
T A N D E M

SYSTEMS REVIEW

TNSIR Overview

Improving TNSIR System Peiformance

Debugging on TNSIR Systems

Event Management Peiformance

Product Update • Ongoing Support

T A N D E M

SPRING 1992 • VOLUME 8, NUMBER 1

4lTANDEM

EDITORIAL DIRECTOR

Susan W. Thompson

EDITOR

Steven Kahn

ASSOCIATE EDITORS: Donna Carnes, Richard Mateosian,
William Schlansky

ASSISTANT EDITOR: Mark Peters

PRODUCTION MANAGER

Anne Lewis

ART DIRECTOR: Janet Stevenson

ILLUSTRATION AND LAYOUT: Christine Kawashima, Cynthia Moore

COVER ART: Steve Elwood

ADVISORY BOARD

Mark Anderton, Terrye Kocher, Mike Noonan

Tandem Systems Rei·iew is published quarterly by Tandem Computers Incorporated.
All correspondence and subscriptions should he addressed to Tandem Systems Review.
18922 Forge Drive. Loe 216-05. Cupertino. CA 95014.

Subscriptions: $75.00 per year; single copies: $20.00. Detailed subscription information
is provided on the subscription order form at the end of this book.

Tandem Computers Incorporated assumes no responsibility for errors or omissions that
may occur in this publication.

Copyright© I 992 Tandem Computers Incorporated. All rights reserved. No part of this
document may be reproduced in any form, including photocopy or translation to another
language. without the prior written consent of Tandem Computers Incorporated.

Atalla, CD Read. CLX. CLX/R, Cyclone, Cyclone/R. Enform, Guardian, Guardian 90,
Inspect, Integrity. Measure, NonStop. NonStop-UX, PSX, SNAX, TACL, TAL, Tandem.
the Tandem logo. TMF. View Point. V80. VLX. and XL80 are trademarks and service
marks of Tandem Computers Incorporated. protected through use and/or registration in the
United States and many foreign countries.

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the USA and other
countries.

All brand names and product names are trademarks or registered trademarks of their
respective companies.

Editor's Note

Tandem has introduced RISC
technology into its Cyclone and
CLX NonStop computer families.
With TNS/R systems, Tandem users
benefit from the power and economy
of RISC technology. These systems
provide transaction processing power
comparable with that of systems that
require special facilities and staffs.
Yet they are compact, do not require
computer rooms, and can be installed
and maintained by users. These fac
tors greatly improve the economics
of large-scale online transaction
processing.

This issue includes three articles
on TNS/R systems: "Overview
of Tandem NonStop Series/RISC
Systems" by Faby and Mateosian,
"Improving Performance on TNS/R
Systems With the Accelerator" by
Blanchet, and "Debugging Acceler
ated Programs on TNS/R Systems"
by Cressler.

The feature article entitled
"Measuring DSM Event Manage
ment Performance," by Stockton,
discusses performance issues related
to event management in the Tandem
DSM environment.

This issue introduces two new
departments that will appear regular
ly in the Tandem Systems Review.
"Product Update" includes brief de
scriptions of the Tandem products
and enhancements that have been
announced in the last three months.

The "Ongoing Support" depart
ment describes a support service
available from Tandem. This issue
discusses Professional Services, a
group of consulting packages pro
vided by Tandem analysts.

This issue also includes an index
of Tandem System Review articles.
The index is a list of all articles by
subject and product. - SWT

8 Overview of Tandem NonStop Series/RISC Systems
Les Faby, Richard Mateosian

16 Improving Performance on TNS/R Systems
With the Accelerator

Manon Blanchet

28 Debugging Accelerated Programs on TNS/R Systems
Diane Cressler

4 2 Measuring DSM Event Management Performance
Mark Stockton

2 Product Update
Donna Carnes

60 Ongoing Support: Tandem Professional Services
Mary Ann Whiteman

6 3 Index of Articles

Product Update

TANDEM SYSTEMS REVIEW• SPRING 1992

Systems Products

NonStop Cyclone/R
October 1991

The NonStop Cyclone/R is an entry
level Cyclone that provides users
with 50 percent of the Cyclone trans
action power at an economical price.
The Cyclone/R makes large OL TP
applications available to more
users by combining RISC technology
with the Guardian 90 operating sys
tem and the NonStop system architec
ture. The Cyclone/R is the first
high-performance OLTP system that
does not require a computer room.

The Cyclone/R provides object
code compatibility for existing
NonStop system applications; it runs
the same object code as all other
Tandem NonStop systems. Thus,
existing user applications can run
on the Cyclone/R without any
reprogramming.

NonStop CLXIR
October 1991

The NonStop CLX/R is an entry-level
system that supports a full-function,
highly distributed platform for OL TP
applications. The CLX/R uses RISC
technology in a compact system with
full Guardian 90 operating system
compatibility. The CLX/R provides
object-code compatibility for existing
NonStop system applications; it runs
the same object code as all other
Tandem NonStop systems.

Integrity

Integrity Family: New Products
and Unix Systems Enhancements
October 1991

The Integrity product line offers
users two new systems: Model 300
and Model 1 00E. Model 300 performs
up to 100 percent faster than its pre
decessor. The increased performance
is attributable to the faster RISC
microprocessor, faster access to
memory, additional hardware
enhancements, and the new software
technology in the NonStop-UX oper
ating system, Release 1.2. Existing
Integrity systems can be upgraded
on-site to Model 300 by replacing the
existing CPU modules with the three
new CPU modules.

Integrity system Model IO0E
is a new entry-level system. It
has CPU performance equivalent to
the Model 200, but more limited
configurability.

Two new subsystems for the
Integrity systems family include
the Reliable Ethernet subsystem
and the Four Port Synchronous
Communications Controller. The
Reliable Ethernet provides LAN
environments with the Integrity
architecture's reliability and availabil
ity, which means that no single hard
ware failure can prevent access to
the LAN. The Four Port Synchronous
Communications Controller provides
bit-synchronous port for use with
SNA or X.25 communications.

Storage Products

4500 Disk Subsystem
October 1991

The new 4500 disk subsystem
provides high-performance, high
capacity external disk storage for
the NonStop Cyclone, Cyclone/R,
and CLX 800 systems. The 4500
delivers higher capacity than the
XL80 storage facility and higher per
formance than the V80. It is pack
aged in the compact Modular Storage
System, which provides floorspace
utilization, location flexibility, relia
bility, and modularity.

The 4500 offers 37.7 GB of
formatted capacity in a footprint of
6.3 square feet. It can be connected
to any NonStop Cyclone, Cyclone/R,
or CLX 800 system through the
Tandem 3128 disk controller. Disk
subsystems can be located as far as
1,640 feet away from the host.
Individual drives can be serviced
without shutting down other drives
or the rest of the system.

SPRING 1992 TANDEM SYSTEMS REVIEW 3

4

4240 Disk Drive
October 1991

The new 4240 disk drive provides
high-performance, high-capacity
internal disk storage for the NonStop
Cyclone, Cyclone/R, and CLX
systems. The 4240 has a formatted
capacity of 1.038 GB and is contain
ed in a standard customer-replaceable
unit (CRU).

The 4240 offers the highest
capacity of any of the Cyclone/R,
CLX, and CLX/R internal disk
storage devices. Using the 4240 disk
storage device, a fully configured
16-processor Cyclone/R system
(with expansion cabinets and
a total of 96 drives) can provide up
to 99.6 GB of formatted internal
storage.

5175 Tape Drive
October 1991

The 5175 is a compact, dual-density,
streaming tape subsystem for
NonStop Cyclone/R, CLX 800,
and CLX/R systems that is designed
to fit in Tandem's Modular Storage
System. The 5175 features automatic
tape threading and tensioning for
error-free loading, automatic power
up diagnostics, adjustment-free
operation, and user-performed
preventative maintenance. It stores
up to 180 MB (unformatted) of data
in a 2,400-foot tape reel.

5180 Cartridge Tape Subsystem
on NonStop Cyclone/Rand
CLX 800 Systems
October 1991

The 5180 tape subsystem is a highly
reliable streaming cartridge tape
device for NonStop Cyclone/R
and CLX 800 systems. It increases
operator productivity and provides
automatic tape handling, high perfor
mance, and configuration flexibility.

The 5180 is fully compatible
with the IBM 3480 and the recently
announced 18-track 3490 cartridge
tape subsystems. The 5180 enables
users of the NonStop Cyclone/R and
CLX 800 systems to exchange data
with IBM and IBM/PC systems that
have converted their tape processing
operations to the 3480 cartridge for
mat. Additional applications include
large database support, TMF, and any
operator-intensive application that
could benefit from the 5180 automatic
tape-loading feature.

5200 Optical Storage Facility
(5200 OSF) on NonStop CLX 800
and Cyclone Systems
October 1991

The 5200 OSF brings the function
ality and benefits of optical storage
to the NonStop CLX 800 and Cyclone
platforms. The 5200 OSF provides
CLX 800 and Cyclone users with
online, large-capacity storage,
archival, and image processing
features. It accesses data faster than
tape or microfiche and reduces data
archive management costs.

Users can connect the 5200 OSF
to Cyclone processors to support the
highest volume requirements for
large data-archiving applications.
When connected to a NonStop CLX
800 system, the 5200 OSF can
manage applications for storing
graphics, high-resolution image data,
textual data, and facsimile-scanned
documents. The new connectivity
capability of the 5300 OSF enables
existing 5200 OSF users to migrate
their storage applications to the
Cyclone and NonStop CLX 80
platforms.

TANDEM SYSTEMS REVIEW SPRING 1992

Guardian 90 Based
Software

EMS Analyzer
January 1992

The EMS Analyzer provides analysis
and reports on Event Management
Service (EMS) log files. It provides
definable search criteria that lets
users select particular EMS events
from the logs. The selected events
are routed to a designated terminal,
spooler, database, or CSV file. If
events are directed to a database or
CSV file, users can generate graphics
and special reports by using tools
such as Enform or Microsoft EXCEL
on a PC or Macintosh.

Object Monitoring Facility
(OMF)
January 1992

The OMF operations application
allows operators to set up monitoring
parameters for key system objects.
OMF provides information such
as critical events by object type,
device and subsystem availability,
system availability, and application
availability.

OMF monitors objects
in a Tandem system or network
and reports informative, critical,
or abnormal events to the local
EMS collector. Informative or
critical events are displayed on the
OMF general status and detail
screens. Events can also be written
to the Viewpoint console or made
available to management applications
such as Programmatic Network
Administrator (PNA).

Workstation and
Terminal Products (TSC)

PSX EP386SX/20 Personal
Computer
December 1991

The PSX EP386SX/20 is an entry
level workstation for personal
computer LANs. It can be used for
almost any horizontal application
(such as call center, EDI, and image
capture and retrieval) that requires
economical LAN workstations or a
communication gateway.

The PSX EP386SX/20 is avail
able in two models: Model 43 and
Model 0. Model 43 includes 2 MB
of memory, a 3.5-inch, 1.44-MB flop
py drive, a 40-MB hard drive, mouse,
and Windows 3.0. Model O does
not provide disk drives or installed
memory. Both models feature a built
in VGA video adapter, two serial
ports, one parallel port, and a mouse
port. PSX workstation options include
Net/One Ethernet, X.25/SNA, and
specialized products.

PSX CP486SX/20 Personal
Computer
October 1991

The PSX CP486SX/20 is a high
performance workstation for personal
computer LANs. It offers the perfor
mance of a 33-MHz 80386 processor
and features expandability, flexibility,
and an upgradable processor.

The PSX CP486SX/20 is avail
able in two models: Model 83 and
Model 3. Model 83 includes a 4-MB
hard drive, 80-MB hard drive, mouse,
and Windows 3.0. The basic Model 3
is user-configurable; it does not
include installed memory. Both mod
els feature a 3.5-inch, one-third-height
floppy drive and a built-in VGA video
adapter. Users can add up to 80 MB
of memory and can upgrade the pro
cessor by either adding an 80387 math
coprocessor or installing a faster
processor card.

SPRING 1992 TANDEM SYSTEMS REVIEW 5

6

PC6530 Release G31 and the
TELNET Driver Option
November 1991

PC6530 G3 l terminal emulation
software and the TELNET Driver
Option let users directly connect
a PSX workstation on an Access/One
or Ungermann-Bass LAN to
a Guardian 90 host through TCP/IP.
Using PC6530 G3 l and the TELNET
Driver Option, a workstation can
function in true 6530 block and
conversational mode and run multiple
6530 sessions. Updating PC6530
to the G3 l release does not require
purchasing updates for the alternate
input device or X.25 connectivity
options.

AST Premium Exec Notebook
Computer
December I 991

The AST Premium Exec Notebook
computer, now available through
Tandem, provides desktop PC power
and storage capacity in a compact
and portable package. The Notebook
computer weighs less than 7 pounds,
fits inside a briefcase, and has
a rechargeable NiCad battery pack
that provides power for up to 3 hours.

Standard features include
a 20-MHz 803865x processor, 2 MB
of RAM, 3.5-inch floppy drive, an
internal 60-MB hard disk, and an
integrated 640x480 VGA screen
that provides 32 shades of gray.
Options include a 4-MB memory
SIMM, a spare battery backup, and
a battery charger. An optional, inter
nal 2400-baud modem is available
in the U.S.

Image Storage Server (ISS)
October 1991

Tandem's LAN network-based
ISS provides high-speed, secure
access to large image databases.
The ISS manages images for maxi
mum efficiency in Guardian 90 based
Tandem applications; it can readily
store and manage as much as a ter
abyte of information. Frequently
accessed images are stored in a large
RAM and magnetic memory cache
for immediate LAN availability; less
frequently accessed images are kept
in optical storage. Both erasable and
WORM optical media are available.

Communications, applications,
and workstations can access and
command the ISS by using File
Transfer Protocol (FTP) on an
Ethernet network. ISS is available
in four expandable models, which
offer different storage capacities.

TANDEM SYSTEMS REVIEW SPRING 1992

Security and POS
Products (Atalla)

NDX UNIX System Servers
October 1991

Tandem NDX UNIX system servers
combine the power of SCO UNIX
System V with the high performance
and reliability of the NDX ST486/33
EISA computer. Each NDX UNIX
system server provides up to 80 MB
of RAM and 2 GB of storage and
can support up to 64 personal
computers on a TCP/IP LAN or
128 asynchronous devices.

An optional X.25 facility supports
up to 128 communications channels,
which allows the NDX UNIX system
server to conduct multiple sessions
with Tandem's Guardian 90 based
NonStop systems, Tandem's
UNIX-based Integrity systems, or
other hosts in remote locations.

Cryptographic Security Manager
(CSM)
October 1991

The Tandem/ Atalla CSM is a
Guardian 90 based server that enables
application programmers to easily
incorporate cryptographic data secu
rity functions into their applications
without requiring detailed crypto
graphic knowledge. CSM supports
services such as Wholesale Banking
Server, Authentication Server, and
SNAX/CDF Cryptographic Server.

CSM substantially reduces the
time required to add cryptographic
protection to Guardian 90 applica
tions andis the foundation of an
integrated end-to-end security
architecture thatprotects network
high-exposure transactions from
compromise. CSM issupplemented
by optional servers that provide
specific higher-level functions such
as ANSI and ISO cryptographic and
key management standards.

Product Programs

CD Read
October 1991

Tandem's CD Read provides a com
plete set of Guardian 90 operating
system software manuals on a single
CD-ROM disc. CD Read provides
a menu-driven graphical user inter
face as well as powerful commands
that make it easy to locate informa
tion. For example, users can perform
keyword searches within graphics
as well as text. CD Read can be con
nected to LAN s and works with
a variety of workstations, including
IBM PCs and Macintosh computers.

SPRING 1992 TANDEM SYSTEMS REVIEW 7

8

Overview of Tandem
NonStop Series/RISC Systems

andem'" NonStop"M computer
systems and the Tandem
Guardian 90 ,M operating
system have long provided
excellent solutions for
a wide range of applications.
Tandem has now introduced

Tandem NonStop Series/RISC (TNS/R) systems
into its Cyclone'M and CLX" NonStop computer
families. TNS/R systems maintain complete
compatibility with the Guardian 90 operating
system and with users' existing application
software.

TNS/R systems vary in expandability,
connectivity, and transaction processing power,
but all use a common central processing unit
based on the approach to computer design
called reduced instruction set computing
(RISC). TNS/R systems allow Tandem users to
benefit from the power and economy of RISC
technology. They are compact, do not require
computer rooms, and can be installed and
maintained by users. Nonetheless, they provide
transaction processing power comparable with
that of systems that require special facilities
and staffs. These factors greatly improve the
economics of large-scale online transaction
processing (OLTP) and extend downward the
range of applications for which OL TP is
economically feasible.

TNS/R systems are based on the same paral
lel processing architecture as other NonStop
systems. For Tandem CLX systems, users can
transform their existing equipment into TNS/R
systems simply by replacing the processor and
memory boards. This capability protects users'
investment in their existing hardware.

This article describes the approach Tandem
used to produce RISC-based NonStop systems.
It includes a summary of the fundamentals of
RISC technology and an explanation of how
this technology benefits users of Tandem
NonStop systems.

TANDEM SYSTEMS REVIEW• SPRING 1992

The Technical Challenge
In planning for its TNS/R products, Tandem
faced a classic decision: whether to design
from scratch or use commercially available
components. Tandem chose to use a commer
cially available microprocessor that was
designed using RISC technology. This decision
allowed Tandem to provide the new computer
designs quickly and at an economical price,
while still allowing users to benefit from
the many millions of development dollars that
have been and continue to be spent by the
microprocessor manufacturer. Because Tandem
chose a microprocessor with a well defined
future growth path, Tandem's design engineers
can look forward to working with increasingly
more powerful and economical components
within an architecturally stable framework.

The use of a commercially available
microprocessor presented Tandem with a dif
ficult technical problem: how to maintain
the necessary compatibility with existing
applications. Tandem's solution allows users
to move their existing applications to TNS/R
systems without change and to use their
current programming languages, operating
system, and debugging tools to develop new
applications for the new systems.

Before the introduction of TNS/R systems,
all Tandem NonStop Series (TNS) computers
used a common instruction set, called the TNS
instruction set. The TNS instruction set is based
on an approach to computer design called com
plex instruction set computing (CISC). The
TNS/R systems have their own, entirely differ
ent instruction set based on the RISC approach.
This article uses the term TNS to refer to
Tandem's architecture, languages, and com
puters based on the CISC approach. Tandem
developed technology to allow RISC systems
to execute the CISC instruction set. This means
that TNS/R systems can execute existing TNS
object files.

Running unmodified TNS object files on
TNS/R systems achieves only part of the
performance improvement possible with the
new technology. To allow users to achieve
even greater performance improvement,
Tandem has developed its Accelerator soft
ware product. The Accelerator processes TNS
object files and produces accelerated object
files that use the TNS/R instruction set.
Tandem has applied this process to all of the
performance-critical parts of the Guardian 90
operating system and the associated system
calls. Users can optionally accelerate their
application object modules for still more
performance improvement.

Tandem ensured that TNS/R systems can
function in networks of Tandem NonStop
systems by designing a special object file
format that contains both accelerated (TNS/R)
and nonaccelerated (TNS) object code. This
presents users with a much simpler manage
ment task than requiring two separate object
files for each program. Existing TNS systems
can execute programs that have been acceler
ated for TNS/R systems simply by ignoring
the TNS/R portion of the object code.

SPRING 1992 • TANDEM SYSTEMS REVIEW 9

Figure 1.
Block diagram o{TNSIR
CPU hoard.

JO

Figure 1

Overview of the TNS/R Hardware
All TNS/R systems are based on the same
basic CPU, called a NonStop System RISC
Model L (NSR-L) processor. TNS/R systems use
from 2 to 16 of these processors. Figure 1 is a
diagram of the NSR-L processor. The processor
contains two Mips R3000 RISC microprocessors
and separate 32-bit-wide instruction and data
caches'. The microprocessor can access both
a 32-bit instruction and a 32-bit data item on
every cycle. The basic 32 megabytes of main

1 A cache is a relatively small, fast memory in which frequently acccsse~
portion~ of the relatively larger, slower main memory are kept _tempor~nly.
The circuitry accompanying a cache decides which portions of the marn
memory arc to be kept in the cache at any time. The same circuitry recog
nizes the memory access requests that can be satisfied from cache and
intercept.... them.

IPBX bus

IPBY bus

To 1/0
channel

memory can optionally be expanded to
128 megabytes. Main memory is connected to
the CPU by memory control chips (MCCs),
which perform the memory refresh function,
bank selection, and interleaving. They also
perform error detection and correction. Tandem
designed special circuitry called the gateway
chip set (GCS) to achieve fault tolerance with
commodity RISC microprocessors. Each NSR-L
processor has two RISC microprocessors, the
master and the shadow. Each time the master
R3000 microprocessor performs an operation,
the GCS causes the shadow R3000 to perform
the same operation with the same operands
one cycle later. The GCS then compares the
results of the two operations and halts the
NSR-L processor if the results are not the same.
By allowing the shadow microprocessor to do
the operation after the master microprocessor,
Tandem can run the NSR-L microprocessors
at full speed.

TANDEM SYSTEMS REVIEW SPRING 1992

The gateway chip set also implements the
memory access breakpoint (MAB) register, the
hardware timers, and the interrupt registers
(INTA and INTB). These registers are needed
by TNS applications, but they have no counter
parts in the R3000 microprocessor. The GCS
also provides the interface between the R3000
chips and the rest of the processor module,
including memory.

Tandem made TNS/R systems compatible
with the controllers and peripherals of the
CLX and Cyclone computer systems. This
helps CLX users preserve their investments
when upgrading to TNS/R systems. Many of
the support chips on the NSR-L processor
board are the same as on CLX CPUs. The 1/0
controller (IOC) and interprocessor bus chips
(IPBX and IPBY) are the same. The mainte
nance diagnostic processor (MDP) is similar.

The logic sequencing chip (LSC) is a new
circuit that Tandem designed to serve as an
interface between the 16-bit 1/0 bus of Tandem
NonStop systems and the 32-bit I/O bus of
the R3000 microprocessor. The LSC also
connects expansion memory and the MDP
to the gateway chip set.

Overview of the TNS/R Software
Nearly all TNS programs, even most privileged
programs, can run without change on a TNS/R
system. The Guardian 90 operating system,
version C30.06 and beyond, runs on both TNS
and TNS/R systems. Users developing new soft
ware for TNS/R systems can write and debug
TNS programs exactly as on TNS systems. The
user data stack and the extended data stack are
bit-for-bit the same as on TNS systems. At the
beginning of each high-level language source
statement, the user data memory is exactly the
same as on TNS systems.

A very small number of application
programs will not run unchanged on TNS/R
systems. For example, if the program explicitly
modifies trap return addresses, it may have
to be changed. (See Programmer's Guide for
TNS/R Systems, 1991.) During the extensive
beta testing period for the TNS/R systems, only
one TNS application program required changes
to enable it to run on a TNS/R system.

Although most privileged TNS programs
can run directly on TNS/R systems, a few
might need modification. In general, Tandem
discourages users from writing privileged
code for any of its systems. Users who must
do so or who have trouble moving privileged
programs to TNS/R systems should consult a
Tandem analyst for assistance.

SPRING 1992 TANDEM SYSTEMS REVIEW 11

Figure 2

TNS system

Figure 2.

Execution ofTNS CISC
instructions on TNS and
TNSIR systems.

12

TNS/R system

Implementing TNS Instructions
on TNS/R Systems
Figure 2 shows how Tandem has implemented
the TNS instruction set on TNS/R systems.
The left side of the diagram shows how TNS
systems execute TNS instructions. Program
mers write programs (for example, an appli
cation requester) that use TNS instructions.
These are the instructions generated by the
TNS compilers that users are familiar with.
As the TNS system receives each instruction,
it directs its internal circuitry to execute a
corresponding sequence of steps. The pro
grams describing these steps are called
microcode. They reside in a memory built
into the CPU of the TNS system.

The right side of Figure 2 shows how a
TNS/R system executes the same TNS instruc
tions. As the TNS/R CPU receives each TNS
instruction, it directs the RISC microproces-
sor to execute a corresponding set of TNS/R
instructions. Tandem calls these instructions
millicode. Tandem chose the term millicode
to emphasize the similarity between the way
TNS/R systems handle TNS instructions and the
way TNS systems do. The term also reflects the
difference between the two approaches.

Microcode on TNS systems controls move
ment of data along hardware paths and into
internal registers. It mobilizes the functional
units of the CPU. These paths, registers, and
functional units are internal to the CPU and
most of them cannot be addressed directly by
programmers. Furthermore, each microcode
instruction directs as many operations as the
CPU can carry out simultaneously. Millicode
on TNS/R systems consists entirely of manipu
lations of the programming model of the RISC
microprocessor. That is, it consists of programs
written in the TNS/R instruction set. The RISC
microprocessor executes TNS/R instructions in
approximately the same way the TNS system
executes microcode.

The Accelerator
Millicode on TNS/R systems allows users to
move TNS programs directly to TNS/R systems.
This simple approach achieves some of the
benefits of moving to the RISC microprocessor
without any of the costs of adapting the
application to the new computing environ
ment. TNS/R users can achieve even greater
performance gains by adapting their existing
applications to the RISC environment.

TANDEM SYSTEMS REVIEW• SPRING 1992

Tandem developed its Accelerator product
to adapt TNS programs to the TNS/R environ
ment. The Accelerator is an optimizing compiler
that accepts TNS object format as its source
language and generates RISC instructions to
perform the same task. For example, a TNS
instruction that places a 5 into a register also
indicates that the condition code is positive.
The Accelerator can look ahead in the program
and check if the program tests that condition
code. If it does not, the Accelerator eliminates
the extra RISC instructions that would perform
condition-code setting.

In general, the Accelerator generates only
those instructions required to execute the pro
gram correctly. It also performs other optimi
zations that reduce accesses to memory and
unnecessary recalculations.

The Accelerator runs on any TNS or TNS/R
system. It reads a TNS object file and produces
a new object file that contains both the original
TNS object program and an equivalent TNS/R
program, which executes more efficiently
than millicode. The same object file might be
executed sometimes by a TNS/R system and at
other times by a TNS system. The TNS system
simply ignores TNS/R code. The TNS/R system
uses the TNS/R code to execute the function
more effectively.

Because the Accelerator produces a new
object file, acceleration is a one-time process.
Tandem has already applied this process to the
performance-critical portions of the Guardian 90
operating system and the programs that imple
ment its user services. Figure 3 shows how both
nonaccelerated and accelerated user processes
can execute in the TNS/R environment.

Figure 3

Typical applications, which spend most of
their time executing system code or waiting
for I/O devices to perform their functions, gener
ally do not need to be accelerated. Acceleration
has a few costs, principally the time required
to run the Accelerator and the increased sizes
of object files on disk and of executable pro
grams in memory. Users need to weigh these
costs against the potential benefits of higher
performance in deciding whether or not to
accelerate some of their application code. The
article by Blanchet in this issue of the Tandem
Systems Review explores the tradeoffs involved
in this decision.

SPRING 1992 • TANDEM SYSTEMS REVIEW

Figure 3.

TNS/R execution
environment showing both
nonaccelerated and
accelerated user processes
and the Guardian 90
operating system.

13

14

Users who decide to accelerate their
programs can almost always do so directly
from object files, without ever looking at the
source code. The object programs produced
by high-level language compilers like TAL'M
and COBOL generally give users no problems.
Programs that explicitly manipulate the register
stack, use CODE statements, or implement
trap handlers will work in most cases. For
exceptions, see Programmer's Guide for TNSIR
Systems, 1991. The article by Cressler, also
in this issue of the Tandem Systems Review,
addresses the process of moving TNS programs
to TNS/R systems and shows how to handle
the few special cases in which programs cannot
be moved readily.

RISC Technology
The RISC approach to computer design,
which arose in the 1980s, responds to two
basic trends in computer technology. Memory
chips have become denser and faster, eliminat
ing the advantage of on-chip microcode in
microprocessors. High-level languages (HLLs)
have become more widespread and more
efficient, reducing the need to cater to assembly
language programmers. The new RISC designs
take advantage of these trends by relying on
software for many functions that were handled
by hardware in previous computers.

The rule for RISC is to measure each design
decision by its effect on the performance of
typical large HLL programs. If a hardware
feature yields a substantial performance gain
for such programs, the designers include it.
Otherwise, they rely on software to perform
that function. Using this approach, designers
found that they could best use the available
technology by making their processors adhere
to the following principles:

■ Use a few simple instructions and memory
addressing methods.

■ Use on-chip circuitry rather than microcode
to implement instructions.

■ Use an assembly-line technique, called
pipelining, for instruction execution.
■ Rely on optimizing compilers to enforce
hardware restrictions and maximize efficiency.

■ Restrict off-chip memory accesses to the
loading or storing of on-chip memory locations,
called registers.

■ Use operands in registers for all arithmetic
operations.

■ Dedicate the chip area saved by the above
simplifications to providing a large on-chip set
of registers as well as reducing the overall size
of the chip.
■ Rely on internal and external high-speed
memory, called caches, for fast access to data
and programs.

TANDEM SYSTEMS REVIEW• SPRING 1992

These principles allow the instruction
pipeline to run smoothly. The RISC pipeline
improves performance by increasing the
instruction throughput.

The speed of execution of any program
depends upon two factors: the number of
instructions and the average length of time to
execute each instruction. The RISC approach
achieves faster execution than older design
approaches because it allows a large decrease
in the average length of time to execute each
instruction but entails only a small increase in
the number of instructions needed for typical
HLL programs.

Conclusion
Tandem's TNS/R systems improve the econo
mics of large-scale OLTP and broaden the
range of applications for which OLTP is
economically feasible. TNS/R systems pro
vide substantial capabilities and lower costs
by combining the technological advances
of RISC architecture with the advantages of
Tandem NonStop systems.

The TNS/R design protects users' hardware
investment. TNS/R systems are compatible
with the controllers and peripherals of the
CLX and Cyclone lines. Existing CLX systems
can be upgraded to TNS/R systems simply by
replacing processor and memory boards.

TNS/R systems allow migration and expan
sion of existing TNS applications. Existing
TNS applications run on TNS/R systems with
out modification, thereby preserving users'
software investment. Users can develop new
applications for TNS/R systems by using the
same languages and tools they currently use for
TNS systems. Tandem's millicode approach and
its Accelerator product make this possible.

References
Blanchet, M. 1992. Improving Performance on TNS/R Systems
With the Accelerator. Tandem Systems Review. Vol. 8, No. I.
Tandem Computers Incorporated. Part no. 65250.

Cressler, D. 1992. Debugging Accelerated Programs on TNS/R
Systems. Tandem Systems Review. Vol. 8, No. I. Tandem
Computers Incorporated. Part no. 65250.

Programmer's Guide for TNSIR Systems. 199 I. Tandem
Computers Incorporated. Part no. 63927.

Acknowledgments
Many people helped with this article. The authors especially
wish to thank Mark A. Taylor and Dave Garcia for describing
the hardware; Duane Sand and Kristy Andrews for an introduc
tion to RISC and the Accelerator; Alan Rowe for explaining the
Guardian 90 changes; Mitch Butler for explaining the memory
layout; Charles Levine and Art Sheehan for providing
performance statistics.

Les Faby develops and teaches courses covering system software
internals. He is responsible for TNS/R software training within the
Software Development group. From 1983 to 1987, he supported
low-level database products and the Guardian 90 operating
system. Before joining Tandem, Les worked as a systems
programmer and software developer.

Richard Mateosian is a freelance writer and computer systems
consultant. He has worked as a systems programmer, a university
lecturer, and a strategic marketing manager for microprocessors.
His published works include books on microprocessors and
programming and many technical articles. Richard is a regular
columnist in Micro, a publication of the Computer Society of
the IEEE.

SPRING 1992 TANDEM SYSTEMS REVIEW 15

16

Improving Performance on TNS/R
Systems With the Accelerator

andem'M has recently intro
duced Tandem NonStop'M
Series/RISC (TNS/R) sys
tems, based on reduced
instruction set computing
(RISC) technology. TNS/R
systems are compatible

with existing Tandem NonStop Series (TNS)
systems, so existing applications can run
unchanged on TNS/R systems. They combine
the performance and economy of RISC systems
with the advantages of the Tandem NonStop
architecture.

TNS applications running on a TNS/R system
benefit only partially from the power and econo
my of RISC technology. A one-time process
called acceleration improves the performance
of applications by allowing them to use
the RISC technology more effectively. The
acceleration process is accomplished by
Tandem's Accelerator software product, which
operates on a TNS object file and produces a
TNS/R, or accelerated, object file. The accelerat
ed object file consists of the original object file
and additional information to allow it to run
more efficiently on TNS/R systems. The acceler
ated file runs exactly as it did before on TNS
systems and can run several times faster on
TNS/R systems.

Tandem has already applied the acceleration
process to the performance-critical portions of
the Tandem Guardian 90'" operating system and
its associated utilities. Users receive the perfor
mance benefits of this acceleration, because most
online transaction processing (OLTP) applica
tions spend a large proportion of time executing
system code. Users can usually achieve further
performance increases by accelerating their
own application code, but the benefit is
different for each application.

TANDEM SYSTEMS REVIEW• SPRING 1992

Users must weigh the costs and benefits
of accelerating all or part of their application
code. This article discusses the issues that
users must consider in deciding whether or
not to accelerate specific application programs.
It describes a set of tools designed to help
in the analysis and selection of programs to
accelerate. The article is directed at application
programmers and system managers. The
reader does not need a technical knowledge of
TNS/R systems.

The TNS/R Environment
TNS/R systems bring the power and economy
of RISC technology to OLTP applications. Faby
and Mateosian, elsewhere in this issue of the
Tandem Systems Review, describe the approach
Tandem used to achieve this technological
advance while remaining compatible with
existing TNS systems.

A TNS/R system includes both an outer and
an inner instruction-processing environment.
The outer environment is the familiar TNS
architecture used in all Tandem computer
systems. Tandem has implemented the TNS
environment on TNS/R systems using a set
of routines called millicode. (See Faby and
Mateosian, 1992.) The inner environment,
called the TNS/R environment, is the RISC
architecture defined by the microprocessor
that Tandem has chosen as the heart of its
TNS/R systems. Existing TNS programs can
run unchanged in the outer layer. When they
do so, they already benefit from the fast RISC
microprocessor and from the accelerated per
formance of the Guardian 90 operating system.
The Accelerator program allows TNS programs
to exploit even more of the power of the
innerRISC layer without source code changes.

Figure 1

TNS object file

The Accelerator
Figure I shows how the process of accelera
tion transforms a TNS object file into an
accelerated TNS/R object file. The Accelerator
is supplied with the Guardian 90 operating
system (version C30.06 or later) and can run
on TNS or TNS/R systems.

SPRING 1992 TANDEM SYSTEMS REVIEW

Accelerated
TNS/R object file

Figure 1.

The process
of acceleration.

17

Table 1.

Effects of migration and acceleration.

Program

Program A
(mostly application code)

Program B
(mostly system code)

TNS system

Relative execution speed

TNS/R system

3

4

TNS/R system
(accelerated)

6

4.1

The Accelerator accepts TNS object files as
input and produces accelerated object files.
Because accelerated object files contain both
the original TNS object code and the corre
sponding RISC code, they are larger than the
original TNS object files. This allows accelerat
ed object files to run either on TNS systems or
on TNS/R systems.

The Accelerator functions like an optimizing
compiler. When a TNS program runs in the
outer environment of a TNS/R system, the milli
code treats each TNS instruction like a separate
program. The Accelerator treats successions of
separate millicode routines as larger program

units. Depending on user-specified options,
these larger units correspond either to source
statements or to entire procedures. The
Accelerator applies optimizing techniques to
these units to take advantage of features of the
RISC architecture. For example, the RISC
microprocessor has a large number of registers.
If a variable is used by several successive TNS
instructions, the Accelerator generates RISC
code in which the variable is read from mem
ory into a register the first time, and thereafter
read from the register.

One of the most important optimizations
performed by the Accelerator concerns the con
dition codes of TNS systems. Millicode must
update flags corresponding to TNS condition
codes each time it processes a TNS instruction.
The Accelerator determines which of these
codes the TNS program will actually use. It
omits the TNS/R instructions that would other
wise update the corresponding flags needlessly.

Users can control the degree of optimization
that the Accelerator performs. The Accelerator
provides several options that alter the balance
between error checking and execution speed.
These are grouped into three option packages,
called safe, common, and.fast, which users
can select at the object file level when they
run the Accelerator. At the individual proce
dure level, users can make more specific
tradeoffs by specifying options in the source
code. For example, users who are sure that the
code that implements a procedure never gener
ates an overflow condition can eliminate the
test for overflow from the RISC code that the
Accelerator generates for that procedure.

Acceleration does not affect the performance
of the program in the TNS environment but can
result in large improvements when the RISC
code runs on TNS/R systems. More information
about the Accelerator appears in the
Accelerator Manual (1991).

18 TANDEM SYSTEMS REVIEW SPRING 1992

Considerations for Accelerating
Applications
Tandem has accelerated all system code
(SC) and all system library code (SL) of the
Guardian 90 operating system. Applications
spending a significant number of CPU cycles
in SC or SL benefit immediately from this.
Applications that spend a significant number
of cycles in their own code can benefit from
acceleration.

Table 1 illustrates the potential benefits of
acceleration. The numbers indicate relative
performance. Each program's performance on
a CLX™ 600 system is taken to be 1.0, and the
other numbers indicate execution speed after
migration to a TNS/R system. Program A
spends most of its CPU cycles in application
code, while Program B spends most of its time
in system code.

The example shows why it is important
to make performance measurements both
before and after acceleration. In the case of
Program A, acceleration doubles the perfor
mance. In the case of Program B, most of the
performance benefits come from the new
hardware and the faster operating system.
Acceleration adds little.

The Accelerator provides few performance
benefits for I/O-intensive applications. The per
formance of these applications depends largely
on the speed of physical I/O devices.

Most OLTP applications spend a large por
tion of their time executing Guardian 90 sys
tem calls, which have already been accelerated,
and the rest of their time executing application
code. The more time a program spends execut
ing its own code, the greater the performance
improvement from acceleration. Typical OLTP
applications spend 85 percent of their time
executing system calls, so they do not benefit
much from acceleration.

Users should consider both the benefits and
costs of acceleration before deciding which
application programs to accelerate. These
considerations, coupled with the set of tools
and recommendations discussed later, can help
users make educated decisions.

SPRING 1992 • TANDEM SYSTEMS REVIEW 19

20

Table 2.

Approximate acceleration rates on a lightly loaded VLX
system.

Procedure size Instructions
(no. of instructions) per second

Less than 20 15

Between 20 and 50 25

Between 50 and 500 40

Between 500 and 2000 25

Greater than 2000 15

Time Required to Run the Accelerator
The following steps must be followed to pro
ceed from a source program to an accelerated
object file:

1. Compile the individual Transaction
Application Language (TAL'M), COBOL,
or other source programs to produce
object files.

2. Bind the object files into a single TNS
object file.

3. Accelerate the TNS object file to produce
an accelerated object file.

4. Perform an SQL compilation (SQLCOMP)
on the accelerated file if the original source
programs contain SQL statements.

Only step 3 is new. The other steps are
required for any TNS program. The entire
sequence of four steps must be performed
each time the source code changes.

A number of factors influence the elapsed
time required to run the Accelerator. They
include the complexity of the code; the size of
the program, including the size of the proce
dures; and the workload, speed, and memory
configuration of the CPU used. The Accelerator
processes TNS instructions at a rate that de
pends roughly on the procedure size. Table 2
shows this relationship on a lightly loaded
Tandem VLX'" system.

Users can use the Tandem Binder program
to determine the sizes of procedures. The time
required to accelerate an object file containing
several procedures is the sum of the times re
quired for the individual procedures. For very
large procedures, users can expect acceleration
to consume about 45 minutes per code segment
on a VLX system, or about half that time on
a TNS/R system.

Size of Accelerated Object Files
Figure 1 shows a TNS object file and the corre
sponding accelerated object file. The TNS exe
cutable, Binder, and symbols regions are
identical in both files. The accelerated file also
contains a TNS/R executable region, which is
larger than the TNS executable region. It takes
more of the simple RISC instructions to do the
same job as the complex instructions included
in the TNS executable region.

Occasionally the Accelerator will not con
vert a section of TNS code completely into
TNS/R instructions because of the way Tandem
has implemented the TNS environment on
TNS/R systems. When such points are reached
during execution, the program switches from
TNS/R code to TNS code, after which it contin
ues executing TNS code until it reaches a point
at which it can conveniently switch back. These
switches between instruction sets are called
transitions.

TANDEM SYSTEMS REVIEW• SPRING 1992

Transitions are normal events that do not
affect the correctness of programs. The need
for them explains why accelerated object files
must contain both TNS and TNS/R executable
regions, even when there is no need for the
object file to be portable between TNS and
TNS/R environments.

The ratio between the size of the accelerated
object file and the size of the TNS object file
depends on a number of factors. It is possible
to remove the Binder and symbols regions
from a TNS object file. Such a file is called
a stripped object file. The Accelerator can pro
cess a stripped TNS object file to produce an
accelerated object file. The resulting TNS/R
executable code will probably execute more
slowly than the code that would result if the
TNS object had not been stripped. This hap
pens because the TNS/R code will be forced
to make more transitions into TNS code at run
time. Therefore, Tandem recommends that
only unstripped object files be accelerated. The
accelerated file can then be stripped of Binder
and symbols regions to save disk space in the
production environment.

An accelerated object file is about twice the
size of the original TNS object file. A stripped
accelerated file is about four times the size of
the stripped TNS object file. These ratios will
vary among applications, but they can be used
for planning purposes. They give a rough idea
of the amount of disk storage that accelerated
object files require.

The larger size of accelerated object files
means that they also require more memory
at run time. A rule of thumb is that an accel
erated program needs three times the code
space, while the amount of data space is
unchanged. Thus if a TNS application uses
0.25 megabytes of main memory for code
and 0.75 megabytes for data for a total of
1 megabyte, the corresponding accelerated
application will use 0.75 megabytes for code
and the same 0.75 megabytes for data, for
a total of 1.5 megabytes. The ratio of memory
use in this case is 6:4, a 50 percent increase.
A TNS/R CPU board contains 32 megabytes
of memory.

SPRING 1992 • TANDEM SYSTEMS REVIEW 21

Figure 2.

A sample application
pro.file o_f'CPU utilization
application time (AT) plus
system time (ST)-for three
different scenarios.
(a) Process A executing on
a TNS system. (h) Process
A running on a TNSIR
system. (c) An accelerated
Process A running on a
TNSIR system.

22

Figure 2

(a)

(b)

(c)

f-------- CPU utilization: 6.63% ----I

Testing of Applications on TNS/R Systems
Testing is normally the final step in the
process of placing an application program
into production. This is no different for
accelerated programs, but several cases need
to be discussed in detail.

If an application is in production on a TNS
system, Tandem advises first updating the
Guardian 90 operating system on the TNS
system to C30 and verifying that the applica
tion runs correctly there. Users should follow
their usual testing practices for moving to
a new Guardian 90 release. They then should
follow the steps in the next paragraph to
upgrade the hardware.

If an application is in production on a TNS
system running the C30 version of the operat
ing system and the underlying hardware is
upgraded to a TNS/R system, users can move
their unmodified, unaccelerated application
code to the TNS/R system and perform the
same level of testing that they normally do
when moving to a new hardware platform.
A very few programs that run properly on TNS
systems will require modification before they
run correctly on TNS/R systems.

Tandem advises users wishing to accelerate
some of their unmodified application code to
test it sufficiently after acceleration to verify
that it still works properly. Users should bear
in mind that there is an extremely small class
of TNS programs that run correctly on TNS/R
systems but still require modification before
their accelerated versions run correctly. (See
Programmers Guide for TNSIR Systems, 1991,
when either TNS or accelerated program modi
fications are necessary.)

When users wish to modify application
code or develop new applications for TNS/R
systems, Tandem recommends performing
the iterative cycle of debugging and source
code modification in the TNS environment,
then accelerating the working application and
testing it. This is because debugging TNS
programs is easier than debugging the corre
sponding accelerated programs. (See the
article by Cressler in this issue of the Tandem
Systems Review.)

TANDEM SYSTEMS REVIEW SPRING 1992

Profiling an Application
Users should be able to estimate the costs
of acceleration by applying the guidelines
described earlier. The tradeoff is the perfor
mance improvement attributable to accelera
tion. The process of profiling described here
will help users estimate the amount of improve
ment to be expected from accelerating any
particular application program. Users must
then examine their service-level objectives to
decide whether the available improvement is
worth the cost.

Tandem recommends the following profiling
procedure for determining which programs to
accelerate.

1. Place the program into one of three categor
ies, based upon how its performance affects
overall application performance: critical
to overall performance, affecting overall
performance, or not likely to affect perfor
mance. In doing so, look at the relation of
the application to components such as mem
ory, disks, and communications, which also
affect throughput, path length, and response
time. If the program is unlikely to affect
overall performance, do not accelerate it.
If the program is critical to overall perfor
mance, follow the procedures described
in the next section. If the program falls
into the middle category, continue with the
following steps.

2. Determine whether the program is CPU
intensive or 1/0 intensive. Users should
know where the program is spending most
of its execution time, either by understand
ing its design or by measuring its perfor
mance. The Accelerator will improve the
performance of a CPU-intensive program
but is less likely to benefit an I/O-intensive
program.

3. Determine the CPU utilization of each
program. Accelerating a program that con
sumes a small percentage of CPU time will
have a small impact on system performance.
In typical systems, users should concentrate
on the 20 percent of user processes that
consume 80 percent of the CPU cycles
(the 80-20 rule). This will give a good
performance gain at a reasonable cost.
Measure'", Tandem's system performance
measurement product, can assist in this task.

4. Select user processes with significant time
in user code (UC) and user library code (UL).
As a rule of thumb, if a program spends
85 percent or more of its time in system code
(SC) and system library code (SL), the main
performance gain has already been achieved
because the SC/SL has already been acceler
ated on TNS/R systems. To help assess the
relative amounts of time spent in UC/UL and
SC/SL, users can obtain a set of tools called
the application profiling tools from their
Tandem analysts.

Figure 2 illustrates the process of profiling
a typical OLTP application. The first bar, (a),
shows that over 90 percent of the application's
time is spent in SC/SL, represented here by ST.
The performance improvements gained from
acceleration are strongly related to the time
spent in application code, represented by AT.
In this example, overall performance would
benefit only slightly from acceleration, because
AT represents only a small percentage of total
CPU utilization. (AT+ ST= total CPU utiliza
tion.) However, if the percentages on the TNS
system were reversed, that is, AT= 31. 73 per
cent and ST= 2.75 percent, the application
would benefit greatly from acceleration.

SPRING 1992 TANDEM SYSTEMS REVIEW 23

Figure 3.

A sample En.form report.

24

Figure 3

Application Characterization report for System \D (C30).

Process Process CPU
CPU UC/UL SC/SL UC/UL

Name PIO Program-Name Util Util Util Util

$P1CC 5, 22 $0012 XB100BJ IASLO 11.94% 49.59% 50.41% 5.59%
$XD04 5, 10 $SYSTEM SYS34 X250BJ 10.91% 71.75% 28.25% 7.74%
$XD02 5, 11 $SYSTEM SYS34 X250BJ 10.53% 70.22% 29.78% 7.25%
$XD03 5, 9 $SYSTEM SYS34 X250BJ 10.42% 69.78% 30.22% 7.18%
$XD01 5, 12 $SYSTEM SYS34 X250BJ 10.21% 69.90% 30.10% 7.04%

5, 4 $SYSTEM SYS34 OSIMAGE .78% 6.41% 93.59% .04%
$MONITOR 5, 0 $SYSTEM SYS34 OSIMAGE .02% 42.85% 57.15% .00%

54.81 380.50 319.50 34.84

$0012 7, 6 $SYSTEM SYS34 OSIMAGE 13.56% 62.04% 37.96% 8.12%
$P1CE 7, 29 $0012 XB100BJ IASLO 12.14% 50.65% 49.35% 5.93%
$PD04 7, 21 $0013 XPSIMOBJ PSIM 5.60% 24.77% 75.23% 1.34%
$PD01 7, 25 $0013 XPSIMOBJ PSIM 5.60% 25.32% 74.68% 1.40%
$PD02 7, 30 $0013 XPSIMOBJ PSIM 5.55% 23.80% 76.20% 1.27%
$PD03 7, 26 $0013 XPSIMOBJ PSIM 5.49% 25.65% 74.35% 1.37%
$0012 7, 12 $SYSTEM SYS34 OSIMAGE 3.86% 67.89% 32.11% 2.53%

54.91 642.25 757.75 22.87

398.45 197.52

CPU Util: For each process, the percentage of CPU utilization consumed during the measurement
window (default 15 minutes)

Process UC/UL Util: Of the CPU Util, percentage of time spent in user code (UC.n and/or UL.n).

Process SC/SL Util: Of the CPU Util, percentage of time spent in system code (SC.n and/or SL.n).
CPU UC/UL Util: Percentage of total CPU utilization spent executing in user code (UC.n and/or UL.n).
This is equivalent to (CPU Util) x (Process UC/UL Util).

Programs Critical to Overall
Performance
For most programs, the Accelerator's default
behavior provides most of the improvement
possible and requires little effort on the part
of users. However, some programs are so
critical to achieving overall performance goals
that users are willing to take extra steps to

obtain small additional improvements in
execution speed. These steps are summarized
in order of importance:

■ Be sure that the Binder and symbols regions
are included in the original TNS object file.
■ Determine whether accelerator options
can be safely used to trade error checking
for speed.

■ Modify the source code to reduce situations
that force the Accelerator to generate transi
tions to TNS code.

■ Modify the source code to avoid situations,
called compatibility traps, that TNS/R systems
handle automatically but less efficiently (for
example, misaligned pointers).

Information on all of the above items
appears in the Programmers Guide for TNS/R
Systems, 1991.

TANDEM SYSTEMS REVIEW SPRING 1992

Application Profiling Tools
Tandem developed application profiling
tools to help users decide which programs to
accelerate. These tools include a Tandem
Advanced Command Language (T ACCM)
macro to configure a performance measure-

f E 40 TM ment using Measure and a set o niorm
query language/report formatter queries.
The tools can be used on either TNS or
TNS/R systems running the C30 release of
the Guardian 90 operating system.

The profiling tools are not supported as
standard products because users can modify
them easily to conform to their own specific
needs. These tools were used extensively prior
to the introduction of the TNS/R systems. The
profiling tools are easy to use and are docu
mented in Application Profiling Tools:
Deciding What to Accelerate.

The TACL Macro
The T ACL macro collects Measure data on all
PROCESSH entities for 15 minutes. Users can
modify the time interval. Tandem recommends
that a long enough time be used to give a repre
sentative result. The decision about whether to
accelerate a program might otherwise be based
on inadequate information.

Enform Queries: Application
Characterization Report
Users can easily customize the Enform queries
to reduce the amount of data reported. They
can eliminate data about processes pertaining to
OSIMAGE, SYSnn, and SYSTEM. To facilitate
data analysis, users can perform a modified
Enform run to group programs by program
name. The Enform queries provided in the pro
filing tool package give the basic information
that most users need, and they serve as a model
for additional queries that users may wish to
include.

Figure 3 shows an example of the Enform
report. The measurements were taken on
a TNS system. The information appears in
descending order of CPU utilization. This is
further broken down by CPU and system totals.

SPRING 1992 • TANDEM SYSTEMS REVIEW 25

Figure 4

Figure 4.

RUN $SYSTEM.SYSTEM.VPROC
Enter filename:
> $system.sys34.x25obj

$SYSTEM.SYS34.X25OBJ

Binder timestamp: 30MAY 14:21 :55

Version procedure: T9060C20"15JUN91 "X25AM"ABL02A

Target CPU: TNS/R

AXCEL timestamp: 30MAY91 14:26:22

Using VPROC to
determine whether or not
a program has been
accelerated.

From the data presented in Figure 3, one
can readily see which of the processes would
benefit most from acceleration. Process 5,22
($DD 12.XB I 0OBJ.IASLO), for example, seems
like a suitable candidate. It uses 11.94 percent
of the CPU time and spends 49.59 percent
of its time in UC/UL, which is equivalent
to overall CPU utilization of 5.59 percent for
this process.

$SYSTEM.SYS34.X25OBJ also seems like
an excellent program to accelerate, but it is
not a user program. This code is part of the X.25
subsystem provided by Tandem, so users should
not try to accelerate it. Acceleration of Tandem
code by users is not supported under any cir
cumstances. Tandem tests each release of soft
ware in its entirety. Users can jeopardize the
stability and integrity of their system environ
ments if they accelerate Tandem modules.

To verify whether a program has been accel
erated, users can use the Binder command
SHOW INFO, or VPROC, as shown in Figure 4.
The phrase AXCEL timestamp in Figure 4 indi
cates that $SYSTEM.SYS34.X25OBJ has already
been accelerated by Tandem.

As shown previously in Figure 3, the last
two Tandem processes in CPU 5 use the pro
gram $SYSTEM.SYS34.OSIMAGE. This is where
system code resides. Tandem has accelerated all
system code and system library code.

In CPU 7, process 7,29 also appears to be
a good candidate for acceleration. Its statistics
are similar to those of process 5,22. Thus,
if program $DD12.XBIOOBJ.IASLO is also
accelerated, performance improvements will
be obtained in both CPU 5 and CPU 7.

On an individual process basis, program
$DD13.XPSIMOBJ.PSIM does not seem like
a candidate for acceleration. However, when
the results of all four processes are combined,
the numbers are quite different: 22.24 percent
CPU utilization and 5.38 percent CPU UC/UL
utilization.

26 TANDEM SYSTEMS REVIEW• SPRING 1992

From this exercise, one can conclude that
processes 5,22 and 7,29 both have excellent
profiles. Accelerating these programs would
improve their performance and reduce the
CPU consumption in CPU 5 and CPU 7. The
extra CPU cycles could be used for additional
work, load balancing, or simply to reduce
a CPU bottleneck.

Similar conclusions apply to program
$DDl3.XPSIMOBJ.PSIM. Although a single
occurrence of this program does not account
for significant CPU UC/UL utilization, when
CPU utilization from all four processes are
combined, this program becomes a good candi
date for acceleration. The same applies in gen
eral to any server program. The final decision
whether or not to accelerate these programs
should be made after considering the associated
costs and desired performance-level objectives.

Conclusion
Tandem's Accelerator program and application
profiling tools help users manage the perfor
mance of their applications on TNS/R systems.
Acceleration provides large performance gains
for CPU-intensive programs that spend a signif
icant portion of their time in application code
rather than system code. These gains must be
weighed against the costs of acceleration in
time, disk space, and memory requirements.
Users must consider all of these factors in light
of their own performance-level objectives and
decide whether or not to accelerate specific
programs.

References
Accelerator Manual. 1991. Tandem Computers Incorporated.
Part no. 63928.

Application Pr{!filing Tools: Deciding What to Accelerate. 1991.
Tandem Computers Incorporated. Support Note S91 I I l.
Available from Tandem representatives upon request.

Cressler, D. 1992. Debugging Accelerated Programs on TNS/R
Systems. Tandem Systems Review. Vol. 8, No. I. Tandem
Computers Incorporated. Part no. 65250.

Faby, L., and Mateosian, R. 1992. Overview of Tandem
NonStop RISC Systems. Tandem Systems Review. Vol. 8, No. I.
Tandem Computers Incorporated. Part no. 65250.

Programmer's Guide for TNS/R Systems. 1991. Tandem
Computers Incorporated. Part no. 63927.

Acknowledgments
I wish to thank Diane Cressler, Kevin Deyager, Steven Kahn,
Richard Mateosian, Bob Metter, Mike Noonan, and Dean
Wakashige for their contributions to this article.

Manon Blanchet joined Tandem in 1989 and has worked in the
data processing field since 1979. She is currently a member of
Large Systems Marketing Support, working as the CSO technical
program manager for future operating systems. Her prior experi
ence includes field support in migration to RISC, performance
analysis, disaster recovery, and system management.

SPRING 1992 TANDEM SYSTEMS REVIEW 27

28

Debugging Accelerated Programs
on TNS/R Systems

andem'M NonStop'M Series
(TNS) computer systems and
the Tandem Guardian 90'M
operating system have long
provided an excellent perfor
mance-to-price ratio (PPR)
over a broad spectrum of

applications. Recently Tandem has introduced
a new line of computers based on reduced
instruction set computing (RISC) technology.
These Tandem NonStop Series/RISC (TNS/R)
computer systems provide an even better PPR
than existing TNS systems.

Although TNS/R systems have a new under
lying instruction set, Tandem has designed
them to execute existing TNS programs. This
allows users to move existing applications
directly to TNS/R systems and enjoy the bene
fits of the new technology without reprogram
mmg.

The direct execution of TNS programs on
TNS/R systems achieves only part of the perfor
mance improvement possible with the new
technology. To allow users to achieve greater
performance improvement, Tandem has devel
oped its Accelerator software product. The
Accelerator processes TNS object files and pro
duces accelerated object files that use the new
technology more efficiently.

Almost all existing TNS object files execute
correctly on TNS/R systems without change.
These programs can be accelerated to provide
higher performance, and almost all accelerated
programs run correctly with no further effort by
the programmer.

For debugging nonaccelerated TNS pro
grams, there are no significant differences
between TNS systems and TNS/R systems.
Debugging accelerated programs differs slight
ly. Programmers debugging accelerated pro
grams have fewer debugging commands
available.

To minimize the need to debug accelerated
programs, programmers can follow a simple
sequence of steps to move programs from TNS
systems to TNS/R systems. If a programmer
needs to debug an accelerated program,
Tandem's tools provide the most frequently
needed source-level debugging capabilities.

This article describes a sequence of steps
that programmers can follow to move existing
TNS applications to TNS/R systems or to devel
op new applications for TNS/R systems. The
article helps programmers understand the
factors that influence debugging and describes
the actions that programmers can take while
debugging accelerated programs. The article
assumes the reader is familiar with program
ming TNS systems and with the Tandem
Inspect'" debugger.

TANDEM SYSTEMS REVIEW• SPRING 1992

Executing and Debugging
Programs on TNS/R Systems
TNS/R systems execute TNS programs by
invoking millicode' subroutines, which provide
the same function as microcode on TNS sys
tems. Running and debugging a TNS program
on a TNS/R system is the same as running and
debugging the program on a TNS system. To
maximize program performance on TNS/R sys
tems, programmers can accelerate TNS pro
grams by using the Accelerator. Tandem
designed the Accelerator to improve program
performance and to maintain compatibility
with existing TNS programs. The Accelerator
compiles the TNS code into TNS/R instructions
that are optimized for execution by TNS/R pro
cessors. The accelerated code can run substan
tially faster than the TNS code. The accelerated
object file contains the unmodified TNS pro
gram and the accelerated TNS/R instructions.

An accelerated program behaves in the same
way as the original TNS program; however, the
code optimizations that make an accelerated
program perform faster than a TNS program
can make an accelerated program more diffi
cult to debug. The TNS/R instruction sequence
does not perform steps in the same order as the
original TNS instructions.

Optimizations in the accelerated code
include the following:

■ Reordering instructions to take advantage of
the TNS/R processor's instruction pipeline
(Kane, 1989).

■ Minimizing loads from memory by reusing
values previously loaded into registers (Kane,
1989).

■ Eliminating unnecessary TNS machine side
effects'.

'Millicode is TNS/R code that implements TNS low-level functions such
as exception handling, real-time translation, and the TNS instruction set.
TNS/R millicode is functionally equivalent to TNS microcode.

2
Most TNS instructions cause changes to registers such as E, CC, and K.

Because these registers are not present in TNS/R systems, the millicode
maintains a view of them when executing TNS instructions. Accelerated
code updates the values of these registers only when they are needed by
subsequent instructions.

The ease of debugging accelerated pro
grams on Tandem systems compares favorably
with the difficulty of debugging optimized
code on other systems. A programmer who can
debug a TNS program without knowing the
TNS instruction set and machine registers
can debug an accelerated version of the pro
gram without knowing the TNS/R instructions
and machine registers. When debugging accel
erated programs, programmers can set break
points on statements, step by statements, trace
the call sequence (stack frames), and examine
variables in memory.

Application Migration
TNS/R systems run the C30 release of Guardian
software. If a program executes correctly on
a TNS system running C30 software, it should
execute correctly on a TNS/R system. The sim
plest and most likely migration path is to start
with a working program, optionally accelerate
it, test it on a TNS/R system, and find that it
works there without change. Programmers
should debug new or modified TNS programs
before accelerating them.

SPRING 1992 TANDEM SYSTEMS REVIEW 29

Figure 1

Figure 1.

Moving TNS programs to
TNSIR systems.

30

N

Problem Checklist
Sometimes a TNS program executes correctly
but the accelerated program does not. When
that happens, programmers should follow the
steps listed.

Step 1. If a TNS program runs correctly but
fails when accelerated, the most likely cause
is that the programmer has made one of the
following common mistakes:

■ Accelerating with incorrect Accelerator
options and failing to check the Accelerator
output listing for the resulting warning
messages.

■ Binding a program after accelerating it.
■ Failing to SQLCOMP a program with em
bedded SQL after accelerating it.

Step 2. If the programmer has not made any
of the above mistakes, the most likely cause
of the problem is one of the following:

■ Differences between TNS and TNS/R systems.

■ Timing problems.

Step 3. If the programmer cannot identify
one of the above problems as the cause, the
situation may require the assistance of
a Tandem analyst.

Often, the programmer has made one of
the common mistakes listed in step 1. In other
cases, Transaction Application Language
(TAL'M) programs that contain privileged or
machine-dependent code (for example, CODE
statements) require modification because of
differences between TNS and TNS/R processors.
(See Programmer's Guide for TNSIR Systems,
1991.) In rare cases, a program that runs
correctly on a TNS system does not run correct
ly on a TNS/R system. For example, some
timing-sensitive programs may encounter
timing problems on the TNS/R system. The
programmer may have to debug such a program
on a TNS/R system.

The flow charts in Figures 1 and 2 show how
to move programs from TNS systems to TNS/R
systems. In only a few cases do programmers
have to debug accelerated programs. The
remainder of this article focuses on those cases.
It provides hints on how to accelerate programs
to satisfy performance and debugging needs
and how to debug accelerated programs using
Inspect or Debug.

TANDEM SYSTEMS REVIEW• SPRING 1992

Accelerator Debugging Features
The Accelerator provides two levels of
optimization. One level provides easier debug
ging than the other. With either level, the
Accelerator labels each location in the code to
indicate which debugging capabilities are valid
at that point. The programmer need not know
about the underlying TNS/R instructions.

StmtDebug and ProcDebug Options
The Accelerator provides two options to define
the boundaries for optimizations. At these
boundaries within accelerated programs, all
debugging capabilities are available. The
StmtDebug option directs the Accelerator to
optimize instructions within the code produced
for each source statement. Instructions are
not optimized across statements. (Statements
include sentences and verbs in COBOL.) At
a statement boundary, all of the underlying
machine instructions for previous statements
and none for following statements have been
executed. All debugging capabilities are avail
able at statement boundaries.

The ProcDebug option directs the Acceler
ator to perform optimizations within each pro
cedure. (A procedure is a program in COBOL.)
Optimizations can cross statement boundaries.
As a result, programmers have fewer debug
ging capabilities at statement boundaries. For
production use, programmers should use the
ProcDebug option, because it provides the best
performance. The Accelerator uses ProcDebug
when neither option is specified.

The StmtDebug option produces code that
is easier to debug, while the ProcDebug option
produces more highly optimized code. A pro
gram accelerated using the ProcDebug option
has approximately 10 percent fewer TNS/R
instructions to execute than the same program
accelerated using the StmtDebug option. A pro
gram accelerated with either option executes
faster than the nonaccelerated program.

Figure 2

SPRING 1992 • TANDEM SYSTEMS REVIEW

Figure 2.

Accelerating TNS
programs for execution
on TNS/R systems.

31

Figure 3

Source
statement

1. a:= b + c;

2. p := X - c;

3. if x > O then
begin

4. call procx;

5. a:= p
end;

RE Register-exact
ME Memory-exact

Figure 3.

TNS/R instructions
generated by the
StmtDebug and
ProcDebug options.

32

TNS/R instructions (StmtDebug)

RE LOAD B -> REG1
LOAD C-> REG2
NOP
ADD REG1, REG2 -> REG3
STORE REG3 -> A

RE LOAD X -> REG1
LOAD C -> REG2
NOP
SUB REG1 ,REG2 -> REG3
STORE REG3 -> P

RE LOAD X -> REG1
NOP
BLEZ REG1
NOP

RE CALL PROCX

RE LOAD P -> REG1
NOP
STORE REG1 -> A

TNS/R instructions (ProcDebug)

LOAD B -> REG1
LOAD C -> REG2
LOAD X -> REG4
ADD REG1, REG2 ->REG3
STORE REG3 -> A

- - X already loaded
- - C already loaded

ME SUB REG4, REG2 -> REG3
- - store to P later

- - X already loaded
BLEZ REG4
STORE REG3 -> P

ME CALL PROCX

RE LOAD P -> REG1
NOP
STORE REG1-> A

Figure 3 compares TNS/R code generated
using the StmtDebug and ProcDebug options.
The StmtDebug option results in code that is
longer by six instructions but is easier to debug.
The two-letter code to the left of the first TNS/R
instruction corresponding to each source state
ment indicates the degree of debugging diffi
culty. The codes stand for register-exact (RE),
and memory-exact (ME). Unmarked TNS/R
instructions are called non-exact points.

Programmers have the most debugging options
at register-exact points and the fewest at non
exact points. The StmtDebug option produces
a register-exact point corresponding to each
source statement. The ProcDebug option pro
duces memory-exact points corresponding to
three of the source statements and no point at
all corresponding to statement 3.

Table 1 shows the relative performance
and debugging capabilities of nonaccelerated
TNS programs, programs accelerated with
the StmtDebug option, and programs accel
erated with the ProcDebug option. Programs
accelerated with the StmtDebug option contain
register-exact points at most statement bound
aries and programs accelerated with the
ProcDebug option contain memory-exact
points at most statement boundaries. For sim
plicity, the table entries reflect these typical
cases.

Programmers debugging nonaccelerated
programs on TNS/R systems have all the de
bugging capabilities that they have on TNS
systems. When they debug programs accelerat
ed with the ProcDebug option, they can set
breakpoints at the beginnings of most state
ments and display data in memory. If they need
to modify data or resume execution at arbitrary
statements during debugging, they must accel
erate the program using the StmtDebug option.

Table 2 shows how to create an accelerated
program from a nonaccelerated program and
vice versa. Because accelerated object files still
contain the nonaccelerated TNS code, program
mers can use the following Tandem Binder
command to disable the accelerated code:

CHANGE AXCEL ENABLE OFF filename

When the TNS/R system executes this file it
will use the TNS code rather than the accelerat
ed code. The programmer can then use the fol
lowing Binder command to re-enable the
accelerated code:

CHANGE AXCEL ENABLE ON filename

Accelerator State
The Accelerator associates with each code
location an attribute called its accelerator state.
The accelerator state tells programmers which
debugging commands can be used when execu
tion stops at that location.

TANDEM SYSTEMS REVIEW SPRING 1992

Table 1.

Relative performance and debugging capabilities of TNS programs and accelerated programs.

Debugging at statement boundaries

Breakpoint Step Display Modify
Program Performance Exactness at statement statements variables variables

TNS program Slowest Yes Yes Yes Yes

Accelerated Faster Usually Yes Yes Yes Yes
program register
(StmtDebug) exact

Accelerated Fastest Usually Yes Yes Yes No*
Program memory
(ProcDebug) exact

• Modifying the values of variables may have no effect.

Resume at
another statement

Yes

Most*'

No

Debugging at TNS
machine level***

Yes

At statement
boundaries

At procedure
boundaries

** Execution can resume at most statement boundaries. Exceptions include the first statement in some subprocedures and COBOL paragraphs, and some labeled statements.

••• TNS machine-level capabilities include setting breakpoints at TNS instructions, stepping TNS instructions, and displaying and modifying TNS register values.

The accelerator state can be register-exact,
memory-exact, or non-exact. At register-exact
points, all debugging capabilities are valid. At
memory-exact points, programmers can set
breakpoints and display memory. At non-exact
points, debugging operations might produce
unreliable results.

Most statement boundaries are register-exact
points or memory-exact points. Most other
TNS instructions are non-exact points. Whether
a statement boundary is register-exact or
memory-exact depends on whether the pro
grammer used StmtDebug or ProcDebug to
accelerate the program.

Register-Exact Points. A location is a register
exact point if the state of the accelerated
program is the same there as at the correspond
ing point of the nonaccelerated TNS program.
The Accelerator suppresses optimizations
across locations that are register-exact points
and ensures that the TNS register state (values
of R0-R7, E) is up to date'. This is important to
programmers who debug at the TNS instruction
level.

'At a register-exact point, a TNS register such as R0-R7 or CC is guaran
teed to contain the same value it would have on a TNS system only if that
register value is needed subsequently by the program.

Table 2.
Moving between levels of acceleration.

Go from

TNS code

Accelerated code
(Stm!Debug)

Accelerated code
(ProcDebug)

TNS code

Use Binder

Use Binder

SPRING 1992 TANDEM SYSTEMS REVIEW

Goto

Accelerated code
(StmtDebug)

Accelerate

Reaccelerate

Accelerated code
(ProcDebug)

Accelerate

Reaccelerate

33

34

At register-exact points, programmers can
use all debugging capabilities with reliable
results:

■ Display and modify data in memory.

■ Resume execution at a different register-exact
point.

■ Specify a register-exact or memory-exact
point as the target location of a breakpoint.

■ Display and modify TNS register values.

In programs accelerated with the ProcDebug
option, relatively few code locations are
register-exact points. These include:

■ Procedure entry points.

■ Some subprocedure entry points (paragraphs
in COBOL).

■ Some labeled statements (if the object file
being accelerated contains symbols).

■ The TNS instruction after a procedure or
subprocedure call.

In programs accelerated with the StmtDebug
option, register-exact points include:

■ All locations that are register-exact with the
ProcDebug option.

■ The beginnings of most statements 4.

Figure 3 shows this difference between the
StmtDebug and ProcDebug opt\ons. The
StmtDebug option generates TNS/R instruc
tions for which there are register-exact points
at all statement boundaries. The TNS/R code
generated by the ProcDebug option contains
only one register-exact point, at statement 5,
which is the first instruction of the statement
after a procedure call. The ProcDebug option
intermingles TNS/R code for statements 1, 2,
and 3.

Memory-Exact Points. The Accelerator
ensures that programmers can set breakpoints
and display data at memory-exact points.
A memory-exact point is a location in the code
where memory is up to date with respect to
the source code. That is, at a memory-exact
point, the computer has performed all memory
modifying operations (for example, store to
memory) for preceding statements and has
performed no memory-modifying operations
for subsequent statements. The Accelerator
may perform other optimizations that cross
memory-exact points. For example, the TNS/R
instructions that implement a subsequent
statement can use a value that is already in
a register.

'Exceptions include any labeled statement that immediately follows a
procedure call, the first statement in some subprocedures, and the first
statement in most COBOL paragraphs. These statements are memory
exact points.

TANDEM SYSTEMS REVIEW SPRING 1992

If the Accelerator has used the ProcDebug
option, the beginnings of most statements
are memory-exact points. Programmers can
display memory accurately at memory-exact
points. They can also specify memory-exact
points as target locations for breakpoint
requests. They might, however, encounter
limitations with other debugging operations at
memory-exact points.

Debugging limitation at memory-exact
points include the following:
■ Memory values modified during debugging
might not be used in subsequent operations.

■ Displayed TNS register values might not be
accurate.

■ Inspect will not allow modification of TNS
register values.

■ Inspect will not accept a RESUME AT com
mand if either the current location or the target
location is a memory-exact point.

If the programmer has accelerated the code
in Figure 3 using the ProcDebug option, state
ment 2 is memory-exact. The programmer can
stop execution at that point by specifying state
ment 2 as the target of a breakpoint. A display
of the memory value of a at that point reflects
the assignment from statement 1. The memory
value of p does not yet reflect the assignment
from statement 2. If the programmer modifies
the value of c in memory at this point, the pro
gram will not use the new value in calculating
the value to be assigned top in statement 2.
The accelerated program uses the value that
was loaded into REG2 during the execution of
statement 1.

After performing debugging operations at
a breakpoint at statement 2, the programmer
can set another breakpoint and direct Inspect
to continue execution of the program from
where it left off. Inspect will not allow the
programmer to specify a location at which to
resume execution, since it can only perform
that operation reliably if both the current loca
tion and the target location are register-exact
points.

Non-Exact Points. The Accelerator labels all
code locations that are neither memory-exact
nor register-exact as non-exact. Most state
ment boundaries are memory-exact or register
exact points. Most TNS instructions that do not
correspond to the beginnings of statements are
non-exact points. Any type of optimization
may cross a non-exact point. At non-exact
points, the location in the source code (or TNS
code) does not map to any point in the TNS/R
code. If the programmer has accelerated the
code in Figure 3 using the ProcDebug option,
statement 3 is a non-exact point.

The most useful debugging action at
a non-exact point is to step the program to the
next memory-exact point or register-exact
point, using the Inspect command STEP
STATEMENT, STEP VERB, or BREAKPOINT.
All other debugging actions are either not
permitted or not guaranteed to produce reliable
results.

Programmers must be aware of the follow
ing restrictions at non-exact points:

■ All debugging restrictions at memory-exact
points also apply at non-exact points.

■ Source statements or TNS instructions that
are non-exact points are not valid target
locations for breakpoint requests.

■ Displaying the values of variables yields
unpredictable results.

SPRING 1992 • TANDEM SYSTEMS REVIEW 35

Figure 4.

Identification of exact
points at statement
boundaries by the
SOURCE command
in lmpect.

Figure 5.

Identification of exact
points of TNS instructions
by the SOURCE !CODE
command in Inspect.

36

Figure 4

Figure 5

-EXY1 XLP-source

#14 end
#15
#16 proc mainp main
#17 begin

• #18 a := b + c;
#19 p := X - c;
#20 if x > 0 then
#21 begin
#22 call procx;

@ #23 a:= p

@ Register-exact
blank Memory-exact

Non-exact
• Current location

-EXY1 XLP-source icode

#14 end;
#15
#16 proc mainp main;
#17 begin

• #18 a := b + c;

@ LOAD G+001 LOAD G+002 IADD
STOR G+000

#19 p := X - C;

> LOAD G+003 LOAD G+002 ISUB
STOR G+004

- #20 if X> 0 then
#21 begin

LOAD G+003 CMPI +000 BLEQ +003

#22 call procx;

> PCAL 002

@ #23 a:= p

@ LOAD G+004 STOR G+000

@ Register-exact (source line or TNS instruction)
> Memory-exact (TNS instruction)

Non-exact (source line)
blank Non-exact (TNS instruction)

* Current location

Debugging Accelerated Programs
at the TNS Instruction Level
In most cases, programmers should debug
programs before accelerating them or use
the source-level debugging capabilties that
Inspect provides for accelerated programs.
While the statement remains a valid level
of granularity for debugging accelerated
programs, debugging within a statement at
the TNS instruction level is severely limited
because most TNS instructions are non-exact
points. The Accelerator does not preserve
debugging capabilities at every TNS instruc
tion, because this would sacrifice performance
excessively. Programmers who must set break
points within statements and examine the
register state at those points in an accelerated
program might need to debug at the TNS/R
instruction level.

Accelerator State Information in Inspect
The SOURCE, SOURCE ICODE, ICODE, and
low-level I commands in Inspect can help
programmers determine valid BREAKPOINT
and RESUME AT locations. Inspect annotates
the output of the SOURCE command by mark
ing the beginning of each source line or state
ment with a single character, as follows:

■ @ if it is a register-exact point.

■ - if it is a non-exact point.

■ blank if it is a memory-exact point.

Inspect annotates the output of the SOURCE
ICODE, ICODE, and low-level I commands by
marking each TNS instruction with a single
character, as follows:

■ @ if it is a register-exact point.

■ blank if it is a non-exact point.

■ > if it is a memory-exact point.

Figures 4 and 5 shows sample output from
the SOURCE and the SOURCE ICODE com
mands, respectively.

Programmers can set breakpoints at any
source or TNS code location except non-exact
points; therefore, most statements are valid
breakpoint locations regardless of the accelera
tor option used. The RESUME AT command,
however, can only be used if both the current
and target locations are register-exact points.

TANDEM SYSTEMS REVIEW SPRING 1992

In order to know which debugging com
mands are valid at the code location where exe
cution is currently suspended, the programmer
needs to know the accelerator state there. To
get this information, the programmer can
include a new token, called ACCELERATOR
ST A TE, in the definition of the Inspect prompt
or status line. When the prompt or status line
is defined with this token, Inspect displays the
current accelerator state. For example, after
the command:

SET PROMPT="[", ACCELERATOR
STATE,"]"

each Inspect prompt for the debugging session
will be one of the following, based on the cur
rent accelerator state:

■ [Memory-exact]

■ [Register-exact]
■ [Non-exact]

■ l J
Empty brackets indicate that TNS code is

running. This happens if either a nonaccelerat
ed program is running or the accelerated pro
gram is executing TNS code. An accelerated
program executes nonaccelerated TNS code at
the start of the program and when a transition
to TNS code has occurred'. The examples in
the remainder of this article assume that the
programmer has set the prompt to display the
accelerator state.

Table 3 summarizes the debugging capabili
ties available when the current program loca
tion is register-exact, memory-exact, or
non-exact. Inspect issues warnings or error
messages when requested commands are not
available or might produce unexpected results
because of the accelerator state of the current
location.

'Occasionally the Accelerator cannot translate a section of TNS code to
TNS/R instructions. When such points arc reached during execution, the
program makes a transition from TNS/R code to TNS code, after which it
continues executing TNS code until the next procedure call or return that
is a regi'.-iter-exact point.

Table 3.
Inspect debugging capabilities at exact points.

Accelerated program

Action TNS program Register-exact Memory-exact Non-exact

Add code breakpoint Yes Yes Yes Yes

Statement stepping Yes Yes Yes Yes*

Display variables Yes Yes Yes Yes**

Modify variables Yes Yes Yes** Yes**

Resume at Yes Yes*** No No

Instruction stepping Yes No No No

Display TNS registers Yes Yes Yes** Yes**

Modify TNS registers Yes No No No

* To the next exact point.

'* Inspect issues a warning message when the action might have no effect or the displayed values
might not be up to date.

***Toa register-exact point.

Debugging Accelerated Programs
Using Inspect
Debugging events suspend program execution.
Code breakpoint events leave programs at
memory-exact points or register-exact points.
Data access breakpoint events, HOLD request
events, and Debug process request events usu
ally leave programs at non-exact points. When
one of these events occurs, Inspect helps the
programmer find the current program location,
determine available debugging commands, and
move to another location in the program.

SPRING 1992 TANDEM SYSTEMS REVIEW 37

Figure 6

Source code

* #19 p := X - c;
- #20 If x > 0

then
#21 begin

TNS instructions TNS/R instructions (ProcDebug)

%000011: > LOAD G+003 %h70420064: > SUBU s0,t4,t5
%000012: LOAD G+002 %h70420068: BLEZ t4,0x70420084
%000013: ISUB %h7042006C: SH s0,8($0)
%000014: STOR G+004
%000015: LOAD G+003
%000016: CMPI +000
%000017: BLEQ +003

#22 call procx; %000020: > PCAL 002 %h70420070: > JAL PROCX

Figure 6.

Code block.

%h70420074: LI ao, 17

Finding the Current Program Location.
Inspect reports the current location in a format
determined by the setting of its LOCATION
FORMAT parameter. The location formats are:

■ Line
■ Statement
■ Line plus TNS offset

■ Statement plus TNS offset

For TNS programs, Inspect reports the cur
rent location accurately when the location for
mat is line plus offset or statement plus off set,
because it indicates the exact spot in the exe
cuting TNS code where execution stopped.

Accelerated code consists of a sequence of
blocks. A block of code always begins at a
memory-exact point or a register-exact point.
It consists of that point and any following non
exact points up to but not including the next
memory-exact or register-exact point (or the
end of the program). Figure 6 illustrates this.
It contains two blocks of code separated by
a horizontal line. Lines 19 and 22 are exact
points. The first block consists of the code
implementing lines 19 through 21. The second
consists of the code for line 22. For each block,
the corresponding source code, TNS code,
and TNS/R code are listed from left to right.
Inspect reports the current location accurately
if and only if the currently executing TNS/R
instruction is the start of a block. That is,
for accelerated programs, Inspect reports the
current location accurately if and only if the
current accelerator state is memory-exact or
register-exact.

If the program stops at the first TNS/R
instruction in a block (an exact point), then
Inspect reports the current location accurately.
For example, if the program stops at location
%h70420064 in the TNS/R code in Figure 6,
then Inspect reports the current location and
accelerator state as follows:

251,01 ,082 EXYlXL #MAINP.#l 9(EXY I)

[Memory-exact]

If the program stops at a TNS/R instruction
within a block (a non-exact point), then the
current location reported by Inspect is approx
imate. For example, if the program stops at
%h70420068 in the TNS/R code, then Inspect
will report the current location as the last
exact point passed and will issue a warning as
follows:

251,01,084 EXYlXL #MAINP.#19(EXY1)

**** WARNING 359 **** Current location is
not a memory-exact point; displayed values
may be out of date; the location reported is an
approximate TNS location

[Non-exact]

38 TANDEM SYSTEMS REVIEW• SPRING 1992

When the accelerator state is non-exact, the
program has stopped somewhere between the
reported location (line 19) and the next exact
point (line 22). Therefore, this program is
suspended somewhere in the midst of execut
ing lines 19, 20, and 21.

Determining Available Debugging
Commands. Table 3 shows which debugging
commands are valid for each accelerator state.
In a save file the current location is likely to
be at a non-exact point, especially in a save
file created because the program abended. At
non-exact points the values of variables updat
ed in the current block of code are unpre
dictable, but the programmer can examine
variables that are not updated by the current
block. For example, if the program in Figure 6
is at a non-exact point, and the reported cur
rent location is line 19, then all the variables
except p can be examined reliably, because p
is the only variable modified by the statements
on lines 19, 20, and 21. The value of p may or
may not reflect the assignment on line 19,
because the program stopped in the process
of executing instructions for the statements
on lines 19, 20, and 2 I.

Moving to Another Location in the Program.
The BREAKPOINT and STEP commands
move a program forward to a specific location.
Inspect accepts breakpoint requests for lines,
statements, and TNS code addresses when
the specified location is memory-exact or
register-exact. It rejects breakpoint requests at
non-exact points, because there is no meaning
ful point in the TNS/R code that corresponds

with the requested line, statement, or TNS code
address. For example, a breakpoint request
for line 20 in Figure 6 would produce the
Inspect error message:

-EX IXL-break #20

**** ERROR 197 **** Location deleted by
optimizations

Inspect refers to statement boundaries that
are non-exact points as deleted. The function
of the statement in this case has not been
deleted. Rather, Inspect has deleted this loca
tion from the set of allowed breakpoint targets,
because the underlying TNS/R code blurs
the boundary between this and the previous
statement.

The STEP command is valid for statements
and verbs. It causes execution to proceed from
the current location to the next statement or
verb that is an exact point. To achieve finer
granularity, such as setting breakpoints at
TNS/R instructions, programmers must use
Debug.

SPRING 1992 • TANDEM SYSTEMS REVIEW 39

Figure 7

18.000 a:= b + c;

000005:000000: @ LOAD G+001 Ox 70420050: LH s0,2($0)
000006:000001: LOAD G+002 Ox 70420054: LH t5,4($0)
000007:000002: /ADD Ox 70420058: LH t4,6($0)
000010:000003: STOR G+000 0x7042005C: ADDU s0,s0,t5

Ox 70420060: SH s0,0($0)

19.000 p := X - c;
20.000 if x > 0 then

000011 :000004: > LOAD G+003 Ox 70420064: SUBU s0,t4,t5
000012:000005: LOAD G+002 Ox 70420068: BLEZ t4,0x70420084
000013:000006: /SUB 0x7042006C: SH s0,8($0)
000014:000007: STOR G+004
000015:000010: LOAD G+003
000016:000011: CMPI +000
000017:000012: BLEQ +003

22.000 call procx;

000020:000013: > PCAL PROCX Ox 70420070: JAL PROCX
Ox 70420074: LI a0,17

23.000 a:=p

000021 :000014: @ LOAD G+004 0x70420078: LH s0,8($0)
000022:000015: STOR G+000 0x7042007C: NOP

Ox 70420080: SH s0,0($0)

@ Register-exact
> Memory-exact

blank Non-exact

Figure 7. Considerations for Using Inspect Commands.
Inspect commands and their syntax are the
same for accelerated and nonaccelerated pro
grams. The default access type for data break
points is CHANGE under the C30 version of
Inspect. This represents a change from the
default of WRITE used under earlier WRITE
versions of Inspect".

Examining TNSIR
instructions with the
/CODE command in APE.

'' Data breakpoints of type CHANGE occur only if the value of the variable
has changed. Writes that store the same value already contained in the
variable do nol cause program execution to be suspended.

Some commands have new options to pro
vide information about accelerated programs.
The ACCELERATOR STATE token for the SET
PROMPT and SET ST A TUS commands is such
an option. Also, the output for some commands
has been expanded for accelerated programs.
For example, the SOURCE command output
indicates the accelerator state for each source
line listed. (See Figure 4.) There are also differ
ences in the behavior of stepping and of data
access breakpoints between TNS programs and
accelerated programs. The Inspect Manual
(1991) contains detailed descriptions of these
differences and the new command options and
output.

Debugging at the TNS/R Instruction Level
Although it is rarely necessary, programmers
can use Debug and Inspect to debug an acceler
ated program at the TNS/R instruction level.

In Debug, the programmer can perform the
following actions:

■ Set breakpoints at TNS/R addresses.

■ Display and modify the values of TNS/R
registers.

■ Display the TNS/R instructions for a speci
fied address range

■ Display corresponding blocks of TNS and
TNS/R instructions.

In Inspect, the programmer can perform the
following actions:

■ Display and modify the values of the TNS/R
registers.

■ Display the TNS/R instructions.

■ Display blocks of corresponding source,
TNS, and TNS/R instructions.

Inspect creates save files that contain
both the TNS state and TNS/R state of the
program. Inspect does not allow setting break
points at TNS/R code addresses. However,
the Inspect command SELECT DEBUGGER
DEBUG allows the programmer to call Debug
and use it to set TNS/R breakpoints. The
Debug Manual (1991) and the Inspect Manual
(1991) provide details of features for TNS/R
instruction-level debugging.

40 TANDEM SYSTEMS REVIEW SPRING 1992

A new tool, called the Accelerated Program
Examiner (APE), allows the programmer to
examine an object file that is not running. APE
can display the mapping between source state
ments, TNS instructions, and TNS/R instruc
tions, and it can provide other information
about the accelerated object file. Inspect and
Debug, which operate on running object files,
provide some of the same information. For
example, the APE command ICODE, the Inspect
command ICODE, and the Debug command
PMAP all display the mapping between TNS
instructions and TNS/R instructions. Figure 7
provides an example of the output of the APE
command ICODE.

In order to use the TNS/R debugging capabil
ities in these tools, the programmer must under
stand both the TNS and TNS/R instruction sets,
TNS/R addressing, and how accelerated code
is executed on the TNS/R system. Few pro
grammers will need to debug at the TNS/R
instruction level if they follow the recommen
dations in this article. In addition to the
Debug and Inspect manuals already cited,
Kane (1989), the CYCLONEIR System Descrip
tion Manual and APE Accelerated Program
Examiner (1991) provide information about
TNS/R level debugging.

Conclusion
Programmers can debug both TNS programs
and accelerated programs on TNS/R systems
using the same tools and commands that are
available on TNS systems. Current users of
source-level debugging capabilities (where the
unit of work is the statement, not the machine
instruction) can continue to debug their pro
grams with the same knowledge they must
have on TNS systems, namely knowledge of
their own source code. The programmer need
not be concerned with the underlying TNS or
optimized TNS/R instructions to isolate and
analyze program bugs. Programmers who cur
rently debug their programs using machine
level capabilities (where the unit of work is
the TNS instruction) can continue to do so
before accelerating them. In the rare event
that the programmer needs to debug an acceler
ated program at the instruction level, Inspect,
Debug, and a new tool, APE, provide the need
ed functions.

Acknowledgments
Special thanks to Kristy Andrews, Seth Hawthorne,
Alan Rowe, Duane Sands, and Steven Watanabe for sharing
their technical knowledge and answering my many questions
about the Accelerator product and debugging programs on
TNS/Rsystems. Thanks to Clark Gehrke for providing me with
program examples for this article.

References
APE Accelerated Program Examiner. 1991. Tandem Computers
Incorporated. Available in the APEDOC online file in distribu
tion subvolume for product T9292.

CYCLONEIR System Description Manual. 1991. Tandem
Computers Incorporated. Part no. 43572.

Debux Manual. l 991. Tandem Computers Incorporated.
Part no. 56984.

Kane, G. 1989. MIPS RISC Architecture. Prentice-Hall, Inc.

Inspect Manual. 1991. Tandem Computers Incorporated.
Part no. 57887.

Programmer's Guide for TNSIR Systems. 199 I. Tandem
Computers Incorporated. Part no. 63927.

Diane M. Cressler joined Tandem in May 1986. She is currently
part of the Large Systems Marketing Support group, providing prod
uct support and introduction services. During the past year Diane
co-developed and taught the TNS/R Migration Training course for
beta customers and Tandem support personnel.

SPRING 1992 TANDEM SYSTEMS REVIEW 41

42

Measuring DSM Event
Management Performance

perations organizations
must be able to monitor the
current status of an online
system in order to maintain
high availability for the
system's users. Tandem'"
Distributed Systems

Management (DSM) architecture and products
can provide monitoring information to system
operators by delivering and presenting accurate
and timely events.

The challenge for Tandem system managers
is to supervise both the monitoring information
and the performance of the DSM event delivery
tools. Delivering reliable information rapidly
must be balanced against overtaxing the avail
able system resources. Moreover, the event
information must be limited to ensure that
operators notice and respond quickly to impor
tant events.

Application developers and system man
agers can influence the effectiveness of DSM
software at each stage of the event manage
ment process. By designing events carefully,
application developers can reduce the number
of extraneous events and provide accurate,

useful information to operators. By configuring
system resources to support the various com
ponents of DSM software, system managers
can enhance the performance of event manage
ment. Proper resource planning also minimizes
the CPU cost of event management, which
lowers the cost of owning the equipment.
Finally, by designing effective filters that elim
inate insignificant events, system managers can
reduce event noise, increase operators' produc
tivity, and thereby increase system availability.

This article discusses the stages of event
management in the Tandem DSM environment.
It describes the functions and performance
implications of Event Management Service
(EMS), a component of the Guardian 90'M oper
ating system, and the ViewPoinf" operations
console facility. It also describes how to con
figure the components of EMS and View Point
to reduce the CPU costs of event management.

The article is intended mainly for system
managers and performance analysts responsi
ble for system resource planning. It assumes
the reader is familiar with DSM. Overviews
of DSM, EMS, and View Point appear in the
October 1988 issue of the Tandem Systems
Review (Hansen and Stewart, 1988; Homan
et al., 1988; and Jordan et al., 1988). It also
assumes the reader understands performance
modeling and is familiar with the Tandem
Measure'M system performance measurement
product.

TANDEM SYSTEMS REVIEW• SPRING 1992

Figure 1

(a) User application
or system process (b) Event Management Service (EMS)

(c) Network management
application

Event Management in the DSM
Environment
Figure 1 shows the basic components of event
management in the DSM environment:

■ A system or application process generates
the event and passes it to EMS.

■ EMS collects and stores the event in an event
log file called the EMS log.

■ EMS filters (evaluates) the event. If the
event meets the filter's selection criteria,
EMS distributes it to event consumers.

■ The event consumer uses the event data to
perform system or network management tasks.
For example, the View Point product processes
and presents the event to an operator.

Event management begins when a process
generates an event to report a change or prob
lem in the system or user application. For
example, an event is generated when a terminal
starts or a network communication line goes
down. Either a Tandem subsystem or a user
application can generate an event. Application
programmers design and code the events gener
ated by user applications. (In general, applica-

tion programmers should not have to create
events for errors that do not originate in the
application.)

Events that contain useful diagnostic
information increase the availability of the
application by helping the operator to resolve
problems rapidly. This benefit applies equally
to human operators and automated operations
software.

Moreover, the event rate, the number
of events generated per second, can greatly
affect the performance of event management
software, and therefore of the entire system.
Application developers can reduce the event
rate by making sure that only one event is gen
erated for each problem or change in
condition (state change). Unnecessary events
should be eliminated. Dagenais, in the October
1991 issue of the Tandem Systems Review,
discusses how to design application events to
support effective problem resolution.

SPRING 1992 TANDEM SYSTEMS REVIEW

Figure 1.

Event management in
the DSM environment.
(a) A user application or
system process performs
event generation.
(b) EMS performs event
collection and distribution.
(c) A network management
application performs event
consumption.

43

44

Table 1.

CPU scaling information showing the relative performance capabilities of Tandem systems.

CPU ratios NSII CLX 600 CLX 700

Cyclone 0.09 0.10 0.16

Cyclone/A 0.19 0.21 0.32

VLX 0.32 0.36 0.55

CLX 800 0.38 0.43 0.67

TXP 0.46 0.52 0.80

CLX 700 0.58 0.65 1.00

CLX 600 0.89 1.00 1.55

NSII 1.00 1.12 1.74

Resource Planning for Event
Management
To support resource planning and performance
tuning, the system manager or performance
analyst must be able to predict the CPU cost of
event management functions. These functions
include event collection, distribution, filtering,
consumption, processing, and presentation.
With accurate estimates, the analyst can identi
fy the CPU resources needed to support event
management. The sizing information provided
in this article can help the analyst to set up a
balanced configuration of event management
components, thus minimizing the impact of
event management on system performance.

The formulas in this article identify atomic
values for sizing event management functions.
The atomic values quantify the CPU demand, or
service cost, to process a single event. The
analyst can then multiply the atomic demand by

Ratio

TXP CLX800 VLX Cyclone/A Cyclone

0.20 0.24 0.29 0.50 1.00

0.41 0.49 0.59 1.00 2.00

0.69 0.83 1.00 1.70 3.40

0.83 1.00 1.21 2.06 4.11

1.00 1.20 1.45 2.47 4.94

1.25 1.50 1.82 3.09 6.17

1.94 2.32 2.81 4.78 9.57

2.17 2.60 3.15 5.36 10.71

the expected arrival rate of the events to deter
mine the total CPU demand for the function.
Furthermore, once the total demand is identi
fied, the analyst can estimate CPU capacity by
dividing the target utilization of a CPU (for
example, 75 percent busy) by the CPU demand.

Each formula is shown twice, first with
generic terms and then with specific sample
values. The sample values are based on a study
that used Tandem's Measure product to gather
performance data on a Tandem NonStop'"
VLX'M system. The performance testing envi
ronment was based on a 4-processor VLX sys
tem, each configured with 16 megabytes of
memory, using the C20 release of Guardian 90.
The C21 releases of EMS and View Point were
used to develop the formulas.

To make estimates for a different Tandem
system, the analyst can extrapolate from the
VLX values shown here by using the matrix
of relative performance capabilities shown in
Table 1. For example, to estimate CPU costs on
a Tandem CLX" 800 system, the analyst can
multiply the VLX values by 1.21.

In each column shown in Table I, each sys
tem is scaled in relation to the one showing the
baseline value of 1.00. The scalings are intend
ed to be a rule of thumb'.

1 The validity of the scaling values is subject to a few constraints.
First, sufficient memory must be configured so that the system
does not incur swapping and no portion of disk cache is confis
cated by the Guardian 90 memory manager. Second, no more
than two mirrored disk devices should be configured per pair
of disk controllers. Third, the Tandem Cyclone™ system must
be configured with two 1/0 subsystems (four 1/0 channels)
per CPU.

TANDEM SYSTEMS REVIEW SPRING 1992

The analyst will have to supply certain
values specific to the user environment. For
example, the analyst must know how many
EMS distributors use an EMS collector log.
Furthermore, he or she must be able to evaluate
the filters that restrict the number of events
passed to the event consumers. In addition,
the analyst must determine the event rate (for
event generation and consumption) by gather
ing performance data with the Measure product
and viewing Measure reports.

The analyst should use these formulas with
caution. The results of the VLX performance
study are approximations derived from a con
trolled environment; their accuracy, applied to a
user system, may vary. The values derived from
the VLX system do not include operating sys
tem overhead costs such as interrupts or mes
sage handling. A conservative guideline for
calculating these additional system costs is to
add 20 percent to the results of the formulas.

EMS Event Collection and Storage
The EMS collector receives events generated by
Tandem subsystems and application processes
and stores them in the EMS log. The generating
process constructs the event by using a proce
dure to initialize the event buffer and add the
tokens required by EMS. Optionally, it can
issue a series of calls to add tokens and token
values to the event buffer. When the event is
constructed, the generating process issues a call
to forward it to EMS.

The EMS collector and the EMS log disk
process manage event collection. When the
EMS collector receives the event, its tasks
involve:

■ Sending a checkpoint message to the backup
EMS collector.

■ Replying to the process that generated the
event.

■ Inserting a logging timestamp into the event.
■ Sending the event to the EMS log disk
process.

■ Sending a confirmation to the backup EMS
collector.

Figure 2

Figure 2 shows the processes involved in
EMS event collection. The primary EMS col
lector ($0 process) uses low-level Guardian 90
message system services to communicate with
its backup process and the EMS log disk pro
cess. To distribute the CPU consumption of
event collection to different CPUs, the system
manager can add alternate EMS collectors to
which applications report events. An alternate
collector operates just as the primary collector
does, but it uses less efficient Guardian 90 file
system calls to communicate with its backup
process and the disk process.

Design Goals of Event Collection
The EMS collection function meets several
performance-related design goals. First, event
collection does not depend on event distribu
tion because the EMS collector and EMS dis
tributors can use the disk-based queue (EMS
log) asynchronously. Thus, when an event
consumer performs slowly, it has no impact
on the performance of the event generator.

SPRING 1992 • TANDEM SYSTEMS REVIEW

Figure 2.

The EMS event
collection process.

45

Figure 3

Eg= Er x (Ge+ (Ntx Gat) + Ce+ Dw+ (Ndx Dwr))

The VLX performance study produced the following results:

Eg= Er x (5 ms+ (Ntx 0.4 ms)+ 4 ms+ 4 ms+ (Ndx 7.5 ms)

where

Eg CPU cost, in CPU ms/sec, of generating and collecting events

Er system event rate in events/sec

Ge CPU time, in ms, the source process uses to generate an event

Nt number of optional tokens added to the event by the event generator

Gal CPU time, in ms, the source process uses to add a token to the event

Ce CPU time, in ms, the primary and backup collector processes use to log
the event'

Ow CPU time, in ms, the disk process uses to write the event to the EMS log

Nd number of EMS distributors using the collector's event log

Dwr = additional CPU time, in ms, the collector uses to service an event notification
request from a distributor. Use this value only at lower event rates.

• On a VLX system, the primary collector ($0) uses approximately 2.5 ms/event. The
backup collector process uses 1 .5 ms/event.

Figure 3.

Formula.for estimating
the CPU cost of EMS
event collection.

Second, the EMS collector ensures the
integrity of event data by sending a checkpoint
to its backup process when it receives an event,
before it replies to the event generator. If the
primary collector process fails, the event data is
saved in the backup process.

Third, by replying promptly to the event
generator, the EMS collector minimizes its
impact on the event generator's performance.
The event generator can continue processing
without having to wait for the event to be writ
ten to the EMS log.

Fourth, direct communication between the
collector and distributors reduces the demand
on the EMS log disk process. Instead of burden
ing the EMS log disk process with excessive
read requests (polls) after it reaches an end-of
file condition on the EMS log, the distributor
sends a request to the collector, asking to be
notified of a new event.

Calculating the CPU Cost of EMS Event
Collection
By using the formula shown in Figure 3, the
analyst can calculate the CPU cost (in millisec
onds per second) of EMS event collection. One
can use this information to estimate the CPU
resources needed for EMS event collection and
to predict required system capacity.

Figure 3 shows the generic formula and the
VLX performance test results. These results
supply specific values for the CPU resources
needed by the following processes to collect
one event:

■ The subsystem or application process that
generates the event (Ge and Nt x Gat).

■ The primary and backup EMS collector pro
cesses (Ce and Dwr).

■ The primary and backup EMS log disk pro
cesses (Dw).

To complete the calculation, the analyst must
determine the event rate in events per second
(Er), the number of optional tokens added to
the event by the event generator (Nt), and the
number of EMS distributors using the collec
tor's EMS log (Nd).

Determining the System Event Rate
To determine the system event rate (Er) for
event collection, one should understand how
the primary EMS collector ($0) processes the
event. 2 The $0 process uses Guardian 90 mes
sage system services both to log the event (one
message) and to notify its backup process of
current status information (two messages).

2 It is difficult to determine how many events the $0 process is processing
because it communicates with the EMS log disk process through message
system facilities rather than standard file system calls. The FILE counter
of the Measure product collects data on file activity only by counting file
system procedure calls. Also, while the $0 process accepts events on its
$RECEIVE file, the EMS distributors also send other event-related re
quests to the $0 $RECEIVE file. Given these considerations, one cannot
determine event rates by counting messages on the $0 $RECEIVE file.

46 TANDEM SYSTEMS REVIEW SPRING 1992

Thus, the primary $0 process sends three mes
sages per event, and its backup process
receives two messages per event. The analyst
can determine the event rate by viewing the
Measure PROCESS report for the $0 process.
One can either divide the number of messages
sent by the primary $0 process by three or
divide the number of messages received by
the backup $0 process by two.

For the alternate collector, the best way
to calculate the event rate is to use the Measure
FILE entity on the alternate collector's event
log. One can examine the Writes counter to
determine the number of write operations
from the alternate collector to the EMS log
file. A second method is to divide the number
of messages received by the backup alternate
collector process by two (just as for the backup
$0 process).

Determining When to Use Alternate
Collectors
Using alternate collectors can improve system
performance when the overall system event
rate exceeds the capacity of the primary EMS
collector or the primary EMS log disk process.
Alternate collectors allow one to distribute the
event collection load to other CPUs.

Performance Impact on the EMS Log Disk
Process. An EMS collector issues one write
request to the EMS log to store an event. Each
EMS distributor also issues 1/0 requests to the
EMS log. At lower event rates, each EMS dis
tributor issues two I/0 requests to the EMS log
for each event. (The first I/0 results in a suc
cessful read of an event record; the second 1/0
results in an end-of-file condition.) In systems
with low event rates and many EMS distribu
tors, this l/0 activity can increase the CPU cost
of the EMS log disk process.

To avoid the potential impact on system
performance under these conditions, the ana
lyst can distribute the event processing load
among several collectors that use EMS logs on
different CPUs.1 The analyst should, however,
weigh the benefits of using alternate collectors
against the potential complexity of configuring
and managing multiple collectors and distribu
tors.

The Cost of the Alternate Collector.
An alternate collector (the EMSACOLL pro
cess) consumes more CPU resources in pro
cessing events than does the primary EMS
collector (the $0 process). For a VLX system,
one should use a value of 19.4 milliseconds per
event to estimate the CPU cost of the alternate
collector (shown as Ce in Figure 3). The pri
mary process of the alternate collector con
sumes 14.5 milliseconds per event. Its backup
process consumes 4. 9 milliseconds per event.

'With a recent release of the EMS distributor, interim product mainte
nance (1PM) AAG, the distributor invokes a delay parameter detecting an
end-of-file condition. It waits 500 milliseconds and then retries the read
on the EMS log file. If this read also results in an end-of-file condition,
the distributor contacts the EMS collector for new event notification.
The 500 milliseconds is a default value that can be modified through a
Subsystem Programmatic Interface (SPI) command.

SPRING 1992 TANDEM SYSTEMS REVIEW 47

Figure 4

Figure 5

Ed= Er x ((2 x Dr)+ Ef + Fe+ (Pr x Ee))

The VLX performance study produced the following results:

Ed= Er x (4.0 ms+ 13.1 ms+ Fe+ (Pr x 9.6 ms))

where

Ed

Er

Dr

Ef

Fe

Pr

Ee

CPU cost, in CPU ms/sec, of filtering and distributing events

collector (system) event rate, in events/sec

CPU time, in ms, the EMS log disk process uses to read the EMS log•

CPU time, in ms, the EMS distributor uses to fetch an event from the EMS log
and set it up for filter evaluation

CPU time, in ms, the EMS distributor uses to perform a filter evaluation of
the event

percentage of events that pass the filter evaluation

CPU time, in ms, the EMS distributor uses to forward the filtered event to the
consumer

• This value is multiplied by 2 to include a successful read of an event followed by an
end-of-file condition.

Figure 4.

The EMS eve11t
distribution process.

Figure 5.

Formula for
estimating the CPU
cost of'EMS event
distribution.

EMS Event Filtering and
Distribution
After the EMS collector stores an event in the
EMS log file, the EMS distributor filters and
distributes the event. To filter an event, the
EMS distributor evaluates its contents to see if
it meets the selection criteria of the event filter.
The filter is written by the user in the EMS filter
language, compiled, and loaded into the EMS
distributor. If the event satisfies the filter crite
ria, the EMS distributor forwards it to an event
consumer. An event consumer is any user
written management application or Tandem
DSM product requesting events from the EMS
distributor.

Figure 4 shows the processes involved in
event distribution. Effectively, distribution
begins when the event consumer requests an
event from the EMS distributor." The EMS dis
tributor performs the following tasks:

■ It receives an event request from the event
consumer.

■ It retrieves the next event from the EMS log
disk process, which reads the EMS log.

■ It sends a checkpoint message to the backup
EMS distributor.

■ It evaluates the event contents by using the
filter.

■ If the event passes the filter evaluation, it
forwards the event to the consumer.

■ If the event fails the filter evaluation, it
requests the next event from the EMS log disk
process.

■ If an end-of-file condition on the EMS log is
encountered, it requests notification of a new
event from the EMS collector.

'Once the EMS distributor has had its filler defined by the event consumer,
it immediately issues a read request on the EMS log. As soon as the event
i~ returned to the event consumer. another read on the log occurs. This
overlapping of read requests on the EMS log before the event consumer's
next request for an event provides a better response time to the event
consumer.

48 TANDEM SYSTEMS REVIEW SPRING 1992

Calculating the CPU Cost of EMS Event
Distribution
Figure 5 shows a formula for calculating the
CPU cost of EMS event distribution. The results
of the VLX performance study supply specific
CPU costs for the operations listed below. The
EMS log disk process reads the EMS log; the
EMS distributor performs the other operations
listed below:

■ Read the EMS log (Dr).

■ Fetch the event and prepare it for filter
evaluation (Ej).

■ Evaluate the event contents by using the
filter (Fe).

■ Forward the event to the event consumer
(Ee).

The formula accounts for two read opera
tions on the EMS log, one to read an event
record and a second to encounter an end-of-file
condition. The end-of-file read occurs when the
EMS distributor processes events more quickly
than the system generates them.

The analyst must determine the EMS collec
tor event rate (Er). This is the same value as the
event rate (Er) shown in Figure 3. In addition,
the analyst must determine the CPU costs of
filter evaluation (Fe) and the percentage of
events that pass the filter criteria (Pr). The fol
lowing section, on filter evaluation, describes
how to determine (Fe). To determine (Pr), the
analyst can use the Measure PROCESS entity
and divide the number of messages received by
each of the distributors by the system event
rate.

Filter Evaluation
The CPU cost of filter evaluation (Fe) is the
most significant performance issue in event
distribution. Filtering can greatly reduce the
number of events forwarded to event con
sumers, which has two main benefits. First,
event consumers such as the ViewPoint product

perform better because they have fewer events
to process. Second, operators (human or auto
mated) can identify and resolve problems
quickly because they are not inundated with
irrelevant event messages and can focus on
significant events. However, if a filter is not
designed properly, filter evaluation can con
sume a great deal of CPU resources. Therefore,
analysts must weigh the benefits of filtering
against its potential impact on performance.
A well-designed filter can accomplish the
objectives of filtering while minimizing its
impact on the performance of event distribu
tion.

Several factors affect the CPU cost of filter
evaluation:

■ The event rate. (This affects all aspects of
event distribution.)

■ The number of tokens being tested in the
event.

■ The total length of the event message and the
placement within the event of the tokens being
tested.

■ The type of testing. For example, the
EQUALS test, which compares token values,
executes more quickly than the MATCH test,
which compares text strings.

■ The data type being tested. For example,
an integer data type is tested more quickly
than a text data type.

■ The number of nesting levels in the filter.

■ The sequence of testing specified by the
filter.

SPRING 1992 • TANDEM SYSTEMS REVIEW 49

Figure 6

SSID test:

Event number test:

Text match test:

Sender ID test:

Event subject test:

Event flag tests:

Figure 6.

Common jilter statement
primitives.

50

IF SSID = some"ssid THEN ...

IF EVENTNUMBER = some"event"number THEN

IF MATCH(some"text, match"text) THEN

IF SENDERID = some"process THEN ...

IF EVENTSUBJECT = some"subject THEN ...

IF EMPHASIS"TKN = true THEN ...

IF ACTION"NEEDED = true THEN .

Clearly, the structure of a filter can affect
the performance of filter evaluation. In order
to understand the structure of a filter, one can
break it down into individual filter statements,
or primitives. Figure 6 shows some common
filter primitives.

These primitives are combined to establish
evaluation blocks. An evaluation block is a set
of Boolean-operator linked tests performed on
a token value. For example, Figure 7 shows a
common evaluation block, which tests a series
of event numbers for a specific subsystem
ID (SSID).

To construct a filter, one can nest evaluation
blocks within IF statements. A completed filter
can combine evaluation blocks in various ways.
Figure 8 shows an example of a simple filter
that combines different evaluation blocks for
events generated by three different subsystems
(applications). In addition, the sample filter
passes all events containing action-needed
tokens and sets Viewpoint display attributes.

The EMS distributor executes the compiled
filter code by fetching the token and compar
ing the token value to the value specified in the
filter. For each statement in the filter, the EMS
distributor fetches the appropriate token and
tests it. Most filters use nesting; if the first
level test is passed, a second level of testing
takes place. To enhance the performance of
filter evaluation, the EMS distributor caches
tokens in memory after they are extracted from
the event. If another test invokes the same
token, the distributor uses its cached token to
avoid issuing a token get call.

Determining the CPU Cost of Filter
Evaluation
To determine the CPU cost of filter evaluation
(Fe), the analyst must know the filter as well as
the values (CPU time in milliseconds) of the
various filter primitives. Measurements taken
on a VLX system showed the CPU costs of the
following filter primitives:

■ SSID tests cost 0.2 milliseconds each.

■ Event number tests cost 0.3 milliseconds
each.

■ Text match tests cost 0.3 milliseconds
plus 0.008 milliseconds per byte tested.1 On
a 100-byte text string where no match occurs,
this results in 1.1 milliseconds per test.

■ Sender ID tests cost 0.7 milliseconds each.

■ Event subject tests cost 0.6 milliseconds
each.

■ Emphasis tests cost 0.2 milliseconds each.

By applying these numbers to the sample
filter shown in Figure 8, one can determine the
CPU cost of evaluating particular events. For
example, evaluating an event containing SSID
APPL.104.0 would cost 0.8 milliseconds. This
evaluation involves the entire first level of the
filter: three SSID tests plus one event flag test.
The CPU cost would be the same whether or
not the event contained an action-needed flag
and was passed to the consumer.

'Using wild cards in string matching does not significantly affect the cost.

TANDEM SYSTEMS REVIEW SPRING 1992

Evaluating an event containing SSID
APPL. I 02.0 and event number 2 would cost
1 millisecond. This evaluation involves two
SSID tests and two event number tests.

Guidelines for Constructing Filters
The filter evaluations discussed in the above
example show how important it is to construct
a filter that will evaluate events efficiently.
First, the filter execution time is affected by the
order of the token tests within the filter. If a
critical token is tested at the end of the filter,
the entire first level of the filter must execute
before an event containing that token can be
evaluated. For events that occur frequently, this
can greatly increase the overall execution time
of the filter.

Therefore, token value tests for events that
occur most often should be placed at the begin
ning of the filter. The filter writer should fol
low the same guideline at all levels of nesting.
For example, for events containing a particular
SSID, one might test first for the event number
that occurs most often.

The same principle applies to events that
do not contain any tokens tested by the filter.
When these events are evaluated, the entire
first level of the filter will execute. If these
events occur frequently, it may be more effi
cient to insert statements into the filter that will
identify and explicitly fail these events.

Matching text strings uses substantially
more CPU time than testing integer values.
Therefore, one should avoid the MATCH verb.
One should, instead, test structured tokens such
as integers, file names, or SSIDs whenever
possible.

Real filters are much more complex than the
example shown in Figure 8. The analyst can
scan event logs to determine the frequency of
specific events. On the basis of this informa
tion, the analyst can construct a filter that
responds efficiently to the specific characteris
tics of the user environment.

Figure 7

IF SSID = selectedAssid THEN

BEGIN

IF (EVENTNUMBER = firstAeventAnumber OR

EVENTNUMBER = secondAeventAnumber OR

EVENTNUMBER = nthAeventAnumber) THEN PASS

ELSE FAIL

END;

Figure 8

FILTER EXAMPLEAFIL TER;

BEGIN

(Fail events from this talkative subsystem.)
IF ZSPIATKNASSID = SSID (APPL.101.0) THEN FAIL;

(Pass specific event numbers from this subsystem.)
IF ZSPIATKNASSID = SSID (APPL.102.0) THEN

BEGIN

IF (EVENTNUMBER = 1
EVENTNUMBER = 2

OR
OR

MATCH (TEXT,firstAtext) OR
MATCH (TEXT,secondAtext))

END;

THEN PASS
ELSE FAIL;

(Check only for critical events from this subsystem.)
IF ZSPIATKNASSID = SSID (APPL.103.0) THEN

BEGIN
IF EMPHASIS= true THEN PASS 2

ELSE FAIL;
END;

(Pass all events with action needed token. Reverse video)
(for action requests, normal video for action completions.)
IF TOKENPRESENT (ACTIONANEEDED) THEN

BEGIN

IF ACTIONANEEDED = true THEN PASS 1
ELSE PASS;

END;

END;

Figure 7.

Example of combining
filter primitives to create
an evaluation block.
This example shows an
SSID-event number block.

Figure 8.

Example of a simple filter
that combines evaluation
blocks.

SPRING 1992 TANDEM SYSTEMS REVIEW 51

52

The Effect of Event Rates on the
EMS Sizing Formulas
The formulas for estimating event collection
and distribution costs are accurate as long as
the event rate and system load do not exceed
a certain limit. The formulas assume that the
EMS distributor processes events more quickly
than the events are stored on the EMS log.

Because the arrival of the next event takes
longer than filter evaluation at these lower
event rates, the distributor executes a second,
unsuccessful read of the EMS log after each
successful retrieval of an event. The term
(2 x Dr) in the distribution formula shown in
Figure 5 accounts for this. The end-of-file con
dition on the EMS log triggers the distributor's
event request to the EMS collector. The term
Dwr in the collection formula shown in
Figure 3 accounts for this.

If the event rate rises or the execution of the
distributor slows down, the above assumption
is no longer valid. In this case, the distributor
never reaches the end of the EMS log. For each
event it retrieves, it sends only a single read
request to the EMS log, and it does not send an
event request to the EMS collector.

Many factors can slow down the execution
of the distributor. These include a heavy system
load, a low CPU priority for the distributor, a
complex filter, and the addition of other
requesters or distributors requesting services
from the EMS log disk process.

Event Processing and Presentation
by ViewPoint
When an event passes the defined filter condi
tions, the EMS distributor forwards it to an
event consumer. The consumer is not a part
of EMS. It can be a user-written management
application or a Tandem DSM product such as
the Distributed Systems Management/Problem
Management (DSM/PM), which performs prob
lem tracking, or the Programmatic Network
Administrator (PNA) automated operations
software, which provides rules-based,
programmed responses to system problems.

The ViewPoint product is currently the most
widely used DSM tool for event monitoring.
This article discusses ViewPoint event con
sumption and provides sizing information
to help the analyst predict the CPU costs of
ViewPoint functions. The article assumes that
one is using the C21 version of View Point.
One can divide ViewPoint event consumption
into two steps: event processing and event
presentation.

Event processing involves obtaining the
event from the EMS distributor and preparing
it for presentation. View Point servers perform
this work.

TANDEM SYSTEMS REVIEW• SPRING I 9 9 2

Figure 9

EMS distribution ViewPoint formatting

Event presentation involves constructing the
event display and writing it to the operator
terminal. The terminal control process (TCP),
part of Tandem's Pathway distributed transac
tion processing system, performs this work.

Figure 9 illustrates the processes involved
in event processing and presentation with
ViewPoint. View Point servers collect events
from the EMS distributors and format the
events. The ViewPoint servers then notify the
View Point TCP, which requests the events from
the servers, constructs the screen displays,
and sends them to the appropriate operator
consoles.

Event Processing
In event processing, the ViewPoint event col
lection server obtains an event by sending an
event request to the EMS distributor. The col
lection server formats the text for display. Next,
the server stores the event in memory for each

ViewPoint presentation

TCP thread (for each primary and alternate
event display that requires this event). If an
event is marked as critical, the collection serv
er sends it to the event notify server. The event
notify server writes the critical or action mes
sage directly to the 25th line of the operator
console; it does not use the ViewPoint TCP to
display events.

SPRING 1992 TANDEM SYSTEMS REVIEW

Figure 9.

Event processing and
presentation by View Point.

53

Figure 10

Ep= Frx (Cp+ (Crx (Cn) + (Dr))

The VLX performance study produced the following results:

Ep = Fr x (14.5 ms+ (Crx (10 ms)+ 4 ms))

where

Ep

Fr

Gp

Cr

Cn

Dr

Figure 10.

CPU cost, in CPU ms/sec, of event processing

filtered event rate, the sum of the events forwarded by all distributors, in
events/sec

base CPU time, in ms, the collection server uses to collect and format an event

percentage of critical events received

base CPU time, in ms, the notify server uses to process a critical event

CPU time, in ms, the disk process uses to read the template file

Fonnulafc1r estimating the
CPU cost of' ViewPoint
event processing.

The C21 version of ViewPoint allows the
user to take advantage of a performance option
that lowers the overall cost of event process
ing. In previous versions of View Point, the
View Point collection server stored events in
the display cache and event terminal files.
These were then read by the display server
and prepared for display. The C2 l version of
View Point removes much of the disk access
from event processing by retaining the current
event list in the collection server's memory.
Thus, the ViewPoint TCP can use the collection
server to provide events for presentation. With
this option, the display server is no longer
involved in event processing.

Calculating the CPU Cost of View Point
Event Processing
Figure 10 shows a formula for estimating the
CPU cost of View Point event processing. The
VLX performance study provided specific val
ues for operations performed by the following
processes:

■ The collection server fetches and processes
an event (Cp). The collection server incurs
additional costs during event presentation,
as described later.

■ The event notify server processes a critical
event (Cn).

■ The disk process reads the event template
file (Dr).

The analyst must determine the filtered
event rate (Fr), which includes the sum of
events collected from all related distributors,
in events per second. The analyst can obtain
Fr by viewing either one of these Measure
report items:

■ The number of messages received by the
EMS distributors (the Measure PROCESS
entity).

■ The number of requests issued by the
View Point collection server to the EMS dis
tributors (the Measure FILE entity).

When calculating the value of Fr, the ana
lyst must include both the primary distributor
and all active alternate distributors. This cost is
incurred whether or not the View Point alter
nate event displays are active.

54 TANDEM SYSTEMS REVIEW SPRING 1992

In addition, the analyst must determine the
percentage of events received by the collection
server that are critical (Cr). Critical events add
to the CPU cost because they require additional
processing by the event notify server. To deter
mine Cr, the analyst can use Measure to calcu
late the number of messages received by the
event notify server.

Last-Event Processing
In addition to displaying the most recent
events, View Point provides a last-event func
tion, which allows the operator to view system
events that concern a particular event subject.
To plan CPU resources to support ViewPoint,
the analyst must include the CPU costs associat
ed with the processing of last events, whether
or not the last-event display functions are
invoked.

The last-event collection server functions the
way the collection server did in versions of
View Point prior to C2 l. It uses its own EMS
distributor and a user-defined filter to store
events by subject. For each filtered event it
receives, the last-event collection server sends
read and write requests to the last-event cache
file and the last-event subject files.

Calculating the CPU Cost of Last-Event
Processing
Figure 11 shows a formula for estimating the
CPU cost of View Point last-event processing
of one event. The VLX performance study pro
vides specific values for the CPU costs to sup
port the last-event collection server process
(Le) and last-event disk process (LDp).

Figure 11

Lp = (Fr X (le X lDp))

The VLX performance study produced the following results:

Lp = (Fr x (29 ms+ 15 ms))

where

Lp CPU cost, in CPU ms/sec, of last-event processing

Fr filtered event rate in events/sec

Le CPU time, in ms, the last-event collection server uses to process the event

LDp CPU time, in ms, the last-event collection disk process uses to read and
update the event files

The analyst must determine Fr. This event
rate is based on the frequency of filtered events
delivered by the last-event collection server's
EMS distributor. The analyst can obtain this
value by viewing the Measure FILE requests on
the last-event distributor.

Figure 11.

Formula for estimating
the CPU cost of View Point
last-event processing.

SPRING 1992 TANDEM SYSTEMS REVIEW 55

Figure 12

Cd= (Cf+ ((On-1) x Cad)) x Rr

The VLX performance study produced the following results:

Cd= (238.1 ms+ ((On-1) x 41.0 ms)) x Rr

where

Cd CPU cost, in CPU ms/sec, of the collection server to support primary display
processing by ViewPoint

Cf CPU time, in ms, the collection server uses to process the first primary display

On number of active operators viewing the primary display

Cad = CPU time, in ms, the collection server uses to process additional primary
displays

Rr = user-configured ViewPoint refresh rate, in refreshes per second

Figure 12.

Formula for estimating
the CPU cost of the
ViewPoint collection
server to present primary
displays.

Event Presentation
In event presentation, ViewPoint displays an
up-to-date list of events on the operator's con
sole. The display shows the last 16 events
received within a user-defined interval. The
default interval is 10 seconds.

First, the collection server receives an event
intended for a particular operator terminal
(either a primary or alternate display). (See
Figure 9.) The collection server then places
an unsolicited message processing (UMP)
message on the TCP's terminal thread.

Asynchronously, the TCP delays the speci
fied refresh interval and then checks to see if
there is an UMP message outstanding. If there
is, the TCP replies to the UMP message and
requests the list of events directly from the
collection server.

When sizing event presentation, the analyst
must distinguish between primary and alternate
display presentation. When multiple operators
view a primary display, they all use one filter
and EMS distributor. Thus, they share one event
list, which lowers the processing costs.
However, each alternate display is processed
independently, using its own filter and EMS
distributor.

Calculating the CPU Cost of Primary
Displays
Event presentation of a View Point primary
display involves two steps:

■ The collection server processes the event
before the display.

■ The ViewPoint TCP displays the formatted
list of events on the terminal.

Figure 12 shows a formula for estimating
the CPU cost incurred by the collection server
to process a primary display. After it processes
the initial display (Cf), the collection server
incurs a small processing cost (Cad) for each
additional active operator viewing the primary
display.

Figure 13 shows a formula for estimating
the CPU cost incurred by the ViewPoint TC
to process a primary display. The TCP

incurs a cost for the initial primary display
(Td) and each additional display (Tn). The
backup TCP also affects the cost of TCP
display processing (Tb).

56 TANDEM SYSTEMS REVIEW SPRING 1992

The VLX performance study provides specif
ic values for Cj; Cad, Td, Tn, and Tb. (See
Figures 12 and 13.) The analyst must know the
number of active operator terminals (On) and
the ViewPoint refresh rate (Rr).

Assume, for example, that two operators are
viewing the primary display and the refresh rate
has the default value of 0.1 (the event list is
refreshed every 10 seconds). Figure 14 shows
how to calculate the CPU cost of event presen
tation in this example.

These calculations assume that at least one
filtered event will arrive within the refresh
interval. If no events pass through the collec
tion server during this time, no costs for event
presentation occur.

The analyst should also consider the CPU
cost of the 1/0 process that drives the terminal.
The event presentation formulas do not include
this cost. For TCP TERMPROCESS configura
tions on a VLX system, the cost is 28 millisec
onds per display or 28 milliseconds x On. For
Tandem 6100-type communications subsys
tems (terminal controllers) on a VLX system,
the cost is 45.3 milliseconds per display or
45.3 milliseconds x On.

Calculating the CPU Cost of Alternate
Displays
Sizing Viewpoint's alternate display processing
is similar to sizing for the primary display. The
TCP costs are the same. Therefore, one can use
the formula in Figure 13 to calculate the TCP
costs of alternate display processing.

Figure 13

Tp:(Td+(Tnx(On-1))+(On x Tb))x Rr

The VLX performance study produced the following results:

Tp = (105.7 ms+ (45.3 ms x (On-1)) + (On x 10.2 ms)) x Rr

where

Tp CPU cost, in ms/sec, of the ViewPoint TCP to support primary display
processing by ViewPoint

Td CPU time, in ms, the TCP uses to present a single primary event display

Tn CPU time, in ms, the TCP uses to present each additional primary event
display

On number of active operators viewing the primary display

Tb CPU time, in ms, the backup TCP uses to process each ViewPoint primary
event display

Rr user-configured ViewPoint refresh rate, in refreshes per second

Figure 14

Assume that two operators view the primary display and the default refresh rate = 0.1.

CPU cost of primary display processing:

Cd=(238.1 ms+((2-1)x41.0msx0.1 =27.91 ms/sec

and

Tp = (105.7 ms x 2) + (10.2 x 2)) x 0.1 = 23.18 ms/sec

Total CPU cost for primary display (Pd) processing:

Pd= 51.09 ms/sec

Figure 13

Formula.for estimating
the CPU cost of the
ViewPoint TCP to pre
sent primary displays.

Figure 14.

Sample CPU cost of
ViewPoint primary
display processing on
a VLX system. These
calculations use the
.fcJrmulas shown in
Figures 12 and 13.

SPRING 1992 TANDEM SYSTEMS REVIEW 57

Figure 15

Ca= (Cf+ ((On-1) x Cad)) x Rr

The VLX performance study produced the following results:

Ca= (238.1 ms+ ((On -1) x 204.4 ms)) x Rr

where

Ca CPU cost, in ms/sec, of the collection server to support alternate display
processing

Cf CPU time, in ms, the collection server uses to process the first alternate
display

On number of active operators viewing the alternate display

Cad = CPU time, in ms, the collection server uses to process additional alternate
displays

Rr = user-configured ViewPoint refresh rate, in refreshes per second

Figure 15.

Formula jcJr estimating
the CPU cost of the
ViewPoint collection
server to present primary
displays.

However, with primary displays, the cost of
supporting multiple displays is relatively small.
With alternate display processing, the collec
tion server treats each display independently.
Each display has its own memory cache, filter,
and EMS distributor. Thus, each additional dis
play costs about the same as the initial one.
Figure 15 shows a formula for estimating the
CPU cost of processing alternate displays.

The Impact of Event Displays on ViewPoint
Performance
The number and type of event displays affect
the performance of View Point. When several
operators se the primary display, the CPU cost
of event processing remains fixed. However,
when additional alternate displays are config
ured, the CPU cost of event processing rises,
because the event collection server must
handle additional events from more EMS
distributors.

In previous releases of View Point, these
costs clustered in the same CPU because the
EMS distributors were placed in the collection
server's CPU. In versions of View Point after
C2 l, starting with interim product maintenance
(1PM) AAG, the analyst can designate the CPU
in which an EMS distributor will execute.

The analyst can also configure multiple
View Point environments to handle different
functional areas such as telecommunications,
the host system, and application events. Or one
can divide the environments according to man
agement responsibility, assigning, for example,
specific network nodes to specific View Point
environments.

The CPU cost of event presentation varies
according to the frequency of the terminal dis
play. Fortunately, the CPU cost is spread over
the duration of the display interval. Also, the
event list is redisplayed only if a new event
has arrived (has been filtered) during the dis
play interval. The analyst can increase the
default value of 10 seconds, which will lower
the impact on system performance by spreading
the CPU cost over a longer interval. This is a
useful alternative if the operator can perform
well with less frequent event notification.

58 TANDEM SYSTEMS REVIEW SPRING 1992

Conclusion
DSM products such as EMS and ViewPoint
provide an environment that supports effective
event management. By designing events that
provide information efficiently, application
developers can enhance the effectiveness of
event management. By applying the formulas
in this article to their installations, system man
agers can accurately configure the Tandem
software tools that collect, distribute, process,
and present events, thus enhancing the perfor
mance of event management.

References
Dagenais, J. 1991. Instrumenting Applications for Effective
Event Management. Tandem Systems Review. Vol. 7, No. 2.
Tandem Computers Incorporated. Part no. 65248.

Hansen, R. and Stewart, G. 1988. VIEWPOINT Operations
Console Facility. fondem Systems Review. Vol. 4, No. 3.
Tandem Computers Incorporated. Part no. 15748.

Homan, P., Malizia, B., and Reisner, E. 1988. Overview of
DSM. Tandem Systems Review. Vol. 4. No. 3. Tandem
Computers Incorporated. Part no. 15748.

Jordan. H .. McRee. R., and Schuet, R. 1988. Event Management
Service Design and Implementation. Tandem Systems Review.
Vol. 4, No. 3. Tandem Computers Incorporated. Part no. 15748.

Acknowledgments
Special thanks are due to Art Sheehan for providing the CPU
scaling information shown in Table I.

Mark Stockton has worked with Tandem as a consultant for over
six years. Before the COO release of Guardian 90, Mark worked
with Tandem developers in the requirements, definition, and design
of the DSM products. In 1989, he began working with the DSM
Applications group as a performance consultant. Mark is currently
designing a Tandem message switch and trading system for the
Paris Stock Exchange.

SPRING 1992 TANDEM SYSTEMS REVIEW 59

60

Tandem Professional Services

o help users develop applica
tions quickly and maintain
them efficiently, Tandem"M
recently introduced packaged
Professional Services. This
program provides trained

Tandem experts who deliver standardized tech
nical consulting services at the user site, help
ing users to take advantage of the latest tools
and technology to implement solutions quickly.

Tandem Professional Services offers a range
of service packages to assist users during
all phases of system planning, design, imple
mentation, and production. The services are
designed as independent modules, so users
can choose specific areas where they need
assistance. Three services, which can be com
pleted in two to four weeks, are available now:

■ Project Definition

■ NonStop'" SQL Physical Database Design

■ NonStop SQL Performance Tuning

Before a service is delivered, the Tandem
service manager reviews the goals, tasks,
and deliverables of the service. A Tandem
consultant then works onsite with a user team
to accomplish those objectives. Working with
the user team, the Tandem consultant provides
technical training, which can be applied
to other phases of the project and to future
projects.

TANDEM SYSTEMS REVIEW• SPRING 1992

Current Service Products
The Professional Services products now avail
able are briefly described below. Together,
these three products can help users at various
stages of application design, development,
and tuning.

Project Definition
This service helps users develop a strategic
plan for a Tandem development project.
Tandem project management specialists work
with a user team to define the project require
ments, outline the major phases and associated
tasks required to complete the project, and
identify the roles and responsibilities of the
people who will execute the project. In addition
to project management expertise, the Tandem
specialists provide extensive experience with
on line transaction processing (OL TP) applica
tions as well as Tandem concepts and products.

Nonstop SQL Physical Database Design
This service helps users design a high
performance relational database. Tandem
database specialists assist the user database
design team in translating their logical database
design into an effective physical database
design optimized for NonStop SQL. As they
work with the user team, the Tandem specialists
also provide coaching and advice, transferring
database design expertise and methodology
to the user database staff.

Nonstop SQL Performance Tuning
This service helps users tune NonStop SQL
applications for maximum performance.
Tandem database specialists work closely with
the user database team to measure, analyze,
and optimize the NonStop SQL application
environment. The Tandem specialists also give
advice and help transfer performance analysis
and tuning skills to the user database staff.

Created and Delivered
by Technical Experts
The goal of the Professional Services program
is to provide the best approach to solving
a system requirement. Tandem is experienced
in tailoring advanced technological solutions
for companies and has developed efficient
methods to attain successful results. By using
a proven systematic approach, Professional
Services ensure consistent, high-quality deliv
ery and substantial time savings for users.

The program gives users access to Tandem's
technical experts, who have extensive experi
ence in OL TP and who understand the require
ments of implementing complex applications
cost-effectively.

SPRING 1992 • TANDEM SYSTEMS REVIEW 61

62

Each service is created by a team of
Tandem's senior technical people who have
years of experience in helping users in the spe
cific subject area. The Tandem team develops
the methodology, principles, and tools for the
service according to uniform standards. The
materials are reviewed by other Tandem
experts and tested at multiple customer sites.

After the service has been developed, the
best technical people from Tandem and
Tandem Alliance partners are selected to
become service consultants. Each consultant
completes a certification program to ensure
quality and consistency in delivery. The con
sultant attends a training session and receives
mentoring and evaluation from a senior expert
on the service process and in the subject area.

Most services not only help users accom
plish practical goals, but they also build users'
technical skills. The specialized skills of the
consultants complement the user team's under
standing of their business and application
requirements. By working side by side with
users, consultants can enhance the user team's
skills and the project's success.

Service Management
To assure a smooth and timely delivery, a
Tandem service manager oversees the imple
mentation of each service. The service manag
er makes sure that users are satisfied with all
phases of the service, from selection to final
evaluation.

Before starting the service delivery, the ser
vice manager reviews the service description
and service prerequisites with the user, handles
any requests for changes to the standard ser
vice, and works with the user on scheduling.
The service description provides specific infor
mation about the delivery of each service,
including the objective, scope of work, deliver
able results, user and Tandem roles and respon
sibilities, project approach, and tasks.

To benefit fully from the service, the service
manager often recommends that user partici
pants attend specific Tandem courses listed in
the service description. In addition, the service
description may describe project phases, docu
ments, or materials that need to be completed
before Tandem begins the service.

To learn more about the Tandem Profes
sional Services program and individual con
sulting services, users should contact their
local Tandem sales office.

TANDEM SYSTEMS REVIEW• SPRING 1992

TANDEM SYSTEMS REVIEW INDEX

The Tandem Journal became the Tandem Systems Review in February 1985. Four issues of the Tandem
Journal were published:

Volume I, Number 1
Volume 2, Number I
Volume 2, Number 2
Volume 2, Number 3

Fall 1983
Winter 1984
Spring 1984
Summer 1984

Part no. 83930
Part no. 83931
Part no. 83932
Part no. 83933

As of this issue, 17 issues of the Tandem Systems Review have been published:

Volume 1, Number I
Volume I, Number 2
Volume 2, Number I
Volume 2, Number 2
Volume 2, Number 3
Volume 3, Number I
Volume 3, Number 2
Volume 4, Number I
Volume 4, Number 2
Volume 4, Number 3
Volume 5, Number l
Volume 5, Number 2
Volume 6, Number l
Volume 6, Number 2
Volume 7, Number I
Volume 7, Number 2
Volume 8, Number I

February 1985
June 1985
February 1986
June 1986
December 1986
March 1987
August 1987
February 1988
July 1988
October 1988
April 1989
September 1989
March 1990
October 1990
April 1991
October 1991
Spring 1992

Part no. 83934
Part no. 83935
Part no. 83936
Part no. 83937
Part no. 83938
Part no. 83939
Part no. 83940
Part no. 11078
Part no. 13693
Partno. 15748
Part no. 18662
Partno.28152
Part no. 32986
Part no. 46987
Part no. 46988
Part no. 65248
Part no. 65250

The articles published in all 21 issues are arranged by subject below. (Tandem Journal is abbreviated
as TJ and Tandem Systems Review as TSR.) A second index, arranged by product, is also provided.

Index by Subject

Season
Volume, or month

Article title Author(s) Publication Issue and year

Application Development and Languages

Ada: Tandem's Newest Compiler and Programming Environment R. Vnuk TSR 3,2 Aug. 1987

A New Design for the PATHWAY TCP R. Wong TJ 2,2 Spring 1984

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984

Debugging TACL Code L. Palmer TSR 4,2 July 1988

Instrumenting Applications for Effective Event Management J. Dagenais TSR 7,2 Oct.1991

New TAL Features C. Lu, J. Murayama TSR 2,2 June 1986

PATHFINDER-An Aid for Application Development S.Benett TJ 1,1 Fall 1983

PATHWAY IDS: A Message-level Interlace to Devices M.Anderton, TSR 2,2 June 1986
and Processes M. Noonan

State-of-the-Art C Compiler E. Kit TSR 2,2 June 1986

TACL, Tandem's New Extensible Command Language J. Campbell, TSR 2,1 Feb. 1986
R. Glascock

Tandem's New COBOL85 D. Nelson TSR 2,1 Feb. 1986

The ENABLE Program Generator for Multifile Applications B. Chapman, TSR 1,1 Feb. 1985
J. Zimmerman

TMF and the Multi-Threaded Requester T. Lemberger TJ 1,1 Fall 1983

Writing a Command Interpreter D. Wong TSR 1,2 June 1985

SPRING l992•TANDEM SYSTEMS REVIEW

Part
number

83940

83932

83932

13693

65248

83837

83930

83937

83937

83936

83936

83934

83930

83935

63

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Customer Support

Customer Information Service J. Massucco TSR 3,1 March 1987 83939

Remote Support Strategy J. Eddy TSR 3,1 March 1987 83939

Tandem's Software Support Plan R. Baker, D. McEvoy TSR 3,1 March 1987 83939

Data Communications

An Overview of SNAX/CDF M. Turner TSR 5,2 Sept. 1989 28152

A SNAX Passthrough Tutorial D. Kirk TJ 2,2 Spring 1984 83932

Changes in FOX N. Donde TSR 1,2 June 1985 83935

Introduction to MULTILAN A. Coyle TSR 4,1 Feb. 1988 11078

Overview of the MULTILAN Server A. Rowe TSR 4,1 Feb. 1988 11078

SNAX/APC: Tandem's New SNA Software for Distributed Processing B. Grantham TSR 3,1 March 1987 83939

SNAX/HLS: An Overview S. Saltwick TSR 1,2 June 1985 83935

TLAM: A Connectivity Option for Expand K. MacKenzie TSR 7,1 April 1991 46988

Using the MULTI LAN Application Interlaces M. Berg, A. Rowe TSR 4,1 Feb. 1988 11078

Data Management

A Comparison of the BOO DP1 and DP2 Disc Processes T. Schachter TSR 1,2 June 1985 83935

An Overview of Nonstop SOL Release 2 M. Pong TSR 6,2 Oct.1990 46987

Batch Processing in Online Enterprise Computing T. Keefauver TSR 6,2 Oct. 1990 46987

Concurrency Control Aspects of Transaction Design W. Senf TSR 6,1 March 1990 32968

Converting Database Files from ENSCRIBE to Nonstop SQL W. Weikel TSR 6,1 March 1990 32986

DP1 -DP2 File Conversion: An Overview J. Tate TSR 2,1 Feb. 1986 83936

Determining FCP Conversion Time J. Tate TSR 2,1 Feb. 1986 83936

DP2's Efficient Use of Cache T. Schachter TSR 1,2 June 1985 83935

DP2 Highlights K. Carlyle, L. McGowan TSR 1,2 June 1985 83935

DP2 Key-sequenced Files T. Schachter TSR 1,2 June 1985 83935

Gateways to Nonstop SQL D. Slutz TSR 6,2 Oct. 1990 46987

High-Performance SOL Through Low-Level System Integration A. Borr TSR 4,2 July 1988 13693

Improvements in TMF T. Lemberger TSR 1,2 June 1985 83935

Online Reorganization of Key-Sequenced Tables and Files G.Smith TSR 6,2 Oct.1990 46987

Optimizing Batch Performance T. Keefauver TSR 5,2 Sept. 1989 28152

Overview of Nonstop SQL H. Cohen TSR 4,2 July 1988 13693

Parallelism in Nonstop SOL Release 2 M. Moore, A. Sodhi TSR 6,2 Oct. 1990 46987

NetBatch: Managing Batch Processing on Tandem Systems D. Wakashige TSR 5,1 April 1989 18662

NetBatch-Plus: Structuring the Batch Environment G. Earle, D. Wakashige TSR 6,1 March 1990 32986

Nonstop SOL: The Single Database Solution J. Cassidy, T. Kocher TSR 5,2 Sept. 1989 28152

Nonstop SOL Data Dictionary R. Holbrook, D. Tsou TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Basic Concepts M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Query Optimization and User Influence M. Pong TSR 4,2 July 1988 13693

NonStop SOL Reliability C. Fenner TSR 4,2 July 1988 13693

The Nonstop SQL Release 2 Benchmark S. Englert, J. Gray, TSR 6,2 Oct.1990 46987
T. Kocher, P. Shah

The Outer Join in Nonstop SOL J. Vaishnav TSR 6,2 Oct. 1990 46987

The Relational Data Base Management Solution G.Ow TJ 2,1 Winter1984 83931

Tandem's Nonstop SQL Benchmark Tandem Performance TSR 4,1 Feb. 1988 11078
Group

The TRANSFER Delivery System for Distributed Applications S.Van Pelt TJ 2,2 Spring 1984 83932

TMF Autorollback: A New Recovery Feature M. Pong TSR 1,1 Feb. 1985 83934

64 TANDEM SYSTEMS REVIEW SPRING I 9 9 2

Season
Volume, or month Part

Article title Author{s) Publication Issue and year number

Manuals/Courses

BOO Software Manuals S.Olds TSR 1,2 June 1985 83935

COO Software Manuals E. Levi TSR 4,1 Feb. 1988 11078

New Software Courses M. Janow TSR 1,2 June 1985 83935

New Software Courses J. Limper TSR 4,1 Feb. 1988 11078

Subscription Policy for Software Manuals T. Mcsweeney TSR 2,1 Feb. 1986 83936

Tandem's New Products C. Robinson TSR 2,1 Feb. 1986 83936

Tandem's New Products C. Robinson TSR 2,2 June 1986 83937

Operating Systems

Highlights of the BOO Software Release K. Coughlin, TSR 1,2 June 1985 83935
R. Montevaldo

Increased Code Space A. Jordan TSR 1,2 June 1985 83935

Managing System Time Under GUARDIAN 90 E. Nellen TSR 2,1 Feb. 1986 83936

New GUARDIAN 90 Time-keeping Facilities E. Nellen TSR 1,2 June 1985 83935

New Process-timing Features S. Sharma TSR 1,2 June 1985 83935

Nonstop 11 Memory Organization and Extended Addressing D. Thomas TJ 1,1 Fall 1983 83930

Overview of the COO Release L. Marks TSR 4,1 Feb. 1988 11078

Overview of the NonStop-UX Operating System for the Integrity S2 P. Norwood TSR 7,1 April 1991 46988

Robustness to Crash in a Distributed Data Base: A.Borr TSR 1,2 June 1985 83935
A Nonshared-memory Approach

The GUARDIAN Message System and How to Design for It M. Chandra TSR 1,1 Feb. 1985 83935

The Tandem Global Update Protocol A.Carr TSR 1,2 June 1985 83935

Performance and Capacity Planning

A Performance Retrospective P. Oleinick, P. Shah TSR 2,3 Dec. 1986 83938

Buffering for Better Application Performance R. Mattran TSR 2,1 Feb. 1986 83936

Capacity Planning Concepts R. Evans TSR 2,3 Dec. 1986 83938

Capacity Planning With TCM W. Highleyman TSR 7,2 Oct.1991 65248

COO TMDS Performance J. Mead TSR 4,1 Feb. 1988 11078

Credit-authorization Benchmark for High Performance and T. Chmiel, T. Houy TSR 2,1 Feb. 1986 83936
Linear Growth

Debugging Accelerated Programs on TNS/R Systems D. Gressler TSR 8,1 Spring 1992 65250

DP2 Performance J. Enright TSR 1,2 June 1985 83935

Estimating Host Response Time in a Tandem System H. Horwitz TSR 4,3 Oct. 1988 15748

FASTSORT: An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938
A. Tsukerman, S. Uren,
B.Vaughan

Getting Optimum Performance from Tandem Tape Systems A. Khatri TSR 2,3 Dec. 1986 83938

How to Set Up a Performance Data Base with M.King TSR 2,3 Dec. 1986 83938
MEASURE and ENFORM

Improved Performance for BACKUP2 and RESTORE2 A. Khatri, M. McCline TSR 1,2 June 1985 83935

Improving Performance on TNS/R Systems With the Accelerator M. Blanchet TSR 8,1 Spring 1992 65250

MEASURE: Tandem's New Performance MeasurementTool D. Dennison TSR 2,3 Dec. 1986 83938

Measuring DSM Event Management Performance M. Stockton TSR 8,1 Spring 1992 65250

Message System Performance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938

Message System Performance Tests S. Uren TSR 2,3 Dec. 1986 83938

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938

Optimizing Sequential Processing on the Tandem System R. Welsh TJ 2,3 Summer1984 83933

Pathway TCP Enhancements for Application Run-Time Support R. Vannucci TSR 7,1 April 1991 46988

Performance Benefits of Parallel Query Execution and Mixed S. Englert, J. Gray TSR 6,2 Oct. 1990 46987
Workload Support in Nonstop SOL Release 2

Performance Considerations for Application Processes R. Glasstone TSR 2,3 Dec. 1986 83938

Performance Measurements of an ATM Network Application N. Cabell, D. Mackie TSR 2,3 Dec. 1986 83938

Predicting Response Time in On-line Transaction A. Khatri TSR 2,2 June 1986 83937

Processing Systems

S P R I N G 1992•TANDEM S Y S T E M S REVIEW 65

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Performance and Capacity Planning

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

The ENCORE Stress Test Generator for On-line Transaction S. Kosinski TJ 2,1 Winter1984 83931
Processing Applications

The PATHWAY TCP: Performance and Tuning J. Vatz TSR 1,1 Feb. 1985 83934

The Performance Characteristics of Tandem Nonstop Systems J. Day TJ 1,1 Fall 1983 83930

Sizing Cache for Applications that Use B-series DP1 and TMF P. Shah TSR 2,2 June 1986 83937

Sizing the Spooler Collector Data File H. Norman TSR 4,1 Feb. 1988 11978

Tandem's 5200 Optical Storage Facility: Performance and S. Coleman TSR 5,1 April 1989 18662
Optimization Considerations

Tandem's Approach to Fault Tolerance B. Ball, W. Bartlett, TSR 4,1 Feb. 1988 11078
S. Thompson

Understanding PATHWAY Statistics R. Wong TJ 2,2 Spring 1984 83932

Peripherals

5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940

An Introduction to DYNAMITE Workstation Host Integration S. Kosinski TSR 1,2 June 1985 83935

Data-Encoding Technology Used in the XLB Storage Facility D.S. Ng TSR 2,2 June 1986 83937

Data-Window Phase-Margin Analysis A. Painter, H. Pham, TSR 2,2 June 1986 83937
H. Thomas

Introducing the 3207 Tape Controller S. Chandran TSR 1,2 June 1985 83935

Peripheral Device Interfaces J. Blakkan TSR 3,2 Aug. 1987 83940

Plated Media Technology Used in the XLB Storage Facility D.S. Ng TSR 2,2 June 1986 83937

Streaming Tape Drives J. Blakkan TSR 3,2 Aug. 1987 83940

The 5200 Optical Storage Facility: A Hardware Perspective A. Patel TSR 5,1 April 1989 18662

The 6100 Communications Subsystem: A New Architecture Fl.Smith TJ 2,1 Winter1984 83931

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

The DYNAMITE Workstation: An Overview G.Smith TSR 1,2 June 1985 83935

The Model 6VI Voice ln12ut O[!tion: Its Design and lm12lementation B. Huggett TJ 2,3 Summer 1984 83933

The Role of Optical Storage in Information Processing L. Sabaroff TSR 3,2 Aug. 1987 83940

The VB Disc Storage Facility: Setting a New Standard for M. Whiteman TSR 1,2 June 1985 83935
On-line Disc Storage

Processors

Fault Tolerance in the Nonstop Cyclone System S. Chan, R. Jardine TSR 7,1 April 1991 46988

Nonstop CLX: Optimized for Distributed On-Line D. Lenoski TSR 5,1 April 1989 18662
Transaction Processing

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938

Overview of Tandem Nonstop Series/RISC Systems L. Faby, R. Mateosian TSR 8,1 Spring 1992 65250

The High-Performance Nonstop TXP Processor W. Bartlett, T. Houy, TJ 2,1 Winter1984 83931
D. Meyer

The Nonstop TXP Processor: A Powerful Design for On-line P. Oleinick TJ 2,3 Summer1984 83933
Transaction Processing

The VLX: A Design for Serviceability J. Allen, R. Boyle TSR 3,1 March 1987 83939

Security

Dial-In Security Considerations P. Grainger TSR 7,2 Oct.1991 65248

Distributed Protection with SAFEGUARD T. Chou TSR 2,2 June 1986 83937

Enhancing System Security With Safeguard C.Gaydos TSR 7,1 April 1991 46988

System Connectivity

Building Open Systems Interconnection with OSI/AS and OSI/TS Fl.Smith TSR 6,1 March 1990 32986

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

Terminal Connection Alternatives for Tandem Systems J. Simonds TSR 5,1 April 1989 18662

The OSI Model: Overview, Status, and Current Issues A. Dunn TSR 5,1 April 1989 18662

66 T A N D E M SYSTEMS REVIEW SPRING I 9 9 2

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

S}'stem Management

Configuring Tandem Disk Subsystems S. Sitler TSR 2,3 Dec. 1986 83938

Data Replication in Tandem's Distributed Name Service T. Eastep TSR 4,3 Oct. 1988 15748

Enhancements to TMDS L. White TSR 3,2 Aug. 1987 83940

Event Management Service Design and Implementation H. Jordan, R. McKee, TSR 4,3 Oct. 1988 15748
R. Schuet

Introducing TMDS, Tandem's New On-line Diagnostic System J. Troisi TSR 1.2 June 1985 83935

Instrumenting Applications for Effective Event Management J. Dagenais TSR 7,2 Oct.1991 65248

Measuring DSM Event Management Performance M. Stockton TSR 8,1 Spring 1992 65250

Network Statistics System M.Miller TSR 4,3 Oct. 1988 15748

Overview of DSM P. Homan, B. Malizia, TSR 4,3 Oct.1988 15748
E. Reisner

SCP and SCF: A General Purpose Implementation of the T. Lawson TSR 4,3 Oct.1988 15748
Subsystem Programmatic Interface

RDF: An Overview J. Guerrero TSR 7,2 Oct.1991 65248

Tandem's Subsystem Programmatic Interface G.Tom TSR 4,3 Oct.1988 15748

Using FOX to Move a Fault-tolerant Application C. Breighner TSR 1,1 Feb. 1985 83934

Using the Subsystem Programmatic Interface and Event K. Stobie TSR 4,3 Oct.1988 15748
Management Services

VIEWPOINT Operations Console Facility R. Hansen, G. Stewart TSR 4,3 Oct.1988 15748

VIEWSYS: An On-line System-resource Monitor D. Montgomery TSR 1,2 June 1985 83935

Writing Rules for Automated Operations J. Collins TSR 7,2 Oct.1991 65248

Utilities

Enhancements to PS MAIL A.Funk TSR 3,1 March 1987 83939

S P R I N G l992•TANDEM SYSTEMS REVIEW 67

Index by Product

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

3207 Tape Controller

Introducing the 3207 Tape Controller S. Chandran TSR 1,2 June 1985 83935

5120 Tape Subsystem

5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940

5200 Optical Storage

Tandem's 5200 Optical Storage Facility: Performance and S. Coleman TSR 5,1 April 1989 18662
Optimization Considerations

The 5200 Optical Storage Facility: A Hardware Perspective A. Patel TSR 5,1 April 1989 18662

The Role of Optical Storage in Information Processing L. Sabaroff TSR 4,1 Feb. 1988 11078

6100 Communications Subsystem

The 6100 Communications Subsystem: A New Architecture R.Smith TJ 2,1 Winter1984 83931

6530 Terminal

The Model 6VI Voice Input Option: Its Design and Implementation B.Huggett TJ 2,3 Summer1984 83933

6600 and TCC6820 Communications Controllers

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

Ada

Ada: Tandem's Newest Compiler and Programming Environment R. Vnuk TSR 3,2 Aug. 1987 83940

BASIC

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984 83932

C

State-of-the-art C Compiler E. Kit TSR 2,2 June 1986 83937

CIS

Customer Information Service J. Massucco TSR 3,1 March 1987 83939

CLX

Nonstop CLX: Optimized for Distributed On-Line D. Lenoski TSR 5,1 April 1989 18662
Transaction Processing

COBOL85

Tandem's New COBOL85 D. Nelson TSR 2,1 Feb. 1986 83936

COMINT(CI)

Writing a Command Interpreter D. Wong TSR 1,2 June 1985 83935

Cyclone

Fault Tolerance in the Nonstop C}'.clone System S. Chan, R. Jardine TSR 7,1 April 1991 46988

DP1 and DP2

A Comparison of the BOO DP1 and DP2 Disc Processes T. Schachter TSR 1,2 June 1985 83935

Determining FCP Conversion Time J. Tate TSR 2,1 Feb. 1986 83936

DP1 -DP2 File Conversion: An Overview J. Tate TSR 2,1 Feb. 1986 83936

DP2 Highlights K. Carlyle TSR 1,2 June 1985 83935
L. McGowan

DP2 Key-sequenced Files T. Schachter TSR 1,2 June 1985 83935

DP2 Performance J. Enright TSR 1,2 June 1985 83935

DP2's Efficient Use of Cache T. Schachter TSR 1,2 June 1985 83935

Sizing Cache for Applications that Use B-series DP1 and TMF P. Shah TSR 2,2 June 1986 83937

68 T A N D E M SYSTEMS REVIEW SPRING I 9 9 2

Article title

DSM

Data Replication in Tandem's Distributed Name Service

Event Management Service Design and Implementation

Instrumenting Applications for Effective Event Management

Measuring DSM Event Management Performance

Network Statistics System

Overview of DSM

SCP and SCF: A General Purpose Implementation of the
Subsystem Programmatic Interface

Tandem's Subsystem Programmatic Interface

Using the Subsystem Programmatic Interface and Event
Management Services

VIEWPOINT Operations Console Facility

Writing Rules for Automated Operations

DYNAMITE

An Introduction to DYNAMITE Workstation Host Integration

The DYNAMITE Workstation: An Overview

ENABLE

The ENABLE Program Generator for Multifile Applications

ENCOMPASS

The Relational Data Base Management Solution

ENCORE

The ENCORE Stress Test Generator for On-line Transaction
Processing Applications

ENSCRIBE

Converting Database Files from ENSCRIBE to Nonstop SOL

FASTSORT

FASTSORT: An External Sort Using Parallel Processing

FOX

Changes in FOX

Using FOX to Move a Fault-tolerant Application

FUP

Online Reorganization of Key-Sequenced Tables and Files

GUARDIAN90

BOO Software Manuals

COO Software Manuals

Highlights of the BOO Software Release

Improved Performance for BACKUP2 and RESTORE2

Increased Code Space

Managing System Time Under GUARDIAN 90

Message System Performance Enhancements

Message System Performance Tests

New GUARDIAN 90 Time-keeping Facilities

New Process-timing Features

Nonstop II Memory Organization and Extended Addressing

Overview of the COO Release

Robustness to Crash in a Distributed Data Base:
A Nonshared-memory Multiprocessor Approach

Tandem's Approach to Fault Tolerance

The GUARDIAN Message System and How to Design for It

The Tandem Global Update Protocol

Authorls) Publication

T. Eastep

H. Jordan, R. McKee,
R. Schuet

J. Dagenais

M. Stockton

M.Miller

P. Homan, B. Malizia,
E. Reisner

T. Lawson

G.Tom

K. Stobie

TSR

TSR

TSR

TSR

TSR

TSR

TSR

TSR

TSR

R. Hansen, G. Stewart TSR

J. Collins

S. Kosinski

G. Smith

B. Chapman,
J. Zimmerman

G.Ow

S. Kosinski

TSR

TSR

TSR

TSR

TJ

TJ

W. Weikel TSR

J. Gray, M. Stewart, TSR
A. Tsukerman, S. Uren,
B.Vaughan

N. Donde TSR

C. Breighner TSR

G.Smith TSR

S. Olds TSR

E. Levi TSR

K. Coughlin, TSR
R. Montevaldo

A. Khatri, M. McCline TSR

A. Jordan TSR

E. Nellen TSR

D. Kinkade TSR

S. Uren TSR

E. Nellen TSR

S. Sharma TSR

D. Thomas TJ

L. Marks TSR

A. Borr TSR

8. Ball, W. Bartlett, TSR
S. Thompson

M. Chandra TSR

R. Carr TSR

SPRING 1992 TANDEM SYSTEMS REVIEW

Volume,
Issue

4,3

4,3

7,2

8,1

4,3

4,3

4,3

4,3

4,3

4,3

7,2

1,2

1,2

1,1

2,1

2,1

6,1

2,3

1,2

1,1

6,2

1,2

4,1

1,2

1,2

1,2

2,1

2,3

2,3

1,2

1,2

1,1

4,1

1,2

4,1

1,1

1,2

Season
or month
and year

Oct. 1988

Oct.1988

Oct.1991

Spring 1992

Oct.1988

Oct.1988

Oct. 1988

Oct.1988

Oct. 1988

Oct. 1988

Oct.1991

June 1985

June 1985

Feb. 1985

Winter 1984

Winter 1984

March 1990

Dec. 1986

June 1985

Feb. 1985

Oct.1990

June 1985

Feb. 1988

June 1985

June 1985

June 1985

Feb. 1986

Dec. 1986

Dec. 1986

June 1985

June 1985

Fall 1983

Feb.1988

June 1985

Feb. 1988

Feb.1985

June 1985

Part
number

15748

15748

65248

65250

15748

15748

15748

15748

15748

15748

65248

83935

83935

83934

83931

83931

32986

83938

83935

83934

46987

83935

11078

83935

83935

83935

83936

83938

83938

83935

83935

83930

11078

83935

11078

83935

83935

69

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Integrity S2

Overview of the NonStop-UX Operating System for the Integrity S2 P. Norwood TSR 7,1 April 1991 46988

MEASURE

How to Set Up a Performance Data Base with M. King TSR 2,3 Dec. 1986 83938
MEASURE and ENFORM

MEASURE: Tandem's New Performance Measurement Tool D. Dennison TSR 2,3 Dec. 1986 83938

MULTILAN

Introduction to MULTI LAN A. Coyle TSR 4,1 Feb. 1988 11078

Overview of the MULTILAN Server A.Rowe TSR 4,1 Feb. 1988 11078

Using the MULTI LAN Application Interfaces M. Berg, A. Rowe TSR 4,1 Feb. 1988 11078

NetBatch-Plus

NetBatch: Managing Batch Processing on Tandem Systems D. Wakashige TSR 5,1 April 1989 18662

NetBatch-Plus: Structuring the Batch Environment G. Earle, D. Wakashige TSR 6,1 March 1990 32986

NonStopSQL

An Overview of Nonstop SQL Release 2 M. Pong TSR 6,2 Oct.1990 46987

Concurrency Control Aspects of Transaction Design W.Senf TSR 6,1 March 1990 32986

Converting Database Files from ENSCRIBE to Nonstop SQL W. Weikel TSR 6,1 March 1990 32986

Gateways to Nonstop SQL D. Slutz TSR 6,2 Oct. 1990 46987

High-Performance SQL Through Low-Level System Integration A. Borr TSR 4,2 July 1988 13693

Nonstop SQL Data Dictionary R. Holbrook, D. Tsou TSR 4,2 July 1988 13693

Nonstop SQL: The Single Database Solution J. Cassidy, T. Kocher TSR 5,2 Sept. 1989 28152

Nonstop SQL Optimizer: Basic Concepts M. Pong TSR 4,2 July 1988 13693

Nonstop SQL Optimizer: Query Optimization and User Influence M. Pong TSR 4,2 July 1988 13693

NonStop SQL Reliability C. Fenner TSR 4,2 July 1988 13693

Overview of Nonstop SQL H. Cohen TSR 4,2 July 1988 13693

Parallelism in Nonstop SQL Release 2 M. Moore, A. Sodhi TSR 6,2 Oct. 1990 46987

Performance Benefits of Parallel Query Execution and Mixed S. Englert, J. Gray TSR 6,2 Oct. 1990 46987
Workload Support in Nonstop SQL Release 2

Tandem's Nonstop SQL Benchmark Tandem Performance TSR 4,1 Feb. 1988 11078
Group

The Nonstop SQL Release 2 Benchmark S. Englert, J. Gray, TSR 6,2 Oct. 1990 46987
T. Kocher, P. Shah

The Outer Join in Nonstop SQL J. Vaishnav TSR 6,2 Oct.1990 46987

OSI

Building Open Systems Interconnection with OSI/AS and OSI/TS R.Smith TSR 6,1 March 1990 32986

The OSI Model: Overview, Status, and Current Issues A.Dunn TSR 5,1 April 1989 18662

PATHFINDER

PATHFINDER-An Aid for Application Development S.Benett TJ 1,1 Fall 1983 83930

PATHWAY

A New Design for the PATHWAY TCP R. Wong TJ 2,2 Spring 1984 83932

PATHWAY IDS: A Message-level Interface to Devices M.Anderton TSR 2,2 June 1986 83937
and Processes M. Noonan

Pathway TCP Enhancements for Application Run-Time Support R. Vannucci TSR 7,1 April 1991 46988

The PATHWAY TCP: Performance and Tuning J. Vatz TSR 1,1 Feb. 1985 83934

Understanding PATHWAY Statistics R. Wong TJ 2,2 Spring 1984 83932

PS MAIL

Enhancements to PS MAIL R.Funk TSR 3,1 March 1987 83939

RDF

RDF: An Overview J. Guerrero TSR 7,2 Oct.1991 65248

SAFEGUARD

Dial-In Security Considerations P. Grainger TSR 7,2 Oct.1991 65248

Distributed Protection with SAFEGUARD T. Chou TSR 2,2 June 1986 83937

Enhancing System Security With Safeguard C. Gaydos TSR 7,1 April 1991 46988

70 TANDEM SYSTEMS REVIEW SPRING I 9 9 2

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

SNAX

An Overview of SNAX/CDF M. Turner TSR 5,2 Sept. 1989 28152

A SNAX Passthrough Tutorial D. Kirk TJ 2,2 Spring 1984 83932

SNAX/APC: Tandem's New SNA Software for Distributed Processing B. Grantham TSR 3,1 March 1987 83939

SNAX/HLS: An Overview S. Saltwick TSR 1,2 June 1985 83935

SPOOLER

Sizing the Spooler Collector Data File H. Norman TSR 4,1 Feb. 1988 11078

TACL

Debugging TACL Code L. Palmer TSR 4,2 July 1988 13693

TACL. Tandem's New Extensible Cornrnand Language J. Campbell, TSR 2,1 Feb. 1986 83936
R. Glascock

TAL

New TAL Features C. Lu, J. Murayama TSR 2,2 June 1986 83837

TCM

Capacity Planning With TCM W. Highleyrnan TSR 7,2 Oct.1991 65248

TLAM

TLAM: A Connectivity Option for Expand K. MacKenzie TSR 7,1 April 1991 46988

TMDS

COO TMDS Performance J. Mead TSR 4,1 Feb. 1988 11078

Enhancements to TMDS L. White TSR 3,2 Aug. 1987 83940

Introducing TMDS, Tandem's New On-line Diagnostic System J. Troisi TSR 1,2 June 1985 83935

TMF

Improvements in TMF T. Lemberger TSR 1,2 June 1985 83935

TMF and the Multi-Threaded Requester T. Lernberger TJ 1,1 Fall 1983 83930

TMF Autorollback: A New Recovery Feature M. Pong TSR 1,1 Feb. 1985 83934

TNS/R

Debugging Accelerated Programs on TNS/R Systems D. Gressler TSR 8,1 Spring 1992 65250

Improving Performance on TNS/R Systems With the Accelerator M. Blanchet TSR 8,1 Spring 1992 65250

Overview of Tandem Nonstop Series/RISC Systems L. Faby, R. Mateosian TSR 8,1 Spring 1992 65250

TRANSFER

The TRANSFER Delivery System for Distributed Applications S. Van Pelt TJ 2,2 Spring 1984 83932

TXP

The High-Performance Nonstop TXP Processor W. Bartlett, T. Houy, TJ 2,1 Winter1984 83931
D. Meyer

The Nonstop TXP Processor: A Powerful Design for On-line P. Oleinick TJ 2,3 Surnrner 1984 83933
Transaction Processing

VB

The VB Disc Storage Facility: Setting a New Standard for M. Whiteman TSR 1,2 June 1985 83935
On-line Disc Storage

VIEWSYS

VIEW.SYS: An On-line System-resource Monitor D. Montgomery TSR 1,2 June 1985 83935

VLX

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938

The VLX: A Design for Serviceability J. Allen, R. Boyle TSR 3,1 March 1987 83939

XLS

Data-encoding Technology Used in the XLB Storage Facility D.S. Ng TSR 2,2 June 1986 83937

Plated Media Technology Used in the XLS Storage Facility D.S.Ng TSR 2,2 June 1986 83937

SPRING 1992•TANDEM SYSTEMS REVIEW 71

Season
Volume, or month Part

Article title Author(s) Publication Issue and year number

Miscellaneous'

A Performance Retrospective P. Oleinick TSR 2,3 Dec. 1986 83938

Batch Processing in Online Enterprise Computing T. Keefauver TSR 6,2 Oct. 1990 46987

Buffering for Better Application Performance R. Mattran TSR 2,1 Feb. 1986 83936

Capacity Planning Concepts R. Evans TSR 2,3 Dec. 1986 83938

Configuring Tandem Disk Subsystems S. Sitler TSR 2,3 Dec. 1986 83938

Credit-authorization Benchmark for High Performance T. Chmiel, T. Houy TSR 2,1 Feb. 1986 83936
and Linear Growth

Data-window Phase-margin Analysis A. Painter, H. Pham, TSR 2,2 June 1986 83937
H. Thomas

Estimating Host Response Time in a Tandem System H. Horwitz TSR 4,3 Oct. 1988 15748

Getting Optimum Performance from Tandem Tape Systems A. Khatri TSR 2,3 Dec. 1986 83938

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

New Software Courses M.Janow TSR 1,2 June 1985 83935

New Software Courses J. Limper TSR 4,1 Feb. 1988 11078

Optimizing Batch Performance T. Keefauver TSR 5,2 Sept. 1989 28152

Optimizing Sequential Processing on the Tandem System R. Welsh TJ 2,3 Summer1984 83933

Performance Considerations for Application Processes R. Glasstone TSR 2,3 Dec. 1986 83938

Performance Measurements of an ATM Network Application N. Cabell, D. Mackie TSR 2,3 Dec. 1986 83938

Peripheral Device Interfaces J. Blakkan TSR 3,2 Aug. 1987 83940

Predicting Response Time in On-line Transaction A. Khatri TSR 2,2 June 1986 83937
Processing Systems

Remote Support Strategy J. Eddy TSR 3,1 March 1987 83939

Streaming Tape Drives J. Blakkan TSR 3,2 Aug. 1987 83940

Subscription Policy for Software Manuals T. Mcsweeney TSR 2,1 Feb. 1986 83936

Tandem's New Products C. Robinson TSR 2,1 Feb. 1986 83936

Tandem's New Products C. Robinson TSR 2,2 June 1986 83937

Tandem's Software Support Plan R. Baker, D. McEvoy TSR 3,1 March 1987 83939

Terminal Connection Alternatives for Tandem Systems J. Simonds TSR 5,1 April 1989 18662

The Performance Characteristics of Tandem Nonstop Systems J. Day TJ 1,1 Fall 1983 83930

The Role of Optical Storage in Information Processing L. Sabaroff TSR 3,2 Aug. 1987 83940

'This category is composed of articles that contain product information but are not specifically product-related.

72 T A N D E M S Y S T E M S REVIEW SPRING I 9 9 2

TANDEM SYSTEMS REVIEW ORDER FORM

Use this form to request or renew a subscription, change subscription information, or order back copies.

□ If you are a Tandem customer, you may complete Part A of this form and send it to your Tandem
representative. Your representative may request that you receive an invoice for this subscription, in
which case you will be notified.

□ For other subscribers, complete Part A of the form and send it to the address below. Enclose a check or
money order, payable to Tandem Computers Incorporated, for the subscription and back copies that
you order. The cost is $75 for a one-year subscription and $20 for each back issue.

Part A. To be completed by the subscriber.

Subscription Information

□ New subscription

□ Subscription renewal

□ Update to subscription information
Subscription number: _______ _
Your subscription number is in the upper right
corner of the mailing label.

COMPANY

NAME

JOB TITLE

DIVISION

ADDRESS

COUNTRY

TELEPHONE NUMBER (include all code, for U.S. dialing)

Title or position:

□ President/CEO
□ Director/VP information services
□ MlS/DP manager
0 Software development manager
D Programmer/analyst

D System operator
D End user
□ Other: _____________ _

Your company's association with Tandem:

D Tandem customer
[~ Third-party vendor

Cl Consultant
[J Other: _____________ _

Back Issue Requests
Number •
ofcopi,., Tandem Systems Review
__ Vol. l, No. l, Feb. 1985 __ Vol. 6, No. l, March 1990

__ Vol. 1. No. 2, June 1985

__ Vol. 2. No. l, Feb. 1986

__ Vol. 2, No. 2, June 1986

__ Vol. 6, No. 2, Oct. 1990

__ Vol. 7, No. I, April 1991

__ Vol. 7, No. 2. Oct. 1991

__ Vol. 2, No. 3, Dec. 1986 __ Vol. 8, No. I. Spring 1992

__ Vol. 3, No. I. March 1987

__ Vol. 3, No. 2.Aug.1987

__ Vol. 4, No. 1.Feb.1988

__ Vol. 4, No. 2. July 1988

__ Vol. 4. No. 3, Oct. 1988

__ Vol. 5, No. 1, April 1989

__ Vol. 5, No. 2, Sept. 1989

Tandem Journal
__ Vol. l, No. 1, Fall 1983 __ Vol. 2, No. 2, Spring 1984

__ Vol. 2, No. 1, Winter 1984 __ Vol. 2, No. 3, Summer 1984

Tandem customers should send this form to
their Tandem representative.

Other subscribers send this form to:
Tandem Computers, Incorporated
Tandem Systems Review, Loe 216-05
18922 Forge Drive
Cupertino, CA 95014-0701

Tandem employees must order their subscrip
tions and back issues through Courier.

Menu sequence: Marketing Information ➔
Literature Orders ➔ Technical Marketing
Pubs ➔ Tandem Systems Review

4/92

Part B. To be completed by the Tandem representative.

Processing This Form

Please complete this portion of the form to approve your customer's subscription. Your department will be
charged $75 for each one-year subscription and $20 for each back issue. If you would like the charges to be
passed on to your customer, please indicate by checking the box below. Your customer will be invoiced, and
you and your sales district will receive revenue credit.

□ Yes, please invoice the customer for this subscription. (Be sure to notify your customer that they will
be receiving an invoice for this subscription.)

Send this completed form to:

Tandem Computers Incorporated
Tandem Systems Review, Loe 216-05
18922 Forge Drive
Cupertino, CA 95014-0701

NAME

TITLE

LOC

CUSTOMER NUMBER

SIGNATURE

Ordering Through Courier

EMPLOYEE NUMBER

DEPARTMENT NUMBER

TELEPHONE NUMBER

SYSTEM NUMBER

You may use Tandem's online Courier system to order Tandem Systems Review subscriptions and back
issues. An order through Courier replaces this form. The Courier menu sequence is:

Marketing Information__. Literature Orders __. Technical Marketing Pubs __. Tandem Systems Review

TANDEM SYSTEMS REVIEW CUSTOMER SURVEY

The purpose of this questionnaire is to help the Tandem S_ystems Review staff select topics for publication.
Postage is prepaid when mailed in the U.S. Customers outside the U.S. should send their replies to their
nearest Tandem sales office.

1. How useful is each article in this issue?

Product Update
Ul D Indispensible 02 □ Very 03 D Somewhat 04 D Not at all

Overview of Tandem NonStop Series/RISC Systems
05 D Indispensible 06 D Very 07 D Somewhat 08 D Notatall

Improving Pe,formance on TNSIR Systems With the Accelerator
09 D Indispensible 10 D Very 11 D Somewhat 12 D Not at all

Debugging Accelerated Programs on TNS/R Systems
13 D Indispensible 14 D Very 15 D Somewhat

Measuring DSM Event Management Pe,fonnance
17 D Indispensible 18 D Very 19 D Somewhat

Ongoing Support: Tandem Professional Services
21 D [ndispensible 22 D Very 23 D Somewhat

2. I specifically would like to see more articles on (select one):

25 D Overview discussions of new products and enhancements.

27 D High-level overviews on Tandem's approach to solutions.

29 C Technical discussions of product internals.

16 D Not at all

20 D Not at all

24 D Not at all

26 D Performance and tuning infonnation.

28 D Application design and customer profiles.

30 D Other ___________________________________ ~

3. Your title or position:

31 [] President, VP, Director

34 [] MIS manager

32 D Systems analyst

35 D Software developer

33 D System operator

36 D End user

37 D Other ___________________ ~-----------------~

4. Your association with Tandem:

38 [] Tandem customer

42 [] Other

5. Comments

NAME

COMPANY NAME

ADDRcSS

39 D Tandem employee 40 D Third-party vendor 41 D Consultant

► FOLD

► FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 482

POSTAGE WILL BE PAID BY ADDRESSEE

TANDEM SYSTEMS REVIEW
LOC 216-05

CUPERTINO, CA. U.S.A.

TANDEM COMPUTERS INCORPORATED
19333 VALLCO PARKWAY
CUPERTINO, CA 95014-9862

ll,l,,,l,l,ll,,,,,,11,l,,ll,l,,l,,l,,ll,,,,l,l,ll,,I

► FOLD

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

► FOLD

~TANDEM
Tandem Computers Incorporated
19333 Valko Parkway
Cupertino, CA 95014-2599

Part No. 65250 4/92 Printed in USA

