TSR 2,1 Feb. 1986 83936

Message S}'.stem Performance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938

Message System Performance Tests s. Uren TSR 2,3 Dec. 1986 83938

New GUARDIAN 90 Time-keeping Facilities E. Nellen TSR 1,2 June 1985 83935

New Process-timing Features S. Sharma TSR 1,2 June 1985 83935

Nonstop II Memory Organization and Extended Addressing D. Thomas TJ 1,1 Fall 1983 83930

Overview of the COO Release L. Marks TSR 4,1 Feb. 1988 11078

Robustness to Crash in a Distributed Data Base: A. Borr TSR 1,2 June 1985 83935
A Nonshared-memory Multiprocessor Approach

Tandem's Approach to Fault Tolerance B. Ball, W. Bartlett, TSR 4,1 Feb. 1988 11078
S. Thompson

The GUARDIAN Message System and How to Design for It M. Chandra TSR 1,1 Feb. 1985 83935

The Tandem Global Update Protocol R. Carr TSR 1,2 June 1985 83935

OCTOBER () 9 •TANDEM SYSTEMS REVIEW 77

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Integrity S2

Overview of the NonStop-UX Operating System for the Integrity S2 P. Norwood TSR 7,1 April 1991 46988

MEASURE

How to Set Up a Performance Data Base with M. King TSR 2,3 Dec. 1986 83938
MEASURE and ENFORM

MEASURE: Tandem's New Performance Measurement Tool D. Dennison TSR 2,3 Dec. 1986 83938

MULTILAN

Introduction to MULTILAN A. Coyle TSR 4,1 Feb. 1988 11078

Overview of the MULTI LAN Server A. Rowe TSR 4,1 Feb. 1988 11078

Using the MULTI LAN Application Interfaces M. Berg, A. Rowe TSR 4,1 Feb. 1988 11078

NetBatch-Plus

NetBatch: Managing Batch Processing on Tandem Systems D. Wakashige TSR 5,1 April 1989 18662

NetBatch-Plus: Structuring the Batch Environment G. Earle, D. Wakashige TSR 6,1 March 1990 32986

NonStopSQL

An Overview of Nonstop SOL Release 2 M. Pong TSR 6,2 Oct. 1990 46987

Concurrency Control Aspects of Transaction Design W. Senf TSR 6,1 March 1990 32986

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986

Gateways to Nonstop SOL D. Slutz TSR 6,2 Oct. 1990 46987

High-Performance SOL Through Low-Level System Integration A. Borr TSR 4,2 July 1988 13693

NonStop SOL Data Dictionary R. Holbrook, D. Tsou TSR 4,2 July 1988 13693

Nonstop SOL: The Single Database Solution J. Cassidy, T. Kocher TSR 5,2 Sept. 1989 28152

Non Stop SOL Optimizer: Basic Concepts M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Query Optimization and User Influence M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Reliability C. Fenner TSR 4,2 July 1988 13693

Overview of Nonstop SOL H. Cohen TSR 4,2 July 1988 13693

Parallelism in Nonstop SOL Release 2 M. Moore, A. Sodhi TSR 6,2 Oct. 1990 46987

Performance Benefits of Parallel Query Execution and Mixed S Englert, J. Gray TSR 6,2 Oct.1990 46987
Workload Support in Nonstop SOL Release 2

Tandem's Nonstop SOL Benchmark Tandem Performance TSR 4,1 Feb. 1988 11078
Group

The Nonstop SOL Release 2 Benchmark S. Englert, J. Gray, TSR 6,2 Oct. 1990 46987
T. Kocher, P. Shah

The Outer Join in Non Stop SOL J. Vaishnav TSR 6,2 Oct. 1990 46987

OSI

Building Open Systems Interconnection with OSI/AS and OSI/TS Fl.Smith TSR 6,1 March 1990 32986

The OSI Model: Overview, Status, and Current Issues A. Dunn TSR 5,1 April 1989 18662

PATHFINDER

PATHFINDER~An Aid for Application Development S. Benett TJ 1,1 Fall 1983 83930

PATHWAY

A New Design for the PATHWAY TCP R. Wong TJ 2,2 Spring 1984 83932

PATHWAY IDS: A Message-level Interface to Devices M.Anderton TSR 2,2 June 1986 83937
and Processes M. Noonan

Pathway TCP Enhancements for Application Run-Time Support R. Vannucci TSR 7,1 April 1991 46988

The PATHWAY TCP: Performance and Tuning J. Vatz TSR 1,1 Feb. 1985 83934

Understanding PATHWAY Statistics R. Wong TJ 2,2 Spring 1984 83932

PS MAIL

Enhancements to PS MAIL Fl.Funk TSR 3,1 March 1987 83939

RDF

RDF: An Overview J. Guerrero TSR 7,2 Oct.1991 65248

SAFEGUARD

Dial-In Security Considerations P. Grainger TSR 7,2 Oct.1991 65248

Distributed Protection with SAFEGUARD T. Chou TSR 2,2 June 1986 83937

Enhancing System Security With Safeguard C. Gaydos TSR 7,1 April 1991 46988

78 TANDEM SYSTEMS R E V I F. W OCTOBER 199

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

SNAX

An Overview of SNAX/CDF M. Turner TSR 5,2 Sept. 1989 28152

A SNAX Passthrough Tutorial D. Kirk TJ 2,2 Spring 1984 83932

SNAX/APC: Tandem's New SNA Software for Distributed Processing B. Grantham TSR 3,1 March 1987 83939

SNAX/HLS: An Overview S. Saltwick TSR 1,2 June 1985 83935

SPOOLER

Sizing the Spooler Collector Data File H. Norman TSR 4,1 Feb. 1988 11078

TACL

Debugging TACL Code L. Palmer TSR 4,2 July 1988 13693

TACL, Tandem's New Extensible Command Language J.Campbell, TSR 2,1 Feb. 1986 83936
R. Glascock

TAL

New TAL Features C. Lu, J. Murayama TSR 2,2 June 1986 83837

TCM

Capacity Planning With TCM W. Highleyman TSR 7,2 Oct.1991 65248

TLAM

TLAM: A Connectivity Option for Expand K. MacKenzie TSR 7,1 April 1991 46988

TMDS

COO TMDS Performance J. Mead TSR 4,1 Feb. 1988 11078

Enhancements to TMDS L. White TSR 3,2 Aug. 1987 83940

Introducing TMDS, Tandem's New On-line Diagnostic System J. Troisi TSR 1,2 June 1985 83935

TMF

Improvements in TMF T. Lemberger TSR 1,2 June 1985 83935

TMF and the Multi-Threaded Requester T. Lemberger TJ 1,1 Fall 1983 83930

TMF Autorollback: A New Recovery Feature M. Pong TSR 1,1 Feb. 1985 83934

TRANSFER

The TRANSFER Delivery System for Distributed Applications S. Van Pelt TJ 2,2 Spring 1984 83932

TXP

The High-Performance Nonstop TXP Processor W. Bartlett, T. Houy, TJ 2,1 Winter 1984 83931
D. Meyer

The Non Stop TXP Processor: A Powerful Design for On-line P. Oleinick TJ 2,3 Summer1984 83933
Transaction Processing

VB

The V8 Disc Storage Facility: Setting a New Standard for M. Whiteman TSR 1,2 June 1985 83935
On-line Disc Storage

VIEWSYS

VIEWSYS: An On-line System-resource Monitor D. Montgomery TSR 1,2 June 1985 83935

VLX

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938

The VLX: A Design for Serviceability J. Allen, R. Boyle TSR 3,1 March 1987 83939

XLS

Data-encoding Technology Used in the XLS Storage Facility D.S. Ng TSR 2,2 June 1986 83937

Plated Media Technology Used in the XLS Storage Facility D.S. Ng TSR 2,2 June 1986 83937

OCTOBER 9 9 •TANDEM SYSTEMS REVIEW 79

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Miscellaneous 1

A Performance Retrospective P. Oleinick TSR 2,3 Dec. 1986 83938

Batch Processing in Online Enterprise Computing T. Keefauver TSR 6,2 Oct. 1990 46987

Buffering for Better Application Performance R. Mattran TSR 2,1 Feb. 1986 83936

Capacity Planning Concepts R. Evans TSR 2,3 Dec. 1986 83938

Configuring Tandem Disk Subsystems S. Sitler TSR 2,3 Dec. 1986 83938

Credit-authorization Benchmark for High Performance T. Chmiel, T. Houy TSR 2,1 Feb. 1986 83936
and Linear Growth

Data-window Phase-margin Analysis A. Painter, H. Pham, TSR 2,2 June 1986 83937
H. Thomas

Estimating Host Response Time in a Tandem System H. Horwitz TSR 4,3 Oct. 1988 15748

Getting Optimum Performance from Tandem Tape Systems A. Khatri TSR 2,3 Dec. 1986 83938

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

New Software Courses M. Janow TSR 1,2 June 1985 83935

New Software Courses J. Limper TSR 4,1 Feb. 1988 11078

Optimizing Batch Performance T. Keefauver TSR 5,2 Sept. 1989 28152

Optimizing Sequential Processing on the Tandem System R. Welsh TJ 2,3 Summer 1984 83933

Performance Considerations for Application Processes R. Glasstone TSR 2,3 Dec. 1986 83938

Performance Measurements of an ATM Network Application N. Cabell, D. Mackie TSR 2,3 Dec. 1986 83938

Peripheral Device Interfaces J. Blakkan TSR 3,2 Aug. 1987 83940

Predicting Response Time in On-line Transaction A. Khatri TSR 2,2 June 1986 83937
Processing Systems

Remote Support Strategy J. Eddy TSR 3,1 March 1987 83939

Streaming Tape Drives J. Blakkan TSR 3,2 Aug. 1987 83940

Subscription Policy for Software Manuals T. Mcsweeney TSR 2,1 Feb. 1986 83936

Tandem's New Products C. Robinson TSR 2,1 Feb. 1986 83936

Tandem's New Products C. Robinson TSR 2,2 June 1986 83937

Tandem's Software Support Plan R. Baker, D. McEvoy TSR 3,1 March 1987 83939

Terminal Connection Alternatives for Tandem Systems J. Simonds TSR 5,1 April 1989 18662

The Performance Characteristics ofTandem Nonstop Systems J. Day TJ 1,1 Fall 1983 83930

The Role of Optical Storage in Information Processing L. Sabaroff TSR 3,2 Aug. 1987 83940

'This category is composed of articles that contain product information but are not specifically product-related.

80 T A N D E M SYSTEMS REVIEW OCTOBER 199

TANDEM SYSTEMS REVIEW ORDER FORM

Use this fonn to request or renew a subscription, change subscription information, or order back copies.

If you are a Tandem customer, complete Part A of this form and send it to your Tandem representative.
Your request is subject to approval.

_J For other subscribers, complete Part A of the form and send it to the address below. Enclose a check or
money order, payable to Tandem Computers Incorporated, for the subscription and back copies that
you order. The cost is $40 for a one-year subscription and $15 for each back issue.

Part A. To be completed by the subscriber.

Subscription Information

□ New subscription

:~: Subscription renewal

rJ Update to subscription information
Subscription number: _______ _
Your .1ubscri1>tion number is in the upper right
comer of' the moiling lahd

COMPANY

JOB TITI.I'

DIVISION

ADDRESS

('OU'iTRY

TE-JXPHOJ\E :\IL1MRER (include all code.., lor t:.s. dialing)

Title or position:

:_ President/CEO

r _i Director/VP information services

r--_~ MIS/DP manager

:_ Software development manager
1

, J Programmer/analyst

LI System operator
L_] End user
i -] Other: ______________ _

Your association with Tandem:

I~ Tandem customer

, Third-party vendor
, i Consultant
U Other: _____________ _

Back Order Requests
Number •
ofcopies Tandem Systems Review
__ Vol. I. No. I, Feb. 1985 -- Vol. 5, No. I. April 1989

__ Vol. I, No. 2. June 1985 -- Vol. 5. No. 2. Sept. 1989

__ Vol.2.No. I.Feb. 1986 -- Vol.6,No. l,March 1990

__Vol. 2. No. 2, June 1986 -- Vol. 6. No. 2, Oct. 1990

__ Vol. 2. No. 3, Dec. 1986 -- Vol. 7. No. I. April 1991

__ Vol. 3, No. I. March 1987 -- Vol. 7. No. 2, Oct. 1991

__ Vol. 3. No. 2, Aug. 1987

__ Vol. 4. No. I. Feb. 1988

__ Vol. 4. No. 2. July 1988

__ Vol. 4, No. 3.Oct.1988

Tandem Journal
__ Vol. I, No. I. Fall 1983

__ Vol. 2, No. I. Winter 1984

__ Vol. 2, No. 2. Spring 1984

__ Vol. 2, No. 3. Summer 1984

Tandem Application Monographs
__ Developing TMF-Protected Application Software

March 1983

__ Designing a Tandem Word Processor Interface
March 1983

__ Application Database Design in a Tandem
Environment. Aug. 1983

__ Capacity Planning for Tandem Computer Systems
Oct. 1984

__ Sociable Systems: A Look at the Tandem Corporate
Network. May 1985

Tandem customers should send this form to
their Tandem representative.

Other subscribers send this form to:

Tandem Computers, Incorporated
Tandem Systems Review, Loe 216-05
18922 Forge Drive
Cupertino, CA 95014-0701

10/91

Part B. To be completed by the Tandem representative.

Subscription Processing
Please complete this portion of the form to approve your customer's subscription. Your department will be
charged $40 per year per subscription. Incomplete requests will be returned for resubmittal.

Back Order Processing
If your customer requests back issues, you must order them through Courier. The menu sequence is:

Marketing Information--. Literature Orders--. Tandem Systems Review--. Back Orders

Your department will be charged $15 for each back issue.

NAME

TITLE

LOC

CUSTOMER NUMBER

SJC;NATLIRF

Send completed approvals to:

Tandem Computers Incorporated
Tandem Systems Review, Loe 216-05
18922 Forge Drive
Cupertino, CA 95014-0701

Comments:

DEPARTMEt-<T NUMBER

TELEPHONE NUMBER

SYSTl'M NUMBER

Process back order requests through Courier.

For our tracking purposes, please indicate the
date you submitted the back order request:

TANDEM SYSTEMS REVIEW CUSTOMER SURVEY

The purpose of this questionnaire is to help the Tandem Systems Review staff select topics for publication.
Postage is prepaid when mailed in the U.S. Customers outside the U.S. should send their replies to their
nearest Tandem sales office.

I. How useful is each article in this issue?

Instrumenting Applicationsfor Effective Event Management
01 LJ Indispensible 02 D Very 03 CJ Somewhat 04 D Not at all

Writing Rules for Automated Operations
OS □ Indispensible 06 D Very 07 LI Somewhat

RDF: An Overview
09 LJ Indispensible IO ,:1 Very

Capacity Planning With TCM
13 ::-J Indispensible 14 D Very

Dial-In Security Considerations
17 u Indispensible 18 [J Very

11 [7 Somewhat

15 [' Somewhat

19 D Somewhat

2. I specifically would like to see more articles on (select one):

21 '] Overview discussions of new products and enhancements.

23 lJ High-level overviews on Tandem's approach to solutions.

25 IJ Technical discussions of product internals.

26 D Other _______________ _

3. Your title or position:

27 LJ President. VP. Director

30 D MIS manager

28 r:J Systems analyst

31 D Software developer

08 D Not at all

12 D Not at all

16 rJ Not at all

20 D Not at all

22 D Pe1formancc and tuning information.

24 D Application design and customer profiles.

29 D System operator

32 [7 End user

33 i J Other __ -- - -- -- -- ----·------------

4. Your association with Tandem:

34 IJ Tandem customer

38 l : Other

5. Comments

\l)JJRLSS

35 D Tandem employee 36 1J Third-party vendor 37 ~ Consultant

► FOLD

► FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 482

POSTAGE WILL BE PAID BY ADDRESSEE

TANDEM SYSTEMS REVIEW
LOC 216-05

CUPERTINO, CA. U.S.A.

TANDEM COMPUTERS INCORPORATED
19333 VALLCO PARKWAY
CUPERTINO, CA 95014-9862

ll1l111l1l1ll111111ll1l11ll1l11l11l11ll1111l1l1ll11I

► FOLD

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

► FOLD

